ABGRTRACT

Four BuTf Plifhta were eonducted durine the sumner of igre oven
 qualify tho Viking parachate oystom bohind the fuldmeale Vikinf: Hatry Vahicle over the maximum range of entry cond dions antiatpeted in tho Viking '/5s soft lauding on Mars, Llost coneorns eentored on the abildity of the minimun weicht parachute systom to operato without fabric damage in the wake of the blunt-body entry vohiele. This is the first known instance of parachute operation at supersonic speeds in the wako of such a large blunt body. Ihe flifght tosts utilized the largest successful balloonmpayload weight combination known to roach the earth's upper atmosphere where a varying number of rocket engines were mployed to boost the test vehicle to spoeds and dynamic pressures simulating the range of conditions on Mars.

This report presents a summary of the test series. Test conditions ranged from a Mach number of 2.0 to 0.5 and dynamic pressure from 11.7 to 4.4 psf. This range of conditions covers the uncertainty in entry conditions at Mars due to atmospheric and entry performance uncertainties. The report emphasizes parachute performance and simulated Mars entry vehicle motions as influenced by the parachute performance. Conclusions are presented regarding the ability of the parachute to perform within the operational parameters required for a successful soft Martian landing. A iist of references which covers all reports in the qualification test program is included.

Jawn L. Rapor

14 3720369

March 1973

MRL L.ine Ttem No. N3..'T04?

BALLOON LAUNGHED VIKING DECELBKATOR
'HS'I' PROGKAM
SUMMARY RLPOR'i'

Prepared by

F. C. Michel

MARIIN MARTETILA CORPORATTON DENVER DIVISION
P.O. Bох 179

DENVER, COLOKADO 80201
Pnge
tabler of contents 1.1
LIST OF MMLUSTRATIONS iii.
LIS'1 OF TABLES v
I. TNTRODUCTION 1
II. VIKING DECELERATOR SYSTEM 3
III. IEST SYSITM DESCRIPTION 7
JV. MARS QUALIFICATION 11
v. PARACHUTE DEPLOYMENT: CONDITIUNS 20
VI. MORTAR PERFG:MANCE 23
VII. PARACHUTE INFLATION CHARACTERISTICS 26
VIII. OPENING LOAD AND PREDICTION MEHHODS 31
IX. PARACHUTE AND VEHICLE STABILITY 41
X. AEROSHELL SEPPARAIION 49
XI. PARACHUTE STRUCTURAL QUALIFICATION 53
XIT. DARACHUTE RECOVERY SUMMARY 56
XIII. PARACHUTE DRAG PERFORMANCE 58
XIV. CONCLUSIONS 72
XV. RETERENGES 74

LIST Of MLLINSTRATLONS

Eigure Itcle Pags
1 VAlking Decelexator Syatem 523
456
Ejected Weight Distribution 6
Typical Miosion Snquence - Powered Flight 8
BLDI Supersonic Vehicle Configuration 9
blot Supersonic Vehicle Sectional View 10
Mars Envelope and Test Conditions 14
BLiJ' AV-1 Test Conditions 15
BLD'I AV-2 Test Conditions 16
BLIII AV-3 Test Conditions 17
BLDI AV-4 Test Conditions 18
Parachute Drag Coefficient Enjelope 19
Parachute Filling Time Data 28
Canopy Growth Parameter 29
Canopy Area Oscillations 30
Wind Tummel Drag Data 35
Suspension Line Load/Elongation Data 36
Predicted Versus Actual Load 37
Parachute Opening Load, BLDT AV-1 38
Parachute 0pening Load, AV-2 and AV-3 39
Parachute Opening Load, BLIDI AV-4 40
Vehicle Attitude Rates, AV-4 Flight Data 44
Vehicle Attitude Rates, AV-4 Simulation 45
Attitude Rate Sensitivity to Load 46
Selected Views of Parachute During Terminal Descent 47
Acroshell Separation Conditions 51.
Aeroshell Separation Distance 52
Parachute Cloth Stress During Inilation 55
Parachute Drag Coefficient 61
Parachute Lift 62
Horizontal Velocity Components, $A V-1$ 63
Horizontal Velocity Components, AV-2 64
Horizental Velocity Components, AV-3 65
Horizontal Valocity Components, AV-4 66

hist of madgtratmons (continued)

Pigure Ititue Page.
34 Relative Velocity Phase plane, AV-1 and AV-2 67
35 Relative Velocdty Phase Plane, AV-3 and AV 4 68Lift Vector Direction69
37 Zero Lif: Terminal Dynamic Pressure 7038Comparison Between LADI and BLDI Drag71

LIST OR TABLES

Table TLELe Page
1 Parachute Geometric Propartion 4
2
BLD'L Parachute Deploymont Conditions 21
3 BLDI Mortar Performance 25
4 Parachute Inflation Characteristics 26
5 BLIDT Peak Load Conditions. 33
6 Physical Property Data 42
7 BLDI Aeroshell Separation Conditions 50
8 Comparative Subsonde Test Data and Stress Predictions 54

T. INTRODUCTTON

The purpose of thin repore is to summarize the resulta of qualiftcation flight cesta of the Vikith decolerntor byatem which wexe conducted as the Balloon hanched Decelerator lest (Blim') program at the White Sands Missile Range (WSMR) in the summer of 1972. The prime objective of these teste was to verify the satisfactory uperat: n and performance of the fulloscale Viking decelerator in a simulated Maxs enviroment and in the wake of a full-gized Viking entry vehtele. In order to provide the velom eity/atmospheric density equivalent of the Mars parachute deployment conditions, the BLDI vehicle was 1 ifted to approximately 120,000 feet in the Earth atmosphare beneath a large balloon system. The BLIt vehicle was similar in size and shape to the Viking entry vehicle. Once at the proper altitude over the White Sands Missile Range, the BLDI vehicle was boosted by rocke: motors to the proper test conditions of Mach number and dynamic pressure.

Three teat points were originally gelected to bracket the range of posatble Mars deployment conditions. Test number 1 (vehicle designation AV-1) was to demonstrate performance and structural integrity at dephoyment conditions that were in excess of the maxinum Mars effective dynamic pressure and in excoss of Mach number equal to 2.0. The first test vehicle overshot its intended deployment dynamic pressure by about 23 percent because of vehicle damage incurred during lanseh. Although the parashute was deployed successfully, damage was sustained in two of the gores. The test was aubsequently ruled a "no-test" with its objectives reassigned to a fourth test vehicle (AV-4).

