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ZERO-GRAVITY VENTING OF THREE REFRIGERANTS

by Thomas L. Labus, John C. Aydelott, and Geraldine E. Amling

Lewis Research Center

SUMMARY

An experimental investigation of venting cylindrical containers partially filled with

initially saturated liquids under zero-gravity conditions was conducted in the NASA

Lewis Research Center 5-second zero-gravity facility. The test fluids possessed a

near 00 contact angle on the cylindrical container surface resulting in a hemispherical

liquid-vapor interface shape in zero gravity. The effect of interfacial mass transfer on

the ullage pressure response during venting was analytically determined. This pressure

response was compared with both the experimental pressure response and the pressure

response based on an adiabatic decompression computation. The results showed that

interfacial mass transfer, based on a conduction analysis applied to an infinitely planer

(flat) liquid-vapor interface, in a lumped system analysis is significant in determining

the ullage pressure response. The pressure response computations from adiabatic de-

compression consistently yielded too large a predicted ullage pressure decrease. In-

clusion of the interfacial mass transfer effects resulted in approximately a 30-percent

improvement in the predicted pressure response.

INTRODUCTION

The use of high-energy liquid propellants in our space program has led to a need

for information concerning the thermodynamic behavior of cryogenic fluids in tanks

which are vented or depressurized in space. The task of venting in low gravity has been

successfully accomplished during a number of past missions with venting systems that

rely exclusively on auxiliary thrusters to actively position the liquid propellant away

from the tank vent.

Short-term venting has been employed by the Saturn S-IV-B (ref. 1) and the Centaur

(ref. 2) vehicles in near-Earth orbit. The methods of pressure control include using the

vented propellant vapor to provide adequate acceleration to keep the liquid propellant

settled at the end of the tank opposite the vent or using auxiliary chemical rockets to
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provide a reorientation maneuver to "collect" the liquid propellant at the end of the tank

away from the vent. The low-level acceleration criteria for controlling the liquids are

based on studies conducted in the zero-gravity drop tower (ref. 3).

The problems of long-term space missions such as interplanetary flights, deep space

probes, and orbital storage systems more acutely point up the need for basic under-

standing in the area of zero- and low-gravity venting. The short-term cryogenic storage

requirements of the Saturn and Centaur vehicles yield optimum weight system designs

when the cryogenic boiloff is sacrificed in lieu of additional insulation. For long-term

storage of cryogenics, insulation systems will be improved such that the vented propel-

lant vapor will not be sufficient to supply propellant settling, and the use of auxiliary

thrusters will place too large a weight penalty on the vehicle. Unless a device such as

a liquid propellant thermal conditioning system (ref. 4) is employed, propellant control

becomes mandatory. However, the application of a thermal conditioning system may add

excessive weight penalties and complexity.

If some type of internal surface tension devices are included in the propellant tank

to maintain liquid-vapor interface control, it would appear that venting during long-term

space missions could be considered on a continuous basis. If the vent rate is very low,
pressure control may be accomplished without disturbing the liquid bulk since liquid-

vapor interface evaporation alone will supply the required vapor for venting. The ob-

jective of this study is to predict the pressure response of a saturated liquid-vapor sys-

tem when undergoing a venting or depressurization process in zero gravity (weightless-

ness) at low vent rates.

A venting analysis was formulated based on lumping the continuity and energy equa-

tions governing the vapor space. The analysis is not limited to any particular tank shape

or contained liquid.

The analysis includes interfacial mass transfer based on an infinitely planer (flat

surface) conduction analysis (refs. 5 and 6). Interfacial mass transfer is often neglected

for rapid venting, but for low vent rates the effect of interface mass transfer on the

pressure response is significant. The pressure response for rapid venting is usually

based on the adiabatic decompression venting model.

The pressure responses determined from the venting model which includes inter-

face mass transfer are compared with the results from the adiabatic decompression

venting model and the pressure responses obtained from short duration (5 sec nominally)

drop tower tests conducted at the Lewis zero-gravity facility. Some qualitative informa-

tion concerning bulk boiling similar to that obtained in reference 7 is also presented.

The work presented herein is concerned primarily with low vent rates in contrast to

reference 8 in which larger vent rates (more than one ullage/sec) were of interest. Ref-

erence 8 presents experimental zero-gravity data for both refrigerant Freon 11 and

liquid hydrogen. The test fluids used for this study include the refrigerants Freon 11
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(R11), octofluorocyclobutane (RC318), and n-butane (R600). These fluids were chosen
because they provide a range of heat-transfer properties and are saturated at room tem-
perature and pressures only slightly above atmospheric.

SYMBOLS

A area, m 2

CD  discharge coefficient

CV  specific heat at constant volume, J/(kg)(K)

F 1 , F 2  functions

h specific enthalpy, J/kg

hfg heat of vaporization, J/kg

K thermal conductivity, W/(m)(K)

M mass, kg

n unit normal vector

P pressure, N/m 2

Q volumetric flow rate, m3/sec

q heat flux, W/m 2

R gas constant, (m)(N)/(kg)(K)

T temperature, K

t time, sec

U internal energy, J

u specific internal energy, J/kg

V volume, m 3

v velocity, m/sec

a thermal diffusivity, m 2 /sec

y ratio of specific heats

p density, kg/m 3

(x) parameter
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Subscripts:

1 initial state

2 state for times, t > 0

adia adiabatic decompression computation

anal analytical including interface mass transfer

exp experimental

f final

1 liquid

o vented vapor

s liquid-vapor surface

sat saturation conditions

v contained vapor

APPARATUS AND PROCEDURE

The Lewis zero-gravity facility was used to obtain the experimental data for this

investigation. A complete description of the facility, the experiment package, and pro-

cedures for conducting the tests can be found in appendix A. The venting tests were

conducted with right-circular cylindrical containers having flat ends as shown in fig-

ure 1. These test containers were fabricated from acrylic plastic.

The liquids employed in the tests were refrigerant 11 (CC13F), refrigerant C318

(C4 F8) , and refrigerant 600 (CH 3CH 2CH2 CH 3). Refrigerant 600 is commonly known as

n-butane and refrigerant 11 is commonly known as Freon 11 or Genetron 11. The per-

tinent thermodynamic properties for all these fluids, such as enthalpy, specific volume,

and entropy, can be found in standard refrigeration tables (ref. 9). All three of these

fluids were found to exhibit a nearly 00 static contact angle on the test container sur-

face, and are, therefore representative of typical liquid propellants. The area of the

liquid surface (5. 57x10 -I m2 ) is simply the area of a hemisphere having a radius equal
to that of the tank since the venting sequence occurs during weightlessness. The tank

pressure and the temperature in the vicinity of the liquid-vapor interface were moni-

tored continuously before the drop test to ensure reaching nearly saturated conditions.

