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1. INTRODUCTION

1. 1 Objectives

The following is the final report for a research project on the

"Theory of Reliable Systems" conducted under NASA Grant NGR23-

005-463. The duration of this project was approximately two years,

beginning on May 26,. 1971 and terminating on June 30, 1973. The

purpose of this project was to answer certain fundamental questions

relating to the analysis and design of reliable systems, where the

systems of primary concern were digital, e.g., digital computers,

digital communication systems, digital control systems, etc. The

attributes of system reliability to be studied were:

a) Fault tolerance - the ability to maintain error-free

input-output behavior in the presence of (temporary

and/or permanent) faults in the system

b) Diagnosability - the ability to detect and locate faults

in the system

c) Reconfigurability - the ability to reconfigure the system

after the occurrence of a fault so as to realize the original

behavior or some other (possibly less complex) behavior

with the following objectives:

I. To determine, relative to the above attributes, properties

of system structure that are conducive to a particular attribute.

Structures so considered range from state-transition functions

at one extreme to hardware and software realizations at the
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other extreme.

II. To determine methods for obtaining reliable realizations

of a given system behavior. This could eventually include

realizations which are fault tolerant (relative to the specified

behavior) and yet diagnosable (relative to some extended

behavior).

III. To determine how properties of system behavior relate

to the complexity of fault tolerant (diagnosable, recon-

figurable) realizations. Given such relationships, the inherent

fault tolerance (diagnosability, reconfigurability) of a given

behavior could be measured by the minimum complexity

of realizations possessing that reliability attribute.

The above objectives comprise a general statement of the project's

direction and goals, as they were conceived when the research was

first proposed. Almost all of the investigations conducted during

the course of the project had specific goals that were in keeping with

one or more of these global objectives. Of the three basic reliability

attributes proposed for study, only two, fault tolerance and diag-

nosability, were investigated in detail during the two year period.

Questions of reconfigurability were considered informally in connection

with models developed for the study of tolerance and diagnosability.

This was done in anticipation of more formal studies of recon-

figuration and repair that could be based on such models or on

appropriate extensions thereof.
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The general approach taken to meet the above stated objectives

was system-theoretic in the sense that the study was based on

mathematical models and simulation models that represent the

structure of a digital system's hardware and/or internal software.

Given some class of "real" systems (e.g., switching circuits,

computer programs in a given language, etc.), various classes of

models at various levels of structural definition can be developed to

study this class of real systems. Thus, for example, switching

circuits can be represented at a low level by sequential network

models or at a high level by sequential machine models. In general,

the choice depends on the nature of the questions being asked about

the external and internal behavior of the class of real systems under

investigation. An advantage of this approach in studying system

reliability is that structural changes (due to faults) can be precisely

related to their effects on system behavior, thereby permitting the

discovery of properties conducive to reliable operation of a system.

1.2 Background

The general setting for this research project was the theory of

reliable systems that had been developed over the past two decades

using the basic approach described above. The first person to use this

approach to the study of reliable systems was von Neumann ( [ 1], 1952,

1956), where the models were networks of switching components

(called "organs") and faults in a component were represented by

the probability of erroneous component behavior. The next such
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effort was the work of Moore and Shannon ( [ 2], 1956) in which case the

models were (formal) relay networks and faults in a relay were

represented by two conditional probabilities regarding relay behavior.

Since the time of these initial investigaticns, this general approach

has been used extensively to study various aspects of system re-

liability and, in particular, computing system reliability (cf. the

excellent bibliography by Short [3]). Several books that in some part,

at least, are representative of this approach have also appeared during

the past decade. These include a collection of papers from the

"Symposium on Redundancy Techniques in Computing Systems"

( [4] 1962), a monograph on '"Reliable Computation in the Presence

of Noise" by Cowan and Winograd ( [ 5] 1963) and books on "Failure-

Tolerant Computer Design" by Pierce ( [6] 1965), "Error Detecting

Logic for Digital Computers" by Sellers, Hsiao and Bearnson

( [7] 1968), "Fault Diagnosis of Digital Systems" by Chang, Manning,

and Metze ( [8] 1970), and "Fault Detection in Digital Circuits" by

Friedman and Menon ( [9] 1971).

Just prior to the initiation of this project, the first International

Symposium on Fault Tolerant Computing was held in Pasadena, Cali-

fornia, March 1-3, 1971. The papers summarized in the Digest

of this conference [10] are representative of the variety of topics

presently regarded as relevant to the theory and design of reliable

computing systems. Two of these papers, one on the subject of fault

location [11] and another on diagnosable machine realizations [12]
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werethe result of work completed under a prior contract with the

Jet Propulsion Laboratory [13] and provided an immediate background

for this project at the time of its initiation. The work summarized

in [11] also appeared in a paper titled "Locatability of Faults in

Combinational Networks" [ 14]. Another phase of the research completed

for J. P. L., which appeared later in a paper titled "Fault Tolerant

Sequential Machines" [15], had a strong influence on our present

work, not only with regard to research on fault tolerance but also

with regard to developing a general framework for the study of

systems with faults. Regarding the various specific investigations

conducted as part of this project there are, of course, many other

references that served as important background. Such references

are appropriately indicated in the body of this report and the

accompanying technical reports.

1. 3 Documentation

Concluding with this final report, the research performed under

this grant has been extensively documented throughout the duration

of the project via semi-annual status reports, technical reports, and

publications in the proceedings of technical symposia. Rather than

delay the disclosure of this information to a single final report or

to its eventual publication in journals, we have attempted to dis-

seminate the methods and results of the work whenever it appeared

feasible. The following is a list of the reports and publications
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(excluding this report) that comprise the total documentation of this

project. Entries are by title and reference number. The reference

list should be consulted for information as to author, date, etc.