Tegt Number ? (AV-2) win to demoncreate performmere at doployment condtrions in tho eromonie region and at a dymate presoure lower than enuld bo experioneod on Mara.

Reat Number $3(A V-3)$ wan to demonstrat porfomance at deployment con dition repromenting a velocity that $f:$ lons that the Mars envolope and a nominal dyname pressure.

The four tosts wore conducted on the dates shown below. Detaded reports on each of these test flights have beon puhlishod and ure referenced. The reader who is interested in more specific information on the taunch operations, the BLD'l vehicle design and its instrumentation and operational procedures used durine the flight is referred to these rofercnce reports:

Flight Date
AV-1
AV-2
$A V-3$
AV-4

July 11, 1972
July 26, 1972
August 19, 1972
August 13, 1972

Referonce Report

TR-3720289
TR-3720291
TR-3720293
TR-3720295

This report will limit itself to a review of the decelarator performance for the four test fiights and will attempt to sumarize the status of parachute qualification for the Mars mission.

1T. VIKING DBGBHRATOR SYGTAM

 The parachute ta fabteated entrely of bacron type i2 except for the threemegged bridle which umos a :apeciah Gondyear proprintary fibor. The band cloth matorial is a 1.53 wh/sq yd rip.esinp materdal having a mindmum specilled strergth of $60 \mathrm{lb} / \mathrm{fm}$. The disk eloth is a $2.25 \mathrm{oz} / \mathrm{sq}$ yd ripesto; material having a minfmum specified atrength of $104 \mathrm{Lbs} / \mathrm{in}$. The minimum specified atrengeh of the radial tapes, circunferential tapes and sumpenm sion lines are 900 pounds, 1800 pounds and 880 pounds respoctively. The above paraehute strengh mombers correctly reflect a change made during development to improve the structural integrity of the canopy. the BLDI $A V-2$ and $A V-4$ flight test reports erroneously reported the former jevelopment strength values.

Ihe parachute is packed in a deployment bag to a density of $43 \mathrm{lbs} /$ It ${ }^{3}$ and stored in a mortar can aboard the BLDT vehicle in much the same mamer as the Viking System. At mortar fire, the deployment bag is ejected straight back by a mortar whose reaction force is nominally oriented through the vehicle cog. A brealedown of the ejected woight is seen fa Figure 2 to total 97 1bs. Ihe rolative veloeity lmparted to the deployment bag is expected from fround mortar test experfence to be 112 ± 3 res.

Additional geometric data on the paxachute are tabulated in rable 1.

TABM, 1

Item	Relarive latur	Vallise
Nomatal diameter	11	53 foce
:anartele poronity*	0.125 50	27611^{2}
Notal ara ($\mathbf{S}_{\text {a }}$) W\%	($5 / 4$) $0_{0} 0^{2}$	$2200.21 t^{2}$
Disk arcal	$0.53 \mathrm{~S}_{0}$	$1169.3 \mathrm{ft}^{2}$
Disk diametes	0.7260	38.51.
Disk circumiorente	2.2850	121 Et
GAP area	$0.12 \mathrm{~s}_{0}$	$264.7 \mathrm{ft}^{2}$
gay width	0.042 O	2.2 ft
Band area	$0.35 \mathrm{~S}_{0}$	$772.2 \mathrm{ft}^{2}$
Band width	$0.121 \mathrm{D}_{0}$	6.4 ft
Vent area	$0.00 \mathrm{~S}_{0}$	$11.0 \mathrm{ft}^{2}$
Vent diameter	0.370	3.7 ft
Number of stuspension 1 ines	--	48
Length of suspension limes	1.7 b	90 ft

* Vene plus gap provide 12.5 percent geometric porosity
** Disk + gup + band
+ Includes vent

FIGURE 1 VIKTNG DECELERATOR SYSTHM

The dessered test condtions of dynamic pressure and Mach mumor or velocity occur at harth al. itudes in the 140,000 foot altitude range. A combination of balloons and rockets, similar to that utilized for the PEPP tests (Reference 6) were employed to reach the desired test altitude for: each test. Four tests were conducted, two at supersonic conditions and one each at transonic and subsonic conditions. The supersonic and transonic tests required propulsion units built into the test vehicle to reach the desired Mach number. The typical powered flight mission sequence is shown in Figure 3. The subsonfe test did not need propulsion units, but involved simply a free fall drop from the balloon.

The test vehicle (Figures 4 and 5) was physically similar to the Viking entry vehicle except for the protruding rocket motor nozzles required on the powered vehicles. The test vehicle weighed approximately 1890 lbs at decelera* tor deployment on each of the flights. On-board instrumentation included forward and aft looking cameras, bridle leg tensiometers, rate gyros and accelerometers. More detafled information on the test system, test system performance and test operations is included in References 2 through 5.

(1) $-\%$ AXTS Cg OPRSBI $=1.41^{\prime \prime}+0.030^{\prime \prime}$

VIEW LOOKING AT AFI END OF VEHICLE

BLDI SUPERSONIC VEHICLE CONFIGUKATION
FIGURE 4
(1) x axts cg ait moniar ftre $=31.7^{\prime \prime}$ to 33. $7^{\prime \prime}$
(2) 3!5 EmPRRGONTE, 2,50 TRANEONTE

SH:OTYON AMA

FGGURE 5 BLDT SUPEBBONIC VEHTCLE SFCTTONAT, VIEW

TV. MARS QDALTRTCATION

A. Test Point: Selection

The BLDI test points will bracket the range of possible Mars deploy ment condjtiens as indicated in Figure σ_{0}

Test Vehicle AV-1 will demonstrate performance and structural integrity at deployment conditions that are in excess of the maximum Mars effective design dynamic pressure and in excess of Mach 2.0 as in Figure 7.

Test Vehicle AV-2 will demonstrate performance at deployment conditions in the transonic region and at a dyamic pressure lower than the lowest dynamic pressure shown for Mars in Figure 8.

Test Vehicle AV-3 will demonstrate performance at deployment conditions representing a velocity that is less than the Mars envelope shown in Figure 9.

Test Vehicle AV-4 is a re-filght of the maximum Mach and dynamic pressure objectives of $A V-1$ exrept that it refleces revised Mars peak load envelope conditions of Figure 10 which were changed as a result of Mariner 9 Mars atmosphere estimates.

