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ABSTRACT

Undesirable steady offsets result when a stationary, linear
regulator using state feedback is subjected to constant disturbances
and/or non-zero setpoints. To eliminate these offsets, the distur-
bances and non-zero setpoints can be fed forward to the control. Only
when the number of outputs is less than or equal to the number of
control inputs can the outputs be maintained at arbitrary non-zero set-

points.

The constant disturbances may be estimated from the state using
an observer. An alternative ig to feed back integrals of the devia-
tion in the outputs; this amounts to a special form of disturbance
observer and has the advantage that the steady performance is insensi-

tive to small deviations in the system model paranmeters.

The state and the disturbance may be estimated using a constant
gain Kalman filter. In this case we suggest that the constant distur-
bances be modeled as exponentially correlated processes with long
correlation times. As an alternative, a2 Kalman filter (neglecting
disturbances) can be used to estimate the state and the estimated state
and integrals of the measured output deviation are then fed back to

the control.

These results are applied toc the problem of automatic landing of
an aircraft in the presence of a steady crosswind. The goal of the
control system is to maintain the lateral position and yaw attitude

of the aircraft in alignment with the runway centerline.
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NOMENCLATURE

For the context of general results:

A Symmetric, positive semi-definite weighting matrix on the
gstates for quadratic synthesis
Symmetric, positive definite weighting matrix on the controls

Matrix of control gains. Subscripts refer to associated’
vector, e.g. Cx’ Cy’ etc,

[

State dynamics matrix

Control distribution matrix

Measurement distribution matrix

Performance index for an optimization problem

Matrix of filter or observer gains

A special matrix useful in integral control synthesis
Matrix for feed-forward control

Steady estimation error covariance matrix

Power spectral density of process noise

Power spectral density of measurement noise

Solution matrix of the Ricatti equation for quadratic synthesis

S m oW E Ry DO W

Diagonal matrix of eigenvalues of Euler-Lagrange system in
quadratic synthesis. Subscript refers to sign of the real
part,

Independent variable usually time or distance

o+

Output distribution matrix

Control vector

=

<

Vector of integral control variables

Congtant digturbance vector

=

State vector

Partition of the Euler-Lagrange eigenvector matrix corresponding
to the state

»

Output vector
Measurement vector
Disturbance distribution matrix

Impulse or white noise process disturbance vector

> 3 Kl ou o«

Ny Lagrange multiplier vectors

vi



")

Partition of the Euler-Lagrange eigenvector matrix corresponding
to the adjoint variables

Measurement noise vector

Covariance matri%. Subscripts refer to associated vectors,
eg. Xy = E(xu~)

Differentiation with respect to the independent variable
Expectation operator (mean value)

Estimate of a vector

Error assgociated with the estimate of a vector, e.g. %=%-x
Defined equal to

Inverse of a matrix

Transpose of a matrix (or column vector)

Desired value of a vector

Steady value of a vector

For the context of specifie results for the lateral motions of a DC-8

aircraft in landing approach:

“w M O#

Reference airspeed of the aircraft (hft/sec , 1 hft = 100 ft)
Steady crosswind (ft/sec)

Independent variable = horizontal range (hft)
Lateral position (ft)

Aileron (spoiler) deflection (deg)

Rudder deflection (deg)

Horizontal path azimuth angle (deg)

Roll angle (deg)

Roll angle derivative (deg/hft)

Yaw angle (deg)

Yaw angle derivative (deg/hft)

Turn rate {deg/sec)

vii
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Chapter 1

Introduction

The purpose of a regulator is to hold certain oufputs of a system
near desired set point values in the presence of disturbances. Two
types of disturbance commonly encountered are (1) impulse (initial
condition) disturbances and (2) constant (step) disturbances., To
counteract impulse disturbances, feedback regulators are used; they
are designed by time domain, frequency response, and state variable

quadratic synthesis techniques (B-2).

Constant disturbances arise from external influences on the system
or from non-zereo set points for the outputs. The effect of constant
disturbances on systems with regulators designed for impulse disturbances
ig to drive them through a2 transient to some steady offset. Compensation
for this offset is often possible by feeding the set points and external
constant disturbances forward to the eontreol. Di Caprio and Wang, 1969
{D-3), Bélanger, 1970 (B-1), Kwakernaak and Sivan, 1972 (K-2), and
Power, 1973 (P-5) suggest breaking the non-zero set-point problem into
two parts: (1) the determination of desired steady values of state and
control which depend explicitly on the set points, and (2) the design of
a regulator to control the deviations from the steady values. The similar
problem of constant process disturbances is discussed in the scalar case
by Athans, 1971 (A-2), and in the vector case by Johnson, 1971 (J-2).
However, both of these treatments attempt to bring all of the state
components to zero in the steady-state, which is usually not possible.
or desirable, In addition, the steady-state solution for zero output
offset, when it exists, is often not unique, A static optimization

procedure presented herein removes this ambiguity,.

If the constant disturbances are not measured directly, they may
still be estimated (or otherwise accounted for) using only the available

measurements.

For single-input, single-output systems, a well-known compensation

technique for constant disturbances is the addition of integral control



(C-1 and D-1). This consists of feeding back the first integral of the
deviation in the desired output. Through the application of frequency
or time domain analysis, the integral control gain is adjusted for a
suitable transient behavior. For a stable system, such integral feed-
back causes the output being integrated to be driven to a zero steady

offset.

In the case of multi-input, multi-output systems, an observer (L-2
and B-3) can often be designed to estimate the disturbance. The estimate
is then fed to the control input. Johnson, 1971 (J-2) suggests this
approach, although his formulation is sgomewhat different from the

approach presented herein.

The concept of integral control and its zero-offset properties can
be extended to multi-variable systems, Johnson, 1968 (J-1), Latour,
1971 (L-1), Athans, 1971 (A-2), and Anderson and Moore, 1971 (A-1)
suggest modifying the performance index of the linear regulator, qua-
dratic synthesis technique to include weighting on the derivative of the
control input. After algebraic manipulation, the resulting control law
ig found to include integration of linear combinations of the state
variables. One problem with this approach is that these combinations
of state variables do not generally correspond to the desired outputs.
Hence, the outputs will be driven to some offset unless the control can
directly cancel the effect of the constant disturbance. This latter
condition is overly restrictive. Porter, 1971 (P-1), Bryson, 1972 (B-5),
and Kwakernaak and Sivan, 1972 (K-2) suggest the more fruitful approach
of adding to the performance index weights on the additional states
formed by integration of the outputs. Meyer, Martin, and Power, 1973
(M-1) present an interesting alternative formulation by weighting the
output deviation and state derivative in the performance index. Some
caution must be taken, however, since adding additional states may
make a previcusly controllable system uncontrollable. Power and Porter,
1970 (P-3) give the requisite controllability conditions for the case of
additional integrated states. These conditions are found to be related

to the ability to find some control that will yield zero offset. A



technique is presented herein which allows the use of the set-point
gains for zero offset to augment a stable state feedback regulator with
integrals of the output. The closed-loop poles of the overall system
are those of the eriginal regulator plus additional poles, corresponding
to the integrations, with an arbitrary degree of stability. This
technigue requires very little additional computation and facilitates
on-line switeching from proportional to proportional-integral control
modes, While preparing this report, reference was found to a similar
pole assignment technique (P-4), The relation between the integral
control and observer formulations is also explored. Davison and Smith,
1971 (D-2) show that feedback of the state plus integrals of the output
constitutes a minimal order realization of a system, operating on the
state, for which the overall closed-loop poles can be assigned arbitarily
and the steady output is zero. It is further shown here that integral

control amounts to a special form of observer.