Semi-annual reports

Semi-annual status report no. 1 [16]

Semi annual status report no. 2 [17]

Semi-annual status report no. 3 [18]

Technical reports

General Compound distinguishing sequences [19]

Representation and minimization of diagnostic test sets [20]

A theoretic study of fault detection problems in sequential

systems [. 21]

Checking experiments for sequential machines [22]

A structurally oriented simulation system [23]

Augmentation of machine structure to improve its

diagnosability [ 24]

On-line diagnosis of sequential systems [25]

Publications

On the limits of linearity [ 26]

Sequential behavior and its inherent tolerance to memory

faults [ 27]

A general model for the study of fault tolerance and

diagnosis [ 28]

Diagnosis of unrestricted faults in sequential machines [ 29]



Copies of the semi-annual status reports, technical reports

[19] - [ 22], and publications [ 26] - [ 28] have been previously sub-

mitted as part of the interim reporting process. Copies of

technical reports [23] - [ 25] and the published abstract [29] are

included with the submission of this final report.

In the sections that follow, we present an overview of the research

performed throughout the two year duration of the project. The

discussion is organized according to four general areas of investi-

gation: systems with faults, fault tolerance, fault diagnosis, and

simulation. With regard to each of these areas, this report sum-

marizes the various specific topics that were investigated in that

area, the motivation for their study, the models on which their

study was based,and the results obtained. The primary intent of

this summary is to provide a perspective for the various technical

reports and publications cited above. It is the latter that comprise

a detailed report of the research performed under the grant.



2. SYSTEMS WITH FAULTS

The purpose of this investigation was to develop general, formal

basis for the study of fault tolerance and diagnosis in systems. This

was achieved by developing a theoretical model of a "system with

faults. " Based on this model and the fundamental concept of a

"tolerance relation, " the intuitive notions of "fault tolerance" and

"diagnosability" were then formulated in precise, yet general

terms. Depending on the choice of a representation scheme for the

systems in question, the model can represent either the effects of

design errors or the effects of physical faults that occur during

the life of a system. Also, depending on the representation used,

the model permits the study of faults in either the hardware or

the software of a computing system.

Beginning with a more restricted notion of a "machine with faults,"

the model evolved to its present level of generality during the second

year of the project. The results of this investigation were pre-

sented at the Sixth Hawaii International Conference on System Sci-

ences, Honolulu, January 9-11, 1973 and published in the pro-

ceedings of that conference [28].

Informally, a "system with faults" is a system, along with a

set of potential faults of the system and description of what happens

to the original system as the result of each fault. The original

system and the systems resulting from faults are members of one

or two prescribed classes of (formal) systems, a "specification"
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class for the original system and a "realization" class for the

resulting systems. More precisely, specifications and realizations

are represented by a representation scheme (,S,, p) where

i) CS is a class of systems, the specification class,

ii) R is a class of systems, the realization class,

iii) p:A -- > cS where, if R E 61, R realizes p(R).

To illustrate this notion, consider the following classes of systems:

= all sequential switching networks

= all finite state sequential machines

= all n-ary, numerical partial recursive functions

= all Turing machines

3g = all pairs of n-ary predicates over the integers Z

= all programs (in the sense of King [30]) on n

variables with values from Z

Relative to the above classes, some examples of a representation

scheme are given by the following choices of S, (, and p.

S t p: -> C

1) identity function

2) 7 identity function

3) p(N) = the machine M defined by N

4) p(T) = the partial recursive func-

tion f realized by, T

5) Q p(P) = some predicate pair (I, J)

such that P is correct for

I and J
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In a representation scheme (S, A, p), a system with faults is a struc-

ture (S, F,¢) where

i) S E

ii) F is a set, the faults of S

iii) 0: F ->61 such that, for some f E F, p((f)) = S.

Iff E F, the system Sf = O(f) is the result of f. If p(S) = S then f is

improper (by iii), F contains at least one improper fault); otherwise

it is proper. A realization Sf is fault-free if f is improper; ptherwise

Sf is faulty.

A system with faults is a formal representation of a (potentially)

unreliable system where S represents the original fault-free specifi-

cation, F represents a set of potential faults that can occur in the

process of realizing S, and for a given f E F, Sf = 0(f) is the reali-

zation that results from the occurrence of f. An improper fault f

represents a fault-free realization process since, by definition,

p(Sf ) = S, i. e., Sf realizes S. A proper fault f represents a faulty

realization process in the sense that p(Sf ) S.

To illustrate the notion of a system with faults, consider the

representation scheme (, 6(R, p) where 3 and I are some class of

networks of sequential switching systems (cY = R) and p is the identity

function. Suppose further that S E e is the system:



S

S: S

S3

where S employs triple modular redundancy, that is, S 1 = S2 = S3 and

V is a voter. Suppose further that the potential faults are combinations

of stuck at 0 and stuck at 1 faults at nodes 1, 2 and 3. Then, in the

representation scheme (,(, p), (S, F,O) is a system with faults where

S is as above

F = {(al, a 2 , a 3 ) ai E 0, 1, x}}

r0 if node i stuck at 0

where a. =  1 if node i stuck at 1

x if node i is fault-free

: F->(R

where, for example, 0(0, x, 1) is the faulty system:

0

S2 2 V

One of the important unifying aspects of the concept of a system

with faults is that it permits the representation of either birth defects

or life defects. Moreover, what distinguishes these two types of

defects is seen clearly via the formalism. In representing faults
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that occur in the process of designing a system, a representation

scheme (8,6~, p) is chosen such that the original design specification

is represented by a member of the specification class S and the pos-

sible outcomes of the design process by members of the realization

class (1. Since specifications differ from realizations in this case

(or otherwise we would be saying that the outcome of the design

process is already known), a study of birth defects requires a repre-

sentation scheme (,,6, p) where S 61. On the other hand, in repre-

senting faults that occur in the process of using a system, one begins

with a realization that is presumed fault-free and is concerned with

faulty realizations that result from life defects. In this case, a

specification is a realization and one chooses a representation scheme

R = (61,41, p). Thus, a representation scheme required for a study

of life defects is simply a special case of a more general represen-

tation scheme required for the study of birth defects. Among other

things, this suggests that concepts and techniques studied in the con-

text of design reliability (e. g., program verification techniques)

should be applicable to questions of reliable use (e. g., diagnosis of

hardware faults).

