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FOREWORD

NASA experience has indicated a need for uniform criteria for the design of space vehicles.

Accordingly, criteria are being developed in the following areas of technology:

Environment

Structures

Guidance and Control

Chemical Propulsion

Individual components of this work will be issued as separate monographs as soon as they

are completed. This document, part of the series on Chemical Propulsion, is one such

monograph. A list of all monographs issued prior to this one can be found on the final pages

of this document.

These monographs are to be regarded as guides to design and not as NASA requirements,

except as may be specified in formal project specifications. It is expected, however, that

these documents, revised as experience may indicate to be desirable, eventually will provide

uniform design practices for NASA space vehicles.

This monograph, "Liquid Rocket Engine Turbopump Shafts and Couplings," was prepared

under the direction of Howard W. Douglass, Chief, Design Criteria Office, Lewis Research

Center: project management was by Harold Schmidt, assisted by Lionel Levinson. The

monograph was written by L. K. Severud and C. C. Purdy, Aerojet Liquid Rocket Co., and

was edited by Russell B. Keller, Jr. of Lewis. To assure technical accuracy of this document,

scientists and engineers throughout the technical community participated in interviews,

consultations, and critical review of the text. In particular, J. T. Akin of Pratt & Whitney

Aircraft Division, United Aircraft Corporation; J. O. Pfouts of Rocketdyne Division, North

American Rockwell Corporation; and D. W. Drier of the Lewis Research Center individually

and collectively reviewed the monograph in detail.

(7omments concerning the technical content of this monograph will be welcomed by the

National Aeronautics and Space Administration, Lewis Research Center (Design Criteria

Office), Cleveland, Ohio 4413 5.

September 1972





GUIDE TO THE USE OF THIS MONOGRAPH

The purpose of this monograph is to organize and present, for effective use in design, tile

significant experience and knowledge accunmhlted in development and operational

programs to date. It reviews and assesses current design practices, and from them establishes

firm guidance for achieving greater consistency in design, increased reliability in the end

product, and greater efficiency in the design effort. The monograph is organized into two

major sections that are preceded by a brief introduction and complemented by a set of
re te re nc es.

The State of the Art, section 2, reviews and discusses the total design problem, and

identifies which design elements are involved in successful design. It describes succinctly the

curreni teclmology pertaining to these elements. When detailed information is required, the

best available references are cited. This section serves as a survey of the subject that provides

background material and prepares a proper technological base for the Design Criteria and

Recommended Practices.

The l)e.sig,_ ('riteria, shown in italics in section 3, state clearly and briefly what rule, guide,

limitation, or standard must be imposed on each essential design element to assure

successful design. The Design Criteria can serve effectively as a checklist of rules for the

project manager to rise in guiding a design or in assessing its adequacy.

The Recommended Practices, also in section 3, state how to satisfy each of the criteria.

Whenever possible, the best procedure is described: wllen this cannot be done concisely,

appropriate references are provided. The Recommended Practices, in conjunction with the

De.rich Criteria, provide positive guidance to the practicing designer on how to achieve

stlccessftll design.

Both sections have been organized into decimally numbered subsections so that the subjects

within similarly numbered subsections correspond from section to section. The format for

the ('ontenls displays this continuity of subject in such a way that a particular aspect of

design can be followed through both sections as a discrete subject.

The design criteria monograph is not intended to be a design handbook, a set of

specifications, or a design manual. It is a summary and a systematic ordering of the large and

loosely organized body of existing successful design techniques and practices. Its value and

its merit should be judged on how effectively it makes that material available to and useful

to tile designer.
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LIQUID ROCKET ENGINE TURBOPUMP

SHAFTS AND COUPLINGS

1. INTRODUCTION

Turbopump shafts and couplings are critical elements of rocket engine turbopumps. The

achievement of adequate strength and fatigue life for these basic pump components has not

been a major problem in design because power torque loads relative to shaR size generally

have been low. However, the achievement of acceptable shaft dynamic characteristics has

required major design and development programs. Accordingly, this monograph considers all

aspects of turbopump system shaft dynamics peculiar to and necessary to shaft and coupling

design. Associated components (bearings, housing, etc.) that influence the shaft or coupling

design also are treated to the extent necessary to define that influence. Other aspects of

turbopump system design are covered in the design criteria monographs cited in references 1

through 5.

Inadequate designs for rocket engine turbopump shafts and couplings have resulted in

development problems and in instances of catastrophic failure, as indicated by the following

examples:

• Galling during assembly or removal of bearings from the XLR-87-AJ-3 _ pump shaft

and the bearing-to-shaft retaining bolts from the XLR-87-AJ-9 pump.

• Rotor tip rubs caused by inadequate clearances in the M-1 fuel turbopump, the

XLR-87-AJ-5 turbine, and the J-2 fuel pump.

• Sporadic bearing failures of the XLR-87-AJ-5 turbine shaft, primarily associated with

inadequate margins for whirl critical speeds.

Self-excited, unstable, subsynchronous rotor whirl of the Mark 25 turbopump, the

"E"-blade Mark 9 axial-flow turbopump, and the RL-129 experimental

liquid-hydrogen turbopump.

Unstable, sharply fluctuating rotor response in certain speed ranges of the

XLR-87-AJ-9 turbopump, associated with loose fits at the stator joints local to the

bearings and large internal play of the roller bearing.

• Metal ignition and catastrophic failure during development of the F-I LOX pump

produced by fretting of the shaft-to-impeller splines.

1 Terms, symbols, materials, and abbreviations used herein are defined or identified in the Glossary.



Of the many factors that influence tile design of shafts and couplings, those considered vital

are the imposed speeds; critical speeds; bearing and seal locations; coupling locations: size,
shape discontinuities, and transitions; service environment; material fatigue strength and

thermal properties; structural integrity; fits, deflections, and operating clearances: locking

devices; and quality control of all components. Compromises are made in designing the shaft

configuration and size to achieve acceptable relationships among rolling-contact bearing DN,

seal rubbing velocities, shaft stiffness for critical-speed considerations, and, sometimes, shaft
or coupling stress.

The analytical evaluation and prediction of shaft dynamics and critical-speed characteristics
is one of the most important design tasks. Prediction accuracy is a function of the detail

incorporated into the mathematical model and the capability of the computer program.

Critical speeds must be appropriately considered and classified in importance if they are to

be properly understood and treated in relationship to other design factors. Many types of

forced and self-excited whirls occur in turbopumps, but forced synchronous whirls generally
are the most important. The vibrational characteristics and critical-speed behavior of the

shaft are covered extensively in this monograph; in addition, the techniques used to adjust
critical speeds and response levels and to improve rotor balance are discussed.

Design confirmation tests usually are conducted to verify design adequacy and ensure

reliability as well as to minimize operational problems. Guidelines are included in the

monograph for nonrotating tests, rotating system tests, and static stiffness tests for

components such as rolling-contact bearings, bearing support housings, and shaft coupling
joints.



2. STATE OF THE ART

2.1 Shaft Design

Tile shaft design effort is directed principally to the determination of a shaft configuration

that will adequately transmit rotational motion and power torque and also provide a

suitable structure on which the various rotating parts such as impellers, bearing races, and

turbine wheels can be assembled. Turbopump shafts are required to withstand torsional

loads, overturning moments, imbalance whirl forces and vibration, bearing reactions,

mechanical and thermal shocks, severe thermal and corrosive environments, steady-state

operation conditions, and start accelerations and other transients.

The shaft configuration and the arrangement of the rotating parts usually are based on

optimization and compromises of many features and requirements. These considerations

include arrangement and type of turbine wheels, pump impellers and inducers, bearings,

seals, gears, couplings, turbine manifolds, and pump housings; turbopump power and desired

speed: turbopump system size and weight limitations; whirl critical speeds and shaft

deflections; applied radial and axial loads; assembly and disassembly procedures and

requirements; other turbopump system limitations: and, last but not least, cost effectiveness

versus performance for a given design. Multishaft turbopumps using gearboxes to transmit

power from turbine shafts to separate pump shafts have been used; both XLR-87-AJ-5 and

XLR-91-AJ-5 turbopumps and the RL 10 and H-1 turbopumps are geared systems.

However, because of power and speed limitations as well as added design complexity for

geared designs, the trend is away from gearboxes and toward direct-driven power

transmission.

Turbopump power and selected speed have been the most influential design factors, but

shaft life, restart, and reuse requirements are becoming important. Designing a highly

reliable, long-life, reusable turbopump shaft entails a continuing effort from preliminary

design through the development phase and into the early flights. The effort begins with the

configuring and sizing of the components on the basis of predicted loads and estimated

environment, emphasis being placed on design practices and principles that maximize fatigue

life. Material choices, are made largely on the basis of low-cycle and high-cycle fatigue

strengths, thermal expansion and contraction properties, fracture toughness, resistance to

crack propagation, and environmental sensitivities. During fabrication, nondestructive

testing (NDT) inspections are employed to assure product quality. Actual load and

environmental data from the early research and development tests are mapped. These data,

along with refined analytical and experimental stress and fatigue data, are fed back into an

updated und more refined structural analysis. Based on the critical conditions found to be

significant life-cycle determinants, controlled overstress tests are considered. The primary

objective is to find the limits and failure modes by intentionally testing to failure. Then,

study of the failure modes allows further design improvements.



2.1.1 Design Parameters

2.1.1.1 SHAFT SPEED

lligh shaft speeds allow overall turbopunlp size and weight to be kept relatively small: thus

the design goal usually is to operate the shaft at the highest rotating speed that is feasible.

However, definite limitations on shaft speed arise lYom pump suction and hydraulic design

considerations, impeller and turbine wheel stresses, shaft-seal rubbing velocities, bearing DN,

and shaft whirl critical speeds.

Many turbopun_p shafts operate at a constant or ahnost constant steady-state speed.

ttowever, some shafts, especially those for turbopumps with engines having throttling

capability, are required to operate for substantial periods of time over a wide range of speed.

When a design is undertaken, the question immediately arises as to whether the shaft should

operate at speeds above or below the turbopump system first whirl critical speed.

The major advantages of subcritical shaft design are that no resonances or self-excited

vibrations or instability whirls will occur from zero to full speed. Thus, concern for going

through critical speeds and the need for special damping systems or more complex balancing
procedures are eliminated.

Disadvantages of subcritical shaft design are primarily the requirements or limitations

imposed on the other components of the turbopump. For example, to attain tile maximum

operating shaft speed, the weight of the rotating parts, the length of tile shaft, and the

amount of overhang have to be minimized. This minimization usually impacts turbine and

impeller burst-speed capabilities. The large shaft diameter required for shaft stifflless usually

results in high bearing DN or high seal rubbing velocity. Tile high bearing stifflless usually

required results in dynamic coupling of rotor and machine casing or housing. Thus, housings

also must be designed for high stiffness; and therefore, for accurate predictions, the dynamic

model that includes the housing must be detailed and complex. Also, high bearing stifflless

usually limits rolling-contact bearing choice to cylindrical roller bearings. Moreover, the

requirement of subcritical shaft design may severely limit the maximum operating speed and

thereby reduce turbopunlp hydraulic and aerodynamic performance.

Supercritical shaft design removes most disadvantages associated with subcritical design. In

addition, if tile first two criticals are controlled by using flex-mounted bearings, operation is

practical up to speeds just below the third critical (the first mode to contain significant shaft

bending). Tile associated bearing reactions usually are much lower than those in subcritical

design, and thus bearing life and reliability are improved.

Tile major disadvantages of supercritical shaft design are that damage may occur during

passage through the criticals and that self-excited or unstable subsynchronous whirls may

occur at speeds above the first system critical. The causes of self-excited whirls are many,



andaccuratemeansto predictmagnitudesor conditionsof occurrencedo not exist.Thus,
assurancethat a designwill havestableand tenablesupercriticalcharacteristicscanbe
obtainedonly after the turbopmnpis built and tested.The needsfor specialdamping
mechanismsand for anaccuraterotor balanceeffectiveover the entireoperatingrangeare
additional disadvantagesas compared with subcritical shaft design, lTurthermore,
supercriticalshaft designs,becauseof their lower critical speeds,usuallyare limited in
capabilityto throttle to low speedssafely.

A typical plot of shaftspeedversustimefrom startfor a liquid rocketenginemrbopumpis
presentedin figure1.Considerableturbopumpexperienceindicatesthat goodenginesystem
designcan limit overshootto 3 percentor less.However,somesystemshaveproduced

Start transient
i_ .d

Nominal _/f

Solid-start [,II generator
Gas turbine drive

( I 1 I I I '/4, J
1.0 200 200.5

Time, sec

Figure l. -- Typical plot of shaft speed vs time for constant-speed liquid rocket engineturbopump

overshoots of 5 to 10 percent of full speed, and some overshoots reached 25 percent.

Because it takes only a very short time at a critical speed to induce detrimental rubbing

between rotor and stator or fail a bearing, the shaft usually is designed to preclude operation

at a critical speed at the start-transient dwell and overshoot speeds as well as at the

maximum steady-state operating speed.

2.1.1.2 BEARING AND SEAL LOCATION

The locations of the bearings and seals relative to the major rotor components significantly

intluellce the overall turbopump design complexity. Bearing locations have a significant

effect on shaft critical speeds lrefs. 6 through 9L shaft deflections, and stresses. If gears or



pinionsarelocatedon theshaft,a radial-supportbearingusuallyisplacedcloseto themso
that shaft bendingstressesareminimized.Thermaldisplacementsandassemblytolerances
usuallyrequirea bearingthat will resistboth thrust and radial loads,andthis bearingis
placedascloseaspossibleto the thrustbalancepistonsothat operatingrunningclearances
canbecontrolled.Theenvironmentsandloadsimposedonabearingor sealandtheeffects
on life capacitiesoften are importantfactorsin location.Bearingsandsealssometimeshave
to bereplacedduringthelife of theturbopump,andthereforeaccessibilityandmaintenance
areconsideredin thechoiceof location.

Overhungturbinearrangementscommonlyareselectedovercradledturbinedesignsiraorder
to avoid locating the bearingor seal in the hot inlet regionas well as to preclude
aerodynamiccompromiseof the inlet. Centrifugalpumpsusuallyhavethebearinginboard
of the impeller becausebearingsupport struts ira the pump inlet flow passagecan
compromisepump suctionperformance.Axial-flow pumpsgenerallyhavethe main-stage
pumpsectionstraddledwith radial-supportbearings.

2.1.1.3 SHAFT SIZE

For most rocket engine turbopumps, shaft size at the bearing locations is governed by

stiffness (critical-speed) criteria rather than by stress criteria. Usually, the shaft size is made

as large as possible consistent with DN and seal-rubbing-velocity limitations. The current

limit of DN for rolling-contact bearings in rocket engines is approximately 1.0 to 2.0

million. Table I lists demonstrated values for rolling-contact bearing DN and for seal rubbing

velocity.

Table I - Demonstrated Values for Rolling-Contact Bearing DN and Seal

Rubbing Velocity

Engine

J-1

M-1

M-1

XLR-87-AJ-9

ARES engine

XLR-87-AJ-3

XLR-87-AJ-5

Environment

LH 2

LH 2

LOX

Oil

N2 04, A-50

Oil

Oil

Bearing DN,
million

1.6

1.6

0.5

1.35

1.6

1.19

1.08

Seal rubbing

velocity
ft/sec

275

275

86

232

275

204

185

m/sec

83.8

83.8

26.2

70.7

83.8

62.1

56.4

6



Reference 1 should be consulted for more detailed data and limitations. For rolling-contact

bearings, DN is a more restrictive factor than seal rubbing velocity. Fluid-film bearings

apparently do not have any DN limitation; therefore, the face-seal rubbing velocity can

become the limiting factor when fluid-film bearings are used. Face seals have been operated
at rubbing velocities up to 500 ft/sec ( 152 m/sec) 1 in fluids such as LH2, LOX, and RP-I.

Face-contact seals can be compared on the basis of PV, where P is the face load in psi

(N/m 2) and V is the velocity in ft/sec (m/sec); typical values for PV are 40000 to 80000

psi-ft/sec (84 to 168 MN/(m-sec)). Time in contact also is a factor; high-speed face-contact

seals can be of the liftoff type, closed at zero rpm and open at full speed. Detailed

information on seals for turbopump shafts is presented in reference 5.

The shaft size, once defined, is checked for stress adequacy. For preliminary design, the

allowable shaft shear stress at locations of rolling-contact bearings often is taken as

two-thirds of the ultimate shear strength of the shaft material. The shaft mechanical joints

(i.e., curvic couplings and bolted joints) also are evaluated for stiffness adequacy. Hollow,

thin-wall shafts are checked for torsional buckling adequacy. Formulas for sizing

nondrum-type shafts subjected to steady and alternating combined stresses are provided in

several established references (refs. 10 and 11). In chapter 13 of reference 12, a design

technique known as the Von Mises-Hencky-Goodman method is presented. This technique is
more difficult to use than those of references 10 and 1 I, although it more closely predicts
actual failure conditions.

Thin-wall, cylindrical, rotating-drum-type shafts such as those used in the M-1 fuel

turbopump are diameter limited by centrifugal-stress considerations. Outer wall speeds up to

1100 ft/sec (335 m/sec) have been demonstrated successfully.

2.1.1.4 SHAFT DISCONTINUITIES AND TRANSITIONS

Shafts usually have numerous increases in cross section required to provide maximum

overall shaft bending stiffness. In addition, shaft diameters at bearing locations are reduced

to keep DN values acceptable, allow shoulders for bearing races and other shaft-riding

elements, provide platforms for pressed or shrunk-on parts, and facilitate coupling design.

The primary design consideration regarding these discontinuities and transitions is the

resulting stress concentration and its effect on the shaft fatigue life.

Stress-concentration and fatigue-life-reduction factors have been determined for many

common shapes (e.g., circular or elliptical fillets) in tension, bending, and torsion (refs. 13

through 16). Also, fatigue-reduction factors for transverse holes in the commonly used

dimensional ratios have been published (refs. 17 and 18). Face-milled keyways and the more

1 Parenthetical units are in the International System of Units (SI units). See Mechtly, E. A.: The International System of

Units. Physical Constants and Conversion Factors, Revised. NASA SP-7012, 1969.



fatigue-damaging end-milled keyways have been studied in detail (ref. 19). The detail design
of transition sections is discussed in reference 20. However, although the harmful effect of a

sharp corner is well understood, designers frequently fail to realize that a similar adverse

condition exists when a collar is pressed or shrunk into place on a shaft. Stresses increase

sharply where the shaft protrudes from a tightly fit ring (refs. 21 and 22). This end effect,

which is often overlooked in design, is important from the aspect of fretting corrosion and

stress concentration. Although hyperbolic or elliptical fillets give rise to lower

stress-concentration factors than do circular fillets, it has been the practice in rocket engine

turbopump shaft design to use circular fillets because of minimum axial space requirement
and the shape of mating parts {e.g., bearing race corner radii). The additional magnitude of
stress concentration rarely has been a limiting design factor.

Surface conditions have a considerable effect on static tensile strength. From the fatigue

aspect, a surface with outward projecting peaks and relatively flat broad valleys is preferred

to one with sharp ravines and relatively flat broad plateaus even if both surfaces have equal
roughness values (refs. 23 and 24). Both the minimum and maximum surface finishes must

be controlled to obtain successful seal performance (ref. 25).

2.1.1.5 SERVICE ENVIRONMENT

The shaft is subject to thermal environments associated with engine prefiring conditions,

transient heatup and chilldown, and steady-state temperature conditions imposed by the

proximity of the turbine hot gas or pump fluid. Also, the bearing lubricant or coolant

imposes thermal conditions on the shaft. When cryogenic propellants are pumped, the
low-temperature end may reach -420°F (22 K), with attendant embrittlement of some of

the common shaft materials. The heatup transient may span from a prechilled-420°F (22

K) to about 1400°F (1033 K). As the transient time usually is short, thermal shock

gradients and associated stresses and strains in the metal may cause structural damage
leading eventually to fatigue cracking. Service temperatures also can affect the shaft stiffi_ess
and critical speeds as well as the metal static strengths.

Restartable turbopumps may be affected by residual thermal conditions from previous
firings. Measurements on Titan II stage 1 turbopumps 10 min. after shutdown indicated a

soakback temperature of 560°F (566 K) at the bearing nearest the rotor; if Aerozine-50 is

used as the bearing lubricant, the possibility of detonation exists at engine restart. High

soakback temperature also can affect the temper of the metals in the bearing race and the
rolling-element cage.

A high-pressure gaseous-hydrogen environment is known to embrittle many engineering
alloys (refs. 26 and 27). The degree of embrittlement is a function of the metal temperature,

environmental pressure, purity of the gas, and exposure time. Steels (ferritic, martensitic,

and bainitic), nickel-base alloys, and titanium alloys become embrittled in pure-hydrogen

environments at room temperature; the effects are more pronounced as the pressure

increases. High-strength alloys are more susceptible than low-strength alloys. Austenitic



stainle_,s slcol_ such as types 310 alld 31(_: certain ahuninum alloys such as (_0(_l-l(_,

221 _>-T(_, _lllct 7075-T 13 : pclre copper and beryllitun copper: and the precipitation-hardened

austcnitic stainless steel A-286 are only slightly affected, lnconel 718. lnconel X, Waspaloy.

and t,?,ene 41 are severely enlbrittled in high-pressure gaseous-hydrogen environments. A

largo amount of experimental work currently is being done by industry and governmcllt

laboratories to achieve better itnderstanding of hydrogen-embrittlement effects.

Under ccrtain environments, spontaneous failure of the metal may result from the combined

effects of corrosion and stress. Such failures can occur under mildly corrosive conditions

and nominal surface tensile stresses. Usually there is no advance indication (visual or

microscopic) of the impending failure. Susceptibility to stress-corrosion cracking is variable

in metals, even among some types of steels, the degree depending on temper.

For stress-corrosion cracking to occur, tensile stresses must exist at the surface of the

structure: the higher the stress level, the greater the susceptibility to stress-corrosion

cracking. These stresses may be a combination of internal and external stresses, llighly

stressed shafts have been subject to stress corrosion (refs. 28 and 29). Many faihlres have

been attributed to high residual stresses in the material. Multiple-material shafts developed

for use where different sections of the shaft are exposed to different corrosive environments

are reported in reference 30.

The oxidizing and corroding effects of the fluid being pumped can eliminate many materials

from consideration for rise in a pump. For example, N204 as a propellant greatly restricts

material choices because N204 will combine with moisture to form nitric acid. ttowever,

the oxidizing action of N204 call be used to advantage for replenishing the oxide fihn

removed during operation in hard vacuum.

Contact surfaces exposed to deep-space vacuum (10 8 torr [1.33 x 10 .6 N/nl 2 ] or lower)

may be subject to cold welding or adhesion, depending on the metallurgical composition,

exposure time, contact stress, and temperature. Decomposition and sublimation of materials

at presstires in the range of 10 -s to 10 -_3 tort (1.33 x 10 -a to 1.33x 10"-'z N/m 2)restrict

the use of cadnlitlnl, zinc, alld magnesium in pure-element form (ref. 31). Aluminum

coatings are used to replace cadmium in a hard-vactmm environment. Conventional

hlbricants cannot be used in a hard vacuum (ref. 32). Other major problems in hard-w_cuum

sen'ice may be microporosity of welds, entrapped gases, or solids that outgas (ref. 33).

