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KULLBACK-LEIBLER INFORMATION FUNCTION AND THE SEQUENTIAL
SELECTION OF EXPERIMENTS TO DISCRIMINATE AMONG

SEVERAL LINEAR MODELS

Abstract

by

Steven Michael Sidik

Assume that a finite sqt of potential linear models relating

several controlled variables to an observed variable is postulated

and that exactly one.of these models is the true model. The prob-

lem is to sequentially design most informative experiments so that

the correct model can be determined with as little experimentation

as possible. We assume that .the error variance of the proiess is

known. In addition, we assume the statistician possesses prior

information which can be expressed as the prior probability that

each of the proposed models is indeed the correct model and prior

multivariate normal distributions on the parameters of each of the

postulated model equations. After each stage of sampling, the

prior distributions and. the observed data values are used to com-

pute posterior probabilities of the models being the true one and

posterior distributions on the parameters of the models. Then

sampling is terminated if either a prespecified number of observa-

tions has been taken or if any of the posterior probabilities of

the models exceeds a prespecified minimum stopping probability.

Upon termination of sampling, the model with the largest posterior
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probability is chosen to be the correct model. If sampling is not

to be terminated, the next experiment chosen is that one in the set

of allowable values of the controlled variables which maximizes the

expected Kullback-Leibler information function based upon the cur-

rentposterior probabilities and distributions.

An analytical study of this procedure is too complex and dif-

ficult to adequately achieve. Hence a number of Monte-Carlo simu-

latioh experiments were performed to obtain information about the

performance of this adaptive design procedure. Two basic types of

Monte-Carlo experiments were performed. In the first, one of the

models was chosen to be used to generate the random observations

using known fixed values for the parameters. Then a large number

of observations were taken using the Kullback-Leibler information

functions as a criterion to choose the sequence of experiments. It

was found the posterior probability of the chosen model relatively

rapidly approaches the value of 1.0 and then fluctuates near 1.0.

The posterior mean of the parameters of the correct model also

rapidly approaches the known fixed values used to generate the ob-

servations. In the second type of experiment, one of the models was

chosen to be used to generate the random observations. Then for

various combinations of the maximum number of observations, stopping

probability, prior .distributions of the parameters, and error vari-

ance of the process, a large number of repetitions of the sequential

design procedure were executed. Then a probability of correct se-

lection and average sample number were calculated based unon the
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number of times the procedure chose the correct model and the number

of observations taken until termination. In general, it was found

that as long as the prior mean of the correct model is not too dis-

tant from the true value with respect to the means of the other

models the probability of correct selection is respectably high.
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CHAPTER 1 - INTRODUCTION AND LITERATURE SURVEY

The general linear model has become one of the most useful

statistical tools available to the modern scientific experimenter.

There have been many books and papers written about techniques for

choosing the appropriate or "best" linear model to fit to a set of

data already collected. In general, these have been methods of

hypothesis testing to determine which of a set of specified terms

in a model equation may be dropped from the model. Much work has

also been done with regard to the problem of designing best or

optimal experiments to estimate the parameters of specified model

equations.-

In this dissertation we study a sequential adaptive experi-

mental design procedure for a related problem. Assume that a finite

set of potential linear models relating certain controlled variables

to an observed variable is postulated and that exactly one of these

models is correct. The problem is to sequentially design most in-

formative experiments so that the correct model equation can be de-

termined with as little experimentation as possible. We also assume

that the error variance of the process is known. In addition, we

assume that the statistician possesses prior information which can

be expressed by the prior probability that each of the proposed

models is indeed the correct model and prior multivariate normal

distributions on the parameters of the various models. We then de-
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rive an adaptive procedure for designing the successive experiments

using the Kullback-Leibler information function to maximize the

anticipated information for discriminating among the models. That

is, after each stage of sampling, the prior distributions and the

observed values are used to compute posterior probabilities of the

postulated models being correct and posterior distributions on the

parameters of the models. Then if sampling is not to be terminated,

the next experiment chosen is that which maximizes the expected

Kullback-Leibler information based on the current posterior proba-

bilities and distributions. Samplingis terminated whenever either

a prespecified number of observations is finally taken or whenever

any of the posterior probabilities of the models exceeds a prespeci-

fied values Upon termination of sampling, the model with the larg-

est posterior probability is chosen to be the correct model.

An analytical study of this procedure is too complex and dif-

ficult to adequately achieve. Hence a number of Monte-Carlo simula-

tion experiments were performed to obtain information about the per-

formance of this adaptive design procedure. Two basic types of

Monte-Carlo experiments were performed. In the first, one of the

models was chosen to be used to generate the random observations

using known fixed values for the parameters. Then a large number

of observations were taken using the Kullback-Leibler information

as a criterion to choose the sequence of experiments. It was found

the posterior probability of the chosen model relatively rapidly

approaches the value of 1.0 and then fluctuates near 1.0. The
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posterior mean 'of the parameters of the correct model also rapidly

approach the known fixed values used to generate the observations.

In the second type of experiment, one of the models was chosen to

be used to generate the random observations. 'Then for various'com-

binations of the maximum number of observations, stopping proba-

bility, prior distributions of the parameters, and error variance

of the process, a large number of repetitions of the sequential

design procedure were executed. Then a probability of correct se-

lection and average sample number were calculated based upon the

number of times the procedure chose the correct model and the num-

ber of observations taken until termination. In general, it was

Sfound that as long as the prior mean of the correct model is not

too distant from the true value with respect to the means of the

other models the probability of correct selection is :respectably

high.

We now briefly indicate the general organization of the

dissertation. In Chapter 2 the notation used is described and the

structure of the linear models is derived. Chapter 3 then develops

the distribution theory which will be basic to the remainder of the

dissertation. In particular, the posterior probabilities of the

models, the posterior distributions of the parameters, and the

Markovian nature of the sampling process are developed. Some large

sample results are then derived for the situation where the sequence

of experiments is specified in advance of experimenting. These re-

sults do not thus formally apply to the adaptive design procedure.



We find, however, that they do appear to be true to a surprising

extent and provide some help in explaining and interpreting the

Monte-Carlo results.

In Chapter 4, the Kullback-Leibler information concept is

introduced and the derivation of the anticipated information as

a function of the current posterior probabilities of the models

and the current posterior distributions of the parameters is pre-

sented. This anticipated information is the criterion function

used to define the most informative experiment. Its use is dis-

cussed both from the point of view of its relation to the expected

decrease in entropy and the point of view that it results in a

very simple function measuring the amount by which the expected

value of the observed variable under each model is separated.

The sequential experiment selection, stopping, and model se-

lection rules are presented in Chapter 5.

In Chapter 6,.the Monte-Carlo simulation experiments are de-

scribed and the results presented and discussed. Chapter 7 presents

an example of application. Several appendixes are also included.

Of most .importance is appendix A which presents the computer pro-

gram used to perform the simulation experiments.

We now turn to a discussion of works by earlier authors who

have considered similar problems.

Lindley (1956) was one of.the first to consider the general

idea of applying information concepts to the problems of statistical

inference. He modified the concept of entropy and developed a num-
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ber of interesting general results on the amount of information in

an experiment about the parameters of the distribution of a random

variable.

Stone (1959) was one of the first to consider information con-

cepts as applied to designing and comparing regression experiments.

He used a Bayesian framework, but the problem he considers is that

of parameter estimation rather than that of model selection.

Another early and more relevant paper is that of Chernoff

(1959) who applied the Kullback-Leibler information function to the

sequential design of experiments when the cost of experimenting is

small. His results are valid for the case of two terminal decisions

and a finite number of experiments and states of nature. These re-

sults have been generalized by Albert (1961) to an infinite number

of states of nature and by Bessler (1960) to an infinite number of

experiments and k terminal actions. Kiefer and Sacks (1963) have

also provided some extensions.

The statement of Chernoff's problem and the problem considered

here are not identical and we proceed by analogizing his results to

the problem at hand. In the context of the current problem, he

would proceed by first assuming that at each stage of sampling the

model with the largest posterior probability is the correct one.

Then if A denotes the space of allowable experiments, define the

Kullback-Leibler (K-L) information about model j in experiment

acA when model i is true as
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I(a,i,j) = fn f(ya)]fi(yla)dy

where fi(yla) denotes the probability density of y under model i

when experiment acA is performed. Let i denote the model with

the highest current probability of being the correct one. Then in

analogy to Chernoff, we define the optimal experiment as a(i) where

a(i) is defined by that experiment satisfying o

I[a(1),I,j] = sup inf I(a,i,k)
acA k#i

That is, Chernoff represents the problem as a game between nature

and the statistician where the statistician maximizes over A and

nature minimizes over the alternative models assuming i is the

correct model. Chernoff also specifically derives a stopping rule

which we do not discuss here.

Hunter and Reiner (1965).considered a sequential design pro-

cedure for discriminating between two model equations. Their proce-

dure chooses the experimental conditions which, based upon maximum

likelihood estimates of the parameters from the data already col-

lected, separate the expected values of the observed variable under

the two models by as much as possible.

Box and Hill (1967) discussed the use of the Kullback-Leibler

information function, deriving it from corsiderations involving the

entropy function. They consider the use of the K-L information

function to sequentially discriminate among several mechanistic

(nonlinear) model equations. Besides the fact that they consider
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nonlinear models, their approach is different in the sense that al-

though they do assume prior probabilities on the proposed models,

and compute posterior probabilities from the observations, they as-

sume the parameters of the model equations are known constants.

Meeter, Pirie, and Blot (1970) have done a number of computer

simulations comparing the methods of Chernoff and of Box and Hill.

They found that the Box-Hill procedure performed quite well on the

examples in comparison to Chernoff's procedure. It is interesting

to note that Chernoff seems to be the only one of these authors

who defined an explicit rule for terminating sampling. Although

Chernoff's procedure is known to be asymptotically optimal, it is

also known to require very large sample sizes.



CHAPTER 2

STRUCTURE OF THE LINEAR MODELS

In the theory of the general linear statistical model, we are

concerned with problems involving model equations relating k con-

trolled variables (zi; i = 1, . .,k) to an observed variable (y).

The form of the model equation is required to be

I

y = Bihi(Z' .. ,zk) + 

i=l

The known functions hi are arbitrary except that they may not con-

tain any unknown parameters. The equation is linear in the unknown

parameters 6. and - is assumed to be a random variable with ex-
1

pectation zero and known finite variance. We may write

x.i = hi (z1  .,zk) and henceforth express the models in terms of

the x. variables. If n observations are made upon y we let
1

x.. denote the value of x. at which the jh observation is made.

Thus for the n observations the model may conveniently be written

as

y = M + E (2-1)

where

y' = (yl ,y 2 , . . yn
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xll x12 . . . xll
1 1  x 12  11

21 x22 x 2 I

M=

Xnl xn2 . . . XnI

E' = (1, 2' ; . nI )

and the c. are uncorrelated. The matrix M is called the design
1

matrix for the experiment consisting of the n observations. The

problem of experimental design is that of choosing the x.. values

in some "optimal" manner.

In certain situations in practice the experimefter can postu-

late several possible models involving different functions of the

z. variables which correspond to several possible mechanistic or
1

empirically based theories. These may lead to the various models

containing different sets of x.. There may be some overlapping of

the x. among the models or there may be none.
1

There are then two problems requiring solution. The first is

that of choosing experiment designs which will enable the experi-

menter to decide which of the potential models is the correct one.

Then, having chosen the model, the parameters must be estimated.

The second problem has many solutions using a variety of standard
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techniques. This dissertation concerns itself primarily with a

method of designing experiments to provide information for choosing

the appropriate model equation.

We assume there are L different competing model equations.

These models may be combined into one large possible model equa-

tion and then the L hypothetical models are equivalent to there

being L hypotheses restricting certain sets of parameters of the

large model to be a priori zero. For example, we might have two

controlled variables xl and x 2 . And suppose the model equations

postulated are:

(1)
Hi Y = B 1 +

(2)H2: .y = 2)x2 + E
112 2 x 2

(3) (3)
H3: 1 1 +2 x 2 +

where j ) denotes the coefficient of controlled variable i in
i

model equation j. The distinction must be made because although

(  and Bk) are coefficients of variable i, their distribu-
i i

tions need not be the same. This notation is clumsy, however, and

if we implicitly accept the fact that the distributions of the 8(j)
1

depend upon the model, we may more simply rewrite the models as

H1 : y = 1 x +

H2: y = 2 x2 +

H3: Y = 1 x 1 + 2 x 2 +

We say that models 1 and 2 are nested within model 3. This is



equivalent to writing one model as y = X 1 + B2x 2 + = X'B + c

and hypothesizing

HI: 2 = 0

H2 : 1  0

H3: m 0O,2 # 0

In this sense it is seen that the terms model and hypothesis are

interichangeable and will be used interchangeably in the remainder

of this dissertation. Theonotation we adopt is that H, claims

-t -t -
y = M + E

where a is the appropriate k x 1 vector of B's from B which

appear in model Z and M is the appropriate matrix of x's.

We now precisely state the three basic distributional assump-

tions about.the parameters and random variables of the models:

(1) The vector s follows a multivariate normal distribution

with mean 0 and precision matrix T. T is assumed known. (The

precision matrix is the inverse of the covariance matrix of the

distribution.) Since T :must be positive definite symmetric, we

need only consider the special case where T = TI since linear

transformation of the y reduces all other cases to this one. Note

that we assume T is known. Thus : ~ N(0,1I).

(2) For each k = 1, . .,L the prior distribution of a is

a~k N(lao0,, O )
-

where 11,0 and T',0 are known.

(3) The prior probability that the Zth model is the correct
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model equation is assumed specified and denoted by 0k, 0 . We re-

L
quire E 0 , 0 = 1.0. In order to satisfy this requirement in a

k=l

completely precise manner, we must make the models mutually exclu-

sive. As described so far, this need not be true. However, this

is a simple problem to get around for the following reason. Each

of the HR specifies that ta is an element of a k dimensional

subset of K-space which we denote as E . For any pair H. and

Hk we have either (1) Ej Ek, (2) Ek Ej, or (3) neither space

contains the other and E Ek has measure zero with respect to

H. and Hk . For case 1 define e. as . = Pr{a.E - E }. But
j kJ J j k

Ek has zero measure with respect.to H. and hence the distribution
k-J.

function of a. restricted to E - Ek is identical to the distri-j j k

bution function of U. over all of E.. Thus for any practical
J J

purpose, the fact that E. Ek does not affect any probability

computations. Similar arguments apply to cases two and three.

We now describe the space A of allowable experiments in

more detail. If the number of elements of X is K, then a choice

of experiment acA is composed of the number J of observations

to take and J vectors from some subset of Euclidean K-space. The

J vectors specify the values of the controlled variables ' x... At

the jth experiment or jth stage of experimenting the particular

choice from A is denoted a..
J



CHAPTER 3

PREREQUISITE DISTRIBUTION THEORY

In the remainder of this dissertation, much use'will be made

of the distribution of the observed variable, the posterior proba-

bilities of the models, aId the posterior distributions of the pa-

rameters of the model equations. The first part of this chapter

develops these distributions. The second part derives the fact that

the sampling procedure is Markovian in nature and provides a nota-

tion for describing the state of the process.- The third section of

this chapter discusses some results on the limiting behavior of the

posterior distributions when the sequence of experiments is chosen

in advance. The strong restrictions that must be made to accomplish

these large sample results and the fact that they do not describe

the adaptive process might lead one to believe that they are not

worthwhile pursuing.

We find in chapter 6, however, that there is a close analogy

between these results and the behavior of the adaptive procedure,

and that these results help explain and interpret the Monte Carlo

simulation results.

3.1 Posterior and Marginal Distributions

Let f (yj+11aj+ 1 ,a9) denote the density function of the
-.

vector yj+1 under H when the parameter values are given by a

at stage j + 1 of sampling. Let the probability density function

13
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of a~ after j stages of sampling be denoted F ( ). This is

a preposterior density since it serves as the posterior density of

a after j stages of sampling and the prior density of a be-

fore the j + ls t  stage of sampling occurs.

Lemma 3.1: After j stages of sampling, ag follows a multivariate

normal distribution with mean vector U and precision matrix

SI.. That is, after j stages of sampling,

a- -

where

Tk,j = T + M,jTM ,j

= , + M, £i (3-1)
i=l

+ -1 + +
v = (M Ty. + T v .)Uj P ,j Z,jT yj +£,jl £,j_

£,j M£,iTy i + TP,01,1 (3-2)

and where M i denotes the design matrix specified by ai under

Hk.

Proof: By Bayes theorem, if yj is the observed vector at stage j

Cka (a =

f a )£,j (~a) (3-3)

The symbol means "proportional to" and is used in the context of

DeGroots (1970, p. 160) usage. Thus



() e-Q/2

where (dropping subscripts)

Q = (M - )T(M - y) + (- )'T( - )

Since T and Y are positive definite symmetric we can write

Q = (Y + M'TM) - 2("'Y + y'TM)a + (terms not involving a)

= [ - (Y + M'TM) -(M'Ty + TY)] ' (Y + M'TM)

S[D - (Y + M TM) -(M Ty + P)] + (terms not involving a)

The terms not involving a may be factored out through use of the

proportionality device, leaving the kernel of a multivariate normal

distribution with parameters as specified by the lemma. Thus a

is distributed as claimed.

Q.E.D.

Owen (1970) has derived a result similar to Lemma 3.1 in the

case of a two factor experiment where the factors are treatments

and blocks.

We now turn to determining the distribution of Yj+l. This

is done in two stages. First we do not know which of the models is

in fact the correct one. Then for any given model, we do not know

the value of a . Let fi(y Y aj+ ,a) denote the distribution of

Yj+l under HZ when experiment aj+1sA is performed and a is

specified. Since we do not know a~ we must average this distribu-

tion over all a. Let fA(Yj a j+l) denote the mixture of the

densities fQ(Yj+ 1 taj+1 ,U) with respect to the marginal posterior

of a.



16

Lemma 3.2 The conditional distribution of y. given H and a.

is a multivariate normal distribution with mea.- vector s,. and

precision matrix R where

R, = TI - M, (MjTM,j + . T (3-4)

-, Ij R 1TM (MjTM + (3-5)
k,j ,j kj ( ,j TM ,j + ,j 1_ 

)  2L j_-1 k,j -1

Proof: The required mixture distribution is gi.ven by

f( = f I a ,( ,a)d j

c e-Q/2 d

where

Q = (j - M a) T(y. - M a) + (a - Za,j1 )  ,j- - v,j-1)

= U' (M'TM + ) a - 2a'(M'TM + 1)(M TM + ')-1 1 Ty + T4)

+ T - -+
+ 'Ty + P Y

= ' (M TM + T)a - 2a'(M TM + Y) (M'TM + T) -1TyT +

+ (M Ty + T) (M TM + T) (M Ty + Yv)

' ' -1M + - -
(M Ty + TV) (M TM + T) (M Ty + 'p) + y'Ty + y'Yp

The first three terms yield the quadratic for,

S= [ - (M'TM + T)- (M Ty + T')]' (M'TM + ')

S[ - (M'TM + T) (M Ty + y)]

Sn -Q1/2
The remainder of Q does not involve a and e is the

kernel of a multivariate normal distribution o that when eQ 1/2

f -., , . - % . :,. ; - : , :C i -Z 
.

• . t , ,.-. r' " 
,
x-. . ,,;- -.<j- g ., ,,',
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is integrated over a we remain with

f,j-l(~lj a
) ° e  /2

where

Q2 = -(M'Ty + p) (M TM + ) (M Ty + ) + y'Ty +
M + 'T+ )-' - )-p

= '[T- TM(MTTM + V)MT] - 2yTM(M'TM + )-1 j

+ (terms not involving y)

= (y - ) R(y - ) + (terms not involving y)

The terms not involving y' may be factored out via the propor-

tionality device leaving

->4

c -(y-6 k) R (y-S P)/2
f(y laj) e

This is the kernel of a multivariate normal distribution with

mean vector s ,j and precision matrix R ,j as claimed. Thus

the density of yj given H and a. is given by

f (yjaj) = (2) -J/2IR ,jI/2exp (Y - ,j R (y - ,

(3-6)

Q.E.D.

