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APPLICATION OF BOUNDARY I14TEGRAL METHOD TO ELASTOPLASTIC
ANALYSIS OF V-NOTCHED BEA.',IS

by Walter Rzasnicki and Alexander Mendelson*
Lewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio

SUMMARY

The boundary integral equation method was aoplied in the

solution of the plane elastoplastic problems. The use of this

method was illustrated by obtaining stress and strain distri-

butions for a number of specimens with a single edge notch and

subjected to pure bending. The boundary integral equation

method reduced the non-homogeneous biharmonic equation to two
co
LO	

coupled Fredholm-type integral equations. These integral equations
r

were replaced by a system of simultaneous algebraic equations and

solved numerically in conjunction with the method of successive

elastic solutions.

INTRODUCTION

Knowledge of the stress distribution in the neighborhood

of a singularity, such as the tip of a V-notch in a bar loaded

in tension or benC.ing, is of fundamental importance in evaluating

the resistance to fracture of structural materials. Elastic

solutions to various geometries have been obtained by a number

of differert methods. Among the more effective ones, are the

complex variable method (ref. 1), collocation method (ref. 2),

*
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and finite element method (ref. 3). However, the first two of

these methods are not general enough nor readily adaptable to

three-dimensional or elastoplastic problems. And the finite

element method requires solutions of large sets of equations and

fails to give sufficiently fine resolution in the vicinity of

notch tips.

The recently developed boundary integral methods (ref. 4)

offer an attractive alternative to other methods of analysis.

These methods have a number of advantages as listed in references 4

and 5, the most important of which is that nodal points are needed

only on the boundary instead of throughou t_ the region as required

by finite element methods. To date these methods have been used

primarily for obtaining elastic solutions to various problems.

Their extension to elastoplastic problems has been proposed in

references 4 and o. However no elasto plastic solution has here-

tofore been obtained.

The present paper describes the application of a boundary in-

+	 tegrai method to the solution of the elastic and elastoplastic

problems of a V-notched beam in pure bending. Solutions of such

problems for the elastoplastic case by finite elements has not

been too successful in obtaining fine enough resolution and

sufficiently accurate results in the vicinity of the notch tip

(ref. 7). The present method overcomes these difficulties,
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since the stress and strain can be computed at any arbitrary point

in the body from a knowledge of boundary values only.

METHOD OF SOLUTION

The problem of determining the state of stress and strain

in a plane elastoplastic problem can be reduced to sDi;ing t'ne

following non-homogeneous biharmonic equation for the Airy stress

function, as shown in reference 8:

4
9 = g ( x , y )	 (1)

,2	 2
g(x,y) _ -	 E 2 —2 (eX + GEX) + a 2 (Ey + LE P)

1 - y lay	 ax

2

— 2 
a	

(EX + GEX)+	
uE 

2 0 2 (e p + LEX + E p +LE p )	 ( 2)

axay	 y	

y	

'_ — u	 Y	 Y

for the plane strain case, and

g(x,y) _ - E

	

	
a22 

(EX + LE
X) + ax

2	

(Ey + LEY)

Y

2
2 

a	
(Ep + LE p 1	 (3)

	

axay	 xy	 xyl

for the plane stress case, where e X , Ey, 	 and EXy 	 represent the

accumulation of plastic strain increments from the beginning

of the loading history up to, but not including the current



4

increment of the load, and 6E x, AEy, and Aex,,, are the increments

of plastic strain due to the current increment of load. For the

elastic case, g(x,y, is of course equal to zero.

The stress function p must satisfy appropriate boundary

conditions. For the problem under consideration (fig. 1) p(x,y)

and its outward normal derivative ap/an must satisfy the fol-

lowing boundary conditions (ref. 9):

along boundary CA and OA' p(x,y) = 0; 3n = 0
11	 an
i

	

along boundary AB and A'B' p(x,y) = 0: '—P 	 0

I	 an

along boundary BC and B'C'

(4)

Cr

	 3
i

p(x,y) 	 max / x + ax  + a 
2 
x + a3 + a	 X2 + ax + a

W	 3	 3	 max 2	 2

DO = 0

an

2
amaxw	3p _ 0

along boundary CD and C'D p (x,y) _ 	 ,

6	 an
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To solve equation (1) by means of the boundary integral

method use is made of Green's second theorem to reduce this

equation to coupled integral equations, as shown in references 4

and 9. The result is

r	 87P(x,Y) -	 Pg(^,n)d^dn =	 T 2
	

(^2G)

	fR	 C an

am 0
2 p +	

ap - 3^ Pdti
	 for P c R	 (5)

an	 an	 an

4 7(P (x,y) -	 pg(E,n)dEdn=	 ma 
(V2 

P)

