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ABSTRACT

Helicopters are occasionally used to carry loads hanging below them
on cables. Piloting the helicopter under these conditions is difficult,
particularly when the mass of the load is comparable to that of the heli-
copter, and there are gusty winds. An autopilot logic is designed here
for controlling a helicopter with a hanging load. A 16th order model for
the system is decoupled into four subsystems: (a) A second order system
for yawing motion, (b) a second order system for vertical motion, (c) a
sixth order system for longitudinal motion, and (d) a sixth order system
for lateral motion, A novel measuring scheme, which could be used in
remote areas, is_developed and filters are designed to estimate the state

variables from these measurements,

The autopilot can be used to move the load over short distances
without retracting the cables, This is done by automatically shifting
the autopilot modes from position-hold (hover) to acceleration-hold to
velocity-hold (cruise) to deceleration-hold to velocity~hold (near hover)
to position-hold (héver). Use of such an autopilot might save consider-

able turnaround time,

The Sikorsky S-61 helicopter is chosen as an example vehicle., The
performance of the controlled system is studied in the presence of lon-
gitudinal and lateral winds. Satisfactory response is obtained under

design conditions and also with nominal changes in system parameters.
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Chapter 1

INTRODUCTION

A helicopter is an ideal vehicle for transporting heavy, bulky
loads over short distances where surface transport is either infeasible
or uneconomical, e.g., in off-loading containers from ships or carrying
transmission towers or prefabricated buildings to remote sites., 1In
many cases the load is so big that it cannot be carried inside the air-
craft. Therefore it must be transported hanging from cables fastened
to the aircraff. It might be carried in a hanging position to save

loading and unloading time.

_ The pendulum modes of the hanging load couple into the motions of
the helicopter to form an unstable system. The instability is not
severe and an experienced pilot can still control the helicopter.
However, the pilot work load is so great that it is almost impossible to
add further tasks such as position-hold (precision ﬁover), even in still
air. On the other hand, an automatic control system can stabilize the
system and perform additional tasks such as precision-hover even in

gusty winds.

To simplify the autopilot design and implementation the complete
motion is approximated by four uncoupled motions. A technique is
developed for finding filter and controller gains. The Sikorsky S-61

is taken as the example helicopter.

For this system some changes in parameters are expected during a
mission. Also some parameters may not be known accurately in advance.
The effect of the parameters on system behavior is studied using a

fixed set of filter and controller gains.

Chapter I1 develops the equations of motion for the system and
describes the measuring technique near hover. The system definition

matrices for the linearized system are given under design conditions.

Chapter III describes the design technique for controller and

filter for the precision hover autopilot. The performance is studied



under design conditions.

Chapter IV suggests a technique for moving the hanging 1oadrdVéf
short distances., The load transfer is carried out in four steps involv-

ing speeding up, holding the speed, slowing down and precision hover.

Chapter V makes a study of the effects of changes in system param-

eters, Chapter VI summarizes the problem and the solution,



Chapter II

EQUATIONS OF MOTION

2.1 Introduction

A helicopter carrying a hanging load can be modeled as a system of
three connected bodies: (a) Rotor, (b) Fuselage, and (c) Hanging load.
The rotor can be tilted much faster than the fuselage or the cable carry-
ing the hanging load. Since we are not interested in high frequency
effects associated with rotor states, it suffices to use a quasi-steady
rotor model. In this description it is assumed that the inclination of
the rotor no-feathering plane (NFP) to the fuselage can be changed
"instantaneously' using the cyclic pitch control. The hanging load is
modeled as a point mass., Thus the dynamical system is simplified to one

rigid body and a point mass (the vehicle and the hanging load).*

This mathematical model is of 16th order with four control varialles,
The state variables are: Three position and three translational velocity
coordinates of the vehicle center of mass; three angular orientation and
three angular velocity coordinates of the fuselage; two angular orienta-
tion and two angular velocify coordinates of the cable; The control
variables are the longitudinal and lateral inclinations of the rotor
NFP, the collective pitch,and the tail rotor. However, near hover, the
yaw motion and the vertical motion are very nearly uncoupled from the
longitudinal and the lateral motions. This results in a second order
model for yaw motion with tail rotor as control, a second order model
for vertical motion with collective pitch as control, and a 12th order
model for longitudinal and lateral motions with longitudinal and lateral
cyclic pitch as controls., We will later discuss the decoupling of the

longitudinal motions from the lateral motions.

In case the size of the hanging load is comparable to the length
of the cable, the hanging load and the cable could be considered as a
compound pendulum. The analysis is very similar and the number of state

variables is the same.
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2.2 Equations of Motion

Figure 2.1 shows the coordinate system used to describe the motions
of a helicopter carrying a hanging load. It is assumed that the load is
carried by several cables attached to the helicopter at a point below

its center of mass. Some important distances are shown in the figure.

Let

longitudinal, lateral, and vertical deviations from a desired
point

x,y,h

u,v,w = three components of linear velocity

$,0,% = roll, pitch, and yaw angles

p,d4,r = roll, pitch, and yaw rates

R,v,£ = subscripts for rotor, vehicle, and hanging load (or cable)
respectively

vV L,V ,V = three components of wind velocity

o))
1]

aerodynamic damping coefficients

The kinetic energy of the system is

1 .2 .2 . 1 v 2 «2 .2 1; « 2 .2 2
T =5 mvixv+yv+h3] + 5 mz[x£+y£+h£] + E{Ix¢v+1y9v+lz$vj (2.1)

and the potential energy is

V=mgh + nghz (2.2)

The vertical position of the hanging load can be expressed in

terms of other variables, thus

hz = hV - b cos ev cos ¢v - £ cos ez cos ¢£
b 2 J4 2 .2
~h -b-4+3 [ev+¢‘z,] + 5 [efcsz (2.3)
for small angles.
Also,
xz =x, + b sin GV + ¢ sin 62 ~ X+ b9v + 262
Y£ zyV- b¢v" Ed)ﬂ



giving e

"

(x,-x b8 )/8 (2.4)

<
n

(-y2+yv-b¢v)/ﬂ (2.5)

Thus the potential energy is

VvV = (mv+mz)ghv - ng(bw)

- 2 2
m g | x -x_-bB -y +y_-bd 7
r 2L @202 + g {(J—L——") + (-Lu> }J (2.6)
2 v v £ £
The independent coordinates are hv ; wv ; Gv , xv , xz and

¢V . yv ’ yz . Using the generalized Lagrange method, the equations

of motion can be written. The equation governing hv is:

h +mh =T - h -
mh +mh + (mv+mz)g T mvdh(hv Vw )
Since the nominal value of vertical acceleration is zero

T = (mv+mz)g (2.7)

where subscript n denotes nominal value.

If

T = Tn +6T (2.8)

and
. mv+mz
Y = — ' (2.9)
v
we have
(h -Vy ) _
.. 85T v z
hv = W, - dh —-Y— (2.10)

The equation governing wv is:

.o

Iz'dfv =T, - Tm - Izdwdfv (2.11) -

where T is the torque produced by the tail rotor at the center of

t
mass and Tm is the torque of the main rotor



.o T
¥, = T, " %ifv (2.12)

The equations governing QV ’ xv , and xz (longitudinal motions)

are:
. mgg
Iyev + ngbev = (xg-xv-bev)(-b)
= - I é X - & v —
TaQR al 7oy +011y(xv VWX) + Q%Iy¢v +-031y(yv wa)
+ D19R + D2¢R (2.13)
m,g .
mX, + = (xz—xv-bev)(—l) = —T(6v+9R) + ozzmveV - Ozmv(xv-vwx)
- amo - 0'4mv(yv—wa) - D6, - Do, (2.14)
m g .
m%, = [Xg—xv-bev] = -mé)s(xz—VwX) (2.15)

The first term in the generalized force expressions on the right-hand
side of equations (2,13) and (2.14) is due to rotor thrust, the next
four terms represent damping and the last two terms arise from blade
coning, offset distance of flapping hinge, and other effects. Expres-
1 D, , D3 , and D4 have been derived by Hall (Hl1). The
only term on the right-hand side of equation (2.15) is due to air drag

sions for D

on the hanging load.