B. General Parachute Performance Objectives

The general qualification ohjectives of all the Blow flights are:

1. Verify that the mortar provides sufficient velecity to support full deploynent of the parachute.
2. Verffy that ejection from mortar fire through line stretch, bag strip and initial full inflation $1 s$ relatively smooth and frec of canopy "dumps" or other discontinuities.
3. Vertfy that canopy matntatme a motatyoly otable drag shap aftor Lndtial taflatson and canopy aren onctlation phace in over.
4. Verify that muffecient drat performance da produced to support Viking misotom requirements of terminal velocity and norothell separation. The drag coeffecion produced by the parachute for the presence of the forebody should be within the envelope of G_{p} versus Mach number as defined in figure 11. This requirement refers to quasi-steady atate drag and does not apply to the highly dymande pulsations that occur during the parachute opening process.
5. Demonstrate that the parachute has an adequate structural margin to sustain maximum opening loads for the Viking mission and maintain an essentially damage free condition through the decaleration phase.
6. Vehicle oscillations shall be lest than or equal to +25 degrees amplitude in quasimsteady state descent with no wind when analytically extrapolated to Mars conditions.
7. Vehicle attitude rates shall be less than or equal to 30 degrees/ second in quasi-steady state descent with no wind when analytically extrapolated to Mass conditions.

C. Loads Cxiteria

The critical load test for the parachute is the supersonic case and tho objective for this test is to obtain peak load conditions that fall within the Mach number and dynamic pressure envelope defined in Figures 7 and 10 . In establishing these load limits, the effective design dynanic pressure for BLDT is adjusted downard to compemsate for incruased nerodyname heating and load amplification effect: and adjusted upward for the absence of inter. planetary cruise degradation. These adjustments are made to compensate for
welative changen th the parachute atructural eapability berween mide and Marn an followa:

where:

$$
\begin{aligned}
& \mathrm{W}=\text { Marghan of overtest }=1.3 \text { mix. } \\
& \mathrm{X}=\text { Aerodynamic heating factor }=.985 \\
& \mathrm{X}=\text { Ampliftcation Nffect }=.95 \\
& Z=\text { Interplanetary Cruise Degradation }=1.03
\end{aligned}
$$

1

Macia Rmprex

FIEURE 11

V. PARACHUTE DEPLOYMENT CONDITLONG

Parachuter dopleyment condit lom on the mide flishte diffor from tho
 aceept the sondhal affecen of a powerd filght phane which fincluded apta
 undike the Viking antry velitela, Hid not have un active attitude contel system and could not conterol attitude raten ar anylog of attack and sidem silp at doployment.

The primary purpose of each BLD' vohdele was to achicve parachute deployment condtions which fell within the deatred qualification envelopes discussed in Section IV. Thls was accomplished for each test condfion by selecting the proper drop attitude from the balloon, choosing the number and type of rocket motors for the desired thruat und firing the mortar either by ground command or by airborne timer. Within these design eonstraints the actual deployment conoltions were further influenced by numerous flight performance disporsions which were to some degree predictable but had to be controlled as tighty as possible.

A summary of actual parachute d-pleyment conditions achieved on each of the BLDT flights is presented in Table 2 .

TABLE 2

BLDT PARACHUTE DEPLOYMENT CONDITIONS

	AV-1	AV-2	AV-3	AV-4
Mach Number	2.18	1.133	. 47	2.126
Dynamic Pressure, pst	14.63	5.00	6.9	10.90
Velocity, FPS	2314	1194	464	2290
Axial Acceleration, G's	- 1.18	-. 40	- . 34	-. 93
Altitude, Feet	142025	135368	87027	147186
Angle of Attack, degrees	- 12	5.4	3.5	- 4.1
Angle of Sideslip, degrees	- 2	- 4.9	- 4.5	- 3.1
Total Angle of Attack, degrees	13	7.28	5.7	5.2
Parachute Temperature, ${ }^{\circ} \mathrm{F}$	50	47	26	46
Residual Spin Rate, deg/sec	- 26	- 62	-. 5	- 30
Pitch Rate, deg/sec	2	13	2.1	- 14
Yaw Rate, deg/see	- 3	3	- 5.8	4
Trim Angle of Attack, degrees	-8.5	-3.7	- 4.3	- 9.
Deviation from Trim, degrees	4.	10.4	9.1	6.

The actual deployment conditiuns are compared to the qualification envelopes in Figures 7, 8, 9 and 10. Examination of these figures reveals Lhat with the exception of AV-1 which was subsequently ruled a "no test", all flight test peak load points fell within the desired qualification envelopes. In some cases, such as AV-3 (Figure 9), deviation in the planned drop altitude accounted for much of the difference between targeted and actual deployment conditions. An overview of all the test poincs plotted with relation to the latest Mars avelope in igure 6 shows that the decelerator has truly been tested at corditions thet encompass upper and lower limits of Mach number and dynamic pressure.

A review of some of the other deployment conditions from Table 2 reveals additional qualification data. The maximum BLDT total angle of attack of 13 degrees compares favorably with the Mars nominal trim condition of 11.9 degrees at Mach 2.0. Stowed parachute temperature conditions on all flights were lower than the $\mathrm{oC}^{\circ} \mathrm{F}$ requirement to limit aerodynamic heat degradation of the canopy at the higher Mach number conditions.

The attitudes and attitude rates for BLDT are indicative of velicie dynamic motions which are significantly higher than what is expected on Mars. An indication of how far each vehicle was away fromits trim condition at depleyment is obtained by computing the vector difference between total angle of attack at deployment and at aerodynamic trim. This vector difference, shown as deviation from trim in Table 2 was as high as 10.4 degrees on BLDT whereas the Viking vehicle oscillation about trim is expected to be ± 3 degrees (Reference 17). Attitude rates as high as 14 degrees $/$ second on BLDT compare with Viking rates that are controlled by an attitude control system to approximately 1 degrea/second.

