whttps://ntrs.nasa.gov/search.jsp?R=19740007350 2020-03-23T13:15:01+00:00Z

P Standard

A®

SVHSER 6226

Reproduced from best available copy.

FINAL REPORT

for the

VELOCITY CONTROL PROPULSION SUBSYSTEM

of the

RADIO ASTRONOMY EXPLORER SATELLITE

for

GODDARD SPACE FLIGHT CENTER

under

CONTRACT NO. NAS 5-11463

Laugh

Prepared By:

W. Braught, J Senior Experimental Engineer

R Moore,

RAE-B Engineering Manager

R. L. Steinberg,

RAE-B Program Manager

NASA-CE-132905) VELOCITY CONTACT PROPULSION SUBSYSTEM OF THE BADIC ASTRONOMY EXPLORER SATELLITE FOR GODDART SPACE FLIGHT CENTEE Final (Hamilton Standard Div.) 347 p CSCL 21H

N74-15463

Unclas G3/23 27601

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-LEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

Hamilton U T CORPORATION Standard **A**®

FINAL REPORT

for the

VELOCITY CONTROL PROPULSION SUBSYSTEM

of the

RADIO ASTRONOMY EXPLORER SATELLITE

for

GODDARD SPACE FLIGHT CENTER

under

CONTRACT NO. NAS 5-11463

Prepared By:

Siaught . Braught,

Senior Experimental Engineer

R. Moore,

RAE-B Engineering Manager

2000 R. L. Steinberg,

1<

RAE-B Program Manager

Hamilton U Standard A®

SVHSER 6226

TABLE OF CONTENTS

t

SECTION	TITLE	PAGE
1.0	Introduction	l
2.0	Summary	2
3.0	Acceptance Test	5
4.0	Qualification Test	7
5.0	Heater Power Thermal Analysis	26 a
6.0	Post Delivery Activity	57

APPENDICES	
A	Photographs
В	GSFC Malfunction Reports
С	Test Engineering Vibration Report
D	GSFC Mass Properties Report
E	SVHSER 6184 - RAE-B Gas Manifold Modification Report

.2<

i

Hamilton U DIVISION OF UNITED AIRCRAFT CORPORATION Standard A®

SVHSER 6226

LIST OF FIGURES AND TABLES

FIGURE NO.	TITLE	PAGE
1	VCPS Mechanical Schematic	3
2	VCPS Electrical Schematic	14
3	Vibration Test Setup	19
4	Thermal Verification, Sun Angles	23
5	VCPS, Mission Profile Impulse vs. Time, Run 5719	26b
5ъ	Impulse vs. Time, Runs 5720, 5721, 5722	2 6 c
6	VCPS Extreme Temp. Firing Impulse vs. Time	26d
• • • •		
TABLE NO.		
l ·	Acceptance Test Summary	6
2	Qualification Tests Tabulation	8
3	Qualification Test Summary	9
4	Accelerometer Location List	20

ii

3<

÷.

Hamilton U Standard A®

1.0 INTRODUCTION

The Velocity Control Propulsion Subsystem (VCPS) was designed, manufactured and tested by Hamilton Standard under contract to Goddard Space Flight Center for use on the Radio Astronomical Explorer (RAE-B). The purpose of the VCPS is to provide the propulsion required for trajectory and lunar orbit corrections of the spacecraft. A GFE clamp assembly physically attaches the VCPS to the spacecraft and the unit is ejected after completing the required corrections. The VCPS is physically and functionally separated from the spacecraft except for the electrical and telemetry interfaces.

A GFE transtage provides the superstructure on which the VCPS is assembled. The subsystem consists of two 5 lb_f rocket engine assemblies (REAs), 4 propellant tanks, 2 latching valves, 2 fill and drain valves, a system filter, pressure transducer, gas and propellant manifolds and electrical heaters and thermostats. Figures 1 and 2 provide schematics of the fluid and electrical systems respectively. A series of photographs of the VCPS are presented in Appendix A to provide a visual reference of the unit.

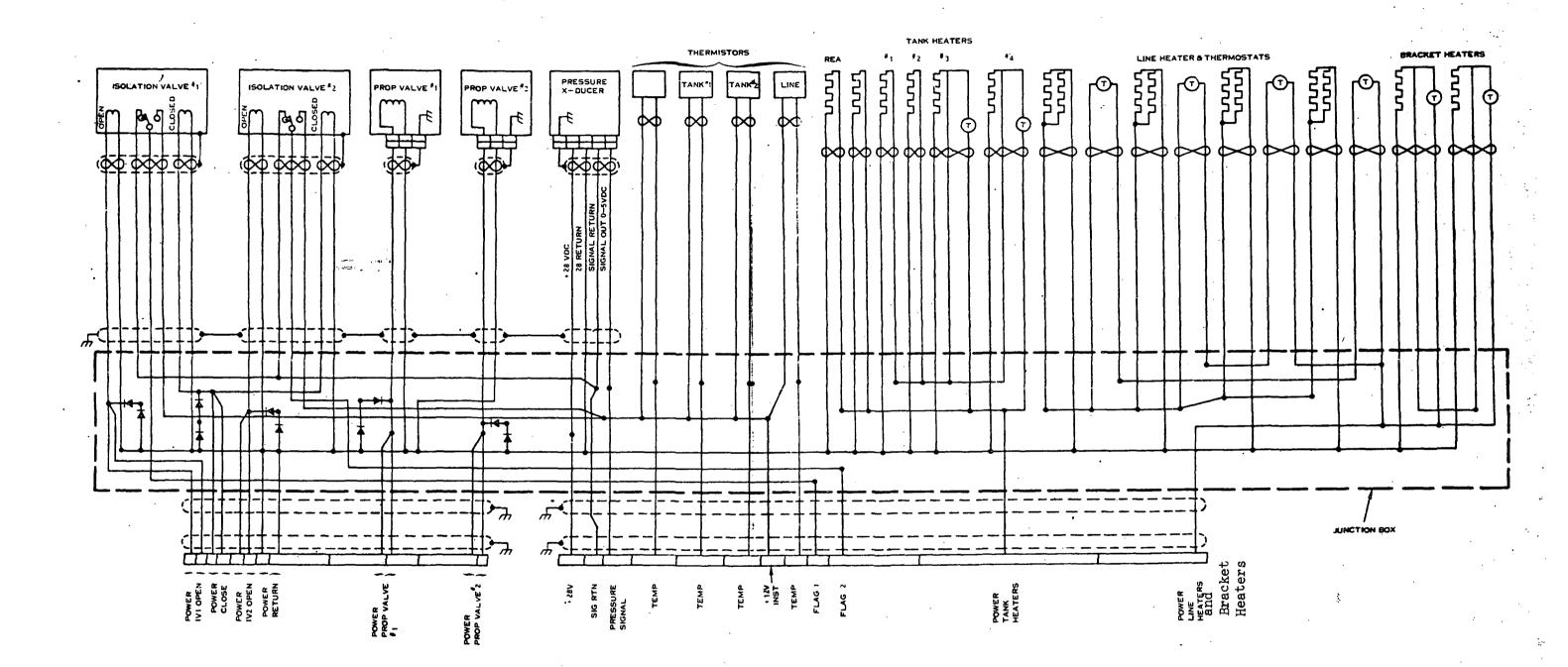
The RAE-B VCPS program covered the design, manufacture and qualification of one subsystem. This subsystem was to be manufactured, subjected to qualification tests; and refurbished, if necessary, prior to flight. The VCPS design and test program precluded the need for refurbishing the subsystem and the unit was delivered to GSFC at the conclusion of the program described herein.

SUMMARY

2.0

The VCPS was acceptance tested per Hamilton Standard Plan of Test SVHS 5618 and met all test requirements: The unit was released for qualification testing on 24 March 1972.

Qualification testing was performed in accordance with Hamilton Standard Plan of Test SVHS 5619. Testing was grouped into structural, environmental and firing performance tests. Appropriate base point and monitoring tests were included before and after each significant test sequence. All testing was conducted at Hamilton Standard with the exception of Mass Properties, Acceleration and Thermal Verification; these tests were performed at GSFC, D. T. Brown and General Electric; respectively.


The qualification testing was completed on 18 August 1972. Two hardware discrepancies were encountered and successfully resolved during qualification program. The first involved an REA heater and was detected during the first electrical test when the REA/ tank heater circuit gave an incorrect resistance reading. An analysis of the REA heater malfunction was performed, reference GSFC malfunction report #D02908, and as a result, all flight and flight spare heaters were replaced with new equipment manufactured in accordance with more stringent procedures to prevent a recurrence of the malfunction.

The second anomaly occurred during the thermal verification test conducted at General Electric, Valley Forge, Pennsylvania in its solar simulation chamber. The VCPS thermal control subsystem was unable to maintain the propellant tanks and line temperatures to specification requirements. Hamilton Standard subsequently modified the tank thermal analysis by incorporating the test results and changed the tank coating pattern as required to maintain a 45° F min. fuel temperature. The propellant line insulation was redesigned and the heater power changed to provide the required line temperatures. A thermal vacuum test of the VCPS verified the acceptability of these modifications.