For small changes we can approximate T by Tn in the equations

above., Thus, using (2.7) and (2.9), we have:



- (V-1 g5 [y . X%
v I £ v £ £
Yy
Ymvga+D1 D2 . .
= T GR + 5 ¢R - alev +-0'1(xv-Vw )+ aé¢v 4-0'3(yv-vw )
y y X y
- b (Y-1)g _ y-1g
%, + (=17 + V) 80, + SpE x, - S
D D4 . .
= |-Yg- — GR- —_ ¢R + a29 - cz(xv-vwX) - oz4<bv - 04(yv-va)
“ b g 8 . _ o % - |
X, =2 gev R =~y lb’s(xz VWX)

(2.16)

The equations for ¢v T S and Y, (lateral motion) can be

written in a similar manner:

(a)

. (Y—l)mvgb (b+2) Yo Yy Ymvga+D1 Dy
¢ + 6 - — + =L | = —————"0_~-— 6
y/ £ Ix

v I £ A R

X

- ! - (v - - Y " (Y -
o:ld>V crl(yv Vw ) 0136V +c13(xv VW )

X
b (v-1g (y-1)g Dy Dy
yV - {(Y—l)}. + Y} g¢v + 7 yv' 7 Yz = {Yg + m—v (DR— ﬁ; QR
- ozszv -0, (7 -V, ) - B +0, G -V )
y X
. b g g _ _ o _
yE * 2 g¢v T2 yv + £ yﬁ - -1 05 (y£ Vw )
y
J
(2.17)

Decoupling into Subsystems

The ¢omplete system can be divided into three subsystems. They are:

Yawing Motion: This is a second order system in which wv and wv

are state variables and 57t is the control variable.



d -
Lry = 0 1 ¥ + 0 ot
at| v v v (2.18)

wv | 0 _dz[j' 2L“V l/IZ

-

(b) Vertical Motion: This is a second order system with hv and ﬁv

as state variables and 0T , related to the collective pitch, as

the control variable.

d o
2] = [o E b} +[ ot +[o Y
0 Bl |; 1 % S (219
\4 Y v ym Y.

(¢) Longitudinal and Lateral Motions: These motions are described by a

D‘o

12th order mathematical model with two controls. The state vector,
X, is
X% = (0,0 %,k ,x % ,0 .0 .,y ¥ ,7,,5)
o V’V’V’V’ﬁ’,@’V’V’V’V,@’,@’
the control vector u = (GR,¢R) and the noise vector
W= (Vw ,Vw ) . The state equation is
X y
X = Fx + Gu + I'w (2.20)
Matrices F(12x12) , G(12x2) , and TI'(12X2) are given in Table II-1.

The models describing the vertical motion and yawing motion are
simple second order systems. It is quite straightforward to design
control laws for these systems. We will focus our attention on design-
ing a control law for the system describing the lateral and longitudi-

nal motions,

2.4 Decoupling the Longitudinal from the Lateral Motions

Referring to Table II-1, we see that the equations governing the
longitudinal and lateral motions are coupled by cross-damping torques
and forces., If we assume that GR primarily controls the longitudinal
motions and ¢R primarily controls the lateral mations, there is an

additional coupling in the closed loop system because ¢R produces a
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small pitching moment and a small longitudinal force (in addition to
producing large rolling moment and lateral force), while GR produces
a small rolling moment and a small lateral force (in addition to pro-
ducing large pitching moment and longitudinal force). However, a
certain linear combination of QR and ¢R produces largeApitching
moment and longitudinal force, a small rolling moment and no lateral
force. Another linear combination produces large rolling moment and
lateral force, a small pitching moment and no longitudinal force. If
we take these two linear combinations as control variables, the longi—
tudinal-lateral decoupling approximation is quite good for the purpose

of designing controllers and filters.

2.5 Measurements for Estimating the State Variables

All of the state variables in the system presented in the last
section are observable from measurements of the position of the vehicle
center of mass (or the sling load). However, with these measurements
alone, the errors in the angular orientation estimates are large even
if a relatively accurate position measurement is available. Hence, it
is almost essential to also have measurements of vehicle and cable

angles,

The position measurement technique suggested here consists of a
second cable (a 'measurement cable'') fastened to a point on the ground,
which passes through a ring mounted elastically in fhe plane of the
aircraft floor, and is held by a constant tension winch inside the
aircraft (Figure 2.2a)., The portion of the cable above the aircraft
floor is parallel to a reference axis fixed in the aircraft. The
forces in the springs are measured using strain gauges, while a poten-
tiometer in the constant tension winch measures the length of the cable.
The nomenclature for the measurement cable is shown in Figure 2,2b. Let
@m and mm be the inclinations of the rope to the aircraft reference
axis and Lm , the length of the cable. Then neglecting the small
deflections of the springs

~ = ~ ”
xm1+Lm-bmﬁV_xV1+va-hvk‘ (2.21)

11
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where

)
- Lm Av
L = [-tan® , tand , -11]3 (2.22)
m 2 m m v
V1stan®® +tanZo £
m m . v

and the transformation between { , 3 ’ & , and fv , fv , and ﬁv for

small angular inclinations of the aircraft is

tv = 1 erv -0, *
~ ~
Iy v, 1 o, 1|3 (2.23)
k 6. -0 1 £
v v v
Using this transformation in equation (2.22),
- Lh ~
L = [-tan@m , tand -1] ] 1 zlrv -6, 1
Vl;tan%D +tan2®
m m -1 o) J (2.24)
v v
6 -6 1 £
v v

Substituting (2.23) and (2.24) in (2.21) and equating components, we get

L
x =%x -b6O - il (tan® +6 -¥ tand ) (2.25)
v m m v 2 5 m v v m
V1+tan ® +tan ¢
m m
Lm
y, = bmd)v + - - (tan®m+¢v-?1rvtan®m) - (2.26)
V1+tan ® +tan ¢ ’
m m
Lm
h =Db + . (1-0 tan® -¢ tand ) (2.27)
v m 5 > v m v m
V1+tan ®m+tan ¢m

At nominal location and orientation
xv=yv=0 ’ Lh=Lo ’ ¢v=9v=w;=0 g
thus

® =0 , x =L sin® , h =L cos® +b (2.28)
(o] m o [o] Vo (o] (o] m

14



Linearizing (2.25) - (2.27) about these nominal values gives

x T - (b+4+L cos® )6 - L cos®B B8 - sin® 2 (2.29)
v m o o' v o o m o m

y Z (b +L cos® )¢ + L cos® ¢ - L sin® ¥ (2.30)
v m o o' v o om o oV

6h = cos® £ - L sin® 0 (2.31)
v o m (3 o'V
where

L=L-L , 60 -8 and ¢ =p -0 (2.32)
m m o m m o m m

Solving (2.29) - (2.31) for 9m , ¢m and gm we have,

L = sec®0h + L tam® O (2.33)
m o v o ov

sec @o bm
¢m STV, - (1+ T sec ®0)®v + tad@owv (2.34)

o o
bm sec @0

6 = -secB (sec® 4+ —)§ - ———— x + tan® Oh (2.35)
m o o) Lo v LO v o v

The angles between the cable carrying the hanging load and the
fuselage reference axis could be measured in the same way using another

elastically mounted ring. Thus

b Xy Xﬂ

eﬂm - ez-ev = "-Qv(1+ f) -~ Y7
y y (2.36)

—h b - _ by, v_1¢

¢£m = ¢Z ¢V = ¢v(l+ ﬂ) + 7 7

The fuselage attitude could be obtained using an onboard vertical

gyro. This gives measurements of Qv and ®v .

All these measurements contain errors. We model them as additive

white noise. The measurement vector 2z for the two systems can be

written as
zZ = Hx + v

where the matrix H for the longitudinal and lateral systems is given

15



in Table II-2%*, X is the state vector, and

Hv(t)v (1)) = RO (t-T)

Table II-2

Measurement Distribution Matrix H

Longitudinal System

b
[—-sec® (sec@ +—m). 0 -
o o L
o
~-1-b/¢ 0
. 1 0
[,
Lateral System
~ bm
-1- Ir-sec @O 0
o
-1-b/% 0
1 0

sec ®
o

L
o

-1/¢

sec ©®
)

1/2

1/¢

~-1/2

(2.37)

The measurements and the power spectral densities of the additive

"white noises are summarized in Table II-3.

*
It is assumed that wv and hv are determined accurately by

separate measurements or another filter.
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2.6 System Definition Matrices for the Example Helicopter

To illustrate the technique of designing the control system, we
have taken a 6000 kg Sikorsky S-61 as the example helicopter., It
carries a 2000 kg hanging load on a 20 m long cable, attached to a
point 1.5 m below its center of mass, The measurement cable is 35 m
long and is offset 25 m in the longitudinal direction from the refer-
ence point on the ground. The state definition matrices F , G ,
and ' are given in Table 1I-4 for the longitudinal-lateral motions
of this system. Values of stability derivatives for this vehicle are
taken from Hall and Bryson (H3). The drag coefficient on the hanging
load is estimated assuming a reasonable size and drag coefficient and

-1 . X
taking secant slope between zero and 7.0 m sec wind velocity¥*,

The control vector is redefined so that its two components are
linear combinations of QR and ®R as explained in section 2.4, 1If

u = (9R+.03¢R , ¢R-.039R) the control distribution matrix is

modified from Go to G as shown in Table II-4,

The decoupling approximation is made. The control u1 affects
the longitudinal motion and u2 the lateral motion. The state defi-
nition matrices for the longitudinal and the lateral system are the
appropriate portions of the matrices in Table II-4, Table II-5 gives

H , the measurement distribution matrix.

Figure 2.3 shows the eigenvalues of the uncontrolled longitudinal
and lateral systems. Also shown are the corresponding eigenvalues from
the coupled 12th order system. The eigenvalue identification is done
using the eigenvectors. The eigenvalues from the coupled and the
decoupled system are very near to each other showing that the decou-

pling approximation is valid.