2.1.2 Material Selection

In most design procedures, a turbopump shaft material is selected on the basis of strength,

ductility, chemical compatibility, weldability, and machineability. In some instances, when

the thermal expansion properties were ignored until the design became fixed, the effect of

expansion was compensated for by the fit of the inner bearing race; this practice restllted in

excessive strain on the bearing races. When the strength, ductility, and environnlental

compatibility of several materials satisfy the shaft design requirements, the primary
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considerationis thermaleffect,with fabricationpropertiesassecondarycriteria.Although
thermalexpansiondataareavailable(refs.34 and35) for mostshaftmaterials,it maybe
necessaryto run specialtests for critical applications.The developmentof alloys like
Inconel718, 17-4PH,Rene41,andWaspaloyhaswidenedtheselectionof thehigh-strength
materialsfor shaftsthat will matchthe typical bearing materials (M-50,440C, and 52100).

As noted previously, in recent years the effect of a high-pressure gaseous-hydrogen

environment on embrittlement of metals has been investigated. Many of the common shaft

metals were found to suffer significant embrittlement; some new alloys were only slightly

affected (sec. 2.1.1.5). In addition to these new alloys, the joining of different alloys has

been successful in resisting embrittlement (refs. 34, 36, and 37). Other potential problem

areas such as corrosion fatigue, stress corrosion, and hydrogen embrittlement during

fabrication are discussed in reference 38. The designer must also consider the brittle

transition that occurs in low-alloy steels at cryogenic temperatures. Cryogenic temperatures

embrittle 9310, 4340, and 440C sufficiently that they rarely are used as shaft materials in

this environment. Some of the materials that have been used successfully for shafts in rocket

engine turbopumps are given in table II.

Table II - Materials Successfully Used for Rocket Engine Turbopump Shafts

Service fluid

Material Nitrogen Aerozine MIL-L-7808
Hydrogen Oxygen tetroxide 50 Nitrogen lube oil Fluorine

Inconel 718

Inconel X

K-monel

Rene 41

CRES 300

AM 350

9310

4340

440C

X

X

X

X

X

X

X

X

X X

X

X X

x

X

Note: X denotes that the given material performed satisfactorily with the given fluid; absence of X
indicates no experience available or that the material cannot be used with the given fluid.
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Case-hardeningprocessesincludenitridingandelectrolyzing.Nitridingwasusedo21tile Titan
XLR-87-AJ-5and-91-AJ-5gearboxshafts,andelectrolyzingon theNERVAMark4 Mod2.
Nickel-base(AMS 4775) and Linde LW-5alloys were usedoll a Rene41 shaft in the
liquid-hydrogenenvironment(ref. 36). The effectof chromeplatingon shaftfatiguealso
hasbeendocumented(ref. 39).

Fretting isa potentialsourceof ignitionin oxidizerpumps.Tile usualremedyfor fretting is
to tighten the fit or clamp and use lubricants compatible with the oxidizer.

Galling was a problem when bearings were assembled on or removed from the 4610 shaft of

Titan XLR-87-AJ-3. This problem was corrected for the -87-AJ-5 shafts by using AM 350

nitrided to a hardness value of Rockwell C58 as shaft material. Galling also was noted on a

bearing-to-shaft retaining bolt in Titan XLR-87-AJ-9, where the AM 350 bolt and the Rene

41 shaft were approximately the same in hardness. A 7075-aluminum sleeve was added to

the bolt to resolve the galling problem.

2.1.3 Structural Analysis

2.1.3.1 LOADS

The design of a shaft (and coupling) from a structural standpoint is based on the

relationship between the loads that will be imposed on the shaft and the capacity of the

shaft to withstand those loads. Allowable load, limit load, yield load, ultimate load, safety

factor, and margin of safety are terms that are used to establish and define this relation

between shaft loading and shaft loading capacity. These terms, as they are used in this

monograph, are defined as follows:

Allowable load: the load that produces a stress equal to the material mechanical strength.

Limit load: the maximum load or combination of loads and environment expected to occur

at least once during the life of the component.

Yield load: the load below which no detrimental deformation will occur; limit load

multiplied by tile yield safety factor.

Ultimate load: the maximum load that must be withstood without rupture; limit load

multiplied by the ultimate safety factor.

Safety factor: an arbitrary multiplier greater than i

unexpected design conditions, e.g., slight variations

quality, and load distributions.

applied in design to account for

in material properties, fabrication

Margin of safety: fraction by which the allowable load exceeds the design load (yield or

ultimate).
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The magnitudesof most of the identified loadsoll a shaftareevaluatedby computation
during the designphase.Loads that do not lend themselves to this computational analysis

(i.e. vibratory and malfunctioning loads) are given appropriate consideration by designing
to nainimize the magnitude of such loads.

The load predictions in some cases have been inaccurate. Radial loads due to rotor dynamics

have sometimes been twice as large as the loads calculated in response analyses. Also. radial

loads due to nonsymmetrical pressure distributions resulting from pump-housing discharge

ports, in-flow obstructions, etc., do not lend themselves to accurate predictions of

magnitude. Calculation of net pump or rotor axial thrust, which is the algebraic sum of large

thrust component forces, has given values substantially different from the subsequently
experimentally determined ones.

2.1.3.2 SAFETY FACTORS

Usually, the safety factors for static stresses are specified to the designer. Table 111 displays

some examples of safety factors that have been used in turbopump shaft design.

Table III - Typical Safety Factors Used in Shaft Design

Rocket engine

XLR-87-AJ-3/5
and

XLR-91 -AJ-3/5

M-1

XLR-8 7/91 -A J-9

J-2 and F-1

ARES

RL10

Yield Ultimate
safety factor safety factor

1.0

1.0

1.0

1.1

1.2

1.2

1.25

1.5

1.4

1.5

1.6

1.5

Generally, the fatigue safety factors are not specified. Values of 1.25 and 1.33 have been
used.

Selecting safety factors in accordance with the desired reliability rather than more or less

arbitrarily choosing them has become the desired engineering approach. The goal is to

account for variations in material properties: effects of size; effects of machining and

processing operations on properties; accuracy in predicting environments and loads;

accuracy of stress analysis models; etc., by use of probabilistic mathematics (refs. 40
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through 43). Rocket engine total reliability, however, is a function of the individual

reliability of the many components, and a practical means of determining all the variances

required to accomplish an accurate quantitative correlation of shaft or coupling safety
factors to engine reliability is not yet possible (refs. 44 and 45). Nevertheless, the effort

directed to establishing these variances, even as estimates, is valuable for identifying areas

where more design data are required to establish which properties are governing factors in

the design. At the present time, however, uniform design safety factors are selected largely

on the basis of engineering judgment combined with prior experience in obtaining the

desired level of reliability.

2.1.3.3 ANALYTICAL METHODS

The shaft structural analysis consists of determining the stress and strain states, deflections,

shaft failure strengths, and margins of safety. Analytical determination of stress levels using

standard beam and torsion formulas coupled with appropriate stress-concentration factors
has been the most common method of stress analysis. However, complex shaft

configurations have been analyzed by digital computer programs and by experimental

techniques for stress analysis.

The failure-strength analysis has consisted primarily of using the high-cycle-fatigue failure

theory for fluctuating combined stresses; this theory is known variously as the octahedral

shear theory (ref. 46, pp 208-213), distortion energy theory (ref. 47), or Von Mises-Hencky

theory (ref. 12, pp 183-189). When thermal shock stresses result in large inelastic strains, the

low-cycle-fatigue failure theory (ref. 48) has also been employed. Welded shafts have been

analyzed for strength by utilizing fracture-mechanics principles (ref. 49) to assess the impact
of cracks and flaws that result from fabrication.

2.1.4 Assembly and Operation

2.1.4.1 DIMENSIONS AND FITS

Rocket engine turbopump design requires close control of pilots and radial fits between the
shaft and bearings and other rotating components such as gears, impellers, and turbine

wheels. Typical shaft and bearing tolerances for a few engines are shown in table IV.

Since the radial locations of the components are controlled by the radial bearings, it is

common practice to define the corresponding shaft pilot diameter locations with respect to
the shaft diameters on which the bearings register (datums). Room temperature (normally

68°F [ 293 K ]) shaft dimensions are established to account for anticipated dimensional

changes resulting from thermal expansion/contraction of the material, centrifugal growth of

the mating parts, and response to applied loads. In the case of the XLR-87-AJ-9 gearbox, a
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Table IV - Typical Shaft and Bearing Tolerances

XLR-87-AJ-5 M-I RL 10 fuel pump
Characteristic 40/55mm bore 110/120mm bore front and rear

Bearing inside diameter

Shaft outside diameter

Total

in. /am

-+0.0001 -+2.5

± 0.0001 -+2.5

-+0.0002 + 5.1

in. /am

-+0.00012 -+3.05

-+0.00015 ± 3.81

-+0.00027 -+6.86

in. /am

+ 0.00010 ± 2.54

-+0.00025 + 6.35

± 0.00035 -+8.89

Rene 41 shaft and M-50 bearing were used. Because of the close matching of the thermal

expansion properties, the change in fit was only 0.0002 in. (5.1 #m) for the 55mm bearing

race during the 280°F (156 K) temperature rise. Conversely in the M-l, the use of 440C

bearing material with Rene 41 (turbine end) and Inconel 718 (pump end) required increases

in room temperature fit of 0.0012 in. and 0.002 in. (30.5/am and 51#m), respectively, to

anticipate the effect of the -423°F (20 K) operating environment. Special procedures were

necessary to shrink the bearings on and off the shaft without damaging components.

In general, shafts of equal diameter all have approximately the same change in diameter as a

result of speed because most of the commonly used shaft materials have similar ratios of

density to modulus of elasticity. The change in shaft diameter caused by centrifugal growth

can produce significant reduction in bearing internal clearances when the DN value is greater

than 1.0 million. Reference 50 contains a complete treatment on this subject. Conversely,

pilots and fits that tend to open during high-speed operation (e.g., bore-mounted disks) may

cause eccentric shifting of mass centers and result in added imbalance.

In some designs, in order to preclude excessive pilot or fit loosening due to the thermal

environment or high-speed operation, extremely close component-to-shaft fit or pilot

interference is required at room-temperature assembly; this is especially true for shafts with

low-contact-angle ball bearings. Selective assembly of the components is then used to
restrict the tolerance accumulation more than that indicated in table IV. For the SNAP 8

turbine shaft, each bearing was dimensionally coded to permit selective assembly for

optimum shaft and housing fits (ref. 51).

When components are assembled and disassembled frequently, some damage to the surface

finish of the parts may occur unless special procedures or surface treatment are used. The

gearbox shafts on both XLR-87-AJ-9 and XLR-91-AJ-9 were nitrided to resist galling.

Because of LOX compatibility requirements, the XLR-87/91-AJ-3 gearbox shafts were not

surface hardened. Use and damage limits were specified to control the degree of surface

finish change caused by bearing removal.
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2.1.4.2 COMPONENT RUNNING POSITIONS AND CLEARANCES

The running positions of the rotating parts relative to the stationary parts determine

operating clearances. Operating clearances have presented problems during initial

development testing of many rocket engine turbopunlps: for example,

In the J-2 engine development, blade rubbing was associated with vibration modes of

the turbine rotor disks and subsynchronous shaft whirl. The disks were redesigned to

raise the axial vibration critical speed, and the shaft was rebalanced at high speed.

Axial thermal gradients across the turbine wheel of the M-I fuel turbopump caused the

wheel to dish upward and thereby allowed the turbine bucket to rub on the upstream
nozzle.

Accumulative creep distortion of a particular-design second-stage nozzle of the

XLR-87-AJ-5 turbopunlp caused the operating clearances to be reduced during each

firing. Thus, after a certain number of tests or after the nozzle developed residual creep

distortions of a fixed magnitude, the nozzle required replacement. In one instance

during research and development testing, the established creep-distortion limits of the

nozzle unknowingly were exceeded; in a subsequent test, the rotor rubbed on this

distorted nozzle and caused a catastrophic failure of the entire turbine.

Experience has shown that axial motions at rotor tip diameters can easily be four or five

times as great as the radial values at the same locations. Both axial and radial operating

clearances are carefully evaluated, because either clearance, if insufficient in magnitude, can

lead to failure of a turbopump.

('omputations of the thermal and mechanical distortions of both rotating and stationary

parts have been useful in establishing required assembly clearances. However, experience

indicates that, even with detailed and time-consuming computations, predictions of

component running positions and resulting clearances are of questionable accuracy. Thus,

initial tests of new designs often are made with machines having excessive clearances, and

clearance-measuring devices are attached. After sufficient test data are acquired to establish

limits of clearance changes during operation, the buildup clearances are reduced to tenable

levels.

2.1.4.3 RETAINING BOLTS AND LOCKING DEVICES

Retaining bolts play a major role in successful operation of the curvic or parallel-sided face

couplings (secs.2.3.2 and 2.3.3); they prevent loosening or overload during operation. To

design a bolt properly, it is necessary to know the temperature gradients and loads during
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assembly, start transient, operation, and postrun heatsoak. The following elements are

involved in the design of retaining bolts and locking devices:

• Mechanical strength
• Preload

• Arrangement and fit
• Vibration effects

• Galling, seizing, and fretting

• Locking action
• Stackup and imbalance

In general, a material with high strength in combination with a high coefficient of thermal

expansion has been used for retaining bolts. The high strength is required for a

mininmm-size boll and the high thermal expansion is desirable because the bolt normally is

at a lower temperature than the surrounding rotor hubs. Inconel 7 18 has been a satisfactory

bolt material except in a hydrogen atmosphere. The low modulus of elasticity for titanium
results m a small bolt diameter, but titanium compatibility with the service environment

must be verified. A long bolt usually gives the best overall ability to maintain tight axial

joints but, in some cases, the shaft does not permit a long bolt. Also, the threads in the shaft

become more difficult to machine as the length of the bolt increases. Vibration of long bolts

by shaft rotational excitation can reduce the strength of the bolt by superposing a cyclic
stress on the relatively high tensile preload steady stress.

The arrangement of retaining bolts is associated primarily with the coupling design and is
covered in detail in section 2.3.2. When a parallel-sided face coupling is fastened with a

single central bolt and the fits between the male and female portions of the coupling are

loose, the power torque may impose a large lateral shear force on the bolt and one coupling

tooth. Plastic deformation under such high loads usually allows more teeth to come into

contact and share the total load, thus preventing fracture in ductile materials. However,

adverse bolt bending with associated rotor imbalance, or fracture of a tooth or bolt if it has

little ductility, is a potential problem. When bolt load is critical, elongation rather than

torque is used to determine the bolt preload. The XRL-87-AJ-9 turbine assembly records

show a variation in torque from 195 to 330 lbf-ft (264 to 448 N-m) for a 0.009-in. (0.23
ram) elongation tinder apparently constant conditions of lubrication and assembly.

If a stud bolt and nut is used instead of the head-type bolt, torque transmittal to the shank

during tightening is eliminated. However, locking becomes more complicated because both
the stud bolt and the nut must be locked.

Galling, seizing, and fretting of fasteners at times have presented problems. Generally such

problems are avoided or solved by (1) use of an appropriate lubricant (refs. 52 and 53), (2)

reduction of the vibration environment, (3) use of a positive locking device, or (4) use of
materials with different surface hardnesses.
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Positive locking devices for rotating parts are usually of the tab or crimped washer type

(fig.2). (Although it is not shown in figure 2(b), the preferred method is to bend the tab in

the direction of the centrifugal force whenever possible.) The crimp type is preferred

because the crimp in the washer and the slot in the shaft are autonlatically aligned. Also. the

crimp type requires fewer slots, usually 4 as compared with 12 or more for the tab type.

The main disadvantage of the crimp type is the need for more elaborate tooling. The effect

on rotor balance is a factor in the selection of the locking device.

2.1.4.4 ASSEMBLY AIDS

Assembly aids (e.g., slots, wrench fiats, and bearing and gear removal tools), as well

"fool-proofing" techniques, have an effect on shaft design. These factors normally are taken

into account in the design stage by placing fiats, slots, offset holes, or pins in locations of

relatively low stress. Also, the fiats and other assembly aids are placed symmetrically about

a diametral line across the cross section of the shaft so that they do not result in rotor

imbalance.

2.1.5 Quality Control

Nondestructive testing (NDT) of shafts usually is accomplished by one or more of four

methods of inspection: magnetic particle, penetrant, X-ray, and ultrasonic.

In some instances the fluid used during the inspection (e.g., fluorescent penetrant) is

incompatible with one or both propellants, and normal cleaning procedures are insufficient

to remove all traces. Under these circumstances, especially when the propellant is liquid

fluorine or liquid oxygen, the shaft drawing itself stipulates the exact procedure (usually

baking at approximately 250°F [394 KI ) by which the residual inspection-aid fluid can be

removed. In many cases, because of large changes in cross section or special manufacturing

operation, the inspection process itself is a development task. For example, special

ultrasonic techniques were developed to detect defects close to the surface of the M-1 fuel

turbopump shaft at the juncture of the weld between the Inconel 718 and Rene 41. This

weld was also inspected by X-ray; 100,000 volts were required because of the high density

and thickness of the materials.

hwolute splines for lightly loaded applications normally are checked with go/no-go gages

that include the effects of profile, index, lead, and tooth-thickness errors. For highly loaded

splines, individual checks of tooth characteristics are made with the same equipment used

for inspecting gear teeth. Couplings of the pilot and radial "dog" type require dimensional

inspection with conventional inspection equipment. Curvic couplings, however, do not lend

themselves to complete inspection even with special tools. Special gear checking equipment

is used to inspect for index error and runout. Tooth contact is tested visually against a

master mating-coupling half, marking compound being used to establish the adequacy of the

profile. The test is subject to errors in interpretation unless it is conducted by specially

trained technicians.
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Figure 2. - Locking devices for rotating parts
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2.2 Shaft Dynamics

A vast amount of material has been published on the subject of shaft dynamics. The more

complete treatments, which cover important aspects not usually covered in standard

textbooks, arc given in references 54 through 70. The treatment herein is restricted to those

aspects of shaft dynamics that must be taken into account in the design of the shaft and

coupling.

2.2.1 Dynamic Behavior

2.2.1.1 WHIRL MOTIONS

Shaft whirling usually is described in terms of shaft motion about an external longitudinal

axis; whether this motion is forced or self-excited is noted also. Motions of the shaft during

whirling normally are described by the type of whirl path or orbit and by the direction and

speed of the whirl relative to the shaft rotation. Some of the basic classifications of shaft

motion are illustrated in figure 3. in the examples shown, when shaft speed f/, equals the

magnitude of whirl velocity co, the motion is called synchronous. Shaft motions can become

highly complex as illustrated in figure 3(f} and as discussed in references 58, 71, and 72.

2.2.1.2 FORCED WHIRLS AND CRITICAL SPEEDS

Types of forced whirls and their causes identified by Yamamoto from his work with

rolling-contact bearings (refs. 58 through 61) are presented in table V. Other causes of

forced whirls are associated with trapped fluids (ref. 73), bearing clearances (refs. 72, 74,

and 75), bearing-noise vibrations (ref. 76), gear-meshing excitations, and rotating-stall

excitations at a frequency approximately half the shaft speed (ref. 77). Shaft torque and

thrust misalignment between coupled shafts can induce lateral and torsional vibrations.

A critical speed is defined as a shaft rotative speed at which a rotor-stator system natural

frequency coincides with a possible forcing frequency. If all the possible system critical

speeds of a given machine are considered as speeds at which operation is untenable, then the

operating speed zones are severely limited. For example, figure 4, a plot similar to those of

Yamamoto (refs. 58 through 61), shows numerous critical speeds for a shaft supported in

rolling-contact bearings. Here the natural frequencies of various shaft modes of vibration arc

plotted as a function of shaft speed. "Rays" emanating from the zero point of the curve

show corresponding forcing functions (e.g., impeller vane-to-housing frequency and

bearing-ball translation frequency). Theoretically, the intersection of each ray with a natural

frequency is a critical speed; however, experience has shown that many of these critical

speeds have negligible practical importance.
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_ Shaft

_-- Whirl path or orbit

(a) Forward circular whirl (b) Reverse or backward

circular whirl

(c) Forward elliptical whirl (d) Reverse elliptical whirl

uJ

(e) Lateral vibration (f) Complex whirl

Figure 3. - Basic classifications of shaft motion
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Table V - Types and Causes of Forced Whirling Identified

by Yamamoto lrefs. 58 through 61j

Type Cause

Forward circular precession,
co=g2

Backward circular precession,
co=_2

Noncircular precessions,

co = + _Q

Shaft whipping caused by guard ring or
shroud rub

Rotor imbalance

Unequal bearing stiffness in different radial
directions

Unequal bearing stiffnesses in different
radial directions, or

Transient changes in £'2, or

Externally applied rectilinear vibrations

When the shroud rubs more stiffness is added to

the shaft; and thus the critical speed is driven up

Nonsynchronous motions,

co = (0.4 to 0.5) _

Nonsynchronous motions,

co = 2g2, 3f2, 4f2 .......

ahead of the operating speed

One oversized or undersized ball or roller in

bearing; thus motion is excited at cage rotational

speed

Bearing defects, such as oval inner or outer races

"Sum and difference" critical speeds,

coi -+coj --

Subharmonic precession,

_2 g2
CO -- _ , ........

2 3

Unexpected jumps in response

Nonlinear, nonsymmetrical spring characteristics

Nonlinear, nonsymmetrical shaft stiffness

Nonlinearity in shaft system stiffness or forcing
functions
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Figure 4. - Typical plot of shaft speed vs natural frequency (showing many secondary critical speeds for

a shaft supported in rolling-contact bearings)
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Usually, critical speeds associated with synchronous forward forced motions or precessions
that are excited easily by rotor imbalance are considered as tile most important. These

synchronous-forward-precession critical speeds, whose values are governed primarily by the
rotor mass and the combined or individual stiffnesses of the rotor, bearings, or bearing

supports, are herein referred to as "major" critical speeds. "Secondary" critical speeds or
resonances refer to all other critical speeds not classified as major. Thus, secondary critical

speeds include the nonsynchronous criticals identified by Yamamoto, rotor/bearing/casing

system criticals that are controlled primarily by the casing dynamics, and backward-whirl
criticals. It is common practice to ignore the secondary critical speeds and consider only

major critical speeds when designing a new turbopump, even though it is recognized that the

nonsynchronous whirls described by Yamamoto can occur and can be troublesome.

Accordingly, experimental evaluation after the machine is built usually is appropriate.

Parts (a), (b), and (c) of figure 5 show shaft motion of the Titan III (87-9) turbine shaft as

measured by distance detectors mounted at right angles to each other and perpendicular to

the shaft axis. These plots display some secondary resonances when increasing amounts of

imbalance weight are added to the rotor. The secondary criticals, which were coupled

system modes, were governed primarily by the casing dynamic characteristics. Note that the

shaft orbit amplitudes were magnified dynamically by factors of only 2 or 3. The secondary
criticals did not result in significant resonant buildup; with a well-balanced rotor, these

secondary resonances were difficult to detect experimentally.

The casing local to the turbine bearings had a complex, irregular, asymmetric configuration.
Tests showed both a generally soft radial direction and a stiff radial direction with

intermediate local stiffness perturbations. These stiffness variations were responsible for a

lateral vibration that was indicated by one distance detector peaking at the same time that a

second detector decreased.

Other phenomena found experimentally are as follows:

(1) Unstable, sharply fluctuating response (fig. 5(d)) occurred when loose fits existed
between the bearing outer race and the bearing sleeve and housing. During this

unstable motion, the turbine gave off a "growling" noise.

(2) Tests with tight fits and very small bearing internal play showed very smooth

response (fig. 5(e)).

(3) Tests with tight fits and nominal bearing internal play (0.001 in. [25gm] TIR)

sometimes showed secondary unstable very-low-amplitude vibration throughout

almost the entire zero- to full-speed range when rotors were well balanced. Adding

imbalance stabilized the motion.

(4) The location of some of the secondary criticals shifted as much as 10 percent as a
result of loose fits.