VI. MORTAR PERFORMANCE

The minimum martar velocity required for the Viking decelerator was established by requiring a positive velocity margin of at least 5 FPS at bag strip under the most adverse deployment conditions. The Viking entry vehicle is decelerating at $23 \mathrm{ft} / \mathrm{sec}^{2}$ in the worst case at parachute deployment. Additional assumptions used in establishing a minimum mortar velocity are:

1. The maximum ejected weight is 100 lbs.
2. The deployment bag drag is zero during canopy and line strip. This assumption more than adequately accounts for dynamic pressure degradation behind the blunt aeroshell.
3. Line stripping friction is assumed to be a constant value of 2 lbs. (Ref. 8).
4. Canopy stripping friction is assumed to be a constant value of 6 1bs. (Ref. 8)
5. A 2-body efection simulation method (Ref. 9) is used which considers variable mass distribution and momentum exchange between deployment bag and lander.

The minimum Viking mortar performance defined by the above conditions is 94 EPS (Ref. 7). On the supersonic BLDT fiight tests (AV-1 and AV-4) where a 1.3 overload in dynamic pressure is targeted, the increased BLDT deceleration adds approximately 10 FPS to the mortar velocity requirement for equivalence between BLDT and Viking during the bag strip process. A
mortar design was chosen which had the additional margin of ejection velocity to make it suitable for both BLDT and Viking. Mortar development tests (Ref. 8) conducted in a chamber where altitude and temperature could be simulated showed a mean mortar velocity of 110.6 FPS with a standard deviation of 4.42 FFS.

Actual BLDT mortar performance is evaluated by observing the bag stripping process from on-board cameras. When the suspension lines are fully payed out of the deployment bag, line stretch occurs and the canopy starts emerging from the bag. This event causes an identifiable spike to occur on the telemetered tensiometer loads and can readily be identified on the on-board film. The time from mortar fire to line stretch is therefore accurately determined. The actual distance the deployment bag must travel for the suspension lines to be pulled from the bag is defined by the length of the lines themselves. For most of the low dynamic pressure applications thar are typical of the Mars deployment, the lines may be assumed to follow a straight line between lander and the bag. For higher dynamic pressure and angle of attack conditions such as were experienced on $A V-1$, a line bowing correction was applied to account for the aerodynamic influence on the lines. By simulating the mortar firing process with complete aerodynamic forces and momentum exchange between the forebody and the deployment bag, a mortar velocity can be deduced. A summary of the mortar performance determined from a review of the flight data and simulation is presented in Table 3.

TABLE 3

BLDT MORTAR PERFORMANCE

	AV-1	AV-2	AV-3	AV-4
Mortar Velocity, FPS	112	106.5	106	114.2
Time to Line Stretch, Sec.	1.03	1.015	1.02	.99
Relative Velocity at Line Stretch	72	92.6	91.8	86.4
Time to Bag Strip, Sec.	1.40	1.31	1.32	1.30
Relative Velocity at Bag Strip	71.5	83.9	84.3	83.6

All the BLDT flight mortar velocities exceed the minimum Viking requirement of 94 FPS and show a substantial relative velocity remaining at bag strip to assure positive bag strip. There appears to be a fair amount of variation in mortar velocity from flight to flight. If we combine all the ground and flight mortar data of a common design, the mean mortar velocity ls 110 FPS with a standard deviation of 4.0 FPS. The chance of the mortar velocity being as low as 94 is seen to be extremely remote.

VII. PARACHUTE INELATION CHARACTERISTICS

The on-board Milliken and Photosonics aft-viewing camera films were examined in detail to establish event times and to document the character of the parachute inflation. Filling times from either line stretch or bag strip are summarized in Table 4.

Table 4

Parachute Inflation Characteristics

	AV-1	AV-2	AV-3	AV-4
Filling Time from Line Stretch, sec.	.56	.64	.81	.56
Filling Time from Bag Strip, sec.	.25	.35	.52	.312
Vehicle Velocity at Line Stretch, fps	2250	1160	459	2245
Vehicle Velocity at Bag Strip, fps	2218	1150	458	2235

The filling times for the BLDT flights are plotted in Figure 12 along with flight test data from the low altitude bomb drop development tests and Planetary Entry Parachute Program (PEPP) results (Reference 10). The data which uses bag strip as a zero reference more nearly reflects classical filling time since less than 10 percent inflation occurs before bag strip. The handbook design filling time equation for parachutes with inherent geometric porosity ($t_{f}=.65 \cdot \lambda_{G} \cdot D_{o} / V$ - Reference 11) agreea reasonably well with the Viking parachute test data in Figure 12. The envelope of test data thus established provides good assurance that large uncertainties in filling time are unlikely.

The growth of the canopy from line streteh was obtained by integrating the projected area images from the Milliken camera, A canopy growth parameter curve of nomalized area versus time for each parachute test is included in Figure 13. The projected area at any time is divided by the projected area in the final seconds of airborne film coverage (50 scconds after mortar fire). The time scale is normalized by the total filling time. Cemparison of the BLDT canopy growth curves shows them all to be well behaved and $v t=y$ bimilar. The curve for AV-1, as might be expected, showed the effect of a damaged canopy by deviating most significantly from the others. That part of the inflation curve from bag strip to full open is seen to be approximated very closely by a cubic function of time.

After first full inflation the canopy typically goes through a short period of unstable inflation shown in Figure 14. The BLDT canopy behavior is very similar to that shown on previous Disk-Gap-Band tests in the PEPP series, and like PEPP showed increased instability at the supersonic deployment conditions. Two dips in projected area, one at 2.0 seconds on AV-2 and another at 2.5 seconds on AV-4 are more pronounced than previously seen on PEPY. These appear to be caused by the canopy moving across the wake of the blunt forebody which unlike PEPP remained in place after parachute deployment. After the short period of area oscillations shown in Figure 14, the canopy achieved steady inflation and remained atable thereafter. No correction has been applied to the parachute projected area ratio to account for variation in the canopy image plane under changing load conditions.

FTGURE 12 PARACHUTE FILLING TIME DATA

1

figure 14
CANOPY AREA OSCILLATIONS

VIIT. OPENTNG LOAD AND PREDTCTION METHODS

Opentin, load prodiction han made rapid arriden in recent yearo with the ald of high spoad digital computerg. The work of Heintich (Reforenee 12), Berndt and DeWeces (Reference 13) and Tond (Reference 14) have contributed notably towards an understanding of the parachute opening load problem. In spite of all this progrese, opening load prediction is still very difficult because the non-rigid structure is mada of textiles with complex visco-elastic properties. General practice has been to verify the analytical predictions with load factors determined from full scale tests. The Viking problem, howaver, involves an atmospliers which we cannot similate very well here on Earth. We are dependent therefore upen our simulation tools for Mars opening load prediction. Part of the qualifiention process, then, is to compare our predicted opening loads with the actual BLDT resultes and from this comparison to make an assessment of how well we can predict Mars opening loads.