A surprisingly wide variety of unreliable systems, from

switching networks to computer programs, can be formally repre-

sented as systems with faults. This includes applications where

there is no explicit representation of faults, but only an explicit

representation of the faulty systems. Moreover, the formulation
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permits precise, general definitions of "tolerated" fault and "diagnosable"

fault that apply to an arbitrary system with faults. The definitions are

made relative to a specified "tolerance relation" 7 which dictates

the type and extent of tolerance or diagnosability. By choosing

two tolerance relations T and 7', it is possible to consider faults

which are both tolerated (with respect to 7) and diagnosable (with

respect to T'). This yields a convenient representation for

investigating the diagnosis of tolerated faults.

Much of the research conducted throughout the course of this

project was based on special classes of systems with faults or on

models which could be equivalently formulated as systems with faults.

Likewise, the various concepts of tolerance and diagnosis considered

were specializations of the general definitions referred to above.

Consequently, a familiarity with the concepts described here and

in reference [28] is assumed in the discussion that follows.
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3. FAULT TOLERANCE

In keeping with the general statement of the goals of this

project (objectives I, II and III; section 1. 1), the study of fault

tolerance in digital systems had three specific objectives:

i) To determine structural properties of sequential

machines that are necessary and/or sufficient for

the tolerance of permanent memory faults.

ii) To determine methods for obtaining fault tolerant

state-assigned machine realizations of a specified

sequential behavior that possess minimum or near mini-

mum memory redundancy (relative to all realizations

of that behavior which have the same fault tolerance) .

iii) To determine properties of sequential behavior that

relate to "inherent" fault tolerance where, relative to

some tolerance type T and tolerance level t, the in-

herent tolerance of a behavior B is inversely proportional

to the minimum memory redundancy required by a

(7, t) -tolerant realization of B.

If we let 1t denote the class of all finite-state sequential machines

then, relative to the general framework described in the previous

section, the representation scheme for this study was (51?4 51 p) where

p is the identity function (see example 2), p. 9 ). The faults

considered were "memory faults" in the sense of [15], where if

M = (I,Q, Z,6, w) is a machine (i. e., ME 3T9, a memory fault of M is
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a function vp Q --> Q on the states of M. The result of . is the

sequential machine M -= (I, QM, Z, 6 , w where

QI= {p(q) I q E Q},the image of g

6A = g6 restricted to Q1xI

WA = w restricted to QM xI

(Referencejl5] should be consulted for justification and illustration

of these definitions.) Accordingly, a system with faults, in this

context, is a system (M, F,p) where M is a sequential machine, F

is a set of memory faults containing the identity function (the

improper fault), and ¢ is the function given by ¢(g) = MI, for all .E F.

The real systems so represented by this formalism are discrete-

time, time-invariant, finite-alphabet (e. g., binary), finite-state systems

that are subject to faults intheir memory structure. Thus, for example, these

models can be used to study the effects of faulty memory elements

(e. g., flip-flops) on the behavior of a digital circuit. The restriction

to memory faults was motivated by the fact that it is memory which

distinguishes nontrivial finite-state systems from purely combinational

(one-state) systems. Moreover, as the purpose here was to study

how the structure of a machine relates to the effects of faults on

behavior, the restriction to memory faults is not that severe.

Given this class of systems (machines) with faults, several types

of fault tolerance were considered, each corresponding to a specific

"tolerance relation" T (cf. [27]). These include the notions of

"equivalence masking, " "inclusion masking, " and "R-masking" (where
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R is a distinguished set of reset states) [15J.

With respect to a specific type of tolerance, the topics of primary

concern were "minimally redundant fault tolerant realizations" and

the "inherent tolerance of a sequential behavior" (cf., objectives ii)

and iii) stated at the beginning of this section). Prior to this study,

methods for obtaining fault tolerant realizations of a given

behavior have all resulted in "memory redundancy" levels that depend

only on the number of states required by a nonredundant realization.

Indeed, for certain realization methods (e. g., replicate-and-vote

schemes), memory redundancy is invariant. If, however, the method

of realization is left unspecified then, relative to all realizations

having a specified type and level of fault tolerance, the minimum

redundancy required (i. e., the inherent tolerance) may vary from

behavior to behavior, even among behaviors requiring the same

number of states in their reduced realizations.

One of the primary results of our investigation is that his is indeed

the case, that is, there exist behaviors of the same "size" with

different inherent tolerance. This and related results were first

disclosed at the Fifth Hawaii International Conference on System

Sciences, Honolulu, January 11-13, 1972. Precise statements of

these results and their proofs are published in the proceedings of

that conference [27]. In summary, the main result was established

by exhibiting two behaviors, each of which can be realized by a 4

state reduced machine and yet one requires more memory redundancy
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than the other to obtain a realization which tolerates single

stuck-at faults. The behavior having less inherent tolerance (i. e.,

requiring greater memory redundancy) was that of a modulo 4 clock.

The behavior having greater inherent tolerance was that of a (reduced)

machine with the following state graph:

0 1/1

With respect to equivalence-masking of single stuck-at faults, a

minimally redundant fault tolerant realization of the latter behavior

is given by the following state graph:

000 011 101 110

11 1/1 00 1 10 01

A network realization of this machine is shown in Fig. 3. 1. Note

that, relative to a minimal realization having no fault tolerance, only

one additional delay flip-flop (3 as opposed to 2) is required to

tolerate all single flip-flop faults. The memory redundancy of

this realization is 1. 5 and, since it is minimally redundant, this

number represents the inherent tolerance of the behavior realized.