%
The drag on a body depends on the square of the velocity. The slope

of the drag vs. velocity curve at zero velocity is zero.
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Table II-5

Measurement Definition Matrices for the Longitudinal System

X HT:
¥
6, -1.537 -1.075 1.0
) ' 0.0 0.0 0.0
v
X, -.0348 -.05 0.0
% 0.0 0.0 0.0
v
x, 0.0 +.05 0.0
% 0.0 0.0 0.0
£
z=[6_ sz 6,

Measurement Definition Matrices for the Lateral System

b'e HT:
Y
¢ -1.052 -1.075 1.0
) 0.0 0.0 0.0
v
v, .0348 .05 0.0
; 0.0 0.0 .
Y, » 0.0
0.0 -.05 0.0
Yy
; 0.0 0.0 0.
v, 0
z=[o 78 ¢ ]
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Chapter III

DESIGN AND PERFORMANCE OF A PRECISION HOVER AUTOPILOT

3.1 Introduction

The control logic for the longitudinal-lateral motions is designed
using quadratic synthesis and neglecting the cross-coupling of these two
motions, The wind velocitieé are modeled as exponentially corrélated,
i.e., as first order continuous Markov processes. To test the decou-
pling approximation, the control logic is used with the cross-coupled
system model; the eigenvalues of this closed loop system are quite close
to those predicted when neglecting the cross-coupling, though the eigen-

vectors are strongly coupled.

The performance of the system is first determined in the presence

of winds assuming perfect state information (ideal case).

Next, optimal filters are designed for the longitudinal and lateral
systems using the measurements.shown in Table 1I-3, The root-mean-square
(RMS) values of state and control variables are found using the filters
combined with the control logic designed before. The transfer functions
of the filter-controllers (compensators) are determined and are shown to

be non-minimum phase,

If there is a steady wind disturbance the use of the control system
above results in a steady state error. This steady state error can be
avoided by using ihtegral control, i.e., by adjoining a new state
variable to the longitudinal system and another to the lateral system.

For the longitudinal system the new state variable £ is defined as

£ = x (3.1)

This leads to zero error in the position of the hanging load in the

presence of a steady wind. !
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3.2 Controller Design for Exponentially Correlated Wind

The correlation time of the wind velocity chahges is hsually
comparable to or larger than the time constants associated with the
controlled system. Therefore the wind disturbances cannot be modeled
as ''white noise''. Hence, we model the head wind and crosswind as ex-

ponentially correlated with a 5 sec time constant, i.e.,

A
w
v = - == 4 T =5 sec
w T Mx o c
X
Therefore,
V =-.2v + 1 (3.2)
w w X
X X

-1
ym is white noise. If the RMS value of Vw is 7 m sec the
X
required spectral density of Ny is

2
RTl = 27 = 19.6 m2 sec—3 (3.3)
x 5 .

There is, of course, another equation like (3.2) for the crosswind

disturbance.

If (3.2) is adjoined to the longitudinal dynamics equations the
system is modified to

—

= |em=| = |- = = u o+ |--- (3.4)

where x , u, F, I', and G are defined in Tables II-4 and II-5.

We choose a control law such that u is a linear combination of x and

u=Cx+c V (3.5)
- w

u 1is a scalar in this case; hence, C 1is a row vector and Cu is a

scalar. Substituting for u in (3.4) we have
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= - - - lad -
d X F+GC |T+Ge | x | | O ! U
It -v-r = S v + |~-- (3.6)
0 . -
| Wx | | 1/TC i wx-‘ 1._’
Notice that the closed loop eigenvalues depend on state definition
matrices and the gains C and do not depend on gain cw . We can

X
choose gains C and Cy independently; C to obtain the desired

x
dynamics of the closed loop system, and C to achieve good perform-

X
ance in the presence of wind.

In the design procedure adopted here gains C are chosen using
the quadratic Synthesis procedure, i.e., by minimizing a performance
index, J which is quadratic in state and control variables. The gain
cw can be chosen in several different ways. We have tried two of
th:m here:

(1) Using the augmented state model with the desired perform-

ance index, quadratic synthesis gives the gain cW in the
same way as gains C . Quadratic synthesis strikes a com-

promise between the amount of control required and state

variable deviations.

(2) In this procedure cwx is chosen to minimize the steady
state RMS value of a desired linear combination of state
variables (in this case the error in position of the hanging
load). Thus, the control on wind can be tightened without
making the closed-loop system too "fast'. This procedure is

described in detail in Appendix C.

The feedback gains on the state variables and wind velocity are shown in
Table III-1 for both longitudinal and lateral systems. The gains on wind

velocity are computed using both procedures.

The closed loop eigenvalues of the longitudinal and lateral systems
are compared with the closed loop eigenvalues of the coupled longitudinal-
lateral system (using gains from the decoupled systems) in Table III-1,
The eigenvalues are quite close showing that the decoupling approximation

is reasonable,
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Table III-1

Controller for Exponentially Correlated Wind

2 2 2 2
: 9 X X u
J =E —1 + _V + _'z.—- + _1
longitudinal .2 2 1.0 .1 S.S.

o 2 y 2 y 2 a
3 _ E{(_x) ,,(_V) . (_ﬂ_o) +(_2) }
lateral .2 2 1. .1 S.S.

Feedback Gains

C: c c. c c. c C: c c. .
Gv X, X, xz X, ¢v ¢v Yy Yy yﬁ y,

-1.27

-.277 | .141] .157 | -.0296| ,137 -.834 | -.125 | -.137 | -.131| .0249 |-.14

Feedback Gains on Wind

C C
Technique Wx Wy
1 .00219 -.00208
2 .00239 -.00228

Closed Loop Eigenvalues of Coupled and Decoupled Systems

7th Order Longitudinal |7th Order Lateral | Complete 14th Order
System System System
[sec_lj [sec_l] [560_1]
-.99 + 1.8j -.93 £ 1.9j
-.58 ¥ 1.0j -.57 ¥ 1.1j
-.84 * .78j -.91 % -.62j
-2.2 % 3,55 -2.3 ¥ 3.5j
-.82 % ,74j -.72 ¥ .79j
-.53 ¥ 1.0j -.50 ¥ .98j
[ -.2 -.2 ! -, 2%

*
Double root
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-1
(Wind RMS 7 m sec

RMS Response with Perfect State Information

Table 111-2

correlation time 5 sec.)

Longitudinal System

longitudinal and lateral,

i System Technique By év Xy Xy X, ) ul(xQR)
Decoupled 1 .00290 |.00495 |.0292 [.0251 |.0248 }{.0169| .00943
2 .00331 }.00601 |.0383 |.0297 ;.0223 |.0183 ) .00948
Coupled 1 .00329 [.00589 |.0381 {.0283 |.0367 |.0199} .0100
2 .00366 |.00682 |.0453 |.0324 |.0351 |.0211| .0101
Lateral System
System Technique o, o, Vv Yy Yy ¥y | ua(=op)
Decoupled 1 .00291 | .00697 |.0300 {.0251 |.0209 |.0141 | .00936
2 .00338 | .00873 |.0391 |.0299 |.0183 |.0153| .00939
Coupled 1 .00335 } .00831 |.0389 | .0290 |.0346 | .0177 | .00989
2 .00379 | .00984 | .0463 | .0334 ].0330 |.0186 | .00992
EUnits in m sec ; angles in rad]

’
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Figure 3.1 shows how the poles of the longitudinal system move when
the feedback gains of- Table III-1 are used. The poorly damped complex
pole pair becomes better damped and faster. The unstable complex pole
pair becomes stable and the two real poles change into a complex pair.
The pole at -.2 corresponds to the wind model and cannot be moved by
feedback since wind velocity is external to the system. The eigenvalue
identification was done using the eigenvectors given in Appendix A. A

similar graph for the lateral system is shown in Figure 3.2,

The root-mean-square (RMS) response of the system is determined as-
suming perfect state information (Bl, Chapter 15). Table III-2 shows
the RMS values of the state and control variables when procedures (1)
and (2) are used to find feedback gains on wind velocity. Also shown is
the predicted performance when the gains from the decoupled systems are
used with the coupled 14th order system. Procedure (2) gives a lower
RMS value of the deviation in position of the hanging load though at the
cost of higher RMS value of other state variables. The RMS errors are

quite small for this strong gusty wind.

3.3 Filter Design and RMS Response with Filter-Controller

A filter is designed to estimate the state variables from noisy
measurements of Table II-3. The sum of ground plus wind velocity can be
measured by mounting velocity probes on the helicopter. However, it is
not necessary to do so. The wind velocity can be estimated if all other
state variables are observable from the measurements. We assume that
velocity probes are not used and build a filter to estimate the state
variables and the wind. If g is the estimated value of x , then the

estimation equation for the longitudinal system is

4 |2 F' T 2 6 ) u + Kk [z-H]
= Tl ="~ |+ | (3.7)
dt vw 0 .:+=-1/T Vw

X ) c X_| 0

where 2z and H are defined for the longitudinal and lateral systems
in equation (2.25) and Table II-5. The 7X3 gain matrix K is given

in Table III-3. We define X , the error in estimate of x , thus
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| >
Iy

= X =-

(3.8)

The RMS estimation errors and the poles of the estimate error equations,

are shown in Table III-3.