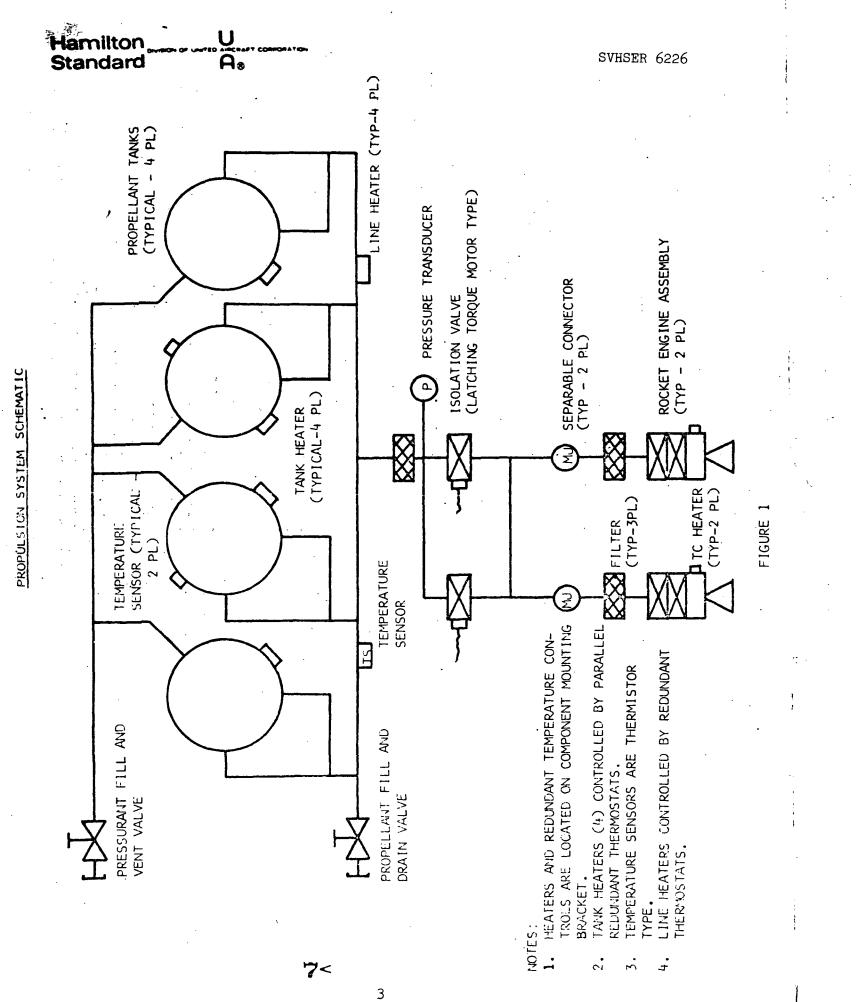
Subsequent to the delivery of the VCPS, a need for modification of the gas manifold was established; a copy of the report on that hardware change is included in Appendix E.

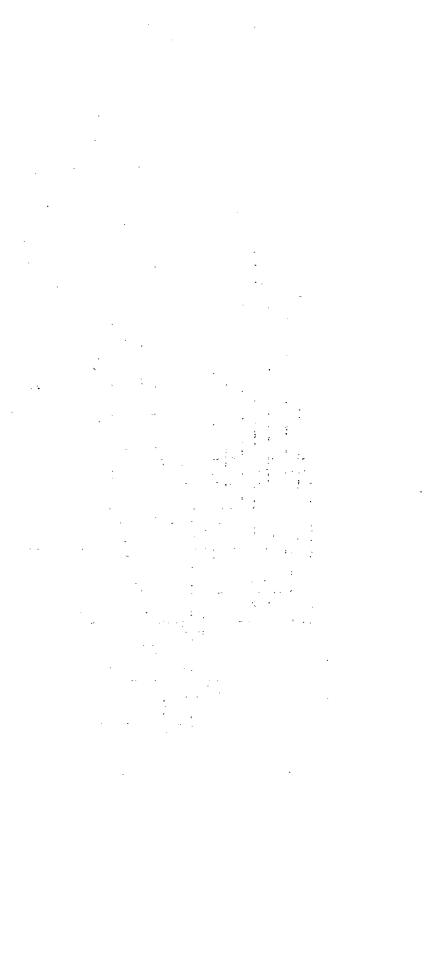
5<

Hamilton U Standard As

FOLDOUT FRAME

FOLDOUT FRAME


SVHSER 6226


FIGURE 2.

SUBSYSTEM ELECTRIC:

4

6<


3.0 ACCEPTANCE TEST

The VCPS acceptance test was designed to verify the proper assembly of the wiring harness, the operation of the electrical components and the leakage integrity of the manifold and the flow control valves. Testing was performed in accordance with Hamilton Standard Specification SVHS 5618.

After the VCPS was fully assembled and passivated, the acceptance test was started with a visual examination of the unit. The unit met all drawing requirements; some cosmetic defects were noted and repaired. The acceptance test was successfully completed on 3/18/72. Table 1 is a summarization of the Acceptance testing and shows the test sequence and provides a brief description of the test requirements and results.

8<

5

;

Hamilton Standard U ®

.

TABLE I

RAE-B VCPS ACCEPTANCE TEST SUMMARY

Test <u>No.</u>	Test Name	Refer SVHS5619 Para.	ences AT Sheet Page	Specification Requirement	Test Results
l	Examination of Product	4.5.1	5	Visual Examination. Inspection of installation dimensions.	Unit passed visual examination. All dimensions drawing requirements.
2	Electrical Check	4.5.2	6 - 27	Verify VCPS electrical interface.	All circuits demonstrated proper continuity and
				Pressure Transducer PSIA Reg'd Output (±.05 VDC)	Pressure Output
				100 1.61 ± .05 VDC 200 3.12 ± .05 VDC 260 4.62 ± .05 VDC	100 psia1.59 VDC200 psia3.13 VDC300 psia4.67 VDC
				REA & Latch Valves Determine baselin ^e values for resistance, opening response and closing response.	ActualREAREALatchLatch $\#1$ $\#2$ $\#1$ $\#2$ Resistance 41.6 ohms 47.5 ohmsOpening13 ms15 ms25 msClosing38 ms28 ms26 ms
				Thermistor Calibrate within 10% at ambient temperature.	Actual: Amb. temp. 70.8°F Tank #1 70.1°F Line 70°F Tank #2 70.1°F Bracket 70.1°F
				<u>Heaters</u> Circuit resistance within 5% of:	Actual:
				REA & Tank20.5 ohmsREA72.0 ohmsBracket36.0 ohmsLine144.0 ohms	21.0 ohms 74.4 ohms 34.8 ohms 144.2 ohms
3	Proof Pressure	4 . 5.4	29 - 31	Proof 450 psia min. Collapse 5 mm Hg max.	The VCPS fluid manifold and tanks suffered no p formation after being subjected to 452 psia pro mm Hg collapse pressure.
4	Internal Leakage	4.5.5	32 - 34	8 scc/hr GN_2 for sum of latching values or thrust control values.	Latching Valves l.25 scc/hr Thrust Control Valves 0.4 scc/hr
5	External Leakage	4.5.6	35 - 43	Total VCPS external leakage shall not exceed 1×10^{-4} scc/sec He.	Actual: 4.7 x 10 ⁻⁶ scc/sec He
6	Dry Weight	4.5.3	28	VCPS dry weight less GFE shall not exceed 20.5 lbs	Actual: 19.257 lbs
7	Post Test Inspection	4.5.7	44	Review tests for compliance to specification requirements. Visual Examination	Unit met all acceptance test requirements. Uni visual examination.

}

FOLDOUT FRAME

SVHSER 6226

à.

ons within

and pin usage.

permanent de-proof and 1.8

FOLDOUT FRAME

2

Unit passed

4.0 QUALIFICATION TEST

Qualification testing was conducted in accordance with Hamilton Standard specification SVHS5619 and appropriate operation sheets. An additional thermal vacuum test was run after the completion of the original sequence due to the out of specification conditions which occurred in the thermal verification test sequence 19. A sequential tabulation of the qualification test program is given in Table II. Each of the test sequences is summarized in Table III and a more detailed description of each test is provided in the following paragraphs.

TABLE II

RAE-B VCPS QUALIFICATION TEST SEQUENCE

Test

Completion Date

-		a /a = / ==a
1.	System Firing Base Point	3/25/72
2.	Decontamination and Contamination Check	3/25/72
3.	Internal Leakage	3/26/72
1.	External Leakage	3/27/72
4.	Electrical Check	3/28/72
5.	Mass Properties	4/6/72
6.	Contamination Check	4/6/72
	Acceleration	4/11/72
8.	Contamination Check	4/12/72
9.	Internal Leakage	4/13/72
	External Leakage	4/13/72
10.	Electrical Check	4/14/72
	Vibration	4/19/72
12.	Contamination Check	4/19/72
	Proof Pressure	4/20/72
14.	Internal Leakage	4/20/72
	Alignment	4/20/72
16.	Electrical	4/21/72
17.	External Leakage	4/22/72
18.	Visual Examination	4/22/72
19.	Thermal Verification	5/9/72
20.	Contamination Check	5/11/72
21.	Thermal Vacuum	5/19/72
22.	Contamination Check	6/1/72
23.	Internal Leakage	6/1/72
-	External Leakage	6/2/72
24.	Electrical Check	6/3/72
25.	Spin Firing	6/7/72
26.	System Firing Base Point	6/9/72
27.	Wet Weight	6/9/72
28.	Mission Profile	6/10/72
29.	Extreme Temperature and Vacuum Firing	6/19/72
30.	Decontamination and Contamination Check	6/20/72
31.	Insulation Verification	7/28/72
32.	Contamination Check	7/28/72
33.	Alignment	8/14/72
34.	Internal Leakage	8/15/72
	External Leakage	8/16/72
35.	Electrical Check	8/18/72
36.	Post Test Inspection	8/23/72
JU•	TOPO TOPO TUPKOOATON	

11<

Hamilton	U
Standard	

FOLDOUT FRAME

.....