The tank pressure was recorded during the drop test along with high-speed motion pic-

tures. After releasing an experiment package, a maximum of 1. 9 seconds was allowed

for the liquid to achieve the hemispherical zero-gravity interface configuration; the

timers then activated the vent sequence for approximately 3 seconds.
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ANALYSIS

Adiabatic Decompression Venting Model

The pressure reduction of a tank containing only a perfect gas during the adiabatic
withdrawal of that gas is calculated in order to make comparisons with a venting model
which includes interfacial mass transfer. Conservation of mass is applied in the follow-
ing manner: The rate of decrease of mass in the tank is set equal to the withdrawal rate
where the volumetric withdrawal rate Q is assumed constant. When proceeding along
the lines of the analysis presented in appendix B, substituting equation (B16), which is

PI1T 2  Qt/V v=-e1_2 v

P 2T 1

into equation (B11), which is

T 2  -QRt/VvCV

T 1

leads to the following expression for the pressure reduction during an adiabatic decom-
pression:

P 2  -yQt/Vv- e (1)
P 1

Interface Mass Transfer Venting Model

At time zero, the venting process is assumed to start with initially saturated vapor
exiting through the vent to a vacuum. A schematic of the venting system at various in-
stances of time is shown in figure 2. The initial thermodynamic state of the vapor and
liquid are known (saturated conditions). The pressure decrease within the container dur-
ing venting causes mass to be transferred across the liquid-vapor interface. As venting
continues, it is assumed that only vapor passes through the vent line. The analysis is
based on a flat interface shape. However, in order to compare the model with the ex-
perimental data the area of the hemispherical surface is used for the analysis.

The overall system is divided into two separate control volumes - the vapor and the
liquid regions. The vapor region consists of the region above the liquid surface, and its
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volume is a function of the liquid height. The vented vapor M. is taken from this re-

gion. The mass transfer terms associated with the vapor region are shown in figure 3.

As the liquid evaporates during a pressure reduction, some mass Ms is transferred to

the vapor region causing the volume of the liquid region (see fig. 4) to vary slightly with

time. It is assumed that no boiling occurs within the bulk liquid.

Derivation of Venting Equations

In applying the continuity and energy conservation equations, the volume V, which

appears in the equations, is fixed since actual volume variations due to mass transfer

will be small. The continuity equation is

SPdV + pv n dA = 0 (2)
at

d p dV = -f p dA (3)

For the vapor region, equation (3) becomes

dM
v - M - M (4)

dt s o

For the liquid region,

dM1
/ -M (5)

dt

If the internal energy is assumed to be. only a function of time, the energy equation in
integral form is

d pu dV + pu - dA - PF;. K dA - . dA (6)
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Using the relation

h = u + P (7)
p

in equation (6) yields the following form of the energy equation with q = 0 (valid only for

short test times):

d f ph dV P dV = - ph" n dA - q nidA (8)
dt V dt VAA

For the vapor region, equation (8) becomes

(Mvhv) -V P2 sh , s Mohv (9)
dt dt v, -

For the liquid region,

d dP
S(M h 1) V - Mshl, (10)

dt dt s

For the bulk liquid region, it is assumed that the initial and final temperatures dur-

ing venting are identical and equal to T 1 . The temperature at the liquid-vapor inter-

face is T2, sat' which is the saturation temperature corresponding to the ullage pres-

sure P 2 . The addition of equations (9) and (10), which is not independent of the mass

transferred across the liquid-vapor interface, yields the product of the interface mass

transfer rate and the latent heat of vaporization Mshfg* The temperature of the vapor

is also assumed to be T2, sat, which is the saturation temperature corresponding to the

ullage pressure. Since the mass transferred across the liquid-vapor interface enters at

the saturation temperature, an adiabatic decompression computation was performed to

show that the vapor initially in the control volume remains nearly saturated during a

pressure reduction. This analysis was performed for the three fluids employed, and a

sample calculation is contained in appendix C. The enthalpy of the vapor hv is to be

evaluated at the saturated conditions. Since the vapor region is of primary interest,

the governing equations of the vapor region are rewritten as follows:

7



Continuity vapor:

dM
dVM - M (11)

dt s 0

Energy conservation vapor:

dP
d(Mvhv ) - 2 hv(Ms - Mo ) (12)
dt v dt

Expressions for the mass transfer terms which appear in equations (11) and (12) are
now examined in detail.

The mass flow rate through the vent M o is determined by using the classical
choked flow analysis. Since the vented gas goes directly into a vacuum, the choked flow
\assumption is valid and the mass flow rate is a function of upstream thermodynamic
properties and an experimentally determined discharge coefficient (see table I). As
discussed previously, the ullage pressure is a time-dependent quantity. Therefore, it
fdllows that the vent mass flow rate will vary with time.

Analytical expression for Ms . - A conduction analysis by Thomas and Morse

(ref. 6) was applied to the interfacial mass transfer process occurring during depres-
surization for an infinitely planer (liquid-vapor) interface. The following expression
was obtained from this analysis for the mass transfer rate:

Ms = A s/ ] (x- (13)

where 1 (x-) satisfies the transcendental equation

hK (T - T v)  . (Pv  K (T2, sat -T )exp[- (x ]
l2 , sa _ v(sat v)

e (l 2l 1 + erf
erfc 

O1R
Pv 0

(14)
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TABLE I. - SUMMARY OF PARAMETERS