Table III-3

Filters for Longitudinal and Lateral System

x K1ongitudina1 X Klateral
- - ~- -
QV -.661 -.482 2.51 :¢v -.670 -.733 3.37
&,  -l.61 -1.07 4.49 év -1.94 -1.92 7.65
X, -17.8 -.494 -35.0 yv 18.6 1.42 25.0
kv -.626 2.60 -26.7 &v 3.08 -1.66 21.6
X, -16.9 3.58 -19.5 yz 16.6 -3.68 11.1
kg -5.13 -.142 -9.25 &z 5.47 . 544 6.12
VW 257 203 -717 Vw -204 -245 796
|~— X - . y -

T

2T - [o 6 6.1 2T = [o¢ @ 6]
- £ v - L v
Eigenvalues of the Estimate Error Equation (sec-l)

Longitudinal -1.1F 2.5 -.15 1+ .82j -.34 + .19j -2.3
Lateral -1.7 + 3.9; -.17 + .81j -.33 + .23j -3.3
RMS Estimation Error

T ) , : ; :

9v i v xv xv XE Xz wa q>v ®v yv Yy yz yﬁ wa
.0062].0116 .232|.099|.205(.08513.59]| .0072{.0246{f ,21|.092|.187| .083|3.04
[Units in m , sec ; angles in radians]
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Figure 3.3 shows how the system may be implemented. The complete
system is divided into four parts: (a) controller, (b) system dynamics,

(¢) sensors, and (d) filter,

The filter-controller can be regarded as a multi-input multi-output
compensator. The transfer function matrices of the compensators and the
pole-zero locations are given in Appendix B. The compensators for both
longitudinal and lateral systems have a pole in the right half plane.
Some elements of the transfer function'matrices also have a zero in the

right half plane. Hence, these are nonminimum phase compensators.

The RMS response of the system is determined with the fiiter and the
controller designed above in the presence of . 7 m sec-l RMS longitudinal
and lateral wind. Table III-4 summarizes the results for gain on wind
from both techniques and also when the filter and controller gains from

the decoupled systems are used on the coupled sjstem.

Table III-4
RMS Response with Filter and Controller

(Wind 7 m sec’-1 RMS longitudinal and lateral)

Longitudinal System

t - . p ~
System Technique GV Gv X, X, X, %, u1(~9R)
1 .0341 .0736 .403 .313 .470 .241 . 0247
Decoupled
2 .0342 .0740 .403 .314 .468 . 240 .0249
1 .0355 .0771 .405 .320 .470 .242 .0253
Coupled
2 .0357 .0775 .405 .321 .469 .242 .0255

Lateral System

t Techni 4 3 ; N
System echnique ¢v ¢V Y, v, Y, v, u2(~®R)
1 .0327 . 101 . 340 . 288 .394 . 202 .0182
Decoupled ’
2 .0328 .102 .339 . 287 .393 .202 .0183
1 .0339 . 105 .340 . 290 .394 .202 .0187
Coupled
2 .0341 . 106 .340 . 291 .393 .202 .0188

(Units in m , sec ; angles in radians)
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There is considerable increase in RMS deviation of the hanging }oad
position and cohtfdl as comrpared torthe case with p;ffeét sfafe informa-
tion (see Table III-2). Nevertheless, the errors are still small for
such a strong gusty wind. The coupled system gives nearly the same

response.

3.4 Integral Feedback

The filter-controller of Sections 3.2 and 3.3 was designed assuming
an exponentially correlated wind. In the presence of a steady wind, it
produces a steady-state error. This steady-state error can be eliminated
by the addition of integral feedback, which makes the position insensitive

to steady disturbances or small changes in system parameters.

We add a new state variable, £ , defined in equation (3.1) to the

longitudinal system giving

4 (5_ Frolfx G lu P“ v,

e + -] Y (3.9)
PE T: 0]ll¢ 0 |o |
. ! - -

If, u=gG_+ cg 3 (3.10)
A
d f_5 F+GC! Gcg' X T Vw
vl il --_-:_.-__ - + |--- X (3.11)
3 T ' 0 ||§

- - ! ]

The gains can be chosen either by quadratic synthesis or by a mix-
ture of quadratic synthesis and pole assignment, If the closed loop
system is stable and wa is a constant wind, then xz can be brought

to zero in the steady state, by proper choice- of cg

A filter is designed to estimate the state variable x . The new
state variable, £ , can be estimated by using one of the two methods

given here,

(i) éf =X (3.12)
or (ii) 5 —z =x, +vV (3.13)

With perfect state information the two methods are the same.
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Table III-5

Integral Control for the Longitudinal System

gerfect §tate Enformation

34

- 2 2 2 2 N
Controller: J =+ E e—" + o + % . [E£) . (2R
et T2 2 2 . 1 10 1 ’fs.s.
c c’ c c. c c. c
Gv v x, X, X, X, £
-1.31 -.273 .156 . 166 -.0171 .169 .01
Filter:
T . .
X = [Qv év X X x, xz] z
kT - [-.888 -2.64 -17.8 .598 -17.1 -4.58 | N
-,631 -1.69 -,483 3.31 3.39 2.24 sz
3.10 7.18 -34.9 -29,7 -18.7 -10.7 e
L v
RMS State and Control
Wind > . . ~
State ev ev Xv v Xz xz € u1(~9R)
(a) PSI* .00831 | .0232 |.0476 | .0651 | .0571 | .0417 | .233 .0122
Filter 0.344 .0741 ;.401 .337 .481 . 268 2,42 .0268
(b) PSI .0179 0.0 .0398 (0.0 0.0 0.0 1;78 .00926
Filter .0378 .0704 |.400 .330 .478 . 264 2.99 .0256
2 -
(a) Wind with 19.6 m~ sec spectral density and small
correlation time. '
(b) 7.0m sec_1 RMS steady wind




Table III-6

Integral Control for the Lateral System

2 v 2 ) 2
. _1 v v N _R
Controller: J‘zE{(z) * (2) + () - (10) +(11)2}5.5.
o] Ce C C. C C. C
o, b, Y, v, v, v, il
-.855 | -.125 | -.149| -.138 | .0120 -.169 | -.01
Filter:
T . : ) )
x = (o o Y, v, Y, yﬂl z
T
K =[-1.30 -6.12 18.6 1.85 16.8 4.85 | o
-1.37 -5.99 1.43 -2.82 -3.46 -.087 ®
5.76 23.7 24.9 26.2 10.3 8.53 °,
RMS State and Control
Wind . . .
“State d>v v yv yv yZ yﬂ n u2(z®R)
(a) PSI* .0127 | .0602 |.0492 | .078 | .0549 | .0411| .0219 .0128
Filter | .0352 | .116 |.345 .321 | .413 | .233 | 2.05 .0220
(b) PSI .0181 | 0.0 .0398 | 0.0 0.0 | 0.0 1.67 .00924
Filter | .0373 | .0988 |.343 .312 | .409 | .229 ! 2.64 .0201

(a

(b

) Wind with 19.6 m2sec -

correlation time.

) 70m sec-1

RMS

steady wind

Berfect §tgte Enformation
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Table III-5 shows the controller gains (obtained using quadratic
synthesis) and filter gains for the longitudinal system. The filter
was designed for a wind with 19.6 mzsec"1 spectral density and small
cbrrelation time. This table also shows the RMS state and control in
two different wind states: (a) wind with 19.6 mzsec—1 spectral density
and small correlation time (approximated ''white''), and (b) 7.0 m sec-1
RMS steady wind. With filter the second method is used to estimate the

augmented state variable.

The response is excellent with perfect state information, In case
(b) the root mean square (RMS) value of deviation in position of the
hanging load is zero. With noisy measurements and a filter the BRMS

values of state and control variables increase but are quite reasonable.
Similar data for the lateral systems are given in Table III-6,

With integral control in the presence of steady wind disturbance,
the wind velocity is not required for feedback and is not éstimated.
The above filter is designed to estimate other state variables. This
filter is not optimal, since for a system in which the states are
coupled through state transition, noise distribution or measurement
distribution matrix the equations governing optimal state estimates

are coupled.

3.5 Summary

An autopilot was designed for precision hover of a hanging load
over a desired point. Satisfactory performance is obtained using a

reasonable amount of control.

The response is much better wusing the assumption of perfect state
information (ideal case) than with noisy measurements and optimal filter.
To improve performance significantly, it is necessary to have better mea-
surements. Integral control will prove useful only if better measurements

are available.
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Chapter IV

MOVING THE HANGING LOAD OVER SHORT DISTANCES

4.1 Introduction

In many applications of interest the load has to be carried over
short distances. 1In such cases the time spent near the terminal
points is large compared to travel time and it is advantageous to
carry the load without retracting the cables even if it requires
traveling only at moderate speeds. We assume that the helicopter
travels sufficiently slowly that aerodynamic instabilities (coupled yaw

and lateral pendulum motions) of the cable-load combination do not arise.