In many cases, the full state is not known exactly. Instead, only
certain noisy measuréments are available, When an optimal filter (K-1,
B-2) is used to estimate the state and constant disturbances, it is
found that the asymptotic estimates of the constant disturbances are
exact. Thus, the steady filter will have zero gains and cannot be used.
To circumvent this problem, an observer design technique can be used.
Kwatny, 1972 (K-3) found that by modeling the disturbance as a random
walk process (integral of a white-noise process), such observers can
effectively be designed. Alternatively, a filter which estimates the
state alone (ignoring the constant disturbance) can be used in conjunc-
tion with an integral control law, providing the desired outputs are
directly measured., This latter technique has the advantage that the
stationary output covariance does not depend upon the nature of the

constant disturbance,

Each of the above topics is discussed in detail in the remaining
sections, and the results are applied to the problem of designing a
lateral autopilot for automatic aircraft landing in the presence of a

steady crosswind,



Chapter 2

Review of Regulator Design for Impulse Disturbances

with Exact Knowledge of the State

2.1 - System Model

The systems considered here can be represented by a set of constant

coefficient linear differential equations

Fx + Gu + I (2.1.1)

e
I

where = state vector

= control (input) vector

= disturbance vector

state dynamics matrix

= control distribution matrix

= digturbance distribution matrix

-~ ™ o 3 3 o M
]

') denotes derivative with respect to the

independent variable (usually time or distance)

The objective of regulator design is to keep the state, x, near
zero in the presence of disturbances, 7. Here we assume that (a) the
disturbances are non-zero over pericds of time short compared to
response times of the system (impulse type disturbances), (b) the time
average of the disturbances is zero (positive impulses are balanced by
negative impulses), and (c) otherwise, the disturbances are unpredict-
ahle. Since the disturbances are unpredictable except for the zero
average, the best thing to do is to assume N=0 in the future and
degign the regulator to bring the state to zero from arbitrary initial
conditions in an acceptably short period of time. Two techniques for

designing such a control law are presented in the following sections.

2.2 - Pole Assignment (B-3)

For the linear system given by equation (2,1.,1), let the control

law be defined

u é -Cx : (2.2.1)



Thus, the closed-loop system will be given by

¥ = (F-GC)x , x(t ) =x (2.2,.2)
o] Q

The transienf response will be determined by the eigenvalues
(closed-loop poles} of the (F-GC) matrix, Stability is assured if all
the eigenvalues have negative real parts. The dominant transient
characteristics will be determined by the poles with the smallest
magnitudes. If the systen [F:GJ is contrellable, the eigenvalues can be
arbitrarily assigned (complex values occurring in conjugate pairs)
through the choice of C. To see this, consider the characteristic

equation given by
|s1 - F+aGc| =0 (2.2.3)

This determinant is a polynomial in the variable s and hence will have
coefficients which are functions of the various elements of F, G, and

C. Selection of the poles (roots of 2.2.3) prescribes these coefficients.
Equating the coefficients yields algebraic (generally non-linear) equa-
tions to be satisfied by the components of C. In the case of a single
input system there are exactly enough components of C so the solution
will be unique, However, for multi-input systems the solution for C

is generally non-unique, leading to one of the difficulties with the

method.

Care must also be taken when assigning the magnitude of the eigen-
values. Generally, if the magnitude of the closed-lcop eigenvalues
greatly exceeds the magnitude of the open-loop eigenvalues, large compo-
nents of the control gain matrix (C) will be required. Large gains may

lead to contrel saturation and noise amplification problems.

2.3 - Quadratic Synthesis (B-2)

Consider the following optimal regulator problem. We want to

minimize with respéct to control (u) the performance index

oo -

J = 1/2 Sr(x?Ax+quu)dt (2.3.1)

t
o



subject to the differential equation constraint
)'(:Fx-l—Gu.

The matrices A and B are chosen subjectively to weigh the output devia-

tion against control magnitude. The solution is the linear feedback law

u = ~Cx (2.3.2) .

where ¢ =5la's , SF + P'S + A - SGB 2GS = 0 . (2.3.3)

The solution of this non-linear Ricatti equation for the
matrix (S) can be obtained efficiently by eigenvalue decomposition of
the Euler-Language system (B-5).

-1.T

F, -GB G XX XX o 0
+ - : + - +

T = (2.3.4)
A, -F AA AA |{o -2,
¥ - fap +

The matrix (8) is givén in terms of the partitioned eigenvectors as

(2.3.5)

2.4 - Example: A Lateral Aircraft Autopilot

Consider the design of an autopilot to align an aircraft with the
runway in the final phase of the approach and landing. The lateral
motions of an airecraft are well-approximated by a sixth order linear
model (Appendices A&B). The model states are roll attitude (p) and
derivative (®') yaw attitude (¥) and derivative ({''), horizontal path
angle (€), and lateral position (y) (See Fig. 1). The controls are the
aileron (§a) and rudder (0r) deflections. The equations are written in
terms of the horizontal range (x) as the independent variable, and the
F,G matrices for a DC-8 aircraft in landing approach are given in

Appendix B.

Applying the quadratic synthesis technique described in the previous
section, a performance index is chosen which weighs deviations in yaw

attitude and lateral position against the control deflections.



Definition of Lateral Aircraft States

VELOCITY w.r.t. GROUND

VELOCITY
w.r.t. AIR

y

GROUND DATUM

+3q 4

HORIZONTAL
+3a

B = sideslip w,r.t. the air (gives
the aerodynamic forces)

B = non-dimensional side wind (w/V)

= roll attitude

w

P

¥ = yaw attitude

€ = flight path azimuth angle (¥/V)
¥ = lateral pogition
X = range

a = aileron-spoiler deflection

Sr = rudder deflection

FIG. 1



o0

3 =12 [orap? + @rap? + Gam)? + Gr/w ) Jax
o (2.4.1)

Choosing the weighting factors:

a, = 15 ft, a, = 2 deg, bl = 10 deg, and b2 = 10 deg

yields the feedback control law {(see Appendix B):

b6a = 3.571p"' - 2.474p - 4.630%"' ~ 1.602) - 8,546€ - 0,6592y
}(2.4.2)
y

Br = -0.2328p"' - 0.495% - 9.187Y' -~ 3.627% - 2.917¢ - 0.099%

where: 6a, 6r, ¢, ¥, € are taken in units of deg.
y 1is taken in units of ft.
@', ¥' are taken in units of deg/hft*,

Using this contrel law, the closed-loop poles are shown in Fig. 2.
The lateral position and yaw attitude are taken as zero when the air-
craft is aligned with the extended runway centerline, The transient
response to initial conditions of =5 deg, ¥=5 deg, and y=15 ft
is shown in Fig. 3.

«
1hft = 100 £t



Open and Closed Loop Poles for

State Feedback Lateral Control System

O - Open [hﬂ
- Closed -
X © Units: hit 1

o

-1.0

FIG. 2
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Chapter 3

Regulator Design for Constant Disturbances and Non-Zero Set Points

. with Exact Knowledge of the State

3.1 - The Effect of Uncompensated Constant Disturbances

Congider the linear system model of Chapter 2 with the addition of

a constant disturbance vector and a specified output vector:

x=Fx +Gu+Iw , y=Tx, (3.1.1)

where = constant disturbance vector,

congtant disturbance distribution matrix,

i

output vector,

LT T
]

output distribution matrix.

The conirol objective is to bring and hold the outputs (y) to the set

points (yd) .

To illugtrate the effect of a constant disturbance which ig not
compengsated for, again consider the lateral aircraft control example.
Using the feedback control law given before, the effect of a steady
crosswind is shown in Fig. 4. The initial conditions are taken as zero,
which means that the aircraft, initially in trim, suddenly encounters a
crosswind which is then consfant. The crosswind speed is taken as 25 ft/
sec (= 15 kts), Note that the lateral position (y), the yaw attitude
(), and roll attitude () all go to appreciable steady offsets.

3.2 - Design with Exact Knowledge of the Disturbances

As a first step in the development, suppose that the disturbances
(w) are known exactly. A reasonable control law would then be to feed-
back the deviations in the state from a desired steady value {D-3, K-2,

P-5). Thus,

u=u -C (x-x) (3.2.1)
5 x s

The desired steady values us and x, are chosen to satisfy the steady-
state and zerc-offset constraints and thus depend upon the set point and

disturbances.
11
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(3.2.2)

It
o

Fx + Gu + Iw
s s
TX_ - ¥4 =0 (3.2.3)

When the control law (3.2,1) is used in the system equations (3.1.1),

the result is
% = Fx + Glu -C (x-x )] +I'w (3.2.4)
s X s

or (x=x ) = F({x-x ) + G(u-u ) + Fx_+ Gu + Iw
s 8 s s s

g
dt

P(x-x ) + G(u-u ) (3.2.5)
s s

Thus, the problem of choosing the gain CX is exactly that of the
regulator problem for impulse disturbances of Chapter 2, where the
deviations from steady values are used as state and control. The
remaining problem is then the choice of appropriate steady values
XS and uS

The linear equations (3.2.2)and(3.2.3) have a solution if the rank
of the matrix (F,G] is equal to the rank of the column-augmented

. T,0
matrix !