Refrig- Test Initial Initial Nozzle Discharge Reduced Initial Initial Final Final Final Dimen- Dimen- Dimen-

erant filling, vapor diameter, coefficient, flow rate, ullage ullage experi- analytical adiabatic sionless sionless sionless

percent volume, m CD Q/Vi , pressure, temper- mental ullage ullage experi- analytical adiabatic

liquid m
3  1 1, ature, ullage pressure, pressure, mental pressure pressure

ullage/sec N/m
2  T 1 , pressure, N/m

2  
N/m

2  
pressure drop, drop,

K N/m
2  

drop, APanal/P 1 APadia/P 1

APexp/P 1

11 1 32 1.93X10-
4 

0.406x10
3  

0.64 0.035 8.9610
4  

294.3 8.62x10
4  8.16x10

4  
7.97X10

4  
0.04 0.09 0.11

2 29 2.01 .889 .69 .17 8.79 294.7 7.03 5.63 4.94 .20 .36 .44

3 33 1.90 1.07 .86 .33' 9.10 293.7 6.07 4.07 3.01 .33 .55 .67

4 32 1.93 1.32 .875 .51 9.72 296.5 5.38 2.94 1.63 .45 .70 .83

5 32 1.93 1.93 .77 1.12 10.1 295.4 4.14 1.31 .15 .59 .88 .99

C318 6 33 1.90x10
-4 

0.406x10-
3  

0.64 0.030 27.9x10
4  

295.9 26.9x10
4  

25.5x10
4  

25.25x10
4  

0.04 0.09 0.10

7 34 1.87 .889 .69 .16 30.3 298.7 22.1 19.1 17.8 .27 .37 .41

8 36 1.81 .889 .69 .165 29.0 297.3 21.0 18.0 16.7 .28 .38 .42

9 34 1.87 1.07 .86 .29 30.0 297.3 17.2 13.1 11.4 .43 .56 .62

10 35 1.84 1.32 .875 .455 29.0 296.3 13.0 8.10 6.35 .55 .72 .78

600 11 32 1.93x10
-4 

0.330x10
"3  

0.77 0.041 23.3x10
4  

297.0 21.7x10
4  

20.8x10
4  

20.3x10
4  

0.07 0.11 0.13

12 35 1.84 .711 .81 .21 22.8 294.7 16.5 12.8 11.3 .28 .44 .50

13 34 1.87 .889 .69 .27 21.0 293.7 14.8 10.0 8.50 .30 .52 .60

14 35, 1.84 .889 .69 .28 24.0 296.7 16.4 11.2 9.45 .32 .53 .61

15 34 1.87 1.07 .86 .49 22.8 296.8 10.7 6.30 4.50 .53 .72 .80

16 34 1.87 1.93 .77 1.31 23.6 297.0 5.65 1.52 .63 .76 .94 .97



where T1 is the liquid temperature, T2, sat the liquid-vapor interface temperature,
and T2 ,v the vapor temperature. Thomas and Morse show that if the expression for

l(x-) is solved explicitly for (R) by expanding both the error functions and exponen-
tials for small (x) one obtains

Kl (T2sat - T1) Kv(T2 sat - T2,v)

2K (T2 sat - Tv) P p  2K(T2 sat - T1)

vPv 0g v ,at V Pv V__v 1 sat 1

Now let T2, sat = T2, v (as per our stated assumption and appendix C verification):

N) - 0~/ K (T2, sat -T 1
(16)

ncl P1hfg + 2K(T2, sat - T 1)

Let

F 1 = "1 1 Plhfg (17)

and

F 2 = 2K (T2, sat - T 1) (18)

TABLE II. - TYPICAL PROPERTIES FOR TEST FLUIDS AT 297 K

Refrigerant Thermal conductivity Liquid density, Thermal diffusivity Heat of vaporization,
of liquid, Pl, of liquid, hfg

Kl' kg/m 3  
l' Jg

W/(m) (K) m 2/se
m /sec

R11 0.0866 1480 6.74x10- 8  1.84x105

RC 318 .0433 1500 2.56 1.07

R600 .1056 575 7.88 3.70
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Typical values of Fl and F 2 and hence the ratio F 2 /F 1 are now computed. This
computation was based on the largest temperature change of the tests that were per-
formed for each fluid. The resulting values of F 2 /F 1 were 0.071 for R11, 0.150 for
RC318, and 0.157 for R600 (table II). Hence, the largest error in neglecting F 2 with
respect to F 1 is 16 percent. Therefore,

(-(x -2, sat 1 (19)

/~l ° Plhfg

Equation (19) can be substituted into equation (13) to obtain the following approximate
solution for the interface mass transfer rate:

M, AsK(T 1 -T 2 sat) 1 (20))b hfg (

By definition

KL = aC p , ZP1 (21)

Therefore,

S As p,C 1 (T- T2, sat) It (22)

5 )hfg 

t
When combined with the appropriate initial and boundary conditions, equations (11), (12),
and (22) provide a complete thermodynamic description of the vapor space. These equa-

tions, along with equation (1) which gives the pressure reduction during an adiabatic de-

compression, were solved using a computer program (appendix D) which employed a cal-

culation procedure using 60 time intervals. A comparison of the solutions to these

equations with experimental data is presented in the RESULTS AND DISCUSSION section.
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RESULTS AND DISCUSSION

Pressure Decay Characteristics

During space missions involving the use of cryogenic liquids, the maximum allow-

able tank pressure and the thermal environment dictate such items as venting times

and insulation requirements. Consequently, the pressure response of the tank ullage

during a venting sequence in space is an important parameter to be considered. A typ-

ical ullage pressure response for RC318 during one of the experimental tests is shown

in figure 5. As previously mentioned in the APPARATUS AND PROCEDURE section,

the experiment tank contents were allowed sufficient time to reach a saturated equilib-

rium condition corresponding to the ambient temperature in the test facility. The initial

pressure for the test shown in figure 5 is 29x10 4 newtons per square meter. A time

duration of 1.9 seconds was then allowed during free-fall so that the liquid-vapor inter-

face could attain a hemispherical equilibrium configuration. Note that the tank pressure

remains constant during this time period as expected. At 1.9 seconds after the initiation

of the test, the vent was opened and vapor passed through the vent line for a period of

3 seconds. The final ullage pressure reached 13x10 4 newtons per square meter as seen

in figure 5.

In table I, the test parameters for the 16 no-boiling zero-gravity tests conducted

during this program are shown. Note that test 10 is the typical test whose pressure

characteristics are shown in figure 5.