Since the true model is unknown we now compute the mixture of

the distributions of Lemma 3.2 with respect to the probabilities

,j . as

L

f(y a.) = B j (yl a) (3-7)

r=1

To compute the posterior probability of each model being cor-
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rect after the observation yj+I. is obtained, we apply Bayes theorem

directly to get

f6 ( +1 laj+l) 0 ,j (3-8)
Z,j+- L

Sfk(~+11aj+ 1 ) ek,j

k=l

3.2 Markovian Nature of Sampling.Process

Consider a sequence of random variables W 1,W 2, . . . which

take on values in a sample space or state space Q. We let C de-

note the a-field of subsets of Q for which probabilities are de-

fined. The sequence of random variables W. form a Markov Process
1

if for every FE: and for all wl, . . ,wn in Q, and all for n,

n = 1,2,3, . . we have

Pr(WWn+l:FW 1 = w I , . . ,Wn = w n

= Pr{W n+lFIWn = Wn}

S gn+1 (WIwn)dw (3-9)

F

where g n+l(IWn) denotes the generalized conditional probability

density function of Wn+1 . If the conditional probabilities in

equation (3-9), equivalently the gn, do not depend upon n the

transition process is called stationary. -The state space in this

paper can be described by a vector containing: (1) the probabili-

ties 8£, (2) the elements of the vectors describing the current

posterior means under the various Ha, and (3) the lower triangular

H . Thus
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(1) (2) (1) (2) (1)
S = 1' . L' ' '1 ' " " " 2 ' 2 ' " " L '

L'51 1 2 2 2

(KL) (1,1) (KL,KL) : ., < (j)
11L Tl T L < +0,

i=l

T. positive definite for i = 1, .,L(3-10)

For any given state wEc the transition to the next state depends

only upon the state w and the experiment a A that is chosen.

This is true because a detemines the posterior precision

matrices regardless of the value of y, and the posterior means

-+

VP(y) and probabilities 6(y) are determined by equations (3-1)

and (3-8) which again depend only upon w, y, and a. Thus the

transition process on the states is Markovian. The process is

stationary, also , since for given initial g the successive

gn 4o yot depend upon n. The transition function may be described

as follows. Define a mapping T:QxY - Q and let Q(xY) denote

the Borel sets on QxY and Q(Q) denote the Borel sets on Q. Let

T- (F) denote the inverse image of F where FEQ(Q) and

T- (F)eQ(OxY). Then if w' denotes the state of the system after

sampling,

Pr(w'cFfw,a) = ifi(yIa,w)dy

i=1

(w,y)E T ( F)
3.3 Large Sample and Limiti.ng Results

Even though this paper is concerned primarily with small

sample procedures, it is interesting and informative to know the

large sample or limiting behavior of the parameters and ne sampilng



20

process. Unfortunately, for the adaptive procedure this is an ex-

tremely difficult subject to study. Thus we do not study the adap-

tive procedure here but instead consider the experiment selection

procedure under the restrictions listed below in the hope that these

results will illuminate the adaptive procedure in some sense.

(1) Assume A is finite with N(A) elements, and represented

as

(1) (2) [N(A)]
A a ,a .,a

(2) An infinite sequence {a.j is specified such that as the

number of experiments approaches infinity, the proportion of times

that a(i) is performed approaches pi with 0 < p. < 1 and

Ep = 1.0. The experiments a. are chosen independently of each

other.

(3) Assume H., is the true model and that p is the true

value of the parameters in the model.

(4) Assume that only one observation is taken in each experi-

ment a (i)

(5) Assume that the structure of A is such that all matrices

under consideration are nonsingular.

It should be noted that the mos't restrictive of the above as-

sumptions is the second. For in a true sequential decision proce-

dure, the actual experiment chosen is a random variable depending

upon the previous observations obtained. Since we are in fact study-

ing a problem other than the one of most importance the remainder of

. -.. .
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obtained cannot be rigorously applied to the sequential procedure.

It will be seen in Chapter 6, however, that fairly extensive Monte

Carlo simulations seem to bear.up the general conclusions reached

here.

Let k(j) denote the superscript of the experiment performed

at stage j. Thus if a10 = a(5), then k(10) = 5. Also let

n(i,j) denote the number of times a(i) is performed in the se-

quence of experiments up to and including the jth stage. Let M i

denote the design matrix under H when a(i) is chosen,

Lemma 3.3 Under the above assumiptions the posterior precision

matrices and mean vectors converge with probability one as j -

to:

N.(A)
1 T . pM M
jT Z,j PiM£,i£,i

i=l

/N(A)

j,+j (T PiM£,iM

i=1

Proof: To prove the first limit, recall from equation (3-1) that

,j £,0 ,+ £,k(i)M,k(i)

Thus
Thus
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1 1 1
- + M M

O k,j jT ,0 j ,k(i)M ,k(i)

i=l

N(A)

1 + M M
jT ,0 + , iMi

i=l

As j + , the first term goes to zero and the factors n(ij) p

by assumption.

To prove the second part note that yj = Mk(i) + '.

where E. ~ N(0,T). Using the second form of equation (3-2) we get

=( + P (3-11)
k,j k,j ( ; M,k(i)y i + ,0,0 (3-i)

Then substituting the expression for yj into equation (3-11) gives.

N(A)
4-, = ( ) D n(i,j)TM,iMi,i

i=1

N(A) j

l,i m6k(m), , 0 ,

where 6. i j denotes the Kronecker delta function. Thus

1 N(A)
+ 1 n(i,i) . ,i

Rpj . ~ j - . ? M M.p

N(A)
' 1 1 -

+ Mk, i  m6 k(m), jT £,0 ,0

i=l m=l

From assumption 2 we know that n(i,j) + o as j + m and since the
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C form a sequence of independent and identically distributed ran-

dom variables, the strong law of large numbers may be applied to

show for i 1, . .,L

Pr lim 6 0 1.0
n(ij) m k(m),i

n(i,j)- m=l

1
Since -t 0 as j m owe then have

N(A)
- ~1 n(i,j) , *
Ths e j M£,i , 1

This sequence will not have a limit unless lim . = exists.

If such a limit exists, the lemma follows immediately.

Q.E.D.

Lemma 3.4 Under the assumptions stated, R , T irrespective of

{a.} and
1

, M (Y M M.s,j M,k(j) k

for large enough i.

Proof: From equation (3-4) and the assumptions

Rk,j . M,k(j),j ,k(j)M ,k(j) ,k(j

As j + m, [ ,j + tMk(j)Mk(j)] + (O) and hence its inverse

- (0). But then Rj + T as claimed.

From equation (3-5)

S =-1( ' -
=, ,j 9
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I -1
For large enough j, [M k(j)Mk(j) ,j is asymptoti-

cally like the identity matrix, I, so that

S ,j -T ,k(j) ,j

M (ne )h p M fMi

We note that if k = i , then from the definition of Y , we have

s.,j = M.*,k( as expected.
1 i ,k(j)

Q.E,D.

Lemma 3.5 If H., is the true hypothesis and the model of H.i
i 1

is nested within the model of HL, then under the above assumptions

and assuming the parameter vectors are rearranged appropriately

Pr P +. = 1.0

Proof: From Lemma 3.3 we have

N (A)

If the parameters are rearranged appropriately then M ,i may be

written

M = (Mi. ,iM,i)
i 1 ,1ki

where M ,i denotes the design matrix corresponding to the inde-

pendent variables in H but not in H.,. Thus

M 
,i

M = Mii Mi Mi
£,11 I .1R~
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and

where

Ti* , = 0 " P M * , M ,i

i=l

and

N (A)

S= PiM 'i 'i

1 ,1 ,) J i i i

Also

i=

Thus

-1 -
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-- 1 - , -1 -1

-1 *,

ST .* Y *=

[I

upon application of Lemma 3.6 which follows. Thus

11k,j Po, \~

Q.E.D.

Lemma 3.6 (Problem 2.9 of Rao (1965)) If A and D are matrices

possessing inverses, then

(A + BDB') - 1 = A-1 - A-1B(B'A-1B + D- -B A-

Proof: By direct multiplication we only need show

I = (A + BDB )(A -I - A- B(B'A- B + D)-I B'A - 1

= I - B(B A- B + D-I )- BA-1 + BDB A-

S-1 '-1 -1-li -1- BDB A B(B A-B + D ) BA

= I - B[-(B A B + D- ) + D - DB A B(B'A- B + D- ) -]B'A-1

= I - B[D - [I + DB A- B][B'A- B + D I F-]B'A- I

-1 ' -1 -1 ' -l - ' -1
= I - B[D - D[D + BA- B][D + BA B] ]BA

= I - B[D - D]B'A- I

=I QE.D.
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To apply this result to Lemma 3.5 simply set

A= T i

B = i*

-1
D = _-

We now turn to consideration of the limiting behavior of .

Computer simulations for both nested and non-nested cases in-

dicate that for any k where Hi, is not nested in Hk, 8k,j + 0.0

fairly rapidly and steadily. If Hi. is nested in Hk then it

seems that 6k, j + 0.0. The rate is initially rapid but then be-

comes very slow and it behaves in a very erratic manner. These

points are discussed in some detail in Chapter 6.

It should be reiterated and these discussions have assumed

the sequence {a.} to be specified and fixed for the sequence of ex-

periments. In a sequential decision problem the sequence {ao} is

not fixed, but k(j) is in fact a random variable whose distribu-

tion depends upon k(i) for i < j and the yi for i < j.



CHAPTER 4

ENTROPY FUNCTIONS AND THE KULLBACK-LEIBLER INFORMATION FUNCTION

When comparing a number of experiments to determine which is

the optimal one to perform, one must define optimal. In this dis-

sertation, that experiment which yields the largest expected K-L

information is defined as the optimal experiment. In particular,

let I(w,a) denote the expected K-L information as a function of

the experiment a and the current state w of the process. This

function will be specified explicitly later. In this chapter, we

first describe how the K-L information arises from attempting to

reduce the entropy of the probabilities of the models. We then

develop an expression for I(w,a) and finally discuss the opera-

tional meaning of the use of I(w,a) from a heuristic point of

view.

4.1 Development of the K-L Information Function

The problem under consideration here is that we must choose

one of a set of postulated model equations. For each model we have

the posterior probability ej that it is the correct one. We

would like to choose experiments which cause the posterior proba-

bility of the correct model to increase most rapidly. An indirect

method of accomplishing this is to choose experiments which most

rapidly decrease the entropy of the set of probabilities 0 ,j. The

entropy is defined as

28

O
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L

(w) = - ' lj n( )

k=l

It can be verified that the entropy attains a maximum when all the

probabilities are equal and attains a minimum when any one of the

probabilities is one and the rest are zero.

Box and Hill (1967) proposed the use of the expected decrease

between the entropy at the current stage of sampling and the antici-

pated entropy at the next stage of sampling as the criterion for se-

lection of experiments. They found, however, that the entropy func-

tion is quite intractable analytically and applied a well-known in-

equality to show the expected K-L information function provides an

upper bound on the reduction of entropy. Let 6 i(yw,a) denote the

posterior probability of model i if the value y is observed when

the state was w. Let w(y) denote the state of the process after

observing the value y when it was in state w. Then the antici-

pated entropy is given by

E [w(y) ,a]) = 6 (ylw,a)ln[6O w,a) f(Yw,a)dy

Thus if the current state of the sampling process is wec, and the

experiment aCA is performed, the expected decrease in entropy,

R(w,a), is then defined as

o
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R(w,a) =5(w) E{e[w() ,a}

= - ::e ln(y.) +a]i in(e i ) + ei(Ylw,a)in[Oi( lw,a )  .

fk('w,a) d
ki=l=

L L 0 f N,7, a)

= - Li6 In(O ) + 0f . ( lw a)ln L ( dya)

i-- k=l __ Okf k (w
k=1

S i £(Y w,a)n wa dy (4-1)

k=l i=1

by application of the following inequality (Kullback (1969), p. 15)

,.t

(y Iw,a) f (lw,a)if ((lw, w,a)n f a) fw,a)lnL
i=l ekfk( ylw,a)

k=1

Let

Sdy (4-2)wa)
I(w,a,i,j).= fi(lw,a)1n (. wad (4-2)

We note I(w,a,i,j) is defined as the expected amount of in-

formation in the observations from experiment a for discriminating

against H. in favor of H,. Let e(w,a) denote the matrix whose

i,j element is I(w,a,i,j). Then the inequality (4-1) may be

written as
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R(w,a) 8 (w,a) = I(w,a) (4-3)

Meeter et al. (1970) proposed the following heuristic argument in

favor of using I(w,a). If one knew that Hi were indeed the cor-

rect hypothesis and wished to maximize the information about Hk

for k # i, then it would be natural to maximize

a kl (w,a,i,k)

k#i

But since H. is assumed correct only with probability 0i, it is
1 o

equally natural to multiply.the foregoing expression by 8. and sum
1

over i. But in doing this, one does end up with I(w,a).

4.2 Evaluation of K-L Information Function

From equation (3-6) we have (if y is Jxl.) that the density

of y under H is .given by

f 1 a )  (27)-J/2 R 1/2e -1/2(y-s ) R (y-s )

Hence

f la , -1/2(y-sm ) Rm(Y-sm)fn ( ly a )  IRml/21Rnl-/2 e m m M

f -(ja) = m Rn -1/2(y- n)'R n(-sn)
e

Moreover

n FM(a = 1 (lnjR - inRI)

(y s ) R (y - s )
2 m m m

1 (+ + ' +
+ (y - s) R (Y - Sn)

(4-4)
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and

I(w,a,m,n) = (In f a m(yla)dy

( a)j

=E n mf( a) (4-5)
f (" a)

where the expectation is taken under .the assumption y ~ N(s ,R ).

Note that I(w,a,m,m) = 0.0 for m = i, . . .,L

Lemma 4.1 If y - N(cR) and R is positive definite, and A. is

symmetric, then

S1 r -1 +
E{y'Ay} = tr(AR )+ c'Ac

Proof. By theorem 10.3.2 of Graybill (1969)

E{(y - c)'A(y - c)}

)/2 (y c) A(y - c)e dyn/2 _.. -
(21T)n -

= tr(AR- 1 )

But

E{(' - c) A(y - )} = E{y'Ay - 'Ac

The lemma follows immediately.

Q.E.D.

Applying the lemma to the expectations of the quadratic forms

in equation (4-4) we see:

+ .+ -l
1. y - N(s ,R ) E{(y - ) 'R ( - )} = tr(R Rm m m m m mm

"+ N - - n 'Rn ( n)
2. y - n N(s- S ,Rm) =E{(y - s) Rn ( - s )}

ntr(R ) (Sm Sn) Rn (Sm sn )
= tr(RR ) + (s - ) R (s -s )
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Thus

I(w,a,m,n) = 1 R - - J + tr(RR )
2 m n 2 2 nm

+ S - s ) R (s m  s ) (4-6)
n n

I(w,a,m,n) + I(w,a,n,m) = -J + [ tri RR + tr R1
2 n m. mn

+ s - s) R ( - S ) + (S - S ) Rm(Sn- m
2 m n n m n n m m n m

1 -= -J + r RR + tr RR
2 n m mn

1 A
+ ~ (Sm -s ) (R + R )(s - s2 m n m n m n

(4-7)

L n-i

I(w,a) = 6nm[I(w,a,m,n) + I(w,a,n,m)]

n=2 m=l

L n-i

= e m -J + tr RnR 1 )+ tr RRnm 2 nm mn
n=2 m=l

+- [(s m - Sn) (R + R )( s )

= -J D 6m n + 6n tr 6mR )Rn
n=2 m=l n=l

L n-i

+ 0nm( s Sn) (R + R n)(s - s )  (4-8)

n=2 m=l

The last form of this equation appears to be the most convenient for

computing purposes.
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4.3 Intuitive Analysis

Looking at the computing form of equation (4-8) it can be
L n

seen that there are three terms. The first term is -J m n
n=2 m=l n

The value of this term does not depend upon a and hence has no

effect upon the choice of a. From this consideration we note that

computing the value of this term would not be beneficial if only

one more stage of experimentation is available,

The third term of the sum is a weighted sum of the quadratic

-o forms

(s - s ) (R + R )(s - n)m n m n

Thus this term is in effect a separating function in the sense that

these quadratic forms will be maximized when the pairscof expected

values of y under the various hypotheses are as far apart as pos-

sible in comparison to the precisions of y. If the precisions R

and R are large then s and s do not need to be far apart ton m n

provide much information whereas if these precisions are small then

the expected values s and s must be further apart to provide
m n

the same information. The weighting factors are the products a 8 .
nm

Thus when 0 and 0 are both small, 8 0 is very small and the
n m nm

information due to the separation of s and s is discounted
n m

somewhat. If 0 and 6 are large then the information due to

separation of s and s is given more importance. Thus this
n m

third term causes experiments to'be chosen which separate the ex-

pected values of y under the respective hypotheses which are still

in serious contention for being chosen.
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o

It is interesting to note that some authors (Hunt and Reiner

(1965), e.g.) have proposed criteria for selection of experiments

involving only distances between expected values. In a later paper,

Box and Hill (1967) proposed that the distances as such are not im-

portant, but the distances weighted by some function of the varia-

bility about the expected values are important. It is seen here

that the expected K-L information function does just that.

The second term in equation (4-8) is

1 etr R 6R )R . This can be thought of as a weighted
2 n n
n=1

sum of ratios of precisions. If only one y value is to be ob-

served, this component becomes

L 68 R

i mfn m m
1-/ nn R (4-9)
2 / n R
n=l

It would be interesting to see when this term is maximized. Upon

taking partial derivatives of equation (4-9), setting to zero, and

simplifying, one arrives at the following set of simultaneous non-

linear equations.

i = 0 i = 1, . .,L

k=1

It can be immediately seen that one solution to this system is

R1 = R2 = . . . = RL. This solution implies that the experiments

should tend to give the same precision for the expected value of y
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under each hypothesis. This term is not considered any further

here.

In summary, it can be seen that the expected K-L information

function in this case is basically a rather simple separating func-

tion. One would be hard pressed to construct a much simpler sepa-

rating function which has more intuitive appeal. If multivariate

observations are permitted, then it might be possible to delete the

second term of equation (4-8) to save a good deal of computing..

C

- ~ -. -.



CHAPTER 5

THE SEQUENTIAL DECISION PROCEDURE

Three components are required for a sequential adaptive de-

cision procedure; (1) a rule which determines if sampling should be

terminated or continued, (2) a rule which specifies the experiment

to be performed given the current state of the system, and (3) a

-.rule which selects the model equation which will be claimed to be

true when sampling is terminated. The first part of this chapter

discusses the experiment selection rule and the second section pre-

sents the stopping and model selection rules.

5.1 Experiment Selection Rule

The procedure adopted for this dissertation is the so-called

myopic procedure. This rule simply chooses as the next experiment

that one which maximizes the anticipated K-L information for the

next stage only.

We assume that an upper limit, JMAX' to the number of ob-

servations is specified. This number may be infinite. An alloca-

tion of the observations to the stages of sampling is described by

a JMA xl vector n, where n. gives the number of observations

at stage i. The question arises as to how the observations should

be allocated. That is, should a.ll JMAX be taken at once, strictly

one-at-a-time, or in different sized groups. As the first step in

answering this, let A. denote the set of experiments in A which

37
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specify that j observations should be taken. For any given state

weR, let a.(w) denote the element of A. such that

I[w,a (w)] = sup I(w,aj)
a. A.

3 3

Lemma 5.1 For any we., and i,i such that i > i we have

I[w,a ((w) I[w,a (1w)].
o ,

Proof: We introduce the following notation. Let Yk(ai),

k -1, .,i denote the random variables observed under a. (w)
1

and Yk(a*), k = 1, . .,j denote the random variables observed

under a.. Define another experiment liEAi by choosing the first

j observations according to a and the remaining i - j observa-

tions according to the last i - j of a.. This leads to the ran-

dom variables

k(a ) k = 1, . ... ,j

,yk(a ) k = j + 1, . . .

Because I(w,a,m,n) is positive definite and is additive for inde-

pendent observations

I(w,gi,m,n) _I(w,a ,m,n)

Thus

I(w,ai) = [I(w,ai,m,n ) ] 8

> 6 [I(w,a ,m,n)]O = I(w,aj)

But by definition I(w,a ) > I(w,a.) and hence
f i
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I(w,ai) > I(w,a )

Q.E.D.

The lemma simply proves that an experiment with more observa-

tions will be expected to provide more information than one with'

fewer observations. In determining an allocation one'should also

consider the cost of experimenting. In particular, if we assume

that each observation has'a constant cost associated with it, then

it is reasonable to choose the experiment which maximizes

I
o 7 I(w,a) j =1, . .,JMAX

k-1

Thus prior to stage k let m = ) ni and assume m < JMAX. The
i=l1

optimal experiment is the element a*cA which for the current

state Wk_- yields

( -I(w ,a)
j = , . . - m arA k-la

If sampling has not been terminated by the rules developed in

Chapter 5.2, then we stop when n. = JAX and select the model

according to the rules in Chapter 5.2.

5.2 Stopping and Model Selection Rules

We now discuss the problems of determining which of the postu-

lated models is the true one and determining when the results of the

experiments are sufficiently informative to stop sampling and make

the choice.

Box and Hill (1967) suggested that for their procedure, ex-

perimenting be terminated whenever one model is clearly superior to



the others. This is obviously a reasonable statement but it is in

need of formal definition before it can be used as a stopping and

selection rule. We propose general stopping and selection rules

and a modified version which might be used in certain instances in-

volving nested models.