In general the transfer is carried out in four stages: (a) zero
velocity to cruise velocity at approximately constant acceleration,
(b) cruise at constant velocity, (c) cruise velocity to zero velocity
at constant deceleration, and (d) precision hover. For very short

distances the cruise phase may be absent.

In what follows we present a general scheme for tranferring the
system from any state to hover at the origin of the coordinate system.
Autopilot modes are chosen depending on the location of the system in
state space. There are four possible modes: Acceleration, cruise,
deceleration, and hover. At a switch curve the autopilot shifts from
one mode to another and the system experiences a transient. We first

discuss the mode selection logic and then the autopilot logic for each mode.

4,2 Mode Selection

The longitudinal system has six state variables. If one or more
of the state variables ev , év , Qz , and éz has large initial
values, the system is placed in a stabilization mode. 1In this mode
the position and velocity of the helicopter are not controlled but
the pitch angle, the load cable inclination éngle, and the corre-
sponding angular rates are reduced to low values:. It is necessary to

do this for a simple switching diagram because acceleration or velocity
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commands might otherwise produce unacceptable angular deviations for a

short period of time. Thus as a starting condition we have small

a a and an X
Gv , Gv , 62 , and 92 s y ox, and X,
The switching diagram is shown in Figure 4.1 in the X, X
space. The cruise velocity is fixed sat Vmax and the commanded
. +4 .
acceleration at amax' Roughly, the reduced state space (xv , xV

space) is divided into four regions. The commanded mode is a function

of x and x as follows:
v v

If Ikvl >V lxvl >x. and
kzsgn(i ) < -2ax and x < v Acceleration Mode
v v v v max
and x > v Deceleration Mode
v max
and X =v Cruise Mode
v max
.2 . .
X sgn(x ) > -2ax  and X > -v Deceleration Mode
v v v v max
and x > -v Acceleration Mode
v max
If Ikvl < v, and lxvl < Xy Hover Mode.

(4.1)

The figure shows the Qetails of the switching logic. It takes
some time for the system to go into the new mode after mode switching
is commanded. Therefore the system should be commanded to go into
the new mode before it approaches the mode switching boundary of (4.1).
The dotted lines in the diagram are the boundaries where the new mode
is commanded. The switching curves for bang-bang type control have
some dead space around them to avoid the problem of chattering. The
dotted lines around the mode switching curves do 223 represent dead
space alone. This is the space required for mode change to take

place.
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An example trajectory is shown, At the starting point, A , with
“the helicopter standing ‘still, accelération is commanded. The aircraft
travels to point A' before constant acceleration is achieved. The
Cruise Mode is commanded at B and the helicopter travels to point
B' before the velocity is constant at vm;x . This is followed by

the Deceleration Mode (C-C'-D) and the Hover Mode (D-D')

For the system under consideration the following parameters are

chosen
v =15 m sec_1
max
. -1
Av = 2 m sec
a =1lm sec_2
max
xh =1.0m
v, =1.0m sec-1
h ™~ 7 (4.2)
4.3 Command Generating Model

The command generating model produces commands to switch mode or
change trim stafe with acceptable transient response, The desired
changes are smoothed out so that the system can follow them with
reasonable state variable deviations and control. The structure of
the model depends upon the commands desired and the Kind of transient
response desired. In the model designed here, constant acceleration
or velocity can be commanded. If a is the desired acceleration,

d
the command velocity, vc , and commanded acceleration, ac y are given

by
¥ = a (4.3)
c c
. 1
— (ad-a ) (4.4)
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Follower

For velocity or acceleration commands, we are not intereésted in
controlling position, so the longitudinal equations of
motion can be written in terms of only five state variables, Qv ,
év , kv , ez , and éz as shown in Appendix D. The controller can
follow a constant velocity or acceleration command in the "steady
state'. In this '"steady state', X (rate of change of acceleration),
gv and é? are zero. Differentiating the state equations twice and

then once gives

8 =6 =0 (4.5)

-
i

.000254 | a

and | ré

v H

‘ é@J .000262
L.. s L.

Now the state variables and the control variable are proportional to

¢ (4.6)

a_ and v_ in this "steady-state':

- — A
= - 2 - 25 =
e 10 000254 | | a_ My, (4.7)
6 -.000254 0.0 v
v (o4
% 0.0 1.0
v
eﬁ -.102 ~.000262
6 -.000262 0.0
g .
- - S -
= -.000015 -.00132 = :
uS 000 8 ac 001 vc NZC (4.8)

The desired control law is

u = u + C(x - xs) (4.9)

The gains C are given in Appendix D.
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4.4 Transient Response

The transient response of the system was determined at mode switch-
ing. The following four cases were considered with the time constant of

the command generating filter equal to 2 sec:

(a) Switching from hover to constant acceleration mode
(Figure 4.3)

(b) Switching from constant acceleration mode to constant
velocity mode (Figure 4.4)

(c) Switching from constant velocity mode to constant
deceleration mode (Figure 4.5)

(d) Switching from constant acceleration to constant

deceleration mode (Figure 4.6)

Good response was obtained in all cases as shown in figures (4.3) to
(4.6). The closed loop fregquency associated with pitch angle changes is
higher than those associated with changes in inclination of the load
cable or velocities of the vehicle and the hanging load., Thus after a
mode is commanded, the pitch angle starts changing away from its previous
trajectory first. The large transients in the rotor tilt in the begin-
ning are due to fast changes in pitch angle and pitch rate. Notice that
the initial transient response of the longitudinal tilt of the rotor NFP
in figure 4.4 is similar to figure 4.5-(both involving a -1 m sec
change in commanded acceleration) and is ''negative' of figure 4.3 (in-

-2
volving a 1 m sec change in commanded acceleration).

In all cases the maximum rotor tilt in the longitﬁdinal direction
(control) was less than 2° (the maximum control authority is about 12°),
while the pitch angle never exceeded 8° (the nominal "steady state' pitch
angle in acceleration or deceleration mode is about 5.7°). Switching

from constant deceleration to constant acceleration produced the largest

transient,
4.5 Summary

It is possible to move hanging loads over short distances safely and

efficiently without retracting the cables. The cable-load configuration
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must be designed so that aerodynamic instabilities do not occur at
velocities less than or equal to the cruise velocity. Studies by Gable
and Wilson [Gl] show that most practical hanging loads can be made aero-
dynamically stable up to a reasonable speed. Some thoeretical studies
[P1] and experiments with one body shape and cable configuration [ E1]
point to the contrary. However, these latter studies assume that the
aircraft moves at constant speed and neglects the effect of the hang-
ing load on the vehicle. This coupling is not negligible for modern
crane helicopters and heavy lift helicopters, where the mass of the

helicopter is comparable to that of the payload.
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Chapter V

PERFORMANCE UNDER OFF-DESIGN CONDITIONS

5.1 Introduction

In operation some of the parameters will differ from the values
used in designing the control system, e.g., in off-loading container
ships, all containers may not have the same mass (change in Y) or loca-
tion of the center of mass (change in £). In addition, the values of
some of the system parameters may not be accurately known. Therefore
it is prudent to study the performance of the system when the gains for

the design condition are used with a different configuration.

We have shown that the decoupling approximation is quite good for
the purpose of*designing the controller and the filter and is reason-
able for evaluating the performance. Also the behavior of the longi-
tudinal and lateral systems is of the same character. Therefore it is
sufficient to carry out a thorough investigation of the longitudinal

system only.

5.2 System Definition Matrices

We believe the following four parameters are the most likely ones

to change in normal operation:

(a) mass of the vehicle, because of varying amounts of fuel
my+my

My

(c) the distance between the suspension point and the center

(b) mass of the hanging load (or the ratio Y =

of gravity of the hanging load

(d) drag coefficient on the hanging load

These parameters are changed one at a time and the matrices F , G ,
T , and H are computed. The mass of the vehicle is changed to
5000 kg and 7000 kg (nominal value 6000 kg), the mass of the hanging
load is changed to 1000 kg and 3000 kg (nominal value 2000 kg), the

length of the cable, £ , is changed to 10 m and 30 m (nominal value
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20 m) and the drag coefficient on the load is increased and decreased

by a factor of ten from its nominal value of .0026 §ec’l;

The open loop eigenvalues of the longitudinal system are shown in
Tablé V-1. The character of the eigenvalues is the same. The mass of
the hanging load and the length of the cable seem to be important

parameters.

5.3 Closed Loop System

The nominal contfoller and filter gains obtained for the design
configuration are used with the system matrices obtained for off-
design conditions. Table V-2 shows the closed loop eigenvalues, The
eigenvalues ﬁove but all the closed loop systems remain stable, The
damping of all the roots is good except for one root pair for Y=1.1667
(1000 kg hanging load). Filter eigenvalues are shown in Table V-3.

All filters remain stable and the poles do not move much, It seems that
it is possible to use the design filter and controller gains even with

these wide fluctuations in parameters.