Comparison of Experiment With Theory

As a direct result of one of the assumptions made in the analyses, namely, that the

vapor remains saturated during a depressurization or venting sequence, the mass con-

servation equation (eq. (11)) and the energy conservation equation (eq. (12)) remain un-

coupled. Hence, the solution to either equation along with the corresponding expres-

sions for the vent mass flow rate and interface mass transfer, using the proper bound-

ary and initial conditions, results in identical solutions. Computer programs were run

with each separately and yielded similar results. The test conditions and the results

from the computer program are contained in table I. The final ullage pressure, based

on the interface mass transfer venting model, is under the column labeled "Final ana-

lytical ullage pressure. " The tabulated results for the final ullage pressure based on

the adiabatic decompression venting model are under the column labeled "Final adia-

batic ullage pressure." In all cases the adiabatic calculation yielded a lower final

ullage pressure than for the venting model calculation which included interfacial mass

12



transfer. The difference is due to the fact that the addition of mass from the interface
into the vapor space would not allow the tank pressure to decrease as rapidly. In all
tests, for both the adiabatic decompression and the venting model calculation including
mass transfer, the computed final ullage pressures were lower than the corresponding
experimental values.

A graphical comparison of the three previously mentioned pressure drops nondimen-
sionalized in terms of the initial pressure (AP/P 1) is presented as a function of the re-
duced flow rate (Q/Vv1) in figures 6 to 8. The reduced flow rate is the average volumet-

ric flow rate divided by the initial vapor volume. (These two parameters are also tab-
ulated in table I). Figure 6 presents the results for refrigerant 11, figure 7 presents
the results for refrigerant C318, and figure 8 presents the results for refrigerant 600.
The experimental and analytical data points contained on these three curves are for the
0.06 meter diameter cylindrical tank having a nominal 33 percent by volume initial
filling of liquid.

Figures 6 to 8 indicate that the analysis which includes interfacial mass transfer
shows approximately 25 to 35 percent improvement with respect to the final ullage pres-
sure prediction in comparison with the adiabatic computation. However, there still
exists a significant gap between experiment and theory.

The inclusion of the term F2 in equation (16) would lead to larger interfacial mass
transfer rates since the final temperature (T2, sat ) is always less than the initial tem-
perature (T1 ). Since the discrepancy between experiment and analysis is the result of an
insufficient amount of interfacial mass transfer, inclusion of the term F 2 would result
in an improvement. However, this was earlier judged to be a minor effect. Of major
importance is the fact that an infinitely planer conduction analysis attributable to Thomas
and Morse (ref. 6) was employed. This, in effect, neglects heat conduction from the
side walls. Since the liquid-vapor interface was hemispherical in shape there exists a
very large temperature gradient and, hence, significant heat-transfer rate through the
thin liquid surface on the walls in the neighborhood of the leading edge. It would appear
that an improvement in the analysis that included both curved interfaces and finite walls
would yield higher mass transfer rates and, thus, lead to a much better agreement be-
tween analysis and experiment.

Another factor which could contribute to increasing the interfacial mass transfer is
the liquid motion caused by the initial change from a normal-gravity to a zero-gravity
configuration and as a response to the venting disturbance. However, it would probably
be impossible to incorporate this effect into a venting model analysis.
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Bulk Boiling

Any complete study of venting under any gravitational conditions should include the

possibility of boiling occurring within the liquid bulk. The analysis which appears in

this report does not apply to situations in which bulk boiling occurs. Hence, all the

data points which appear in table I are for cases wherein no bulk boiling was observed.

The problem of predicting the inception of bulk boiling is presently without solution.

Certainly the inception point would depend on the tank surface conditions which determine

the size and distribution of nucleation sites and also the properties of the particular

fluid. While the intent of this report was not geared directly toward a discussion of the

prediction of the aforementioned phenomenon, it did arise in one test case.

The photographic sequence for test 10 (refrigerant C318) is shown in figure 9. Note

that the average vent rate for this particular test was Q/Vv1 = 0. 5 ullage volume per

second. In this test no bulk boiling occurred. However, as seen in figure 10, for an

average vent rate of 1.0 ullage volume per second, for RC318, extensive bulk boiling

occurs. The liquid-vapor interface is pushed toward the vent as a result of the growth

of two rather large vapor bubbles. These vapor bubbles do not break the liquid-vapor

interface and cause large surface disturbances as the vent sequence continues. The

venting model analysis cannot be applied to test cases where bulk boiling occurs since

the liquid-vapor interface area is not only varying with time but would also be impossible

to predict.

CONCLUDING REMARKS

An experimental investigation of venting cylindrical containers partially filled with

initially saturated liquids under zero-gravity conditions was conducted in the NASA

Lewis Research Center 5-second zero-gravity facility. The test fluids, refrigerants 11,

C318, and 600, all possessed a near-zero contact angle on the container surface resulting

in a hemispherical liquid-vapor interface shape in zero gravity. The experimental pres-

sure responses were compared with pressure responses predicted by an adiabatic de-

compression venting model and a lumped system venting model which includes inter-

facial mass transfer.

For the tests which exhibited no bulk boiling the adiabatic decompression venting

model predicted too large a pressure reduction by nearly a factor of two. The addition

of the effects of interfacial mass transfer to a lumped system venting model, based on a

conduction analysis for an infinitely planer (flat) surface, resulted in approximately a

30-percent improvement in the determination of the ullage pressure response when com-

pared to the adiabatic decompression venting model.
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It is the authors' belief that the container walls act as a heat source and cause addi-

tional liquid evaporation thus reducing the experimental pressure decay. In order to

improve the agreement between experimental and analytical venting system results, the

infinitely planer surface analytical approach presented in this report would have to be

modified to account not only for the container walls but also the curvature of the liquid-

vapor interface.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, August 14, 1973,
909-72.
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APPENDIX A

APPARATUS AND PROCEDURE

Test Facility

The experiment data for this study were obtained in the 5- to 10-second zero-

gravity facility at the Lewis Research Center. A schematic diagram of this facility is
shown in figure 11. The facility consists of a concrete-lined 8. 5-meter-diameter shaft
that extends 155 meters below ground level. A steel vacuum chamber, 6.1 meters in

diameter and 143 meters high, it contained within the concrete shaft. The pressure in

this vacuum chamber is reduced to 13.3 newtons per square meter by utilizing the

Center's wind tunnel exhaust system and an exhauster system located in the facility.