(1) Stopping rule: Let 6 be some specified value

l/L < 6 < 1,0. Let JMA denote the maximum number of observa-
S m - MAX

tions permitted, Then terminate sampling whenever either

S{i=,L } > 0 or J observations have been taken, whichever
1=,L i - m MAX

occurs first°

(2) Model selection rule: Upon termination choose the

MAX
correct model to be H.* where 0j. = {8.}.j i=l,L 1

We now present a modified stopping and selection procedure

for use with nested models which may be of some value when 0 is
m

very near 1.0 and/or when JMAX is relatively large. The reason

for presenting a modified procedure arises from the large sample

results of Chapter 3 and the Monte-Carlo results of Chapter 6.

First, if H.* denotes the unknown true model, it is not known
1

whether 1. . + 0 or not. From the Monte-Carlo results it seems
1 ,j

that the typical behavior of 0.* for nested models is to fairly

rapidly increase to something near 1.0 and then fluctuate, possibly

slowly approaching 1.0. Thus, if 0m is very near 1.0 it may be

that extremely large samples would be required. Thus we would like

to reduce the average sample size without seriously detracting from

the probability of choosing the correct mcdel.



41

To introduce the modified procedure consider the following

example:

H1: y 1x 1 + E

H2: Y XiX 1 + 2 2 +

If H1 is actually the true.model, then the posterior distribution

of (B1 2 ) under H2 should approach a point distribution with

.(2= 0 and PM equal to the unknown value of the parameter. How-
2 1

ever, l, may not.approach 1.0. Assume some small positive con-
.1,j

stant y is specified. Then after each stage of sampling, test if

d = ) - 2 + [(2 2<

If d < y then drop model 2 from contention and replace 01 by

e1 + 62° Then apply the previously described stopping and selection

rules. In this simple example, the dropping of model 2 would auto-

matically cause sampling to be terminated. This would of course not

necessarily be true in more general situations.

To generalize the procedure some additional notation and con-

cepts must be introduced. We use the symbol ) to denote inclusion.

Thus H.~ H. means that the model of H. is nested within the

model of H, The set of models {H.i is a partially ordered set
1 1

under the partial ordering relationS). In the theory of partially

ordered sets a chain is defined to be a partially ordered set such

that for any two elements (H1 and H2 say) of the set either

HI H2 or H2 H1. For the purposes of this dissertation we de-

fine a string of elements from the partially ordered set as a sub-
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set of elements such that the subset forms a chain. A maximal

string is constructed from any string by adding all the elements

of {Hi) to the string which can be added without causing the en-

larged set to lose the property of being a chain.

To formulate the modified stopping and selection procedure

we first construct all of the maximal strings that can be con-

structed from the set {H.} and order the elements of the strings
1

using the relationS.

For example, suppose' L = 5 and the five models are as

specified below:

Model Model
number equation

1 y = B0 + 1x1 + C

2 y = 80+ 3x3 + C

3 y = 80 + 1x1 + 82 2 2

4 y = 80 x+ 1x + 83x 3 + E

5 y = 80 + 1xI + 2x2 + 3x3 + 6

The maximal strings are easily verified as being

(HIl H3  H5 )

(HIC H4 C H5 )

(H2 H4 ( H5)

In each of these strings the maximal element is H5'

The modified procedure consists of computing for the first
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maximal string the squared distance of the posterior mean vector of

the maximal element from the posterior mean vector of the submaximal

or next largest submodel of the string. If this quantity is less

than some prespecified value y, the maximal model is dropped from

the set {H.}. The posterior probability of the maximal element is
1

added to the probability of the next element of the string until

either only one model remains or there is no need to drop models.

Before considering the next maximal string, all models which have

.,been dropped must.also be deleted from the remaining strings. The

above procedure is then repeated for each maximal string in turn.

Once this has been completed and all models which can be

dropped because they reduce to models with fewer parameters have

been dropped, the same stopping and selection rules proposed for the

non-nested case are applied.

Note: The procedure just described is not necessarily the

best or the most natural one to use for combining models. For ex-

ample, an alternative to the distance of the means might be to com-

bine models when the probability distribution of the maximal element

is sufficiently concentrated about the mean of the submaximal ele-

ment. This would have the advantage of using the information con-

tained in the precisions of the distributions also.



CHAPTER 6

COMPUTER SIMULATION RESULTS

The purpose of this chapter is to report and discuss the re-

sults of a number of Monte-Carlo simulation studies of the sequen-

tial procedure proposed in Chapter 5. The chapter is divided into

four major sections. The first section describes the general simu-

.olation procedure and presents a brief description of the algorithm

used. A computer program based on this algorithm is described in

further detail in appendix A. The second section presents and dis-

cusses the results of a number of simulations performed to gain fur-

ther information about the large sample behavior first discussed in

Chapter 3. The primary concern is with the posterior probabilities

and the posterior means of the parameter distributions after a large

number of observations. The third section presents and discusses

the results of some simulation studies -of the proposed sequential

procedure when the number of observations is limited and when the

stopping rule of Chapter 5 is used. The primary concern is with

the probability of the procedure actually selecting the correct

model and the average sample size required until termination. The

last section of the chapter presents an overall discussion of the

results.

6.1 General Simulation Procedure

The sequential procedure proposed in Chapter 5 consisted of

44
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(1) an experiment termination rule, (2) an experiment selection

rule, and (3) a model selection rule. Because of the mathematical

complexity of the posterior distributions involved it was not

feasible to analytically examine how well these rules work. The

general procedure by which the Monte Carlo simulation technique

was used to study performance is outlined in the following algorithm.

1. Input:

Pe,0 the prior means of the parameters of the models

T£,0 the prior precision matrices of the parameters

of the models

6e,0  the prior probabilities of :the models being

correct

N the number of simulations

0m stopping probability

JMAX maximum number of observations

i the model chosen to generate the observed variable

S values of the parameters of the true model

2. n - 0

3. PCS * 0

4. N. + 0 (for i = 1,JMA)
1 MAX

5. j 0

6. j j + 1

7. Determine optimal acA as described in Chapter 4. Denote

as a and let M * denote design matrix for model i

when a is chosen. (All simulations in this dissertation
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consider strictly one-at-a-time sampling for simplicity.)

8..yj + M a

9. Generate a pseudo-random observation a. from a N(O,T)

distribution, (Described in detail in appendix A)

10. yj + yj + E.

11. For k = 1, .,L compute 0,., , and j from

yj and 6 ,j-1 k,j-1 and u ,j-1 as described in

Chapter 3.

12. Find k such that k j  MAX{6. .
o k,j 1,

13. If j > JMAX or 6k, j > go to 14. Otherwise go to 6.

14. N. - N. + 1
1 J

15. If k = i*; PCS PCS + 1

16. n n + 1

17. If n > N go to 18. Otherwise go to 5.

18. PCS - PCS/N

19. ASN ( iMAX N

20. Stop

Upon stopping, the value of PCS is the observed probability

of correctly choosing i as the true model for the prior distribu-

tions specified when in fact the true value of the parameters is

given by p . ASN gives the average sample number upon termination.

The above algorithm can be easily used for either large sample

or small sample studies. For example, for large sample studies set

em 1.0, N -- 1, and JMAX to some large number, say 100 or 500.



47

For small sample studies set 6m < 1.0, J to some small number,
m MAX

and N to some larger number, say 500 or 1000.

6.2 Large Sample Studies

In this section we examine the large sample properties of the

posterior probabilities of the models and the posterior means of the

parameter distributions. Three sets of problems are studied. First,

two sets of nested polynomial models are studied. The posterior

probabilities of each model, the posterior means of the parameter

distributions, and the proportion of times each of the allowable

values of the independent variable isochosen as optimal are tabu-

lated for simulations of 100 and 500 observations. Second, one set

of nested factorial models is studied forthrte different prior dis-

tributions' on the models. And third, one set of non-nested fac-

torial models is simulated. For the last two, the posterior proba-

bilities and means of the parameter distributions are tabulated.

6.2.1 Polynomial Model Studies

Two sets of nested polynomial models are considered which

have the following general form:

k-1
H : Y = 0 B3 - E, k = 1,L

j=0

Two values of L are studied, and for each of these choices, two

choices of H., are made. The values of r, 0 , and 'O are

specified as

t = 100.0

'I'l -=T
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1
Z,0 L

-.

for all simulations. The values of P-,0 are tabulated at the tops

of figures 1 and 2 and the resulting functions are graphed on the

interval x [-l,+l] at the bottoms of the respective figures. For

L = 4, the two choices of H.* are H2 and H . For L = 6, the

two choices of Hi* are H3  and H5' For simplicity, the actual

values of the parameters used to generate the data were chosen to

be Pi for each of the four cases.

For these simulations, the definition of A was arbitrarily

taken to be

A = {a ( i ) : i = 0, . ,9}

where

a(i): x = -1 + 2i
9

Note that sampling is strictly one observation per stage0

The simulation results are summarized in table 1 and given in

further detail in tables 2 through 9. For each choice of L and

i , five simulations of 100 observations and five simulations of

500 observations were performed. For these simulations, the sample

paths of the j were printed out and the choice of a ( i ) at each

stage were printed. The posterior means of the parameter distribu-

tions were printed only after the last stage. Tables 2, 4, 6, and 8

give the posterior probabilities after 100 observations and the

first 100 out of 500 observations. The proportions p. of using

ai) are also giv n. Tables 3, 5, 7, and 9 give the same informa-
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Figure 1. - Tabulations of the prior means of the parameters
and graphs of the resulting functions over the interval
-1, + i] for large sample polynomial study one.
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Figure 2. - Tabulations of the prior means.of the param-
eters and graphs of the resulting functions over the
interval [-1, + 1] for large sample polynomial study
t'WAo.
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tion for the 500 observation simulations.

Figures 3 and 4 present typical 
sample paths for the posterior

probability of the correct model. In figure 3, the value of 62, j

is plotted for the first 250 observations of the third simulation

for L = 4 and i = 2. In figure 4, the value of 03, j  is

plotted for the first 250 observations 
of the first simulation for

L = 4 and i = 3. These figures illustrate the typical behavior

of ei,J. It fairly rapidly rises to a value of about 0.85 
tp

0.95 and then slowly and erratically oscillates. 
This is suspected

to be because of the nested nature of the model equations. It was

because of this behavior that the modified selection rule of

Chapter 5 was first introduced. Consideration of the posterior

means of the parameter distributions will 
also provide some infor-

mation concerning this modified rule.

For L = 4, consideration of tables 2, 3, 4, and 
5 show that

as j increases, j for i > i This is in accord

with the conclusions of Chapter 3. For L 6 and i = 3 we

again see the same close agreement with 
Chapter 3 as evidenced by

tables 6 and 7. However, for i = 5, an entirely different situa-

tion arises. To understand this we should note that the 
model used

to generate the sequential observations 
is

y = 0.5 x + 0.1 x + E

This function can be very closely approximated 
by a model of the

form

y = ax + bx +

------------------
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Figure 3. - The sample path of 02. j for L= 4, i'= 2 for the first 250 observations of simulation no. 3. A well be-

haved path for nested models.
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Figure 4. - The sample path of 03 for L= 4. i = 3 for the first 250 observations of simulation no. 1. A typical

path for nested models.
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over the range of x values considered. And in fact we note that

there is a marked preference for choosing the lower degree model as

indicated by e3, j becoming close to 1.0. It is also interesting

to note the behavior of Ui. for i > 3. We do not see that

ij as might be expected when H3  is so close to being

true, except for the case of i = 4. For p5 we note that the

3
average posterior mean of the coefficient of x is quite close to

2
zero and the sum of the posterior means of the c6efficients of x

4 -
and x is quite close to 0.1. For 16 we note that the sums of

2 4.
the posterior means of the coefficients of x and x is close

to 0.1 and the sum of the- posterior means of.the coefficients of x,

3 5
x , and x is close to 0.5. From these simulation studies it.is

not clear whether this behavior is simply because 500 observations

is not.a sufficiently large number to discriminate well between such

nearly equivalent functions or if this behavior will persist no

matter how large the number of observations

We now turn to a discussion of the observed proportions of

times the a(i) were chosen as the optimal experiments. From

tables 2 and 3 which present the results of L = 4 and i = 2 we

see that the largest pi are for P0, P4, P 5 , and p 9 . These cor-

respond to x = -1, x = -1/9, x = +1/9, and x = +1. Because of

the discretization of the interval (-l,+l) we might assume that the

asymptotically most informative experiments were x = -1, x = 0,

and x = +1. From tables 4 and 5 we see the largest pi are P0 '

P2' P7' and pg corresponding to x = -1, x = -5/9, x = +5/9, and
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x = +1. The relationship of these proportions and x points to the

experimental designs which are optimal from other considerations

might be interesting. For example, Kiefer and Wolfowitz (1959) con-

sider optimal designs for regression problems'of a somewhat di'ffer-

ent nature. The comparison of the current results with such other

works is currently being pursued but will not be reported in this

dissertation

6.2.2 Nested Factorial Models

A second set of simulation studies were made using the follow-

ing models

H1: = 0 +

H2: Y=0 + ilx +C

H3: 0 1+ % Xl + B2 x2 +

H4: Y = 0 + B1X1 + B2x 2 + B3X1 x 2 +

with T 2.0, T,0 = I, and i = 3. The prior means V£,0 were

chosen as

i,0 = (0)

-2,0 = (0,1)

3,0 = (0,1,-l) =

-+1

P4,0 = (0,1,-1,0)

Three sets of 06, were chosen:
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i. 61,0 = 0.1

62, 0 = 0.2

3. 0 = 0.3

4, 0 = 0.4

2. 60 0 = 025 = 1,4

3. 61,0 = 0.4

S2,0 = 0.3

63,0 = 0.2

64,0 0.1
C

The experiment space A is defined as A= {(xl,x2): xi = I}.

Note that experimenting is strictly one-at-a-time. CThe sequential

selection procedure of Chapter 5 was used for five simulations of

500 observations each. The results are presented in table 10. We

note.that the posterior values are again in close agreement with

Chapter 3 and the results of the polynomial models. There does not

seem to be a pronounced effect upon the posterior probabilities of

the models from changing the prior distribution although there does

appear to be slightly higher posterior values of 03,500 when the

60,0 distribution is skewed toward.the lower values. A possible

explanation for this is that whe'n this distribution is skewed toward

the high values, the procedure is choosing experiments primarily to

discriminate between H3 and H . Since H3 is true, the model of
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Hq will rapidly become close to that of H3 and the resulting ex-

periments will not be very informative. When the prior probabili-

ties are larger for the lower degree polynomials, however, the pro-

cedure chooses experiments primarily to discriminate between H1

and H2. These experiments should then more rapidly tend to prove

H1 and 1H2 to be inadequate.

6.2.3 Non-Nested Factorial Models

In this study, the following non-nested models were studied.
o

H1: Y = 0 + 21xI + 82x2 +S

H2: 0 + 1xI + 3x3 + E

H3: y 0 + 2x2 + 3x3 + 

The values of the parameters are chosen as

i = 1

T , , 0
0, =

T = 0.0f,1,100

p = (1,1,1)

The experiment space A was assumed to allow only one observation

at a time with x. = ±l. Five simulations were performed for each

value of T. For T = 100 it took 'only three observations for 03

to become 1.0 (within the accuracy of the computer). For T = 1.0

the number of observations required for the final posterior proba-

bilities to reach 1.0 are tabulated in table 11. For r = 0.01,
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1000 observations were taken and the resulting posterior probabili-

ties are given in table 11. Again the results are in general agree-

ment with Chapter 3.

6.3 Small Sample Performance Studies

In this section we examine the performance of the proposed se-

quential procedure as measured by the PCS and ASN values. First,

two studies are presented of the problem of discriminating among the

three models

H: Y = X + c

H2: y = 2x2 + +

H3: = X + 2x2 +1 2

The first study assumes H3  is true and the second study assumes

H2 is true. The experiment space A is defined as

A = {(x1 ,x2): x1 = ±1; Pne-at-a-time sampling)

Then we consider the problem of choosing among the four nested

models.

H 1: Y = 0+ E

H 2 : Y 0 + B1 X 1 +

H3 : Y = B0
+  1 X1

+ B2 2 + 6

H4: y = 80 + 1xl 1 + 2x2 + B3X 1x2 +E

where A is as in the first two studies.

The primary reasons for concentrating on these simple models

are-that the parameter spaces are of a low enough dimension that
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they can be visualized and they are small enough that extensive

simulation studies would not require inordinate amounts of computer

time. The fact that the parameter spaces can be visualized allows

the effect of varying prior means upon PCS and ASN to be more easily

grasped. Note that the modified stopping and selection rule was

not used.

6.3.1 Study One - H3 Assumed True

We study discriminating among

o H 1 : Y = BX 1 +

H 2: y = 2X2 + E

H3: Y = BX1 + 2 X2 +C

A = {(x x 2 ) : x i = ±1; one-at-a-time sampling}

where.

' = I =

11,0 = (1.0) 112,0 = (1.0)

and

1.0

Then a number of simulation experiments were performed for

each combination of:

- = 0o50,1.0, 2.0

em = 0.70, 0.80, 0.90

J KA= 8, 16
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S3,0 = oo o o ' 1 o!
0.0 0,50 1.0 1.5

The experiments for JMAX = 8 used 1500 simulations and for

JiMAX = 16 used 1000 simulations.

The choice of prior means deserves some comment. Figure 5

illustrates the points in (B1 ,2) coordinate space corresponding to

the prior means. The points corresponding to p1,0 and 2,0 are

as close to 11 as possible since p1,0 is restricted to the hori-

zontal axis and 2,0 to the vertical. The four choices for 13,0

then span a range about p and hence the resulting PCS and ASN

values will indicate the importance of mis-specified prior means.

Tables 12 and 13 present the observed PCS and ASN values for

the combinations of em, ', and p3,0 o These results are also

plotted as parametric surfaces in figures 6 through 9.

In general, the results are about what should be expected.

The PCS increases with T and ASN decreases with T. PCS increases

as 13,0 gets closer to p . We also note that in most cases, PCS

increases with 0m for fixed r and 3,0. There is, however, a

distinct dropping off of PCS with 60 along the peaks of the sur-

faces. There does not seem to be any ready explanation for this.
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Figure 5. - Illustration of prior means for
performance simulation experiment one.
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Figure 6. - Probability of correct selection (PCS) as a function of Om. ,
S3.0 for Jmax.= 8 and H3 true. Small sample performance simula-

tion expenriment one.



62

10no

0 0 0 0

t- t- t= t-

ASN 6- T=.5 a

T =1. O0

4 T _ 2.0 a

2 I
.6 .7 .8 .9

Figure 7. - Average sample number (ASN) as a function of 8mIT, T,

13,0 for Jmax = 8 and H3 true. Small sample performance
simulation experiment one.



1.0- T 2. 01.o - 1.

.7- i. 0

.6-

.44

.3- ,

.2-
II

It

.6 .7 .8 .9

Figure 8. - Probability of correct selection (PCS) as a function of m,, T, P3 0
for Jmax = 16 and H3 true. Small sample performance simulation expe6i-
ment one.



64

o

14-

12

10

ASN

8
T r=.5

6-
T= 1. 0

T = 2.0 o

2 1
.6 .7 .8 .9

Em

Figure 9. - Average sample number (ASN) as a function of 0m, T,

P3, 0 for Jmax = 16 and H3 true. Small sample performance
simulation experiment one.



6,3.2 H2 Assumed True

A much less extensive study of this case was made than the

case of H3  assumed true. The same model equations were postulated

and we assume

1 1 1, .. .,L

8 -°

.,0 = (0.0)

3,0 = (0.0, 1.0)

k' = (1.0)

The values of T, 0m, and w2,0 which were simulated are tabu-

lated in table 14 along with the simulation results. Figure 10

illustrates..the .prior means .Only.one level of JMAX (=8)was

considered. Also, only 500 simulations were performed for each of

these cases. The PCS results are also graphed as a parametric sur-

face in figure 11. The results are generally the same as for H3

true.



66

00

Il ,0 [ 2, 0, 1 P3,0 P'2, 0, 3

['2, 0, 2

Figure 10. - Illustration of prior means for small
sample performance simulation experiment two.
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Figure 11. - Probability of correct selection (PCS) as a function of 0m' T, ~2
for Jax= 8 and H2 true. Small sample performance simulation experi-
ment Two.
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6.3.3 A Four Model Problem

In this section we study the ability of the sequential pro-

cedure to choose the correct model from the following set of com-

pletely nested model equations.

H: = 0 + E

H2 : Y= 0 + 1X1 + c

H3: Y =0 + B1X1 
+ B2x2 + C

H4 : y = B0 + B1X 1 + 2x2 + B3 X 1X 2 + E

The prior distributions are defined by

1 =
1,0 4

'£,0 =
0

1,0 = (0), 2,0 1) ' 4,0 -= 1-

And

0 0 013,0 = 10.51 , 0.5 ,0 53,0 i O O1 o \,

The equation used to generate the observations was that of H3  with

values of the parameters given by

-1

The value of T used was 1.0.