Although it is beyond the scope of this discussion to go into the datalls of our opening load prediction methods, a few points can be made. The methods used represent the joint efforts of Goodyear Aerospace (GAC). Langley Research Center (LRC) and Martin Marietta Corporation and therefore consider most of the usual state-of-the-art features. Of particular concern on the Viking application are the blunt forebody effects on the parachute drag coefficient. Wind tunnel data (keference 15) shown in Figure 15 show a dramatic difference between chute alone drag and drag in the wake of the Viking lander. The difference has been attributed to mutual interference effects between parachute and forebody. For the purpose of opening load determination, the chute alone data has been
ueed on the a日amption that faterferenee drag lasoen take a find te length of time co bo eotablished after firot inflation. The anamed value of dras coefficient uned in load pf dicedon may, of course, bo roviewed to Ineorporate bldt teog reoulto.

Load/elongation eogting of the Dacton 5% surpeneton line naterial has revalded some interasting proparties. Firet, atress/otrain curve non-linearities have led us to include these effects in our simulation model rather than using a simple spring constant. Sccondy, testing of the suspension lines at different load onset rates has revealed a strong sensitivity to this effect. The lower load/elongaison curve in Figure 16 was obtained where the strain rate was 1.67 petcent per second. The upper curve was generated by a serain rate of 100 percent per second. It became apparent that the differance between the upper and lower curve simply reflected viscous damping and could be related to the relative velocity between lander and parachute during the inflation process. Another interesting property of textiles is the change in apparent elastic properties after peak load during the unloading cycle as noted in Figure 16. This hysteresis effect is time dependent and resulis in permanent deformation when the load is renoved.

The parachute opening loads experienced on ELDT are recorded by tensiometers in each of the three bridle legs and by on-board accelerometers. The tenefometers are summed directly to obtain the total parachute load whereas the accelerometer readings include aeroshell drag which must be subtracted out to obtain parachute loads. The conditions at peak load are summarized in Table 5.

Table

BLDT PEAK LOAD CONDITTONS

	$A V-1$	AV-2	AV-3	$\underline{1 V-4}$
Mach Numbor	1.91	1.06	. 46	1.89
Dynamde Proogure, pos	11.00	4.95	7.18	8.50
Peak Axtal Accelcration, $\mathrm{G}^{\prime} \mathrm{O}$	-11.9	- 5.62	-7.86	-9.728
Eeak Load (Tenstometer), 1bs.	17393	9009	12906	16196
Peak Lond (Accelorometer), 1 be.	18260	9408	13400	16050
predicted Load for above conditions, Jbs.	19500	7029	12558	17123
Effective Drag Coeffictent, F/qS	. 717	. 897	. 815	. 863
Filling Time frem Line Stretch, sec	. 56	. 64	. 81	. 56

One must keep in mind that the opening loads recorded by the tensiometers or the accelerometers can be in error by as much as 5 percent. A comparison of the actual versus predicted load data in Figure 17 shows the in-flight measurements, however, agreeing reasonably wall with each other. The predicted loads, on the other hand, seem to show a systematic error band which underpredicts at 1 ow load and overpredicts at high loads. This is a more destrable situation than the other way around and nay simply reflect undue conservatiem that creeps into worst case analyses. There are several other possible explanations, however, that seem more likely. The phase relationship between load application and the natural frequency of the system may be different in reality than in the model. This is the old problem that shows up occasionally oven in two tests at Identical dynamic prossure because no two inflations are the bame dynamically. Another explanation for the error band may lie in
our anoumod leadiolongation and damping propertien shown in figure ib. Thio to ougheated by the nhape of both the actual and prodictud load curvoe in itgure 17. Note the upper bend in the eurvon appoars at a oingle line load level of 330 ibe. which 10 whore the 100 percone oerata rate curve bonds al80. Indeed, If we plot the olaste portson of the oponing load from gur oinulation in figure 17 it rosombles tho shape of the actual load more closely than the oimulation cotal load which includes damping. This may imply that the shape of our assumed damping curve is in ergor. This last explanation seems to be the most reasonable and suggests an adjustment of our model to more nearly agree wh th BLDT results.

Even with no modification to our load prediction model, the BLDT resulta imply that we will certainly be able to predict the Mars opening load for a given set of conditions to within ± 2000 lbs. At the Mars maximum predicted load level of 13500 lbs. , the uncertainty in load prediction will be closer to ± 1000 lbs. and we will more likely overpredict than underpredict.

Since the character of an opening load curve is often of interest, the BLDT opening load curves are presented in Figures 18, 19 and 20.

One of the benefite of having individual load colls at aach of three bridle lege, is the ability to determine the pull angle that the parachute luad makes with the longitudinal axis of the vahicle. The valuc most aignificant for structural design purposes is the pull angle value occurring at paak load. This value was amazingly consistent on BLDT in apite of the wide variety of deployment conditions. The four flight values were $3.0(A V-1)$, 3.0 ($\mathrm{AV}-2 \vdots, 3.5(\mathrm{AV}-3)$, and $3.2(\mathrm{AV}-4)$ for an average of 3.17 degrees.

FIGURE 16 SUSPLNGTON LINE LOAD/E'ONGATION DATA

FIGURE 18 PARACHITE OPINTNG LOAD, BLDT AV-1

I

IX. PARACHUTE AND VEHDCLE STABLLITY

One of the concerns of the decelerator qualification process is the determination of attitudes and attitude rates induced into the lander by the parachute. The following specification from Reference 16 applies to the Mars application:
"Combined parachute/Viking Lander body response shall be such that lander attitude excursions shall not exceed $\pm \mathbf{4 5}$ degroes from a no-guat trajectory and attitude rates shall not exceed 100 degrees/second with an oscillatory frequency of not less than 1.75 cps at opening shock with requiraments decreasing linearly to ± 25 degrees and 30 degrees/second by six seconds after mortar fire (4 seconds after parachute full open) and remaining within these latter bounds until terminal engine ignition."