The ground-level service building has, as its major elements, a shop area, a con-

trol room, and a clean room. Assembling, servicing, and balancing the experiment
vehicle are accomplished in the shop area. Tests are conducted from the control room
(see fig. 12) which contains the exhauster control system, the experiment vehicle pre-

drop checkout and control system, and the data retrieval system. Those components of
the experiment which are in contact with the test fluid are prepared in the facility's class
10,000 clean room. The major elements of the clean room are an ultrasonic cleaning
system (fig. 13(a)) and a class 100 laminar-flow station (fig. 13(b)) for preparing those
experiments requiring more than normal cleanliness.

Mode of operation. - The zero-gravity facility has two modes of operation. One is
to allow the experiment vehicle to free-fall from the top of the vacuum chamber, which
results in nominally 5 seconds of free-fall time. The second mode is to project the ex-
periment vehicle upwards from the bottom of the vacuum chamber by a high pressure
pneumatic accelerator located on the vertical axis of the chamber. The total up-and-
down trajectory of the experiment vehicle results in nominally 10 seconds of free-fall
time. The 5-second mode of operation was used for this experimental study.

In either mode of operation, the experiment vehicle falls freely; that is, no guide
wires, electrical lines, and so forth are connected to the vehicle. Therefore, the only
force (aside from gravity) acting on the freely falling experiment vehicle is due to re-
sidual air drag. This results in an equivalent gravitational acceleration acting on the
experiment which is estimated to be of the order of 10 - 5 g maximum.

Recovery system. - After the experiment vehicle has traversed the total length of
the vacuum chamber, it is decelerated in a 3. 6-meter-diameter, 6. 1-meter-deep con-
tainer which is located on the vertical axis of the chamber and filled with small pellets
of expanded polystyrene. The deceleration rate (averaging 32 g's) is controlled by the
flow of pellets through the area between the experiment vehicle and the wall of the
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deceleration container. This deceleration container is mounted on a cart which can be

retracted prior to utilizing the 10-second mode of operation. In this mode of operation,

the cart is deployed after the experiment vehicle is projected upward by the pneumatic

accelerator. The deceleration container mounted on the cart is shown in figure 14.

Experiment Vehicle

The experiment vehicle consisted. of two basic sections (see fig. 15). The experi-

ment section is contained in the cylindrical midsection and the telemetry section is con-

tained in the top fairing.

Experiment. - The experiment section consisted of the test container tray (see

fig. 16) plus electrical power and control system equipment mounted in the cylindrical

section of the experiment vehicle. The test container tray includes the test container,

camera, and lighting and timing systems. The vent system which included a solenoid

valve and various sized nozzles and orifices was mounted above the test container. The

solenoid valve opened during the test drop and vapor was vented either to the low pres-

sure test chamber or to a collection tank also at a low pressure. The ensuing venting

procedure was recorded by a high-speed motion picture camera. Elapsed time was ob-

tained from a digital clock.

Telemetry system. - The on-board telemetry system is an FM/FM system with

18 continuous channels. During a test drop, telemetry is used to continuously record

the output from two low-gravity accelerometers and the tank pressure. The initial tem-

perature in the vicinity of the liquid-vapor-interface is also obtained from the recording

system, but the temperature data obtained during the test was not used due to the ques-

tionable response time of the transducer. The accuracy of all temperatures quoted in

this report is conservatively estimated to be ±1. 50, while the accuracy of all pressures

is estimated to be ±1 newton per square centimeter.

Test Procedure

Cleaning, filling, and hermetic sealing the test containers were conducted in the

zero gravity facility's clean room (fig. 13). Contamination of the liquid and cylinder,

which could alter the surface tension and contact angle, was carefully avoided. The test

cylinders were cleaned ultrasonically in a detergent-water solution, rinsed with a

distilled-water-methanol solution, and dried in a warm air dryer. The test cylinders

were rinsed with the test liquid, filled to the desired liquid depth, and sealed to prevent

contamination. They were then mounted on the test container tray. During the test, a

predetermined time increment was allowed (1.9 sec maximum) so that the liquid-vapor
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interface could approach its low-gravity equilibrium shape. After the formation time,
the solenoid valve was opened and the vapor vented to vacuum for 3 seconds.

Electrical timers on the experiment vehicle are set to control the initiation and dur-
ation of all functions programmed during the drop. The experiment vehicle is balanced
about its vertical axis to ensure an accurate drop trajectory.

The vehicle is then positioned at the top of the vacuum chamber as shown in fig-
ure 17. It is suspended by the support shaft on a hinged-plate release mechanism. Dur-
ing vacuum chamber pumpdown and prior to release, monitoring of experiment vehicle
systems is accomplished through an umbilical cable attached to the top of the support
shaft. Electrical power is aupplied from ground equipment. The system is then
switched to internal power a few minutes before release. The umbilical cable is re-
motely pulled from the support shaft 0. 5 second prior to release. The vehicle is re-
leased by pneumatically shearing a bolt that holds the hinged plate in the closed position.
No measurable disturbances are imparted to the experiment vehicle by this release pro-
cedure.

The total free-fall test time obtained in this mode of operation is 5. 16 seconds.
During the test drop, the vehicle's trajectory and deceleration are monitored in closed-
circuit television. Following the test drop, the vacuum chamber is vented to the atmos-
phere and the experiment vehicle is returned to ground level.
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APPENDIX B

ADIABATIC DECOMPRESSION VENTING MODEL

A container of gas at some high pressure is assumed. At time zero, a valve is
opened allowing the gas to escape. The temperature and pressure dependence with
time will be examined. An adiabatic process is assumed (q = 0) so that the rate of

change of internal energy is equal to the rate of energy removal:

dU (h) (B1)
dt dt

where

U'= Mu MCVT (B2)

and

h = u + RT (B3)

Expanding equation (B2) gives

dU M+ (B4)
dt Mat dt/aM dt

and

d MCVT + uM (B5)
dt

When equation (B1) is used, equation (B5) becomes

h dM MCV + u (B6)

The rate of change of mass leaving the container can be expressed in terms of the

volumetric flow rate Q as follows:
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dM _ PQ (B7)
dt RT

when Q is assumed to be a constant in time. Substituting equation (B7) into equa-

tion (B6) gives

- (u + RT) =MCV T PQ u (B8)
RT \dt RT

which becomes after some simplification

dT = Q R dt (B9)
T Vv CV

Integrating gives

2 dT Q R t2dt (Bl0)

T V, CV 1
1

The solution of the previous equation is

-QRt/V CV
T 2 = T 1 e v (Bi1)