For fixed values of a3, the values of the prior parameter

means for H1 and H 2 and the four prior means for H3  can be

plotted in 3-space as in figure 12. For each of the four choices

of P3,0' three values of 0m (=0.7, 0.8, 0.9) for JMAX 
= 

8 were

used and the resulting PCS and ASN values for the 12 combinations

cases, 1000 simulations of the procedure were performed.

-*?--,-- --
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3 = constant

P2, 0

(0, 0,. 5)
( , .5, 0) 1, .5,0)

P1,0

Figure 12. - Illustration of the prior means when 3 is held
constant. Small sample performance simulation experiment
th ree.
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.Figure 13. - Probability of correct selection (PCS) as
a function of 0 m and 13,0 for Jmax= 8 and H3
true. Small sample performance simulation experi-
ment three.
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6.4 Discussion of Results

We now make some general observations concerning the results

of the simulation experiments.

First, consider the large sample results. In the context of

the fact that sequential procedures are primarily developed in the

hope that reliable decisions can be made with small samples rather

than large samples, these results are not of primary importance. It

is interesting and informative to know, however, that the procedures

are consistent. Since the study of limiting posterior distributions

resulting from.sequentially chosen experiments is known to be an

extremely difficult and delicate problem, simulation experiments may

be helpful by indicating to researchers what large sample behavior

is likely to be true. In the problems studied in this paper it

seems quite likely that when non-nested models are encountered, the

posterior probability of the true hypothesis has a limiting value

of unity. It also seems most likely that the limiting posterior

mean of the true hypothesis does indeed equal the values of the un-

known parameters generating the data.

When nested models are encountered, however, the results are

not as enlightening. It appears that if the posterior probability

of the correct hypothesis does not achieve a limit of unity, it at

least attains a large value and then randomly fluctuates about that

value. There is indication that the conjecture of Box and Hill

that for these nested models there is a distinct preference by the
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sequential procedure to choose the model with the smaller number of

parameters as true. For instance, the polynomial study L = 6,

S= 5 indicates that if a model with more parameters is true

but can be approximated closely by one with fewer parameters,

there is a preference for the smaller model.

In examining the small sample performance simulation experi-

ments, it is seen that PCS drops off fairly rapidly as the distapce

of the prior mean of the correct model from the true values of the

parameters increases. This supports the conjecture of Chernoff and

Meeter et al. that there may often be "initial bungling." It should

be noted, however, that in all cases.studied, the prior means of the

competing models were all set to be as close to the true model

parameter values as could be done. Thus, in a sense, these experi-

ments can be considered to be presenting the most unfavorable situa-

tion possible to the sequential procedure. In actual application it

might be more reasonable to assume that the prior distributions of

all the models are mis-specified to the same extent. This problem

of "initial bungling" should also indicate that the statistician

should have the prior precision matrices of the parameter distribu-

tions be as vague as the prior information permits.

One approach studied by Kiefer and Sacks (1963) was to plan

small initial experiments as a basis for gaining information to plan

a large second experiment. An alternative not studied in this dis-

sertation, but which seems worthy of investigation, would be to set
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a lower limit, say JMIN' as the minimum number of observations

taken before a stopping rule is applied. The sequential procedure

would use the same rule as developed for selection of experiments

but large posterior probabilities on the models would be ignored

until a sufficient number of observations are taken to avoid the

consequences of initial bungling. This also makes sense from the

point of view of obtaining parameter estimates. Surely an experi-

enter would not be content to terminate sampling with two or three

observations even if the resulting probabilities are overwhelmingly

in favor of one hypothesis unless he had extremely good prior infor-

mation.

The last topic to discuss is the modified stopping and -selec-

tion procedure introduced in Chapter 5. This was not applied to any

of the simulation experiments performed in this dissertation. The

large sample simulation results indicate that when 6m and/or JMAX

are large, then this modified procedure may be of value. For the

problems considered here, it is seen that even for nested models,

the unmodified procedure performs quite well when JMAX is small.



CHAPTER 7

EXAMPLE OF APPLICATION

This chapter first presents a general outline of the situa-

tions in which the results of this paper may be applied. Following

this an example from the literature is presented. The purpose of

this example is to illustrate how the information available from

previous experimentation can be translated to the information re-

quired for the application of the sequential procedure developed

herein.

A Bayesian framework is used in this paper because in a great

many applications there does exist some prior information which can

be incorporated. The Bayesian approach to statistical inference is

the most natural and satisfying method of incorporating prior knowl-

edge. This prior knowied.ge may arise in several ways.

For example, when expensive or large experiments are contem-

plated, there is often available data from pilot studies, the liter-

ature of the field, or poorly designed prior experiments. Typi-

cally, some type of regression analysis is performed on this data

but there is so little data that practically no conclusions can be

drawn, only recommendations for further experimentation. The re-

sulting equations, however, provide a very convenient start.ing point

for the application of Bayesian methods.

In other situations, an experimenter has a great deal of ex-

73
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perience in experiments that are similar and involve factors with

which he has some previous experience. In these cases it may be

safe to extrapolate his acquired knowledge from the similar but

differant experiments to the current experiment. If so, this may

indicate some characteristics of the model equation.

A third possibility might arise for example in the carrying

over of laboratory results to a production process or out-of-

laboratory process. In the laboratory greater control can be

exerted on many variables and typically only a small number of

variables may be investigated. Often one or more mechanistic models

are available. When the process is taken out of the laboratory,

there will be less control over other variables and they must be

accounted for by adding them to the model. Thus the experimenter

is faced with the situation of having a partly mechanistic model

and a partly empirical model.. If the mechanistic model is suffi-

ciently smooth in the region of interest, factorial or polynomial

models can be applied in these cases and prior information might

indicate which interactions or terms are most likely to exist.

The example we consider is studied in Lloyd and Lipow (1962)

and Draper and Smith (1966). In these books the data presented in

table 16 is used to illustrate some topics in the design of experi-

ments and multiple linear regression analysis. The dependent vari-

able y is the chamber pressure in rocket engines put on test.

The four controlled variables are



75

z1 = temperature of cycle (starting)

z2 = vibration level

z3 = shock by dropping (temperature)

z4 = static fire temperature

We first postulate the model equation given by equation (7-1).

2 2 2
y = 1 + 1 21 + 3z2 4+ 54z3 6 z3  7 z4 8 Z2

+ 89z1z3 + 810zlz4 + llz2z3 + 12z2z4 + 81 3 z 3 z 4 + E (7-1)

The results of a multiple linear regression analysis of the model

are summarized in table 17. The terms of the model are ordered in

table 17 in decreasing order of descriptive significance level.

The experiment is highly saturated with respect to equation (7-1) in

the sense that 14 parameters are estimated from the data from

18 distinct combinations of levels of the independent variables.

There are also quite a few high correlations among the terms of

equation (7-1) and hence high correlations among the estimated pa-

rameters. The power of the resulting t-tests may be somewhat low

under these circumstances., From examination of the various descrip-

tive significance levels, the model equations tabulated in table 18a

can be considered reasonable. The prior means of the distributions

are also given in table 18b. The prior precision matrices may be

derived by multiplying T times the submatrices of order 3, 6, 9,

and 15 of the matrix given in table 18c. How these prior distribu-

tions were determined is now described.

In multiple linear regre ssin, undcr thr usual normaliLy
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assumptions, the parameter estimates from the model

y = MB + C

are given by

S-1
= (M'M) M'y

and we know

~N( , 12M' M)

Thus, for the first three models of table 18, the prior means and

precision matrices would reasonably be the 8 and 2M M derived

-by least squares analysis using the appropriate subset of data from

table 16. This is how the values of PI ,0' Y',0 for k = 1,2,3

were derived. For k = 4 and the data of table 16, the full equa-

tion is not estimable because there are not three levels of z4 to

2
estimate a coefficient of z. Thus least squares estimates were

computed and M'M computed for the first 14 terms of model 4. Then

an essentially diffuse prior was specified with respect to 14 by

setting the prior mean to zero and adding the last row of the matrix

in table 18c to M'M. The diagonal term was arbitrarily chosen to

make the matrix nonsingular yet not comparable to any of the other

diagonal elements in magnitude.

To complete the information required, T must be specified and

Se,O  chosen, From the data of table 17 an unbiased estimate of o

is 1,85 as computed from the replicated points. Thus we may use

= 1 = 0.541. To determine the Z,06 it will be helpful to

examine the F-ratios for lack-of-fit for the first three models in
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table 18. These are F = 5,295, F = 2.038, and F = 1.871. These

statistics are significantly large at about the 0.90, 0,80, and 0.75

levels, respectively. Based upon this, the following values of

6 £,0 seem reasonable

81,0 =0.10

82, 0 = 0.30

83,0 = 0M30

S4,0 = 030

0
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APPENDIX A

COMPUTER PROGRAM FOR SIMULATION STUDIES

The general flow of operations and computations performed by

the program is described by the algorithm given in Chapter 6.1. The

input required to perform these computations is first described.

How these computations are achieved is described briefly by giving

the major functions of the subprograms constituting the complete

program. A complete FORTRAN listing is given.

INPUT

The program, as presented here, can only accommodate poly-

nomial models over the interval [-l,+1] and two-level factorial

models. This can be changed by writing one new subroutine (MFORM)

to handle more general models. The program identifies the param-

eters by their integer subscripts and.computes the x,. values for

the M-matrices according to the following convention:

1. For polynomial models, the subscript i indicates the

i
parameter which is the coefficient of x o

2. For factorial models, the coefficients are assumed ordered

in the standard order according to the description in Sidik and

Holms (1971). The treatment combinations are also assumed to be in

standard order and the independent variable values are constructed

as described in Sidik and Holms (1971).

3. The order of the models as specified for irput are written

80
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such that the parameter subscripts are in increasing order.

The specific input cards are now described below and illus-

trated by the input for a case run in Chapter 6,3.1. The problem

input is specified by the models and parameter values:

H1: Y = B1 + E

H2: y B2X2 + C

H3: Y = 1x1 + B2x 2 +

Y, I 1 0 m = 0.70

= 1,2,3
e - =0.5

JMAX =8

1500 simulations

= (1.0)

V2 ,o = (1oO)

(3,0 0.5 = 1.0

Start random number generator with 041 574 501 221.

1. IDENTIFICATION (13A6)

One card for Hollerith input description of the problem.

2. NAMELIST INPUT ($NAML)

Most of the control parameters are included in a NAMELIST

input set. The list of parameters and their purpose fol-

lows:
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NFAC For factorial problems, this supplies the number

of factors. For polynomial problems, this vari-

able need not be supplied.

NHYP Number of hypothesized models.

NSYM Number of simulations to run.

MXTRTS JMAX

NTREND Not used for this report. Set to zero.

LEVOUT An output control variable. Certain basic out-

put is'automatically printed0 Extra intermedi-

S ate output can be printed by setting LEVOUT to

an integer between 1 and 7. For performance

studies set to 0.. For large sample runs set to

2. For debugging set to 7.

LTRUE Supplies i , the correct model subscript.

TAU T

CSTOP am

TMAX An upper limit on execution time. If this limit

is exceeded, the program dumps for a restart.

IFSTRT Set T for supplied starting value for random

number sequence. Set F if sequence is to

start with initialization value. (See descrip-

tion of subroutines RAND and SAND for further

information.)

RESTRT Is this problem a restart of a case.terminated

by exceeded time? T or F.
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POLY T implies polynomial model. F implies

factorial model

NX For polynomial models, the x space is re-

stricted to the interval -1 to +1. NX speci-

fies the number of points used to discretize

the interval into equal increments.

3. FORMAT FOR PRECISION MATRICES (13A6, A2)

For each set of model equations supply one set of 4A, 4B,

4C, 4D, and 4E.

4A. NUMBER OF PARAMETERS IN MODEL, PRIOR PROBABILITY OF

MODEL (16, F12.6)

4B. PARAMETER SUBSCRIPTS (1316)

4C. PRIOR MEANS (12F6.0)

4D. TRUE VALUE OF PARAMETERS (12F6.0).

This card should be supplied only for the set corresponding

to the correct model.

4E. PRIOR PRECISION MATRIX

Only the upper triangular half of ' is specified with the

order being

11' 12' '22' 13' etc0

5. STARTING VALUE FOR PSEUDO-RANDOM SEQUENCE (012)

A graphical illustration of a data deck is given in figure Al

and a FORTRAN sheet giving the sample input is given in table Al.
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TABLE Al ESHEET OF

UMSER9 FORTRAN STATEMENT IDENTIFICATION

3.5 6 7 9 12 'I. 17 20 I 22 231 21 s 1 S 28. 29 3 SSZ S 5sO 3 .0 o .I.s. ..1 o t 1 53 51 5657 5 s a 61f 66 666 8 970771 774 7576777791

SMALL SAMPLE PERFORMANCE STUDY FOAR THREE MODELS
$NAML NFAC=2, NHYP=3, NSYM=1500,

MXTRTS=8 NTREND=O, LEVOU'=O,,
.-... LTR E= _, T AU=. 5, I CSTOP=. 7

. TMAX='l,.,O. IFSTRT-=T, r STRT=F
POLY=F, NX=O

(3Fl.0)

1.33333333

1.0 1.

101

041574501221

I I 1 7fI1 . 1o l 4 6 17 8 19 20 21 22 2t 2 , 25 26 27 829q 315 3 34 5 36 37 38 3P Lo 40 41 4211 11116 11 O 1, s2 "7O 11 IS) S 1 J, s e O 3 6a 6 S 6 67 60ss 69 7 T 1 11 11 71 11 7 IT
NASA-C-836 (REV. 9-14-59)



Starting value for random
sequence (012)

Prior precision matrix
of parameters

TrDe values of parameters
of correct model (12F6.0)

Prior means of parameters

ONE SET FOR (12F6.0)

EACH MODEL Parameter subscripts
EQUATION (1316)

Number of Prior
parameters probability
(16) (F12.6)

Format for precision
matrices (13A6, A2)

NAMELIST data

Identification (13A6)

A - This card is optional and its presence depends upon NAMELIST data.

B - Supplied only for true model.

Figure A-1. - Graphical illustration of card input for simulation program.
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SUBPROGRAMS AND THEIR MAJOR FUNCTIONS

1. SEQDES. This is the main program. It reads the input

cards, exercises general control over the other subroutines. It

also outputs the final results.

2. ACOMB. Called once by SEQDES at the beginning of each

case. This subroutine scans the lists of parameter subscripts for

each model and constructs from them a new list of subscripts in

ascending order which contains the parameters appearing in at least

one model.

3. SVSTRT (GTSTRT). A double entry subprogram, The entry

SVSTRT is used once at the beginning of each case to save the prior

probabilities, means, and precision matrices. Then after each sim-

ulation, entry GTSTRT is used to re-initialize the working proba-

bility, mean, and precision vectors to the original values.

4. MFORM. There are two versions, MFORMX and MPOLYc The

first is for factorial runs and the second for polynomial models.

These subroutines construct the M-matrices required for each model

when given the experiment choice (a level of x for polynomials,

a treatment combination for factorials). It is called by INFX

and YGEN.

5. INFX (UPDATE), Entry INFX accepts the current state of

sampling as defined by {,j , u Tj, , ; k = 1,L} and determines

the expected K-L information for a specified experiment, Repeated

calls then are made by SEQDES to determine the optimal experiment.
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and an observed random response to compute the posterior distribu-

tions.

6. RANDUM. Called once for each random observation taken.

Generates a random observation, c, from N(0,T).

7. YGEN. Called once for each random observationf. This rou-

tine accepts the N(O,T) variate generated by RANDUM and calls MFORM

to compute M, where M i' the design matrix appropriate for the

correct model and the experiment chosen as optimal. Then

y = Mp + c
co

is computed. After generating y, posterior values for 60 are

computed. Sampling for that simulation trial is then terminated if

any. O exceeds 0m. If sampling is not terminated, YGEN calls

UPDATE to compute the posterior R (y) and T (y), and the sampling

procedure is continued.

8. COUNTX. This subroutine is called by YGEN whenever a

0 > m  or by SEQDES whenever J observations have been

taken. It counts the number of times each model is chosen and re-

cords the distribution of sample sizes. These are then output

after all simulations have been computed.

9. INVXTX. Inverts a symmetric matrix stored in the lower

symmetric storage mode.

10. TRIOUXo Outputs a lower triangular matrix.

11. MTVEC. Computes the product vector resulting from the

multiplication of a vector and a symmetric matrix.
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12. RAND (SAND). This pair of entries provide the pseudo-

random sequence of uniform random variates. SAND is an initializ-

ing entry which must be called before any calls to RAND. When RAND

is called, it computes the next value in the random sequence from

the current value. The return argument of RAND is the floating

point uniform random variate. The input and return argument of

SAND is an argument which saves the integer value of the random

variate. The generator is the multiplicative-congruential type

.,obtained by taking the low order 36 bits of the product r r 1xk

where

rr-1  is the previous random number

rO is 1 and

k is 515

The properties of this generator are discussed-by Taussky

and Todd (1956) and Coveyou and Macpherson (1967).

13. BCREAD (Xl,X2). BCDUMP (X1,X2). These routines, respec-

tively, read and punch cards in absolute binary at the rate of

22 words per card. The data read or punched begins at the location

in core of the variable X1 and ends at the location in core of the

variable X2.



0000100 COMMON/UNITS/ IUNINIUNnUT.,MASK,LEVOUT,PFMT(4)

0000200 COMMON/XRAND/Y,EPS,UNIF,U

00C0300 CnMMON/ERR/TAUS[GMA

0000400 COMMON/ALPH/IALPH(1000),IALPH(5121,ALPHMU(1000),REALMU(512) -

0000500 X ,NPARAM(10),MUD(11),PMU(1000)

0000600 COMMON/PS/PINDEX(11),PREC(2000)

0000700 INTEGER PINDEX

0000800 COMMON/CNTRLS/NHYPNALL NFACNFULL,NFULM1,TRIMNTNTREND,NORS,LTRUE

00C00900 INTEGER TRTMNT

0001000 COMMON/PRFMNC/NAVG(1000),PCS,XMSE,XMST,INITAL ,IHCNT(IO),MSOFAR

0001100 COMMON/INF/XINF

0001200 COMMON/PROBS/THETA(IO),CSTOP

0001300 C

0001400 C

0001500 C

C000C1600 COMMON/MM/DESM(1000)

0001700 COMMON/YDIST/S(1O),R(10),SV(IO),RV(10)

0001800 COMMON/XTRA/AAIO00)1,B(2000),Cf2000),D(10)

0001900 C

0002000 C** ** ** ** ** ** ** *4 * ** * * 4 * *4 t* 4* *4 **

0002100 C

0002200 DATA ENDCRD/4HENDCRD/

0002300 REAL IDENT

0002400 EOUIVALENCE (Xl,IX),(KS,SK)

0002500 DIMENSION IDENT(14)

0002600 DIMENSION INPFMT(14)

0002700 LOGICAL IFSTRT,RESTRT

00C02800 LOGICAL KPGEN

0002900 LOGICAL POLY

0003000 NAMELIST/NAML/NFACNHYP,NSYM,MXTRTS,NTREND,LEVOUT,LTRUE,TAU, -

0003100 X CSTOP,TMAX,IFSTRTRESTRT

0003200 X ,POLY,NX

00C3400 C

0003500 C*** **** ***************************************4****************

0003600 C

0003700 KPGEN=.FALSE.

0003P00 IGOTO=1

00C3900 CALL TIMEI(TSTRT1

0004000 1 RCAD(IUNIN,5040) IDENT

0004100 IF(IOENT(1).E..ENDCRD) STOP

00C4200 WRITEIIUNOUT,6010) IDENT

0004300 C

0004400 READ(IUNIN,NAML)

0004500 WRITE(IUNOUT,NAML)

0004600 NFULL=2**NFAC

0004700 NFULM1=NFULL-1

0004800 IF(POLY) NcULL=NX

0004900 SIGMA= 1.0/SQRTITAU)

0005000 READ(IUNIN.5040) INPFMT

0005100 MUD(I1)=l

0005200 PINDEX(I)=1

0005300 DO 190 N= 1,NHYP

00C5350 IHCNTIN)=0

0005400 WRITE(IUNOUT.6365)

0005500 READ(IUNIN,5020) NPARAM(N),THETA(N)

0005700 MUD(N I1)=MtD(N)+ NPARAM(N)

0005800 PINDEX(N+1)=PINDEX(N)+ (NPARAM(N)*(NPARAM(N)+1))/2

00C05900 MULO = MID(N)
0006000 MUHI= MUD(N1l)-1
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0OC6100 IPLO= oINDEX(N)