Accordingly, a fault tolerant realization based on triplication

and voting, which yields a memory redundancy of 3, is not optimum

with regard to this behavior. A network realization using the latter

scheme is shown in Fig. 3. 2, where its complexity can be compared

to that of Fig. 3. 1.
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The above results were obtained during the first year of the

project. At the beginning of the second year, efforts were made to

find additional examples and, more generally, to discover properties

of sequential behavior are indicative of inherent tolerance. This task

turned out to be much more difficult than originally anticipated

and it soon became evident that some experimental data was needed

to support further theoretical study. This prompted the development

of a Structurally Oriented Simulation System (SOSS) for use as an

experimental aid in the study of both fault tolerance and fault

diagnosis (cf. section 5 and technical report [23]). As the basic

version of SOSS was completed just prior to the termination of the

project, its application in the study of inherent tolerance remains

a subject of future research.
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4. FAULT DIAGNOSIS

In keeping with the general statement of the goals of this project,

the study of fault diagnosis in digital systems had three specific ob-

jectives:

i) To determine properties of machine structure and be-

havior that are conducive to efficient fault diagnosis.

ii) To determine methods for obtaining diagnosable machine

realizations of machines (or behaviors) that are not diag-

nosable.

iii) To determine methods for obtaining machine and network

realizations of a given behavior that are fault tolerant

relative to the specified behavior but are diagnosable

relative to the "extended" behavior of the realization.

During the course of the project, considerable effort was devoted

to meeting objectives i) and ii), producing a variety of significant

results which are summarized below. Such work had to precede any

specific effort devoted to objective iii), since fault diagnosis, per se,

had to be relatively well understood before considering the diagnosis of

fault tolerant systems. Consequently, the latter effort was just

getting underway when the project terminated.

Our study of fault diagnosis in digital systems was concerned with two

basic diagnostic environments: "off-line" and "on-line. " By an off-line

environment, we mean that the system has been removed from its

operating environment prior to the application of diagnostic tests.
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Thus, off-line diagnosis permits complete control of input to the

system during the test period. This is to be contrasted with "on-

line" or "concurrent" diagnosis where the system is in an operating

environment and is continually receiving input dictated by this en-

vironment. An on-line diagnosis procedure must therefore contend

with input over which it has no direct control. Moreover, in many

applications, an error produced by a fault must be detected in a

relatively short period of time after the error occurs, thereby

complicating the problem even further.

During the first year of the project our study of fault diagnosis

was concerned exclusively with the off-line environment. During the

second year, both off-line and on-line diagnosis were investigated.

These efforts are summarized in the subsections that follow.

4. 1 Off-line diagnosis

When a possibly faulty system is diagnosed in an off-line environ-

ment, it is usually assumed that no additional faults occur once the

diagnostic procedure is initiated. With this assumption, off-line

diagnosis of sequential systems can be studied relative to a repre-

sentation scheme (9E ,JR, p) where 1R is a class of sequential machines.

If (M, F,¢) is a machine with faults (in the above representation

scheme), our research on off-line diagnosis can be further cate-

gorized according to the nature of the fault set F. In general, we

can regard the faults of (M, F, ¢) as being "specified" by the set F.

However, when the elements of F are specified no more explicitly than
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the faulty machines they result in, we say that the faults are "unspecified."

More precisely, (M, F, k) is a machine with unspecified faults if F c DR

and 0(f) = f, for all f E F. Otherwise, the faults are specified. Thus,

in a machine with unspecified faults, no distinction is made between

"cause" (fault) and "effect" (result of a fault). In particular, it

is impossible for different faults to result in the same faulty machine.

This need not be the case, however, when faults are specif lied. It is

for these reasons that machines with unspecified faults have been

distinguished from machines with specified faults. We begin with a dis-

cussion of the latter.

4. 1. 1. Specified faults

In the representation scheme (R R p) where Rt is the class of all

finite-state sequential machines, the systems considered here were

machines with memory faults (cf. section 3 of this report), i. e., the

same class of systems with faults considered in our investigation of

fault tolerance. This choice was motivated by the prospect of

eventually combining results concerning tolerance and diagnosis to

obtain machine and network realizations that are both fault tolerant

and diagnosable.

More specifically, given a sequential machine (M, F,O) with

memory faults, the problem studied was the representation and

minimization of a set of diagnostic "tests" for all faults in F. The

type of diagnosis considered was fault "detection" relative to some

specified initial state. More precisely, if A E F and q is a state of M,
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an input sequence x is a (C, q) -detection sequence if the resulting

output sequence for M started in q differs from that of the faulty

machine M 1 started in i(q). (If there is at least one (i, q) -detection

sequence, pi is q-detectable; in other words p. is q-detectable if and only if

it is not {q}-masked in the sense of [15].) Accordingly, a set X

of input sequences is an (F, q) -test set if, for all tL E F, X contains

a (pt, q) -detection sequence.

Although the problem of representing and minimizing an (F, q) -

test set has been studied from various points of view for the special

case of combinational (one-state) systems, the results do not apply,

in general, to nontrivial sequential systems. In our study, it was foundthat

similar results could indeed be obtained for sequential machines,

although the actual process of determining a minimum cost test set

for a machine is, in general, much more difficult. A detailed description

of this study and its results are given in the technical report "Repre-

sentation and Minimization of Diagnostic Test Sets" [ 20] and in

sections 4 and 5 of the technical report "A Theoretic Study of Fault

Detection Problems in Sequential Systems" [ 21].