As stated in Section IV, the object of the qualification procedure is to assess these parameters on BLDT and analytically extrapolate them to Mars conditions. The BLDT AV-4 attitude rates from on-board rate gyros in pitch, yaw and roll are shown in Figure 21. At opening shock, the peak attitude rate is 110 degrees/second at a frequency of 2.2 cps . The peculiar beating characteristic in pitch and yaw is simply the projection on the itch and yaw axis of a rolling vehicle of an attitude transient that is initially occurring in a specific plane. The other three BLDT flights had attitude transient response very similar in frequency, damping and general character to that shown for $A V-4$. Because of the differing losd and initial conditions on the other flights, however, the peak attitude rates in degrees/second were $148(A V-1), 90(A V-2)$ and 120.

In order to have confidence in the analyticel extrapolation to Mars process, we first must demonstrate confidence in our ability to olmulate
the BLDT flight regulta. To achieve good dynamic atmulation, the paraehute aerodynamic moment coefficient between static trim paints had to be reduced to zero and a fictitious pin-connected riser had to be inserted between the bridle and the parachute suspension line apex. Both of these changes allow less constraining influence on the lander by the parachute. The pitch and yaw attitude rates for AV-4 generated by simulation are shown in Figura 22. Very good agreement with the BLDT resulte in Figure 21 is achieved except at the peak pitch rate point where the error is as high as 35 degrees/second. The differences in peak rates as time progresses gets smaller until the difference practically disappears. The extrapolation process can proceed, however, with this error tolerance in mind.

The BLDT .vehicle was aerodynamically similar to the Viking lander, but had different physical properties as indicated in Table 6.

Table 6
PHYSICAL PROPERTY COMPARISON

Another difference is the fact that the Viking lander has an active attitude control system with $40 \mathrm{ft}-1 \mathrm{bs}$ torque and capable of controling the vehicle at deployment to within ± 3 degrees of aerodynamic trim in the presence of wind gusts (Reference 17).

The Mars maximum load case (Mach 1.9 deployment) and the mean deployment have been simulated in detail (Reference 18). The resultes show the

Viking maxinum atth de ratea to be amaller than the BhDt park races Largoly beanae of the lower loads, elower fllilng time, and effect of the attitude control aygtom in controiling doployment conditions and providing rate damping thereafter. A review of the BLDT deployment conditions In Table 2 show that none of the variables in the Table have a good correlation with the variation in peak attitude rates. First peak load, however, shows a strong corralation with the peak rates in figure 23. The Mars peak rates and loads from simulation are plotted in the same figure and show a consistent trend. By adding an error band of uncertainty associated with our simulation, a peak attitude rate line for Mars extrapolated conditions is generated. If we attaeh a 1000 lb uncertainty to the maximum predicted Mars opeaing of 13500 lbs., we observe an extrapolated peak rate of 100 degrees/second which is in agreement with the parachute specification (Reference 16).

The Mars and BLDT simulations both show attitude excursions and rates less than 25 degrees and 30 degrees/second during steady state descent and while experfencing wind gust conditions. BLDT attitude oscillations during descent are shown qualitatively to be within specification in the Figure 24 film sequences taken from the recovery helicopter.

figure 21 vehicle attitude rates, av-4 flight data

FIGURE 24 SELECTED VIEWS OF pARACHUTE DURING TERMINAL DESCENT

X. AEROSHELL SEPARATION

The aeroshell separation system on all BLDT vehicles is similar in design and construction to the system to be used on the Viking lander. The 396 1b. aeroshell is separated 7 seconds after mortar fire in the Viking sequence. On BLDT aerushell separation is timed to occur when specific Mach number and dynamic pressure conditions occur. Since separation is achieved primarily by virtue of a favorable relative acceleration between bodies, the qualification cest conditions should encompass the range of Mach number and dynamic pressure expected on Mars. The BLDT flight conditions at aeroshell separation tabulated in Table 7 are seen to adequately bracket the Mars envelope conditions in Figure 25.

Deceleriator qualification is concerned with aeroshell separation primarily from the standpoint of whether parachute drag performance is adequate to meet the qualification requirement of 50 fect of separation in 3 seconds. Observation of the airborne camera film shows no measurable change in the parachute projected area at or shortly after separation. Separarior versus time data is obtained from a forward looking Milliken camera which records the aeroshell moving away from the parachute payload. The separation results from all four KLDT flights are seen in Figure 26 to more than adequately meet the qualification requiremenc. There is little evidence of any parachute drag degradation in the separation data except for a slight change in the slope of the separation curve of AV-1 between 1 and 2 seconds after separation. The Mars envelope shown is predicted by simulation using the nominal predicted parachute drag performance.

Table 7

BLDT AEROSHELL SEPARATION CONDITLONS

	$\underline{A V-1}$	AV-?	AV-3	AV-4
Time from Mortar Fire, sec.	9.68	9.1	13.76	7.65
Mach Number	.92	.615	.193	1.18
Dynamic Pressure, paf.	2.42	1.43	1.38	3.18
Time for 1 foot separation, sec.	.15	.18	.21	.16
Time for 50 feet separation, sec.	1.34	1.9	2.05	1.40
Separation Distance in 3 sec.	192	120	97	206

XI. PARACHUTE STRUCTURAL QUALIFICATION

The Viking decelerator was designed for a clesign limit load of 17,300 lbs., the pre-BLDT best estimate of maximum Mars opening load. This load readily defines the individual strength requirements for the 48 suspension lines after applying safety and design factors. The determination of canopy materials requires a more sophisticated method of determining stress levels in the disk and band during inflation. In addition, the Viking program must develop enough confidence in the stress prediction capability to allow subsonic development test stress results in the Earth atmosphere to be applied to supersonic qualification flights on BLDT and Mars.

For these reasons, a computerized stress prediction simulation program was developed to predict dynamic stress levels within the parachute as a function of meridian station and time. The basic principle involved equating the work done by the inflation gas during opening of the parachute to the strain energy absorbed by the primary structural componente. The work done consists of two additive parts: (1) the differential pressure across the canopy times the change in volume; i.e., $P \Delta V$, and (2) the longitudinal pressure force acting through a distance equal to the stretch in the suspension lines combined with the change in canopy height during inflation.

A Beries of subsonic drop tests were first carried out with the full scale system at altitudes of about 50,000 feet. In ticese tests careful attent $\}$ or was given to establishing dynamically similar environments, ingofar as possible, to those postulated for operation on Mars. Design conditions for these tests were also eatablished by taking into account possible differences in subsonic and supersonic effective drag coefficient. Thur these tests were a practical means of approaching near Mars ultimate stress conditions in a cos-effective manner.