TABLE III

RAE-B VCPS QUALIFICATION TEST SUMMARY

Test Sequence	Test Name	Refer Spec. Para.	ences AT Sheet Pages	Specification Requirement	Te
l	System Firing Basepoint	4.3.1	1 - 6	Provide baseline performance impulse vs. time for VCPS.	See Sequence 26.
2	Decontamination and Contamination Check	4.3.2	7 - 11	Cleanliness Verification	
	contairmation check			Particle Size No. Allowable	Actual No.
				0 - 5 microns Unlimited 5 - 10 1200 10 - 25 200 25 - 50 50 50 - 100 5	- 25 4 2 1
				100 0 50 metallic 0	0 0
3	Leakage	4.3.3	12 - 25	Allowable internal leakage Sum of Latch Valves 8 scc/hr GN ₂ Sum of Thrust Control Valves 8 scc/hr GN ₂ External Leakage 1 x 10 ⁻⁴ scc/sec He	Sum of Latch Valves Sum of REAs Total VCPS External :
4	Electrical	4.3.4	26 - 50	Pressure Transducer	
				PSIA Output Req'd	Pressure 0
·				100 1.61 ± .05 VDC 200 3.12 ± .05 VDC 260 4.01 ± .05 VDC	101 psia1200 psia3258 psia3
				Thermistor Calibrate to within 10% of amb. temp. Ambient 73.5°F	<u>Actual</u> Tank #1 73.5°F Tank #2 71°F
			· ·	<u>Heaters</u> Circuit resistance shall be:	Actual Resistance
	· · · ·			REA and Tank 20.5 ± 1 ohmREA 72 ± 3.6 ohmsBracket 36 ± 1.8 ohmsLine 144 ± 7.2 ohms	20.8 ohms 73.8 ohms 35.0 ohms 143.0 ohms
				Valves Current and voltage traces of the latching and thrust control valves actuation shall exhibit standard characteristics.	Visual examination o

.

FOLDOUT FRAME

0

2

SVHSER 6226

Test Results

	scc/Hr			
0.2	scc/hr	GN		
Leakage	2.6 x	10-6	scc/sec	He

Output

1.62 VDC 3.12 VDC 3.97 VDC

> Line 74°F Bracket 74°F

of valve traces showed no discrepancies.

12< 9

Hamilton U Standard A®

TABLE III (continued)

		Refer	ences		
Test Sequence	Test Name	Spec. Para.	AT Sheet Pages	Specification Requirement	
5	Mass Properties	4.3.5	50 - 53	Center of Mass: ± 0.015 of 2 axis Static Balance: 20 oz-in max Dynamic Balance: 250 oz-in ² max	Testing performed Properties Report
6	Contamination	4.3.2	54	Same as Sequence 2	Actu
-					
7	Acceleration	4.3.6	55 - 57	Simultaneous application of 3 g's in the +X and 14.7 g's in the +Z 3 g's in the +Y and 14.7 g's in the +Z	Test performed at Resultant load 1 for 1 minute.
8	Contamination	4.3.2	58 - 60	Same as Sequence 2.	Actu
· · ·					· · ·
9	Leakage	4.3.3	61 - 73	Same as Sequence 3.	Sum of Latching Va Sum of REAs Total VCPS Externa
10	Electrical	4.3.4	74 - 91	Same as Sequence 4.	Pressure Transduce
					Pressure
					105 psia 202 ps ia 260 ps ia
					Thermistor:
					Room Ambient 76 Tank #1 75 Tank #2 74
	· · ·				

FOLDOUT FRAME

- . . FOLDOUT FRAME

Test Results

ned at GSFC. Reference NASA GSFC Mass ort Appendix E of this report.

Actual No. Particles

at D. T. Brown ad 15 g's applied at 137.5 in at 62 RPM

ctual No. Particles

2.5 1	 . *		
1			
0			· .
0			
0			

g Valves: 1.4 scc/hr GN₂ : 0.6 scc/hr GN₂ ernal : .15 x 10⁻⁴ scc/sec He

lucer

Output

1.67 VDC 3.16 VDC 3.99 VDC

76°F 75°F Line 75.5°F 74°F Bracket 75°F

13<

Hamilton	
Standard	DIVISION OF UNITED AIRCRAFT CORPORATION

TABLE III (continued)

		Refer	ences		
Test Sequence	Test Name	Spec. Para.	AT Sheet Pages	Specification Requirement	Tes
bequence		<u>raia.</u>	rages	Specification Requirement	
					Heater Circuit Resista
					REA and Tank: 20.8 c REA 73.8 c Bracket 34.75 c Line 143.0 c
					Visual examination of
11	Vibration	4.3.7	92 - 98	Vibration - See Appendix C for levels required and visual examination for structural damage.	See Appendix C for con structural damage note
12	Contamination	4.3.2	99 - 100	Same as Sequence 2.	Actual
				:	
				-	
13	Proof	4.3.8	102	450 ± 10 psia.	450 psia, visually exa
14	Internal Leakage	4.3.3	103 - 104	Same as Sequence 3	Sum of latching valves Sum of REAs:
15	Engine Alignment	4.3.10	117 - 118	Each REA must be within ± 30 minutes of the spacecraft center of gravity location.	Actual misalignment: REA #1 9.0 minutes REA #2 7.5 minutes
16	Electrical	4.3.4	119 - 136	Same as Sequence 4.	Pressure Transducer
					Pressure Out
					101 psia1.6205 psia3.2258.4 psia3.9

Thermistors:Ambient temperature75°FTank 175°FBracket74.5°FTank 274.5°FLine75°F

FOLDOUT FRAME Ì

SVHSER 6226

Fest Results

tance

ohms

ohms

ohms

ohms

of valve traces showed no discrepancies.

control accelerometer plots. No oted.

ual No. Particles

2 1 0 0 0 0

examination showed no structural damage.

ves: l scc/hr GN₂ max. Nil

tes max. tes max.

Output

1.62 VDC 3.20 VDC 3.98 VDC

14<11

andarc	A®				SVHSE
			rences		
Test equence	Test Name	Spec. Para.	AT Sheet Pages	. Specification Requirement	Test Results
					Heater ResistancesREA and Tank20.9 ohmsREA73.8 ohmsBracket34.9 ohmsLine142.8 ohms
					Visual examination of valve traces showed no disc
17	External Leakage			Total VCPS external leakage shall be 1×10^{-4} scc/sec He max.	Actual .13 x 10 ⁻⁴ scc/sec He
18	Visual Examination			Visually examine the VCPS for physical damage.	No discrepancies were noted.
19	Thermal Verification	4.3.11	137 - 145	No recorded VCPS temperature shall exceed the range of 45° F to 140° F.	Propellant line temperatures were below 45°F in the cruise condition.
				The VCPS tank electrical heaters shall not be re- quired to actuate in the 2 hour cold case.	Propellant line and tank temperatures were below both 60° and 0° case.
					The tank heater actuated in the 0° cold case.
					Corrective action for this malfunction is detailed the engineering report of Appendix D.
20	Contamination Check	4.3.2		Same as Sequence 2.	Actual No. Particles
					. 16 12
					2
					0 0
21	Thermal Vacuum	4.3.12	146 - 155	Temperature cycle the VCPS between 45°F and 140°F; 6 times;	
			_//	a) Thrust Control Valves - power drain shall not exceed 10 watts	a) Thrust Control Valve's average power:
				 b) Latch Valve shall actuate as indicated by position switch c) A thermostates shall actuate between 55 ± 5°F and deactuate between 65 ± 5°F. 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
					b) No discrepancies.

FOLDOUT FRAME

-

ISER 6226

screpancies.

the 60°

w 45°F in

led in

15< ¹²

Hamilton Standard Ŭ A®

•

.. •

TABLE III (continued)

			rences												
Test Sequence	Test Name	Spec. Para.	AT Sheet Pages	Specification Requir	ement						<u>Test</u> I	Results			
							· .		tem] erro	peratur	The record es during t to the time	the fir	st three	cycles t	were in
			;	4		l On	Off	On	2 Off	3 On	$\frac{C}{1}$	CLE + Off	.5 On Of	f On	6 Off
	· · ·	•	÷	· .	Line Bracket Tank	(*) 56 52.0	(*) (*) (*)	(*) 55•5 52•5	(*) 65.5 (*)	52.5 56.0 52.5	(*) 53 64.5 55.0 (*) 52.7	67.5 62.0 66.5	51.5 69 57.0 65 52.5 67	.0 51.5 .0 55.0 52.1	5 68 0 61.5 0 67
										°F					
22	Contamination Check	4.3.2	156 - 158	Same as Sequence 2.				· ·			Actual No	o. Part	icles		
			÷								2. 1. 0		·	1	
	· · ·						• •				· 0 0 0				
23	Leakage	4.3.3	159 - 171	Same as Sequence					Latching Thrust (Total V(Control		age	36 x 10	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
24	Electrical Check	4.3.4	172 - 189	Same as Sequence 4.					Pressure	e Trans	ducer				
			:						Pressure		Cutput	-			
					· · ·				100.3 p: 201.4 p: 261.7 p:	sia	1.60 1 3.14 1 4.02 1	/DC	· .	•	
		. :		. ·					Tank #	tor - R 1 73. 2 73°	oom Ambient 5°F Bracke F Line	t Temp. et 73.5 73.0	5°F		
				· · · · · · · · · · · · · · · · · · ·						nd Tank	Resistance 20.8 73.8 34.7 142.1	5hms ohms ohms			
						FOLDOI		No.						16~	

ł

FOLDOUT FRAME

FOLDOUT FRAME 2

ð

SVHSER 6226

۰.

۰.

Hamilton Standard U Â.