Sometimes it is difficult during the design phase to establish whether a particular

rotor/bearing/casing critical should be considered as a major or secondary critical speed.
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ttowever, computed mode shapes for such system criticals frequently have been sufficient

basis for judgment. For example, when the casing mass is much greater than the rotor mass

and inspection of a mode shape shows most of tile vibrational amplitudes to be in the
casing, a good possibility exists that the associated critical speed rotor amplitude buildup

will be limited to tenable levels, because casings usually can dissipate considerable

vibrational energy. However, if the vibrational amplitudes are controlled only by bearing or

bearing support displacements while the rotor and casing are acting essentially as rigid

bodies, then untenable vibration amplitude buildup is probable if the shaft operates a

sufficient time at the critical speed.

Inspection of only the mode shapes is not always adequate. The amount of energy

dissipated each cycle is approximately equal to the product of the logarithm of the damping
decrement and the vibrational kinetic energy of the structure. Some modes show little

amplitude in the casing, and inspection alone would indicate large rotor amplitudes at the

associated critical speed. When the system distribution of kinetic energy is evaluated, a large

percentage of the vibrational energy may be found in the casing. This distribution is possible
because of the relatively large mass of the casing, even though casing amplitudes are

relatively small when compared with those of the rotor. Experience has shown that passing

through or running at the system critical speeds that show most of the motion in the casing

is practical as long as fatigue failures of the casing components do not develop. However, if

the casing does not contain a large part of the vibrational energy, high bearing loads and

attendant damage may occur. Durability of the casing is demonstrated by analysis and test.

Sometimes the mode shapes at the second and higher shaft-bending critical speeds are
considerably different from those predicted by theory. It has been found experimentally

that both second and third criticals have modes that consist of the usually predicted shapes

super imposed with the first-mode shape (fig. 28.9 of ref. 78).

If a rotor, its bearings, and the casing have essentially symmetric mass and stiffi_ess

properties about the shaft axis, the most probable orbital motion is circular. For

asymmetrical properties, the usual orbital motion is elliptical and, at the criticals,
approaches lateral vibration. The Titan II (87-5) shaft, which utilized angular-contact

bearings and was a built-up shaft with many joints, was supported in a casing that was highly

asymmetric in both stiffness and mass. Shake tests of the rotor supported in "rigid" bearing

mounts yielded fundamental bending frequencies ranging from 315 to 365 cps, the value

depending on excitation amplitude. When the rotor was assembled in the casing, the

lateral-vibration natural frequencies dropped a small amount in magnitude and assumed

some directional dependency. When the shaft was spin tested in the assembled casing, dual

resonant peaks were found at approximately 290 and 340 rps. Normally, a spinning-shaft

natural frequency (critical speed) is expected to be somewhat higher than the

lateral-vibration natural frequency because the disk gyroscopic moment stiffens the shaft.

However, the dual resonance peaks corresponded to lateral-vibration shaft motions in planes

at right angles to each other. As the motions were lateral rather than circular, the disk

gyroscopic stiffening moments associated with forward circular orbits vanished.
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Response predictions usually are accomplished during the design analysis phase to obtain

such data as bearing reactions, whirl orbits, shaft shear and bending moments, and

sensitivity to locations of imbalance. These data then are compared with bearing capacities.

rotor tip clearances, joint and bolt preload and stiffness capabilities, and the planes of

balancing, respectively.

(;car teeth, misaligned crowned splines, and flexible couplings have been known to couple

shaft lateral and torsional motions. Rotor blades that had a natural frequency close to a

shaft critical suffered fatigue cracking failure. Thus, comparison of the critical speed to

other known resonant speeds is useful.

When fluid-film bearings are used, in most instances the undamped-critical-speed

calculations wherein bearing stiffness is considered but damping is neglected are insufficient.

Often, undamped critical speeds do not correspond to the speed of maximum rotor

imbalance response (ref. 79). Thus, response computations usually are used to evaluate the

effect of bearing damping on locations of critical speeds; vibration arnplitudes at critical

speeds; and response of the rotor, throughout the operating speed range, resulting from the

amount and distribution of imbalance.

2.2.1.3 SELF-EXCITED WHIRLS AND INSTABILITIES

Sell-excited whirls of shafts supported in rolling-contact bearings have been linked with

aerodynamic excitation forces, internal rotor friction attributable to causes such as shrink

fits and builtup rotors, and dry friction. Shafts using fluid-film bearings can develop

hydrodynamic-excited whirls.

Sell-excited whirls and instabilities of shafts operating supercritical still do not lend

themselves to accurate computational evaluation. Only for the simplest machines can the

whirl threshold speed be accurately predicted, and whirl amplitudes are not predictable for

any machine. The present practice for supercritical designs is to minimize those design

factors that promote instabilities (e.g., shrink fits, builtup shafts, and rotor flexibility), build

the machine, and experimentally confirm its stability or develop it into a stable operating

machine.

2.2.1.3.1 Aerodynamic-I nduced Instability

The E-blade Mark 9 axial-flow turbopump exhibited strong nonsynchronous whirl motion

under certain operating conditions. The exact cause, or the mechanism that initiated this

behavior, was not established conclusively. However, the instability appears to have been a

hydrodynamic effect created by a circumferential variation in the pump pressure

distribution. One E-blade Mark 9 pump failed catastrophically; self-excited whirl was strong

among the possible causes identified by failure analysis reported in reference 80. Figure 6

(from rcf. 80) illustrates the typical rotor motions arising from aerodynamic-induced

instability.
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Tile Mark 25 axial-flow punlp exhibited subsynchronous whirl (ref. 81). However, no

known hardware damage occurred during the many system tests condttcted, even though the

resulting vibration levels were undesirable. An experimental liquid-hydrogen turbopump

experienced nonsynchronous whirl caused by either hydraulic instability or loose fits (ref.

821.

Severe aerodynanfic-excited whirl of several jet-engine axial compressors and turbines

resulted from two causes (ref. 83): <1 ) the circulnferential variation of static pressure acting

on the cylindrical surface of the rotor, particularly within the labyrinth seals: and (21 the

eccentricity of the rotor causing circumferential variation of the blade-tip clearance and a

corresponding variation in local efficiency and ilnbalance torque. Several difI\'rent designs

exhibited whirling. All rotors that whirled had relatively large rotor flexibility, which was

demonstrated by the low critical speed of the rotor and support system. In almost every

instance, stability was achieved by increasing the stiffness of the rotor or that of the rotor

support or both. The whirl speed was approximately 40 to 50 percent of the rotation speed.

RelL'rence 83 states that damper bearings providing friction relative to fixed axes effectively

help protect against shaft whip and whirl. Self-excited whirl caused by pressure changes

associated with varying clearances around the labyrinth seals also is mentioned in reference

84.

Fluid-fihn thrust bearings sometimes are used in conjunction with rolling-contact radial-load

bearings. If the fluid has sufficient viscosity, these thrust bearings may develop damping

forces in the direction normal to the shaft axis and thus tend to inhibit self-excited whirl. A

reduction of thrust, however, could reduce the damping enough to permit whirl: such a

possibility was mentioned in association with the removal of the gravity field from a

vertically mounted rotor (ref. 85). Film thrust bearings used in liquid hydrogen tire not

expected to produce much damping.

2.2.1.3.2 Instability Caused by Internal Friction

Whereas external frictional forces usually aid in damping the oscillations, the internal

frictional forces can, under certain circumstances, cause unstable whirl buildup if the shaft is

operating above its first critical speed. Sources of internal friction found to be significant are

builtup shafts and joints or disks shrunk or firmly bolted onto the shaft. Hysteresis forces in

the shaft material have been identified as a possible source of internal-friction-induced

instability, but no instabilities attributable to this cause have been reported. Most of the

available information on effects of internal friction on the stability of high-speed rotors is

summarized in reference 86.

2.2.1.3.3 Whirl Induced by Dry Friction

The phenomenon of a violent shaft backward whirl or whip caused by friction in a

dry-clearance bearing (i.e., the clearance between outer race and housing is not lubricated)

or by the shaft striking a rough or unlubricated guide is described on page 292 of reference
84.
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A recent study (ref. 87) shows how the occurrence of slip between the shaft and the bearing

can contribute to the violence of the whirl and can cause it to develop into near-resonant

motion over a large range of speeds. This whirl motion and instability buildup can occur also

when the shaft is operating below the system first critical speed. This kind of problem is

relieved by tightening the bearing fit, or by pinning the bearing to prevent rotation, or, in

extreme cases, by making the inner bearing race integral with the shaft.

2.2.1.3.4 Whirl Induced by Fluid-Film Bearing

Subsynchronous whirls sometimes are referred to as oil whip, resonant whip, half-frequency

whirl, or just nonsynchronous whirl. Such whirls caused by the characteristics of fluid-film

bearings are again becoming of concern in the design of rocket engine turbopump shafts.

Most recent turbopump shaft designs utilized rolling-contact bearings. However, the needs

for increased performance, higher speed, and longer life have resulted in the serious
consideration of fluid-film hydrostatic bearings. Rolling-contact bearings have DN and life

limitations related directly to shaft size and speed, whereas fluid-film bearings apparently do

not. Thus a shaft with rolling-contact bearings is more restricted in diameter than a shaft

with fluid-film bearings, the result being a shaft with less stiffness and lower shaft bending

critical speeds.

Within the last few years, the state of the art has been enlarged greatly in regard to the

mathematical modeling of the fluid-film bearings and accuracy of the analysis of the

influence of these bearings upon shaft stability and response to imbalance force (refs. 63

through 65, 68, and 79). The improved dynamic analyses give good predictions of actual

operating characteristics.

2.2.1.4 TORSIONAL CRITICAL SPEEDS

The torsional vibrational modes in rocket engine turbopump shafts have not limited or

controlled design. Often, torsional critical speeds are not even calculated; but, when they

are, the calculated values usually are compared with the possible forcing frequencies of(l)

gear teeth meshing (when gears are used), (2) low orders of rotational speed (i.e., speeds

equal to rotor speed or low multiples thereof) caused by shaft imbalance or misalignments
of couplings, and (3) impeller-vane and stator-vane passing frequencies.

In addition, these calculated torsional natural frequencies are compared with other system

natural frequencies (e.g., shaft whirl or lateral vibration, turbine blades, and impeller vanes)

to ascertain whether any possible coupling or energy transfer is likely.

2.2.1.5 THIN-WALL HOLLOW-SHAFT VIBRATIONS

Thin-wall, cylindrical, drum-type shafts, which are characteristic of axial-flow pumps, have

experienced critical-speed problems and fatigue cracking associated with nodal-circle and
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nodal-diametervibrationsof the type shownin figure7. Theusualdesignmodificationis to
changethe environmentacousticsto reducethemagnitudeof excitation,change the driving

frequencies, or change the shaft vibration natural frequencies.

2.2.2 Analysis of Shaft Dynamic Behavior

2.2.2.1 MODELING FOR THEORETICAL ANALYSES

Even though simple models have been adequate in some cases, experience has shown that

the classical models for predicting shaft whirl critical speeds and response usually yield very
crude estimates. This has been attributable primarily to the exclusion of, or improper

account for, the effects of influential items: rotor mass and stiffness distributions,

mechanical joints, shaft-riding elements, abrupt changes in shaft cross section, casing and
machine mount effects, bearing spring and damping forces, shear deformation, gyroscopic

and rotary inertia moments, rotor imbalance forces, and virtual mass and damping

associated with operating in dense fluids. Details of current techniques for modeling and

analyzing these critical items are presented in the sections that follow.

The technology of modeling for torsional critical speeds is adequately set forth in references
88 through 90. Reference 88 covers modeling procedures and summarizes many formulas

and charts for modeling common shaft components to obtain equivalent mass and stiffness

distributions. Consideration is given to the hollow circular shaft with an eccentric bore; the

solid shaft with a linear taper (a gradual change in cross section); the abrupt-step shaft ; the

shaft with a keyway; the splined shaft; the shaft with a flat side; a branched system running

at different speeds; torsional stiffness of spur and bevel gears, spiral gears, helical gears,

couplings, and clutches; and other significant conditions. No further discussion of torsional

critical speeds will be presented herein.

2.2.2.1.1 Mass and Stiffness Distributions

Significantly improved models for shaft-dynamics analyses have been developed over the

past decade (refs. 6, 54, 79, and 91 through 93). Figure 8 illustrates two of the typical
improved shaft dynamic models. In figure 8(a) (ref.6) K e represents the lateral spring
constants of the casing mounts and bearings, and K T symbolizes the torsional spring

constant at the shaft/rotor splines; CL and CT represent corresponding damping coefficients

for use with the indicated spring constants. In figure 8(b) (ref. 92), the bearing lateral spring

constant K is subscripted p or t to identify the bearings at the pump or turbine end,

respectively.

Tradeoffs between model and analysis complexities have resulted in the Myklestad

lumped-mass model or an extension thereof being the one most commonly used. In its

simplest form, this model consists of the rotor masses lumped at stations along the rotor and
connected by massless elastic beams and linear support springs (refs. 94 through 96). The
usual refinements to this model include the addition of shear deformation to the beam and
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(T53 turboprop engine)

Level KL_c L (Casing) KL_'e Ct" .....

| _" =_..__ "_'_ , KL C L

KL_ r_c L _: _r_ _ KL:_ I IC L
"" _ I (Compressor rotor) KT _ _ I C' - _ __L

KT
(Power rotor) (Spline) KT1 __] CT

(T53 equivalent dynamic system used in connection with the

vibration analysis)

(a) T53 turboprop engine (ref. 6)

q, ) _ , \

Lumped-maSSparameter__model_,__=_ =_v:'=_?_,:_,= == _"_" - = _" _" = :" _"_"_'A _ ;__''. "1, _'_-_ RotOrstator

(b) M-1 fuel turbopump (ref. 92)

Figure 8. - Typical models for shaft dynamics analysis
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gyroscopic moments (ref. 97). Further refinements have included the use of uniform

continuous-nlass beams instead of massless beams (refs. 54, 79, and 88), unsymmetrical

bearing stiffness and damping models for fluid-film bearings (refs. 54, 79, and 91 ), nonlinear

bearing stiffness for rolling-contact bearings (ref. 92), gyroscopic representation for

nonsynchronous whirl (ref. 98), and coupled rotor/casing multiple-beam models (refs. 6, 92,

c)3, and 97).

2.2.2.1.2 Mechanical Joints, Shaft-Riding Elements, and Abrupt

Changes in Shaft or Casing Cross Sections

The stiffness of a builtup rotor usually is far less than that of a one-piece rotor even when

the joints are preloaded at assembly. If the forces applied to the joint during operation

exceed the preload, the joint can open up and cause a loss in overall stiffness. Figure 9

Joint gap

First rotor

imbalance force

Second rotor

imbalance force

Figure 9. - Curvic coupling joint loosening under load

depicts the condition wherein the centrifugal forces of the turbine wheels imposed sufficient

moment to overcome the joint preload and cause a great increase in joint flexibility. Even

properly preloaded joints do not ensure that a builtup rotor will develop stiffnesses

approaching that of one-piece construction. Curvic couplings with full preload are

inherently a local flexibility in comparison with welded joints of similar size. However, if

the coupling is placed in a position of low shaft bending moment, the local softness may not

rcsult in a significant reduction in rotor stiffness and natural frequencies. Couplings used as

shown in figure 10 have exhibited additional flexibilities.
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Turbine

wheel Shaft
Pilot

Coupling

Bolt

_, Pilot

l i ......
Figure 10. - Coupling between shaft and turbine that results in additional flexibilities

Shaft-mounted components (e.g., shrunk-on impellers, shaft sleeves, and bearing races)

usually result in stiffening of the shaft; however, the degree of stiffening may be influenced

by axial preloading. Long stackups of shaft-riding elements sometimes do not obtain good
axial preloading when each piece is put on the shaft with interference fits. Gaps as shown in

figure I1 cause a reduction in shaft stiffness. Any abrupt changes in shaft cross sections,
such as the transition in a hollow shaft from a small to a large dialneter, produce local

flexibilities as indicated in figure 12.

Shrink-fitted

rin_ Gaps

Figure 11. - Gaps on shaft-mounted components that affect overall shaft stiffness

-I

Figure 12. - Local flexibility of hollow shaft at transition from large to small diameter
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2.2.2.1.3 Casing and Machine Mount Effects

Bearing-support llexibility can exert significant influence on critical speeds (refs. 6, 7, 54,

55, 93, and 99 through 102). The following are the four major considerations regarding
casing and machine mount effects:

( 1) Gross trends in casing mass and mount stiffness

(2) Dynamic coupling with the rotor

(3) Casing stiffness local to tile bearings and near locations
concentrated (e.g., struts)

(4) Symmetry of the casing mass and stiffness about the shaft axis

where loads are

Analysis of tile simple 2-degree-of-freedom system (ref. 99) provides some insight into the

first major consideration. Figure 13 shows tile general solution. Here M1, K1, M2, K2

RK=3

t F

RK=3 _fRK = °° t

?'1 7,

i _ I I I I I I '
1 2 3 4 5 6 7 8

RM

Figure 13. -- General solution for simple 2-degree-of-freedom system

E-] K 2

.K I RK = _11

K2 RM= M-_-1

OJ. = I

represent the rotor mass, rotor and bearing stiffness spring constant, casing mass, and casing

mount stiffness spring constant, respectively; co represents the whirl frequency, subscript i (i

= l or 2) denoting the first or second system natural frequency and * denoting the simple

rotor/bearing natural frequency. The symbols R K and RM are ratios of the casing-to-rotor

spring constants and casing-to-rotor masses; h i is the ratio of shaft system natural frequency
to the simple 1-degree-of-freedom rotor/bearing natural frequency.

If the casing mass M2 is much larger than the rotor mass M_ (i.e., R M is relatively large) and

the casing mount stiffness spring constant K2 is relatively small, a system natural frequency
less than co. will exist. This frequency, corresponding to point A, will be substantially lower

than the rotor/bearing natural frequency Kx/'ff77"_/M_ indicated by X_ = 1.0, analogous to K2 and
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therefore R_ tending toward infinity. A second system natural frequency such as point B

will exist above the simple rotor/bearing natural frequency.

This analogy suggests that if proper mass and stiffness proportions are used in tile design of

the machine housing and mounting, two rcsults will follow

First: There will be low natural frequencies whose modes consist of the entire machine

vibrating in a rigid-body fashion on the mounting springs with very little relative

motion between the rotor and its casing. The shaft speeds that excite these vibrations

will be equal to the low natural frequencies. Damping could easily be supplied to limit

the amplitudes of these vibrations.

Second: The first significant shaft whirl critical speed will be equal to or above that of

the rotor/bearing model.

Experience with rocket engine turbopumps has shown the first expected condition to be an

accurate prediction. Usually, the low rigid-body modes occur at approximately 5 to 10

percent of the nominal shaft speed. Thus, no loss in accuracy occurs in predicting high-speed

shaft response as a result of omitting the mounting stiffness in the analytical model.

However, the second consequence indicated often is not valid because of the effects of

dynamic coupling of the casing with the rotor and because of the effects of casing stiffness

local to the bearings.

Dynamic coupling of the casing with the rotor has been found to be very influential in

machines using rolling-contact bearings in conjunction with flightweight casings (refs. 6,

103, and 104). Use of a variable-property beam to model the casing in a manner similar to

that for modeling the rotor has given good results.

A flexible tie between the rotor and casing (e.g., a low-stiffness hydrodynamic oil journal

bearing or a flexible housing supporting the bearing) can, if it has an appropriate amount of

flexibility, effectively decouple the casing from the rotor dynamics. In this case, a model

considering the casing as ground yields good predictions.

Casing flexibility local to the bearing is undesirable when the shaft is designed to operate

below the first system critical speed. This local flexibility, which is typical of an overhung

turbine with rolling-contact bearings, usually occurs in the housing between the bearing

outer race and the larger diameter pump casing. An M-I turbopump bearing-support housing

that exhibited flexibility was evaluated both analytically and experimentally for static

spring rate (ref. 92). The analytical evaluation utilized two methods: an approximate-beam

solution, and a finite-element solution (ref. 105); the experimental evaluation consisted of

testing scaled aluminum models. The major findings were as follows:

(1) Shear deformation and warping of the end circular cross section into an oval

pattern were the major flexibility sources.
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(2) The stiffness computed by the approximate-beam method was 2Vz times greater
than the actual value.

(3) The stifflless values computed by the finite-element method were within 4

percent of the model test data.

The degree of symmetry of the casing mass and stiffness about the shaft axis influences the

critical speeds. When symmetry exists, the shaft usually executes forward synchronous
circular whirls as a result of imbalance. The critical speeds then are predicted on the

assumption that disk gyroscopic stiffening is operative. When asymmetry in casing mass and
stiffness exists, the shaft starts to execute elliptical whirl as it approaches a critical speed,

and the whirl will become a lateral vibration. Where a symmetrical casing normally would

have a single critical, the asymmetry causes two criticals to occur. Further, the criticals can

occur at much lower speeds because the lateral motion causes the disk gyroscopic stiffening

effects to vanish and disk rotary inertia softening to occur (ref. 106).

2.2.2.1.4 Bearing Spring and Damping Forces

Cylindrical roller and angular-contact ball bearings are the only types of rolling-contact

bearings that have been used extensively for radial support in rocket engine turbopumps.

Since internal damping of a rolling-contact bearing is negligibly small, stiffness is the

important bearing characteristic that influences shaft dynamics. Approximate values of

spring rate can be computed using the Palmgren formulas (refs. 107 and 108). Methods for

more accurately determining spring rates are available in references 108 through 112.

Reference 1 presents additional material on bearing load characteristics.

Usually, the shaft whirl is assumed to be circular. When unidirectional radial bearing

reactions are small compared with the expected rotating radial bearing reactions associated

with whirling, the spring-rate value K has been taken as the secant rather than the tangent

value, i.e., K = R/6 instead of K = dR/d6, where R is the radial load and 6 is radial

displacement (refs. 72 and 92).

The bearing spring rate usually is nonlinear. The cylindrical roller bearing, which is a

load-stiffening system, is well represented by an exponential function relating radial load R

to radial displacement 6, e.g., R = A6 B where A and B are constants, and K ---R/6 = A6 B-_

The spring-rate behavior of the angular-contact bearing can vary from almost linear to highly

nonlinear, depending on the preload, applied load, and rotational speed. Stiffness

characteristic (K = dR/d6) curves that have been published (ref. 56) were developed with

equations that account for preload, applied load, and change in contact angle but exclude

the effects of ball centrifugal and gyroscopic loads that are important at high rotational

speeds (ref. 113). However, mathematical formulations described in reference 112 include

all the effects associated with high rotational speed. A computer program based on these
formulations was applied (ref. 114) to 40mm, 15 ° angular-contact bearings; the spring-rate

characteristics shown in figure 14 resulted.
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Figure 14. - Typical stiffness characteristics calculated for angular-contact bearings (ref. 114)

Neglecting speed effects, the charateristics are identical to those given in reference 56. There

are three basic regions: the first (I) shows almost constant stiffness, the second (ll) shows a

decrease to a minimum stiffness, and the third (III) shows increasing stiffiless. Region I is

typified by sufficient axial preload to hold the stifflless high and constant. In region 11, the

magnitude of radial load approaches the axial preload and fewer balls are in contact, the

restllt being a decrease in stiffness. In region III, the axial preload is no longer effective and,

as the radial load increases, the stiffness starts to increase because the ball contact areas are

increasing rapidly. Most importantly, when the speed effects were included in the analysis, it

was found that the stiffness dropped approximately 50 percent in the regions of low applied

radial load. Thus, it appears that the speed effects negated the expected beneficial effects of

axial preload on radial stiffness. This effect is shown in other published works (refs. 80 and
115).