F, e, Iw
THOFYd

For arbitrary non-zero w and ¥q this requires that the number of
outputs be less than or equal to the number of controls, and that

the rank of [F,GJ be equal to the number of rows.
T,0

When the number of outputs equals the number of controls the

golution isg unique.

(3.2.86)

]

13



where M s M F, G
XWXV _ (3.2.7)

When the number of outputs is less than the number of controls, and

the matrix F,G hag full rank, an infinite number of solutionsz exist.
T,0
A useful technique for specifying a solution is to minimize the performance

index
J = 1/2(xTAx U Bu ) (3.2.8)
§ 8 8 B e

subject to the steady-state and zero-offset constraints (3.2.2) and
{(3.2.3)., This yields unique solutions of the same form as (3.2.86).
Determination of the gain matrices in (3.2.6) for this case 1s discussed

in Appendix C.
Using (3.2.6) we may rewrite (3.2.1) in the form

u

-C.% + cyyd - Cv, (3.2.9)

where «cy =M, + CxMxy y €, = (Muw+cxwa)I" .

For the lateral aircraft control problem, there are two outputs,
yaw attitude and lateral position, and two controls, rudder and aileron
deflection. The choice of outputs was made among the three possibilities
of lateral position, yaw attitude, and roll attitude. Obviously, the
laterzl position is of primary importance for an automatic landing,
Deviationg in roll atttitude will cause touchdown on one landing gear,
while deviations in yaw attitude result in side skidding. The side

skidding is deemed the more dangerous situation.

Applying the previous results then yields the additional gains for

non-zero set points and the steady crosswind. The control law becomes

14



ba = -3.57Xp"' - 2,471 - 4.6300" - 1.602% - 0.843Y%d - 8.546€
-~ 0.6592(y-y ) - 0,5732w
d (3.2.10)
6r = -0.2328p" - 0.4959p ~ 9.187Y' - 3.622F + 5.52%d - 2.917¢

- 0.0996(y—yd) + 0,4481w

where all quantities are as before except w which is the steady

crosswind in units of ft/sec.

The transient response to zerc initial conditions is shown in
Fig. 5 for yd=wd=0 . Note that both the lateral position and yaw
attitude deviations go to zero in the steady state, while roll attitude

maintains some offset. This offset is given as

o~ (-0.108 deg-sec/ftlw (3.2.11)

3.3 - Design Using Estimates of the Disturbances

The compensation method just described assumes perfect knowledge
of the disturbances. If the disturbances cannot be measured directly
it may still be possible to estimate them. One method of doing this is
to synthesize a reduced order observer to estimate the disturbances

(I-Fz’ J"'2)-

Since the state is assumed to be known exactly, its derivative,
in principle, is also known exactly. Thus, let an estimate of w be

defined as:

= KL(Fx+GusT® - x] G(to) =0" (3.3.1)

where K is a constant matrix to be chosen. The estimate error,

ﬁ'"é—.\ ¥ - w, is then given by

§ = xI's (3.3.2)

If the matrix K 1is chosen so that KI' is negative definite, the

estimate error (%) will go to zero asymptotically, i.e. ¥oow o,
The control used is the obvious modification of (3.2.9):

”~
U= -C.x+ nyd- C, ¥ (3.3.3)

15
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Since W = w+% , and W does not depend on x (Eg. 3.3.2) the
eigenvalues of the controlled system are the eigenvalues of

F—GCx and of K .

To avoid differentiating the satate in (3.3.1), define

w*éﬁ-l-xx; then

W K(Fx+Gu+l'®),

(3.3.4)

w, - Kx .

~
w
*

The deficiency of this method of compensation is that it depends
upon precise knowledge of the system model., If the actual F, G,
and I’ matrices differ from the estimated ones, a non-zero steady

offset results.

As an example, consider again the lateral aircraft control problem

where the disturbance is the steady crosswind, Let the observer gains

Tym, = 1T . .
(K) be chosen so that K=—o@ I I . Thus, the observer characteristic
matrix (K') becomes the scalar
i = g (3.3.5)
and the observer pole is given by -0 . In this case, ¢ was chosen

as 0.3 hftul , which lies near the middle of the closed-loop regulator
poles (see Fig. 2). The response to a 25 ft/sec crosswind is shown in
Fig., 6. The steady values of lateral position (y)} and yaw attitude ()
are still zero, but the transient is somewhat more pronounced than in
the case of exact disturbance feedback. This is due to the lag in

estimating the steady crosswind.

3.4 - Design Using Estimates of the Output Deviations Produced

by Uncompensated Constant Disturbances (Integral Control)

An alternative to estimating the disturbances 1s to estimate the
steady output deviations that would be produced by constant distur-
bances if the system were not compensated. As we shall show, this leads

directly to a generalization of classical integral control.
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Let

- - 2.4.1)
u Cxx + nyu (

Steady-state solutions, if any exist, must satisfy

0

(F-GC J)x + GCy._ +Tw,
x 8 yo (3.4.2)

ydz’l‘xs

If the system ig controllable, F-GCx is negative-definite, so

=1
x, = —(F-ch) (chyo+rw) {(3.4.3)

Substituting (3.4.3) into the second set of equations in (3.4.2) gives

Vg - 1I'w = LGnyo (3.4.4)

L2

where —T(F-GCX)'1

Equation (3.4.4) is satisfied for all Vg and w if

LGC = I,
y (3.4.5)

y0=yd—Lrw .

Gains Cy can be found to satisfy (3.4.5) provided the number of ocutputs

is less than or equal to the number of controls (and LG of full rank).

An estimate of yw é L'w can be obtained from

KL{%~Fx-Gu-I'%¥ ) (3.4.6)

A
Yw

-K(?w—yw) (3.4.7)

Since §w=0 , it follows from (3.4.7) that

o w DA
¥, = —K?w where Yo = V0~ Yy - (3.4.8)

Thus if K 1is chosen to be positive-definite ?w -+ 0 . Substituting
(3.4.1) into (3.4.6) yields
A

) ~ ~
y, = K - KL[(F—GCx)x *GC oy, - GC§ + T'%) (3.4.9)
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Using (3.4.5) and L(F—ch) = =T , Ean, (3.4.9) becomes

Ll

y

v = KLx - K(—Tx+yd) {(3.4.10)

Fal

To avoid differentiating x , define Yu é Yo = KLx ; then

?* = K(Tx—yd) , y*(to) = -KLx(to) s
Yo = Yy + KX, (3.4,11)
where u =

Cx+C(y.-7)
- xx y Yd Yw

Now (3.4.11) is obviously a generalization of "integral control” from the
single-input, single-output case to the multi-input, multi-output case.

In steady-state, §*=0=$ Tx — , even if F, G, I' were not estimated

Ya
precisely.

Since (3.4.8) does not depend on x , it follows that the closed-
loop eigenvalues of the system using (3.4.11) are the eigenvalues of

F--GCx plus the eigenvalues of -K , which are determined separately.

A slightly more familiar form of integral control is obtained from
(3.4.11) by introducing a vector v such that

y*éKv (3.4.12)
Then (3.4.11) may be written as;

V=Tx -y, . V(to)

-Lx(to) s
(3.4,13)

u -(Cx+CyKL)x + nyd - CyKv )

where LGCy =1I.