TABLE III (continued)

FOLDOUT FRAME

m e st		Refer			
Test Sequence	Test Name	Spec. Para.	AT Sheet Pages	Specification Requirement	Test Results
. ·					Visual examination of valve traces showed no discrepancies.
25	Spin Firing	4.3.16	214 - 219	VCPS shall not exhibit any abnormal firing character- istics such as P _c discontinuities or roughness when compared to previous non-spinning firings.	Engine P _c and tank pressure traces were visually examined and found to be smooth and continuous.
26	System Firing Basepoint	4.3.1	190 - 195	Impulse delivered shall be within 5% of the Sequence 1 basepoint data.	Impulse delivered by VCPS in 2 minutes.
· ·					Initial Tank Pressure <u>100 psia</u> <u>260 psia</u> Sequence #1 <u>667 lb-sec</u>
			•		Sequence #1 607 10-sec 1415 10-sec Sequence #26 653 1b-sec 1369 1b-sec Tolerance - 2.1 % - 3.1%
27	Wet Weight	4.3.13	198 - 199	VCPS wet weight shall not exceed 66 lbs. The pro- pellant consumed during the mission profile test shall be determined.	VCPS weight 65.8 lbs. Propellant consumption 42.4 lbs
28	Mission Profile	4.3.14	200 - 205	The VCPS mission average I _{sp} shall be 220 sec. or greater.	Mission Average I _{sp} 225.6 sec.
29	Extreme Temperature and Vacuum Firing	4.3.15	206 - 213	Demonstrate thermal vacuum operation of the REAs at 140,000 ft. altitude min. and 45°F and 120°F.	Reference Figure 3 for impulse delivered by VCPS.
30	Decontamination and Contamination Check	4.3.2	220 - 223	Same as Sequence 2.	Actual No. Particles
			~		10 2 1
					0 0 0
31	Propellant Line Insulation Verification Test	· .	Appendix #1 1 - 10	The VCPS propellant lines temperature shall not be less than 45°F.	Actual minimum line bemperature was 51°F. See Appendix B for full thermal report.
32	Contamination Check		Appendix #1	Same as Sequence 2.	Actual No. Particles
	· · ·		11 - 13		8

SVHSER 6226

17< 14

Hamilton U Standard A®

TABLE III (continued)

			Refe	rences			
	Test Sequence	Test Name	Spec. Para.	AT Sheet Pages	Specification Requirement		Te
<u>.</u>	33	Alignment	4.3.10	Appendix #1 45 - 47	Same as Sequence 15.		Actual Misalignment REA #1 12 minutes REA #2 12 minutes
	34	Leakage	4.3.3	Appendix #1 14 - 26	Samé as Sequence		Internal Leakage Latching Valves Thrust Control Valv
							External Leakage Total VCPS
	35	Electrical Check	4.3.4	Appendix #1	Same as Sequence 4.		Pressure Transducer 0 101.7 psia 1.
		• •		27 - 44			203.0 psia 3. 255.7 psia 3.
							Thermistor:AmbientTank #171.5°FTank #271.5°F
	· .				Heater Circuit ResistanceREA and Tank20.7 ohmsREA71.6 ohmsBracket34.6 ohmsLine36.0 ohms		Heater Circuit ResistREA and Tank20.REA71.Bracket34.Line35.
	. •	· ·	1		· ·		Visual examination of
	36.	Post Test Inspection		Appendix #1 47	Review data for compliance to specification requirements. Visual inspection of VCPS.	• -*	All data conformed to reviewed and found ac

.....

ク

SVHSER 6226

Test Results es es 0.4 sec/hr GN₂ live 0.7 scc/hr GN₂ .5 x 10⁻⁶ scc/hr GN₂ .5 x 10⁻⁶ scc/hr GN₂ Output 1.61 VDC 3.17 VDC 3.94 VDC it Temperature 72°F Line 71.4°F Bracket 71°F stance 0.7 ohms 1.6 ohms 4.6 ohms 5.7 ohms

of valve traces showed no discrepancies.

to specification requirements or was acceptable via MRA.

18<

. 1

Hamilton Standard A®

4.1

System Firing Base Point, Sequence 1 and 28

The purpose of this test was to provide a firing base point for comparison of VCPS performance before and after the structural and environmental qualification tests.

Both sequences were performed at identical conditions in the H-5 vacuum test cell. The VCPS was loaded with 12 lbs of hydrazine and pressurized to 260 psia. The unit was fired for 2 minutes with an initial pressure of 260 psia and then refired for 2 minutes after venting the VCPS pressure to 100 psia. No test anomalies were encountered during either test sequence.

The following table shows the impulse delivered by the VCPS and each REA for each firing.

@

VCPS Total REA #1 REA #2

Impulse delivered by the system was repeated within 3.2% of the initial base point after being subjected to test sequences 2 thru 25. This repeatibility is considered excellent and demonstrates that the VCPS performance capabilities were unaffected by the structural and environmental testing.

The VCPS was decontaminated after each test sequence in which the unit was loaded with hydrazine or referee fluid. Contamination checks were made after each decontamination check and after major structural and environmental tests and prior to delivery.

The purpose of the decontamination procedure was to assure the complete removal of hydrazine propellant from the system. This was done by gravity draining the residual hydrazine and flushing the VCPS with high purity water. The water is then drained and removed by an IPA flush and vacuum drying of the system.

A contamination check was made during the IPA flushing sequence by withdrawing an effluent sample and performing a particulate count on the sample. Each contamination check made during the qualification test was found to be well within the allowable CE-5 cleanliness level.

4.2

II	PULSE DELIVER	RED (lbs-sec)					
Sequer	nce 1	Sequer	Sequence 26				
100 psia	@ 260 psia	@ 100 psia	@ 260 psia				
667 333 334	1 413 707 706	653 330 323	1369 689 680				

Decontamination and Contamination Check, Sequence 2, 8, 12, 20, 22, 30 and 32

16 19<

4.2 continued

CE-5 Cleanlir Particle Size	ness Level Allowable Co	ount
0 - 5 Micron 5 = 10 10 - 25 25 - 50 50 - 100 100 50 Metallic	Unlimited 1200 200 50 5 0 0	

4.3 Leakage, Sequence 3, 9, 14, 17, 23

Internal leakage test was performed after various environmental tests to verify the leakage rate between the propellant source and the thrust chamber. Four internal leakage measurements were made during each sequence:

- 1. the sum of the latching valve leakage at 300 psia
- 2. the sum of the latching valves leakage at 15 psia
- 3. the REA #1 thrust control valve at 300 psia
- 4. the REA #2 thrust control valve at 300 psia

The internal leakage rates were measured by pressurizing the VCPS, as required, with the appropriate valves closed and collecting the gaseous nitrogen leakage via the water displacement method. The external leakage was measured by the mass spectrometer method with the unit pressurized to 300 psia GHe.

The following table shows the allowable leakage rates compared to the maximum values exhibited during any of the test sequences.

Leakage Check	Allowable	Maximum Recorded	Sequence
Internal Sum of Latching Valves Sum of REAs	8 scc/hr GN ₂ 8 scc/hr GN ₂	1.4 scc .6 scc	. 9 9
External Leakage	lxl0 ⁻⁴ scc/ sec GH _e	3.4x10 ⁻⁵	23

Electrical Check, Sequence 4, 10, 16, 24, 35

The purpose of the electrical check was to verify the nominal operation of each electrical component by a functional check at appropriate intervals throughout the qualification test. Included in the test are functional checks of the REA valves, latching valves, pressure transducer, electrical heaters, thermostats and thermistors.

4.4

4.4 continued

All the electrical components checked out properly throughout the qualification test except the REA heater. During the first electrical check, sequence 4, an REA heater was found to be defective. The defective unit was removed and replaced with a spare heater. The malfunction analysis of the REA heaters is covered in RDR #02908 in Appendix B. As a result of the investigation, heater manufacturing procedures were revised and all REA heaters were replaced with new units made to the revised procedures.

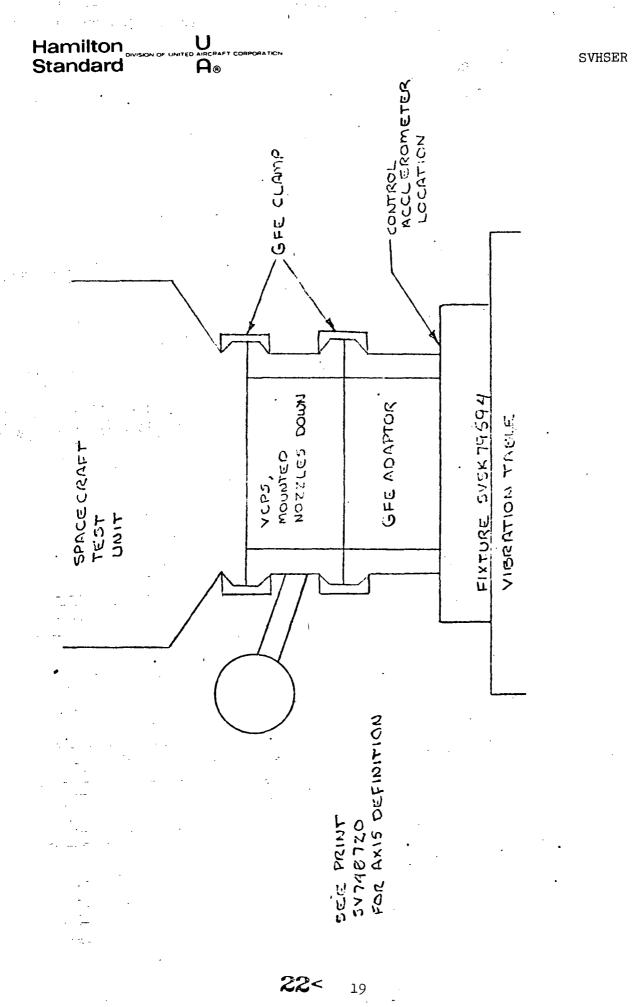
Test Sequence 35 shows a line heater circuit resistance of 36 ohms compared to 144 in previous tests, this change reflects the line heater wiring change from series to parallel heating elements, required as a result of the propellant line temperature problem.

4.5 Mass Properties

This test was performed at the NASA facility at GSFC. The NASA provided test report is included in Appendix D. During the mass properties testing it was found that the balance of the VCPS could be varied by the propellant filling rate. The proper fill rate will subsequently be determined by GSFC after delivery of the unit.

4.6 Acceleration

Sequence 7


Sequence 5

Acceleration testing was conducted at D. T. Brown test facility. The VCPS contained high purity water and was pressurized to 250 psia. The mounting fixture was designed to provide 3 g's in the X or Y axis while applying 14.7 g's simultaneously in the Z axis. Two one minute runs were made accelerating the unit in the +X, +Z and +Y +Z axes. The acceleration parameters were: arm length - 137.5 inches, 62 RPM with a resultant load of 15 g's. All test parameters were within specification.