Cylindrical roller bearings develop radial resistance to radial motion only. However,

angular-contact ball bearings can develop both radial and axial reactions. The radial reaction

for a radial displacement is, by far, the primary resistance. However, in cases where the

bearing stiffness controls the shaft dynamics at operating conditions, all resistances may

have to be included to achieve good predictions.

Some analysts have attempted to account for the moment resistance in angular-contact

bearings by using a radial spring located at an "effective bearing center" instead of at its

actual location on the shaft, as shown in figure 15.

The effective-bearing-center location has irl the past been taken incorrectly as point CP. One

investigator (ref. 116) considered this condition and concluded that the location lies

approximately halfway between points CP and BL Experience has shown that, with shafts
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of action of balls

Figure 15. - Model for locating effective bearing center for angular-contact bearings

supported by angular-contact bearings, often only the rudial resistance represented by a
nonlinear spring located at the actual bearing center is necessary to obtain good predictions
of shaft dynamics.

The representation of all-fluid-film journal bearings by linearized equations has produced

good design information (refs. 54, 57, 79, 117, and 118). Eight coefficients representing
both spring and damping forces are used. These coefficients are calculated from lubrication

theory and the properties of the particular bearing. Moreover, coefficients have been

published for many of the types of fluid-film bearings (refs. 57, 119, and 120).

2.2.2.1.5 Rotor-Imbalance Forcing Functions

A shaft usually exhibits synchronous whirl during operation because of the centrifugal

forces associated with rotor imbalance. The amplitude of this whirl is related to the

rotor-imbalance forcing functions. Actual rotor imbalance in rocket turbopump shafts rarely
is equal to the balancing limits specified by the engineering drawings. This difference results

from the shaft usually being balanced initially by subcomponents and then as an assembled
rotor on a balancing machine (ref. 121), disassembled, and then reassembled in the

turbopump. Misalignments allowed by factors such as pilot tolerances, runouts, parallelism,

and perpendicularities can alter the very fine balance attained with the balancing machine
(refs. 122 and 123).

Fits shift during operation as a result of effects such as thermal expansion differences

between adjacent parts and mechanical deformations attributable to centrifugal forces.

Sometimes these fit shifts allow eccentric shifting of adjacent rotor parts and thereby

produce rotor imbalance. Furthermore, when roller bearings are used to support the shaft,
the internal play in these bearings can allow the shaft to excite cylindrical or conical whirl

modes of motion ; this is especially true if the magnitudes of unidirectional radial loads from

sources other than whirling are small relative to the potential whirl forces. This whirling

associated with bearing internal play (fig. 16) can develop centrifugal loads that reach an
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Figure 16. - Conical whirl associated with bearing internal play

order of magnitude greater than those resulting from tile specified balance limits (ret's. 92,

124, and 125). Tile effects of clearance between tile outer race and tile casing for an axially

prcloadcd ball bearing are best determined experimentally; analytical treatments of possible

effects are discussed in references 72 and 74 through 76,

The following examples indicate tile possible magnitudes of imbalance and its influence on

shaft response:

In the XLR-87-5 engine, the high-speed shaft weighed approximately 25 Ib ( 11.3 kg): it

was balanced to a specified value of 0,01-in,-oz (0,071 N-ram) static and 0.05-in.2-oz

(0.0 N-mm2) dynanlic imbalance. Blueprint tolerances allowed 0.001-in. t25/_m)

looseness between tile pilot diameters at tile two joints holding tile two overhung

turbine rotors and shaft together. I)isassembly after bahmcing was necessary. Based on

the pilot tolerances, reassembly static imbalance could be on tile order of 0.4 in.-oz

( 2.8 N-nlln), wllich is 40 times the specified requirement. Checks made on the balance

machine verified that loosening of tile turbine rotor bolts and radial shifting of tile

rotors could induce tile above stated limits (ref. 123). Eventually the entire shaft was

redesigned to eliminate this problem and others that had developed.

In another case (ref. 122), a gas-turbine rotor was to be bahmced to an error of 0.02

in.-oz (0.141 N-mini. However. in prodttction, rttnouts could not be held to better than

0.001 TIR, which was equivalent to 0.10 in.-oz (0.71 N-ram). Also, tile rolling-contact
inner race runout tolerance of 0.002 TIR added another 0.02 in.-oz _0.141 N-ram).

Thus. imbalance six times greater than the balance error was possible. Tile problem was

soh'ed by redesigning the bearing system, replacing rolling-contact bearings with

fluid-film bearings.

As a final example, figure 17 shows the source and magnitude of residual imbalances in

the M-1 fuel turbopump rotor (ref, 021.
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2.2.2.1.6 Virtual Mass and Damping

Virtual mass and damping associated with operation in dense fluids can have significant

effects on tile shaft dynamics. Unfortunately, a good quantitative analysis to evaluate these

effects does not exist at the present time,

A study of the effect of gear restraint on the whirl of a pinion shaft (ref. 126) found that

(1) whirl amplitude was reduced by frictional damping; (2) the resonant frequency was

reduced, presumably by the inertia effects of the gear: (3) subharmonic as well as

superharmonic resonances appeared in some of the tests because the vibration system was

nonlinear: and (4) a self-sustained whirl frequency occurred.

2.2.2.2 MATHEMATICAL METHODS AND COMPUTER SOLUTIONS

Most of the digital computer programs suitable for calculating the natural frequencies, mode

shapes, and imbalance response are based on or are extensions of the techniques given in

references 96, 127, and 128. Good discussions of these methods are available in references

07 and 120.

References 88. 89, and 90 describe the appropriate methods for calculating torsional critical

speeds. In addition, reference 88 provides a computer program in FORTRAN.

2.2.2.2.1 Analysis of Rotors Supported by Fluid-Film Bearings

Reference 65 includes program descriptions, a user's manual, and FORTRAN listings: it is

available to qualified users from the U.S. Defense Documentation Center, Alexandria, VA.

Two programs are outlined in the reference:

(1) Imbalance response of a rotor in fluid-film bearings

(2) Stability of a rotor in fluid-film bearings

Program ( l ) is very general: it calculates the rotor whirl amplitude and the force transmitted

to the base as the result of a given rotor imbalance. The rotor is flexible and can have any

arbitrary geometry. Also, there can be splined couplings in the rotor, and several bearings,

The bearing pedestals can be assigned both flexibility and damping. Because the bearing film

forces are not the same in all directions, the whirl motion of the rotor is treated as

two-dimensional in such a way that it becomes an orbit around the equilibrium position.

The orbit is elliptical, and its dimension as well as orientation vary along the length of the

rotor. The computer program calculates the whirl orbits for a number of points along the

rotor and also gives the conlponents of the force transmitted to the foundations.
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Program(2) appliesto anarbitraryrotor geometry.Therecanbeseveralbearings,andthe
stiffnessaswell asdampingof thebearingpedestalscanbeincluded.Theprogramcalculates
the speedat the onsetof instability (the thresholdspeed)and the correspondingwhirl
frequency.

In both programs, the dynamic properties of a fluid-fihn bearing are expressed in terms of

eight coefficients: four spring coefficients, and four damping coefficients. The values for

these coefficients depend on the bearing type, the bearing dimensions, the viscosity of the

lubricant, tile bearing load, and the rotor speed. The rotor mass and elastic properties are

represented by lumped masses connected by elastic beam elements typical of the Myklestad

model. A special treatment of the gyroscopic moment is used to account for tile elliptical

orbit motion.

2.2.2.2.2 Analysis of Rotors Supported by Rolling-Contact Bearings

A preferred program for this analysis is presented in reference 92. This program is available

from COSMIC, University of Georgia, Athens, GA.

Basically, this program is an analysis of the forced undamped vibrations of two elastically

coupled, lumped-parameter beams. The whirl analysis of a rotor�bearing�casing system is

facilitated by the assumptions that the rotor, casing, and bearing stiffness characteristics are

axially symmetric and that the shaft executes circular orbits. Bearing nonlinearities, casing

as well as rotor distributed mass and elasticity, rotor imbalance forcing functions,

gyroscopic and rotary inertia moments, and shear and flexural deformations are included in

tile system-dynamics analysis.

The analysis is based on a lumped-parameter model using a modified Myklestad-Thomson

transfer-matrix technique. Bearings are characterized as springs that can have constant spring

rates or load-dependent values defined by K = A'L f_ or by a table of L vs K points, where A

and B are constants. L is the load transmitted through the spring, and K is the spring rate.

Tile bearings have nonlinear load displacement characteristics, and therefore the solution is

achieved by iteration. Rotor imbalances allowed by factors such as pilot tolerances and

runouts as well as bearing clearances (which allow conical or cylindrical whirl) determine the

forcing-function magnitudes. The computer programs first obtain a solution wherein the

bearings are treated as linear springs of given spring rates. Then, based on the computed

bearing reactions, new spring rates are predicted, and another solution of the modified

system is made. The iteration is continued until the changes to bearing spring rates and

bearing reactions become negligibly small.

If the machine operating speed is near a critical speed, the magnified bearing reaction is of

interest for comparison with the bearing capacity. The nonlinear treatment of the bearings

by this method shows that the predicted bearing reactions based on a linear representation

or the bearings can be lower than the actual values.
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2.2.2.2.3 Analysis of Shaft Systems with Unsymmetric Supports

Reference 88 includes a program description, a user's manual, and FORTRAN listings. It is

available to qualified users IYom tile U.S. Defense Doculnentation ('enter.

Tile lateral undanlped natural frequencies and mode shapes of shaft systems with

unsymnletric supports can be obtained with this program. The rotor is modeled with both

continuous and Itlnlped mass elements. Tile elasticity elements utilize beam theory: flexur',il

deformations al'e included, but shear deformation is excluded. Moreover, this program does

not include any treatinent of the casing. Many designs purposely utilize a flexible housing

between tile rolling-contact bearing and tile inaill machine casing in order to obtain low

wllues for tile first two critical speeds. In these cases, the casirig is effectively decoupled

fronl tile rotor, and a dynamic model of the rotor supported on springs that are tied to

ground is sufl'icient for good predictions.

2.2.2.3 PREDICTION ACCURACY

Locations of operating whirl critical speeds that are governed nlainly by the rotor mass and

the combined or individual stifflless of the rotor, bearing, or bearing support mount usually

can be predicted within + 5 percent. When the casing dynamics couple with tile rotor

sufficiently to require a system rotor/bearing/casing model for analysis, the prediction

accuracy of critical-speed locations is approximately + l0 percent provided that the

conditiolls listed in section 3.2.2.1 are met. When these conditions are not satisfied, errors in

predictions of criticals can easily be + 20 percent and sometimes as great as -+ 50 percent.

Tile prediction of response levels in general has been even more inaccurate. It is not

uncommon for measured data to differ by a factor of 2 or 3 from the predicted data. These

large discrepancies arise because vahies of imbalance are hard to predict accurately, and

most turbopump operating speeds usually come within 15 to 20 percent of a nlajor critical

speed or closet- to a secondary critical. A small error in predicting the locations of these

criticals can restilt in significant error in predicting the response level (fig. 18).

Actual NOR _1 I i I _I_ Calculated NCR

i Actual response I i i Calculated response

Shaft speed -_

Figure 18. -- Error in prediction of response resulting from a small error in prediction of critical speed NCR
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Table Vll shows a typical comparison of calculated and experimental natural frequencies

and the associated kinetic energy distribution. Additional information on prediction

accuracy is available in the literature (e.g., refs. 6, 8, 54, 78, and 79).

2.2.3 Adjustment of Critical Speeds

and Response Levels

Tile following major factors influence critical speeds:

( 1) Shaft mass and stiffness magnitude and distribution

(2) Bearing and seal location, stiffness, and damping

(3) Bearing mount stiffness

(4) Casing mass and stiffness magnitude and distribution

The first factor, although obvious to most shaft designers, has often been overlooked.

Stiffi3ess of a shaft that has shaft-mounted components such as shrunk-on impellers, shaft
sleeves, and bearing races can be changed markedly by changing the fits and the axial

preloading. Furthermore, curvic couplings and other mechanical joints not maintained in

compression will allow considerable flexibility.

Critical speeds can be influenced significantly by the flexibilities of the bearings, the bearing

mounts, and the machine casing (refs. 7 and 93). Advantage has been taken of the support

effects to effectively adjust or tune the critical speeds to the desired values (refs. 130

through 132). Flexible bearing mounts, as indicated in figure 19, have been used to produce
low first and second criticals, which are rigid-body translation and rotation modes, as well as

to yield a large available speed range for operation between the second and third criticals,

tile third critical being basically the first shaft bending mode.

8

o

Rotor characteristics

Support characteristics

I
I •

I
I

I

i :I
_ Stiff

3rd critical

2nd critical

I st critical

Support sp¢ing rate

Figure 19. - Effect of support spring rate on rotor critical speed
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TABLE Vl -- Summary of Calculated and Experimental Natural Frequencies

for the XLR-87-AJ-9 Turbine Shaft

(a) Calculated natural frequencies, Hz

Rotor/bearing
model 1

Lateral
vibration

m

517

Forward
Circular
Whirl

Lateral
vibration

265
400
590

Rotor/bearing/casing models
Dynamic stiffness Refined double-

method beam model 2

Forward Forward

circular Lateral , circular
whirl vibration whirl

-- 198/220 200/220
265 327/372 328/374
440 403/480 456/530
650 635/671 > 650

i

630

1 Model not valid for lower frequencies

2 First value corresponds to min. stiffness casing model, and second corresponds to max.
stiffness casing model.

(b) Experimental data

Spin tests. -
Speeds of vibration buildup, rps

Tight fits and small Loose fits and large
bearing clearances bearing clearances

Elliptical Circular Elliptical
whirls whirls whirls

200-215/260-270 not meas.

330-343/372-390 ....

407 /440-450 470485
>500 >500

200-215/235-250

300/350

not meas.
>550

Circular

whirls

not meas.

427440

>550

Casing
without

rotor

Shake tests.
Natural frequencies, Hz

Rotor/bearin

(rigid

mounting)

195-200

230-250/300
480

not meas.

not meas.

540

(c) Kinetic energy distribution for various natural frequencies, calculated on the basis of the associated
rotor/casing system mode shapes

Natural frequency
Hz

198/220

327/372

403/480

456/530

635/671

Kinetic energy distribution, %
Rotor Casing

7 93

13 87

4 96

74 26

95 5

47



Sealsand wearringscanact asfluid-film bearingsandproducestiffnessanddamping,and
thusaffectcriticalspeedlocationsaswellasrotor stability(ref. 133).

A significantreductionin responselevelshasbeenaccomplishedby usingimprovedbalance
techniques.The useof squeeze-filmdampersfor addingor increasingdampingto reduce
responseis gainingconsiderableinterestamongdesignersof shaftsfor aircraftengines.Both
hydraulically mounted rolling-contactbearings(refs. 134 and 135) and squeeze-film
dampersbetweentwo nonrotatingpartsin parallelwith aflexiblebearingsupport(refs.130,
13l, and 136)havebeenused.Althoughdamperbearingsof theCoulomb-frictiontypehave
beenusedsuccessfllllyin jet engines(ref. 83),squeeze-filmdampershavenot yet beenused
successfullyin rocketengineturbomachinery.Providingnonlinearstiffnesspropertiesto the
bearing support also has been used to limit resonant-amplitude buildups (ref. 132).

Nonlinearity without any added damping has the advantage over the damped, flex-mounted

technique (ref. 130) in that lower force is transmitted at supercritical speeds. However, care

intlst be taken to preclude "superwhirling" (refs. 72 and 75) and delayed resonances.

2.2.4 Balancing

References 54, 84, 121, and 137 through 142 represent a good survey of the major

literature on balancing. There are two main classes of rotor balancing: the rigid rotor, and

the flexible rotor. The object of rigid-rotor balancing is to ensure that the center of mass of

the rotor lies in the centerline of the bearings and that no couple is transmitted to the

bearings. At low balance speeds, the imbalance is independent of speed. Conversely, a

flexible rotor balanced in one mode is not necessarily balanced in another mode. Rotors

that have only two correction planes available generally operate below the first bending

critical speed. Imbalance usually is measured by radial runout.

Balancing of the complete assembly has been sufficient for low speeds, but separate

balancing of components has been the practice for higher speeds. The advantage of

component balancing is that it allows for the interchangeability of parts and redtices internal

shaft moments. Eccentricity tolerances result in imbalance at assembly. Modal balancing is a

step-by-step method for balancing at successive critical speeds with corrections made so that

the balance at the previous modes is unaffected. Modal balancing is preferred for shafts

operating steady-state at critical speeds, but it is very costly.

Balancing capability has not been a limiting factor for turbopump rotors operating below

the first bending critical speed. In some cases, a known imbalance has been added to create a

bearing radial load and prevent ball or roller skidding.

The procedure for rotor assembly balancing has varied. Either the rotating assembly is

balanced by removing material in specified planes or it is balanced by relocating previously

balanced components rotationally with respect to each other. The latter method is used

when the components are joined by curvic couplings, and it is merely a matter of remating

the curvics in a different radial position. Even with a carefully balanced shaft, however,
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imbalancehasoccurredwhena curvic couplingjoint that was tight at assemblybecame
looseduringoperationbecausevibrationsrelievedthefrictionalbinding.Imbalancealsohas
occurredwhenthe couplingwasmisalignedasa resultof foreignmateriallodgedbetween
theteeth.

2.3 Coupling Design

The types of couplings most commonly used for liquid rocket engine turbopumps are the

involute spline, cmwic coupling, and parallel-sided face coupling; fitted-bolt,

friction-bolted-flange, and ball-spline couplings are very rarely used. The involute spline,

curvic coupling, and parallel-sided face coupling are discussed in detail in the three sections

that follow. The design requirements of the fitted-bolt and friction-bolted flange are

comparatively simple and are not discussed herein.

2.3.1 Splines

Splines have been used more than any other coupling because of large load-carrying

capacity, low cost, and reliability. Splines require a change in shaft diameter. Most

turbopump splines have an involute profile similar to gear teeth in that they can be cut and

measured with the same machines used for gear teeth. However, splines differ from gears in

that they have no rolling action and 25 percent or more of the teeth contact at once. Splines

seldom pit or break at the root, although they do fail by shear, fretting, corrosion, and

fatigue. Fixed splines permit no relative or rocking 1notion between internal and external

teeth. The fit between mating parts can be either tight or loose. Flexible splines are

vulnerable to wear because they permit some rocking motion, and under torque the teeth

slip axially to accommodate axial expansion or runout. Fully crowned splines have been

successful with as much as a 3° misalignment. Various splines (e.g., aligned, misaligned, and

precision) have been used with various types of fits such as major diameter, side,
interference, loose side, and combination with stepped pilot diameters at each end. Minor-

diameter fits are not used because of the relatively small contact surface area on which to

provide good positioning and because large root stresses are induced in the weaker member

of the coupling. Fretting in the splines of inducers or impellers of oxidizer or

monopropellant pumps is a potential source of ignition. This fretting can be controlled by

using a tight axial clamp-up in the assembly and by setting tight fits on the radial positioning

surfaces. After test, minor contact marks usually are acceptable for the splines of oxidizer

and monopropellant pumping elements, but clearly defined fretting normally is not allowed.

Most fixed splines have been of the 30°-involute stubbed-tooth configuration. When the

splines are used as a flexible coupling, the tooth form usually is special, tending toward ( 1 ) a

lower contact angle I14.5 °) to minimize rulaout effects on balance and (2) a longer

addendum to provide larger contact areas.

The current trend is to design splines so that an increased percentage of the teeth make

contact. Special tolerances and inspection techniques are required when over 25 percent of

the teeth make contact. For fixed splines with a width one-third the pitch diameter, the
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teeth have the same shear strength as the shaft (assuming that all teeth are loaded

uniformly). There is always some error in tooth spacing; therefore, the face width usually is
designed to be two-thirds or more of the pitch diameter.

It is general practice to have aluminum- or titanium-alloy impellers splined to steel or

nickel-alloy mating parts. It also is general practice to adjust the spline dimensions and
tolerances to suit the thermal expansion of the materials used, but standard dimensions and

tolerances are used whenever the penalty is not too great.

The boundary line of spline practice for case-hardened ferrous materials is a shear stress of

about 65,000 psi (448 MN/m 2) for a solid shaft and 95,000 psi (655 MN/m 2) for a hollow

shaft with a bore 75 percent of the outside diameter. Common practice for rocket engine

turbopumps is to use 50 percent of the teeth in contact for computing compressive stress

and tooth shear stress. Some main shaft splines are sized initially by bearing contact stress;
the limits range from 4500 psi to 20,000 psi (31.0 MN/m 2 to 138 MN/m2), the value

depending on the type of spline.

Ball splines have been used in test equipment (e.g., Phoebus turbopump) where axial

freedom is required and where some misalignment is present. However, these conditions

normally do not occur in flight-type hardware; in addition, ball splines are not as rugged as

involute splines. As a result, ball splines have not been used in flight hardware.

2.3.2 Curvic Couplings

The curvic coupling provides a high load-carrying capacity in a minimum of axial space. In

one case a torque of nearly 800,000 in.-lb. (90 kN-m) was transmitted by a curvic coupling
with an 8.43-in. (21.32 cm) mean effective diameter and 0.62-in. (15.75 mm) effective face.

Precision centering is provided without additional pilots. Tooth contact angles range from
20 ° to 30 ° with 30 ° most commonly used (fig. 20). As the contact angle increases, the

coupling separating force increases, thus increasing the load on the retaining bolt.

Of particular importance for joint stiffness and stability is the relationship between the size

of the coupling and the size of the connecting parts (fig. 21). A ratio of D/C = 2 is normal.
For Titan III-M and SNAP-8,a ratio of D/C =4 was used, but this value is unusual. The inside

diameter of the curvic coupling usually is 75 percent of the outside diameter.

Much valuable information on the design of curvic couplings is contained in reference 143;
it should be noted that the maximum working stress levels recommended therein are on the
conservative side.

The bolting arrangement for a curvic coupling is an important design consideration. In some
cases, the bolting arrangement not only determines the design arrangement but also classifies

the coupling as one of the types shown in figure 22.
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Figure 20.- View of typical curvic coupling teeth

C

D

C = coupling diameter

D = disk outer diameter

Figure 21. - Relative sizes of curvic coupling and disk
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Bolts

(a) Split (b) Central bolt

Coupling teeth

(c) Through hole (d) Multiple bolt

Figure 22. - Bolting arrangements for curvic couplings
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Figure 22(a) shows a coupling of the "split" type in which elements of the coupling teeth lic

on both sides of an annulus that is provided for bolt-hole relief. This kind of coupling is

often used in conjunction with rotors and disks where sufficient space is available for

multiple bolts. The coupling indicated in figure 22(b) generally is used with smaller shafts or

disks. The single central bolt requires a stiff end piece or bolt head, and the disk also may

require additional stiffness to withstand the bending couple induced by the distance from

the disk center to the coupling teeth.

The couplings illustrated in figures 22(c) and 22Id) are variations of that shown in 22(a). In

the through-hole type, the holes lnust be relieved to eliminate stress raisers and local

machining deformations. The multiple-bolt type utilizes a bolt pattern inside the tooth

diameters. Bolting arrangements wherein the clamping forces tend to center the coupling

teeth tire pret\'rred over designs wherein the bolt pattern is outside the coupling teeth. This

kltter configuration requires a closely controlled bolt torquing sequence to ensure uniform

contact of the coupling teeth.

Bolting arrangements for curvic couplings vary within the industry. For highly loaded

couplings, extremely diligent attention is given to details of stress raisers (e.g.,fillets) or to

tolerances that control contact surfaces. In some instances, curvic couplings have been

mated deliberately with a force great enough to cause yielding and a subsequent increase in

tooth contact surface.