The eigenvalues of the closed-loop system are sgtill the eigenvalues of
F‘-GCx and of -K . The estimated steady output deviations that would
be produced by constant disturbances if the system were not

compensated are

§w = K(v+Lx) . (3.4.14)
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If integral feedback is added to a system already desighed with
state feedback without modifying the state feedback gains (note Cx
is modified to Cx+CyKL in (3.4.13)), the transient behavior of the
resulting closed-loop system is usually degraded (occasionally the
system is even made unstable). Obviously, it is possible to design the
state feedback gains simultaneously with the selection of the integral
feedback gains so that the transient behavior is acceptable. This can

be done, for example, by quadratic gynthesis (see Appendix D),

A satisfactory sfate-plus-integral control system can always be

found provided:

(a) The system (F,G) is controllable.
{(b) The number of outputs is less than or egual to the
number of control inputs.

{c) The matrix [F,é] has full rank, or, equivalently,
T,0
the matrix LG has rank equal to the number of

cutputs.

The major advantage of integral control is its relative insensi-
tivity to errors in the system model. If the actual. F, G, and T
matrices differ from those used in the design, the transient behavior
and the steady-state values of x and u are affected. However,
unless the system is actually destabilized, the steady-output offset

will still be zero,

Again, consider the lateral aircraft control example. Since it is
desired to_drive both the outputs, lateral position (y) and yaw attitude
(), to zero offset, the feed forward gains will be given by (3.4.5) as:

1 .659 , - 843

C_ = (ILG) " = (3.4.15)
¥ .100 , 5.52

1 the additional integral

0,0

Thus, for K = Eg’é] and 0 = 0.3 hft™
control poles will be located at the same place as the observer pole of

Section 3.3, The resulting feedback control law is
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ba = -5.796¢"' - 4,567¢@ - 7.703Y"' - 2.768Y - 22,21€ - 2,547y - 0.843wd
+ 0.659yd - 00,1978 S(y—yd)dx - 0.2502 S(w‘wd)dx
§r = 0.1203¢'- 0.673% - 14.0' - 6.995¢ - 5.658¢ - 0.2750y

+ 5.52?#d + 0.100yd - 0298 S(y-yd)dx - 1.657 S(w—wd)dx
(3.4.18)
The transient response to a 25 ft/sec steady crosswind from zero initial
conditions with wdzyd=0 is shown in Fig, 7. The steady offset for
lateral position (y) and yaw attitude (¥) is again zero, and the tran-

sient response is almost identical to that of the first order reduced

observer of Section 3.3 where the disturbance itself was estimated.
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Chapter 4

Review of Regulator Design for White Noise Disturbances Using

Estimates of the State

4.1 - System Model

It ig exceptional to ke able to measure all of the state variables
accurately enough that they may be considered to bhe known exactly. A
more usual situation ig that (a) only one or more functions of the state
variables are measured, (b) these measurements contain random errors,
(c) the process is driven by random disturbances. In this case the
system no longer has a steady edquilibrium state as assumed in Chapters
2 and 3, However, it may have a 'statistical steady state' with a

stationary probability density for the state and control variables.

If the process and the measurements can be modeled adequately as
Gauss-Markov processes, the probability densities are completely speci-

fied by mean values and covariance matrices of the state and control

variables.

We shall assume a stationary, linear model of the form

Xx=Fx + Gu + I (4.1.1)

z = Hx + V (4.1.2)
where Z = measurement vector,

H = measurement distribution matrix,

T} = process disturbance vector,

V = measurement error vector,

We shall also assume that 1) and P are independent purely random

processes (white noise) with

En)] =0, h

Enme)] = bt ,

Elv(t)] =0, : ? (4.1.3)
Bvew )] = RS-,

EmaewTa)] = o, J
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where Q process noise spectral density,

R = measurement noise spectral density.

4,2 - Obgerver-Controller by Pole Assignment

If the process and measurement noise are considered negligibly
small (i.e. Q=0 , R0 ), it is possible to "reconstruct’ the state

using an "observer' (1L~2), of the form
%X = FX + Gu + K(z-HX) (4.2.1)

where X = estimate of x . If the state x is observable with the
measurements =z , a gain matrix K can be found to assign the eigen-

values (poles) of the estimate error system arbitrarily, where

% = (F-KH)% , (4.2.2)

{] >3

~ L) .
and b3 X - X = estimate error.

This estimate, ﬁ, can then be used with the controller feedback

gains, C , discussed in Section 2.2:
u =-C§ (4-2.3)

The eigenvalues of the closed-loop observer-controller are the eigen-
values of F-GC (the controller eigenvalues) plus the eigenvalues of

F-KH (the observer poles).

4.3 - Filter-Controller by Quadratic Synthesis

A useful technique for the design of control systems with additive
white noise in the measurements and the process isg quadratic synthesis
coupled with optimal filtering. The system is modeled as a vector
Gauss-Markov process (Eqns. (4.1.1)-(4.1.3), and the performance index
is the expected value, given the measurement, of an integral quadratic

penalty function:

o@D
MinJ =S E{(xTAx+uTBu)|z}dt {(4.3.1)
u
t
o
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The minimizing solution has been shown (P-2) to be the optimal
deterministic controller using the maximum likelihood estimates
(Kalman filter, K-1) of the system states. Thus, u=-Cx and

A

% = Fx+Gu+K(z-HX)

where C=B GBS SF+F . S+A-SGB *G'S = 0 (4.3.2)

T -1

. T T -
and K = PHR ' . FP+PF QL' -PH' R "HP = 0

The steady covariance matrix of the state variables is given by

XéE{xxT] =X + P
(4.3.3)
where (F-GCIR + R(F-GOT + KRK =0

P 1is the steady covariance matrix of the error in the estimates (%)

which is uncorrelated with the estimate (X).

The covariance matrix ¥ is the stochastic analog of the deter-
ministic steady respohse. The steady output covariance is a measure of
how accurately the system is being controlled on the average., In fact,
the performance index is a weighted covariance trade off between the

atate (or output) and the control.

4.4 - Example: Lateral Aircraft Autopilot

Consider again the lateral aircraft conftrol problem, Suppose that
instead of perfect knowledge of the state, three noisy measurements of
roll attitude, yaw attitude, and lateral position are available. 1In
addition, suppose the system is disturbed by gusty winds. The wind gust
effects will be modeled as two independent Gaussian white noise
procesges: the first is due to lateral gusts, and the second is due to
the lateral gradient of the vertical gusts, The power spectral densi-
ties of the process and measurement noise and the RMS values corre-
sponding to a 50 ft correlation length along the flight path are given
in Table 4.1. '
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Table 4.1

Noise Component RMS PSD
Lateral gusts 10 ft/sec 10000 fts/secz
Vertical gust gradient 10 ft/sec per 100 ft 1.0 ft/sec2
Roll attitude error 0.5 deg 25.0 ft—degz
Yaw attitude error 0.5 deg 25.0 ft—deg2
lateral position error 10 ft 10000 ft3

Use of the eigenvalue decomposition technigue to solve for the
steady filter and controller, yields the filter gains given in Appendix
E. The closed-loop poles (in units of hft—l) for the esiimate error
equation are shown in Fig. 8. The RMS estimation error and the EMS

state response are shown in Table 4.2,

Table 4.2
@’ @ ¥ ¥ € y ba | Or
deg/hft deg deg/hft deg deg ft deg deg
BmMS Error 0.872 0.651 0.366 0,472 } 0.169 | 3.09 ~ ~
RMS Response 1.47 3.31 0,500 0.979 | 0,651 | 7.43 | 6.30 | 3.17

The two poles near the origin correspond to the estimation of the
lateral position by combining the attitude and position measurements.
The relatively large time constant reflects the heavy filtering of the
noise in the lateral position measurement. Also, the RMS roll response
is considerably larger than the RMS yaw or path response. This is due
to the use of banked turns as the primary controlling influence on the

lateral position,
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The RMS respoxise in Table 4.2 can be compared to the RMS response

shown in Table 4.3 where exact knowledge of the state is assumed.