Now the time dependence of the ullage pressure is derived by employing conservation of

mass. The rate of decrease of mass in the container equals the withdrawal rate which

the volumetric removal rate is assumed constant. The rate of change of mass leaving

the container is expressed in terms of Q by equation (B6) and M, of course, is related

to the other thermodynamic variables through the perfect gas law

PVv
M - PV(B12)

RT

Therefore, expanding equation (B12) gives

dM = (M dP ( M T (B13)
dt dt
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Using previous relations in equation (B12) gives

PQ Vv dP T (B14)
RT RT dt RT 2 \dt/

Rewriting equation (B14) gives

-- dt = -d + dT (B15)
Vv  P T

Integration yields

P 1 T 2  Qt/V (16)

P 2T 1
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APPENDIX C

EXAMINATION OF ASSUMPTION OF SATURATED VAPOR

The procedure used to check the validity of the assumption of the vapor temperature

remaining saturated was to calculate T 2 /T 1 from equation (B11). To accomplish this,
typical values of Q, Vv, and t were chosen (table III). The value of T 2 /T 1 thus

TABLE III. - TYPICAL FLUID PROPERTIES AND

EXPERIMENTAL VALUES FROM TEST 2

Fluid properties

Liquid refrigerant 11

Specific heat at constant volume, CV, J/(kg)(K) 528

Gas constant, R, J/(kg)(K) 58.6

Time, t, sec 3

Volume of vapor, Vv, m 3  2.01x10 4

Average volumetric flow rate, Q, m3/sec 0. 342x10-4

Temperature, T, K 294.7

Initial pressure, P 1 , N/ m 2  8.79x10 4

found was substituted into equation (B16), and equation (B16) was solved for P 2 /P1
Finally, the saturation pressure corresponding to T 2 is compared with the value of P 2
computed by means of equation (B16). Using these typical values in equation (B11) yields
T2/T1 = 0.945. Therefore, T2 equals 278. 5 K, which corresponds to a saturation
pressure of 5.07x10 4 newtons per square meter, The ratio P2 /P1 calculated from
equation (B16) is found to be 0. 563. Hence, P 2 = 4. 94X10 4 newtons per square meter.
Therefore, the assumption of saturated vapor throughout the venting sequence appears
reasonable.
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APPENDIX D

COMPUTER PROGRAM

The computer program used for numerically solving equations (11), (12), and (22)

consists of a main program and four subroutines. The subroutines DD, CURVE, DERIV,

and RKGS make available the Runge-Kutta method for the numerical solution of an ordi-

nary first-order differential equation with nonconstant coefficients, the independent

variable in all cases being time. A calculation procedure was employed which divided

the 3-second test time into 60 intervals in order to improve the accuracy of the computa-

tions. Also included in the computer program was the solution of equation (1) which yields

the pressure decrease based on the adiabatic decompression venting model. This appen-

dix includes a dictionary of the FORTRAN symbols used, the program listing, and a

complete input/output list for one test. A typical flow chart is shown in figure 18. All

of the data were analyzed using the computer program with only slight variations due to

the different sources and formats of the thermodynamic properties for the three fluids.

Dictionary of FORTRAN Symbols

FORTRAN Engineering

symbol symbol

AT A area of vent nozzle at throat

AS As  liquid-vapor surface area

CD CD discharge coefficient

CPL Cp,l specific heat of liquid

GO Go  acceleration due to gravity

H h specific enthalpy

HFG hfg heat of vaporization

K K thermal conductivity

MV M v mass flow rate of vented vapor

MMT Ms mass flow rate across liquid-vapor surface

P2, Y(1) P 2  ullage pressure based on venting model

Q Q volumetric flow rate
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FORTRAN Engineering

symbol symbol

T, X t time

T1 Tv, 1 initial ullage temperature

T2 Tsat, 2 saturation temperature corresponding to P 2

VV V volume

Y3 P 2  ullage pressure based on adiabatic decompression

ALPHAL al liquid thermal diffusivity

RHOL P1  liquid density

RHOV, Y(2) Pv vapor density

PROGRAM LISTING

EXTERNAL DD
COMMON P21 MVtQY3,ATASCPLALPHALVVtRHOLTlCDGO,KODE
DIMENSION Y(2),DY(2),TITLE(12)
REAL MV

2 READ(5,102) (TITLE(1I)I,1112)
READ (5,105) P2,RHOVATASCPLALPHALVVRHOL,T1,CDGO

C KODE=1 MMT CALCULATED KODE=0 MMT=0.3
KODE=D
DO 3 11=12

C INITIALIZE T - X
X=0.0 0001

C INITIALIZE P2 - Y(1)
Y(1)=P2

C INITIALIZE RHOV - Y(Z)
Y( 2)=RHOV
P21=Y(1)
WRITE(6,100)
WRITE(6,103) (TITLE(I) I=1,12)
WRITE(6,104)
WRITE(6,107) P2,RHOVATASCPLtALPHALVVRHDL,T1,CO,GO,KODE
WRITE (6,104)
WRITE(6,106)
00 1 I=1,60
XF=X+0.05
CALL RKGS (XXF,H,.1E-3,YDY2,DD)
WRITE(6,101) X,Y() ,MVQ,Y3

1 CONTINUE
KODE=KOOE+

3 CONTINUE
GO TO 2

100 FORMAT(12OH1ZERO GRAVITY VENTING MASS BALANCE AND ENERGY BALANCE
1 LABUS - AMLING

101 FORMAT(1CX,5G15.6)
102 FORMAT(12A6)
103 FORMAT(IK,12A6)
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104 FORMAT(11K)
105 FnRMAT(2F6.0,E6.2,7F6.0,Fl2.0)
106 FORMAT(1I0,14X,7HT (SEC),9X,2HP2914X,2HMV,14X~IHQ14X2HY3)
107 FORMAT(5HOP2= ,G16.8/71 RHDV= ,G16.8/5H AT= PG16.8/5H AS= PG168/

16H CPL= ,G16.8/9H ALPHAL = ,G16.8/5H VV = ,G16.8/7H RHOL = 
9 G16.8/5

2T1= ,G16.8/5H CD= ,G16.8/5 GO= ,G16.8/7H KODE= t12/)
END

SUBROUTINE DD (X,Y,DY)
C
C HOMOGENEOUS DIFFERENTIAL EQUATION OF THE FIRST ORDER USING
C RUNGE-KUTTA SOLUTION
C

COMMON P21,MVtQ,Y3,AT,4S,CPLALPHALtVVRHOL,T1,CDGOKODE
DIMENSION COEFFI(5),COEFF2(5)COEFF3(5),CEFF4(5),COEFF5(5),
1COEFF6(5),COEFF7(5),COEFFB(5),TD100),P2A(103),Y(2) DY(2)