2.3.3 Parallel-Sided Face Couplings

A typical parallel-sided face coupling is shown in figure 23.

_ Pilot
diameter

_ Parallel-sided

faces of lug

1
Section A-A

Figure 23. - Parallel-sided face coupling
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Under initial loading, these couplings contact at less than the total number of laces because

of the spacing tolerance. Plastic deformation usually is necessary to develop significant load

sharing. The radial piloting of the adjacent parts is accomplished by a dimetral fit.

Parallel-sided face couplings were used in the early Titan III XRL-87-AJ-9 pumps at the

rotor-to-shaft and rotor-to-rotor joints but were replaced by curvic couplings in a later

design. The design deficiency associated with the parallel-sided coupling in this application

was the inability of the pilot fit to keep the joined parts aligned and in proper radial fit

relative to each other. The integral load transmission and precision centering features of the

curvic couplings removed this deficiency.

2.4 Design Confirmation Tests

Shaft and coupling designs are subjected to component tests to evaluate dynamic

characteristics, stiffness, and strength. These tests usually are performed early in the design

phase because the test results often provide data necessary to obtain an adequate final

design. Initially, simple component test setups are used, but final design confirmation

usually is not complete until a full-scale test program on a prototype turbopump rotating

system is accomplished.

2.4.1 Nonrotating Tests

Nonrotating (i.e., shake) tests are a good means for checking the accuracy of the analytical

model used for the rotor and bearings. Comparisons of shake test and analytical data for

three different systems are given below:

System

XLR-87-AJ-5 turbine shaft

NERVA turbopump
(3-stage turbine)

XLR-87-AJ-9 high-speed shaft

Natural frequency, Hz
Test

340

lst: 295

2nd: 520

540

Analytical

330

lst: 305

2nd: 522

517
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The goodcorrelationof the two setsof resultsis qualifiedbecausethe test setupsand
proceduresusedwith the first two systemsweresuchthat the test conditionsfairly well
matchedthoseassumedfor the analyticalmodel.For example,the bearingsweremounted
in "rigid bases,"bearingclearanceswereeliminated,andexcitationlevelswerekept low so
that therewaslittle likelihoodof the opening-upof preloadedjoints andreductionof shaft
stiffnessthat mighttakeplaceunderhigherexcitationlevels.

Shaketestshaveshownthat the mountingfixture aswell asthe ridingelementsandjoint
stiffness of the shaft significantly influence the resonant locations. Asymmetry in
mount-fixturestiffness(i.e., oneof theprincipalstiffnessaxesisnot in linewith theshaker
vibration plane Ifig. 24]), hascauseddual resonanceswherenormally the symmetrical
stiffnesssupportwill giveonly oneresonance.

j] Ix.

Vibration input plane

Fixture

stiffness

axes

Figure 24. - Misalignment of mount-fixture stiffness axes and plane of vibration

The undesirable effect associated with a built-up shaft (i.e., the loosening up of the axial

joints between the shaft parts as vibration amplitude increases) is shown in figure 25 in

terms of the reduction in shaft natural frequency. (The dual natural frequencies in the figure

appeared as a result of a misalignment as depicted in figure 24). Also, note the abrupt

change in slope at the bearing location in the mode shape of the lower frequency in figure

26. This softening effect was found to occur at much lower vibration amplitudes than was

expected from prior analysis of the joint preloads and the applied opening loads.

55



£

U
e-

O"

300

250

200
0

I I I I
2 4 6 8

Shaker input acceleration, g

Figure 25. - Effect of shaker-test vibration amplitude on natural frequency of a built-up shaft

Angular-contact bearings usually are preloaded such that their stiffness characteristics are

quite linear in the low load range (see sec. 2.2.4.3). Thus, the bearing effective stiffness

usually remains fairly constant throughout low-excitation shake tests. However, roller

bearings usually have internal clearance (6c, fig. 27) and therefore exhibit stifflless that is

sensitive to both load and clearance. When shafts supported by roller bearings are shake

tested, the effect of bearing internal clearance on stiffness can cause errors ill the

determination of natural frequencies.

Clearance

: :cneer_/____

_ Outer race

Shaft

Figure 27. - Roller-bearing internal clearance
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When shaft motion is circular, the shaft is always in contact at the bearing stationary

support. However, when the shaft motion is transverse, as in lateral vibration, the clearances

affect the spring rate and reduce the natural frequency (ref. 105). An approximate analysis

of the effect of bearing clearances on the spring rate is given in reference 47, p. 167.

2.4.2 Rotating System Tests

Rotating system tests, with instrumentation for measuring the system dynamic

characteristics, are used to evaluate vibration levels, map critical speeds, measure bearing

loads, and confirm mechanical integrity of the shaft, bearings, and couplings. Almost all the

turbopump development tests have some instrumentation for monitoring the machine

dynamic characteristics. Spin tests, wherein rotation is achieved by means other than a

hot-gas turbine drive, also are used.

2.4.2.1 INSTRUMENTATION

The kind of instrumentation and its sensitivity and range usually are selected on the basis of

previous experience. A magnetic tape record of the instantaneous data may be used to allow

permanent or temporary storage of the information; this feature is particularly important

for the short-duration runs typical of rocket engines.

During testing, tracking filters, oscilloscopes, and x-y plotters monitor the shaft motion.

Accelerometers, velocity pickups, and distance detectors are the primary instruments used

to define rotating shaft motion and position. Accelerometers are small and respond to high

frequencies. Velocity probes, used up to 1000 Hz, inherently filter out high frequencies.
Accelerometers and velocity pickups are mounted close to the shaft supports. Distance

detectors usually are mounted in the housing or on special fixtures. Thermocouples are used

to measure temperature, and strain gages measure load and stress. Torque is measured by
devices discussed in references 139 and 144; telemetry is discussed in reference 145.

The following characteristics of the high-speed rotating portions of turbomachinery have

been determined by monitoring the reaction of the stationary supporting structures (ref.
146):

( l ) Static and dynamic load exerted on the bearing

(2) Amount of slip between rolling elements and bearing race

(3) Critical speed of rotating assembly
(4) Motion of center of high-speed shaft

These phenomena were measured and recorded by resistance strain gages mounted either on

the bearing or on the support structure.
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Duringdevelopmenttestingof the XLR-87-AJ-9high-speedshaft, both room-temperature
spin testsand hot firings wereinstrumentedwith capacitor-probedistancedetectors,and
datadescribingthe rotor whirl orbits asa function of time andspeedwereobtained.In
addition, accelerometerslocatedat appropriatepoints on the casingmadepossiblethe
determinationof howthecasinginfluencedtherotor dynamics.

2.4.2.2 INTERPRETATION OF DATA

Viewing the vibration wave form on an oscilloscope is helpful in analyzing the vibrations of
rotating systems. Sometimes it is difficult to understand the wave form, however, because

the wave usually is not a pure single-frequency sinusoid but consists of several frequencies
resulting from several different mechanisms. With the use of tape recorders for permanent

records, "off-line" analysis of the tapes has proven economical and frequently necessary.

The raw data can be evaluated quickly for areas of further interest and then filtered for

more detailed study.

It has been found useful to trace the path of the shaft center from vibrograms acquired by

means of two distance detectors lying in the same plane but 90 ° apart. The resulting

Lissajous patterns can yield valuable information about the mechanism of excitation. The

ways of interpreting various patterns are explained in references 72, 132, and 146 through

149. General procedures for analyzing the vibration data of rotating systems are described in
references 150 and 151.

The "growling" noises mentioned previously are indicative of abnormal behavior often

associated with "tangled yarn" precessional-motion patterns (ref. 148). This growling or

humming noise phenomenon also has been identified with skidding of the bearing roiling

elements (ref. 152).

2.4.3 Special Tests

The preload on the retaining bolt for a curvic coupling usually is determined during

assembly by measuring elongation of the bolt or compression of the rotor; a calibration test

of load against elongation is needed for accurate control of bolt preload.

Early insight into design structural margins and potential causes of failures may be provided

by (1) running at rotor speeds and gas temperatures above normal tolerance limits, (2)

unbalancing rotors beyond design imbalance limits, and (3) introducing large-amplitude,

low-frequency vibrations (ref. 153). These abusive tests also are useful in reducing the

number of development tests required to establish reliability. Special tests, consisting of
static load application and measurement of relative motion, often are carried out to evaluate

stiffness of built-up rotors as well as spring rates of bearing and housing.

Impeller-attachment preload on pumps with large impeller pressure-area forces is confirmed

or determined by means of special tests. Axial compressive tests to determine stiffnesses of

curvic coupling joints frequently are conducted (sec. 2.3.2).
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3. DESIGN CRITERIA and

Recommended Practices

3.1 Shaft Design

3.1.1 Design Parameters

3.1.1.1 SHAFT SPEED

3.1.1.1.1 Optimization

The shaft operating speed or speed range shall be based on pump, turbine,

bearing, seal, and shaft design parameters that result in satisfaction of

requirements imposed by the engine and turbopump system studies.

Tradeoff studies of the various limiting design parameters should be made to determine the

optimum set of compromises associated with speed. References 1 through 5 should be
consulted to aid in establishing the design-parameter considerations and limitations.

A major goal of the tradeoff studies should be the highest practical shaft operating speed,

because maximum speed usually results in the smallest overall size and lowest weight for the
turbopump. Limitations on maximum shaft speed that should never be overlooked are

centrifugally induced stresses in the impeller and turbine disks; bearing DN; seal rubbing

velocity; and shaft dynamics and whirl critical speeds. Shafts should be designed purposely

for either subcritical or supercritical operation. The choice should be based on an assessment
of the advantages and disadvantages of each in conjunction with the intended use and the

ease of satisfying the associated design requirements.

3.1.1.1.2 Transient Dwells and Overshoots

The shaft and coupling shall withstand start-transient speed dwells and
0 l_ersh oo ts.

Analysis of stress/strength relations and fatigue life for the proposed limits of operating

shaft speed should account for effects of start-transient dwell or overshoot conditions. A

speed higher than the nominal maximum operating speed should be used for evaluation of

strength and high-cycle fatigue life. This speed should be the maximum 3-sigma steady-state

operating speed determined from past experience or from calculations if applicable. If

3-sigma limits cannot be established during the design phase, it is recommended that

nlechanical design speed exceed nominal maximum operating speed by a factor of 1.1 to
1.2.

6O



Transientdwell and overshootspeedsshouldbe comparedwith the shaft whirl critical
speeds.Useshaft-dynamicsanalysistechniquesgivenin section3.2to determinethedegree
of dangerin operatingat, near, or traversingthrough a critical speed.Excessivespeed
overshootsthat imposeseverepenalties(high loads,excessivestress,or needfor heavier
structure)on relatedcomponents and on the turbopump should be prevented by modifying

the system design as necessary.

3.1.1.1.3 Steady-State Operations

The shaft and couplhzg shall not suffer damage or induce damage in associated

components while operating at steady-state speeds.

The shaft should be designed to have the required strength to withstand reliably the critical

design loads (see. 3.1.3) and environmental conditions (see. 3.1.1.5). The shaft speed or

range of speeds should be considered as a source of forcing frequencies. Natural frequencies

of all associated components such as shaft-mounted components (impellers, turbine wheels,

etc.}, bearing support housings, pump casings, turbine manifolds, and turbopump mount

structures should be compared with the shaft rotational speed and multiples of 2 and 3

thereof. Damage by resonance should be avoided by design modifications to detune any

dangerous resonant conditions. Procedures for this type of design modification should be

obtained from references I through 4. However, the shaft designer should be aware that

changes in the associated components may affect the shaft dynamic characteristics (see.
3.2).

3.1.1.2 BEARING AND SEAL LOCATIONS

The locations for bearings and seals" shall be based on a compromise of' their

efleets on

• Shaft critical-speed characteristics

• The em, ironment, loads, and DN value imposed on the beari_zg or seal

• ShaJ? deJlections and stresses

• Design complexiO'

• Thermal displacements and assembly tolerances

• Accessibility and maintenaHce

Parametric studies of critical speeds versus bearing and seal location should be utilized to

determine optinmm locations; an example of such a study for a simple overhung turbine can

be found in reference 9. Radial-load bearings should be located as close to the heavy

rotating elements as possible without compromising the bearing as a result of thermal
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soakbackor heat transferduringoperation.Gearsshouldbe locatedcloseto supporting
bearingsso that shaftdeflectionandbendingmomentareminimized.However,asafail-safe
measure,splinesshouldbekept a safedistancefrom mainbearingareas,sothat in caseof
bearingfailure the load-carryingcapacityof thesplineswill not bedecreasedseriouslyby
theheatgenerated.Thrust balancepistonsshouldbelocatedcloseto the thrust bearingin
order to minimize thermaland mechanicaldistortioneffectson the pistongapclearances
and the bearingaxialplay.Whenbearingsor associatedsupportmechanismsaredesignedto
providedamping,the bearingsshouldbe placedat locationswhererotor displacementis
largestfor the modesassociatedwith the critical speedsto bepassedthroughandwith the
first critical speedabovethe maximumoperatingspeed.The bearingand seallocations
shouldbe evaluatedfor (1) influenceon turbinescrollaerodynamicandmechanicaldesign
complexity, (2) possiblecomplicationsin pump inlet housinghydraulicand mechanical
design,(3) thermal displacementsand assemblytolerances,and (4) accessibilityand
maintainability.

3.1.1.3 SHAFT SIZE

The shaft diameter shall satisfy the requirements for strength, shaft stiffness for

whirl critical speed, bearing DN for rolling-contact bearings, and seal rubbing
velocities.

The shaft diameter at bearing locations should be made as large as practical so that the rotor

is as stiff as possible. Use the guidelines set forth in references 1 and 5 to establish specific
DN values and rubbing velocity limitations. When the shaft size is compromised by bearing

speed limitations, a larger shaft diameter may be used, if the material can be appropriately
hardened, by machining the shaft to act as a bearing inner race. If shaft-riding-seal speed

compromises shaft size, other components (e.g., labyrinths) should be considered as

replacements for the seals. In some turbopumps, liftoff seals can be substituted for face seals

to permit the use of a larger diameter shaft. Shaft torsional shear stress rarely is a controlling

factor in establishing shaft diameter.

Thin-wall shafts should also be checked for shear-buckling critical stress levels (ref. 154).

When the wall thickness of hollow shafts at bearing locations is determined, consideration

should be given to the effect of the wall flexibility on the fatigue life of the rolling-contact

bearing. For designs using the shaft as the inner race of a rolling-contact bearing, the
hollow-shaft wall thickness should be at least twice the thickness of a normal race thickness

and the material must be appropriately hardened. For a hollow shaft with separate inner
race, the shaft wall thickness should be made equal to the race thickness (ref. 155).

3.1.1.4 SHAFT DISCONTINUITIES AND TRANSITIONS

Shaft discontinuities and transitions shall not contribute to fatigue failure.

For highly stressed shafts and couplings, the radii of grooves and keyways should be
evaluated for stress concentration and associated reduction in fatigue life. The
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stress-increasingeffectsof press-fittedor shrunk-oncollarsor sleevesand the effect of
surfacefinishon fatigueor sealoperationalsoshouldbeevaluated,preferablyby principles
givenin references13through16.

Theidealtransitionshouldbedesignedby followingtheguidelinesin thetablesin reference
20 or by usinga fillet radiusthat is three timesthe diameterof the smallersection.In
practice,machiningand other considerationsmay dictate the use of a smallerradius;
therefore,stress-concentrationfactorsin accordancewith thecurvesshownin references13
and 156 must be applied.Of the three grind-reliefconfigurationsshownin figure 28,

configuration (a) is preferred to either (b) or (c); if dimension d is 0.010 in. (0.254 mm) or

less, configuration (b) may be used.

_'///'/'/" d--_ _//'/'/ / r _ i / .

lJl II/ / //

I

I

(a) (b) (c)

Figure28. - Grind relief configurations

Use experimental techniques such as photoelasticity when the shape of the discontinuity or

transition or the loading condition does not conform to a type for which
stress-concentration or fatigue-strength-reduction factors exist.

Generous radii should always be provided at the corners of grooves and keyways.

Cold-rolling will increase the fatigue strength at these corners. A method is available (ref.

21) for evaluating the stress-raising effects of pressed or shrunk-on collars. Keyways and

wrench slots should be symmetrically spaced to prevent adverse imbalance. A surface finish

of 16/a in. (0.41/am) rms is acceptable for control of the quality and condition of the surface

to reduce fatigue failure. For shaft face-seal surfaces, a finish of 10 to 20/a in. (0.25 to
0.5 l/am) rms should be used in combination with control of the direction of the finish lines.

The designer also should be aware of the effect of machine lead on leakage. If transverse

holes or grooves are required for instrumentation, the effect of these discontinuities should
be considered in the stress analysis.
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3.1.1.5 SERVICE ENVIRONMENT

The shaft and coupling shall withstand any harmful environment encountered

during fabrication, processing, storage, and operation.

Initially, all possible environments and chemicals that may be encountered during

fabrication, processing, storage, and operation should be reviewed to identify any conditions

harmful to the shaft. Then steps should be taken to eliminate exposure to the harmful
environments and to use chemicals that have minimum deleterious effect. When deleterious

environments cannot be eliminated, shaft material and configuration should be selected for

inherent resistance to degradation in the harmful environment, or external methods of

protection should be used, as discussed below. Do not use titanium in oxygen turbopumps,

as any rubbing could cause the metal to ignite.

3.1.1.5.1 Thermal Environment

The shaJ? and coupling shall withstand the effects of transient and steady-state

heating and cooling.

Shaft and coupling components should be designed for the critical operating conditions
created by the combination of mechanical loads and temperatures that will exist during

engine transient and steady-state operation. Prediction of metal temperatures should be

based on comprehensive heat-transfer analyses and experimental evaluation during

development testing. Temperature-sensitive paints, braze patches, and thermocouples should
be considered for temperature measurements. Thermocouples, although more difficult to

employ (they usually require slip rings for transmitting the measured data from the rotating

shaft to the stationary recording facility), are very desirable in that they provide
time-correlatable data that the other methods do not. Experimental data obtained from test

programs for similar hardware should be used to corroborate the analysis whenever such

data are available. A temperature increment of 50°F (28K) or 5 percent of the maximum

metal temperature, whichever is lower, should be applied to the result of such analysis as a

safety factor to arrive at maximum temperatures or thermal gradients. No other factors of

safety should be applied to thermal loading.

The material strength and resulting component strength should be assessed with due account

given for reductions in yield, ultimate tensile, and creep-rupture strength at elevated

temperatures and for the reduction of material ductility and increased tendency to embrittle

at low and especially at cryogenic temperatures.

Thermal shock gradients and associated stresses and strains should be evaluated for potential
inducement of fatigue cracking. When restart of the turbopump is necessary after only a

short nonoperating time period, adverse temperatures throughout the shaft caused by heat
soakback from the turbine should be minimized or eliminated.
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3.1.1.5.2 High-Pressure Gaseous-Hydrogen Environment

Wltett ttecessat3', the shaft and couplittg shall withstand the harmful effects of a

high-pressttre gaseous-hydrogen emqronme_tt.

Tile shaft or coupling material should be evaluated for susceptibility to hydrogen

embrittlement by performing specimen tests in the appropriate environment (ref. 157).

Smooth and notched tensile tests, smooth strain-controlled low-cycle fatigue, and

sustained-load and low-cycle fatigue tests with precracked fracture-mechanics

specimens - all should be accomplished if a material is expected to show any significant

degree of hydrogen embrittlement (ref. 27).

Avoid the use of ferritic and martensitic steels. If possible, avoid using nickel-base and

cobalt-base superalloys such as Inconel 718, Inconel X, Waspaloy, and Rene 41. If any of

these alloys is used, its selection should be justified by experimental data from tests
mentioned above. Materials that have demonstrated good resistance to embrittlement by

high-pressure gaseous hydrogen and are therefore recommended for use are the austenitic

stainless steels such as the 300 series, ARMCO 21-6-9, ARMCO 22-13-5, and A-28_.

Aluminunl alloys such as 6061-T6 and 7075-T73 also have demonstrated resistance to this

environment and should be considered if otherwise suitable for use.

3.1.1.5.3 Corrosive Environments

The slut t? and coupling properties s/tall trot be degraded below acceptable limits

by a corrosil,e CltFirOtllllftlt.

Materials known to be susceptible to stress-corrosion cracking, for example, should not be

used in a configuration and environment conducive to stress corrosion. The factors that play

major roles in stress-corrosion cracking are the material and its fabrication, exposure to a

corrosive environment, stress levels from both residual and applied sources, temperature,

and time. If any candidate alloy for a shaft or coupling may be susceptible to

stress-corrosion cracking, tests (ref. 158) should be conducted to demonstrate that the alloy

has adequate resistance to stress-corrosion cracking under the conditions of its application.

The longer the duration of exposure to a corrosive environment, the greater the likelihood

of stress-corrosion cracking. Susceptibility to stress corrosion should be allowed only when

the expected useful life of the shaft or coupling is significantly shorter than the time

required for corrosive effects to reduce reliability below established values.

The following three principal avenues for reducing or avoiding damage from stress-corrosion

cracking should be examined for applicability in a given design:
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( 1 ) Eliminate the dangerous tensile stresses.

(2) Remove the corrosive environment or render it less harmful by using protective

barriers (coatings, platings, material processing, etc.).

(3) Replace the metal in the particular application with another material that does

not fail in the specific environment.

Steel alloys that should be avoided because of very low resistance to stress-corrosion

cracking (ref. 159) are the following:

Alloy Temper

17-4 PH

17-7 PH

PH 15-7 Mo

AM 355

H-ll

Vascojet 1000

Low-alloy

All tempers

All except CH 900

All except CH 900
<SCT900 FH

All tempers

All tempers
>180 ksi (1.24 GN/m 2 ) yield strength

3.1.1.5.4 Hard Vacuum

The shaft and coupling properties shall not be degraded below acceptable limits

by cold-welding or adhesion, evaporation, decomposition, or sublimation in

prolonged hard vacuum.

Use aluminum coatings in place of cadmium, zinc, or magnesium in a prolonged hard

vacuum. Special lubricants (refs. 52 and 53) that do not evaporate, sublime, or decompose
must be used.

3.1.2 Material Selection

3.1.2.1 MECHANICAL PROPERTIES

The minimum mechanical properties of the shaft and coupling material shall not

be less than those required to satisfy the critical operating loading and
environmental conditions.

The main mechanical properties to consider in choosing the material are the tensile yield

and ultimate strengths, creep strength, ductility as measured by reduction in area and

fracture toughness (ref. 160), fatigue strength, thermal expansion or contraction

66



coefficients,andmodulusof elasticity.Thematerialstrengthsandotherphysicalproperties
should be evaluatedfor the entire rangeof operatingand nonoperatingenvironments.
Propertyvaluesshouldbeselectedfrom authoritativesourcessuchasMIL-HDBK-5A(ref.
161), Departmentof Defensereports, or documentedtest valueswhen appropriate.
Propertyvaluesshouldbebasedonstatisticalevaluationof thetestdata,andthevaluesused
for designshouldbe thosefor whichthe probability is 95 percentthat 99 percentof the
samplesexceedthedesignvalues(e.g.,"A" valuesin ref. 161).

A materialthat hasgoodlow-cycle fatigue (LCF) strength does not necessarily have good

high-cycle fatigue (HCF) strength (ref. 48). For good HCF life, a material with high tensile

strength is best, whereas for LCF a material with lower tensile strength but high ductility is

best (fig. 5). Furthermore, for long life in high-temperature use, good creep-rupture strength

also is necessary (refs. 162 and 163).

3.1.2.2 THERMAL PROPERTIES

DifferenHal thermal expansion or contractio,J of the shaft and bearing-race
materials shall not result in race fracture or loose fits.