Table 4.3
Q' @ (A ¥ € y ba 6r
deg/hft | deg | deg/hft deg deg ft deg deg
EMS Response 1.022 2.11 0.309 0.536 | 0,407 | 4.07 | 5.07 2.92
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Chapter 5

Regulator Design for Constant Disturbances end Non-Zero Set

Points Using Estimates of the State

5.1 - The Effect of Uncompensated Constant Disturbances

Congider the Gauss-Markov system model of Chapter 4 with the

addition of a known constant disturbance vector, w:

X = Fx + Gu + T;w +:an ,
z =H +V , (5.1.1)
w =0,

If the filter-controller of Section 4.3 ig used for the system, a

statistical steady state will still be reached but it will have a non-

zero mean value:

H %] — (F—Iﬂ-l)-]Tow R
ELx] - (F—GC)—l[GC (FLKH)-l—I]r;w s (5.1.2)
Elu] - -c{E x] + {%]} .

Suppose that the aircraft with the filter-controller of Section 4.4
is subjected to a 25 ft/sec steady crosswind. Since there is no direct
compensation for a steady crosswind, it will go to steady offsets of
~0.693 deg in roll, -4.38 deg in yaw, and 24,1 ft in lateral position.

Such large offsets in yaw attitude and lateral position are unacceptable.

5.2 - Design with Exact Knowledge of the Digturbances

If the disturbances, .w, are known exactly, this knowledge can be
used in the filter for estimating the state and in the feed forward to

the controls, i.e,

N
u = -Cxx + nyd-cww , (5.2.1)

where

~
X

FX + Gu +-r;w + K(z—HQ) . (5.2.2)

The feedback gains Cx and K are determined as in Chapters 2 and 4,
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as though yd=0 , w=0 ; the feed forward gains Cy and Cw are
determined as in Section 3,2. This system eliminates the mean value

offset described in Section 5.1.

5.3 - Degsign Using Estimates of the Disturbances

The constant disturbances are seldom known accurately so they must
usually be estimated along with the state variables from the available
measurements. However, the straightforward approach has a pitfall; by
straightforward approach, we mean optimal estimation considering the

disturbances as additional state variables with the random bias model,

w=0,
I
Hwt)] =0, Elw(t v (t )] = X, (5.3.1)

i,@, the disturbances are constant, unpredictable, and vary from sample
to sample. (In Section 5.1, the disturbances were assumed constant,
known, and the same for all samples.) The controller with the augmented

filter bhecomes

~ -~
u = -Cxx + nyd - wa ’
%= FK + Gu +.r;a + Kl(z-Hﬁ) , (5.3.2)
¥ = KZ(Z—HJ?)
T -1 T T -1
h = =
where kK =P,HR , K,=P HE |,

r,

T -
0 = FP_ _+P__F +I‘QIE—P aTR lup I o
11 "o 12

11711 171 11 1270
T -1 (5.3.3)
0= FP12+I;P22-P11H R HP12 ,
T .T-1
0 = Ple R HP , -

However, (5.3.3) indicates that K2=0 since both P12 and P22=0 .
This occurs because the constant disturbances, w, can be estimated
exactly by a time-varying Kalman filter. The K2=0 steady filter is
useless for estimating the disturbances. Two alternatives to using a
time-varying filter are (1) to use an exponentislly-correlated model of

the disturbances or (2) to use integral control. A random walk model of
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the disturbances can also be used, but the steady covariance of the
controlled state may be unbounded even though the filter is well
defined.

Exponentially-Correlated Model of the Disturbances

A useful model of the disturbances 1is the exponentially-correlated
model with a time constent, T, long compered to characteristic times of
the system being controlled:

W= - X w +
=-z no s
(5.3.4)

Bnd =0, Eln omlm] =q Sct-r),

T T
where 3 Qo = xww = Elw(t)w (t)] = given constant,

This is essentially a slowly-changing bias model, which is more realistic
than the "constant forever' biaa model of (5.3.1). Here we must make a
choice of T , whereas in a random walk model we must make a choice of

Qo ; the choice of QO is usually more nebulous than the choice of 7T .

The steady filfer that results from this model is again given by
(5.3.2) and (5,3.3) except that the last two equations in (5.3.3) are
replaced by

0 = FP,, - % P, + T Py,- PunTR'IHP12 ’ 5.5.5)
0 ='$ (PppX.,) + Pl H R HP,
and the second equation of (5.3.2) is replaced by
§--10s k() . (5.3.6)
T 2

With this filter, the system is predicted to reach a statistical
steady state, and the usual techniques of predicting covariances may be
used. Precilsely speaking, the mean value offset of Section 5.1 will not
be entirely removed since this filter will not estimate a truly constant
disturbance exactly. However, for large T the mean value offset will

be negligibly small.
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Use of the exponentially-correlated model to design a constant
gain filter for estimating the lateral aircraft motions yields the
filter gains shown in Appendix F where we assumed Vr = 12500 ft and
wa = (25 ft/sec)z . The closed locp poles of the estimate error .
equations are those of Fig. 8 plus an additional pole at -0.3 hft .
The steady FMS response using this filter is shown in Table 5.1. 1In
addition, the RMS response for w=0 and the steady response for a
25 ft/sec steady crosswind are shown for comparison purposes with the

preceding and succeeding sections.

Table 5.1
@ ¢ (AN B € 'y ba Gr
deg/hft deg | deg/hft deg deg ft deg deg
RMS 1,595 4.51 0.635 1.297 0.713 7 8.15 10.12 | 13.04

RMS (w=0) 1.523 3.38 | 0.509 0.973 0.647 | 7.42 6,87 4.87

Offset 0.0 -2,71 0.0 -0.147 0.0 0.728 { -7.45 | 12,18

The offsets for ¥ and y are due to the small error in estimating the
constant disturbance and are insignificant when compared to the fluctuat-

ing component in any given sample.
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5.4 - Design Using Modified Integral Control

Consider now the use of integral control with state estimation.
Suppose a steady filter for the system has been designed assuming no

constant disturbances:

2 =F +Gu + K, (z-HX) . (5.4.1)

we then introduce integral control in the following form (cf. Section

3.4);

=]
I

-Cxx + nyd - Cv(v+Lx) . {(5.4.2)

where

v = T8 - Vg * Kz(z—us:‘) , (5.4.3)

and Cx' Cy, Cv’ L. are chosen as in Section 3.4, while Kz is a

constant matrix yet to be chogen. It is straightforward to show that,
for any K2 , the eigenvalues of the closed-loop system are the eigen-
values of F—GCx plus the eigenvalues of F-KlH plus the eigenvalues
of -LGCv , 80 that Cv can be chosen separately rather than simulta-

1 ith C .
neocusly wi o and Kl

K2 can be chosen to produce zero mean value offsets in the outputs,

For w=constant it follows from (5.4.1) and (5.4.3) that

E(®) - (F-K.B) T w,
1 o

(5.4.4)
E(Tx-yd) - (K2H-T)E(x)
where X=%-x=error in the estimate of x . Thus
v ) - ok BT .
E(Tx yd) (K2H T) (F K1H) o (5.4.5)
If K2 can be chogzen such that
(T—KzH)(F-Klﬂ)ro =0, (5.4.6)

then the mean value offsets of the output will be zero,

For the important particular case where the outputs are measured,

z=Tx +V , (5.4.7)
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so that T = H , it is obvious that (5.4,6) is satisfied if

K, = I = identity matrix . (5.4.8)

The integrals of (5.4.3) become then simply

v=2z- Vg - (5.4.9)

In general, the K2 matrix can be chosen to insure zero mean
offset if the rank of the matrix [T(F-KIH)_¥F°] is equal to the rank
of the augmented matrix [T(F—KlH)-yfb:H(F—K1H)—¥Fo] . Usually, this
means that either the space spanned by T 1is included in that spanned
by H or the dimension of the meazsurement is greater than or equal to
the dimension of the steady disturbance. In the former case, it is
possible to find K2 so that K2H=T , and the outputs (y) are measured
directly with only white noise measurement error (). In the more
general second case, at least as many independent measurements as inde-
pendant constant disturbances are required. In this second case, the
gstationary performancé is sensitive to modelilng errors in F and I; ’

whereas, ih the first case when K _H=T , the only sensitivity is to the

2
measurement distribution H .
Expressions for the steady covariance matrix of x are given in

Appendix ¢,

The above results are applied to the lateral aircraft control
problem, using the undisturbed steady filter of Appendix E, the integral
control law of Section 3.4, and the direct integration of the lateral
position and yaw attitude measurements. The steady RMS response to the
noisy gusts and measurements and the steady offsets for the constant

25 ft/sec crosswind are shown in Table 5.2,

35



Table 5.2

N @ yr () € y | be br

deg/hit | deg deg/hit deg deg ft deg deg
RMS 1.83 4,15 0.602 1.02 0.765 6.80 | 9.9 5.21
Offset o -2.71 0 0 0 0 [7.64 ] +12.5

Notice that the lateral position RMS response is slightly smaller than

using the state-disturbance estimator at the cost of increased RMS

aileron control.
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Chapter 6

Conclusions

Several techniques for constant.disturbance compensation have been
presented. The concept of integral control was generalized to the
multi-input, multi-output output case. A procedure for synthesizing the
integral contrel gains separately from the standard regulator-filter
was presented. Using this technique, a regulator-filter whose transient
response is satisfactory can be augmented with integral control for
improved steady behavior. The state estimate filter is left unchanged

and the state feedback gains are modified in a straightforward manner.