4.7 Vibration

Sequence 11

The purpose of the vibration test was to demonstrate that the VCPS and GFE transtage could structurally withstand and successfully operate after being subjected to the required vibration levels. Since the transtage hub was to be tested at the same time as the VCPS, GSFC provided Hamilton Standard with a mass simulating spacecraft and the personnel to assemble the system. The VCPS/spacecraft assembly was tested as a unit during the sinusoidal vibration below 200 Hz and for the entire random input. The spacecraft was removed for sinusoidal inputs above 200 Hz. The VCPS was fully loaded with high purity water and pressurized to 245 psia. Figure 3 shows the test set up and Table 4 provides a listing of the recording accelerometers used. The test engineering report including the control input level plots are provided in Appendix C.

VIBRATION TEST SETUP FIGURE 3

SVHSER 6226

Hamilton	DIVISION OF UNITED	
Standard		A _®

4	L
G	ł
5	l
щ	1
4	ł
н	ł

Install accelerometers on the test item and record outputs during testing as shown in the following Table:

	ΓΛ	VIBRATION INPUT AXIS	XIS
ACCELEROMETER LOCATIONS	X	X	2
Fixture (Control)	Χ, Υ, Ζ	X, Y, Z	Х, Ү, Z
Spacecraft C.G.	Х, Ү	Χ, Υ	Х, Ү
REA Mount	X	Υ	2
Tank Mount	Х	Ţ	2
Latch Valve Mount			2
Junction Box Mount			Ŋ

i

N

≻

×

Hub (Inside, near arm bracket mount)

でも

Pressure Transducer

÷; -; 20

23<

N

Sequence 13

4.8 Proof Pressure

A_@

The purpose of the proof pressure test was to verify the integrity of the VCPS tanks and manifold after the structural qualification test sequences. The VCPS was pressurized to 450 psia for 2 minutes. No visual damage was incurred by the VCPS and the unit passed all subsequent leakage tests.

4.9 Engine Alignment

The REAs were initially aligned during the VCPS assembly. The alignment tests were performed after the structural qualification test and after the firing test prior to shipment. Auto collimators and optical targets were used to initially align and subsequently check the alignment of the REAs to within \pm 30' from the theoretical VCPS C.G. The test values in all cases fell between 7.5 and 13 minutes from the C.G.

4.10 Visual Examination

At the completion of the structural qualification tests the VCPS was thoroughly examined by Hamilton Inspection personnel for any damage which may have been incurred. No damage was noted.

Thermal Verification

The purpose of the thermal verification test was to demonstrate the capability of the VCPS thermal design to maintain the propellant system within the temperature range of 45°F to 140°F, under solar simulated flight conditions. Testing was performed at General Electric's test facility in Valley Forge, Pennsylvania.

The VCPS was instrumented throughout with non-flight thermocouples, loaded with 6 lbs of referee fluid and pressurized to 100 psia. Figure 4 shows the spacecraft/VCPS sun angle relationship. The spacecraft/VCPS was mounted on a spin fixutre which was capable of rotating the system to achieve sun angles of 120° (warm cruise) and 60° (cold cruise), while spinning at 55 rpm. The zero degree sun angle was achieved by turning of the solar simulator. Although the problems associated with the use of thermocouples readout through a slip ring greatly reduced the amount of useful data achieved, it was evident that the VCPS was unable to maintain propellant lines and tanks pressure above freezing during the 60° and $0^{\rm o}$ sun angle modes. The following table briefly summarizes and compares the test results to the expected temperatures.

21 24<

4.11

Standard

Hamilton

Sequence 19

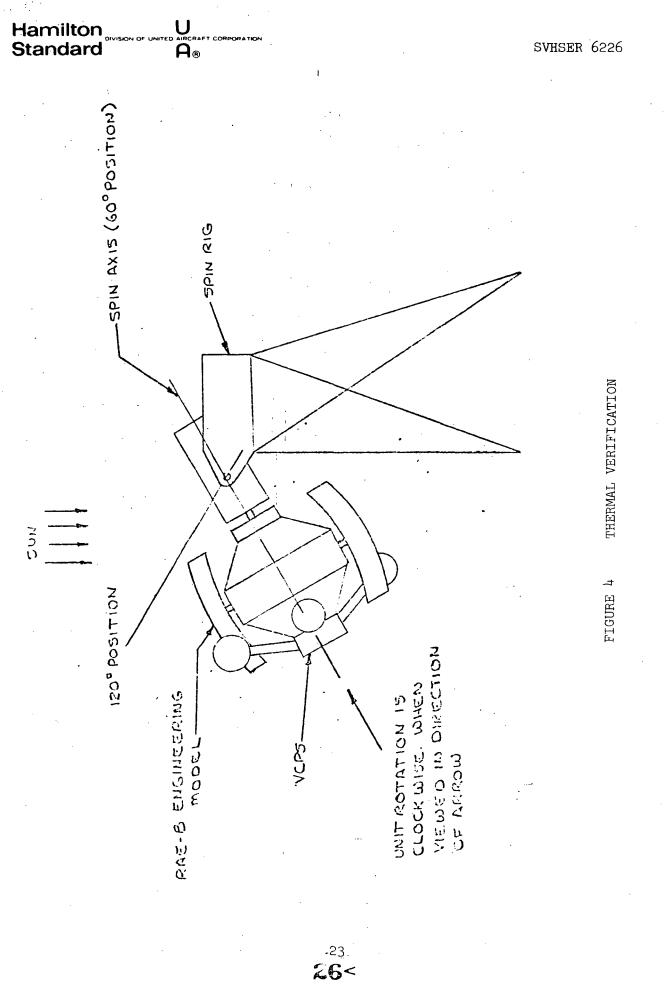
Sequence 18

Sequence 15 & 33

4.11 continued

	Sun Angle							
Thermocouple	120	0	.6	0°	0°			
Location	Predicted	Actual	Predicted	Actual	Predicted	Actual		
Propellant Tank Outlet	82°F	84°F	112°F	72°F	67°F	10°F		
Bracket Area	ALL READ	INGS WER	E WITHIN SP	ECIFICAT	ION			
Propellant Line	N/A	lOl°F	55°F	42°F	48°F	10°F		

This problem and the subsequent corrective action, as agreed to by Hamilton Standard and GSFC is documented in GSFC Malfunction Report D02909 ref. Appendix B. A detailed description of the subsequent thermal analysis and verification test is provided in the engineering report included as Appendix


4.12 Thermal Vacuum

Sequence 21

The purpose of this thermal vacuum test was to demonstrate the operation of the VCPS components, except engine firing, at the specified temperature extremes of 45° F and 140° F. This testing was performed in Hamilton Standard's 10 ft. x 10 ft. thermal vacuum chamber. The VCPS was loaded with referee fluid and pressurized to 250 psia for the testing.

The unit was subjected to six (6) temperature cycles between the temperature limits with a 2 hour hold period at each extreme. The operation of each component was checked during each temperature hold and the electrical heaters and thermostats operation was tested on each cycle. All components demonstrated satisfactory operation.

Two test conditioning problems were encountered during the thermal vacuum testing. First, some difficulty in maintaining the required 1×10^{-5} torr pressure was encountered. The chamber pressure slipped up to 1.5×10^{-5} torr for two short periods during the 48 hour test. The second problem involved the rate of temperature cycling. The rate of temperature change during the first three cycles was too fast causing a temperature distribution within the VCPS because of what appeared to be improper thermostat activation. During the last three temperature cycles the cycling rate was sufficiently slow to allow the proper recording of the thermostat temperatures.

4.13 Spin Firing

Sequence 25

The spin firing test was conducted to demonstrate that the engine thrust and tank blowdown characteristics are not affected by the vehicle spin rate.

Testing was performed in the H- μ firing cell at ambient temperature and pressure. The VCPS was loaded with 45 lbs of hydrazine and pressurized to 245 psia. REA chamber pressure and the VCPS pressure transducer were recorded via a slip ring during each firing. Two firings of 2 minutes each were conducted at 55 ± 5 rpm and 12 ± 2 rpm for a total of 8 minutes firing time. Visual examination and comparison of the REA P_c and tank pressure traces show the traces to be smooth, continuous and typical of non-spin firing traces.

4.14 Wet Weight

Sequence 27

The purpose of the wet weight test was to determine the mass of propellant consumed during the mission profile test. In order to achieve the accuracy required to provide significant data, a balance scale was built into the firing cell for this test.

Dry Weight	45.65 lbs
Propellant Loaded	+45.20
Gas	+ .42
Total Wet Weight	91.27

Less Weight of VCPS after Mission Profile 48.87

Propellant Consumed 42.4 lbs.

4.15 Mission Profile

Sequence 28

The purpose of the mission profile test was to subject the VCPS to a typical mission firing sequence and verify the average specific impulse for that mission. The system was initially loaded with 45.2 lbs of N_2H_4 pressurized to 245.5 psia. Testing was conducted in the H-5 firing cell with the initial chamber pressure at 100,000 ft. minimum. Four (4) firings were performed with firing time based on the engine performance required to provide impulse of 7253, 770, 1377 and 151 lbs/second respectively. No test anomalies were encountered. The test result for the mission profile are summarized in the following table.

Hamilton U Standard A®

4.15

continued

	Initial Conditions								
	Tank Press.		REA Temp.	Firing Time		Delivered Impulse		Missior I _{sp}	1 _
1 2 3 4	112 p	osia osia osia osia	68°F 87°F 93°F 94°F	870 114 222 24	sec	726 1312	lb-sec lb-sec lb-sec lb-sec		
TOTAL			1230	sec	9519	lb-sec	225.6	sec	

4.16

Extreme Temperature and Vacuum Firing

Sequence 29

s

The purpose of this testing was to provide firing data for temperature performance prediction and to demonstrate the operation of the REA in thermal vacuum environment. Testing was conducted in the H-5 firing cell with the chamber initially evacuated to 140,000 feet min. prior to each firing. The VCPS was installed loaded with 45 lbs. of propellant and pressurized to 245 psia.