00C4200 IPHI= PINOEX(N+I)-1

0006300 READ(LUNIN,5010IIIALPH(L),L=MULOMUH II
00C6400 REA0(IUNIN,5050)I(ALPHMU(LI,L=MULO,MUHI)
0006500 IF (N.NE.LTRUE) GO TO 100
0006600 NR = NPARAM(N)
0006700 WRITE(IIJNOUT,6360)

0006800 READ(IIUNIN,5050) (REALMU(L),L=1,NR)

0006900 WRITE (IUNOUT,6355) (REAL.MU(LI,L=1,NR)

00C7000 WRITE (IUNOUT,6360)

0007100 100 CONTINUE

0007900 READOIUNIN, INPFMT)(PREC(L),L=IPLO,IPHII

OOCRO00 * WRITE(tIINOUT,6050) N,NPARAM(N),THETA(N)

0008200 WRITE(IUNOUT,6060)(IALPH(L),ALPHMJ(LI,L=MULO,MUHII

COCR300 WRITE(IUNOUT,6090)

0008400 CALL TRIANG(PREC(IPLOI9NPARAM(N)I,,PFMT,IALPH(MULOII
0008500 C

000R600 CALL MTVEC(PREC(IPLO),ALPHMU(MULO),NPARAM(NI,PMU(MULO))

000F700 IF(LEVOUT.GE.5)WRITE( IUNOUT,6060) ( IALPHIL I PMU(LIL=MULO, MUHI)
00OOCR800 190 CONTINUE

00CA900 C

OCCq000 C

009100 C

00C9200 M = NPARAM(LTRUE)

0009300 JJ = MUD(LTRUE)-1

00C9400 XMSE=O.O0

00C9500 DO 195 J=1,M

00C9600 JJ = JJ+1

0009700 195 XPSF = XMSE + (ALPHMU(JJI-REALMU(J)I**2

0009800 XMST = SORT (XMSE*T.AUI)

OCC9900 XMSF = SQRT(XMSC)

0010000 WRITE (IUNOUT,6100) XMSE,XMST

0010100 XMSE = 0.0

0010200 XMST = 0.0

0010300 DO 197 I=1,MXTRTS

0010400 197 NAVG(I) = 0

0010500 PCS = 0.0

0010600 CALL SAND(INITAL)

0010700 IF(KPGFN) INITAL=NTLSV

00O1000 IF(IFSTRT) READ(IUNIN, 5090) INITAL
0010900 IF(.NOT.RESTRT) GO TO 200

0011000 WRITE(IUNOUT,6425)
0011100 CALL RCREDO(NAVG(1),MOFARI

0011200 C

0011300 C

0011400 C
0011500 C+******************************************************************
0011600 C

0011700 200 CONTINUE

0011900 WQITE(IUNOUT,65001 INITAL

0011900 6500 FORMAT(26H STARTING VALUE FOR RAND= 012)

0012000 CALL ACOMB

0012100 CALL SVSTRT
0012200 C

0012300 C******* **********************************************
0012400 C
0012500 mMM=1

0012600 rF(PESTRT) MMM=MSOFAR+1

0012700 DO 800 M=MMM,NSYM



0012800 SOFAR= ,

0012900 CALL GTSTRT

0013000 00 700 NTRI,MXTRTS

0013100 IORS= NTR

0013200 Slt'F= 0.0

0013300 0o 600 ITRT= ,NrULL
0013400 TP.!NT= ITRT-1
0013500 CALL MFnRM

0013600 CALL INFMTN

0013700 IF(XINtF.LE.SINFI GO TO 600

001300 SINF= XINF

0013q900 ISV= TRTMNT

0014000 00 590 .=I,NHYP

0014100 SVIN)=S(N)

0014200 RV( N=R(N)

0014300 590 CONTIN UF

0014400 600 CONTINUE

0014500 T:TMNT= ISV

0016CO IF ILEVOUT.GE.3) WRITF(IUNOIIT,62101 ISV,SINF
0014700 CALL RNOM

0014800 CALL YGEN($750)

0014900 701 CONTINUE

0015000 750 CALl COUNT

0015100 CALL TIUEI(TNOW)

0015200 TPRNT=(TNOW-TSTRT)/3600.

0015300 IF(TPRNT.LLT.TMAX) GO TO 800

0015400 IGOTO=2

0015000 rO TO 810
0015600 800 CONTINUF

0015700 C

0015800 C
C0015900 C

0016000 F10 C ONTIN.UE

0016100 WRITFlIUNOUT,6240) TPRNT

0016200 XXMSc=XMSE/FLOAT(MSOFAR)

0016300 XXMST = XMSE*SORT( TAU)

0016400 ASN=O.0

0016500 00 850 I=I,MXTRTS

0016600 850 AS4=ASN+FLOAT(NAVG(I)*II

0016700 ArN=ASN/FLUAT(MSQFARI

0016 00 WRITF(IUNOUT,6400) (NAVG(I),I=1.MX1RTS)

0016R10 WPITEIIUNOUT,6600) (IHCNT II),I=1,NHYPI

0016820 6600 FORMAT(IH 10110)

0016000 6400 rORMAT(IH 1011?)

OC17000 PPCS=PC S/FLOAI ( MSOF AP

0017 1 00 WPI T( IUNOIT,63001 ASN, PPCS, XM SE, xxMST, INI TAL
0017200 NTLSV=I NIT AL

0017300 KPGEN=. TRUIE.
0017400 GO TO (1,1000), IGOTO

0017500 1000 CALL RCOUMP(INAVG(II,MSOFAR,O)

0017600 WR I TE I UNOUT,6450 MSOFAR

0017700 STOP

0017800 C
0017900 C++*******+**+*** *4* ** *

0010000 C

001100 5010 FOPMATII316)
0010200 5020 FOPMAT(16,3FI2.6,101l)

0018300 5040 :f)PRMATII3A6.A21

001q400 5050 F(IRMAT(12F6.O



0018500 500O FORMATI616,3F6.0,2L1)

0018600 5090 FORMAT(OI2)

0018700 C

ool001oo00 C*4 * * * ** * 4 4* 44 4* 4 *4 * *

001O900 6010 FORMATI1HI,13A6,IA?)

0019000 6050 FORMAT(11IKFOR MODEL 13/160 NO. PARAMETERS 15/13H PRIOR PROB. 014.-

0019100 Xr)

0019300 6060 FORMAT(51HKTHE PARAMETERS IN THE MODEL AND THEIR MEANS ARE-- //

0019400 X (( 110,G14.5 )))

0019500 6090 FORMAT(44HKIHE PRECISION MATRIX OF THE PARAMETERS IS--)

0019600 6100 FORMAT 49HKINITIAL DISTANCE OF PRIOR MEAN FROM TRUE VALUE G14.5/-

0019700 x 1RX,16HOIVIOED 5Y SIGMA,15X,G14.5)

0019800 6210 FORMAT(IIH 5G18.8)

0019900 6240 FORMAT(24H CURRENT EXECUTION TIME F10.3)

0020000 6300 FnRMAT(6HKASN= G14.2/6H PCS= G14.6/12H AVG.DIST.= 014.6/
0020100 X 14H NORMALIZED = G14.6/2H* 012)

0020200 6355 FORMAT(IH 8G16.8)

0020300 6360 FORMATI1H 40(2H +))

0020400 6365 FORMATIIH 80(1H*1)

0020500 6425 FORMAT( 37H THIS IS A RESTART OF A PREVIOUS CASE)

0020600 6450 FORMAT(55H THIS CASE WAS TERMINATEn RY CLOCK. DUMPING FOR RESTART/-

0020700 X ,29H NO. SIMULATIONS COMPLETED 
=  

16)

0020800 END

00001'00 -'SUBR-OUT INE 'ACOMR

00C0200 COMMON/UNITS/ I!ININ,IUNOUT,MASK,LFVOUT,DFT(4)

0000300 COMMON/ALPH/IALPH(1000),IIALPH(512
) ,
ALPHMU

II
100 ),RFALMU(512 -

0000400 X ,NPARAM(10),M'UD(11),PMU(1000)

0000500 COMMON/CNTRLS/NHYP,NALL,NFAC,NFULL.,NFULM ,T
R T
MNTNTRENO,NOBSLTRUE

0000600 C

0000700 C*********4
** * * * *

4*4*4**4* ****
*

******4****************** ******

0000800 C

00C0900 NALL = NPARAM(1)-NTRENO

0001000 IF(NALL.LE.0) GO TO 110

0001100 00 100 K =1,NALL

0001200 IIALPH(KI= IALPH(K)

0001300 100 CONTINUE

0001400 110 IF(NHYP.LE.I) RETURN

0001500 C

OCC1600 DO 800 N=2,NHYP

0001700 MAXI= MUOIN+II-I-NTREND

00C1800 KK=O

00C1900 K=MLID(N)-1

0002000 150 KK=KK+1

0002100 200 K=K+I

0002200 IF(KK.GT.NALL) GO TO 420

0002300 IF(K.GT.MAXII GO TO 800

0002400 250 IF(IALPH(K)-IIALPHIKK)I300,150,400

0002500 300 KS=NALL*2
0002600 DO 350 J=KK,NALL

0002700 KS=KS-1

0002800 350 IIALPH(KS)=IIALPH(KS-I)

0002900 IIALPH(KKI=IALPH(K)
0003000 NALL=NALL+1



0003100 GO TO 150
000200 403 KK= K+I

O 3. C10 IF(KK-NALL) 250,?'0,450
0003400 420 IF(K.GT.KlAXI GO TO ROO

00C3500 450 NMORE MA1-K +1

0003600 kD=K-1

OCC3700 DO 500 J=1,N.ORE

0003800 KSI =NALL +J

00039C0 KS2=KD+J
0004000 IIALPH(KS1I = IALPHIKS2)

0004100 500 CONTINUE

00C4200 NALL=NALL+NtMORE
0004300 'O00 CONTINUE

0004400 IFILFVOIJT.GE.7)WRITF( IUNOUT,1000) NALL, I IIALPH I), I=1,NALL)

0004500 1000 FOR)MATI1H I10(1H 2515))

0004600 RETURN o

0004700 END

0000100 SUBROUTINE SVSTRT

0000?00 COMMON/ALPH/ IALPH(1000), I ALPH(512),ALPHMU(1000),REALMUI512 -

0000300 X ,NPARAM(O),MUD(11).PMU(1000)
00C0400 COMMON/PS/PINFXI11),PREC(2000)

0000500 INTEGER PINDEX

0000600 COMMON/CNTRLS/NHYP.NALL,NFAC,NFULL,NFULMI, TRTMNT,NTREND,NDRS,LTRUE

0000700 COMMON/PRORS/THFTA(10),CSTOP

"0000800 DIMENSION XLPHMUII(000),XPREC(2000),XTHET(10),XPMU(000oI
00C0000 m= MUD(NHYP+1)-1

0001000 00 20 J=1,M
0001100 XLPHMU(J) = ALPHMU(J)

0001200 XPMU(JI=PMU(J)

0001300 20 CONTINUE

0001400 M = PINDEX(NHYP+I)-1

0001500 00 40 J=1,M

0001600 XPREC(J) = PREC(JI

0001700 40 CONTINUE
0001800 00 60 J=1,NHYP
00C1900 XTHET(J) = THETA(J)

0002000 60 CONTINUE

0002100 RETURN
OCC0002200 ENTRY GTSTRT

0002300 M= MUD(NHYP+1I-1

000C2400 DO 120 J=1,M

0002500 ALPHMU( JI=XLPHMUJ)

0002600 PMU( J)=XPMU (J)

0002700 120 CONTINUE

0002800 M=PINDEX(NHYP l)-1

0002900 00 140 J=I,M

00C3000 PREC(J)= XPREC(J)

0003100 140 CONTINUE

0003200 DO 160 J=1,NHYP

0003300 THETA(J) = XTHET(JI

0003400 160 CONTINUE

0003500 RETURN

00C3600 END
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0000100 C THIS IS FOR TWO-LEVEL FACTORIALS ONLY

0000150 SUBROUTINE MFORM

00CO200 COMMONIUNITS/ IUNIN, IUNOUT,MASK,LFVOUT,PFMT(4)

0000300 COMMON/ALPH/14L.PH(1000I,IALPH(512),ALPHMU(1000),REALMU(5121 -

0000400 X ,NPARAM(IOI,MUD(1),PMU(1000)

0000500 INTEGFR TRTMNT

0000600 COMMON/CNTRLS/NHYP,NALL,NFAC,NFULL,NFULM1 ,TRTMNT,NTRENO,NOS,LT RUE

0000700 COMMON/MM/OESM( 1000)

0OC0800 C

0000900 C* *4 ** *4 ** ** 4* ** ** ** ** ** ** ** ** ** ** **

0001000 C

0001100 DIMENSION LASTA(10I

0001200 EOUI VALENCE (KS.SKI,(IX,XI)

0001 '00 CS********* ********************** ****************************
0001400 C

0001500 On 5 N=I,NHYP

0001600 LASTA(NI=O o

0001700 .5 CONTINUE

0001800 C
00C1900CO DO 1000 I=1,NALL

0002000 IPARAM = IIALPH(1)

0002100 IF(IPARAM.NE.O) GO TO 40

0002200 - A= +1.0

00C2300 GO TO 500

0002400 C

0002500 40 CONTINUE

0002600 ITR=TRTMNT

0002700 DX= 1.0

0002800 DO 150 J=1,NFAC

00C2900 XI=AND(MASK,IAPAM)

0003000 'IX= Ix+

0003100 GO TO (130,1001, IX

0003200 100 SK=AND(MASK,ITRI

00C0300 KS= KS+1

0001400 GO TO (110,130), KS

000500 110 DX= -DX

0003600 130 IPARAM= IPARAM/2

0001700 ITR=ITR/2

0003800 150 CONTINUE

0003900 A= OX

0004000 C

0004100 C

0004200 500 CONTINUF

0004300 IF(LEVOUT.GE.7) WRITE(IUNOUT,60001 IIALPH(I),A

00C4400 C

0004500 DO 950 K=1,NHYP

0004600 IF(LASTA(K)-NPARAM(K) + NIREND) 520,950,950

0004700 520 IX= MUD(K)+LASTA(K)

0004800 IF(IIALPHII) - IAL
0
H(IX)) 950,550,9999

000C49C00 550 CONTINUE

0005000 LASTA(KI= LASTA(K) +1

0005100 DESM(IX)= A

0005200 950 CONTINUE
00C300 1000 CONTINUE

00C5400 IF(NTREND.LE.0) GO TO 1060

0005500 A= NORS

OOCSAO0 P= 1.OEO

0005700 fl 1050 J=1,NTRENO

0005800 1= R *A.
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0005900 KS= J-NTREND

00C6000 nn 1040 K=1,NHYP
0000100 KS=KS+NPARAM(K)

0006?00 OESP(KS)= B

0006300 1040 CONTINUE
00C6400 1050 CONTINUE

0006500 1060 CONTINUE

00C6600 ITR=MUD(NHYP+1)-1

n000700 IF (LEVOUT.GE.7) WRITE(IUNOUT,6010) IOESM(II,I=1,ITRI

0006800 RETURN

00C6900 C
000C7000 9999 CALL EXIT

0007100 RETURN

0007200 6000 FORMAT(IlH 16,F6.0)

0007300 6010 FORMAT(6h DESM= /(6X,15F8.01)

0007400 C

00C,7500 END

0000100 C THIS IS FOR POLYNOMIALS ONLY

0000150 SURROUTINF MFORM

0000200 COMMON/UNITS/ IUNIN,IUNOUT,MASK,LEVOUT,PFMT(41

0000300 COMMON/ALPH/IALPH(1000)I,IALPH(II2),ALPHMUI1300),REALMU(512I

0000400 X tNPARAM(10),MUO(11),PMU(1000)

0000500 INTEGER TRTMNT

0000600 COMMON/CGNT TL S/NHY P., NA L., NFAC.NFULL, NFULMI,T RT.MNT ,NTREND, NOBS , LTRUE

0000700 COMMON/MM/DESM(1000)
0000800 C

0(00900 C** ** *4 *4 ** 4* ** ** ** *4 4* *4 o ** ** ** *4 4*

0001000 C
0001100 DIMFNSION LASTA(10)

0001200 EQUIVALENCE (KS,SK),(IX,XI

0001300 C***********************************************************************

0001400 C

0001500 KX=2.0/FLOATINFULL-1)
0001600 X=-1.O+FLOAT(TRTMNT)*OX

0001650 IF(ABS(X).LF.1.0E-4) X=0.0

0001700 DO 5 N=1,NHYP

00C1800 LASTA(N)=O
0001900 5 CONTINUE

000?000 C

0002100 DO 1000 I=1,NALL

0002200 IPARAM = IIALPH(II)

0002300 A=X**IPARAM

00C2400 C

0002500 C

0002600 500 CONTINUF

0002700 IF(LEVOUT.GE.7) WRITE(IUNOUT,6000) IIALPH(II,A

00C2800 C
00C2900 DO 950 K=I,NHYP

0003000 IF(LASTA(K)-NPAPAM(K) 4 NTREND) 520,950,950

0003100 520 IX= MUD(K)+LASTA(K)

0003200 IF(IIALPH(I) - IALPH(IXII 950,550,9999

0003300 550 CONTINUE

0003400 LASTA(IK= LASTAIK) +1



0003500 DESM(IX)= A

0003600 950 CONTINUF

0003700 1000 CONTINUE

0003800 IF(NTREND.LE.O) GO TO 1060

00C3900 A= NOBS

00C4000 B= 1.OEO
0004100 DO 1050 J=1,NTREND

0004200 B= B*A

0004300 KS= J-NTREND

0004400 D00 1040 K=1,NHYP

0004500 KS
=
KS+NPARAM(K)

0004600 DESM(KS)= R

0004700 1040 CONTINUE

0004800 1050 CONTINUE
0004900 1060 CONTINUE
0005000 ITR=MUD(NHYP+11-1
0005100 IF (LEVOUT.GE.7) wRITF(IUNOUT,6010) (DESM(I

, I
=1,ITRI

0005200 RETURN
0005300 C
0005400 9999 CALL EXIT
0005500 RETURN

0005600 6000 FORMAT(IH 16tF6.0)

0005700 6010 FORMAT(6H DESM= /(6X,15F8.O))

000C800 C
0005900 END

0000100 SUIROUTINE INFMIN

0000200 COMMON/UNITS/ IUNIN, ItINOUT,MASK,LFVOUT,PF T(4)

0000300 COMMON/CNTRLS/NHYP,NALL,NFAC,NFULL,NFULM ,TRTMNT,NTREND,NOBS,LTRUE

00C0400 INTEGFR TRTMNT

00COSC COMM9N/XRAND/Y,EPS,UNIF, U

0000600 COMMON/ERR/TAU,SIGMA
0000700 COMMON/ALPH/IALPH( 1000),I ALPH(512),ALPHMU( 1000),REALMU(512)

0000800 ,NPARAM(10),MUD(1 ),PMU(I 1000)

0000900 COMMON/PSIPINDFX(11),PREC(2000
1

0001000 INTEGFR PINDEX

0001100 COMMON /INF/XINF
0001200 COMMON/PRORS/THETA(10),CSTOP

0001300 COMMnN/MM/DESM(1000)
0001400 COMMON/YDIST/ S(10),R(10),SV(IO),RV(10)

0001500 COMMON/XTRA/AA(10001,(20001),2000),C(2000),0(10)
0001600 DIMENSION DESMUI(1O) TRACE( 10l

0001700 LOGICAL UPDT
0C1800 C

0C QO0 C ++++** **4*++ ************************************* 
**

0002000 C
00C2100 GO TO 5

0002200 ENTRY UPDATE
00C2300 (IPDT=.TRUE.
0002400 GO TO 6

0002500 5 UPDT=.FALSE.
00C2600 6 CONTINUF
0002700 00 10 K=1,NHYP

0002R00 DESMU(K)=0.O
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00C2900 10 CONTINUE
0003000 C
0003100 C***4* 44*****

** * *
*

** *
* **** **4**4***44***

0001200 C
00C1300 DO 520 N=1,NHYP

0003400 IF(LEVfUT.GE.5) WRITE(liUNnUT,6005) N,NOSS

00C3500 VS= MUD(N)

0003600 JE= NDARA?4(NI

0003700 C

0003800 C

00C3900 IP=0

0004000 DO 100 J=1,JE

00C4100 o KS1=MS+J-1

0004200 IF(UPOT) GO TO 25

0004300 fESMU(N)=nESMU(N)+DESM(KSI)*ALPHMU(KS1)