C R600 COEFFICIENTS
C CURVE 1 RHOV VS. P

DATA (COEFF(II),I=1,5)/0.12715492E-01,0.1D550608E-01,0.11994321E-0
14,-C.6139911E-06,0.72537941E-38/

C CURVE 2 T2 VS. P
DATA (COEFF2(I),I=1,5)/-45.905340,7.8234674,-0.22653183t,.38259717
1E-02,-0.25415846E-04/

C CURVE 3 H2 VS. P
DATA (COEFF3(II,I=1,5)/-633.9L 0022.4116720,-O.65913194E-01,0.IO5
13420E-02,-0.65971124E-35/

C CURVE 4 HFG VS. P
DATA (COEFF4(I),1-1,5)/180.66624,-1.5806674,0.49739617E-01,-0.9392
11366E-03,0.67298545E-05/

C CURVE 5 K VS. P
DATA (COEFF5(III=1,5)/-0.56075050E-03,4.9051085-0.34892180E-01,

10. 71910064E-03,-0.59942675E-05/
REAL MMT,MV,K
SQRTPI 1772438

C
C COMPUTE MMT - USE THERMODYNAMIC CHARTS TO OBTAIN T2, AND HFG
C

P2=Y(1)
CALL CURVE(COEFF2,P2,T2)
CALL CURVE(COEFF4,P2,HFG)
MMT=0.O
IF(KODE.EQ.O) GO TO I
MMT= AS*RHOL*CPL*(Tl-T2)*SQRT(ALPHAL/X )/I(SQRTPI*HFG*60.)

1 CONTINUE
CALL CURVE (COEFF5P2,K)
MV=CD*AT*K

C
C COMPUTE CP2/DT USE THERMODYNAMIC CHARTS TO OBTAIN RHOV, RHDVP, AND
C H2P
C

CALL CURVE(COEFF1,P2,RAOV)
CALL CURVE(COEFF3,P2,H2)
CALL DERIV(COEFFP2,RAOVP)
CALL DERIV(COEFF3,P2,H2P)
DY(2)=((PMT-MV)/VV)
DY(1)=DY(2)/RHOVP
Q=MV/Y(2)
Y3=P21*EXP(-Q*X*1.11 /VV)
RETURN
END
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SUBROUTINE CURVE(COEFFqXpY)
DIMENSION COEFF(5)
Y=COEFF(1)+X*(COEFF(2)+X*(COEFF(3)+X*(COEFF(4)+X*COEFF(5))))
RETURN
END

SUBROUTINE DERIV(COEFF,X,DYDX)
DIMENSION COEFF(5)
DYDX=CDEFF(2)+X*(2.3*COEFF(3)+X*(3.D*COEFF(4)+X*4.D*COEFF(5)))
RETURN
END

C
C PARAMETERS
C
C XO INITAL VALUE FOR X, RETURN4ED AS XF NORMALLY

C. XF FINAL VALUE FOR X

C HH NORMALLY RETURNED AS STEP SIZE USED NEAR XF

C RETURNED AS 0 IF MORE THAN 25 HALVINGS

C ERR UPPER ERROR BOUND , USED TO CONTROL STEP SIZE

C Y DEPENDENT VARIABLES, SET TO INITAL VALUES,

C RETURNED AT X=XF NORMALLY
C DERY DERIVATIVES DY/DX
C NDIMI NUMBER OF EQUATIONS IN SYSTEM
C FCT EXTERNAL SUBROUTINE WHICH CALCULATES DERIVATIVES

C CALL IS CALL FCT(X,Y,DERY)
SUBROUTINE RKGS(XOXFHHERRORY,DERYNDIMI,FCT)
DIMENSION Y(1),DERY(1)
DIMENSION AUX(7,20),A(4),B(4)
DATA A /.5,.29289322,1.7071068,.16666667/
DATA B /2.,1.,1.,2./
NDIM = NDIMI
ERR = ERROR
X = XO
XEND = XF
H = (XEND-X)*.0625

C CHECK ZERO
IF(H.EQ.D.) GO TO 40
CALL FCT(XY,DERY)

C
C
C PREPARATIONS OF FIRST RUNGE-KUTTA STEP

DO 3 I=1,NDIM
AUX(1,I)=Y(I)
AUX(2,I)=DERY(I)
AUX(3,I)=0.

3 AUX(6,I)=0.
H=H+H
IHLF=-1
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ISTEP=3
IEND=3

C
C
C START OF A RUNGE-KUTTA STEP

4 IF((X+H-XEND)*H)7,6,5
C GONE PAST, ADJUST H, SET IEND

5 HH = H
H = XEND - X
IEND = I
GO TO 7

C ON OR WITHIN TOLERANCE, SET IEND
6 IEND = 1

HH = H
C
C KEEP GOING

7 ITEST = D
9 ISTEP=ISTEP+1

C
C
C START OF INNERMOST RUNGE-KUTTA LOOP

J=
10 AJ=A(J)

BJ=B(J)
CJ = AJ
IF(J.EQ.4) CJ = .5
DO 11 I=I,NDIM
R1=H*DERY(I)
R2=AJ*(R1-BJ*AUX(6,I))
Y(I)=Y(I)+R2
R2=R2+R2+R2

II AUX(6,Il=AUX(6,I)+R2-CJ*Rl
IF(J-4)12,15,15

12 J=J+1
IF(J-3)13,14,13

13 X=X+.5*H
14 CALL FCT(XYDERY)

GOTO 13
C END OF INNERMOST RUNGE-KUTTA LOOP
C
C
C TEST OF ACCURACY

15 IF(ITEST)16,16,20
C
C IN CASE ITEST=D THERE IS NO POSSIBILITY FOR TESTING OF ACCURACY

16 DO 17 I=1,NDIM
17 AUX(4,I)=Y(1)

ITEST=1
ISTEP=ISTEP+ISTEP-2

18 IHLF=IHLF+1
X=X-H
H=.5*H
DO 19 I=1,NDIM
Y(I)=AUX( 1,1)
DERY(I)=AUX(2,1)

19 AUX(6,I)=AUX(3,I)
GOTO 9

C
C IN CASE ITEST=1 TESTING OF ACCURACY IS POSSIBLE
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20 IMOD=ISTEP/2
IF(ISTEP-IMOD-IMODD2123921