	

IfR	 C an

LID_  V 2 P + (P ap - a(P 
ps for P CC	 (6)

an	 an	 an

and

21r4P (x y) -fig(^,n) In r. d&dn =	 a (ln r)

 C	
3n

--  In r s for P G R	 (7)

oil
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VD ( X ,Y) -

	

	 g(^,11)ln r d^d11 :=

R

(D a_ (ln r) - 3L In rds for P C C	 (8)
C	 3n	 3n

where

4 = 02m

2p - r In r

and

r(x,y;^,p) is the distance between any two points P(x,y) and

q(^,ri) or P(x,y)	 and Q({,n), as shown in figure 2.

Equation (5) would, for a known function g(x,y), give us

directly a solution to the biharmonic equation (1) provided the

functions q)(x,y) , 3m(x,y)/3n, V 2 T(x,y)	 and a[o2(P(x,y))/3n

were known on the boundary C.

However, only the stress function (p and its outward normal

derivative 30/3n are specified (eq. (4)). The values of

2	 2
D CP E G, and 3(0 P)/3n E 3(D/3n on the boundary must be com-

patible with the given values of T and 3T/3n. To assure

this compatibility, we have to solve the syste,i of coupled
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integral equations (6) and (8), which contain the unknown

functions (P and 30/an.

Once the values of ^ and a(P/an on the boundary C of region R

are known we can proceed with the calculation of the stress field in

the region R utilizing equation (5) and the equation s which define mJ

namely

ax - 
a2CP /3y2 ,

 
cr
y
 - a2N/ax2 axy = - a 2W/ax3y	 (9)

The calculation of the function g(x,y) which is obtained

iteri ively, is discussed in detail in reference 9.

NUMERICAL PROCEDURES
I
i

Solution of the Integral Equations

j

Since it is generally impossible to solve the system of

coupled integral equations analytically, a numerical method is

utilized in which the integral equations (6) and (8) are re-

placed by a system of simultaneous algebraic equations.

For simplicity of notation the normal derivatives are

denoted by prime superscripts. The boundary is divided into n

intervals, not necessarily equal, numbered consecutively in the

direction of increasing s. The center of each interval is de-

signated as a node. The values of (D and V are assumed con-

stants on each interval and equal to the values calculated at the

node.
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In a similar manner the interior of region R is covered by a

grid, containing m cells. The cells do not have to have equal areas.

Their nodal points are located at the centroids. The value of

g (E,n) is assumed constant over each cell and equal to the value

calculated at the centroid.

The arrangements of boundary and interior region sub-divisions

is shown in figures 3 and 4. Using the above assumptions,

equations (6) and (8) can be replaces. by a system of 2n simulta-

neous algebraic equations with 2n unknowns, that is,	 and

	

m_	 n

Tr 	 In r ik (gA) k =
	

(a 1
3J
^. + b i (D

L—_	
J J

	

k=1	 j=1

m	 n	 (10)

41Tg) i -^ Pik ( gA) k =	 (cij^3 + d.i3J + 
e1 J
 j + fijp^)

	

k=1	 j=1

where i = 1,2,3...n, r_Jk is the distance from i th node to the

centroid of the k th cell, Ak is the area of the 
kth 

cell,

and
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a	 =	 r (ln r. )' ds
ij	

ij	
ij

b.. _ -	 In r„ds

7

r,, =pads
i^

	

13

j

d.	 _ -	 p. ,ds
i

.
^	 13

J3

e i j =	 (02pij)'ds

7

f ij = -	 G2pijds

j	 J

where integration is taken over the j th interval, and r. is thei. j

distance from i th node to any point in the j th interval. The

normal derivatives in equations (11) are taken on the j th interval.

For curved boundaries the coefficients given by equations (11)

can be evaluated, if necessary, by Simpson's rule for i # j. For

i = j, because of the singular nature of the integrand, the inte-

grals for the coefficients must be evaluated by a limiting process.

For boundary intervals, such as for the problem treated herein,

(11)

w
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which can be represented by straight lines a closed form solution can

be obtained for these coefficients (ref. 9).

Boundary equations (10) can be written in matrix form as

[B] (X) = (R)	 (12)

where [B] is 2n x 2n matrix and (x) and (R) are 2n x 1 column

matrices.