Temperature conditioning was accomplished by preconditioning the VCPS and propellant prior to loading the system and evacuating the cell. The VCPS was then loaded with conditioned fuel and the VCPS temperature was maintained by conditioning the transtage mounting block while slowly evacuating the test cell. For the 40° firing, the firing cell had to be backfilled with dry GN₂ to prevent condensed moisture from freezing on the unit as the cell was evacuated.

The following table outlines the test conditions and results of the thermal vacuum firing test.

<u>Run</u>	VCPS Bracket Temp.	Propellant/ Tank Temp.	REA Temp.	Initial Tank Pressure	Run <u>Time</u> (mins.)	Impulse <u>REA #1</u>	Delivere REA #2	d (lb-sec) <u>Total</u>
1 2 3 4 5 6	145°F 70°F 42°F 143°F 60°F 40°F	136°F 80°F 45°F 125°F 75°F 45°F	125°F 60°F 50°F 136°F 60°F 40°F	242 psia 180 psia 143 psia 163 psia 132 psia 112 psia	2 2 2 2 2 2 2 2	624 502 428 471 402 365	630 507 431 476 405 364	1254 1009 859 947 807 729

4.17 Propellant Line Insulation Verification Test

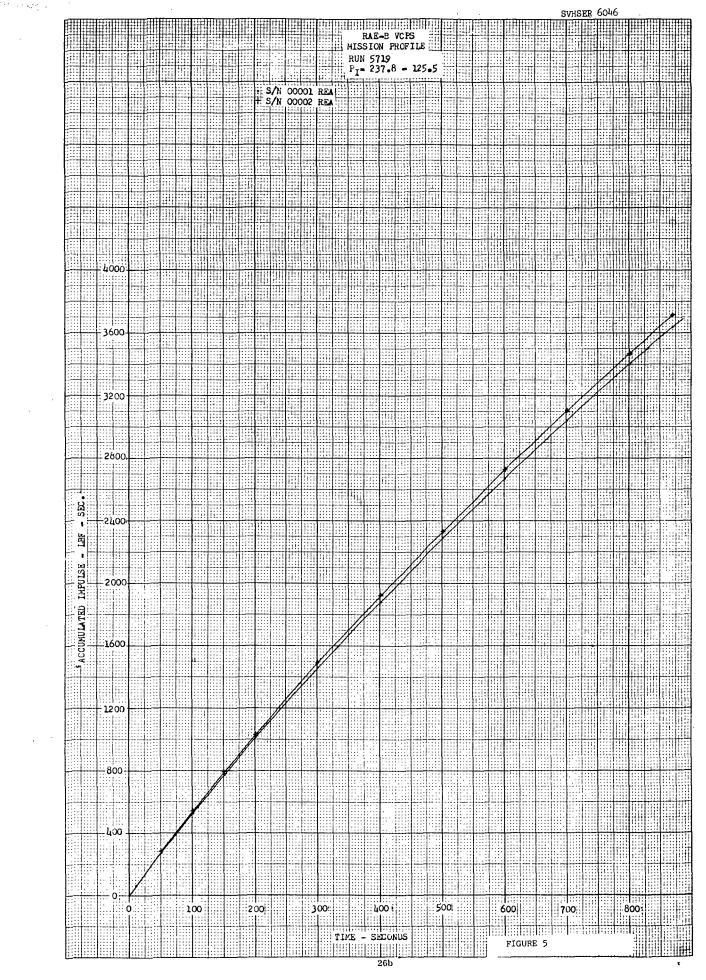
Sequence 31

The testing was performed in addition to the original qualification test program as a result of the malfunction of the VCPS during the thermal verification test, sequence 19. The purpose of the testing was to verify the selection of the proper insulation thermal characteristics, demonstrate the acceptability of the insulation assembly procedure, and to provide the data necessary for the thermal model to generate the space/flight temperatures.

The test was conducted at Hamilton Standard in the 10 ft. x 10 ft. thermal vacuum chamber. Test conditions were set to simulate worst case conditions by having zero sun input and controlling the line interfaces, hub and tanks, to minimum expected temperatures. Three thermal modes were tested. First, the VCPS was allowed to reach steady state with 12 VDC input to the line heaters. Secondly, heater input was then increased to 13.8 VDC until steady state was achieved. Finally, the heaters were deactivated and the VCPS temperatures were monitored during a 2 hour cool down.

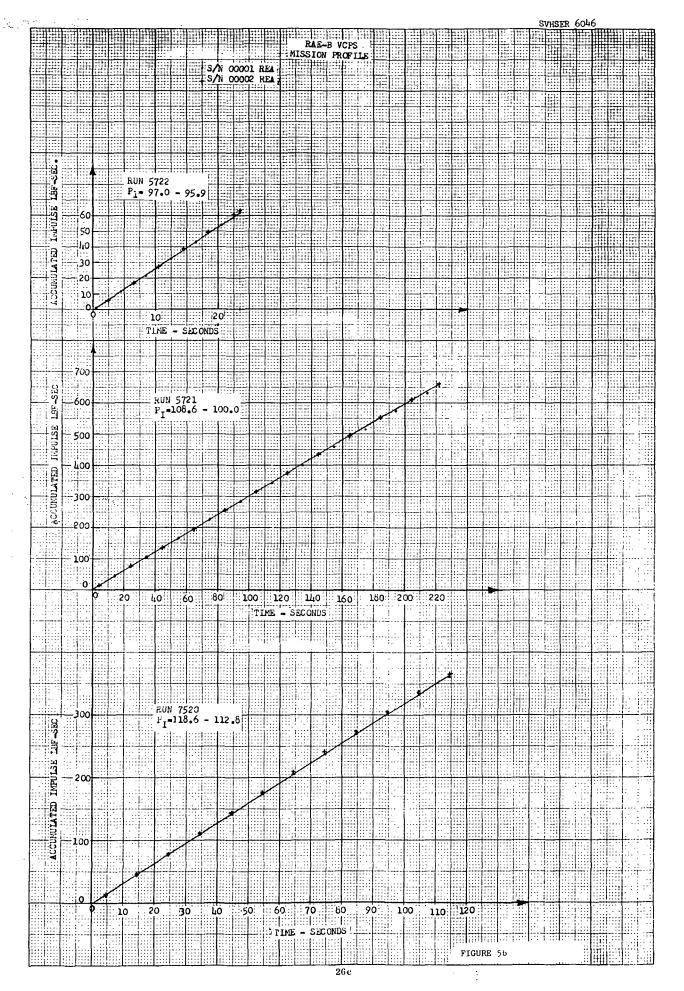
The test results showed that the propellant line temperatures were maintained above freezing even in this worst case test and that the minimum expected line temperature under flight conditions is $51^{\circ}F$. A detailed description of this testing and the results of the subsequent thermal analysis is provided in the engineering report in Appendix E of this report.

4.18 Post Test Inspection

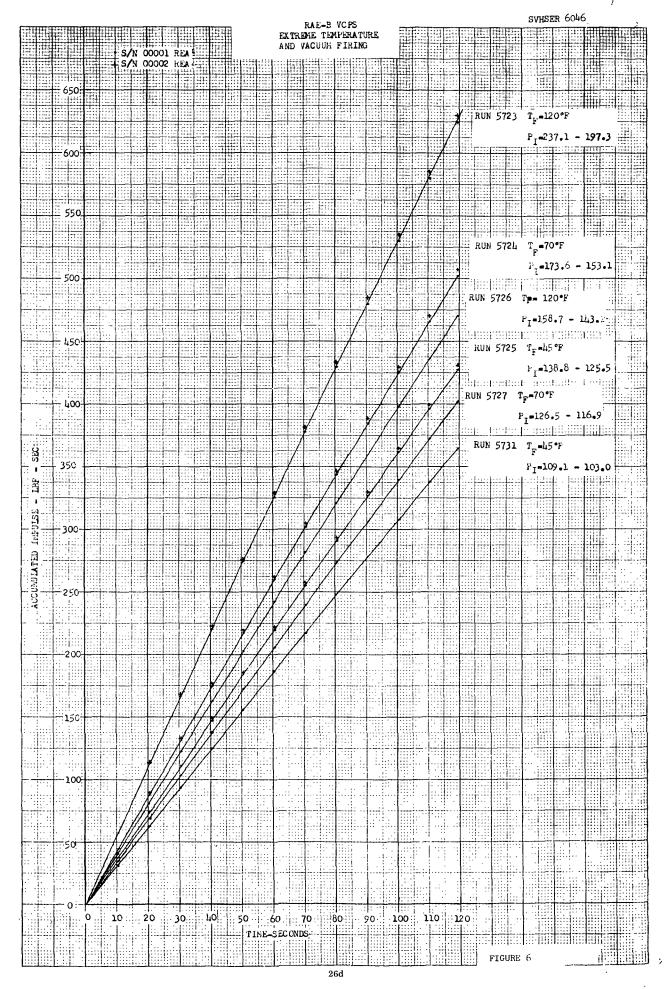

Sequence 36

This test sequence included a final visual examination of the VCPS by HS Inspection and DCASO personnel and a complete review of the test data for compliance to the specified requirements.

The visual examination revealed no major discrepancies although some minor cosmetic flaws were noted. These were repaired by simple cleaning or in the case of the gold surfaces, the flaws were covered by vapor deposited gold kapton tape. The test data was reviewed and found to be compliant with the specified requirements.


Hamilton UNITED AIRCRAFT CORPORATION	•		
Standard A _®			
		1	

5.0 TANK THERMAL ANALYSIS AND PROPELLANT LINE THERMAL ANALYSIS



31<~~~

÷

32<

33<

÷.

Hamilton U Standard A®

RAE-B VCPS

TANK THERMAL ANALYSIS REPORT

34<

Hamilton U Standard A®

1.0 INTRODUCTION

The intent of this report is to document the thermal analysis effort relative to the VCPS tanks conducted since the thermal verification test of May 1972. The pretest analysis and test results are included along with subsequent analyses which served to correlate the thermal model and provide definition of the tank coating changes required for operation within specification limits.