To summarize, the problem of representing detection sequenceswas

considered first and it was shown that if D is the set of all sequences that dis-

tinguish faulty behavior (for a given fault fault) from fault-free behavior

(in a given state) , then D is a regular set. Moreover, a regular expression

that denotes D can be obtained from expressions associated with

the fault-free and faulty behaviors in much the same way that test sets
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are determined for combinational networks using Boolean differences.

The problem of obtaining a minimum cost test set (with cost measured

in terms of testing time) was then considered where the primary

difficulty lay in the fact that detection sets, although regular, are

nevertheless infinite. However, we were able to show that the

cost of an optimum (minimum cost) test is bounded from above

by a quantity which depends only on the size of the fault-free machine

and the number of faults to be detected. From this it follows that

the length of longest sequence in any minimum cost test set is

also bounded by a known quantity. Thus only a finite subset of

each fault detectionset needs to be considered in deriving an op-

timum test set. Employing some rather natural notions of fault

equivalence and fault dominance, the problem of finding an optimum

test set for a machine with faults was then formulated as a covering

problem. This parallels the solution suggested by others for ob-

taining optimum test sets for combinational networks.

Although implementation of the procedure may be impractical

for large networks, these results are nevertheless valuable

in that they delimit the complexity of the problem. Such solutions

may also indicate simpler, more practical methods of solving the

problem at some sacrifice in optimality or completeness of the test set.

4. 1. 2. Unspecified faults

Relative to a particular sequential system, as represented by

some sequential machine M = (I, Q, Z, 6,w), a general and yet tractable
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representation scheme for machines with faults (where the machine

in each case is M) is given by the set of all machines over I and Z

that have at most as many states as M, that is, the set:

D1(M) = (M' M' = (I, Q', Z,6',') and [Q' I [Q I}.

If (M, F,p) is a machine with faults in the representation

scheme (3(M), 1i(M), p), the physical restrictions implied by the

representation are that i) a faulty system has the same input and

output terminals as the fault-free system and ii) if Q represents all

possible physical states of the fault-free system, then a permanent

physical fault will not cause an increase in the number of physical

states. (Note, however, that the number of nonequivalent states can

increase since M need not be reduced. ) Relative to a given machine

M, the representation is therefore quite general. Thus, for.example,

a machine (M, F, 0) with memory faults, as previously defined

in section 3, is also a machine with faults in the scheme (OR(M),

0I(M), p).

This scheme is also appropriate for the representation of

faults in digital systems where nothing is assumed regarding the explicit

nature of faults, per se, and relatively little is assumed about

the effects of such faults. More precisely, in terms of a machine

with faults (M, F, ) , it is assumed that the faults of M are un-

specified (in the sense defined at the outset of section 4i. 1) and, in

addition, are "unrestricted" in the sense that any machine in 31(M) is

a possible faulty machine.
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Historically, the diagnosis of machines with unspecified,

unrestricted faults was first considered by Moore [31] who

established the existence of a certain type of diagnostic "experiment"

for strongly connected machines. His paper also posed several inter-

esting open questions which were later investigated by Hennie [32].

The type of diagnosis embodied by Hennie's notion of a "checking

sequence" is basically the type of diagnosis considered in our

investigation, that is, fault detection as opposed to fault identification.

Fundamental to known methods of designing checking sequences

has been the ability to identify which state the machine was in

prior to applying the input sequence(s) used to implement the

identification procedure. To permit this type of initial-state

identification, checking experiments have employed distinguishing

sequences [34, variable length distinguishing sequences [39, and

compound distinguishing sequences [34. An initial subject of our

investigation in this area was an even more general class of se-

quences which include each of the above as special cases. To con-

form with earlier terminology, these sequences (which are actually

sets of input sequences) are called general compound distinguishing

sequences (GCDS). The detailsof this investigation are described

in a technical report by the same name [19]. To summarize, it was

shown that the concept of a GCDS is indeed more general than that

of a compound distinguishing sequence. It was also shown that

one can effectively decide whether a machine has a GCDS through
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construction of a "general distinguishing tree. " Finally, we have

shown that existence of a GCDS for a machine M characterizes the

existence of a simple, adaptive initial state identification experiment

for M and, more generally, that the existence of a "general charac-

terizing set" corresponds to the existence of a multiple, adaptive

initial- state identification experiment.

A second topic of investigation was the "checkability" of a

sequential machine, where the point of departure was a formal

definition of checking sequence that includes the types of sequences

so named by Hennie [32]. The definition applies to an arbitrary

machine M (with unspecified, unrestricted faults) in an arbitrarily

specified initial state q. In particular, M need not be reduced or

strongly connected. Later on in the study, a special type of

checking sequence called a detecting sequence was also considered.

The difference between a checking sequence and a detecting sequence

is that, in the latter case, a positive response to the sequence says

that the state of the machine, just before application of the sequence, has

the desired behavior; in the former case we can only guarantee that

some state of the machine has the desired behavior. Hence a detecting

sequence is better than a checking sequence in the sense that the

former does not requ ire a search for the desired state. The results

of this investigation are described in the technical report "Checking

Experiments for Sequential Machines" [22] and in a paper titled

"Diagnosis of Unrestricted Faults in Sequential Machines, " an ab-
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stract of which was published in the Digest of the 1973 International

Symposium on Fault-Tolerant Computing [29].