21 CALL F'TIXqYvDERY)
DO 22 X=1iNDIM
AUX(5vI)=Y(I)

22 AUX(7 I)=DERY(I)
SOTO O

C
C COMPUTATION OF TEST VALUE DELT

23 DELT=3D

DO 24 I=1,NDIM
24 DELT = DELT + ABS(AUX(4,I)-Y(I))

IFIDELToLEoERR) GO TO 28

C
C ERROR IS TOO GREAT

IF(IHLFoGT.25) GO TO 38

DO 27 I=1iNDIM
27 AUX(4,I)=AUX(5,I)

ISTEP=ISTEP+ISTEP-4
X=X-H
IEND=3
GOTO 18

C
C RESULT VALUES ARE GOOD

28 CALL FCT(XvYDERY)
DO 29 I=19NDIM
AUX(1 l)=Y(I)
AUX(29I)=DERY(I)
AUX(3I)=AUX(6vI)
Y(I)=AUX(5,I)

29 DERY(I)=AUX179I)
30 DO 31 I=I 9 NDIM

Y(I)=AUX(191)
31 DERY(I)=AUX(2,I)

IF(IEND)32,32,39
C
C INCREMENT GETS DOUBLED

32 IHLF=IHLF-L
ISTEP=ISTEP/2
H=H+H
IF(IHLF)4,33,33

33 IMOD=ISTEP/2
IF(ISTEP-IMOD-IMOD)4,34,4

34 IF(DELT.GT..0DZERR) GO TO 4

IHLF = IHLF - 1
ISTEP=ISTEP/2
H=H+H
GOTO 4

C
C

38 HH = 3.
GO TO 40

39 XO = X
40 RETURN

END
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Vented mass

Vent line

Vapor P

Zero gravity
liquid-vapor interface, P1  P1  P2

0.10 m ----- Vapor Vapor Vapor

T1  T1 / T2
"-Normal gravity

position P1  P1  / P2

Lq Liquid Liquid Liquid

T1  T1 T1

t<0 t=0 t>O0

0.06 m Figure 2. - Schematic drawing of interface mass transfer venting
model.

Figure 1. - Schematic drawing of typical test container showing
interface position during zero gravity venting.

Mv at TV

As - Ms at T2

Tv, Mv

2 T1, MI

P2

Ms at T2

Figure 3. - Vapor region control volume. Figure 4. - Liquid region control volume.
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3x105 Initiation Termination

I of vent, t1  of vent, tf

1.0 a

2- .6- a o

S. o
0

a Adiabatic decompression venting model
a .2- 0 o Interface mass transfer venting model

6 o Experimental

0 1 2 3 4 5 0 .2 .4 .6 .8 1.0 1.2 1.4
Time from initiation of test, t, sec Reduced flow rate, Q/Vv1

Figure 5. - Tank pressure response during representative data Figure 6. - Effect of volumetric flow rate on pressure drop
run. Test fluid, refrigerant C318; nozzle diameter, 0. 132 for refrigerant 11.
centimeter; average vent rate, 0. 5 ullage volume per second.

. .8

0

& a Adiabatic decompression a
.2 - venting model a ' 4 a Adiabatic decompression

o Interface mass transfer o 9 venting model

venting model . Interface mass transfer
So Experimental 2 venting model

o Reu o Experimental
0 .2 .4 .6 .8

Reduced flow rate, QlV 0 .2 .4 .6 .8 1.0 1.2 1.4
1 Reduced flow rate, QVv1

Figure 7. - Effect of volumetric flow rate on pres-
sure drop for refrigerant C318. Figure 8. - Effect of volumetric flow rate on pressure drop

for refrigerant 600.
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(a) Normal gravity initial condition. Time from initiation of (b) Formation of zero-gravity equilibrium interface. Venting

test, 0 second. begins, time from initiation of test, 1.90 seconds.

(c) Venting occurring. Time from initiation of test, 4.00 (d) Configuration prior to termination of test. No venting;
seconds, time from initiation of test, 5.16 seconds.

Figure 9. - Typical test in which no bulk boiling occurs. Test fluid, refrigerant C318; nozzle diameter, 0.132 centimeter; inital ullage pres-

sure, 2.g9x10 5 newtons per square meter; average vent rate, 0.5 ullage volume per second.
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(a) Formation of zero-gravity equilibrium interface. Venting (b) Boiling occurs near liquid-vapor interface. Time from
begins; time from initiation of test, 1.90 seconds, initiation of test, 2.70 seconds.

(c) Vapor generation increases; interface rise toward vent. (d) Configuration prior to termination of test. No venting
Time from initiation of test, 4.00 seconds. occurring; time from initiation of test, 5.17 seconds.

Figure 10. - Occurrence of bulk boiling in zero-gravity. Test fluid, refrigerant C318, nozzle diameter, 0.193 centimeter;
initial ullage pressure, 2.76x105 newtons per square meter; average vent rate, 1.u ullage volume per second.
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Figure 11. - Schematic diagram of 5- to 10-second zero-gravity facility.
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Figure 12. - Control room.

la) Ultrasonic cleaning system.

Figure 13. - Facility clean room.
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(b) Laminar flow work station.
Figure 14. - Deceleration system.

Figure l3. - Concluded
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Figure 15. - Experiment vehicle. Figure 16. Experiment assembly tray.
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Figure 17. - Vehicle position prior to release.

Read title Calculate Pnnt X, 1)

KODE=O Caulate Calculate tIi =1 M M TP 2 ', R H O V '

Initaliz fiYCree

T, P2, RHOV, Curve fit Curve fit Curve fit
X, Y(1), Y(2) HFG=f(P2) K=f(P2) HT =f(P2) KODE=KODE+1

Print titleand

input constants Curve fit Calculate Curve fit Yes

T2f( 2 MV RHOVI=f(P2) II=2 No

I=1~

XF=X+.05 Call Curve fit CurvefitII=II+1
Runge-Kutta RHOV= f(P2 H2=f(P2)

tt C

Figure 18. - omputer program flow chart.
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