A predicted stress plot for the Viking structural design case is presented in Figure 27. As indicated, working stress (i.e., with no design or safety factor) is presented both as a function of non-dimension inflation time, y, and meridian location. The plots are characterized by high stresses in the disk cloth near the vent during early inflation. As time increases, however, the outboard locations increase in load. A peak working stress of about $42 \mathrm{lb} / \mathrm{in}$. is achieved in the disk and $22 \mathrm{lb} / \mathrm{in}$. in the band. Disk and band material strengths are 115 and $72 \mathrm{lb} /$ in respectively. Similar subsonic drop test predictions have been made. Typically, a relatively higher loading is produced in the crown area of the canopy for limit load tests owing to the comparatively slower inflation. For over-load tests, however, a comparatively higher indicated stress was produced in the band. Comparative restits are shown in the table below.

Table 8
Comparative Subsonic Test Data and Stress Predictions

Subsonia Test No.	Peak Load \qquad (1bs)	$\begin{aligned} & \text { Peak Load } \\ & (\% \text { of Viking) } \end{aligned}$	Disk Stress (\% of Viking)	Band Stress (\% of Viking)
LADT 1	17,650	100	98	88
LADT 2	9,300	53	94	88
LADT 3	26,318	149	157	162
LADT 4	24,225	137	131	157
LADT 5	23,900	135	129	154
LADT 6	18,600	105	103	93
LAQT 2	22,200	126	121	136
LAQT 3	23,200	131	126	146

TIGURE 27 parachute cloth stress during inflation

XII. PARACHUTE REGOVERY SUMMARY

The parachute was successfully recovered on each of the BLDT flighte. Detalled post flight inspection data is included in References 2 through 5. The only significant damage occurred on $A V-1$ at an overtest load condition. The AV-1 prachute canopy sustained radial tears from the vent to the edge of the disk in gores 36 and 38 early in the inflation cycle. Analysis of the nature of the tears and the fact that they occurred much prior to peak canopy load leads to the conclusion that the failed panels sustained frictional damage as they emerged from the deployment bag. The excessive dynamic pressure reduced the bag stripping velocity, allowing a significant amount of canopy inflation prior to bag strip. This behavior is felt to have caused the bag stripping damage. These areas were then exposed to localized high pressure during an unsymmetrical canopy inflation which caused the small initial damage to propagate into large tears. In spite of the damage sustained to the canopy, the parachute maintained structural integrity and produced sufficient drag for a successful Mars mission. On the powered flights, a few small holes and black smudge marks were attributed to hot rocket exhaust particle impingement on the canopy. Particles can be seen in the airborne camera film proceeding aft from the vehicle during rocket motor tail-off prior to and during the deployment process. There was evidence that a few minor cuts may have resulted from friction burns along fold lines during bag strip.

Complete pre-flight and post-flight measurements (References 2-5) shors interesting permanent deformations in structural components. The suspension lines show the most significant permanent set which is of interest to the opening load simulation model. Between pre-flight measurement and
post-flight meaburemont, the parachute undergoes a heat oterilization cyole which teata have ghown canges a 2 percent firinkage in auspension lines. After allowing for this effect, the test reanlta show an average 7 foot surpension line length increase on the maximum load case (AV-1), a foot average length increase on the next highert load case (AV-4) and little, if any, permanent set on the lower load cases (AV-2 and AV-3). The implication of this data is that the deformation up to some load level may be almost entirely elastic. This information may help improve our opening load prediction technique.

XIIT. PARACHUTE DRAG PERPORMANCE

The parachute ineromental drog evaluation is baoed on the definition of a drag coefiderent:

$$
C_{D_{P}}=\frac{2 m a}{\rho v^{2} s} \cdot \frac{C_{D} \cdot S_{F}}{S}
$$

where: m a Vehicle mass, slug
a - Acceleration, fps
$P=$ Freestream density
$V=$ Vehicle relative velocity, fps
$S=R e f e r e n c e$ area, $2206 \mathrm{ft}^{2}$
$C_{D_{F}} S_{F}$ - Forebody drag area, $f t^{2}$

The vehicle mass was given in the BLDT vehicle performance reports, References 2 to 5, as was atmospheric data and forebody drag coefficient. The vehicle acceleration, although measured with on-board instrumentatiun, was obtained primarily from radar, since the inertial attitude of the vehicle was not reconstructed during descent. The radar tracking data was differentiated twice to give position, velocity and acceleration using a least squares filter over various time intervals depending on the noise level in the radar data. The relative velocity vector was obtained by subtracting the wind components whereas the aerodynamic acceleration vector was obtained by adding gravity to the inertial accelerations. The component of this aerodynamic acceleration vector along the velocity vector was eansed by drag and the normal component is lift. During the early deployment stages where the acceleration was varying, the accelerometer data was used to obtain the drag. The composite drag coefficient curves for the flights are shown in Figure 28.

The Idft coefficient which was obtatned if shown in Figure 29. The lift doen not appear to be aigndficant until aubsonic apeods are reached. The AV-1 para= chute did not produce an much lift on the other three parachutet probably due to the damage which occurred during deployment. The lift which was produced by the parachutes shows up quite cleariy in the trajectory during the vertical desceat. Figures 30 thru 33 show how the horizontal velocity components of the trajectery oscillate about the wind. This relative velocity is caused by a lift acceleration which is rotating about the velocity vector. The phasing between the directions indicate a somewhat constant lift vector which is moving in a eircular pattern rather than a swinging from side to olde. This shows up when the horizontal relative velocity components are plotted against each other as in Figures 34 and 34. The direction of this lift vector is alse pregented in Figure 36. The evaluation of the lift is strengly dependent on the accuracy of the winds data especially at low altitudes where the descent velocity is low. Small errors in the winds data is reflected in the evaluation of both dynamie pressure and the lift vectur. Due to this uncertainty in the magnitude of this lift, this portion of the trajectory was analyzed by assuming zero lift, and the descent rate was converted to a dynamic pressure. This terminal dynamic pressure is shown in Figure 37 for the four flights together with the altitude and Mach number. The data shows a reduction in dynamic pressure below approximately $40,000 \mathrm{ft}$. ($M \leq 0.05$) which is indicative of a rise in the incremental parachute drag coefficient, which is also shown. This drag variation is compared to the low altitude bomb drop tests (LADT) in Figure 38. These low altitude teste included ballast which was dropped at approximately $20,000 \mathrm{ft}$. Prior to ballast dump, the total vehicle weight was higher than the BLDT weight ($\approx 2600 \mathrm{lbs}$) and after ballast dump it was lower ($\approx 600 \mathrm{lbs}$). A
aimilar drag rion below $M \approx 0.05$ wan indicated during thean teata. Since this drag change occura in the troponphere, it has heon opeculated that the deviation in drag coefficient from the nominal could be caused by a parachute cloth elongation with temperature under load. This would explain the higher supersonic drag stace the cloth temperature would be high due to acrodynamic heating. Although the unst.essed length of Dacron fibers tend te shrink at higher temperatures, this trend can be easily reversed by the increase in resiliancy with temperature. inis drag rise occurs at a Reynolds number $\approx 5 \times 10^{6}$ based on D_{0}, however there is no known reason why the drag should increase either below such a Mach number, nor above this Reynolds number. The Mars Elight conditions will be above this Mach number, below this Reynolds number and at colder temperatures which diminishes the imnortance of this drag rise.