To summarize, the investigation here was primarily concerned

with conditions on the structure and behavior of a machine M that are

necessary and/or sufficient for M to possess at least one checking

(detecting) sequence.. In case M is reduced and reachable from some

state q, it was shown ' first that the existence of a checking (detecting)

sequence can be characterized directly in terms of the input-output

behavior of M in state q. For the general case where M need not be

reduced and reachable, several necessary conditions for an input se-

quence to be a checking sequence and for a machine to be checkable

were established. Particular attention was given to the "transition-

checking" aspect of checking sequences. Specifically, the necessity of

checking all the transitions of a machine was studied and, for the case

when a checking sequence does not have to check all transitions, the

portion that needs to be checked was delineated. The effects of struc-

tural redundancy were then examined relative to various types of initial

state behavior and it was found that, in general, the existence of a

checking sequence depends only on the initial state behavior of a machine,

and not on its particular structure. Said another way, the checkability

of an arbitrary machine M in state q depends only on the nature of the

"canonical" (reduced and reachable) machine having the behavior

of M in q. An actual characterization of checkability in these terms,

however, remains an open question.
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A third major activity regarding the (off-line) diagnosis of

unspecified faults has been an investigation of methods for im-

Iproving the diagnosability of a machine by "augmenting" its

structure. This includes the extreme case where the original

machine is not diagnosable. Given a machine M', an augmentation of

M' is a machine M that can simulate the behavior of M' in real tinie

through appropriate encoding the decoding of input and output symbols.

(An augmentation M where only the input [output, state] set of M is

larger than that of M' is called an input [output, state] augmentation.)

What was sought, then, were augmentations M of M' that are

diagnosable in some prescribed sense. Several types of diagnosability

were so considered, including the possession of a checking sequence

(i. e., "checkability") and the possession of a repeated symbol

distinguishing sequence. The details of this research activity

are described in sections II and III of the technical report "A

Theoretic Study of Fault Detection Problems in Sequential Systems"

i 21] and in the technical report "Augmentation of Machine Structure

to Improve its Diagnosability" [ 24].

To summarize, the fundamental question as to whether any

noncheckable machine has a checkable augmentation was shown

to have a positive answer. In fact, a checkable input-augmentation can

be constructed ior any machine with one more input symbol than

the given machine. It has also been est ablished that any checkable

augmentation of a given minimal transition-distinct and nonsimply-
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connected machine must have a larger input set than the given machine.

Augmentation techniques were also investigated for another type of

diagnosability, namely the ability to infer initial state using a

repeated symbol distinguishing sequence (RDS). Such sequences are

of interest since they can be used in the construction of more effi-

cient (shorter) checking sequences. Here it was shown that input

augmentations (with an RDS) exist for any machine but that state

augmentations do not exist when the machine to be augmented is

reduced and does not have a distinguishing sequence. It was

also established that output augmentations always exist but generally

correspond to circuit realizations having an excessive increase

in the number of output terminals. This is undesirable relative to

modern large scale integrated electronic technology, because a

limited number of output pins are allowed for each LSI chip.

Our main effort, therefore, was directed toward the study of

state-output augmentations, in which moderate enlargement of the

output set is attained at the expense of an enlarged state set. One

of the most significant and surprising results of this effort was

the following fact: given an arbitrary sequential machine, there

exists a state-output augmentation (with an RDS) which has no more

than twice as many output symbols as that of the given machine.

Equivalently, in circuit terms, there is a state-output augmentation

that has.-at most one more output terminal than the given circuit. In

addition, it was established by constructions that, in the worst case,
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there exists at least one such state -output augmentation whose state

set size is proportional to n 2, where n is the size of the state set of

the given machine.

4. 2 On-line diagnosis

In many applications, especially those in which a computer is

being used to control some process in real-time (e. g. telephone

switching, flight control of an aircraft or spacecraft, control of

traffic in a transportation system, etc.), it is desirable to con-

stantly monitor the performance of the system, as it is being used,

to determine whether actual behavior is within tolerance of in-

tended behavior. Informally, by "on-line diagnosis" we mean a

monitoring process of this type, where the level or extent of diagnosis

can be external to the diagnosed system, both external and internal,

or completely internal. In the last extreme, on-line diagnosis is

sometimes referred to as "self-diagnosis" or "self-testing" [8 ].

The motivation for initiating a theoretical study of on-line fault

diagnosis is the increasing use of computers in real-time applications

where i) erroneous operation can result in the loss of human life

and/or large sums of money and ii) interruptions in the operation,

for the purpose of off-line diagnosis, are intolerable. In particular,

our discussions with NASA- Langley regarding such applications

were influential in precipitating this study.
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During the past decade, the development of theory and techniques

for fault diagnosis in digital circuits and systems have focused mainly

on problems of off-line diagnosis. This is due to the fact that on-line

diagnosis is inherently a more complex process, the complicating

factors being that i) the diagnostic procedure must contend with

input over which it has no control and ii) faults can occur as the

system is being diagnosed. Because of these factors, conventional

time-invariant (stationary, fixed) system models (e. g., sequential

networks, sequential machines, etc. ) can no longer be used to

represent the dynamics of a system as its being diagnosed.

Based on these observations, the initial problem considered in

our study was the formulation of an appropriate class of system

models (i. e., a class of systems with faults) that could serve as a

basis for the theoretical study of on-line diagnosis. Once such

systems were defined, the next problem considered was the for-

mulation of notions of fault tolerance, error, diagnosability,

realization, etc. that have a meaningful interpretation in the

context of on-line diagnosis. After these concepts were made

precise, certain fundamental questions were posed and their

investigation was initiated.

The research outlined above is fully described in the technical

report "On-line Diagnosis of Sequential Systems" [25]. To summarize,

the realization class chosen for the representation scheme is a class

of discrete-time systems which are not necessarily time-invariant.
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More precisely, relative to the time-base T = {...-1, , i,... }, a

resettable discrete-time system (with finite input, output, and reset

alphabets) is a system

S = (I, Q, Z6, , R, p)

where I is a finite set, the input alphabet

Q is a set, the state set

Z is a finite set, the output alphabet

6: Q x I x T -- > Q, the transition function

X: Q x I x T -> Z, the output function

R is a finite nonempty set, the reset alphabet

p: R x T -- > Q, the reset function.