Root mean square (RMS) state and control response in the presence
of a 7m sec_1 RMS exponentially correlated wind (correlation time
5 sec) are shown in Table V-4 with perfect state information (ideal
case) and in Table V-5 with noisy measurements and filter with fixed
gains. Except for the case with increased drag coefficient on the
hanging load, the state and control responses do not deteriorate
appreciably. With increased drag coefficient (last case) the RMS value
of the deviation in the position of hanging load increases from .033 m
to .481 m with perfect state information (PSI) and from .47 m‘to 77 m
with noisy measurements and filter. We achieve suboptimal performance
by using controller and filter gains which are optimal only under
design conditions. The performance can be improved by choosing a
different set of gains for each configuration but it does not seem
necessary. In some instances this suboptimal perfdrmance is superior
to the design case because those configurations are more favorable

than the design configuration.

51



. muwm ‘w ‘3y uy maﬂcbu

uoT3Tpuo) u3drsag xx

peo] SuiSuey U0 JUIFOTFIIOD Jeag *

0z - 00 8¢~ feg" ¥ wLO° e 3 11°- 920" 02 ee’1 0009
0z~ 0°'0 ov° - fog* T 860" o1 ¥ - 92000 0z ee'1 0009
0z - 0'0 L' - fez- 3 ot Ce 1 ¥ 180°- 9200° 0z LL'1 0009
0z - 0°0 Le" - feg* T €60° forg ¥ €1~ 9200 " 174 0s°'1 0009
0z - 0'0 LE" - g T S60° CL'T ¥ 860"~ 9200° 02 ee'1 000L
0z *- 0°0 ] frz° 3} L60° 1 3% #»1°- 9200° 0z ee’t 000¢
A 0'0 8V - fog- F+ 21° Cv'1 F 260" - 9200° og €'l 0009
0z *- 0°'0 81" - fge* F 1600° feg + vi'- 9200 01 ge’1 0009
0z - 0'0 ov " - foz* ¥ S60° Cer1 3 117~ **9200 " 02 €e°1 0009

So(1-A) , 7 S “w

1apoly Teurpnitduo] ay3l Jo sanyeauadrd doo] uadp

SuoT1TPUO) ustsag-330 JIapuf sanijeasauadrg dooq

1-A 21q®lL

uadQ

52



ﬁoom ‘w ‘3 ut mpﬂzau

UoIIIPUO) uBISAA A%

peo] 3utldued uo JUSBIDIFFV0) 3evad *

53

mom.- : f1'1 ¥ 8g°- fro" T 88°- 8’1} 96~ 920" m 02 €e°1 | 0009
0z "~ : fo't F pvg°- fgr* ¥ 16°- g1 X 96 - 92000 ° 02 eet 0009
0g - ; 2’1 F61°~ m g F L9°- fe'1 ¥ g°1- 9200 ° 02 Lt 0009
02" - (18" Y 2v - fog" 3 ¢°1- fg'gx 18- 9300 ° 02 0S°T 0009
0g°- 1’1t 335"~ (69 § 28°'- f6'1 ¥ 0°1- 9z00° 0z ge°1 000L
0"~ Cve" ¥ S5 - fore" X 1°1- o't ¥ 6L~ 9200 " 02 €€’ 0005
0z "~ L B S § A ftg" ¥ 1°1- fo'1 3} e68'- 9200 " o€ €€’ T 0009
0z - fe'1 3 06"~ foo' ¥ 1p°- fe'g ¥ 1°1- 9200 " ot €e’1 0009
0g ' - o't 385"~ (gL ¥ v8'- fe"1 & 66°- +%9200° 4 €e°1 0009

‘ SS— T
wa1s£g teurpnit3uo] ayjl Fo saniesuadiy dool pasol)d *mbAH|>V 7 MLENI =A m “u
w4 w '

suten joeqpasag u3rsag 3BuTlsn SUOT1ITpuo) uIrsa(g-FIO IXapu; sanisauadry doo] pasold

¢-A 91qey,




UOT3TPUOD U3TSad %%

peol Sur8uey uo JUSTIOTIIS0D 3Jex(Q *

mumm ‘w ¢33y mua::u

9°2- C61°  ve'- (1L° ¥ 61°- e’z 3 v6°- 9z0° 02 €€°1 0009
9°g- f61° + ve°- for* F ¥1°- fe'z ¥ 86°- 9200° 02 €e°1 0009
92~ fe1* I ve"- for* F o1~ fe'z ¥ 26°- 9200" 0z 29T°1 0009
1°2- fg1° F €€~ fg8* I ST°- f9'e T2 1- 9200 " 02 S°1 0009
0°g- CeT* F vE'- (g8" F sT1°- vz +2°1- 9200° 02 €€°1 0002L
9°'¢c- C6T" I ve°- fg8" J Ss1°- fo'z F0'1- 9200° 0z €e°T. 000S
gz~ CL1° ¥ ve'- feL" F OT'- (y°2 3 0°1- 9200 o€ €€°T 0009
8 1- fzg* ¥ ee°- fog* 1 62°- (8°2 F €1~ 9200° 1}¢ €e°1 0009
£°2- f6T1" J ve"- fgg8° ¥ S1°- gz F1°1- +x9200° (114 €e°1 0009

A
(Teurpniiduo]) uotienbdy JOXIY 93BUTIISH JO santeaua3Tty thH|>v ¥ 7 W >E

W+ w

[sutep x031Td uSTsaQ pue Sidjaweled udrsaeq 330

uoTlenbd Joxay ©3BWTIISH 9Yj3 JO SanTeAuddtTy

£-A 9T1qel

54



mvm& ut satdue (09s ‘w ‘3y ur mawcbu

uoTITPUO) UITSA %

peo] 3ut3ueq uo JUSIOIIFd0) IJeaq *

2800° SLT” 8%’ 9€1" 61’ 1€10° _ SI10° 920" 0¢ €'l ooom.
9600 ° p10° €e0’ 610" €€0° 9%00° ¥2c00° 92000 0g €e’l 0009
LO10° 120° €€0° 620° 820" 1S00° Geoo” 9200° 0c L9111 0009
¥800° .mﬁo. 120" G20 ° vE0° £G600° 8¢00° 9200 ° 02 S'1 0009
1800° 810" 2co’ 620’ 6€0° 6S00° 2€00° 9¢00° 02 €e°'1 000L
€110° 810° 8¢0° 0co’ 120" 8€00° 200" 9200° 02 el 0005
v600° 810° 20" Leo’ m ce0’ ¥S00° ¢€00° 9¢00° oe €e'1 0009
S600° 910" 1€0° ¢c0’ w AV Zvo0°’ Lg00° 9200° (0] 1 £€e°'1 ooom
v600° L10° rAUN Sco” 6c0°’ 0500° 6200° *%9200° 0z ee’l 0009
- = = = S — - -
Axm»..vas ﬁm mx >u.h AL >m >® *m.o:;C 7 - w - -
w+ w
1013U0) pue 83elS SN

howm G

= awTt], uorleiaIxo) ¢

995 w L, = SWH DPUTM]

55

H|
sSuoT]1TpPUO) udTS3aq-FIO JopuUN
UOT3BUWIOJUI 938B]S 3108FI8d Y3Im asuodsay S

b-A 914dEL



UOTJIPUOD udISadQ sx
peol Sur8uey Uo 3UaTOIIFI02 Jea(d *

(pex ur serdue ! Das ‘w ‘8 ut s3jtun’)

6820° (o] oLL: 206" 196" 010) O €650° 920" 014 €e°1 _ 0009
2820° L0g”’ 16¥° 447 vov* £€880° 8060 ° 92000 ° 0z €e'1 0009
£€820° zie’ vev’ X4 L9%° 2680° G160° 9200 02 L9T°1 0009
9220° [<4 VLY LLZ” g6’ 1L90° €Lg0° 9200 ° (414 S'1 0009
740N 6¢€eC” 697" 10¢° (o]0l 20L0° €2€0’ 9200 ° 0g €e'1 0002
09z0° vve” LY oge’ _ 607"’ 88.0° 89¢0° 9200 ° 02 €e°1 000¢
8620 ° | 262 ° | ¥8p° 142 m 8zv"’ 8080° 0070 °* 9z200° o¢ €e°1 0009
FEC0° w hHN.,W cop"* 662" 69¢° 66G0° jdz4¢H 9z00° 0T €e't 0009
LvZ0" ; 1ve”’ w oLy” gie”’ vov* LELO® 1v€0* x%9200° (014 €e°1 0009
! o _ A
dootn | T 0 Tk | % “x | g o | Soctm | o | —en | M
! ‘ ! Wt w
Jox3uo) pue 23®31S S

(SuoT3Tpuo) udrsag-330)
J931TJd pue sjuduaansesly AsSTON yjIm asuodsay SWH

S-A 9TqeEl

56




5.4 Summary

Satiéféctoryﬂé&stem behévibéiis'obtaihed by uéihgté‘fi#édrsé; of
controller and filter feedback gains even though some of the system
parameters vary within wide ranges. It seems unnecessary to use
different gains with nominal changes in system parameters. However,
a new set of gains would be required with a completely new system

configuration or measurement system.
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Chapter VI
SUMMARY

A mathematical model is developed for the motions of a hovering
or slowly moving helicopter carrying a hanging load. Autopilot logic
is designed for position-hold (hover), velocity-hold, and acceleration-

hold.