2.0 SUMMARY

The solar thermal verification test showed a large discrepancy between the pre-test tank temperature predictions and the actual test results. A large predicted thermal gradient across the tank failed to materialize and the cooldown rate during the 2 hour transient dark period exceeded the predicted rate by a large amount resulting in temperatures far below the specification minimum. Subsequent analyses have produced a thermal model which duplicates the test results. The original discrepancy has been found to be a combination of oversimplified thermal modeling together with factors unique to the test setup and solar lamps. The mission thermal analysis has been redone using the improved thermal model with the result that 56% of the Black Paint stripe on each tank must be taped over with vapor deposited gold to insure satisfactory operation in space.

3.0 DISCUSSION

3.1 Requirements

The VCPS specification S-723-P-19 requires that tank propellant temperatures remain between 45°F and 140°F with the additional requirement that the tank heaters not turn on; implying that the minimum tank temperature allowable is 50°F at the tank outlet. These criteria must be met over environmental variations characterized by two extremes, hereafter referred to as "HOT CASE" and "COLD CASE" defined as follows:

HOT CASE

Steady state cruise at 120° spin axis inclination (to the solar vector) followed by a 2 hour transient period at 180° inclination with minimum fuel load in the tanks of 6 lbs N₂H₄, total.

COLD CASE

Steady state cruise at 60° spin axis inclination followed by a 2 hour transient period at 0° inclination with minimum fuel load of 6 lbs N₂H₄, total.

3.2 Thermal Design Philosophy

The principal thermal design objective was to establish a passive thermal control coating system which would minimize the difference in propellant temperature between the hot case and cold case cruise conditions so that the subsequent full sun and dark transients would not yield out of spec temperature excursions. This required that the effective solar absorbtance of the tank be higher for the cold case than for the hot case to compensate for the difference in solar projected area (incident solar flux) between the 120° and 60° spin axis angles. Another requirement was to provide a low overall emittance to minimize the O^O spin axis cooldown rate while maintaining the proper % ratio for cruise operation. The coating arrangement selected was vapor deposited gold (Vacuum Metallizing Corp.) with a stripe of black paint applied to the upper (+Z) half of the tank to reduce the overall \mathbf{e} to the desired value (2.2) and simultaneously, by its placement, effect a higher absorptance in the 60° spin axis attitude. Figure 1 shows the tank stripe orientation relative to the solar vector at the 60° and 120° spin angle. Vapor deposited aluminum would have been a more desireable coating, since it has a lower \boldsymbol{A} and the same $\boldsymbol{\epsilon}$ as gold, but the tank vendor was worried about a possible corrosion problem involving aluminum and the tank material. Figure 2 shows the solar projected area of the black paint stripe in its original configuration as a function of spin angle inclination. The effective solar absorbtance of the tank with this stripe configuration is .412 at the 60° spin angle and .30 at the 120° spin angle.

3.3 Thermal Design Analysis

The original thermal design analysis was accomplished using the VCPS system thermal model which contains three tank nodes with associated vehicle and VCPS connectors. This model, the tank portion of which is shown in Figure 3, was input to HSD's general heat transfer computer program and run on the IBM 370-165 computer. A significant portion of the information required to set up this model was supplied by NASA/GSFC early in the design. These data, Table I, included the solar projected area of the tanks, arms and transtage, the view factors.from the tanks to space and nearby vehicle surfaces, the temperatures of nearby spacecraft surfaces, and the emittance and solar absorbtance of all system external surfaces. Since the tank model has three nodes, it was necessary to aportion the NASA/GSFC supplied solar inputs amont the three equal surface area nodes. This was accomplished approximately through the use of the GSFC shadow photographs and hand calculations. The resulting solar projected area of the three nodes for the hot and cold cases is shown below:

36<

Hamilton U Standard A

3.3 (continued)

Solar Projected Area (4 tanks) \sim FT²

	HOT (CASE	COLD CA	\SE
Spin Angle Solar Ap	120 ⁰	180°	60°	0 ⁰
Nodes 1 2 3	.5076 .4804 .384	.633 .916 .633	•547 •394 •122	0 0 0

It should be noted that the solar input is much more evenly distributed in the 120° spin axis case than in the 60° spin axis case where the input to the outboard tank node is considerably higher than that to the other nodes. The increase shadowing corresponding to the 60° spin angle intercepts the inboard areas of the tanks.

3.3.1 Pre-Test Predictions

Hot case and cold case temperature predictions were made after the VCPS had received the vapor deposited gold coating and the black tank stripe had been applied. The analysis was performed for space operation (as opposed to test chamber conditions which were not known at the time) with the intent of adjusting the model after the test to interpret the data at test conditions. Since the test was planned not to include the hot transient condition (180° spin angle) the predictions presented below omit this case. The predictions are based on a solar constant of 442 BTU/FT^2 -HR, 0° R radiation sink and the spec minimum fuel load of 6 lbs NoHh (1.5 lbs per tank).

PREDICTED TEMPERATURES OF

		NODE	•
Case	Tank 1	Tank 2	<u>Tank 3</u>
Cold Case Cruise (60° spin angle)	112	88	32
Cold Case Transient (0° spin angle, 2 hrs)	67	-4	-13
Hot Case Cruise (120° spin angle)	82	85	79

The most significant aspect of these predictions was the large temperature gradient between the outlet (fuel) end of the tank (NODE "Tank 1") and the opposite end ("Tank 3") for cold case cruise. The clarity afforded by hindsight would suggest that transport mechanisms within the tank tending to relax this favorable temperature gradient should have been added to the model at that point since the absence of the gradient at the design $\frac{1}{2}$ would have resulted in excessively low fuel temperatures during the transient (0° spin angle) condition. This was not apparent at the time.

37<

3.4

Test Conditions and Operation

The test was conducted in the General Electric Co. solar simulator at Valley Forge Space Center, King of Prussia, Pa. The VCPS was mounted to a GSFC supplied engineering model of the spacecraft, which was in turn coupled at the +Z end of the spin fixture. The combination was rotated at 55 RPM during the test and was processed from the initial 120° spin axis inclination (hot case), after equilibrium was achieved, to the 60° attitude (cold case cruise). At the latter spin angle, the spacecraft Z axis was at 30° to the horizontal (the solar source is reflected from ceiling mounted mirrors). The tanks contained 5.3 lbs of isopropyl alcohol which was added to the 1 lb of water already in the system (but probably not in the tanks). The intent was that the tanks contain 6.3 lbs of alcohol-water mixture to match the thermal mass of 6 lbs of N₂H₄. After equilibrium was achieved at the 60° spin angle, the solar source was turned off for 2 hours to simulate the transient condition at 0° spin angle.

A considerable amount of difficulty was encountered with thermocouple data errors generated by the slip ring temperature gradients. Fortunately the flight thermistors were utilized in the test providing very accurate tank temperatures at the outlet end and the means for correcting thermocouple data taken elsewhere on the tanks. The tank meridian thermocouple (NODE "Tank 2") failed early in the test.

The test conditions are summarized below:

Solar Power Intensity Cold Wall Temperature Tank Pressure Tank Load Vacuum Spacecraft RPM 118 w/ft² -270°F 100 psia 5.3 lbm isopropyl alcohol 9.5 x 10^{-7} torr 55

1.7

Test Results

3.5

Table II shows the tank temperatures from the various test conditions compared to the pre-test predictions. The data shows two significant discrepancies when compared to the predictions:

The predicted temperature gradient was absent (the test data temperatures are rougly equal to the <u>average</u> value of the three predicted temperatures).

The cooldown rate during the 2 hour dark transient was far greater than predicted.

38<

Hamilton UNITED ALECTAFT CORPORATION Standard A®

3.5 (continued)

Both discrepancies suggest the presence of some type of transport phenomena "shorting" the three tank nodes together, evening out the gradient and increasing the heat loss during the transient by distributing the stored heat of the liquid in NODE "Tank 1" over the entire tank surface.

3.6 Data Analysis

The post test analysis had the following major objectives:

- 1) Review the thermal model for errors and oversimplifications which may have contributed to inaccurate predictions.
- 2) Investigate the test conditions for phenomena peculiar to the test which will not occur in space.
- 3) Produce a thermal model which duplicates test results.
- 4) Replace "test conditions" with "space conditions" in the model and determine coating changes required for satisfactory thermal performance in space.

Prior to going into the details of converting the model to the G.E. test conditions, some runs were made using the space model with the following changes:

Run "A" - All 3 tank nodes were thermally shorted together and the cold case rerun. The results (Table III) agree far better with respect to cooldown rate and cold case temperature distribution than do the original predictions. A re-evaluation of the model calculations failed to reveal any errors other than failure to predict the thermal coupling of the 3 tank nodes. At this point, the various possible internal transport mechanisms where listed, evaluated, and added to the model if found significant:

1. Internal Radiation Among Tank Nodes and Fuel Puddle - A radiation network linking the 3 tank nodes (the fuel puddle is lumped into "Tank 1") and the tank attachment (NODE "ARM") was set up using 0.8 for the internal emittance. The effect of tank radiation alone is significant (Run B, Table III) and the conclusion must be drawn that it should have been in the model from the beginning. The coupling afforded by radiation alone, however, is insufficient to explain the test results.