0004400 25 CONTINUE o

0004500 00 100 JJ=1,J

0004600 IR= IR+1

0004700 KS2 = MS+JJ-1

0004800 R(IR)= DESM(KS1)*DESM(KS2)

00C4900 100 CONTINUE

0005000 C
005C100 *****************************************************

0005200 C

0005300 IF(LFVOUT.GE.6) CALL TRIANG(B,JE,,PFMT,IALPH(MSII

0005400 KSI=PINDEX(N+11-PINDEX(N)

00C5500 KS2= PINDEX(NI

0005600 DO 120 K=I,KSI

0005700 B(K)= TAU*B(KIePREC(KS2)

0005800 C(Kl.=BR(K)

00C5900 KS2= KS?+1

0006000 120 CONTINUE

00C6100 CALL INVXTX(B,JE)

0006200 IF(LEVOUT.GE.6) CALL TRIANG(R,JE,R,PFMT,IALPH(MS))I

0006300 C

00C6400 C** * ** * *** ** ** ** ** ** ** ** ** ** -

0006500 IF(.NOT.UPOT) GO TO 199

0006600 KSI=PINDEX(N+1)

0006700 IPLO = PINDEX(N)

0006800 KS1=KS1-IPLO

00 900 MUHI=MUO(N+I)-I

0007000 KS2=IPLO

00C7100 DO 130 J=1,KSI

0007200 PREC(KS2)
= C (JI

00C7300 KS2=KS2+1

0007400 130 CONTINUE

0007500 KSI=MS-1

0007600 DO 150 J=1,JE

0007700 KS1= KSI+l

0007800 AA(J)= Y*DESM(KSI)*TAU + PMU(KSI)

00C7900 150 CONTINUE

0008000 CALL MTVEC(B,AA,JE,ALPHMUIMS))

0008100 CALL MTVEC(PREC(IPLO),ALPHMU(MS),JE,PMU(MS)I

000R200 IF(LEVOUT.LT.3) GO TO 520

0008300 IF(LEVOUT.GE.5) GO TO 160

0008400 WRITE(IUNOUT,6020)(ALPHMU(L),L=MS,MUHI)

0008500 IF(LEVOUT.LT.4) GO TO 520

00C8600 WRITE(IUNOUT,6090)

0008700 CALL TRIANG(PREC(IPLO),JE,8,PFMT,IALPHI(MSI)



000R800 GO TO 520
0008900 160 CONTINUE

OCC9000 WRITE(IUNOUT,6060)(IALPH(L),ALPIMU(L),PMU(LI,L=MS,MU
H
II

ooC9ioo WRITEIIUNDUT,6090)

0009200 CALL TRIANG(PREC(IPLO),JF,8,PFMT,IALPHIMS)I

00C9300 GO Tn 520

0009400 C

0009500 C **444*****4*4*44*44**4*********************
00C9600 C

0009700 C

0009800 199 CALL MTVEC(B,DESM(MS),JE,AA)

00C9900 DO 300 KS2=1,JE

0010000 *280 AA(KS2)= TAU*AAIKS2)

0010100 300 CONTINUE

0010200 IF(LEVO(UT.GE.5) WRITE(IUNOUT,6010)(AA(JI,J=1,JE)-

0010300 C

0010400 C**. ** ** ** *** ** ** ** ** ** ** **. *4* **4 **

0010500 C

0010600 R(N)= 0.0

0010700 MMS=MS-1
0010800 DO 360 J=1,JE

0010900 MMS= MMS+1

0011000 P(N)= RIN) + AAI(J)*DESM(MMS)
0011100 360 CONTINUE

0011200 P(N)= TAU*(I.O-R(N))

0011300 C

0011400 C** ** ** ** ** ** ** ** ** ** "** ** ** ** ** *

0011500 C

0011600 VMS=MS
00-11700 .C=0.0

0011800 DO 500 J=I,JE

0011900 C=C+AA(IJ*PMU(MMS)

0012000 MMS= MMS+I

0012100 500 CONTINUE

0012200 S(N)=C/R(NI

0012300 IF(LEVOUT.GE.5) WRITE(IUNnUT,6020) R(N),S(N)

0012400 520 CONTINUE

0012500 C

0012600 IF(UPDT) RETURN

0012700 C*4 ** *4 44 44 ** *4 * ** ** ** ** ** ** ** ** *

0012800 C

0012900 DO 1000 N=1,NHYP

0013000 C= 0.0

0014100 00 580 J=I,NI-YP

0013200 IF(N.EO.JI GO TO 580

0013300 C=C+THETAfIJ *P(J)

0013400 580 CONTINUE

0013500 TRACE(NI)=C/RN)

0013600 IF(LEVOUT.GE.5) WRITE(IUNOUT,6035) TRACE(N)

0013700 1000 CONTINUE
0013800 C

0013900 C***4********************************************************** *

0014000 C
0014100 XINF = THETA(Il * TRACE(II)

0014200 DO 1500 N=2,NHYP

0014300 JE= N-1
0014400 XINF = XINF + THETA(N) 4 TRACE(N)

0014500 DO 1450 J=I,JE

0.014600 C= S(N) - SJ)



0014700 E=C*C*(IR N) R(J)) (

0014A00 XINF = XINF + THEITANI *TI!iAlI) *

0014900 1450 CONTINUE
0015000 1500 CONTINUE

0015100 IF (LEVOUT.GE.5) WRITEI
I
UN

i  1

0015200 RFTURN

0015300 C

0015500 C
0015600 C p C,**** ***h'*t* ~***t**~
0015700 C******** **4** **** **** *

0015800 C FORMATS

0015900 C
0016000 6005 FORMAT(3H N= 16,7H NORS= Ir)

0016100 6010 FORMAT(2H A/(IH 10012.41)

0016200 6020 FPRMAT(IH 10012.4)

0016300 6035 FORMAT(7H TRACE= G12.4)

0016400 6060 FORMAT(51HK THE PARAMETERS IN TlE MrDE AN") THEIR MEANS ARE--

0016500 X ((1H 110,2G14.51)OFT

0016600 6090 FORMAT(44HKTHE PRFCISION MA4'
l

) OF TNHE SAETERS IS-- )

0016700 END

0000100 SUBROUTINE RNOM

00C0200 COMMON/XRAND/ Y,FPSUNIF,tI

0000300 COMMONUNITS/ IUNIN,I-
U

NOUTMA 
i 

,LFVOUI

0000400 COMMON/ERR/TAUSIGMA

0000500 DATA A0/2.515517/,A1
/ . 

0
2!  /'

.
0 1 5'

0000600 X 1/1.432788/, 2/.1R92 . I O0 I ,

0000700 X UMIN/.0000001/

0000800 U=U

0000900 CALL RANDIUNIFI

0001000 U=UNIF

0001100 IF(UNIF.GT..50) U=1.0-UNIF

0001200 IF(U.LT.UMIN) GO TO 100

0001300 T2=ALOG(1.0/(U*U))

0001400 T=SQRT(T2)

0001500 EP
S =T -

(
A O

+A1*T+A24T2 /
I . O '! I R T  ' : 2 1

0001600 IF (LFVOUT.GE.7) WRITE(IIINI''-'I
0 0 1

0, : .IT2,FPS

0001700 IF(UNIF.LT..50) FPS=-EPS

0001800 EPS=EPS*SIGMA

0001900 RETURN

00C2000 100 FPS
= -

1.0E15

0002100 IF(UNIF.GT..50) EPS=-EPS

00C2200 RETURN

00C2300 6000 FnRmAT(6H RAND /1H 5G16.1

0002400 END
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0000100 SUBROUTINE YGEN(*)
00C00200 COMMON/UNI TS/ I UNIN, IUNOUT,MASK,LEVOUT,PFMT(41

0000300 COMMON/ALPH/ I 4LPll( 1000 1,IIAL PHI512 ,ALPHMU( 100),REALMU(512) -

0000400 X ,NPARAM(IO).MUD(1I),PMU(1000)
0000500 COMMON/CNTRLS/NHYP,NALL,NFAC, NFULL,NFULMI, TRTMNTNTREN,NOBS,LTRUF
0000600 INTEGEP TRTMNT
0000700 COMMON/MM/DESM(1000)
0000800 COMMON/XRAND/Y,EPS,UNIF,U
0000900 COMMON/YDIST/S(O1),RILO),SV(10),RV(10)
0001000 COMMON/PRORS/THFTA(10,CSTOP
0001100 COMMON/PRFMNC/NAVG(1000),PCS,XMSF,XMST,INITAL , IHCNT(10),MSOFAR

0001400 EOUIVALENCE (SK,KS),(IX,XI)
0001600 C
0001700 C
0001800 CALL MFORM
0001900 Y=EPS
00C;000 M = NPARAM(LTRUE)
0002100 JJ = MUO(LTRUE)-1
0002200 DO 550 J=I,M
0002300 JJ = JJ +1
0002400 Y = Y + DESM(JJI*REALMU(J)
0002500 550 CONTINUE
0002600 SUM = 0.0
0002700 00 700 N=1,NHYP
0002800 C=Y-SV(N)
00C2900 0=RV(N)*C*C
0003000 S(N)=SV(N)
0003100 R(N)=RVIN)
0003200 0=-.50*0
0003300 IF(ABS(0)-60.0) 660,670,670
0003400 660 IF(THETA(N)-1.OF-181 670,670,680
0003500 670 THETA(N) = 0.0
0003600 GO TO 700
0003700 680 A = ALOG(THETA(N)) + 0
0003800 IF(ABS(AI.GE.70.0 GOTO 670

0003900 690 THETA(N) = THETA(N) * SQRT(R(N)) * EXP(O)
0004000 SUM = SUM + THEIA(N)
0004100 700 CJNTINUE
00C4200 I=0
0004300 DO 710 N=I,NHYP
0004400 710 THETA(N)=THETA(NI/SUM
0006100 DO 920 1I=1,NHYP
0006200 IF(THETA(II)-CSTOP) 920,910,910
0006300 910 I=1
00C6400 GO TO 1000
0006500 920 CONTINUE
0006600 1000 CONTINUE
0006700 IF(LFVOUT.GE.2) WRITEflUNOUT,6010) TRTMNT,(THETA(N),N=1,NHYP)
0006800 6010 FORMAT(1H I10,10F0.4)
00C6900 IF(LEVOUT.GE.5) WRITE(IUNOUT,6000) Y,EPS.(S(N),R(N),THETA(N),C(NI,-
0007000 x N = 1, NHYP)
0007100 6000 FORMAT( 3H Y=Gl2.5,5H EPS=G12.5, 12H SR,THETA,C /
0007200 X (2X,4G16.6))
0007300 CALL UPDATE

00074C00 IF(I.EO.11 RETURN 1
0007500 RETURN
0007600 END
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0000100 SURROUTINE COUNT
0000200 COMMON/UN ITS/ IUNIN, IIUNODUT,MASK,LEVOUT

0000300 COMMON/ALPH/IALPH( 10C), I I ALPH 5 12,ALPHMU(1000),REALMI51 5 -2

0000400 X ,NDARAM(O1),MUD(11),PMU(1000)

0000500 COMMON/CNTRLS/NHYP,NALL ,NFAC,NFULL,NFULMI ,TRTMNI,NTREND, NORS,LTRUF

0000600 COMMON/PRORS/THETA(10),CSTOP

0001000 COMMON/PRFMNC/NAVG(1000),PCS,XMSE,XMST,INITAL ,IHCNT(10),MSnFAR

0001100 COMMON/ERR/TAU,SIGMA

0001300 XM = 0.0

0001400 NAVG(NOBS) = NAVGINOBSI +1

0001500 M = NPARAM(LTRUF) o

0001600 JJ = MUD(LTRUE)-1

0001700 00 5 J=1,M

0001800 JJ 
= 

JJ +1

0001900 XM = XM+(ALPHMU(JJ)-REALMU(J))**2

00C2000 5 CONTINUE

0002100 XMSE = SORT(XM) + XMSF

0002?00 XMST = SQRT(XM*TAUI

0002300 XM = SORT(XM)

00C2400 IF (LEVOUT.GT.1) WRITE(IUNOUT,6000) NORS,XM,XMST

0002500 IMIN = 0

00C4200 CMAX=0.0

0004300 n00 910 I=1,NHYP

0004400 IF(THETAII)-CMAX) 910,910,905

0004500 905 CMAX=THETA(I)

0004600 IMIN=I

0004700 910 CONTINUF

0004800 945 CONTINUE

000C400 IF (IMIN.EO.LTRUE) PCS = PCS+ 1.0

0004950 IICNTIIMINI=IHCNT( IMIN)+

0005000 IF (LEVOUT.LT.2) RETURN

0005100 00 950 N=1,NHYP o
0005200 MULO = MUD(N)

0005300 MUHI = MUD(N+1)-1

0005400 WRITE (IINOUT,6010) THETA(N) (ALPHMU(LI,L=MULO,MUHI

0005500 950 CONTINUE

0005600 RETURN

0005700 6000 FORMAT(22H ******OBSERVATION NO. 14,7H XMSE= G11.3,7H XMST= 011.3 -

0005800 X ,6H***** I

0005900 6010 FORMATIH F10.6 , 10012.4/(27X10G12.4))

0006000 END

0000100 SUBROUTINE INVXTX(A,NN)

0000200 C ASSUMES THF MATRIX A IS SYMMETPIC AND POSITIVE DEFINITE, AND ONLY

000300 C THE UPPER TRIANGLE IS STORED AS A ONE-DIMENSIONAL ARRAY IN THE

0CC0400 C ORDER A I.1), A(1,2), A(2,2), A(1,3), A(2,3), A(3,3), ... , AIN,N).
0000500 C NN IS THE ORDER N OF THE INPUT MATRIX A.

0000700 C

0000800 DIMENSION All)

0001500 D=1.0

0001600 N = NN
00C1700 ITR1 = 0

0001900 D00 145 K=I,N
0002000 C

00C02100 ITRI = ITRI+K-1
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00 2200 KP1 = K+1
00C2300 KMI = K-I
00C2400 KK = ITRI+K

0002600 PV 
=  

1.000/ArKK)

0002700 C

00C2800 ITR2 = 0

0002900 IF (K-1) 150,80,50

00C3000 C

00C3100 C RFDUCE TOP PART OF TRIANGLE, LFFT OF PIVOTAL COLUMN

0003200 50 00 60 .=I,KMI

0003300 ITR? = ITR2+J-1

0003400 KJ = ITR1+J

0003500 F = A(KJI*PV

0003600 DO 60 I=1.J

0003700 IJ = ITR2+I

0003800 IK = ITP1 + I

00C3900 60 A(IJ) = A(IJI + A(IKI*F

0004000 C

0004100 IF (K-N) 70,120,150
0004200 C

0004300 C REDUCE REST OF TRIANGLE, RIGHT OF PIVOTAL COLUMN

0004400 70 ITR2 = ITRI

0004500 80 DO 110 J=KPI,N

0004600 ITR3 = ITRI

0004700 ITR2 = ITR2+J-1

0004800 KJ = ITR2+K

0004900 F = A(KJ)*PV

0005000 DO 100 I=l,J

0005100 IF (I-K) 90,100,95

"0005200 90 IJ = ITR2+I

0005300 IK = ITR1 + I

0005400 A(IJ) = A(IJ) - A(IK)*F

0005500 GO TO 100

0005600 95 IJ = ITR2 + I

0005700 113 ITR3 + I - 1

0005800 IK = ITR3 + K

00 5900 A(IJI = A(IJI - A(IK)*F

0006000 100 CONTINUE
0006100 110 CONTINUC

0006200 C

0006300 C DIVIDE PIVOTAL ROW-COLUMN BY PIVOT, INCLUDING APPROPRIATE SIGNS

0006400 120 ITR2 = ITRI

0006500 00 140 I=1,N

0006600 IF (I-K) 125,130,135

0006700 125 IK = ITR1+1

00C6800 A(IK) = -A(IK)*PV

0006900 GO TO 140

00C7000 C (REPLACE PIVOT BY RECIPROCAL)

0007100 130 A(KK) = PV

0007200 GO TO 140
0007300 135 ITR2 = ITP2+1-1

0007400 KI = ITR2+K

0007500 A(KI) = A(KI)*PV

0007600 140 CONTINUE

0007700 C

0007800 145 CONTINUE
0007900 C

0008000 150 RITURN

00CA100 FND
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0000100 SURROUTINE TRIANG(A,NN,NKOL,FORMAT, 10DUT)

0002C c0 DIMENSION A(1) ,FORAT(I I, IOOUT(I )
0000300 COMMON/INI1TS/IUNIN, I UNOUT

0000400 1 FORMAT( HK)

00C0500 N = NN
00C0000 NCOL = NKOL

0000700 KLUMPS = N/NCOL

0000800 C
0C00900 KEEPTR = 0

0001000 KI = I

0001100 K2 = NCOL - 1

00C1200 K3 = NCOL

0001300 IF (KLUMPS .EO. 01 GO TO 120

0001400 C

0001500 DO 90 KLUMP=I,KLUMPS

0001 00 ITRi = KEEPTR

0001700 1 
= 

-1

0001800 ILO = (KLUMP-1)*NCOL + ITRI + 1

0001900 DO 30 K=KI,K2

-0002000 I = 1 + L

00C2100 ITRI = ITR1 + K - 1

00C2200 ILO = ILO + K - 1

0002300 IHI = ILO + I

0002400 30 WRITE(IUNOUT,FORMAT) IDOUT(K),(A(J),J=ILO, IHI)

0002500 KEEPTR = ITRI + K2

0002600 DO 60 K=K3,N

0002700 ITRI = ITRi + K - 1

0002800 ILO = ILO + K - I

00C2900 IH1 = ILO + NCOL - 1

00C3000 60 WRITE ( I UOUT,FORMAT) I DOUT(K) ,(A(J),J=ILO,IHI )

0003100 KI = KI + NCOL

0003200 K2 = K2 + NCOL

0003300 K3 = K3 + NCOL

0003400 90 WRITE(IUNDUT,1)

0003500 C

00C3600 120 ITRI = KEFPTR

0003700 IF (KI .Gl. N) GO TO 180

00C3800 I = -1
0003900 ILO = KLUMPS*NCOL + I3RI + 1

0004000 DO 150 K=KI,N

00C4100 I = 1 4 1

0004200 ITRI = ITRI + K - I
0004300 ILO = ILO + K - 1

0004400 fil = ILO + I
0004500 150 WRITE(IUNOUT,FORMAT) IDOUT(K),(A(J),J=ILO,IHI)

0004600 C
0004700 180 PFTURN

0004800 END
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0000100 SUBROUTINE MTVEC(A ,.,NN,CI
0000200 DIMENSION A( )I,S(1I,C(1)
00C00300 N=NN
0000400 DO 500 J=I,N
0OC0500 C(J=0.0
000CO00 KADD =((J-L)*J)/2
0000700 DO 200 K=I,J o

O000ooq KADO=KA0D+1

00CO00 C(JI=C(J) +A(KADD)*R(KI

0001000 200 CONTINUE
0001100 KI= J+1

00C1200 IF(KI-N) 250,250,500
0001300 250 DO 300 K=K1,N
000400 KADO= KADDfK-1

00o 0100 C(JI= C(J)+ A(KADD)IRIK)

0001600 300 CONTINUE
0001700 500 CONTINUE

0001800 RFTURN

00C1900 END



APPENDIX B

LIST OF SYMBOLS

A the space of allowable experiments

A the space of allowable experiments requiring ex-

actly j observations

a element of 'A

a( i )  the ith  experiment in A

a. experiment in A performed at the j stage of

sampling

vector of parameters appearing in combined model

equations

E{X} expectation of the random variable - X

E{XIY} conditional expectation.of the random variable X

given the value of Y

S(w) entropy of the probabilities at state w

[w(),a] entropy of the posterior probabilities if system is

in state w and the value y is observed

F element of 01

sigma field of Borel sets over .,

fQ(y a,a) density function of y under model k when a is

given and experiment a is to be performed.

f (la) marginal density function of 4 under model

when experiment a is to be performed.
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f (yj+1 a,a) density function of yj+1 under model Z when a

and a are given

f(Y j+l1a) marginal density function of Yj+l under model t

when a is given

gi(w wi-1) density function of w given wi_ 1

HR denotes hypothesis R about the form of the model

equation

hi(zl,...,zk) function of controlled variables defining x.