The interpretation of a resettable discrete-time system is a

system which, if at time t is in state q and receives input a, will at

time t emit output symbol X(q, a, t) and at time t + 1 be in state

6(q, a, t) . It is resettable in the sense that if reset r is applied at

time t - 1 then p(r, t) is the state at time t. Note that, in the special

case where the functions 6, X, and p are independent of time (i. e. are

time-invariant), the definition reduces to that of a (resettable)

sequential machine. In the discussion that follows we will refer

to a resettable discrete-time system S as simply a system and will

assume, unless otherwise qualified, that S is finite-state (i. e., IQ I< 0).
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The behavior of a system is described by first extending the

transition and output functions to the domain Q x I* x T, where I*

is the set of all finite length sequences over I, including the null

sequence (detailed definitions of the extensions are omitted here).

Relative to the extended output function A, the behavior of S in state q

is the function

3q: I'x T-> Z

where / (x, t) =X(q, x, t) .

Thus, if the state of the system is q and it receives input sequence x

starting at time t, then q (x, t) is the output emitted when the last

symbol in x is received (i. e., the output at time t + length (x) - 1).

It is also convenient to specify behavior relative to a reset input r

that is released at time t, that is, the behavior of S for condition (r, t)

(r E R, t E T) is the function

Or, t: +-> Z

where /Or, t(x) = p (r , t) (x, t) .

If t = 0, Or, 0 is referred to as the behavior of S for initial reset r and

is denoted simply as Pr"

Assuming that a faulty system has the same input, output and

reset alphabets as a fault-free system, the following class of systems

suffices as a realization class.

,6(I,Z,R) = {S' IS' = (I,Q',Z,6',,R, p')}.
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Accordingly, the representation scheme chosen for our study

of on-line diagnosis is the scheme (, R, p) where 51 = S(I, Z, R)

and p is the identity function on 51.

In such a scheme,the seemingly difficult problem of describing

faults and their results becomes relatively straightforward. Given a

system S E eS(I, Z, R), a fault f of S can be regarded as a transformation

of S into some other system S' at some time 7. Accordingly, the

resulting faulty system looks like S up to time T and like S' from 7

thereafter. More precisely, if S E :Y(I, Z, R), a fault of S is a triple

f = (S',, 6)

where S' E te(I, Z, R), T e T, and 0: Q ---> Q'. (The function 0 describes

what happens to states as the fault occurs.) Given this formal repre-

sentation of a fault of S, the result of f = (S',T, 0) is the system

Sf = (I, Qf, Z,6 f, Xf , R, p)

where Qf = Q o. Q'

6(q, a, t) if q Q and t < T - 1

6 f(q, a, t) = 0(6(q, a, t)) if q E Q and t = T - 1

6'(q, a, t) if q e Q' and t > 7

f X(q, a, t) if q Q and t < 7

A'(q, a, t) if q E Q' and t > 7

rp(r, t) if t < T

p (r,t) = 0(p(r,t)) if t =

'(r, t) if t > T.
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(Arguments not specified in the above definitions may be assigned

arbitrary values.)

In justifying this representation of the resulting faulty system one

should regard a fault f = (S', T, 0) as actually occurring between time

T - 1 and T. Note that, for any fault f of S, Sf E -(I, Z, R). With

these concepts of fault and faulty systems firmly established, a system

with faults, in this representation scheme, is a structure

(S, F,l)

where S E 5C(I, Z, R), F is a set of faults of S including at least one

improper fault (e. g., f = (S, 0, 8) where 0 is the identity function),

and 0: F -- > (I, Z, R) where O(f) = Sf , for all f E F. Given this

definition, we crop the explicit reference to 0 in denoting a system

with faults, i. e., (S, F) means (S, F, p) where 4 is as defined above.

This then completes the description of the system models on which

our study of on-line diagnosis was based.

The fundamental notion of fault tolerance considered was behavioral

equivalence with respect to a specified starting time t (i. e., the time

the system is reset). More precisely, if (S, F) is a system with

faults, a fault f E F is tolerated for resets at time t if

St(x) = 3f (x), for all r ER and all x EI+.r,t r, t

Ifr t(x) fI, (x) for some r, x, and t then we say that an error

has occurred and is caused by f. The basic concept of diagnosability
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considered involves a detector D (assumed to be fault-free) which

operates in series with S, and a delay time k within which any error

caused by a fault must be detected. More specifically, a system

with faults (S, F) is (D, k)-diagnosable if, for all f E F,

i) D responds negatively until the first occurence of

an error caused by f,

and ii) D responds positively within k time steps of the first

occurence of an error caused by f.

Given (S, F), a fundamental question is whether there exists

a detector D and a delay k such that (S, F) is (D, k) -diagnosable.

If the detector can observe the input to S as well as its output the

question has a positive answer; simply let D be a copy of S (i. e.,

duplicate S). Then S is easily shown to be (D, ) -diagnosable.

Although duplication is an obvious solution to the problem of on-line

diagnosis (and the one most frequently employed), it is also a

costly solution. Consequently, one of the primary tasks under-

taken was the investigation of detectors that are less complex than

the systems they diagnose. Also sought were the possible tradeoffs

between the complexity of a detector D and the magnitude of the

time delay k.

Another fundamental question is how to alter the design of a

system in order to .mprove its on-line diagnosability. More pre-

cisely, if (S', F') is (D', k') -detectable, we want to discover methods
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f:r designing an augmentation (realization) S of S' such that (S, F)

is (D, k) -detectable where D is less complex than D' and/or k < k'.