The results were applied to the lateral aircraft contrel problem for
automatic landing in the presence of a gteady crosswind. It was found
that state plus integral feedback provided an excellent techhique for
reducing the steady offset, without sacrificing good transient behavior.
The use of a filter to estimate the state from noisy measurements coupled
with the state plus integral feedback control laws resulted in acceptable

RMS response and zero steady offset,

The integral control technique of constant disturbance compensation
was compared to compensation using disturbance estimators. It was found
that integral contreol amounts to a special form of estimation. However,
the RMS response may be larger for the integral control formulation
because no use is made of the assumed knowledge of the disturbance dis-
tribution as in the conventional estimator. This disadvantage of
integral control must be weighed against the advantage that the steady
offset remains zero even in the presence of modeling errors. The
integral control technique does, however, exhibit sensitivity to bias
or other long correlation disturbances in the measurements. Often, these
measurement blas errors are not observable (as in the case of the lateral

position measurement), and the conventional estimator does no better.

In conclusion, then, integral control is likely to be most successful
in situations where there are system model uncertainties and the measure-

ments are unbiased.
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Appendix A

State Dynamics Matrix for Lateral Motions of a DC-8 Aircraft

in Landing Approach with Open Loop Eigensystem

ORDER OF SYSTEM = §

QPEN LOOP DYNAMICS MATRIX....

-3.904D-01 0.9 2.5020-61 2.240D-01 -2,2400-01
1.000D 00 0.0 0.0 0.0 0.0
=5.0330~-02 0.0 -1.0870-01 =-1,276D-01 1.2760-01
0.0 0.9 1.0000 00 0.0 0.0
0.0 5.4260~02 0.0 4,5720-02 -4.5720-02
0.0 0.0 0.0 0.0 1.745D0 Do
OPEN LODP E!GENVALUES AND EIGENVECTORS........ (het™))

COMPLEX E1GENVALUE( 1)........
( -0.D4LB3LES)+J( O.40GLER59)
REAL E!GENVALUE ( 1)........
¢ 0.0 Y«g{ 0.0 )
© REAL EIGENVALUE ( 2)......:..
( -0.56048882)+0( 0.0 )
REAL EIGENVALUE LG ) IR
{ 0.00533819)«4{ 0.0 )

REAL EIGENVALUE
( -0.00000000)+J(

CB)avenense
0.0 )
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w M ogag-a g

COMPLEX EIGENVECTOR( 1)........

=-0.04483468)+J(
1.00000000)+0¢(
«0,25250553)+J(
=0.63538417)+J(
0,07822031)+d{

(
(
{
(
{
( ~-0.39431806)+J¢(

0.4064R859)

0.0
=0.208085645)

0.69330997)
=0.08634428)
-0.29229680)

REAL EfGENVECTORC 1)........

P e lalelale)
=ODQoOo
4 » = ¢ &

N ot N N Naal

9000000}

REAL EIGENVECTOR( 2).i...cun

{ -0.37782160)
{ 0.82047942)
{ «D.00B41106)
{ 0.01826551)
( =0,10934841)
{ 0.51437050)

REAL EIGENVECTOR( 3)iimnenns

0.00000167)
0.00031376)
0.00001625)
0,00304391)
0.00305910)
0.99959064)

P~ S s s .,

REAL EIGENVECTOR( 4),.......

( 0.00000000)
{ 0.o00000000)
( 0.,000n0000)
( -0,n0000000)
( =0,00000000)
¢ 1,00000000}



Appendix B

Control Distribution Matrix and State Feedback Gains

for Lateral Motions of a DC-8 Airplane in Landing Approach,

with Closed-Loop Eigensystem

ORDER OF SYSTEM = &
NUMBER OF CONTROLS = 2

OPEN LOOP DYNAMICS MATR!IX....

=-3.904D-01 0.0 2.5020-01 2.2400-01 -2.250D-01 0,0 P’
l.n00D 00 0.0 0.0 - 6.0 0.0 g.0 ]
«5.093D0-02 0.0 ~1.087D-01 -1.276D-01 1.2760-01 0,0 LA
0.0 0.0 1.0000 00 n.0 0.0 a0 L4
0.0 S.4260-02 0.0 4.5720-02 -4,5720-02 Q.0 <
¢.0 0.0 0.0 0.0 1,745 00 0.0 ¥
STATE COST MATRIX....

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 ¢.0 a.f 0.0 0.0

8.0 0.0 0.0 0.0 0.0 . 0.8

e.0 0.0 6.0 2.5000-01 0.0 0.0

0.0 0.n 0.9 0.0 0.0 n.o

0.0 0.0 0.0 0.9 0.0 b.hbnyd-03

THE CONTROL DISTRYBUTION MATRIX....

8a &r
1.226D-01 -3.0570-012
0.0 0.0
8.971D-03 6.557D0=02

. 0.
0.0 -9,772D-03
9.0 0.0

THE CONTROL WEIGHTING MATR!X.......

1.0000-02 0.0
9.0 1.000D-02
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Appendix B {(Cont.)

ENGENSYSTEM OF OPTIMAL CLOSED LOOP SYSTEM..(hIt-l)

COMPLEX EIGENVALUE( 1).......4 COMPLEX EIGEMVECTOR( 1)........

( -0.32300031)+4( 0.50246618) (. 0.53588176)+d{ -0.19436612)

. ( =~0,75883202)+d( -0,57870318)
{ -0,32300031)+J( O0.50246618)
( 1.00000000)+J( 0.0 )
E 0.007725R8)}+J( ~N.02156565)

«0,06513990)+J4¢ 0.01508147)
COMPLEX EIGENVALUEC 2)...0uves ) COMPLEX EIRENVECTOR( 2)....0uss
( -0,!19959hi)+d( 0.24002028) ( 0.20186374)+J( =0.NuB16881)
{ -0.59691354)+J( -0.59265542)
( =0.01738570)+J¢ 0.0044L2558)
{ 0.04373713)+J( O.05061481)
{ -0.06875038)+J(  0.13754744)
¢ 1.00000000)+J( 0.0 }

REAL E!GENVALUE [ G0 1§ PR REAL EIGENVECTORC 1)........

( -0.45287098)+«4{ 0.0 ) "-0,37032118}
0.81771834)
=-0.00349654)
0.00772084)
=0,11067964)
0.42646943)

REAL EIGENVALUE ( 2)........ REAL EVGENVECTORC 2)........