The thermal-expansion properties of the shaft and the bearing materials at operating

telnperature should be matched as closely as possible. The effect of differential expansion
on bearing clearance and bearing race-to-shaft fit should be calculated for conditions of

assembly, nonoperating chilldown, and transient and steady-state operation as appropriate.

For critical applications, the available material thermal-expansion data may not be accurate

enough;in such cases, conduct special thermal-expansion tests.

3.1.2.3 STRESS CORROSION AND HYDROGEN EMBRITTLEMENT

The shaft and coupling material shall not suffer deleterious effects of

stress-corrosion cracking or hydrogen embrittlemen t.

The material selected should be compatible with the propellant and environment. When

there is potential exposure to high-pressure gaseous hydrogen, avoid the use of materials

that become brittle in that environment. Refer to section 3.1.1.5 for a more complete

discussion of stress corrosion and hydrogen embrittlement.

3.1.2.4 LOW-TEMPERATURE EMBRITTLEMENT

The shaJ? and coupling materials shall not be susceptible to brittle fracture due to
low-temperature embrittlement.

6?



Tile materialshouldhaveat least5-percentreduction-in-areaductility, morethan 15 lb-ft

(20.3 N-m) of Charpy V-notch impact energy, and adequate fracture toughness (ref. 160) at

the operating temperature. In establishing the minimum fracture-toughness requirements,
consideration should be given to the size of fabrication flaws and cracks that may go

undetected during NDT inspection, the operating stress levels, and the desired life (ref. 49).

Low-alloy steels such as 9310, 4340, 440C, and AM-350 should not be used at cryogenic

temperatures.

3.1.2.5 SURFACE CONDITION

The shaft and coupling shall not suffer surface wear, fretting, or galling of"

sufficient magnitude to cause shaft, coupling, or associated parts to fail.

The shaft or coupling material should be selected with due account for the possible need to

heat treat, case harden, or coat the surfaces. These surface treatments and the materials for

mating parts should be evaluated for the effects on the material tensile and fatigue strength

as well as effects on wear, fretting, or galling. Typical past solutions are described in section
2.1.2 and in reference 164.

3,1.3 Structural Analysis

3.1.3.1 LOADS

The structural analysis of the shaft and coupling shall evahtate the critical

combinations of radial, axial, and torsional loads, both stead), and alternating,

encompassing all anticipated conditions in the operating and test range.

"Worst-case" design operating conditions should be used in evaluating each load, and the

loads should be combined vectorially to yield the "worst-case" combined loads.

Probable accuracy of computed loads should be assessed and, if applicable, calculated values

modified to obtain conservative worst-condition predictions. For example, small percentage

variations in large pressure forces on the impeller front and back faces always result in
considerable variations in magnitudes of net thrust.

The following kinds of loads should be evaluated as indicated:

Radial

Rotor dynamics.- Rotating imbalance and self-excited whirl forces. An analysis of

shaft response to imbalance forces should be accomplished as outlined in section
3.2.2.1.4. For fail-safe considerations, include in rotor dynamic loads the loads induced

68



by rotor imbalance caused by failure of one blade and assume that these loads will act

over the entire engine operating period required for the mission.

Rotor pressure loading. - Unequal pressure around impeller shrouds, discharge outlets,

etc. The pressure profiles should be integrated for load magnitudes.

Vehicle accelerations.- Longitudinal and lateral flight motion; engine gimbal

snubbing; gyroscopic action of rotor, vehicle rotation, or engine gimbaling. Engine and

vehicle specifications shotl{d be reviewed for acceleration, gimbaling, and maneuver

requirements.

Gear and bearing reactions due to shaft power torque.

Constraint of thermal expansions or contractions. - Conduct a heat-transfer analysis to

obtain the thermal profiles of the assembly. Then calculate themlally-induced loads

and their interaction with assembly loads.

Axial

Rotor axial vibrations. - The natural Kequency of the rotor/bearing system treated as

a rigid rotor mass on a simple spring should not coincide with the shaft operating speed

(or multiples of 2 or 3 thereof) unless a response analysis or test demonstrates that no

adverse effect occurs, For preliminary design, axial vibration loads may be considered

to have amplitudes about 5 percent of the bearing thrust loads. If testing shows that

these vibrations are significant, then experimental evaluation is recommended.

Rotor pressure loading. - Unbalance thrust across impellers, turbine wheels, balance

pistons, and thrust bearings should be integrated for load magnitudes.

Vehicle accelerations. -- Same sources listed above for radial.

Gear reactions to shaft power torque. - Helical gears, misaligned splines.

Assembly axial preload. -- Built-up shafts, turbine and impeller retaining bolts.

Sel{'-constrained or bearing-constrained shaft thermal expansions or contractions.
Evaluate as above for radial.

Torsional

Shaft power torque.

Torsional vibration inertia forces. - For preliminary design, torsional vibration loads

may be considered to have amplitudes of about 5 percent of the nominal power torque

load. If operation shows these vibrations to be more significant, then experimental
evaluation is recommended.
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3.1.3.2 SAFETY FACTORS

The shaft and coupfing design saJOty factors shall be adequate to achieve the

specified reliability.

Safety factors applied to limit loads should be equal to or larger than 1.1, 1.3, and 1.25 for

yield, ultimate, and fatigue strengths, respectively. The preferred values are 1.1, 1.4, and
1.33. If sufficient statistical data are available for a particular application to justify the use

of probabilistic-reliability methods (refs. 40 through 45), then the statistically determined

values for safety factor should be used.

3.1.3.3 ANALYTICAL METHODS

Structural analysis shall verify that the shaft and coupling have adequate strength

throughout service life to prechtde structural failure due to deformation or

collapse, fracture, or wear.

The shaft should be analyzed for all critical loading conditions defined in 3.1.3.1, due

account being given to stress concentrations, environmental considerations, material

strength properties, required safety factors, and clearances between the stationary and

rotating parts. Adverse deformation or collapse failure margins should be calculated,

consideration being given to potential elastic, plastic, or creep deflections or buckling.

Specific details of such analyses can be found in almost any book treating machine design or

strength of materials.

Fracture-failure margins should be evaluated for both time-dependent and time-independent

failure mechanisms. Time-independent mechanisms include the well-understood simple

ductile overload and the much-less-understood, complicated, and less-predictable brittle

rupture. Factors that may contribute to brittle rupture are low material ductility and low

fracture toughness, fabrication flaws, weld defects, design notches and stress raisers, degree

of stress triaxiality, high strain rates, low temperature, hostile environments (chemical or

physical), and improper material heat treatment. The most promising engineering approach

for assessing sensitivity to brittle fracture is the use of the principles of linear elastic fracture
mechanics (refs. 165 and 166).

Time-dependent fracture mechanisms encompass both static and cyclic loads. The

possibility of delayed fracture under static loads due to creep rupture, stress-corrosion
cracking, or hydrogen embrittlement should be assessed. The shaft design should be

analyzed for fracture potential due to fatigue induced by cyclic or combined static and
cyclic loads; the analysis should include thermal stress that may induce low-cycle fatigue or

large residual mean tensile stresses that reduce the alternating stress capability.
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In the evaluationof high-cyclefatigue, the critical effective stresslevelsshould be
determinedby useof the distortion-energy(i.e., Von Mises-Henckytheory)definition of
effectivestressfor multiaxial stressstates(refs. 11 and 12).The shaft-materialfatigue
endurancestrengthshouldbeestablishedby usingexistingguidelines(refs. 12,pp. 166-176
and46, pp. 221-229)andby reducingthesmooth-barmaterial-specimenfatiguestrengthto
allow for the modifying effectsof surfacefinish, size, temperature,notch sensitivity,
residual stresses,material directional effects, corrosion, plating, and reliability. For
combinedalternatingand steadystresslevels,useexperimentallydeterminedstress-range
diagramsor modifiedGoodmandiagrams(refs. 167and168).To assessthecombinationof
multilevelmagnitudesof cyclic stress,the Minertheoryof linearcumulativedamage(ref.
169)maybeusedto predictfracturewith a usagefactor of 0.70 (refs. 169through 172).
However,the accuracyof anycumulative-damagetheorysuffersundercertainconditions,
and the designershould be acquaintedwith the limitations as presentedin the cited
references.

All shaftcomponentsshouldbestressanalyzedwith sufficientdepthto identify peak stress

levels associated with all the applicable load sources previously identified, For long life and

multiple reuse applications, special emphasis should be given to the evaluation of thermal

and geometrical discontinuity stresses, as they are common causes of fatigue. Critical

buckling stress levels of hollow thin-wall shafts also must be evaluated, and a margin to

preclude buckling must be provided.

The critical effective stress and strain levels that govern cyclic fatigue life must be kept

below the endurance limit of the material for the required number of duty cycles times an

appropriate safety factor. Stress concentrations should be minimized by using maximum
radii in fillets, optimizing transition sections, locating mechanical and weld joints in

low-nominal-stress areas, and undercutting and placing relief holes to smooth out the

distribution of stress. Analytical determination of the stress levels by comprehensive

digital-computer structural-analysis programs and experimental-stress-analysis techniques,

where applicable, may be necessary to determine locations and magnitudes of critical

effective stress levels. The methods for predicting low-cycle fatigue life are continually being

modified and improved; the present recommended methods are those described in
references 173 through 176.

(Wear failures of the adhesive type such as galling or scoring are caused primarily by a lack

of separating film; many times these failures can be precluded simply by use of a lubricant.
Abrasive wear failure due to shaft rubs should be minimized by providing clearances

adequate to preclude rubbing. Fretting-corrosion wear, which is caused by the relative

oscillatory motion of two surfaces under normal force such as in press fits, can be overcome

by using tight fits, inducing residual surface compressive stresses, and reducing the vibration
level).
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3.1.4 Assembly and Operation

3.1.4.1 DIMENSIONS AND FITS

3.1.4.1.1 Datums

Datums shall result in minimum tolerance stackup.

Tile thrust-bearing shaft shoulder should be used as the longitudinal datum, except for

hydrodynamic thrust bearings where a gage point in the thrust piston should be used. The

roller-bearing shaft surface should be used as the diametrical datum. Unnecessary tolerance

stackup should be avoided by locating important features from one datum only.

3.1.4.1.2 Dimensional Inspection

Dimensional inspectioli of critical parts shall account Jbr thermal expansions at
the time of measurement.

Measurements should be made only when the measuring tool and the critical part are at a
standard temperature of 68 ° -+ I°F (293.2 -+0.6K). Otherwise, the measurement must be

corrected for the differential expansion.

3.1.4.1.3 Bearing Clearances

Clearances .fbr rolling-contact bearings shall be based on the extreme tolerance
conditions.

Despite the apparent improbability of simultaneous assembly of components in the extreme

tolerance conditions, the extreme tolerance limits of the shaft, bearing, and housing should
be used for stackup where rolling-contact-bearing internal clearance is concerned. For

splines and other parts, the root-mean-square method of combining tolerances may be used.

3.1.4.1.4 Tolerance Limits

Tolerance limits shall be consistent with use and damage limits.

For components that are assembled and disassembled a number of times, use and damage

limits should be established so that the original tolerance limits may be exceeded by a
certain specified amount. This action may necessitate closer tolerances for the initial

assembly.
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3.1.4.1.5 Piloting

Piloti_zg dimension,s and fits shall be tight et_ough at all operati_tg conditiop_s to

prevet_t relatire motion a_d potential frettiJzg or sh_fting of shaft parts that results
i_ ad_,ers'e rotor imbala_ce.

The selection of pilot dimensions and fits should be based on the class of fit desired and

should take into account the effects of operation, process of manufacture, method of

assembly, assembly-imposed stresses, dimensional changes due to operating thermal and

stress environments, and material strengths.

The thermal expansions of the mating materials should be matched so that under all

conditions, from assembly through operation, the interface pressure does not exceed design

limits or allow the parts to become loose. During chilldown, thin parts could contract faster

than a thick mating part, thereby increasing stress. The effect of centrifugal force should

also be included in the calculations for press-fit at operating conditions. For press fits, the

stress should be calculated and evaluated.

Double piloting (fig. 29) may be used when differential expansion of mating parts is severe.
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Figure 29. - Double piloting

However, although double piloting provides a tight fit at both extremes, it may result in

looseness between extremes. Thus, double piloting is best limited to situations wherein the

change in thermal elwironment takes place when the shaft is not operating (e.g.,

pre-engine-start chilldown of cryogenic fuel turbopump).

Tight-fitted parts should never be pressed together at assembly; they should be shrunk on.
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3.1.4.2 COMPONENT RUNNING POSITIONS AND CLEARANCES

Component and assembly stackup dimensions and tolerances shall ensure

adequate operating clearances between the rotating and stationary parts.

Both transient and steady-state running positions of the rotating parts relative to the

stationary parts should be computed during the turbopump design phase. Critical clearances
should be measured or reliably deduced during the initial testing of new machines.

Engineering assembly drawings and specifications must clearly state minimum acceptable

values for assembly buildup critical clearances. In some cases, where close running clearances

are necessary for performance requirements, materials and construction that can withstand

rubbing (e.g., honeycomb) should be used.

In determining axial operating clearances, calculations should account for

(1) Axial thrust loads and resulting rigid-body shaft position shifts

(2) Shaft extension or compression caused by axial thrust loads

(3) Axial distortions of both rotating and stationary parts induced by axisymmetric

and non-axisymmetric temperature changes, thermal gradients, and creep

(4) Deflections and distortions in rotating and stationary parts induced by pressure

and mechanically applied loads

(5) Shaft whirl slopes and resulting axial displacements at such locations as rotor tips

(6) Axial vibration amplitudes of such subcomponents as turbine wheels and

impellers

(7) Minimum design clearances at assembly buildup (determined by tolerance stackup
analysis or measured or both)

(8) A moderate amount of clearance allowed for contingencies

In determining radial operating clearances, calculations should account for

(1) Radial displacements of the rotating parts, especially turbine

(2)

(3)

wheels and

impellers, resulting from centrifugal, thermal, creep, pressure, and maneuver loads

Shaft bending deflections resulting from unidirectional forces

Shaft whirl orbit amplitudes
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(4) Deformationsof the stationarypartsby pressure,externalforce(e.g.,inlet and
dischargeline loads),temperature change, and thermal gradients

(5) Minimum design clearances at assembly buildup (determined by tolerance stackup

analysis or measured or both)

(6) A moderate amount of clearance allowed for contingencies

At assembly, the bearing inner race with the least radial runout should be located at the

bearing position nearest the greatest shaft overhang portion. Furthermore, the high points of

race eccentricities should be aligned on the shaft (ref. 177).

3.1.4.3 RETAINING BOLTS AND LOCKING DEVICES

3.1.4.3.1 Bolt Mechanical Strength

The material properties, shape, and overall mechanical design of a retaining bolt
shall be such that the bolt does not fail.

The bolt material should have the best combination of high strength, high coefficient of

thermal expansion, and low modulus of elasticity. The junction of the shank and head
should be designed with a generous radius or transition. The bolt threads should be of the

fine pitch series. The bolt diameter may be increased from the cold to the hot turbine end
to obtain a retaining bolt with uniform strength distribution along the length of the bolt

(ref. 178) even when thermal gradients are large.

3.1.4.3.2 Bolt Preload

The retaining bolt preload shall prevent joint loosening and maintain the rigidity

of the coupling under expected service conditions.

The preload should be adequate as to prevent yielding or unloading of the coupling due to

( 1) thermal change in the bolt and clamped parts (ref. 179), (2) load reduction as a result of

axial thinning of the rotating parts caused by centrifugal force, (3) acceleration forces or
resonance (refs. 180 and 181), and (4) plastic deformation. When evaluating the thermal

change in the bolt and its effect on preload, account for variation in temperature along the

length of the bolt;this variation should be measured or carefully calculated.

The preload should be such as to prevent motion between the clamped parts or the threads

of the fastener components. The minimum preload for curvic couplings should be about 1.5

to 2 times the separating force. During development tests, it is advisable to measure bolt

strain with a strain gage and slip-ring arrangement or some equally appropriate means.
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3.1.4.3.2.1PreloadMeasurementandControl

The method for measuring critical bolt preload shall provide reliable and

repeatable results.

Torque is considered to be an unreliable method for preloading critical fasteners. When bolt

load is critical (e.g., for the curvic-coupling retaining bolt), the preload should be controlled

and specified in terms of overall bolt elongation. An alternative is to compress the rotor

stack a measured amount and then assemble the bolt finger-tight. Avoid preloading the bolt

to the extent that permanent deformation occurs and thereby results in a loose assembly.

If torque values are used for fasteners when preload is not critical, the torque should be

specified with a tolerance on the applicable assembly drawing as well as on shop planning

documents; a tolerance of --+5 percent is recommended. Then the actual torque value during

assembly should be recorded and verified. During development and demonstration, torque

values in the tightening direction at teardown also should be recorded and compared with

those taken at assembly. It may be necessary to specify drag and net torques separately.

Differences between assembly and teardown torques greater than about 25 percent are
indications that the bolt, the preload, or the locking device is inadequate to withstand the

environmental loads, temperature, or vibration.

3.1.4.3.3 Vibration

The transverse and axial natural frequencies of long bolts shall not be excited by

the shaft rotational frequency.

The transverse and axial natural frequencies of a long tie bolt should be determined by
computation or by experiment, and these frequencies should not coincide with the shaft

rotational frequency or multiples of 2 or 3 thereof.

3.1.4.3.4 Bolt Arrangement and Fit

The arrangement and fit of the bolt to the coupling shall not result in significant

increase in bolt stress or interfere with the piloting of the coupling.

In multiple-bolt couplings, a close fit between the retaining bolt and the shaft or

attached part may be required to minimize bolt stresses and deflections caused by

centrifugal force. This close fit should not interfere with the piloting. A central bolt

may be used for small curvic or parallel-sided face couplings where space does riot

permit nmltiple bolting, but multiple bolting is preferred for large couplings. The fits

of parallel-sided face couplings with a central bolt arrangement should be tight enough

to prevent a large lateral load on the bolt due to power torque.

3.1.4.3.5 Galling, Seizing, and Fretting

Fasteners and coupling parts in rotating assemblies shall not gall, seize, or fret.
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Threads and other mating parts should be coated with a lubricant (refs. 52 and 53)

compatible with the propellant and the eiwironment, or plated with silver to prevent galling

and seizing. Fretting usually is the restllt of a loose joint and can be eliminated by keeping

joints tight.

3.1.4.3.6 Locking Device Action

Locki#zg devices ./br fasteners and attachments oll rotating parts shall prol'ide

po._'itire locking actiopt under all ccmditions of use

Positive locking devices such as tab or crimp-type washers should be used on rotating

assemblies. The crimp type with a wall thickness of 0.030 to 0.035 in. (0.762 to 0.889 ram)

is recommended. Careful control of crimping is necessary to prevent cracking. Provision

should be made for trapping failed fasteners or locking devices to prevent them from

entering close clearances, holes, or passages. Fasteners with severable parts (e.g., safety wire)

should not be used, because the severed part could lodge in a seal or bearing and thereby

cause damage. Snap-rings are not recommended for rotating parts; however, if they are used,

careful evahlation of groove detail, installation procedure, material selection, and loading is

necessary.

3.1.4.4 ASSEMBLY AIDS

The location and size of slots, pins, offset holes, wrench flats, and other assembly

aids shall not compromise shaft strength or balance.

Slots may be used to permit bearing race, gear, or sleeve removal: the slot design should

follow the recommendations in section 3.1.1.4. Offset holes, pins, or similar devices should

be used to enstire the correct assembly of look-alike parts. Wrench flats on shafts or

couplings should be located where they have relatively little effect on shaft strength. Slots,

holes, and wrench flats should be located symmetrically to minimize the effect on balance.

3.1.5 Quality Control

3.1.5.1 INSPECTION METHOD

The inspection method shall be appropriate for the portion of the shaft or

coupli_zg to be inspected and for the size and type of flaw that is cause Jbr

rejection o)' the part.

Magnetic particle inspection should be used for surface inspection of ferromagnetic

materials, and penetrant inspection should be used for surface inspection of other materials.

Ultrasonic inspection should be used to find plane-type, substirface discontinuities such as
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cracks. The ultrasonic inspection of raw materials before machining will minimize the

scrapping of finished parts. The ultrasonic inspection of forgings should be accomplished
after the last forging operating is completed. Radiographic inspection should be used to find

volume-type, subsurface discontinuities such as holes (ref. 36). The maximum acceptable
flaw size should be consistent with the static-strength and fatigue-life requirements of the

design. The fracture-mechanics principles and analysis techniques of references 49 and 160

should be used in establishing inspection limits.

3.1.5.2 COMPONENT CONTAMINATION

The quality control procedure shall not result in chemical contamination of a

component.

The chemicals used for inspection of the part should be removed during the cleaning

procedure. Dye penetrant must be thoroughly baked out of parts that will be used in liquid
fluorine service.

3.1.5.3 SPLINE INSPECTION

The degree of inspection of involute splines shall be consistent with the degree of

loading or stress.

Lightly loaded splines require a minimum of inspection; highly loaded splines require close

dimensional inspection of tooth thickness, form, and spacing so that there will be no

interference and so that interchangeability is ensured. The recommended inspection

specification is set forth in reference 182.

3.1.5.4 CURVIC COUPLING INSPECTION

Inspection of a curvic coupling shall verify sufficient tooth contact.

Use master couplings to inspect curvic couplings. The tooth contact surface between the
masters should be 90 percent of the minimum theoretical surface at each 90 ° position (ref.

143). Axial and radial runouts between parts of the set apply at each of the 90 ° positions of

orientation. For normal requirements, the bearing contact of the master with the part
should be centrally located with 75 percent of the tooth width as the minimum contact.

The depth of the contact area should be equal to the tooth contact depth. The stack height
of the set should be marked on each piece of the master.
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3.2 Shaft Dynamics

3.2.1 Dynamic Behavior

3.2.1.1 WHIRL MOTIONS

Shaft dynamic analyses shall be appropriate to the type of whirl motion.

For all designs, forward synchronous circular whirl motion should be assumed for

calculations of critical speeds and shaft response. If the casing or bearing mount is

asymmetrical about the shaft axis in either mass or stiffness, the forward synchronous

elliptical and lateral vibration motion also should be analyzed for critical speeds and shaft

response.

3.2.1.2 FORCED WHIRLS AND CRITICAL SPEEDS

3.2.1.2.1 Steady-State Operating Speed Limitations

There shall be no steady-state shaft operation near a major critical speed if bearing

failure, rotor-tip rubbing, or other undesirable associated phenomenon can occur.

The lowest major critical speed whose mode shows a preponderance of the system potential

energy to be due to rotor bending as compared with stator or bearing deformations should
be no lower than 125 percent of the normal operating speed or 115 percent of the

maximum overspeed, whichever is greater. The maximum bearing reactions at any

steady-state speed should be compared with the bearing capacities, due regard being given to

the required life, reliability, and applied bearing loads from sources other than shaft
dynamics. Likewise, it is recommended that rotor whirl orbit amplitudes be computed and

compared with available operating clearances (ref. 183).

Major critical speeds that involve appreciable stator or bearing deformation and that are

lower than the operating speed are permissible when they comply with the following
restrictions:

(1) The speed is no higher than 85 percent of the lowest steady-state operating speed.

(2) The speed is the lowest possible speed consistent with other design requirements

(e.g., rotor running positions and displacements under worst loading should not

exceed tip clearances).

(3) The rate of change in shaft speed while passing through the criticals is sufficient

to preclude excessive response. Calculations (refs. 184 through 190) of possible

response magnitudes should be made during the design phase.
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(4) Sell:excitedwhirlsdonot developinto untenableresponselevels.