A number of preliminary results have been obtained which

begin to answer the questions posed above. Prospects for further

research in this area are excellent, the outcome of-which should. sib-

stantially increase our basic understanding of on-line diagnosis.
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5. SIMULATION

During the second year of the project, we initiated the development

of a Structurally Oriented Simulation System (SOSS) a computer

program to be used as an experimental aid in the study of reliable

systems. Basically, SOSS is a program which can simulate the

structure and behavior of a discrete-time, time-invariant, finite-

state system. Structure of the simulated system is specified as

a network of sequential machines with the ability to further specify

local changes in structure that correspond to faults in the original

system. This ability to "insert" faults and observe their effects

on behavior (through simulation) is the distinguishing feature of

SOSS in its intended application to the study of reliable systems. The

object of such application is to obtain experimental results

regarding fault tolerance, diagnosability, and reconfigurability that

can lend insight to both the theory and design of reliable systems.

A basic version of SOSS was completed just prior to the termination

of the project. A detailed description of the system, with instructions

as to its use, is documented in the technical report "A Structurally

Oriented Simulation System" [23].

To summarize the development, SOSS was designed to run on-line

on the Michigan Terminal System (MTS), i. e., in a conversational

interactive mode, via a terminal. The command language

was designed to enable the user to employ a simple, yet powerful set

of commands in order to specify the structure of a system, alter
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structure (insert faults), and simulate the behavior of the original

or altered system. Since structure is specified as a network of se-

quential machine s, the user may de scribe the system at various levels of

structural refinement. He may choose to describe the detailed struc-

ture of a combinational or sequential switching network, he may

describe a system as a composition of several subsystems, or he

may describe only the state-transition and output functions of a sys-

tem by regarding it as a one-component network. As for fault insertion,

any permanent fault, beginning with simple "stuck at" faults through

functional changes in combinational and machine components may be

simulated via alterations in the original structure.

A general description of the systems that can be simulated by

SOSS is given in Figure 5. 1. The component machines M 1, M2 ,..., M

are state machines (i. e., sequential machines having an output func-

tion equal to the identity function). The combinational network is a

finite acyclic network, each node of which realizes a (general) com-

binational function of n variables (n > 1), that is, a function from

an n-fold cartesian product of finite sets into a finite set. Such a

function can be a simple one to two variable switching functions, or

a complicated function having as many as 255 variables each of

which can assume up to 255 values.

In order to save storage, only the "value column" of each function

table is stored. The order of the table is the natural order defined
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State Machines
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Combinational
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Inputs * * Outputs

Figure 5. 1
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by the order in which the input connections to the node are specified.

The inputs to the combinational network are the system inputs and the

"current state" of the system provided by the state machines. The

system outputs can be connected to any point in the simulated system,

including the state machines, in order to monitor its behavior. The

inputs and outputs may have as many as 255 symbols in their alphabet

set.

In using SOSS, there are three basic modes of operation. These are

CREATE, SIMULATE and ALTER. A fourth mode is the COMMAND

mode which enables the user to transfer from one mode into another.

Entering data to SOSS is done in free format statements .

In these statements the letters A through O," R through V,

and Y and Z are assigned to combinational network components. The

letters P and Q are reserved for component machines and the letters

W and X are reserved for system inputs. Each letter is followed by a

number in the range 0-255. The number of possible system inputs

is 512. This is also the number of possible machine nodes. The

number of possible nodes in the combinational network is 5632.

The following describes the basic modes of operation.

a) CREATE mode.

In this mode the user creates the system to be simu-

lated. SOSS is initialized upon entry to CREATE and

is ready to create a new system. There are three

types of information that the user need supply to
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SOSS. The first is the alphabet size (AS) of the

different components, inputs, and component machines.

He then provides the functions of the combinational

network components and the transition functions

of the state machine. (Recall that this is done by

giving an ordered list of the "value" column of the

function tables. ) The user must also supply the

interconnection list for the whole system. Speci-

fying the AS actually creates the node and must be

done prior to assigning a function to a node or speci-

fying its interconnections. SOSS assembles the

data provided into a complete system. While

data is entered, SOSS monitors the created system

and issues warnings if specification errors are

detected. Such errors could occur in specifying

the values of a function, improper connections,

repetitions, etc.

The system can be displayed by a display feature

whenever the us er wishes to inspect it while in

CREATE, SIMULATE, or ALTER.

b) SIMULATE mode.

This is the mode in which the system, created by

the user, is simulated. When a SIMULATE command

is issued, SOSS first enters into a test phase. In
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this phase it checks the created system for un-

specified connections or functions and warnings

are issued if any such failure is found. Upon

completion of the test phase, SOSS enters into

the SIMULATE mode and proceeds to simulate

the system., Simulation is done sequentially.

First, the "current state" of the system is initial-

ized either to an initial state given by the user

or to the "next state" that resulted from the

last simulation. SOSS simulates the system

one clock period at a time. The user may

specify an input string of any length (for each

input variable) or a single symbol at a time. If,

during simulation, errors in referencing the

function tables are detected, simulation stops.

The output information of a simulation can be

obtained by employing the display provision. All

information concerning a simulation can be printed

out, i. e., current state, inputs, and values of the

nodes of the combinational network Printout can

be done for each clock period or following a

given length of the input sequence.
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c) ALTER mode.

The ability to change a given system and insert

faults is one of the most important features of

SOSS. This is done in the ALTER mode. This

mode is actually a subset of the CREATE mode in

that an identical syntax is used. The difference

is that the system is not initialized, but changes

are made in the original system. To alter an

existing system the user merely restates the

required information which is to be changed.

The user may store his original system in an MTS file and make

alterations on an identical copy. Both can then be run, separately,

with the same input strings. In particular, in the intended appli-

cation where alterations are interpreted as faults, the behavior

of the faulty (altered) system can thus be compared with that

of the original (fault-free) system. However, due to SOSS's

recent completion, not enough experience has been gained as

yet to evaluate its utilization.
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