FIGURE 28 PARACHUTE DRAG COEFFICIENT
!

figure 30 horizontal velocity components, av-1

FIGURF 31
HORIZONTAL VELOCITY COMPONENTS, AV-2

FIGURE 32
HORIZONTAL VELOCITY COMPONENTS, AV-3

FIGURE 33 HORIZONTAL VELOCITY COMPONENTS, AV-4

SdA - XLIDOOTGA GAILYTAY HLNOS-HLHON

East-west relative velocity, fPS
figure 35 relative velocity phase plane, av-3 and av-4
?
$\stackrel{7}{4}$

3
08

z

FIGURE 36 LIFT VECTOR DIRECTION

FIGURF: 37
PARACHUTE ZERO LIFT TERMNAL DYNAMIC PREESURE

XIV. CONCLUSTONS

The following major concluatons support the decelerator qualification objectives of the Viking program.
A. The mortar provides sufficient velocity and margin to support full deployment of the parachute.
B. Parachute ejection from mortar fire through line stretch, bag strip and initial inflation is free of significant anomalies.
C. The parachute maintains a very stable drag shape after a short period of initial inflation area oscillations.
D. Sufficient drag performance is produced to support Viking mission requirements and to achieve satisfactory aeroshell separation. The drag coefficient produced by the parachute in the presence of the Viking forebody falls within the required envelope of Figure 28 with few minor deviations of no significance. There is evidence of drag degradation in the wake of the entry vehicle at transonic velocity as was expected.
E. Lander oscillations in quasi-steady state descent with no wind will be less than ± 25 degrees on Mars. Attitude rates during terminal descent on Mars will be less than 30 degrees/second. The maximum attitude rate at parachute opening shock will be approximately 100 degrees/second.
F. Parachute structural integrity has been proven supersonically at load conditions approximately 30 percent greater than Mars peak load conditions. Additionally, subsonic development and qualification bomb drop tests have proven the strunture at stress levels equivalent to 1.5 cimes the Mars design values.

The reasits of the BLDT program and low altitude development and qualification bomb drop tests show that the performance objectives of the Viking decelerator qualffication program have been successfully met.

XV. REFERENCES

1. Reichenau, David E. A.: Aerodynamie Characteristics of Disk-Gap-Band Parachutes in the Wake of Viking Eintry Forebodies at Mach Numbers from 0.2 to 2.6, AEDC-TR-72-78, July 1972.
2. Hicks, F. et al: Balloon Launched Decelerator Test Program Yost-Filght Test Report BLDT Vehicle AV-1. NASA CR 112176, September 1972.
3. Hicks, F. et al: Balloon Launched Decelerator Test Program Post-Flight: Test Report BLDT Vehicle AV-2. NASA CR 112177, December 1972.
4. Hicke, F. et al: Balloon Launched Decslerator Test Program Post-Flight Test Report BLDT Vehicle AV-3. NASA CR 112178, January 1973.
5. Hicks, F. et al: Balloon Launched Decelerator Test Program Post-Flight Test Report BLDT Velifcle AV-4. NASA CR 112179, October 1972.
6. Darne11, W.L., Herning, A.B., and Lundstrcm, R.R.: Flight Test of a 15-Foot (4.6 Meter) Diameter 120° Conical Spacecraft Simulating Parachute Deployment in a Mars Atmosphere. NASA TN D-4266, 1967.
7. GER-15464: Mortar Development Test Report for Viking Lander Decelerator System, Goodyear Aerospace Corporation, 12 January 1972.
8. GER-15215; Rev. A: Viking Decelerator Design Analysis Report, Goodyear Aerospace Corporation, 20 March 1972.
9. Huckins, E.K.: Techniques for Selection and Analysis of Parachute Deployment Systems, NASA TN D-5619, January 1970.
10. Whitlock, C. H. ; Bendura, R. J.: Inflation and Performance of Three Parachute Configurations from Supersonic Flight Tests In a Low-Density Environment, NASA TN D-5296, July 1969.
11. ASD-TR-61-579: Performance and Design Criteria for Deployable Aerodynamic Decelerators, American Power Jet Company, December 1963.
12. Heinrich, H.G. and Noreen, R. A.: Analysis of Parachute Opening Dynamics with Supporting Wind Tunnel Experiments, AIAA Paper 68-924, September 1968.
13. Berndt, R. J. and DeWeese, J. H.: The Opening Force of Solid Cloth, Personne1 Type Parachutes, ATAA Paper 70-1167, September 1970.
14. Toni, R.A.: Theory on the Dynamics of a Parachute System Undergoing its Inflation Process, AIAA Paper 70-1170, September 1970.
15. Steinberg, S.: Scale Model Test Results of the Viking Parachute System at Mach Numbers from 0.1 through 2.6, Martin Marletta Corporation, TR-3720181, November 1971.
16. 65.3703004 , Vakine 75 Project Lander Syatem Specification, Martin Marietta Gorporation, November 1972.
17. Moog, R. D.: Viking Vohjele Dynamion Data Book, Martia Marietta Corparam t1on, Dctaber 1972.
18. Moog, R. D.: BLDT Data Extrapolation to Mars of Parachute Induged AtEdtude Rates, Martin Marietta Corporation, Memo 8943-73-11, 17 January 1972.