If calculatedcritical speedsof the type discussedabovearecloserto the operatingspeed
rangethanallowedby the restrictionsgiven,andif thespeedscannotbemovedappreciably
without compromiseof otherdesignrequirements,approvalof thedesignregardingcritical
speedsshouldbe basedon comprehensivevibration testsof the completerotor/stator
assemblyand on the comparisonof experimentallydeterminedoperatingclearancesand
bearingloadswith thedesignallowables.

Trackingshaft motion with proximity probes(sec.3.4.2) is especiallyrecommendedfor
initial testingof machinesthat operateabovethe first systemmajor critical speed.This
procedureallowsevaluationof thepotentialof therotor for self-excitedwhirling.

3.2.1.2.2 Assessing Importance of Critical Speeds

A nal3'ses during the design phase shall define the major critical speeds.

To facilitate assessing the importance of various critical speeds, conduct analyses as

described in section 2.2.1.2 so that the following information is obtained:

( 1) Location of critical speeds relative to the operating speeds

(2) Mode shapes and kinetic energy distribution

(3) Response predictions: bearing reactions, whirl orbits, and sensitivity to imbalance

(4) Closeness of the critical to other identified resonant speeds

(5) Type of motion: synchronous or nonsynchronous, forward or backward, forced

or sell-excited, circular or noncircular

(6) Effort required to change critical speed or modify response level by design

changes

Secondary critical speeds should be computed and listed for future reference as possible

diagnostic aids in the event of failure preceded by peculiar shaft dynamic characteristics
such as nonsynchronous vibrations, beats in response level, or other behavior described in

references 58 through 61.

3.2.1.3 SELF-EXCITED WHIRLS AND INSTABILITIES

Shafts designed to operate above the first system critical speed shall not

experience damaging effects of self-excited nonsynchronous whirls.
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Rotors supported ill rolling-contact bearings should be analyzed for self-excited whirl

potentials by the methods presented in reference 83. This reference covers

aerodynamic-induced instabilities and provides practical solutions to such problems.

Built-up shafts and rotors using press- or shrink-fitted items (e.g., sleeves and collars) should

not be run above the system major critical speed whose mode has significant shaft bending,

and damping is insufficient to preclude shaft rubbing, bearing overload, or shaft, coupling,

or stator overstress. Reference 86 provides a detailed summary of additional causes and

ways of eliminating harmful whirls induced by internal friction.

Operating a shaft with a dry-clearance bearing or a shaft rubbing on an unlubricated guard

should be avoided throughout the entire speed range. If dry rubbing occurs, reverse whirl

can become a near-resonant whirl over a large range of shaft speeds including speeds below

the first system critical speed. To obtain the broadest band of whip-free rubbing, the rotor

and stator natural frequencies should be kept dissimilar, and the rotor and stator dampings

made close to one another (ref. 191). Other ways of mitigating whirls induced by dry

friction, if they occur, are to (1) change the design by increasing operating clearances, (2)

raise the rotor/stator system natural frequencies, (3) improve the rotor balance, or (41 coat

tile rubbing area with a low-friction-surface material.

Asymmetry in the stiffness of rotor casing or foundation should also be considered as a

means of increasing the threshold speed of nonsynchronous self-excited whirls (ref. 192).

Rotors using fluid-fihn bearings can be evaluated for stability by the methods described in

references 54, 65, 68, arid 83.

3.2.1.4 TORSIONAL CRITICAL SPEEDS

Shaft systems t/tat have ,flexible couplings or that are part of a jcearbox shall he

./)'ee of harmful totwional critical speeds.

The torsional natural frequencies should be computed by appropriate methods such as those

in references 88 through q0. To identify the shaft speeds that may be critical, the natural

frequencies and the potential excitation frequencies should be cross plotted against shaft

speed as shown in figure 4. Intersections determine critical speeds. Consult section 2.2.3 and

references 63, 89, and 90 for sources of excitation. Steady-state shaft operating speeds

should not coincide with the first system natural frequency or one-half or one-third of it. If

the product of the number of gear teeth, or the number of impeller wines, or the number of
stator vanes multiplied by the rotational speed matches a natural frequency, operation at

that speed is not recommended unless it can be shown by response computations or by test

that adverse vibrations do not occur.
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3.2.1.5 THIN-WALL HOLLOW-SHAFT VI BRATIONS

A thin-wall hollow shaft shall be free of harmfid nodal-circle and nodal-diameter

vibration critical speeds.

The methods and considerations of reference 193 should be used for analysis of potential

nodal-circle and nodal-diameter vibration critical speed of hollow-drum-type shafts. If

harmful vibration is predicted by analysis or develops in testing, the design thickness or

excitation characteristics should be changed to detune the resonance.

3.2.2 Analysis of Shaft Dynamic Behavior

3.2.2.1 MODELING FOR THEORETICAL ANALYSES

3.2.2.1.1 Mass and Stiffness Distributions

The model shall simulate accurately variations of mass and stiffness throughout

the entire rotor/bearing/casing system, include both flexural and shear

deformation elements, and account for gyroscopic and inertia moments.

For the analysis of rotor/bearing/casing systems with rolling-contact bearings, multilevel

lumped- or continuous-mass models are recommended; a typical model is shown in figure
30. For a lumped-mass model, the number of mass stations per level should exceed by a

factor of four or five the number of that critical speed that follows after the upper limit of

the operating speed. For all levels, a total of approximately 20 to 40 stations should be
used.

tt l _ Forcingfunctions

,Gco2

,., '9, ,??..Ro.
6">'gg

Springs:

non;i:ear-- _ Moment spring

Figure 30. - Typical lumped-massrotor/casing model
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For systems with Iluid-fihn bearings that are relatively soft as compared with the rotor

stiffness or systems with flexibly mounted bearings, the single-level lumped- or
continuous-mass models can be used.

Model basic elements of the Myklestad ltunped-mass type (refs. 6, 92. 97, and 98) or the

continuous-mass type (refs. 79 and 88)are recommended.

Gyroscopic-moment treatments for circular whirl and lateral vibration (refs. 98 and 183) are

recommended for shafts supported by rolling-contact bearings. The treatment accounting

for elliptical whirl motions (ref. 65) is recommended for shafts supported by fluid-film

bearings.

When tile accuracy of calculated model properties, (e.g., stiffness of a bearing support

housing and bearing stiffness) is questionable and the parametric analyses show that these

properties significantly influence the critical-speed characteristics, tests should be conducted

to allow experimental determination of the proper model properties. See section 3.4 for
recommended tests.

3.2.2.1.2 Mechanical Joints, Shaft-Riding Elements, and Abrupt

Changes in Shaft or Casing Cross Section

The model shall simulate the actual stifJhess influences associated with

mechanical joints, shaft-ridi#zg elements, atzd abrupt changes in sha]7 or casiHg
'ross sec tio n.

"Equivalent-beam" sections or influence coefficients are recommended for representing tile

actual stiffnesses associated with the curvic coupling or similar joints, shaft-riding elements,

and abrupt changes in shaft or casing cross section. Axial and moment load-deflection data

obtained from tests of the actual joints or of similar previous designs are best for

determining the equivalent system properties. For preliminary design, when applicable test

data or good experience does not exist, it is recommended that curvic-coupling

equivalent-beam sections be assumed to have a wall thickness of 1 to 3 percent of tile tooth

face width (i.e., t,/F = 0.01 to 0.03) for a length equal to the whole depth of the teeth (fig.
31).

Curvic couplings

Figure 31. - Curvic

t o = wall thickness

F = tooth face width

h t = whole depth

(Shaded areas indicate areas used

for computing beam stiffness

properties)

_---

coupling equivalent beam sections
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The experimental data presented in figure 8.5 of reference 132 should be consulted for

determining the stiffening effects of such items as shrunk-on hubs and shrunk-on shaft

sleeves. Flexibility effects of conical transition sections or abrupt changes of diameter in the

casing or in hollow shafts should be evaluated analytically using a digital computer program
for a shell of revolution subjected to non-axisymmetrical loads (refs. 194 through 196).

3.2.2.1.3 Casing and Machine Mount Effects

The model shall accurately simulate the influences of the bearing mounts and

casing.

The bearing mounts and casing should be represented by distributed-mass and

variable-stiffness models similar to those used for the rotor unless the bearing mount is

purposely designed to be flexible, or unless relatively soft fluid-film bearings are used. For
these cases, only the bearing-mount stiffness need be modeled, and the casing can be

considered as ground.

3.2.2.1.4 Bearing Spring and Damping Forces

The model shall include bearing spring and damping forces as appropriate.

Effects of preload, high-speed centrifugal and gyroscopic loads, and nonlinear
load-deflection characteristics should be included in the analyses of angular-contact-bearing

stiffiaess. Analyses of roller-bearing stiffness should include the effects of bearing internal

play, shaft misalignment, and the load-deflection nonlinearities. It is recommended that

spring rates of rolling-contact bearings be determined by the methods presented in reference
112. Models for rolling-contact bearings need not include damping forces unless special

damping mechanisms are part of the design.

Fluid-fihn bearings must be represented by spring and damping forces that are defined as a

function of shaft speed. As labyrinth seals and wear rings also can act like fluid-film bearings

to produce stifflless and damping and affect the rotor stability, they should be given proper
consideration in the shaft dynamics model. Fluid-film bearings may be characterized and

evaluated by techniques given in the references cited in section 2.2.2.1.4.
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3.2.2.1.5 Rotor Imbalance Forcing Functions

The model shall include imbalalu'e forciltg fitnctiorts that will enable respoJzse

el'uhtation

Imbalance forcing functions should account for the residual imbalance after balancing,

possible imbalance upon reassembly caused by such factors as pilot fits and runouts,

possible bakmce change dtzritlg opcratiol_ resttlth_g from load at_d thermal distortio2_s, a_d

conical or cylindrical whirl forces allowed by roller-bearing internal clearances.

Rotor imbalances that induce circular whirl motion may be represented by the expressions

F d

= (Ch_ -+ eW/g) g?2 = yf&

= (h,_ + eM) fZ 2 = "yf/, 2

=(Ch d -+0 l d/g)_2 =_3_2

= (h d -+ 0 I dl) _-_2 =_f'Z2

(SI units)

(SI units)

where

F_

(,

h s

W

g2

2/

= static imbalance, Ib (kg)

= 1.62 x 10 -4 lb-sec2/in. = (lb/16 oz) x (l/g)

= static balance error attained on balance machine,

in.-oz (m-kg)

= component weight, lb

= acceleratiot_ due to gravity.', 386 in./sec 2

= radial eccentricity caused by tit changes, bearing internal

play, runouts, etc. that are not corrected for by balancing, in, (m)

= rotational speed, radians/sec

= static imbalance forcing function, lb/lrad/sec) 2 (kg/(rad/sec) 2)
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M = component weight, kg

Fa = dynamic imbalance, in.-lb (m-kg)

ha = dynamic balance error, in. 2-Oz (m 2-kg)

I a = component diametral moment of inertia, lb-in. 2

0 = angular eccentricity, rad.

_3 = dynamic imbalance forcing function, in.-lb/(rad/sec) _ (m-kg/(rad/sec) 2)

I a_ = component diametral moment of inertia, (kg-m 2 )

The + sign in the equations are used to imply that, strictly speaking, the two quantities in

the parentheses do not combine algebraically, but vectorially. However, as the actual vector

orientation is unknown, these quantities usually are assumed to be algebraically additive.

For elliptical whirl motion, the forcing functions in reference 57 should be used.

3.2.2.1.6 Virtual Mass and Damping

When necessary, the model shall include the virtual mass and damping associated

with shaft operation in a dense fluid or a geared system.

Virtual mass and damping effects of dense fluids (i.e., density of water or greater) can

significantly affect critical speeds and shaft response. However, as adequate quantitative
theoretical treatments are not available, experimental determinations of the proper model

properties should be made. The gear restraint imposed on a pinioned shaft should be

accounted for in the model by the technique given in reference 126.

3.2.2.2 MATHEMATICAL METHODS AND COMPUTER SOLUTIONS

Mathematical Jbrmulations and resulting computer programs shall be capable of

accounting tor all the applicable characteristics of the analytical model

The types of computer programs recommended for the analysis of rotors supported on

fluid-film bearings are those presented in references 65, 79, and 91. The types of computer

programs recommended for the analysis of rotors supported by rolling-contact bearings are
those presented in references 6, 88, 92, and 183. As noted earlier, the computer programs in

references 65, 88, and 92 are generally available.

86



In utilizing any of the availablecomputerprograms,the followingfactors,whicharenot
includedin theprograms,shouldbeconsidered:

(1) Fluid-film bearingsarenot alwayssoft enoughrelativeto thecasingto decouple
the casingeffectivelyfrom the rotor/bearingdynamics.Theprogramin reference
65 is limited to a simplelumpedmassat eachbearingto representthe casing.
However,thiscomputerprogramfor rotor/bearingdynamicscould,if necessary.
beexpandedto includea continuous-massbeammodelto representthecasingas
wellastherotor.

(2) Angular-contact ball bearings can have highly nonlinear spring characteristics that
are dependent on axial as well as radial and moment loads on the bearings. To

account more accurately for the ball-bearing characteristics, the equations of

reference 112 or 113 are incorporated into the rotor/bearing computer programs.

This step allows inclusion of the effects of the bearing nonlinear spring
characteristics, as influenced by thrust and imbalance, on the critical speeds.

3.2.2.3 PREDICTION ACCURACY

The expected accuracy of the theoretical predictions of critical speeds and

response magnitudes shall be known.

Prediction accuracy determined experimentally on previous machines of similar

configuration is the best basis for assessing expected accuracy for new machines. In

addition, those factors that affect prediction accuracy (sec. 2.2.2.3) should be included in
the assessment. Moreover, calculated critical speeds should never be considered more

accurate than the predicted value -+ 5 percent. The response magnitudes (shaft deflections,

bearing loads, etc.) should be considered to be fairly unpredictable; they may be two or
three times the calculated values.

3.2.3 Adjustment of Critical Speeds and

Response Levels

A desiglz change to adjust critical speeds and response levels shah be based on

theoretical or experimental analyses that predict the magnitude of ad/ustment

that can be expected and the impact of the design change on other design
considerations such as strength, fabrication complexity, and cost.

Analytical evaluation of the influence of the various parameters affecting critical-speed
locations and responses should be the basis for design selection or modification.

Experimental confirmation using the techniques recommended in section 3.4 should be
accomplished. Short of major shaft redesign, the following techniques should be considered

for adjusting critical-speed locations:
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(1) Changebearing stiffness by increasingthe axial preload of angular-contact
bearings,by replacingangular-contactwith roller bearings,or by replacingeach
angular-contactbearingwithduplex-bearingsetsmountedback-to-back.

(2) Change bearing mount or casing stiffness.

(3) Change fits and axial preloading of shaft-mounted elements such as shrunk-on
impellers, bearing races, and sleeves.

(4) Change axial preload of joint-retaining bolts.

Recommended techniques that should be considered for adjusting response levels are the
following:

(1) Improve rotor balance by reducing the amount of residual imbalance, by

increasing the quality of the balance with multiplane corrections and high-speed

teclmiques, and by lninimizing the potential for imbalance developing on
reassembly in the turbopump.

(2) Change operating speed or critical speeds to detune shaft.

(3) Reduce internal clearance of roller bearings, and add or increase damping.

(4) Increase the rate of passing through the critical speed directly before the region of
resonance, and reduce the acceleration just above the critical speed (ref. 67).

3.2.4 Balancing

The method of balancilzg and required balance accuracy shall be consistent with

(1) mass and shape of the rotor, (2) shaft operating speeds and their relations to

the critical speeds, and (3) required turbot)urn p life.

Static balance may be used for rotors of large mass, large mass-moment-of-inertia, and small

axial thickness. Dynamic low-speed balancing may be used for rotors operating below the

first bending critical. Dynamic high-speed balancing is required when rotors operate above

the first bending critical. If n is the number of shaft bending criticals through which the

shaft is operated, then the rotor should be balanced in a minimum of n+2 planes (ref. 137).

As a general guide, the rotor should be balanced to an eccentricity of about 50 to 100# in.

( 1.27 to 2.54/am). Separate balance of rotor components is advisable when the component is
of large mass, large mass-moment-of-inertia, and appreciable axial length. The shaft or

component should be supported at the same surfaces that determine the axis of rotation
during turbopump operation.
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Tile material for balancing should be added or removed where tile diameter is large, so that

tile relative amount of material change is small. For conlponents that will be used with

liquid oxygen, grind material away rather than drill holes, because contaminants may collect

in the holes.

Tie bolts should be piloted to maintain concentricity. To minimize required balance

corrections, locate fasteners, slots, wrench fiats, etc. symmetrically on the shaft.

3.3 Coupling Design

The coupling O'pe shall satisfy applied loads, required alignment, and era, elope

limits.

Splines are recommended as the coupling to be used where there is torque load but no axial

or thrust load and where there is sufficient space for separate piloting. Curvic couplings are

recommended for use in highly loaded applications where there is both axial and torque

loading and where precision piloting is needed, Parallel-sided face couplings are

recommended for lightly loaded applications (both axial and torque) and for applications

where space permits separate piloting.

3.3.1 Splines

3.3.1.1 SIZE AND CONFIGURATION

The spline design s/tall cotz.lbrm to the ASA staHdard ANSI B 92. I t except when

mod_/_catioHs will impro_,e the per./brmat_ce.

A circular-arc space width equal to one-half the circular pitch should be used for the internal

member with tolerance in the plus direction. The clearance then establishes the maximum

tooth width of the external member with tolerance on the lninus side. If a side bearing fit is

desired, the clearance should be in the order of 0.0001 in.(2.54/x m).If a corrective helix

angle is used, the hand of the helix angle should be that which tends to unwind the helix of

the externally toothed member under torque load.

Inducers and impellers of oxidizer or monopropellant pumps should be driven by splines

that are straddled by centering pilots. For these applications, the splines should have tile

relatively loose Class 1 side-fit dimensions, while the pilots should be tight at operating

temperature. The fits to be used at the pilots will vary with rotor design and materials, it

should be an interference fit at operating temperatures. For example, a recommended

maximum interl\'rence for an alttminuln pumping element mounted on an Inconel X750

I Reference 182
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shaft is approximately 0.001-in. (25.4p, m) interference for each inch (2.54 cm) of pilot
diameter in the size range from 1 to 3 ill. (2.54 to 7.62 cm); the minimum interference

should be about 0.0009 ill. (23#m) less than the maximum. Tests should be performed to

ensure that the fit is tight enough to prevent any clearly defined fretting in the spline or
other mating surfaces.

The use of side-fit splines with straddling pilot diameters is recommended for other main

drives; however, a major-diameter-fit spline without pilots is an acceptable alternate for

splines operating at moderate temperatures. The major-diameter-fit spline is to be preferred
for appropriate applications where it allows the rotor length to be decreased as a result of
eliminating the pilots.

When involute splines are used in a hot-turbine environment, the Class 1 side-fit spline with

straddling pilot diameters is recommended. In this case, because of the temperature

transients, the pilots should be tight at all temperatures if the centering of the turbine wheel
is fixed by the pilots.

Main-drive splines should be 14V2°, 30-percent stub tooth. An even number of teeth should

be used. The full-fillet radii should be used whenever possible, and the dimensions on the

drawing should control the upper and lower limit of the diametral pitch. When space does

not permit both members to have fillet root, it should be on the external teeth because they
are generally weaker in root tensile strength.

A crowned spline is suitable for misalignments in the range of 0.25 ° to 3 °.

Accessory drive splines should be 30 °, 50-percent stub tooth.

3.3.1.2 TEETH IN CONTACT

The number of teeth assumed to be in contact shah be based on the tolerances
required and the degree of final inspection.

For lightly loaded splines, 25 percent of the teeth should be assumed to be in contact. A

spline length of two-thirds to one shaft diameter is recommended. For highly loaded splines,

50 percent of the teeth may be assumed in contact provided that the tolerances are tightly
controlled and finished parts are closely inspected. This inspection should include tooth

thickness, form, spacing, and interference as well as inspection by gages to ensure
in terchangeability.
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3.3.2 Curvic Couplings

3.3.2.1 PROPORTIONS FOR JOINT STIFFNESS

The rat#_ of the rotor disk diameter to the coupfing outer diameter shall be as

small us possible.

The ratio of the disk diameter to the curvic outer diameter (fig. 22) should not exceed 4 |'o1

maximum joint rigidity and stability.

3.3.2.2 SIZE AND CONFIGURATION

The couplillg size and configuration shall satisfy the requirements imposed by

critical loading conditions, necessary safety/'actors, and specified reliability.

For initial sizing, approximate analysis may be used. A useful formula (ref. 143), based on a

face length of 12.5 percent of the coupling diameter and an ultimate strength of 150,000 psi
( 1.03 GN/m z ), gives the required curvic coupling outside diameter in inches as equal to the

cube root of T/1310,where T is the shaft torque in in.-lbf. (In meters, the OD is equal to

the cube root ofT/(9.03 x 106), where T is the shaft torque in N-m).

For final sizing, detailed stress analysis should be used. The stress analysis should include

tooth shear, contact surface stress, transverse shear, and tension across the tooth at the root.

Effects of fretting on tooth cracking also should be considered (ref. 197). The axial force

used for the analysis in conjunction with the power torque load should account for the
retaining bolt preload of 1.5 to 2 times the separating force and its tolerance plus other

operational applied loads (sec. 3.1.3). The coupling may be subjected to a

higher-than-normal load at initial assembly in order to increase the contact area.

When standard tooth proportions are used, the contact surface area and shear area remain
constant for a given coupling diameter regardless of the number of teeth. The tooth

proportions, diametral pitch, and stress limits of reference 143 should be used for long-life,

high-reliability applications. However, the reference 143 values are conservative for short-life

applications ( 1 hour or less); hence, stress limits twice those of the reference may be used in

short-life designs. Higher stress limits may be tolerated if joint strength is verified

experimentally. A tooth contact angle of 30 ° is recommended. For highly loaded couplings,

the surface contact area should be controlled by using close tolerances and rigid inspection.

The detail design should always be directed to eliminating stress raisers or reducing their

effect. Typical means of accomplishing this are to avoid bolt holes in curvic coupling teeth
and to follow the recommendations in section 3.1.1.4.
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l:or multiple-reuse and long-life applications, an analysis of both high- and low-cycle fatigue

should bc made (sec. 3. l .3.3).

3.3.3 Parallel-Sided Face Couplings

Parallel-sided ,/'_we couplings shall 1tot be subject to heavy loads or critical piloting.

Structural analysis of the teeth, retaining bolt, and pilot should be accomplished to ensure

that the coupling design has adequate strength to withstand the loads and intended

environmental use. Particular attention should be given to tooth tolerances, clearances, and

plastic deformation that may be necessary to develop siglaificant tooth-to-tooth load

sharing. With one tooth in contact, the pilot is subjected to a transverse load that may result

in shaft misalignment due to pilot deflection.

3.4 Design Confirmation Tests

Tests shall prol, ide confirmation of the rotor design adequao'.

Tests should be made to confirm all questionable assumptions used in the design analyses

when it is expected that deviations from the assumptions seriously affect design adequacy.

These tests should include shake and rotating system tests as well as special stiffness and

strength tests as appropriate. The tests should evaluate

(1) Critical speeds, whirl deflection shapes and orbit magnitudes, and bearing
reactions.

(2) Any unknown significant shaft dynamic characteristics such as sell-excited whirls

at supercritical speeds.

(3) The effects on shaft performance of tie-bolt preload, bearing clearances, amounts

and locations of imbalance, and static forces applied to the shaft.

(4) The effects of acceleration rate and flexible-mount stiffness on the ease of passing

through critical speeds.