It is shown that the longitudinal-lateral decoupling approximation
is satisfactory'for the purpose of autopilot design, except when a very

tight control system is desired.

The root mean square (RMS) response of the controlled system is
quite satisfactory in the presence of steady and gusty longitudinal and
lateral winds. Further improvements in hovering accuracy could be at-
tained by using a better measurement system, since substantially better
performance is obtained using the assumption of perfect state informa-

tion (ideal case) under design conditions.

The stability and performance of the system is examined for
reasonable variations in system parameters. 1In no case does the system
become unstable. The RMS response does not change appreciably except
with a tenfold increase in drag coefficient on the hanging load. The

behavior is satisfactory in all cases.

It is possible to move the hanging load over short distances
rapidly without retracting the cables. This involves controlling the
oscillations of the load while moving at a low velocity. In case of
failure of the automatic control system the pilot can still control
the system, Some load shapes and cable arrangements are aerodynami-
cally unstable (Gl, P1l, E1). These instabilities are caused by aero-
dynamic forces on the hanging load.and usually produce coupled oscil-
lations involving yaw and lateral pendulum motions. Gabel and Wilson
show experimentally that most hanging loads are aerodynamically stable

over a wide speed range with a proper choice of cable configurations.
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Before a load is moved, one should make sure that no aerodynamic
instabilities exist up to the desired cruise speed. Some insta-
bilities could probably be actively controlled if their nature were
known in advance. However, it seems easier to avoid them in the

speed range of interest.

Further work is required into the nature of these aerodynamic
instabilities. Then, autopilot logic to eliminate these instabilities
could be deveiopéd, and, with adequate redundancy in the control
system, it would then be possible to carry hanging loads at even

higher speeds without retracting the cables.

59



Bl

B2

D1

El

Gl

G2

H1

H2

H3

REFERENCES

A. E. Bryson, Jr. and Y. C. Ho, Applied Optimal Control, Xerox

Publishing Company, Lexington, Massachusetts, 1969

A. E. Bryson, Jr. and W, E. Hall, Jr., '"Optimal Control and Filter
Synthesis by Eigenvector Decomposition," Stanford University,
Department of Aeronautics and Astronautics, Report No. 436,

Nov. 1971

T. A. Dukes, 'Maneuvering Heavy Sling Loads near Hover,' presented

at the 28th National Forum of the American Helicopter Society,

Washington, D, C., Preprint No. 630, May 1972

B, Etkin and J. C. Mackworth, "Aerodynamic Instability of Non-
Lifting Bodies Towed Beneath an Aircraft,' University of Toronto,

Institute of - Aerophysics, Technical Note No. 65, Jan. 1963

R. Gabel and G. J. Wilson, ''Test Approaches to External Sling Load

Instabilities," Journal of the American Helicopter Society, Vol. 15,

No. 3, July 1968, pp. 44-55

A, Gessow and G, C. Meyers, Jr., Aerodynamics of the Helicopter,

The McMillan Company, New York, 1952

W. E. Hall, Jr., ''Computational Methods for the Synthesis of

1t

Rotary Wing VTOL Aircraft Control Systems, Ph.D, Dissertation,

Stanford University, August 1971

W, E. Hall, Jr. and A. E. Bryson, Jr., 'The Inclusion of Rotor
Dynamics in Controller Design for Helicopters,' Journal of

Aircraft, Vol. 10, No. 4, April 1973, pp. 200-206

W, E. Hall, Jr. and A, E. Bryson, Jr., ''Synthesis of Hover Auto-
pilots for Rotary-Wing VTOL Aircraft,' Stanford University,
Department of Aeronautics and Astronautics, Report No, 446,

June 1972

60



K1

L1

N1

Pl

Sl

Wl

w2

W. P. Keane and R. J. Milelli, "IFR Hover for Heavy Lift Heli-

copters with Slung Load,' presented at the 27th Annual National
V/STOL Forum of the American Helicopter Society, Washington, D. C.,

Preprint No. 540, May 1971

L. R. Lucassen and F. J. Sterk, ''Dynamic Stability Analysis of a

Hovering Helicopter with a Slung load,” Journal of American

Helicopter Society, Vol. 10, No. 2, April 1965, pp. 6-12

A. A. Nikolsky, Helicbpter Design, John Wiley and Sons, New York,

1951

C. Poli and D. Cromack, 'Dynamics of Slung Bodies Using a Single

Point Suspension System," Journal of Aircraft, Vol. 10, No. 2,

February 1973, pp. 80-86

L. S. Szustak and D. S. Jenney, ''Control of Large Crane Helicopters,'

Journal of the American Helicopter Society, Vol. 16, No. 3, July

1971, pp. 11-22

J. Wolkovitch and D. E. Johnston et al., '"Automatic Control
Considerations for Helicopters and VTOL Aircraft With and Without
Sling Loads,'' TR 138-1, Systems Technology Inc., Hawthorne, Calif.,
Nov. 1965, 155 pp.

J. Wolkovitch, R. A. Peters and D. E. Johnston, 'Lateral Control of
Hovering Vehicles With and Without Sling Loads,' TR 145-1, Systems
Technology, Inc., Hawthorne, Calif., May 1966, 123 pp.

61




Appendix A

EIGENVALUES AND EIGENVECTORS OF THE OPEN-LOOP AND CLOSED-LOOP SYSTEMS

Al Open-Loop Systems

Eigenvalues and eigenvectors of the open-loop coupled and decoupled

systems are given in Table A-1 in units of m , sec and radians
Table A-1
OPEN-LOOP EIGENVALUES AND EIGENVECTORS
(a) Longitudinal System
Eigenvalue Eigenvector
sec_1 g X x v
v v Y/ Wx
[ -.11 +1.73 .028 F .11j -.040 ¥ .59 |.025 * .16j 0.0
.095 + 265 | .0060 F ,0044j .87 * ,11j 1.0 0.0
-.40 -.11 , .75 .55 0.0
0.0 0.0 | -.71 -.71 10.0
-.20 .0028 : -.72 -.66 | 13
(b) Lateral System
Eigenvalue Eigenvector
sec-l ¢ V.
v Yy Ve Wy
-.67 * 2.8j -.095 + ,17j -.078 ¥ ,33j |.013 % ,033j | 0.0
.096 + 275 | -.0065 + .00443 | +.86 + .11j | 1.0 0.0 !
!
-.46 .014 .75 .51 0.0
0.0 0.0 -.71 -.71 [ 0.0 |
-.20 -.0028 | -.71 -.66 .14
[ Units m , sec ; angles in rad ]
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A.2 Closed-Loop Systems

Table A-2 shows the eigenvalues and the corresponding eigenvectors

of the decoupled and coupled longitudinal-lateral systems.

(a) Longitudinal System

Table A-2

CLOSED-LOOP EIGENVALUES AND EIGENVECTORS

Eigenvalue Eigenvector
sec”! o, X, X, Vg
-.99 + 1.8j .11 F ,063j -.24 F .43j .064 + ,020j 0:0
-.84 i 785 .066 ¥ ,028j ~-.64 F ,60j .13 F L2675 0.0
-.58 i 1.0j .058 ¥ ,040j -.42 F ,74j .34 F .076j 0.0
-.2 .00026 -.0043 . 0013 1.0

(b) Lateral System

Eigenvalue Eigenvector
sec-1 ® y y Vi
v v Y/ y
-2.2 * 3.5j -.20 * ,097j -.13 F .20j .0074 T ,0087j 0.0
- .82+ .74j -.063 + .032j -.67 + .61j .12 F . 29j 0.0
-.53 + 1.0j -.050 + ,043j -.40 F ,77j .39  F ,048j 0.0
-2 -.00026 -.0043 ? .0013 1.0

{Units m , sec ;

angles in

rad ]
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Appendix B

TRANSFER FUNCTIONS OF COMPENSATORS FOR PRECISION
HOVER IN THE PRESENCE OF CORRELATED WIND

B.1 Introduction

As indicated in Chapter 3, a filter-controller can be considered to
be a multi-input multi-output compensator. A possible implementation is
shown in figure B.1l. 1In general this compensator has as many poles as
the order of the system (except with pole-zero cancellations) and each
term has at least one less zero than the number of poles. The compensa-

tor transfer function matrix is
-1
A, = c{sI - (F+GC-KH)} K (B.1)
and is the transfer function between the measurements and control.

B.2 Compensators for Longitudinal and Lateral Systems

The transfer function matrix of the compensator for both the
longitudinal and the lateral systems is a 1X3 matrix. Each term has
seven poles and six zeroes. The poles of the three terms are, of course,
the same. The pole—zerd location of the terms in the longitudinal system
are shown in figures B.2 to B.4 and of the lateral system are shown in
figures B.5 to B.7. All elements in the transfer function matrices of
the two systems have poles in the right half plane. Some elements have
a pair of zeroes also in the right half plane. Such compensators are

said to have non-minimum phase.