0.12740354)
-0.50653995)
=-0,00854398)

0.03398965)

0.12155221)
-0.84331625)

R Lt L Rt et B ]

( =0.25151727)+J( 0.0 )

ladalal o Eal ol

THE CONTROL GAINS ARE:
?* 9 v ' ' 7
Sa 3.57180771 2,47071529 4.G3055479 1.60213745 B8.54435546 0.65915493

~Sr 0,.23302354 0,43602571 9.18713550 3.62741330 2.916h1691 0.N3957292
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Appendix C

Steady-State Solutions when the Number of Outputs is Less than

the Number of Control Inputs

The problem ig to find xs and uS to minimize
1 T T
. & c.1)
J =3 (stxs + usBus) s (

subject to the steady-state constraints

0

it

Fx + Gu_ +Iw , (c.2)
s s

= : C.3)
vy = Txg (

T
Adjoining (C.2) and (C.3) to (C.1) by Lagrange multipliers A and
“T respectively, it follows directly that the unique minimizing values

of xS and us can be obtained by sgolving the linear equations

F, -GBlGY , 0 x T
s w
A, -FT 17 Al =10 , (C.4)
T, 0 ,0 v Ya
where
u, = 571N . (c.5)

Ag an example, consider a steady banked turn at constant altitude

for the DC-8 of Appendices A and B. Only the state variables ¢',9,¥"' ,

and B é € - % are of interest in this case and it is clear that

W

¢'=0,w':v,

where V 1is forward velocity and « is the turn rate. The relevant

constraint equations (with w=0 } are therefore:
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F b4 G u

8 s
f - - - ~ o - —~
0o , .2502, ~-.224 ¢;' 1224, -.03057 |[6a_
0 = 0o ,-.1087, ,1276 ﬂr; + | .008971, .06557 Grs , (C.86)
.05426 , ~1.000 , -04572 Bs 0 » = 009772
- —
T b 7
— 5
%’: (o, 1, g w‘é , where V is in units of hit/sec. (c.7)
Bs

For this case we take the weighting matrices of (C.l) as

A=0, B=1, (c.8)
. "—‘? , while there are two control inputs
( 82 and Or ). With these data, the choices of ¢s,w;,ﬁs,éas,6rs

Note there is only one output

that minimize (C.1) while satisfying (C.6) and (C.7), obtained by
solving (C.4) and (C.5), are:

¢s T j19.21 Gas -(0.3127

¥ | = |1.000 %’ , - %’ ) (C.9)
8 5r -0.1914

B, 0.9722 s

It is interesting to compare (C.9) with a "truly banked turn"
where the aerodynemic side force is specified to be zero, i.e.
—.0457253-.009772 ﬁrs = 0 (there are now two outputs and two inputs).
For this case it is easy to show from (3.2.7) that

o (18.43 " .2.529 )
8 Gas
W W
¥t = 11000 2, = v (€.10)
s v 61’ vV
Bg -0.7335 8 3.431
- L. -
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For the zero sideslip turn

-

¢ 18.77
s w éas -1.576 |
'di"s = - 1,000 ¥ ' = v
Or 1.873
B 0.000 &
s .

Notice that both the "truly banked" and zero sideslip turns require
substantially larger control deflections than the control minimized
turn, The steady side specific force, a, experienced by a passenger

is given as
a = g(18.43 wv - ¢S) '

where ¢s is in radians, (» in rad/sec, and V in hft sec_l. This
is equivalent to tilts from vertical of only 4.2% and 1.8% of the
"truly banked” steady bank angle for the control minimized and zero

sideslip turns, respectively.
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Appendix D

Quadratic Synthesis of Integral Control Gains

An alternative method for determining state plus integral feedback
control gains is to use quadratic synthesis (P-1, K-2, B-5), We tempo-
rarily neglect the constant process disturbances and non-zero setpoints
and augment the system with the additional states (v) given by V=Tx .
Adding weighting on v in the performance index, yields an optimal

regulator problem:

[>-]

Min J = 1/2 S (xThlx + vTsz + uTBu)dt (D.1)
u
t
o
Subject to X = Fx + Gu x(t-) = X
° (p.2)
v = Tx vit ) =v ‘
o o

where v, is arbitrary. When the controllability conditiong are

satigfied, the solution is

-1 T -1.T
u=-B G sllx - B "G slzv (D.3)
T -1.T T T
where SllF + F S11 - SllGB G S11 + Al + SlzT + T 312 =0,
-1_T T T
{F-GB "G Sll) S12 + T 822 = 0 , (D.4)
T -1.T
and A2 - 512GB G S12 =0

To properly choose the initial conditions (vo) , the performance index
(D.1) will be minimized with respect to v, (M-1). The performance

index is given in terms of the initial conditions as

T T
= 2 8 8
J 1/ [xo ’ vo] 11 12 X, (D.5)
T
s S
12 “22(l Yo

Thus, the minimizing vo is given by
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-1.T
vy T _SZZSIZXO (D.6)

When this control law is implemented with a non-zero setpoint the only

modification required for a zero-offset steady state is to let
v = Tx - )
v Y4 (D.7)

However, the response to a setpoint change will be faster if feed-forward

of the setpoint is also included. The resulting control law is thus,

u=-Cx + nyd - Cv (D.8)
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Appendix E

Filter Gains for the Estimation of Lateral Motions from Noisy

Attitude and Position Measurements with Gusty Wind Disturbances

and the Eigensystem of the Estimation Error

ORDER OF SYSTEM = §

NUMBER OF CONTROLS = 2

NUMBER OF OBSERVATIONS = 3

NUMRER OF PROCESS NOISE SOURCES » 2

OPEM LDOP DYNAMICS MATRUX...,

«3,30up-01 0.0 2.5020=01 2,240D-01 ~2,25400-01 n.o '
1.0000 00 . 0.0 0.0 .0 . .0 M
=5.093D-02 a.¢ =1.087D-01 =1.276D-01 1.276D=-01 n.o0 W
0.0 0.0 1.n00D 60 a.n n.o 1.0 ¥
0.0 5,826D-02 0.0 4.5720-02 ~4,.572D0=-02 0.0 [
0.0 0,0 ' n.n 0.0 1.745D 00 0,0 L4

THE CONTROL DISTRIBUTION MATRIX,...

Ga &r

1.224D-01 -3.057D-02

o.0 0.0

8.971D0-03 6.,5570-02

0.0 0.0

0.0 =-9,772D-03

2.0 .
STATE DISTURBANCE DISTRIBUTION MATRIX....

2,280D0-01 ~3.830LD-D1

0.0 0.0
-1.276D-01 ~5.093%D-02

0.0 g.0

8. 572D=02 0.

0.0 0.0

POWER SPECTRAL DENSITY ~ STATE NOJSFE....

5.537b 00 0.0

0.0 5.537D 00
MEASUREMENT SCALING MATR‘;....-

0.0 1.0000 00 g.0 o.n 0.0 0.0
0.0 0.0 0.0 1.0000 00 0.0 0.0
0.0 0.0 0.0 . 0.0 1.000D 00

POWER SPECTRAL DENSITY - MEASUREMENT NOISE..

2.5000-01
g.0
0.0

0.0 0.n
2.500D-01 0.0 -
0.0 1.0

nop 02
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EIGENSYSTEM OF ESTIMATE ERROR EQUATION.....(mft

Appendix E (Cont,)

COMPLEX EIGENVALUE( 1)..u.....

{ -1.03865067)+J(

1.01531494)

COMPLEX EIGENVALUEC 2),.......

{ =0,52597023)+J(

0.61790966)

COMPLEX EIGENVALUEC $)u.use.n.

( -0.08837570)+J(

0,04832768)

..1)

COMPLEX EIGENVECTORL ll.i.....ue

{ 1.00000000)+J(
( 0,48759751)+4¢
{ -0,00932262)+J¢(
{ 0,08193031)+J(
{ 0,03536834)+d(
{ ~0.03752940)+J¢

COMPLEX EIRENVECTOR{ 2)...,.....

THE COVARIANCE OF THE ESTIMATION ERROR

0.76068438 0,35913348
0.359133438 0.42368247
<0.01967670 -0.02072033
0.04071315 0.00773122
0.03108149 0.03135824
-D.04427190 2.00745116
~0.04427190
0.00745114
~-0.00535122
- =0.06528608
0.26653257
9,55581974
FILTER STEADY STATE GAINS.,....
P L
1.43653394 0.162851259
1.694729845 0.030924387
-0.08288130 0.39820297
0.03092487 0.89188514
0.12743295 -0.13497917
0.02980456 =0,26116433%

STATE RMS RESPONSE

wl‘
]
’I
L4

(
y

1.46850863
3. 30690313
0.49982089
0.97850027
0.65134758
7.43165997

0.0 )
=-0,.69319355)
0.0N6015641)
0,01099606)
-0,01701054)
-0.N3386597)

( D.28232892)+J( ©0,17562874)

( 0.23021303)+3( 0.N2854616)

( 0.37325066)+J( O0.61866735)

( 1,00000000)+J{ 0.0 )

( ~0,13180058)+d( ~D.16416695}

( =0.33152040)+J¢( 0.19161288)

COMPLEX EVGENVECTOR( 3)......u.