(5) Curvic-coupling stifflless under axial and moment loads.

(6) Bolt preload as a function of bolt stretch and pretorque.

(7) Bearing-mount stiffness.

(8) Shaft and coupling ultimate static and fatigue strengths.
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3.4.1 Nonrotating Tests

_,'Oflt'Otdtillg (s/taLe) ldsts shall proridc' data suitahle./br eraluating tim dynamic

c/lal'ac'[el'L_tics Q/the i't)[()l'//heal'#lg stt/L_'.i'stetlL

Tile test data should be used primarily l\)r built-up shafts to confirm the accuracy of the

analytical model used for the rotor and bearings (see. 3.2.2.1 ).

The first shake tests of the rotor system shottld be with the rotor supported by flexible wire

to simulate a free-free bearing support condition. These tests should be used to give data

regarding tie-bolt preload requirements, effective stiffness of joints and shaft-riding

elements, and rotor-only free-free bending natural frequencies and mode shapes. These data

provide an excellent check on the accuracy of the model used for the rotor in the analysis of

rotor/bearing/casing system dynamics.

A second series of shake tests is recommended mainly if the rotor bearing system supports

are purposely designed as flexible mounts. Then. a number of different flexible-mount

configurations should be used to provide data for selecting the appropriate mount

conI'iguration that will "tune" the rotor to the desired dynamic characteristics. These tests

also provide additional data on tie-bolt preload and rotor stiffness effects.

The instrumentation used in this series of tests may be any of the standard

vibration-laboratory instrumentation that will yield the type of data desired.

3.4.1.1 DATA CORRELATION

Tim eraluation o.f findings j)'om s/take tests s/tall be consistent with the

dU.Terences that exist between the shake test and the actual rotating lest hardware
alld ellFirollltlell t.

The t'ollowing should be evaluated for differences:

(l) Levels of excitation. A very low, constant-level excitation usually is used in

shake tests, whcreas excitation from a rotating imbalance force increases in

proportion to the square of the rotational frequency.

(2t Gyroscopic and rotary inertia effects.- Natural frequencies during shake tests are

lowered because of rotary inertia of the disks, whereas in forward circular whirl

rotation the disks produce gyroscopic stiffening that raises the natural

frequencies.

(3) Bearing clearances and effective stifflless.

([41 l)amping.
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(5) Rotor stiffness developed by shaft-riding elements, and rotor stiffness at the joints

and couplings.

(6) The housing, casing, or support-mount dynamic stiffness characteristics.- Shake

tests usually involve something other than the actual machine casing.

3.4.2 Rotating System Tests

During design or initial development stages, turbopump rotating tests shall
provide system-dynamics data suitable for evaluating system characteristics.

Critical-Speed spin-rig tests.- This test series should consist of many spin tests with selected

different bearing-mount configurations. The spin-rig rotor and bearing hardware should be

sufficiently close to actual detail design configuration to simulate fully the actual mass and

stiffness magnitudes and distribution. The casing need only be crudely simulated if the

mount dynamically decouples the rotor/bearing-mount system from the turbopump casing.

This series of tests should be the main tool for achieving the overall test objectives for the

rotor-dynamics design program. However, as the rig will not simulate all fluid dynamic

properties or the clearances between rotor and stator parts of the prototype, the assurance

that self-excited subsynchronous whirls will not occur or will not be damaging must await
the full-scale prototype tests.

Full-Scale prototype rotating system tests.- These tests should consist of the normal

development tests planned for the turbopumps. Rotor dynamic data should be obtained by

using appropriate instrumentation to monitor shaft motion and general turbopump

vibration level. Accelerometers, velocity probes, and distance detectors should be placed at

locations known from the prior system-dynamics analyses and tests to be sensitive indicators

of vibration levels. Data from this series of tests should confirm findings from the earlier test
series and identify any new characteristics associated with the prototype hardware that was

not evidenced at the lower level of simulation of the spin-rig test series. These spin tests

should be accomplished early enough to allow a redesign cycle if necessary.

3.4.2.1 INSTRUMENTATION

3.4.2.1.1 Type of Instrumentation

The test instrumentation shall be appropriate for the dynamics data desired and
for the test conditions.

As applicable, the following should be considered:
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(1) Distancedetectorsto monitor shaft motion; becauseof their sensitivity to
temperature,thedistancedetectorsshouldbecalibrated.

(2) Velocity probesfor frequenciesup to 1000Hz; accelerometersfor frequencies
above1000Hz.

(3) Outputsignalfilteredto isolatethefrequencyof interest.

(4) Anoscilloscopeto monitorvisuallythewaveform andamplitude.

(5) Instrumentation system frequency responsesubstantially higher than the
maximumfrequencyof interest.

(6) Instrumentationcapabilitiescompatiblewith theenvironment.

(7) A trackingfilter for variablespeedtests.

(8) Rokide or plasmaspray to bond straingagesto high-temperature(>1500° F

( 1089 K)) rotating parts.

(9) Readings clearly representative of shaft motion and not unduly influenced by the

mount response.

(10) Instrumentation that does not alter the response of the shaft by mass loading or

aerodynamic interference.

3.4.2.1.2 Instrumentation Location

Instrumentation locations shall be adequate to monitor general vibration levels.

Instrumentation should be placed at locations known from prior system dynamic tests to be

the best locations for indicating overall vibration levels. Usually, accelerometers and velocity

probes placed near bearing locations serve well. Place the distance detectors in 90°-displaced

pairs at various locations along the shaft, preferably where nodes are not expected; both
lateral and axial shaft motion should be measured. Distance detectors measure relative

motion between the shaft and the distance detector mount only; therefore, it may be

necessary to place accelerometers or velocity probes on these mounts to measure the mount
absolute motions.

3.4.2.2 INTERPRETATION OF DATA

The interpretation of vibration data shall be adequate to determine normal levels

of vibrations and to identify abnormal conditions.

The following techniques should be considered, as applicable, to aid in data interpretation:

95



• Viewunfilteredvibrationwaveform.

• Plot first-ordervibrationamplitudesversusshaftspeed.

• Viewthe Lissajouspatternat thevariousspeedsof interest.

• Analyzedata using narrow-bandwidth filters to produce a plot of vibration intensity

versus frequency (i.e., power spectral density analyses) for a constant shaft speed.

Vibrations with frequency equal to shaft speed are called first-order vibrations. Typical
causes of various-order vibrations are as follows:

(1) ttalf order: Self-excited whirl, cage rotational frequency.

(2) First order: Rotor imbalance.

(3) Second order: Bearing misalignment, assembly looseness, and impending coupling
failure.

(4) Higher order: Blade passing, gear mesh, bearing noise, torque pulsations, and

background vibrations.

3.4.3 Special Tests

Special tests shall evaluate

accurately by other means.

critical design factors that cannot be determined

When rotor or stator component or assembly characteristics are difficult to calculate

accurately, and when the characteristics can cause a significant influence on the proper

functioning of the shaft, experimental analysis using models or the actual component should

be employed. As applicable, bearing and bearing-support-housing static and dynamic load
deflection tests should be used for stiffness evaluations. Retaining bolts holding turbine or

pump parts to the shaft should be calibration tested for preload. With this information, the

required assembly technique to ensure that the desired preload is achieved during assembly
can be established.
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GLOSSARY

Term or Symbol

built-up shaft

case hardening

CH 900

Charpy V-notch

critical speed

crowned spline

curvic coupling

DN

da t tt nl

double pilot

dynamic inrbalance

endurance limit

Definition

shaft with a nrultiplicity of components such as collars, sleeves, and

couplings

infiltration of a metallic surface with carbon to provide selective

increase in hardenability

temper designation by Armco Steel Co. to indicate coldworking

followed by furnace heating to 900°F (756 K)

notched specimen used to determine material impact properties

shaft rotational speed at which a rotor/stator system natural frequency

coincides with a possible forcing frequency

spline modified along the face width or profile to anticipate

misalignment

trade name of the Gleason Works for a face-gear type of coupling

generated in manner similar to that used for bevel gears

bearing speed-capability index, the product of bearing bore size (D) in

mm and rotation speed (N) in rpm

reference surface for locating bearings on the shaft:normally the shaft

longitudinal axis or the shaft shoulder

registry between mating components wherein two surfaces establish

relative location or where location is transferred from one surface to

another

distribution of rotor mass such that the principal inertia axis of the

rotor is rotationally misaligned with the bearing axis. Moments are

generated when the rotor rotates about the bearing axis. Dynamic

imbalance, also referred to as moment imbalance, requires measurement

and correction in two or more planes perpendicular to the rotor axis.

level of stress at which the material can endure an unlimited nurnber of

cycles
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Term or Symbol Definition

FORTRAN

fluid-film bearing

free free

fretting

g

galling

gyroscopic nlonlent

Hz

HCF

hydrostatic bearing

K

Lam_'s equation

LCF

Lissajous pattern

lumped mass

M

acronym for fornmla translation: the special system of coimnunication

by which information and instructions are provided to a computer

type of bearing wherein separation of the bearing and journal depends

on the shearing of a lubricating film

term used to designate a complete lack of restraint applied to the first
lateral bending mode of shaft resonance

mechanism of wear that acts on mating metallic materials to produce
surface damage when one surface moves relative to another

acceleration due to gravity

progressive surface damage of mating surfaces resulting in increased
friction and possible seizure

moment induced on rotating components by the angular displacement
of the rotating axis, as in a gyroscope

cycles per second

high-cycle fatigue

fluid-film bearing wherein the pressure required to maintain separation
of the surfaces is externally supplied

spring rate

equation for stresses in thick cylinders

low-cycle fatigue

pattern displayed on the oscilloscope screen when shaft whirl motions

at a given station on the shaft sensed by pickups spaced 90 ° apart (and
lying in the same plane) are fed separately to the horizontal and vertical

inputs of the oscilloscope

an analytical concept wherein a mass is treated as if it were

concentrated at a point

mass
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Term or Symbol

inode

N

NCR

NT

NDT

nitriding steel

nodal circle

nodal diameter

Pd

pilot

PV

R

Rockwell "C"

r Ills

rolling-contact bearing

rpm

rps

SCTg00

Definition

any of the various stationary-vibration patterns of which an elastic

body is capable

turbopump shaft rotational speed

critical speed

turbine shaft speed

nondestructive test

steel alloyed with nitride-forming elements; exposure of the alloy to

active nitrogen results in a thin hard ca_e that is especially wear
resistant

pattern of vibration nodes that forms a circle

pattern of vibration nodes that forms a diametral line

gear or spline pitch diameter

mechanical element acting on another mechanical element to provide

correct alignment or proper relative position

index of seal or bearing operation, the product of unit loading(P) and

rubbing'velocity (V)

radial load

hardness scale

root mean square

"antifriction" bearing of the ball or roller type

revolutions per minute

revolutions per second

temper process consisting of subcooling treatment followed by furnace

heating to 900°F (756 K)
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Term or Symbol

shaft-riding elements

sigma

spring constant or spring rate

squeeze-fihn damping

stack height

static imbalance

stiffness

subcritical

supercritical

tangled-yarn

T.I .R.

tort

q,

8

X

g2

(..O

Definition

ternr used to designate components such as collars and sleeves

term in statistics; tile standard deviation from the mean

change of mechanical spring force per unit of deflection in a flexure
element

friction damping produced by pressure and flow forces in a thin fihn of

lubricant (oil) subjected to high load and shear

term applied to bevel gears to indicate the measured distance from tile

cone center to a locating surface

distribution of the rotor mass such that the rotor center-of-gravity axis

is translationally eccentric to the bearing axis. This mass eccentricity

generates centrifugal forces that are reacted by the bearings when the

rotor rotates about the bearing axis. Static imbalance, also referred to

as force imbalance, can be corrected by adding or subtracting mass in a
single plane perpendicular to rotor axis.

resistance to deflection

coined word denoting operation below a critical speed

coined word denoting operation above a critical speed

term used to describe a nonrepetitive whirl orbit

total indicator reading or runout

unit of pressure equivalent to 1 nmr of mercury (133.32 N/m 2)

dynamic imbalance forcing function

static imbalance forcing function

bearing clearance; also, amount of deflection

nondimensional natural frequency of a two-degree-of-freedom system

shaft rotational speed

shaft whirl speed
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MATERIALS

Designation

A-286

AM-350, -355

AMS 4775

ARMCO 21-6-9

ARMCO 22-13-5

Aerozine 50 or A-50

CRES

H-11

lnconel 718

Inconel X-750

Invar

K-monel

Linde LW-5

LO2 or LOX

LH2

M-50

N204

Rene 41

Rokide

RP-I

Specification or Description

commercial designation for an austenitic iron-base alloy

conunercial designations for semi-austenitic

sleds

Aerospace Material Specification (SAE) for

alloy

Armco Steel Co. designation for nickel-chromiun>nmlybdenun_

stainless steels

50/50 blend of hydrazine and unsymmetrical dimethylhydrazine

corrosion resistant steel

AISI designation for chromium-molybdenum-vandadium tool steel

International Nickel Co. designations for austenitic nickel-base alloys

precipitation-hardening

nickel-chronfium braze

International Nickel Co. designation for a nickel alloy with very low

coefficient of thermal expansion

International Nickel Co. designation for a

nickel-copper-aluminum-titanium alloy; age-hardenable, nonmagnetic

down to -150°F (172 K)

Union Carbide Corp. designation for flame-sprayed tungsten carbide

liquid oxygen, propellant grade per MIL-P-25508D

liquid hydrogen, propellant grade per MIL-P-27201A

AISI designation for a high-molybdenum-alloy tool steel

nitrogen tetroxide, propellant grade per M1L-P-26539

General Electric Co. designation for an austenitic nickel-base alloy

proprietary refractory manufactured by The Carborundum Co.

high-energy kerosene, propellant grade per MIL-P-25576
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Designation Specification or Description

Vascojet 1000

Waspaloy

17-4 PH, 17-7 PH

300,310,316

440 C

4340, 4620

9310, 52100

6061 -T6, 2219-T6,
7075-T73

trade name of the Vanadium Corp. of America for a vanadium-alloy
tool steel

Pratt & Whitney Aircraft designation for a precipitation-hardening

nickel-base superalloy

commercial designations for semi-austenitic precipitation-hardening
stainless steels

commercial designations for austenitic nickel-chromium steels

commercial designation for martensitic chromium steel

AISI designations for alloy steels

commercial designations for heat-treated aluminum alloys

PUMPS, ENGINES, AND VEHICLES

Designation Identification

ARES 100,000-1b (445 kN) thrust high-pressure, staged-combustion rocket

engine designed by Aerojet-General Corporation; uses N204/A-50

J-2 200,000-1b (890 kN) thrust rocket engine for S-II and S-IVB; produced

by the Rocketdyne Division of North American Rockwell Corp; uses
LOX/LHz

H-I 200,000-1b (890 kN) thrust rocket engine for Saturn S-IB vehicle;

produced by Rocketdyne Div., North American Rockwell Corp; uses
LOX/RP-1

M-1 1.2 million-lb (5.34 MN) thrust rocket engine designed by the
Aerojet-General Corporation; uses LOX/LH2

Mark 4, Mark 9, Mark 25 liquid-hydrogen turbopumps developed by Rocketdyne Division of

North American Rockwell Corp.

NERVA nuclear fueled rocket engine under development by Aerojet-General
Corp.

RL-129 250,000-pound (1.11 MN) thrust rocket engine developed by Pratt &

Whitney Aircraft Division of United Aircraft Corp.; uses LOX/LH2
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Designation Identification

RL 10

SNAP 8

Titan I, I1, 11I, IlIM

T53

XLR-87-AJ-3, -5, -7, -9

XLR-91 -AJ-3, -5, -7, -9

15,000-1b (66.7 kN) thrust rocket engine developed by Pratt & Whitney

Aircraft Division of United Aircraft Corp.: uses LOX/LH2

nuclear auxiliary power system developed by Aerojet-General

Corporation

a family of launch vehicles using the XLR-87-AJ and XLR-91-AJ series

of rocket engines developed by Aerojet General Corporation

jet engine manufactured by AiResearch Division of the Garrett Corp.

Aerojet-General engines for the first stage of the Titan vehicles

• the -3 uses LOX/RP-1 and develops 150,000 lb. (667 kN) thrust

• the -5,-7,-9 use N2 O4/A-50, and develop 215,000 lb (956 kN)
thrust

Aerojet-General engines for the second stage of the Titan vehicles

• the -3 uses LOX/RP- 1, and develops 90,000 lb. (400 kN) thrust

• the -5, -7, -9 use N204/A-50 , and develop 100,000 lb. (445 kN)
thrust

Abbreviations

AIAA

AISI

AFAPL

AMS

ANSi

ASME

ASA

ASTM

COSMIC

liT

SAE

Identification

American Institute of Aeronautics and Astronautics

American Iron and Steel Institute

Air Force Aero Propulsion Laboratory

Aerospace Material Specification

American National Standards Institute

American Society of Mechanical Engineers

American Standards Association

American Society for Testing and Materials

Computer Software Management and Information Center (Univ. of

Georgia, Athens, GA)

Illinois Institute of Technology

Society of Automotive Engineers
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NASA SPACE VEHICLE DESIGN CRITERIA
MONOGRAPHS ISSUED TO DATE

ENVIRONMENT

SP-8005

SP-8010

SP-8011

SP-8013

SP-8017

SP-8020

SP-8021

SP-8023

SP-8037

SP-8038

SP-8049

SP-8067

SP-8069

SP-8084

SP-8085

SP-8091

SP-8092

Solar Electromagnetic Radiation, Revised May 1971

Models of Mars Atmosphere (1967), May 1968

Models of Venus Atmosphere (1968), December 1968

Meteoroid Environment Model-1969 (Near Earth to Lunar Surface),

March 1969

Magnetic Fields-Earth and Extraterrestrial, March 1969

Mars Surface Models (1968), May 1969

Models of Earth's Atmosphere (120 to 1000 kin), May 1969

Lunar Surface Models, May 1969

Assessment and Control of Spacecraft Magnetic Fields, September 1970

Meteoroid Environment Model-1970 (Interplanetary and Planetary),

October 1970

The Earth's Ionosphere, March 1971

Earth Albedo and Emitted Radiation, July 1971

The Planet Jupiter (1970), December 1971

Surface Atmospheric Extremes (Launch and Transportation Areas),

May 1972

The Planet Mercury (1971), March 1972

The Planet Saturn (1970), June 1972

Assessment and Control of Spacecraft Electromagnetic Interference,

June 1972
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STRUCTURES

SP-8001

SP-8002

SP-8003

SP-8004

SP-8006

SP-8007

SP-8008

SP-8009

SP-8012

SP-8014

SP-8019

SP-8022

SP-8029

SP-8030

SP-8031

SP-8032

SP-8035

SP-8040

SP-8042

SP-8043

SP-8044

SP-8045

SP-8046

Buffeting During Atmospheric Ascent, Revised November 1970

Flight-Loads Measurements During Launch and Exit, December 1964

Flutter, Buzz, and Divergence, July 1964

Panel Flutter, Revised June 1972

Local Steady Aerodynamic Loads During Launch and Exit, May 1965

Buckling of Thin-Walled Circular Cylinders, Revised August 1968

Prelaunch Ground Wind Loads, November 1965

Propellant Slosh Loads, August 1968

Natural Vibration Modal Analysis, September 1968

Entry Thermal Protection, August 1968

Buckling of Thin-Walled Truncated Cones, September 1968

Staging Loads, February 1969

Aerodynamic and Rocket-Exhaust Heating During Launch and Ascent,

May 1969

Transient Loads From Thrust Excitation, February 1969

Slosh Suppression, May 1969

Buckling of Thin-Walled Doubly Curved Shells, August 1969

Wind Loads During Ascent, June 1970

Fracture Control of Metallic Pressure Vessels, May 1970

Meteoroid Damage Assessment, May 1970

Design-Development Testing, May 1970

Qualification Testing, May 1970

Acceptance Testing, April 1970

Landing Impact Attenuation for Non-Surface-Planing Landers, April
1970
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SP-8050

SP-8053

SP-8054

SP-8055

SP-8056

SP-8057

SP-8060

SP-8061

SP-8062

SP-8063

SP-8066

SP-8068

SP-8072

SP-8077

SP-8079

SP-8082

SP-8083

SP-8095

SP-8099

GUIDANCEANDCONTROL

SP-8015

SP-8016

StructuralVibrationPrediction,June1970

NuclearandSpaceRadiationEffectsonMaterials,June1970

SpaceRadiationProtection,June1970

PreventionofCoupledStructure-PropulsionInstability(Pogo),October
1970

FlightSeparationMechanisms,October1970

StructuralDesignCriteriaApplicableto aSpaceShuttle,January1971

CompartmentVenting,November1970

InteractionwithUmbilicalsandLaunchStand,August1970

EntryGasdynamicHeating,January1971

Lubrication,Friction,andWear,June1971

DeployableAerodynamicDecelerationSystems,June1971

BucklingStrengthofStructuralPlates,June1971

AcousticLoadsGeneratedbythePropulsionSystem,June1971

TransportationandHandlingLoads,September1971

StructuralInteractionwithControlSystems,November1971

Stress-CorrosionCrackinginMetals,August1971

DiscontinuityStressesinMetallicPressureVessels,November1971

PreliminaryCriteriafor the FractureControlof SpaceShuttle
Structures,June1971

CombiningAscentLoads,May1972

GuidanceandNavigationforEntryVehicles,November1968

Effectsof StructuralFlexibilityonSpacecraftControlSystems,April
1969
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SP-8018

SP-8024

SP-8026

SP-8027

SP-8028

SP-8033

SP-8034

SP-8036

SP-8047

SP-8058

SP-8059

SP-8065

SP-8070

SP-8071

SP-8074

SP-8078

SP-8086

SP-8098

SpacecraftMagneticTorques, March 1969

Spacecraft Gravitational Torques, May 1969

Spacecraft Star Trackers, July 1970

Spacecraft Radiation Torques, October 1969

Entry Vehicle Control, November 1969

Spacecraft Earth Horizon Sensors, December 1969

Spacecraft Mass Expulsion Torques, December 1969

Effects of Structural Flexibility on Launch Vehicle Control Systems,

February 1970

Spacecraft Sun Sensors, June 1970

Spacecraft Aerodynamic Torques, January 1971

Spacecraft Attitude Control During Thrusting Maneuvers, February
1971

Tubular Spacecraft Booms (Extendible, Reel Stored), February 1971

Spaceborne Digital Computer Systems, March 1971

Passive Gravity-Gradient Libration Dampers, February 1971

Spacecraft Solar Cell Arrays, May 1971

Spaceborne Electronic Imaging Systems, June 1971

Space Vehicle Displays Design Criteria, March 1972

Effects of Structural Flexibility on Entry Vehicle Control Systems,
June 1972

CHEMICAL PROPULSION

SP-8087

SP-8081

SP-8052

Liquid Rocket Engine Fluid-Cooled Combustion Chambers, April 1972

Liquid Propellant Gas Generators, March 1972

Liquid Rocket Engine Turbopump Inducers, May 1971
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SP-8048

SP-8064

SP-8075

SP-8076

SP-8039

SP-8051

SP-8025

SP-8041

Liquid Rocket Engine Turbopump Bearings, March 1971

Solid Propellant Selection and Characterization, June 1971

Solid Propellant Processing Factors in Rocket Motor Design, October

1971

Solid Propellant Grain Design and Internal Ballistics, March 1972

Solid Rocket Motor Performance Analysis and Prediction, May 1971

Solid Rocket Motor Ignilers, March 1971

Solid Rocket Motor Metal Cases, April 1970

Captive-Fired Testing of Solid Rocket Motors, March 1971

NASA-Langley, 1973 I 2 1