It is clear that the closed-loop system has fourteen poles, seven of
them can be identified with the controller and the remaining seven with
the filter. All these fourteen poles lie in the left half plane and the

closed-loop system is stable.
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These compensators cannot be tested directly since they are.
"unstable'. One way to test them is to close the loop by using a
simulation of the system. The response of the closed-loop system to

initial errors and random disturbances can then be checked.
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Appendix C

A TECHNIQUE FOR FINDING FEEDBACK GAINS FOR
CORREILATED DISTURBANCES

C.1 Introduction

Consider a system

*
é = Fx + Gu + T'w (C.1)

in which u is an m control vector and w is a p disturbance vector

obeying the equation
ﬁ = Ew + 1 (C.2)
1 is white noise. If we choose

u=Cx + Cwy (C.3)

in the steady state we have

FX +X FT+PXT+X PT=O (c.4)
Cc XX XX ¢ Cc Xw Xw C :

T
FX +X E +T"X =0 (C.5)
Cc Xw Xw Cc ww .

where

*
With noisy measurements and optimal filter (See (C.6) for definition)

X = Xan + X .o
XX XX XX

where X is the estimate of x

and X 1is the estimation error. xﬁﬁ

depends on state and measurement noise, Choice of gains Cw only

. N -
changes XA§ . The equation governing x is
X

X = FX + Gu + R - KH§
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E(abT)

Xab =

Fc =F + GC (c.6)
' =T +GC

c w

We choose gains C first to obtain the desired closed-loop
dynamics. The gains Cw can subsequently be chosen to reduce the
effect of wind as much as possible, i.e., if Tx are q independent
linear combinations of the states we are interested in, Cw could be

chosen to minimize
T T .
L = Tr E{(Tx) DTx}s.s. = Tr{T DTxxx} (C.7)

where D 1is gXq positive definite weighting matrix, Thus the

Hamiltonian is

-

H=L+Trl_{-FX + X _FL 4T XY 4 X _THA
C XX XX ¢ CcC XwW XwW C
+{FX +X E'+TX }xJ . (c.8)
C XwW Xw C wWwW

Here A and )\ are Lagrange multiplier matrices. The required opti-

mization equations are

(03 (C.4) and (C.5)
®) 0 FA + AF + T'DT = 0 (C.9)
, ﬁxx c c .
OH -0 = 2" +FL+) E=0 (C.10)
SRXW B c c - .
) gﬂ =0 = 2GTAX + GTxTx =0 (C.11)
Cw XW wwW

Comments on golving the optimization equations:
1. Equation (C.9) can be solved for A .

2. Equation (C.4) can be solved in the end since no other equation

involves X
XX
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C.

2

(C.5), (C.10) and (C.11) are (2n+m)p equations in (2n+pim

unknowns X s, A and C .
XW w

These equations assure a solution for well posed problems (i.e.,

negative definite Fc and negative semidefinite E , positive

definite wa and finite, nonzero G ). However, the solution

may not be unique. Any nonunidqueness can be resolved by minimizing
T

u Bu ,

If the space spanned by vectors in G contains the space spanned
by vectors in T, then one solution is to choose Cw such that

T + GCW is zero, in which case L = 0 .

Random Bias Disturbance

For bias disturbances the matrix E is zero and T = 0 . Then

since F is negative definite and hence invertible, equations (C.5)

and (C.10) can be solved directly.

X = -F P X
Xw C C ww

-1 T
A= —2Fc1AFC (C.12)

Substituting (C.12) and (C.9) in (C.11) gives

where

Mcw + N=20 : (C.13)
M= 6F Trlprrlg
C [+
T -T -
N =G Fc TTDTFch (C.14)

The solution is unique if M has rank m , i.e., if

rank (M) rank(GTF;TTT) =m (C.15)

The rank of M cannot exceed m , which is the rank of G . If there

are exactly m disturbances and M has rank m

-1..-1 -1
C =-(TF "G) TF_T (C.16)
w C C :
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c.3 Independent Disturbances

The design procedure is simplified when the p disturbances are
independent, i.e., E and wa are diagonal (this generalizes to the
case where E and xﬁw are block diagonal with the same block sizes).
Then the gains on each disturbance can be chosen independently. To

find gains on any particular disturbance we proceed as follows,

In our general formulas, we consider p equal to one and E and

wa scalars. (C.5) and (C.10) become

(F+EI)X_ +T X =0
c XW c ww

]
o

(F +EI)Tx + 2AT
C C

or

>
]

-1
-(F +
(Fc EI) FCX

y
]

—2(F +EI)"TAT (C.17)
o] C .

Substituting in (C.11) we have

MCW +N=0 (Cc.18)
where
M= GTFT (TTDT - 2EA)F_ G
ce ce
N = GTFT (TTDT - 2EM)F T
ce ce
and F_ = (F_+ ED"! (C.19)
ce C

Nonuniqueness can be resolved as in section (C.1l).
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Appendix D

VELOCITY HOLD AUTOPILOTS FOR LOW SPEED

D.1 Design

A velocity-hold autopilot maintains the vehicle speed near a desired
value, With no constraint on time, we are not interested in errors in
horizontal position., Thus the state equations of Chapter II can be re-
written in terms of the state variable vectors, (ev’év’iv’ez’éz)T
and (¢v’év’yv’éz’®£)T . Now in addition to the measurements of four
angles ez,ev,¢z and ¢V we need measurements of longitudinal and
lateral velocities, Noise in measurement of velocity is assumed to be
white with power spectral density .005 mzsec_1 . The state definition
matrices and the measurement distribution matrices are shown in Table
D-1. We estimate that in the speed range of interest the drag coefficient
terms on the vehicle and the load do not change substantially. Small
changes will not deteriorate the performance very much as has been shown

for the precision hover autopilot.

The lateral velocity is usually maintained at zero while the

longitudinal velocity is held at the desired Cruise speed.

Both longitudinal and lateral systems are augmented with a state
variable corresponding to wind velocity. The control systeﬁs are
designed using quadratic synthesis. The feedback controller gains
~are presented in Table D-2. Also shown are the open-loop and closed-
loop eigénvalues. All modes of the closed-loop system have adequate

damping.

Filters are designed based on the measurements given above in the
presence of wind with RMS intensity 7.0 m sec_1 and correlation time
5 sec . Filter gains and characteristic roots of the estimate error

equation are given in Table D-2,
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Controllers and Filters

Table D-2

for Velocity Hold Autopilots

2 .2 2 2
Jong. = { 100 6, + X + 200 ez + 100 uj }S.S.
2 .2 2 2
Jat, = { 100 O, + F, + 200 ¢ + 100 u }S.s.
Feedback Gains e
c C: C. C C: c c C: C. Cs c
GV Qv X, 93 92 W -¢v -¢v~ v, 4 ¢2 wy
-1.70|-.431{.0981|-.714|-.901| .00174)-1.39|-.242|-.0981|-.912]|-.824|-.00172
f:o192 -.0166 -.872 . 260 .0392 29.0
KL = [3.19 5.68 -19.6 .0770 .541 -886
long.
-.0600 -.0914 . 908 -.0107 -.0315 20.4
{l.o190 -.0802 .793 .263 .0391 -45.2 |
T 4.11 8.85 16.1 -.076 .145 985
lat.
L.o493 .0580 .834 .0097 .0302 11.8
. -1
Eigenvalues (sec )
Z _ ¥ n ¥ N Z
Longitudinal Open-Loop L1111+ 1,735 .098 T .26j .41 .20
- - + A - ¥ B _
System Closed-Loop 1.5 T 2.3j .40 T ,64j 1.6 .20
Estimate Error | -.95+ 2.3j -.25+ .79 | -1.9 -.70
- - + i + o - -
Lateral Open-~Loop .67 T 2,8j .098 T .27 .46 .20
- - + ; - + i | - -
System Closed-Loop 34 T 4.4j .38 © .63j 1.45 .20
Estimate Error | -1.5 % 3.7j -.24+ 775 | -2.9 -.67
(Units in m , sec ; angles in rad )
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D.2 Performance

The performance of the system is computed with perfect state

information (ideal case) and with noisy measurements and filter,

D-3 shows the results.

The performance is satisfactory.

Table

Major improve-

ments in RMS response can be affected only by improving the measurements.

Table D-3

RMS Errors for the Longitudinal
and Lateral Systems

6. év % 9, éz u
?i;gi;:tfzzte .00173 | .00148 | .0171 | .00197 | .00085 | .00931
:§§S§i¥i:iurement .0143 | .0379 |.136 | .0095 | .0094 | .0189

¢v év ﬁv ¢£ $£ u,
?ﬁ;ﬁi;:t22§te .00173 | .00217 | .0166| .00194 | .00085 | .00928
gﬁ;sgi¥::iurement 0140 | .0566 | .119 | .0081 | .0093 | .0146
(Units in m , sec ; angles in rad )
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