Matrix [B] is dependent only on geometry, that is, number of

nodes and their distribution on the boundary. Since the matrix (R)

contains the nonlinear function g(C,n), which depends on the stress

field and therefore on matrix (X), and iterative process will be

used to obtain the solution.

To calculate stresses, at any nodal point in the region R,

from the stress function T we need not perform any numerical

differentiation. Equation (5) can be differentiated under the

integral sign and once ^D and V are known on the boundary

the stresses can be obtained by the same type of numerical inte-

gration as in equations (10). Applying equations (9) to equation (5)

yields for the case of a rectangular grid the following stress

equations:



i
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I	 d2 + S 2 	2 d	 -1 °x
8n	 :^	 =	 lr	 X _Y	 + —Y tan a - 1 (^)

xi	 4	 dx	 y

-=k

m
^—	 I - n) 2 )	 2(y - 

n)2	

k+	 l In [ (x - ^) 2 + (Y	
+ l

ik

( A)

+ (X-S) 2 + (y-n) 2	
9

(((	 1 
k=1	 -	 ilk

n

+	 /
--

+	 B	 T	 +	 C.	 (D.
(A,j c^ j
	 1

j
	J	 13	 7

+ D
^•7	 7^

7=1

In

26 X

—Y + — 1tan
870Y'i 4	 6y

dx (13)

t
=k

I

m
-	 r)2

+ in[(x	 -	 ^) 2 	+	 (y	 -	 n)^1
2(x

+	 2 2	 + 1 (gA)k

-34k

n

.	 .'+	 — t:i]mj — 
B ij^j + E. 	

+ F
7¢J 	 1J J )

J=1

m

2(x — E) (y —	 )
8 n O xy ^ i =	

(x - s)^ + (y — n)2 ik

i#k

1

(G ,j (T,j + H i J cp .
 ^

+
11 ]

+  +
KijID
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where now i = :_,2,3...m and refers to the centroid of the ith

call, 6 x and b
Y 

represent, respectively. x-directional and

y-directional dimension of the cell. The coefficients Aij,

B.1J1
, C.J1, D.J1

. E.JiJ1
, Fiji G.J1, H.J1, I.J , K ij,	 are obtained r.y

appropriate differentiation under the integral sign of the

coefficients given by equations (11) and are listed in

reference 9.

Boundary Interval and Interior Grid Size

Use was made of the geometric and loading symmetry about

the x axis for the problem :reated herein to reduce the number of

1
	 unknowns by approximately a factor of two. Since the -,vicinity

i
of the notch tip is of greatest interest, a fine nodal spacing

along the notch was chosen. However to maintain a reasonable

number of nodal points, and at the same time to obtain fine re-

f
solution at the tip of the notch, the boundary along the notch

was divided into a number of intervals progressively increasing

in length as one moved away from the tip. The rate of change

in th interval's length along this boundary was optimized

by the method presented in reference 5. For the cases con-

sidered optimum ratios of the lengths of two consecutive boundary

I	 intervals were foun3 to be in the range of 1.08 to 1.10. The

-esulting smallest dimensionless boundary interval length varied

from 0.0001 to 0.0002. The nodal arrangement shown in figure 5
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was used for all cases considered, resulting in a set of 140

equations containing 140 unknowns.

The choice of the size of the arid, which has tc cover the

i
region where plastic flow is expected to uccur, is discussed

in detail in reference 9. The smallest cells located in the
F

vicinity of the tip of the notch have dimensions 5 x 	0.004;

0.008 for plane strain cases, and 3 XA; = 0.004,

Sv 	 0.016 for plane stress case ,	 S typical inter-' r grit:

is shown in figure 5.

The solution to this boundary value problem is obtained

by ar. iterative process, known as the method of successive

elastic solutions descrioed in detail in reference 8. This

method, applied to the present problem, is presented in ref-

erence 9. Once the successive approximation procedure has con-

verged, the stresses and strains are known everywhere in the beam.

.cnSULTS AIND DISCUSSION

A number of beam problems were solved for both plane stress

and plane strain cases. These included notch depth to beam depth

ratios of 0.3 and 0.5, notch angles of 3
0 

and 10°, strain hard-

ening parameter values of 0.05 and 0.1. In addition calculations

were performed using the actual stress-strain curve of a 5083-0

aluminum alloy in order to comiare the calculated results for

the crac': ,oening displacements with availa t)le experimental
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results. The detailed results for all cases are given in

i
reference 9. Here, only a few typical results are presented.