.I(w,a) expected information in experiment a when state

of system is w

I(w,a,i,j) expected information for discriminating in favor

of H. against H. in experiment a when state

of system is w

i denotes subscript of hypothetical model with larg-

est posterior probability

i true model equation number

JMAX upper limit on total number of observations

k(j) superscript of experiment performed at stage j of

sampling

L number of model equations or hypotheses postulated

M design matrix

M design matrix for model k

N(A) number of elements in A

N(p,T) normal distribution with mean vector p and pre-

cision matrix T



i07o

n vector of n

ni  number of observations taken at stage i

n(i,j) number of times experiment a is performed in j

stages

Pr{X} probability of event X

Pr{XIYI probabilityof event X given event Y

o (i)
pi limiting proportion of times a performed in an in-

finite sequence of experiments

oQ,Q1'Q2  denote quadratic forms

R precision matrix of distribution of yj under model k

R(w,a) expected reduction in entropy if experiment a is per-

formed and state is w

s . mean vector of distribution of yj under model k

T precision matrix of distribution of c

W random variable defined over P

w element of R. An observed value

X vector of xi

xo value of hi(z l , . .,zk)

xi' value of hi(zl, . . .,zk ) at th

y,y observed variable

z. controlled variable i.
1

a- vector of parameters in model equation k

Bi coefficient of x.

coefficient of x in model. coefficient of xi in model 2
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y defined on page 41

6ij Kronecker delta function

C vector of observation errors

8i  probability model i is correct

8i, j  posterior probability that model i is correct after j

stages of sampling

e stopping probabilitym

UR mean vector of distribution of parameters in model ko

E (d") density function of parameters in model e after j

stages of sampling

T precision of distribution of c

,j precision matrix of distribution of parameters of model k

after j stages of sampling

state space of process. Defined on page 19

Oxy direct product of state space and observed variable space

vector of zeros

proportional to

determinant of amatrix

approximately equal to

~ distributed as

includes
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APPENiDIX C

TABLES

TABLE 1. - SUMMARY OF SIMULATION RESULTS PRE3ENTED iN TABLES 2 THROUGH 9

Model Parameter L = 4, i = 2 L 4, 
= 

3 L = 6, i = 3 . = 6, i = 5

nlumber nbr 100 500 10 500 100 500 100 500

obs obs obs obs obs obs obs obs

1 8 0 0 0 0 0 0 0 0

2 8 .966 .983 0 0 0 0 .010 0

3 02 .032 .016 .922 .962 .860 .877 .902 .941

4 3 .002 .001 .078 .038 .109 .107 . .062 .023

S 04 .022 .012 .017 .029

6 a5 .009 .004 .009 .006

1 80 0.0971 0.0891 0.1322 0.1377 0.1116 0.1357 0.0278 -0.0240

2 $0 0.1010 0.0951 0.1313 0.1384 0.1253 0.1286 0.0316 0.0382

a1 .4981 .5025 .2485 .2522 .2411 .2544 .5114 .4977

3 8 0.1013 0.0941 -0.0070 -0.0067 -0.0038 -0.0015 -0.0249 -0.0099

•1 .4981 .5025 .2478 .2525 .2493 .2505 .5086 .5032

B2 -.0007 .0021 .2578 .2634 .2157 .2544 .1179 .0981

4 8 0.1010 0.0943 -0.0070 -0.0335 -0.0035 -0.0015 -0.0237 -0.0097

61 .5029 .4915 .2497 .2416 .2572 .2429 .5168 .5046

2 -.0004 .0018 .2579 .2634 .2645 .2544 .116S .0976

S3 -.0076 .01.12 -.0026 .0146 -.0089 .0102 -.0083 -.0017

5 0.0040 0.0015 -0.0157 0.0001

$I .2564 .2440 .5120 .5009

62 .2222 .2577 -.0020 .0227

23 .0032 .0088 -.0048 .0024

64 .0360 -.0015 .0908 .0730

6 6 0.0030 -0.0037 -0.0180 -0.0021

I .2390 .2559 .5057 .4638

82 .2291 .2619 .0603 .0376

83 .0596 -.0373 .0438 .1340
.0301 -.0050 .0553 .0598

-.0534 .0345 -. 0413 -.0969

The column headings give the values of L and i* and the number of observations. The row headings

present the parameters whose average posterior values are given. The probabilities listed for 10 ob-

servations are the averages after five simulations of 100 observations and the values after the first

100 observations of the 500 observation simulations. The averages of the posterior parameter means

are based only upon the five full simulations of 100 and 500 observations, respectively. The posterior

probabilities for 500 observations are based upon five simulations of 500 observations each.
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TABLE 2. - L = 4, i = 2

IModel Param After 100 observations After first 100 of 500 observations

1 al 0 0 0 0 0 0 0 0 0 0
2 92 .973 .979 .974 .976 .975 .976 .976 .931 .977 .923
3 03 .025 .019 .024 .023 .024 .023 .023 .063 .022 .071
4 04 .002 .001 .002 .001 .002 .001 .001 .006 .001 .006

1 s8 0.0795 0.1017 0.0906 0.1271 0.0865 * * * * *

2 80 0.1187 0.1017 0.0753 0.1032 0.1059 * * * * *
81 .5192 .5022 .4935 .4892 .4865

3 80 0.1263 0.1021 0.0682 0.1067 0.1033 * * * * *
81 .5191 .5021 .4935 .4894 .4866
82 -.0152 -.0008 .0141 -.0069 .0055

4 BO 0.1.239 0.1022 0.0688 0.1059 0.1041 * * *
81 .4858 .5044 .4771 .5186 .5288

82 -.0126 -.0010 .0133 -.0051 .0032
83 .0351 -.0024 .0170 -.0350 -.0527

p0  0.25 0.23 0.23 0.17 0.19 0.18 0.23 0.27 0.21 0.25

P1  0 0 0 0 0 0 0 0 0 0

P2 .05 .05 .03 .17 .20 .24 .06 .04 .02 .01

P3 .02 .03 .02 .07 0 .02 .01 .01 .03 0

P4  .35 .20 .14 .01 .17 .04 .26 .43 .11 .25

P5  .06 .20 .27 .14 .06 .12 .14 .01 .19 .24

P6  .01 0 .06 .09 .02 .03 .01 .01 .17 0

P7  .05 .05 0 .13 .21 .19 .06 .02 .01 .01

P8  0 0 0 0 0 0 0 0 0 0

pg .21 .24 .25 .22 .15 .19 .23 .21 .26 .24

Not recorded.

The values of the posterior probabilities and parameter means after ten simulations, of
100 observations each, of the sequential selection procedure. The last five columns are
data from the first 100 observations of the 500 observation simulations tabulated in
table 3. The posterior means were not recorded for thise cases. Also listed are the
proportions pi of the times each a(i) was chosen as the optimal experiment.



TABLE 3. - L = 4, i = 2

Model Param After 500 observations

1 61 0 0 0 0 0
2 62 .991 .985 .990 .991 .957
3 03 .009 .015 .009 .009 .040
4 04 0 0 0 0 .003

1 B0  0.0875 0.0599 0.0905 0.0757 0.1317

2 0o 0.0921 0.0984 0.0999 0.0942 0.0909

81  .4964 .5010 .5028 .5014 .5108

3 B0  0.0923 0.1032 0.0984 0.0937 0.0827

.4964, .5010 .5028 .5014 .5108

B2 -.0005 -.0096 .0029 .0012 .0163

4 0.0923 0,1022 0.0985 0.0935 0.0850
S .4948 .4886 .5043 .4882 .4817
2 -.0004 -.0086 .0028 .0014 .0139

3 .0016 .0126 -.0017 .0141 .0293

P0  0.234 0.264 0.236 0.236 0.228

pl 0 0 0 0 .002

P2 .050 .010 .056 .044 0

P3  .008 0 .004 .008 0

P4  .280 .422 .302 .306 .076
p5  .110 .060 .070 .088 .418

P6 .018 0 .026 .076 .006

P 7  .072 .010 .088 .038 .002

P8 0 0 0 0 0
P9 .228 .226 .218 .204 .268

The values of the posterior probabilities and parameter
means after 5 simulations, of 500 observations each, of
the sequential selection procedure. Also listed are
the proportions pi of the times each a (i) was chosen
as the optimal experiment.
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TABLE 4. - L = 4, i = 3

Mode Param After 100 observations After first 100 of 500 observations

S 0 0 0 0 0 0 0 0 0 0 0

2 01 0 0 0 0 0 0 0 0 0 0

3 0 .788 .828 .967 .966 .966 .962 .916 .966 .941 .920

4 0 .212 .172 .033 .034 .034 .038 .084 .034 .059 .080

1 B0 0.1140 0.1548 0.1260 0.1292 0.1368 * * * * *

2 0E 0.1183 0.1515 0.1255 0.1286 0.1324 * * * * *

1 .2452 .2533 .2385 .2575 .2482

3 
6
0 -0.0043 -0.0089 -0.0159 0.0104 -0.0162 * * * * *

1 .2467 .2510 .2389 .2552 .2470

P2  .2263 .2939 .2683 .2216 .2788

4 0 -0.0045 -0.0091. -0.0158 0.0105 -0.0162 * * * * *

1 .1838 .3095 .2395 .2633 .2523

82 .2268 .2945 .2681 .2215 .2788

E3 .0833 -.0779 -.0009 -.0107 -.0070

P0  0.18 0.17 0.17 0.17 0.17 0.18 0.17 0.17 0.17- 0.17

P0 0 0 0 0 0 0 0 0 0 0

P2 .32 .31 .30 .30 .29 .32 .30 .3C .31 .30

P3  0 .01 0 ..02 0 0 0 0 .01 .02

P 4  0 0 .03 0 .02 0 .03 .02 0 0

5 .03 .01 .02 .03 .04 .02 .02 .02 -.01 .05

P6  0 0 .01 .02 0 .01 0 0 0 .02

P7 .30 .32 .30 .28 .30 .30 .31 .31 .32 .28

p8  0 0 0 0 0 0 0 0 0 0

p9  .17 .18 .17 .18 .18 .17 .17 .18 .18 .16

The values of the posterior probabilities and parameter means after 10 simulations, of 100 ob-

servations each, of the sequential selection procedure. The last 5 columns are data from the

first 100 observations of the 500 observation simulations tabulated in table 5. The posterior

means for these 5 cases were not tabulated. Also listed are the proportions pi of the times

each a(i) was chosen as the optimal experiment.
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TABLE 5. - L = 4, 1 = 3

Model Param After 500 observations

1 61 0 0 0 0 0
2 62 0 0 0 0 0

3 63 .953 .982 .953 .969 .954
4 64 .047 .018 .047 .031 ,046

1 B0  0.1368 0.1385 0.1383 0.1394 0.1354

2 80 0.1376 0.1398 0.1391 0.1387 0.1369
B1  .2561 .2463 .2608 .2550 .2426

3 60 -0,0227 0.0085 -0.0069 -0.0028 -0.0096
81  .2566 .2469 .2611 .2546 .2434

82 .2906 .2392 .2648 .2548 .2677

4 -0 -0.0227 0.0085 -0.0069 -0.0028 -0.0096
B1 .2355 .2385 .2399 .2715 .2225
82  .2905 .2392 .2649 .2548 .2678

83 .0281 .0112 .0281 -.0223 .0277

PO 0.178 0.178 0.178 0.178 0.178
Pl 0 0 0 0 0
P2 .3.22 .320 .320 .318 .3-18

P3  0 0 0 .002 .004

P4  0 .006 .004 0 0
P5  .004 .004 .004 .002 .010
P6 .002 0 0 0 .004
P7  .318 .318 .318 .320 .312

P8  0 0 0 0 0
P9 .176 .174 .176 .180 .174

The values of the posterior probabilities and parameter means
after 5 simulations, of 500 observations each, of the se-
quential selection procedure. Also listed are the propor-
tions pi of the times each a(i) was chosen as the optimal
experiment.



TABLE 6. - 1. = 6, i* 3

Model Param After 100 observations After first 100 of 500 observations

1 81 0 0 0 0 0 0 0 0 0 0

2 62 0 0 0 0 0 0 0 0 0 0

3 e3  .9554 .9564 .7630 .9098 .9432 .2733 .9534 .9471 .9449 .9554

4 04 .0378 .0365 .1736 . 0738 .0469 .5534 .0400 .0444 .0457 .0378

5 05 .0052 .0055 .0451 .0130 .0075 .1168 .0050 .0070 .0075 .0052

6 66 .0016 .0017 .0162 .0034 .0024 .0564 .0016 .0015 .0019 .0016

1 80  0.1567 0.1.026 0.0891 0.0839 0.1259 * * * * *

2 P0 0.1298 0.1197 0.1192 0.1118 0.1462 * * * * *

1. .2696 .2258 .2151 .2422 .2527

3 0 -0.0114 0.0098 -0.0332 0.0004 0.0156 * * * * *

8i .2564 .2354 .2396 .2542 .2607

82 .2882 .2282 .3290 .2329 .2463

4 80 -0.0110 0.0098 -0.0317 -0.0008 0.01.61 * * * * *

81 .2421 .2427 .3033 .2117 .2864

2  .2877 .2282 .3268 .2346 .2453

83 .0189 -.0099 -.0846 .0562 -.0341

5 80 -0.0056 0.0200 -0.0082 -0.0175 0.0314 * * * * ? *

81 .2458 .2403 .2870 .2232 .2855

82 .2562 .1692 .1788 .3427 .1641

63 .0148 -.0080 -.0676 .0432 .0336

64 .0271 .0512 .1288 -.0966 .0694

6 B0  -0.0061 0.0209 -0.0130 -0.0166 0.0300 * * * * *

61 .2429 .1945 .3250 .2050 .2278

82 .2583 .1767 .1921 .3418 .1767

83 .0265 .1913 -.2368 .1214 .1958

64 .0254 .0432 .1203 -.0968 .0584

b5 -.0089 -. 1555 .1320 -.0609 -.1739

PO 0.13 0.15 0.18 0.17 0.17 0.18 0.10 0.11 0.17 0.13

pl .02 .08 .03 .06 .10 .01 .04 .11 .12 .02

p2  .17 .24 .32 .27 .22 .32: .12 .12 .20 .17

p3  .08 .03 0 0 .02 0 .05 .02 .02 .08

P4  .06 .03 .02 .07 .03 .01 .07 .14 .07 .06

P5  .03 .03 .07 .03 .05 0 .11 .02 .04 .03

P6 0 .12 .14 .14 .02 .06 .02 .06 .07 0

P7  .29 .17 .11 .09 .21 .26 .16 .15 .15 .29

P8  .05 .02 .01 .05 .04 0 .16 .12 .04 .05

P9 .17 .13 .12 .12 .14 .16 .17 .15 .12 .17

Not recorded.

The values of the posterior probabilities and parameter means after 10 simulations, of 100 obser-

vations each, of the sequential selection procedure. The last 5 columns are data from the first

100 observations.of the 500 observation simulations tabulated in table 7. The posterior means

were not recorded for these 5 cases. Also listed are the proportions of the times each a
( i

) was

chosen as the optimal experiment.



TABLE 7. - L = 6, i = 3

Model Param After 500 observations

1 01 0 0 0 0 0

2 e2 0 0 0 0 0

3 03 .6046 .9812 .9722 .9746 .8526

4 a4  .3388 .0175 .0257 .0230 .1316

5 05 .0425 .0009 .0018 .0021 ..0125

6 066 .0141 .0003 .0003 .0003 .0032

1 80 0.1321 0.1378 0.1325 0.1349 0.1413

2 60 0.1356 0.1278 0.1247 0.1168 0.1383

81 .2434 .2616 .2541 .2549 .2581

3 0 -0.0026 0.0067 -0.0066 -0.0021 -0.0029
B1  .2446 .2556 .2486 .2466 .2571

82 .2542 .2336 .2605 .2615 .2622

4 -0.0027 0.0067 -0.0067 -0.0017 -0.0030

81  .2076 .2515 .2340 .2341 .2872

62 .2544 .2335 .2608 .2609 .2623

83 .0491 .0055 .0194 .0167 -.0399

5 0 -0.0113 0.0077 0.0111 0.0063 -0.0062

81 .2081 .2518 .2332 .2394 .2873

82 .2926 .2279 .2845 .2061 .2774

63 .0486 .0052 .0203 .0101 -.0401

84 -.0300 .0049 -.0200 .0496 -.0121

6 8o -0.0118 0.0047 -0.0100 0.0061 -0.0073

61 .2164 .3128 .2432 .2386 .2682

82 .2949 .2455 .2801 .2070 .2819

B3 .0130 -.2307 -.0225 .0134 .0405

84 -.0317 -.0098 -.0168 .0490 -.0155

65 .0270 .1773 .0328 -.0026 -.0618

p0  0.178 0.136 0.148 0.116 0.168

pl .004 .064 .028 .070 .012

P2 .314 .206 .198 .086 .282

P3 .004 .036 .092 .112 .018

P4  .010 .014 .038 .110 .014

P5  0 .092 .014 .024 .016

P6  .022 .004 .012 .022 .002

P7  .296 .190 .280 .288 .304

P8  0 .104 .026 .014 .010

P9 .172 .154 .164 .158 .174

The values of the posterior probabilities and parameter

means after five simulations, of 500 observations each, of

the sequential selection procedure. Also listed are the

proportions of the times each a(i) was chosen as the opti-

mal experiment.
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TABLE 8. - L = 6, i = 5

Model Param After 100 observations After first 100 of 500 observations

1 1 0 0 0 0 0 0 0 0 0 0

2 02 0 0 0 .021 .042 0 0 .011 .003 .026

3 63 .945 .942 .956 .895 .848 .943 .877 .852 .904 .857

4 04 .043 .043 .038 .063 .042 .048 .106 .089 .070 .076

5 e .007 .012 .005 .015 .033 .007 .013 .035 .018 .028

6 , 6 .004 .003 .001 .006 .035 .002 .004 .013 .006 .013

1 r0 0.1502 -0.0299 0.0231 -0.0079 0.0034 * * * * *

2 0o 0.0356 0.0189 0.0288 0.0316 0.0431 * * * * *

1 .5159 .5101 .5123 .5079 .5106

3 60  -0.0348 -0.0413 -0.0412 -0.0098 0.0026 * * * * *

a1 .5040 .5077 .5096 .5084 .5133

62 .1467 .1265 .1478 .0837 .0850

4 8 -0.0333 -0.0396 -0.0414 -0.0070 0.0026 * * * * *

60 .4874 .5288 .5019 .5513 .5146

82 .1450 .1252 .1478 .0810 .0849

83 .0217 -.0261 .0099 -.0456 -.0016

5 60 -0.0232 -0.0242 -0.0431 -0.0041 0.0161 * * * * *

61 .4985 .5201 .5039 .5516 .4861

82 .0642 -.0063 .1616 .0184 -.1260
83  .0101 -.0185 .0074 -.0463 .0235

64 .0774 .1223 -.0131 .0605 .2068

6 0 -0.0298 -0.0234 -0.0435 -0.0067 0.0135 * * * * *
1 .6005 .5398 .5233 .5143 .3504

2 .1187 -.0120 .1655 .0517 -.0226

83 -.3886 -.1048 -.0708 .1797 .6034

64 .0292 .1270 -.0167 .0301 .1071

65 .3037 .0673 .0599 -.1893 -.4482

p0  0.10 0.16 0.14 0.24 0.18 0.18 0.14 0.17 0.18 0.22

p1  .05 .06 .07 .02 .13 .25 .04 .02 .01 .01

P2  .08 .20 .15 .03 .03 .06 .17 .04 .25 .02

P3  .04 .05 .07 .07 .02 .01 .06 .01 .03 0

P4  .08 .13 .08 .26 .18 .16 .06 .10 .10 .05

P5  .08 .08 .10 .12 .19 .07 .17 .25 .06 .41

P6  .08 .04 .06 .02 .03 .03 0 0 .14 .01

P7  .11 .10 .09 .03 .05 .09 .19 .19 .05 .02

P8  .22 .02 .10 0 .01 .06 .03 .01 .01 0

p9  .16 .16 .14 .21 .18 .09 .14 .21 .17 .26

Not recorded.

The values of the posterior probabilities and parameter means after 10 simulations, of 100 ob-

servations each, of the sequential selection procedure. The last 5 columns are data from the

first 100 observations of the 500 observation simulations tabulated in table 9. Also listed

are the proportions of the times each a(
i
) was chosen as the optimal experiment.
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TABLE 9. - L = 6, i = 5

Model Param After 500 observations

1 61 0 0 0 0 0
2 02 0 0 0 0 0

3 03 .974 .882 .899 .976 .976

4 04 .020 .024 .029 .021 .022

5 05 .003 .075 .062 .002 .002

6 06 .002 .020 .009 0 0

1 80 -0.1051 0.0255 -0.0926 0.0130 0.0390

2 0O 0.0290 0.0373 0.0436 0.0351 0.0458

B] .4860 .5032 .4903 .5038 .5053

3 B0  -0.0181 -0.0137 0.0018 -0.0258 0.0065
B1  .5016 .5008 .5019 .5056 .5061

82 .1075 .1046 .0803 .1189 .0791

4 B0  -0.0179 -0.0142 0.0027 -0.0257 0.0066

B1  .5035 .4859 .5201 .5177 .4956
62 .1071 .1050 .0782 .1187 .0790

83 -.0025 .0198 -.0237 -. 01.60 .0138

5 80 -0.0100 0.0012 0.0159 -0.0202 0.0136

81 .4959 .4940 .5016 .5169 .4962

62 .0413 -.0152 -.0328 .0897 .0306

83 .0061 .0081 0 -. 0151 .0129

84 .0653 .1185 .1116 .0241 .0455

6 B0  -0.0166 -0.0044 0.0157 -0.0186 0.0135
B1  .4232 .4352 .4617 .5039 .4949

82 .0891 .0094 -.0250 .0835 .0309

B3 .2801 .2087 .1232 .0400 .0179

64 .0224 .0996 .1030 .0288 .0452

P5 -.2070 -.1452 -.0854 -.0430 -.0039

p0  0.158 0.106 0.208 0.174 0.132

pl .252 .190 .314 .010 .128

P2  .108 .054 .016 .306 .138

p3  .040 .052 .014 .006 .008

P4  .170 .184 .100 .020 .104

p5  .022 .034 .114 .030 .088

p6  .056 0 0 .072 .002

P7  .074 .134 .052 .208 .172

P8  .036 .118 .110 .022 .092

p9  .084 .128 .072 .152 .132

The values of the posterior probabilities and parameter

means after five simulations, of 500 observations each, of

the sequential selection procedure. Also listed are the

proportions of the times each a(i) was chosen as the op-

timal experient.