( =0,00305548)+J( -0,00348359)

{ ~0,002n08325)+J( ~0.00215971)

{ 0.00531253)+J{ 0.00491622)

{ 0,006828471)«J{ 0.00555069)

( 0,0257760&)«d( 0Q.02682738)

{ 1l.00000000)+J( 0.0 H
~-0.01907670 0.04071315 0.03108149
-0,02072033 0.00773122 n.03185824

0.13382472 N.09957324% =0.04164187 |
0.09957524 0.22297129 =-0.03374479
-0.05148187 ~0. 03374479 n.02865678
-0.00535122 -0.06528608 0,26659257
)
=0.00044272
0.00007451
=-0.0060G05351
~0.N0065286
0,.n0266593
0.n9555820

CONTROL AMS RESPONSE

6a 6.30470433
0r 3,17164437
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Appendix F

Filter Gains for the Estimation of the Lateral Motionhs

Including an Exponentially Correlated Wind Disturbance

and the Eigensystem of the Egtimation Error

ORDER OF SYSTEM = 7

NUNBER OF CONTROLS = 2

NUMBER OF OBSERVATIONS = 3

NUMBER OF PRNCESS NOISE SOURCES = 3

OPEN LOOP DYNAMICS MATRIX....

-3.9040-01"

0.0 2.5020-01  2,24L00-01 -2.2400-01 0.0 2.2400-01 g«

1.0000 00 0.0 . 0.0 0.0 0.0 0. 9

-5.093p-02 0,0 =1.n87D-01 =1.276D0-01 1.276D-01 0.0 =1.276D-01
2.0 0.0 1.n000 0O 0.0 0.0 0.0 0. ¥

0.0 5.4260-02 Q.0 4.5720-02 ~-4.572D-02 0.0 4,572D0-02 ¢

0.0 0.q 0.0 8.0 1.745D0 00 0.0 8.0 4

0.9 0.0 0.0 0.0 0.0 0.0 -8.000D-03 g

THE CONTROL DISTRIBUTION MATRIX....
s - 4r

g.g!bﬂ-ﬂl =-3.057D-02
8,9710-03  &.5%70-02
0.0 .

0.0 -9, 772D-03
0.0 0.0

g.0 0.0

STATE DISTURBANCE DISTRIBUTION MATRIX. ...

2.1400-01 -3,904D-01
0.0 0.0
-1.276D-01 ~-5.093D-02

0.0 0.0

b 5720-02 g,

0.0 0.0 .
0.% 0.9 Qo0 20

POWER SPECTRAL DENSITY - STATE NOISE,,..

5.537D 00 0.0 0.0
0.0 - 5,53 00 0.0
g.0 0.9 . 5,5360-01
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MEASUREMENT SCALING MATRIX.....

6.0 1.0000 00 0.0 a.n ) 0.0 0.0 0.0
0.0 9.0 0.0 1.0000 00 0.0 0.0 6.0
0.0 0.0 0.0 0.0 0.0 1.0000 00 0.0
POWER SPECTRAL DENSITY - MEASUREMENT NOISE..
2.5000-01 0.0 0.0
9.0 2,5000-01 0.0
0.0 0.0 1.0000 02
EVGENSYSTEM OF ESTIMATE ERROR EQUATION, . ... (ate™))
COMPLEYX EIGENVALUES L).......s COMPLEX EVGENVECTOR( 1)........
¢ =1,03499591)+0( 1.01794651) ( 1.00000000)+4( 0.0 )
' ¢ 0,46290254)+4( -0.66328835)
( -0.08238768)+J( 0.00456159)
¢ 0.03737187)+d( 0.03425782)
{ 0.05420321)+J{ -0.02539656)
( 0,01927829)+J4{( -0,06113575%)
¢ 0,38928082)+J( -0.10904082)
COMPLEX EIGENVALUE( 2)...vveas . COMPLEX EIGENVECTOR( 2)....ccuss
( -0.52025652)+d( 0.653865307) { =0.03538373)+J( 0,12658824)
( 0,01560311)4J( 0,12575094)
“{ =0,59215569)+d( 0.07544230)
¢ ~0.39157950)+J( 0.56038075)
¢ 0,18589657)+J( -0,00030883)
{ 0,17708061)+4( -0.27307853)
{ 1.00000000)+J( 0.0 )
COMPLEX EIGENVALUEL 3)........ COMPLEX EVGENVECTOR{ 3)........
{ ~0.0M857789)+J( 0.08867963) ( 0v00003175)«J{ ~-0.N0002351)
{ -0,0001589k)+9( =0.00004096)
{ 0.00001112)+J( 0.000171hk)
¢ 0.00133603)+J{ 0,00009723)
( 0.02775582)+4{ O.N27RE13T)
¢ 1.60000000)4Jd( 9.0 R
{ 0.DISTRTIGI)+( D.02717536)
REAL EIGENVALUE { 1)..venses REAL EIAENVECTORC 1)........
( =0,30023280340( 0.0 ) ¢ -0.11805073)
: ( ~0.07L25456)
( 0.15231230)
{ 0.18072601)
{ -0.058595609)
{ =0.090082s3)
¢ ~0.95567314)
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0.79933060
0.37985823
=0.06643974
0.00063180
0.04932665
0.00665403
0.30049013

0.00665403
D.03868346
=0.076773%12
=0.14197009
0,29923330
9.78637978
0.41303514

FILTER STEADY STATE

“a

1.51343293
1. 74197261
~0.19092014
-0.N6585916
0.156934636
8,15675583
0.63827175

Appendix F (Cont.)

0.37985823
0. 43543315
-0.04773003
~0. 01646479
0.0k233659
0.03868896
0.15956 794

0.30049015%
0.15956754
=0.37077524
~0.32021174
0.14371967
0.41803514
2.49140724

GAINS......
¥

- 8,00252720
~0.06585916
‘0.6256L4535

1.11523408
~0. 22463705
~0.56788036
~1.28084698

THE COVARIANCE OF THE ESTIMATION ERRNR

-0.M664397)

-0.04773003°

0.19623749
N, 15611134
-0.06562507
-0,n07677372
-0,37077524

a

0.00006654
0.NDOTBERG
=0.n0076774
~0.N00141970
0.NN299238
0.03786380
0.00418035
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0.00063180
=-0.01646479
0,15611134
0.27880852
-0,05615925
-0.14197009
-0.32021174

N. 04332665
N.0423365%9
=0.N6562507
-N.05615925
0,N3821684
0,29923830
N.14371967



Appendix G

The Steady Covariance Using Modified Integral Control

Using the equations given in Section 5.4, the estimates and

estimate errors are found to satisfy the equations

Fx (F-GC,) , -GC_ , -K H % Gnyd
v | = T , o , —KzH v + -yd
% 0 , 0 , (FEH|| % I w
|_ L O
K, 0
+ | Ky f v+ 0 n
S I (G.1)

Since Yaq and W are considered to be deterministic, they affect only

the mean value. The steady covariance then satisfies

‘ , T T T T
0 = (F-Gc*)x.gg + Xpo (F-GC) " - GC Xp - Xp C G
0 = (F-GC )¥a - GC + XanTT + K RK.
* " Nxv vxvv XX 12
(G. 2)
0 = 'IXQV + XI TT + K RK
0 = (F-K_H)X_.._ + (F-K H)T + K.RK® + D@7
- 177 Xgg * Xgg 1 11 171

and Xt 3 X.o =0 and Xoew = P

XX v XX
where O = FP + PF' - PH'R ‘HP + 1"1@.“'{
and K, = PHR L

Thus, it is seen that the integral control law does not affect the
steady performance of the filter, 1.e.the estimate error is still P
and the covariance betweenAthe estimates and the estimate errors
remaing zero. Only the steady covariance of the state estimates is

changed by using the integral control law.

Xex = Xgg + F

T
xuu_ *XAAC + ‘)( C +C*XAC +CVXA C:E
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