S

	

	 Calculations were first made to check the method for the

elastic problem, with the function g set equal to zero. For

the elastic case a larger number of notch depths was used than

for the elastoplastic case. A comparison with the boundary

collocation results of reference 2 is shown in figures 6 to 8.

Very good agreement was obtained.

The stress intensity factor K 	 is here defined by

K I = iim ;`^ rn oy (r, 0)
r -0

Figures 9 to 12 show typical plastic zone growth with load

for a plane strain case and for a plane stress case.

Varia'.ior_ of the dimensionless stress intensity factor with

load is s tiiown in figure 13 for the case of a specimen with notch

depth of a/w = 0.5 anc. c = 10°, under plane strain condition

and two values of strain hardening parameter m. It is to be noted

that n appearing in equation (14) is no longer constant as in the

elastic case, but is a function of the applied load. The stress

intensity factor shows no significant increase over the linear

elastic value up to an applied load of q = ° max 
/O 0 

= 0.40.

?hove this load K 	 increases progressively for both m's, at the

fastar rate for lower strain hardening parameter.

(14)
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In order to verify in part, the numerically computed

results, the notch opening displacements for a specimen with

a loo edge notch, notch depth a/w = 0.5 and a stress- strain

curve given by figure 14 were compared with experimental re-

sults cbtained by Bubsey, R. T. and Jones, M. (ref. 10). The

specimen used in this experiment, made of Al 5083-0 with length

to width ratio of 4:1, crack length a/w = 0.5 was subjected

to three point bending. The experimental results as shown in

figure 15 are in good agreement with the numerical results ob-

tained herein.

The product of y-directional stress and total strain

was calculated for various cases. The order of singularity of

that product was determined by plotting ln(Q y ey ) versus In r

and by making a least squares fit of a straight line through the

plotted points. It was found to be very close to unity.

Finally, Rice's J integral was evaluated for several

cases by using relations given in reference 5. In these caicu-

lations, straight line paths were chosen through the plastic zone

near the tip of the notch. The integral was evaluated using

values of stresses, strains and displacements at cells centroids

for a number of paths. The path-independence of J was not con-

clusive, since the results varied up to 15 percent from the averaged

value. It is possible that the results obtained herein do not

indicate that the path independent property is lost but rather that
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the field values of the displacements are not calculated with

sufficient accuracy.

The average values of the dimensionless J integral as a

function of load are plotted in figure 16 for a case of a speci-

menn with a lo o edge notch, a/w = 0.5, m = 0.05 and plane strain

condition. At the start of plastic flow J increases rapidly

with load. This is followed by almost linear variation with

additional toad.

The relations be_ween the J integral and stress inten-

sity factor K T developed for linear elasticity are obviously not

applicable for the elastoplastic problem. By plotting the

dimensionless J/K 2 ratios as a funtion of load q, the relation

between the J integral and the dimensionless stress intensity

factor K  is obtained. A typical plot is shown in figure 17.

In all cases, the ratio J/K I remains almost equal to elastic

value of 0.89 for plane strain or 1.0 for plane stress and in-

creases sharply at the load corresponding to the appearance

of the plastic zone at the boundary opposite the notch. Once

the transition occurs the ratio increases approximately propor-

tionally to the .Load increment.

i
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CONCLUSIONS

The boundary integral equation method proved to be ca-

pable of giving very detailed results such as stress and strain

distributions around the tip of the notch and, related to them,

the shapes of plastic zones. This was accomplished using a rela-

tively ,mall number unknowns.

The obtained results also provide the information of

the effect of strain gardening and on the differences that occur

between plane stress and plane strain solutions. The order of

singularity for the ::train energy density was found to be unity,

which is consistent with results previously obtained by other

investigators.

The stress intensity factor was calculated for several

cases. The path incependence property of Rice's J integral

was qualitatively confirmed and the relation between J and the

stress intensity factor was graphically extended into the elasto-

plastic range.

The presence of a singularity at the tip of the notch

makes accurate answers very difficult to obtain. Nevertheless

good agreement was obtained between the calculated results and

experimentally measured notch opening displacement as shown in

figure 15.	 Some improvement in the solution techniques and

further investigation of the influence of the boundary nodal

spacing and interior grid size on the resulting stress and

strain fields, and therefore, on the notch opening displacements

and J integrals, may be desirable.
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Figure 13. - Variation of dimensionless stress intensity factor with load for a
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for a specimen with a 100 , Sge notch subjected to pr,re bending, alw • Q 5, p • Q 31
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