TABLE 10. - LARGE SAMPLE STUDY TWO

Mod I Param ~0- (0.1,0.2,0.3,0.4) 0 (0.25,0.25,0.25,0.25) - (0.4,0.3,0.2,0.1)

5 simulations Average 5 simulations Average 5 simulations Average

1 l 0 0 0 0 0 0 0 0 00 0 00 0 0 0 0 00 0 0
2 2  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 83 .957 .947 .828 .926 .960 .924 .969 .969 .966 .967 .930 .960 .984 .979 .976 .957 .984 .976
4 04 .043 .053 .172 .074 .040 .076 .031 .031 .034 .033 .070 .040 .016 .021 .024 .043 .016 .024

1 80 -0.0338 -0.0460 .0015 -0.0282 -0.0125 -0.0238 -0.0413 -0.0230 -0.0204 -0.0501 -0.0172 -0.0304 0.0392 0.0028 0.0045 -0.0195 0.0180 0.0090

2 .0 -0.0338 -0.0460 0.0015 -0.0282 -0.0125 -0.0238 -0.0413 -0.0230 -0.0204 -0.0501 -0.0172 -0.0304 0.0392 0.0028 0.0045 -0.0195 0.0180 0.0090 -
51 1.0044 .9810 .9938 .9989 .9644 .9885 1.0142 .9779 1.0510 1.0487 .9697 1.012 .9484 1.0213 1.0603 .9906 .9614 .9964 CI

3 60 -0.0338 -0.0460 0.0015 -0.0282 -0.0125 -0.0238 -0.0413 -0.0230 -0.0204 -0.0501 -0.0172 -0.0304 0.0392 0.0028 0.0045 -0.0195 0.0180 0.0090
61 1.0044 .9810 .9938 .9989 .9644 .9885 1.0142 .9779 1.0510 1.0487 .9697 1.012 .9484 1.0213 1.0603 .9906 .9614 .9964

a2 -1.0555 -1.0012 -.9594 -1.0026 -.9948 -1.003 -.9753 -1.0205 -1.0208 -1.0139 -.9762 -1.001 -.9451 -.9539 -1.0253 -.9339 -1.0012 -.9719

4 60 -0.0338 -0.0460 0.0015 -0.0282 -0.0125 -0.0238 -0.0413 -0.0230 -0.0204 -0.0501 -0.017' -0.0304 0.0392 0.0028 0.0045 -0.0195 0.0180 0.0090

61 1.0044 .9810 .9938 .9989 .9644 .9885 1.0142 .9779 1.0510 1.0487 .9697 1.012 .9484 1.0213 1.0603 .9906 .9614 .9964
F2 -1.0555 -1.0012 -.9594 -1.0026 -.9948 -1.003 -.9753 -1.0205 -1.0208 -1.0139 -.9762 -1.001 -.9451 -.9539 -1.0253 -.9339 -1.0012 -.9719

83 .0110 -.0236 .0564 .0355 -.0016 .0155 -.0012 -.0052 -.0152 -.0121 .0418 .0016 .0019 -.0239 .0290 -.0456 0.0087 -.0060

The values of the posterior probabilities and parameter means after five simulations, of 500 observations each, of the sequential selection procedure with three different
pr-, r distributions on the models.



TABLE 11. - LARGE SMIPLE STUDY THREE
0

Model Paramecer t = 100.0 T = 1.0 T 
= 

0.01

5 simulations Avg 5 simulations Avg 5 simulations Avg

01 I 1 1 1 1 1 1 1 1 1 1 1 0.9979 0.8155 0.9999 0.8951 0.9990 0.9A15
2 02 0 0 0 0 0 0 0 0 0 0 0 0 .0006 .1843 0 .0012 .0001 .0373
3 03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0015 .0002 .0001 .1037 .0006 .0212

1 0 0.953 1.027 1.094 0.979 1.106 1.032 1.111 1.091 1.046 1.298 0.932 1.096 1.415 0.454 1.221 0.916 0.906 0.982
B1 1.069 1.046 .972 1.067 .979 1.027 1.009 .890 .957 .800 .874 .906 1,093 1.274 1.318 .632 1.166 1.097

S2  .984 1.039 .997 .907 1.033 .992 .862 .910 1.210 .822 1.160 .993 1.163 .542 1.607 1.119 1.193 1.125

" 0 1.230 1.254 1.298 1.262 1.295 1.268 1.135 1.075 1.567 1.281 0.527 1.117 1.413 0.454 0.754 0.91, 0.904 0.888 H
62  1.559 1.564 1.469 1.520 1.494 1.521 1.030 .911 1.009 .816 .907 .935 1.122 1.275 1.319 .673 1.172 1.112 O0
33 .770 .746 .702 .738 .705 .732 .039 .019 .039 -.020 .219 .059 .074 .154 .031 .201 .018 .096

3 f1O 1.742 1.774 1.788 1.754 1.796 1.771 1.122 1.108 1.002 1.306 0.940 1.096 1.415 0.418 1.221 0.916 0.906 0.97
1.515 1.559 1.480 1.438 1.520 1.502 .882 .928 1.246 .842 1.159 1.011 1.184 .613 1.607 1.12L 1.198 L.1i5

F3  .258 .226 .212 .246 .204 .229 -.048 .013 -.041 -.048 .057 -.013 .056 .301 .005 .086 .012 .092

Number of 3 3 3 3 3 3 49 47 39 59 52 49.2
trials until

1.3 = 1.0

The postrior probabilities and posterior parameter means after five simulations of the sequential selection procedure for three different values of i
For i= 100.0 and r = 1.0 the number of trials until 0 , j = 1.0 (within the accuracy of the computer) is also tabulated. For r 0.01 the
values are based upon 1000 observations.
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TABLE 12. - SMALL SAMPLE STUDY ONE (H 3 TRUE)

[JMAX = 8]

o m P3,0 PCS ASN Starting value
m ,for random seq.

0.70 0.5 (0, 0) 0.133 6,36 *

.70 .5 (0.5, 0.5) .458 7.15 041. 574 501 221

.70 .5 (1.0, 1.0) .544 6.82 261 404 147 531

.70 .5 (1.5, 1.5) .446 5.89 251 233 175 021

.80 .5 (0, 0) .173 7.50 265 603 111 061

.80 .5 (0.5. 0-5) .468 7.78 237 616 233 015

.80 .5 (1.0, 1.0) .531 7.52 066 231 644 355

.80 .5 (1.5, 1.5) .460 7.24 124 715 646 251

.90 .5 (0, 0) .229 7.98 202 255 025 241

.90 .5 (0.5, 0,5) .479 7.92 020 625 757 465

,90 .5 (1.0, 1.0) .513 7,81 154 510 176 555

.90 .5 (1.5, 1.5) .439 7,.76 043 355 261 141

.70 1.0 (0, 0) .397 5.49 031 264 722 101

.70 1.0 (0.5, 0.5) .673 5,88 142 153 215 611

.70 1.0 (1.0, 1.0) .737 5.29 025 206 250 121

.70 1.0 (1.5, 1.5) .621 4.84 244 233 735 061

.80 1.0 (0, 0) .558 6.90 337 020 177 205

.80 1.0 (0.5, 0.5) .755 6.94 361 341 044 651

.80 1.0 (1,0, 1,.0) .771 6 50 231 737 436 405

.80 1.0 (1.5, 1.5) .700 6.22 107. 152 460 271

.90 1.0 (0, 0) .605 7.80 316 753 345 645

.90 1,0 (0.5, 0.5) .765 7.45 042 264 053 551

.90 1.0 (1.0, 1.0) .777 7.15 304 456 707 705

.90 1.0 (1.5, 1.5) .689 7.12 324 670 521 455

.70 2.0 (0, 0) .699 4.24 034 773 264 025

.70 2.0 c (0.5, 0.5) .871 4.03 361 656 711 721

,70 2.0 (1.0, 1.0) .877 3.62 110 151 661 121

.70 2.0 (1.5, 1.5) .723 3.48 000 766 306 641

.80 2,0 (0, 0) .868 5.45 020 542 277 271

.80 2.0 (0.5, 0.5) .962 4.99 073 755 766 635

.80 2.0 (10, 1.0) .970 4,63 013 527 071 701

.80 2.0 (1.5, 1.5) .872 4.61 041 554 522 311

.90 2.0 (0, 0) .944 6.46 001 231 3.53 331

.90 2.0 (0.5, 0.5) .967 5 66 361 503 245 415

.90 2.0 (1.0, 1,0) .969 5.48 151 650 040 041

.90 2.0 (1.5, 15) .939 5.80 233 434 565 701

*Not recorded.

Resulting-PCS and ASN values for JMAX = 8. and the combinations

of Om, r, and P3,0 Results are based upon 1500 simulations of

the procedure for each combination.
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TABLE 13. - SMALL SAMPLE STUDY ONE (H3 TRUE)

[JMAX 
= 16

m T30 PCS ASN Starting value
for random seq.

0.70 0.5 (0, 0) 0,354 9.48 272 036 225 461
.70 .5 (0.5, 0.5) .665 10.7 057 343 345 741
.70 .5 (1.0, 1.0) .723 9.63 073 144 502 .151
.70 .5 (1.5, 1.5) .555 7.38 231 500 657 525
.80 .5 (0, 0) .508 13.6 033 254 034 051
.80 .5 (0.5, 0.5) .761 13.3 225 553 740 341
.80 .5 (1.0, 1.0) .806 123 134 537 257 651
.80 .5 (1.5, 1.5) .661 11.8 ' 251 356 646 745

.90 .5 (0, 0) .574 15.5 056 537 424 615

.90 .5 (0,5, 0.5) .752 14.6 246 632 674 651

.90 .5 (1o0, 1.0) .800 13.9 140 077 157 311

.90 .5 (1.5, 1.5) .710 13.8 044 035 362 005

.70 1,0 (0, 0) .548 6.53 173 052 463 251

.70 10 (0.5, 0.5) .821 6.82 063 364 104 441

.70 1.0 (1.0, 1.0) .825 6.09 233 034 770 255

.70 1.0 (1.5, 1-5) .637 5:36 017 237 125 325

.80 1.0 (0, 0) .808 9.48 275 264 535 015

.80 1.0 (0.5, 0.5) .971 9.30 015 352 360 531
.80 1.0 (.0, 1.-0) .961 .8.16 017 142 770 505
.80 1.0 (1.5, 1.5) .865 7.86 004 724 275 765
.90 1.0 (0, 0) .927 12.1 161 027 043 101
.90 1.0 (0.5, 0.5) .973 10.8 i 101 732 737 651
.90 1.0 (1.0, 1.0) .964 10.1 016 351 614 135
.90 1,0 (1.5, 1.5) .958 10.6 171 716 572 235
.70 2.0 (0, 0) .700 4.25 073 021 660 321
.70 2.0 (0.5, 0.5) .878 4.17 003 466 340 375
.70 2.0 (1.0, 1.0) .855 3.59 337 170 131 645
.70 2.0 (1.5, 1,5) .714 3.51 055 666 256 215
.80 2.0 (0, 0) .911 5.67 037 537 412 725
.80 2.0 (0.5, 0.5) .990 5.12 111 525 350 761
.80 2.0 (1.0, 1.0) .988 '4.84 003 413 673 201
.80 2.0 (1.5, 1.5) .894 4.71 055 643 644 455
.90 2.0 (0, 0) .996 7.13 374 543 153 375
.90 2.0 (0.5, 0,5) 1.00 6.25 133 225 727 441
.90 2.0 (1.0, 1.0) 1,00 5.94 332 405 117 171
.90 2.0 (1.5, 1.5) .995 6.20 010 312 536 461

Resulting PCS and ASN values for JMAX = 16 and the combinations
of 6m, T, and .3,0. Results based upon 1000 simulations.

-
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TABLE 14. - SMALL SAMPLE STUDY TWO (H2 TRUE)

[JMX = 8]

T PCS ASN Starting value
m 2,0 for random seq.

0.70 0.5 (1.0) 0.760 7.86 052 516 237 355

.80 .5 (1.0) .734 7.98 016 160 602 721

.90 .5 (1.0) .740 7.98 245 577 171 655

.70 1.0 (.5) .828 7.63 321 722 414 631

.70 1.0 (1.0) .882 7.20 340 321 470 071

.70 1.0 (1.5) .800 6.86 360 415 546 645

.80 1.0 (1.0) .872 7.98 273 760 237 431

.90 1.0 (.5) .880 7.97 006 761 404 325

.90 1.0 (1.0) .898 7.98 331 151 347 271

.90 1.0 (1.5) ,832 7.99 372 024 174 011

.70 2.0 (1.0) .900 5.13 004 415 604 245

.80 2,0 (1.0) .936 7.89 063 456 575 211

.90 2.0 (1.0) .934 7.98 065 654 616 225

The PCS and ASN values resulting from 50Q simulations of the

sequential procedure for each of the tabulated combinations

of Om, T, and v2,0'
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TABLE 15. - SMALL SAMPLE STUDY THREE (FOUR MODEL PROBLEM)

[JMAX = 8]

m 1 3,0 PCS ASN Starting value
for random seq.

0.70 1.0 (0, 1, -1) 0.767 7.55 *
.70 1.0 (0, 0.5, 0) .442 7.10 006 171 767 411
.70 1.0 (0, 0, 0.5) .027 5.74 113 071 707 045
.70 1,0 (1, 0.5. 0) .154 6.40 032 457 065 345
.80 1.0 (0, 1, -1) .792 7.91 315 037 701 221
.80 1.0 (0, 0.5, 0) .524 7.67 070 131 010 071
.80 1.0 (0, 0, 0.5) .030 6.73 044 541 754 365
.80 1.0 (1, 0.5, 0) .200 7.31 034 264 602 535
.90 1.0 (0, 1, -1) .790 7.99 175 260 740 521
.90 1,0 (0, 0.5, 0) .506 7.91 000 247 732 655
.90 1.0 (0, 0, 0.5) .025 7.51 276 504 634 101
.90 1.0 (1, 0.5, 0) .210 7.81 243 240 621 255

Not recorded.

PCS and ASN values resulting from 1000 simulations performed for
the indicated combinations of 0m, 8 , and 3,0

, and 3,0
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TABLE 16. - CODED DATA FOR SAMPLE PROBLEM

(DATA TAKEN FROM DRAPER AND SMITH)

zI z 2  z3  z4

-75 0 0 -65 1.4

175 0 0 150 26.3

0 0 -65 150 29.4

0 0 165 -65 9.7

0 0 0 150 32.9

-75 -75 0 150 26.4

175 175 0 -65 8.4

-75 -75 -65 150 28.4

175 175 165 -65 1105

0 0 -65 -65 1,3

0 0 165 150 21.4

0 -75 -65 -65 .4

0 175 165 150 22,9

0 0 0 -65 3.7

0 -75 0 150 26.5

0 -75 0 150 23.4

0 -75 0 150 26.5

0 175 0 -65 5 8

0 175 0 -65 7.4

0 175 0 -65 5.8

0 -75 -65 150 28.8

0 -75 -65 i 150 26.4

0 175 165 -65 11,8

0 175 165 -65 11.4
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TABLE 17. - i OF AALYSIS OF EQUATION (7-1)

SCSi DATA OF TABLE 16

Term of Esti . A t-statistic Descriptive

model coeffic .r significance
level

z 4  0.112 28.4 0,999+

4 -.354, 3 6.8 .999+

z2 .32 % 3.4 .986

z2 .235F 2.5 .955

Z3 . 3 1 9e-. 2.1 .920

zlz 4  -416-3 1.9 .890

z2 .7051-4 1.9 .886
2

z 2  -1289-3 1.6 .836

z2 -. 339F-3 l2? .717

ZlZ3  -.669E-4 .9 .576

z2 .7051,-4 .5 .367

z 2 Z3  .3321E-4 .5 .347

z2z4 .1781-4 .3 .217

R = 0.988

Residual mean square = 3.25

Replication mean rquare - 1.85

Lack-of-fit mi:n square = 2.90
F Replication mcin square

4r
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TABLE 18a. - THE MODELS FOR EXAMPLE 1

H1: Y = 0 + 81z4 + B2z3z 4 +

H2:0 z 8z 4 + 82z 3 z 4

+ 33Z1 + 84z2 + 5 z 3 +

H3: y 0 + 1z4 + 8223z 4

+ 3 + 4z2 + 85z 3

2 2
+ 66z2 + 7 + ~ + 

Hq: Y 0 + 1z4 + 82z3z 4

+ B3zI + 4 z 2 + 85z 3

2 2

+ z" 2 + B7Z3 + Zl +

2
+ B1 3 z 10 + 111413 + 2

+ Z132' + 214 + E:
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TABLE 18b. - THE PRIOR MEANS FOR EMAMPLE 1

1.215x10 12.70
S9.791x10-2 0.1119

1,0 -2.650x10-4 -. 3542x10-3

,3194x10 - 1

1.064 10 .3226x10 - 1

1.113 10-1 .2354x10 - 1

-3.258 10- 4  -,1512x10-3

02,0 2.211 10-3 -.1277x10-3
1.761 0-2 4,0 -.4164x10-3

1.066 10-2 .7045x10- 4

-.3393x10-3

11.76 -.6690x10-4

.1137 . 3323x10-
-,3376x10 - 3  .1785x10 4

.3322x10- 2  0

.3114x10-1
4.. 1

3, = .1768x10-
3,0 -. 1158x10-3

-.6788x10- 4

-.1076x10"3
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TABLE 18c. - THE MATRIX FROM WHICH Y,0 OXLY BE TAKEN

Row 1 24.00000

Row 2 1020.000 320700.0

Row 3 -23950.00 0.381425E+07 0.210118E+10

Row 4 300.0000 -14125.00 -0.114562E+07 108750.0

Row 5 800.0000 -127250.0 577500.0 72500.00 290000.0

Row 6 00.0000 -23950.00 0.307475E+07 33750.00 135000.0 188700.0

Row 7 290000.0 -0.380000E+07 -0.368156E+09 0.987500E+07 0.395000E+08 0.187500E408

Row 8 18S700.0 0.307475E+07 0.506112E+08 .0.444750E+07 0.177900E+08 0.253050E+08

Row 9 -14125.00 0.172438E+07 0.23 684E+09 0.193437E+07 -0.229375E+07 -0.114562E+07

,Row 10 108730.0 0.193437E+07 -0.383297E+09 0.148125E+08 0.987500E+07 0.468750E+07

Row 11 72500.00 -0.229375E+07 -0.383297E+09 0.987500E+07 0.987500E+07 0.468750+07

Row 12 33750.00 -0.114562E+07 -0.357216E+09 0.468750E+07 0.468750E+07 0.444750E+07

Row 13 13500 .0 577500.0 -0.336394E+09 0.468750E+07 0.187500E+08 0.177900E+08

Row 14 -127250.0 -0.301625E+07 0.136534E+10 -0.229375E+07 -0.380000E+07 577500.0

Row 15 0 0 0 0 0 0

Row 7 0.775625E+10

Row 8 0.343012E+10 0.455431E+10

Row 9 -0.823281E+09 -0.357216E+09 0.122473E+10

Row 10 0.193906E+10 0.857531E+09 0.804688E+07 0.290859E+10

Row 11 0.193906E+10 0.857531E+09 -0.823281E+09 0.193906E+10 0.193906E+10

Row 12 0.911719E+09 0.806719E+09 -0.383297E+09 0.911719E+09 0.911719E+09 0.857531E+09

Row 13 0.364687E+10 0.322687E+10 -0.383297E+09 0.911719E+09 0.911719E+09 0.857531E+09

Row 14 -0.205016E+10 -0.336394E+09 0.511906E+09 -0.823281E+09 -0.823281E+09 -0.383297E+09

Row 15 0 0 0 0 0 0

Row 13 0.343012E+10

Row 14 -0.368156E+09 0.250450E+10

Row 15 0 0 1.0

. ,