. '

÷

3.6 (continued)

- 2. Natural Convection in the Pressurant Gas The presence of a large radial acceleration in the tanks (2.3 g's at 55 RPM) and a high pressurant density (100 psi N₂) produces significant convective coefficients between the warm end (NODE Tank 1) and colder tank areas. Convective coefficients were estimated treating the internal geometry as parallel plates with appropriate separation. Both horizontal and vertical plates were calculated reasoning that the tank geometry would produce convective coefficients somewhere between those two extremes. Figure 4 is a plot of the convective coefficients vs. tank delta T. These were added to the model along with the radiation (Run "C" Table III). These results show further improvement in the direction of matching the test data, but not to the degree of Run "A" (complete thermal short of the 3 tank nodes).
- 3. Mass Transfer (Diffusion) Diffusion rates for alcohol through nitrogen were calculated to assess the relative importance of evaporation from the fuel puddle and subsequent condensation on colder areas of the tank. Calculated mass transfer rates were found to be negligible.
- 4. Fuel Sloshing During the test, the orientation of the tanks was such that a ±1.0 g oscillatory side loading was applied to the fuel puddle along with the constant 2.3 g radial acceleration normal to the puddle surface. An estimate of slosh natural frequency gave a value of 2 hz. Since the system was spinning at 1 hz, and the unamplified response of the puddle to the ±1.0g would include an angle of 30° about the normal axis of the puddle, the proximity of the slosh exitation to the natural frequency suggests that the fuel was probably sloshing all over the inside of the tank during the test. This has been modeled as run "A" Table III.

The conclusion drawn from these preliminary runs, "A" through "C", is that sloshing probably isothermalized the tank during the test although as run "C" suggests, the data would have been nearly the same without sloshing due to radiation and convection. Sloshing will be precluded in space, but the radiation and convection effects were left in the model for later predictions of space temperatures with new tank coating distributions in the cold case. If the natural convection values utilized in the model are excessive, this will tend to make the resulting design concervative. The natural convection was not added to subsequent hot case runs because leaving it out is conservative.

At this stage in the analysis, the G.E. test conditions were added to the model. These changes consisted of the following:

34 40 <

Hamilton U Standard A Standard

3.6 (continued)

- 1. Changing the radiation sink temperature to -270°F, the measured cold wall temperature plus 30°C to provide a realistic effective value of -215°F.
- 2. Changing solar flux from 129 w/ft² to 118 w/ft² with 3% added to account for chamber reflections.
- 3. Adjusting absorbtance of the vapor deposited gold tank coating to account for the deviation of the G.E. solar lamp spectrum from the solar spectrum. The data below was generated by GSFC from tank coating samples provided by HSD and the G.E. lamp spectrum:

Tank	Sample $\#$	GE	Solar
	s/n 002	.172	•219
	s/n 011	.200	•258

4. Altering the paddle and spacecraft skin cooldown rate to correspond to cutting off the solar source during the 2 hour transient dark period from the GSFC provided cooldown rates which reflected a precession to a 0° spin angle.

COLD CASE COOLDOWN RATES

60° CRUISE	TEMP OF	TEMP. AT END OF 2 HR TRANSIENT
Space	Paddle = 32°F, Skin = 50°F	Paddle = $23^{\circ}F$, Skin = $-60^{\circ}F$
Solar Sim Test		Paddle = -200° F, Skin = -200° F

With these changes, the model was run for both the hot and cold test conditions. The results showed computed cruise temperatures, especially in the hot case, to be significantly below the test results when using the higher of the two sets of absorbtance values in item 3 above. In order to force correlation of the model with the test results, the solar projected area of the tanks was increased by 5% in the cold case and 15% in the hot case. The original and final solar projected areas for the 3 tank nodes are given below:

Node	Tank 1	Tank 2	Tank 3
	600 1200	60 ⁰ 120 ⁰	60 ⁰ 120 ⁰
Orig Ap	•547 •5076	•394 •4804	.122 .384
Final Ap	•573 •582	•413 •551	.128 .440

35

Hamilton Standard

3.6 (continued)

This adjustment can be justified physically in terms of including in the model the additional solar input of reflected sunlight from the spacecraft and paddles. The reflected solar flux was not included in the tank model input originally. A comparison of the adjusted model output with test temperatures is given by Run D, Table III.

3.7 Coating Modification Analysis

Having matched the test data with the adjusted model, the inputs were changed to space conditions:

- 1) Solar constant = 430 ETU/ft^2 hr (125) v/ft^2
- 2) Sink temp. = $-460^{\circ}F$
- 3) Tank gold absorbtance from .200 to .258
- Slosh connectors removed
- 5) Natural convection connectors removed for hot case runs (left in for cold case)
- 6) Fuel load thermal mass was changed to 6 lbs of N₂H_L

A nodal diagram of this model configuration is given by Figure 5. A cold case run was made to determine what would happen if the mission were flown with the tanks "as is". The results, Run E, Table III, show that although the propellant (Tank 1) does not fall to as low a temperature in space as in the test, it does fall far below the spec minimum of 45°F and, in fact, would freeze. An obvious solution to this problem would be to eliminate enough of the black paint stripe to raise the cruise temperature and reduce the cooldown rate in the dark transient with the overall constraint of not exceeding specification maximum temperatures during the hot case transient (180° spin angle) condition.

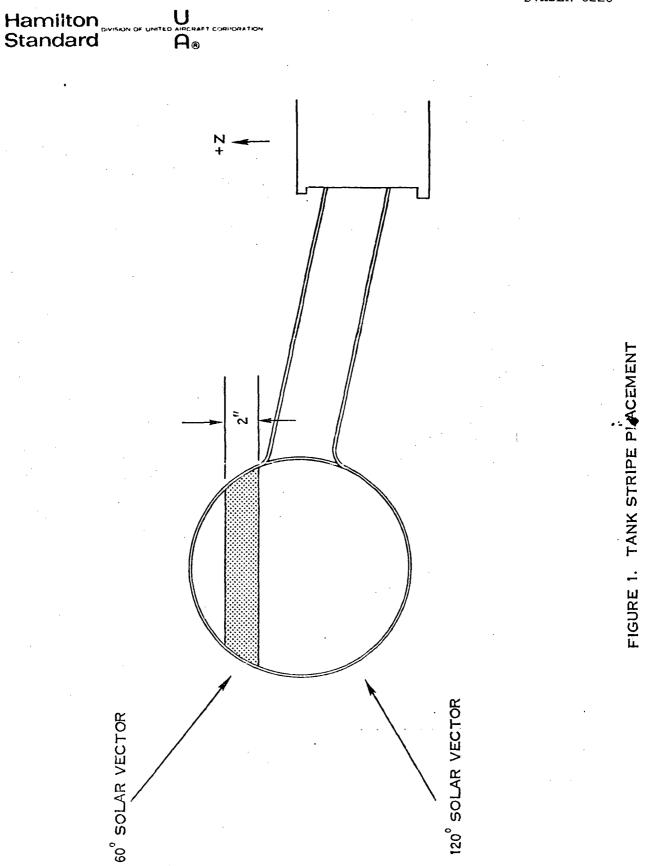
Since physical removal of the black paint stripe is not possible nondestructively, a mystic vapor deposited gold Kapton tape was selected to cover the stripe where necessary. A sample of this tape was sent to GSFC and the emittance and solar absorbtance were measured.

> $E_{n} = .02$ \triangleleft solar = .215

Both the radiative properties and physical appearance of this material are quite close to those of the gold tank coating.

Using the properties above for the gold tape, a series of hot case and cold case runs were made varying the percentage of black stripe area taped over (uniformly). The results are plotted on Figure 6.

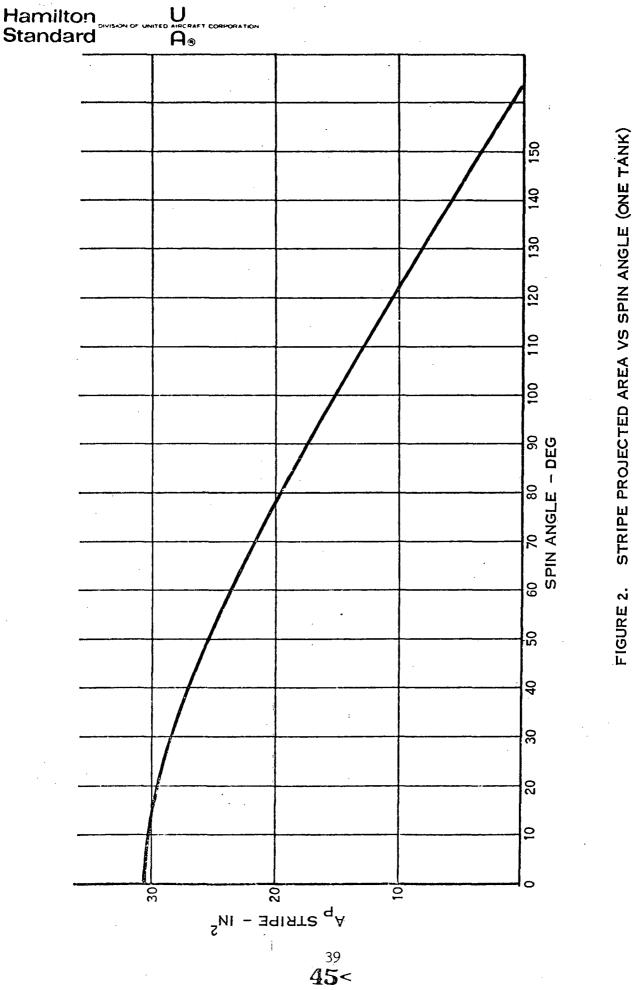
JU .


Hamilton U Standard A®

3.7 (continued)

Based on these results, it was decided to tape 56% of the black stripe area. The taping pattern, chosen for simplicity and to avoid wrinkles is shown by Figure 6. The predicted operating temperature extremes for this configuration are given below:

	Tem Tank 1 <u>(Fuel)</u>	peratures C Tank 2	です Tank 3
Cold Case Cruise (60° Spin Angle)	99	98	92
Cold Case Transient (O ^O Spin Angle, 2 hrs)	53	44	43
Hot Case Cruise (120º Spin Angle)	135	138	131
Hot Case Transient (180° Spin Ange, 2 hrs)	145	154	145


As indicated in the transient hot case above, the predicted propellant temperature can be 145°F which is +5°F higher than the VCPS specification S-723-P-19 max. propellant temperature of 140°F. The HS position has been to establish an upper limit of 140°F on hydrazine systems which will be operational in space for two or more years primarily to minimize hydrazine gas evolution. The hydrazine decomposition process occurs at all temperatures but can be accelerated by increasing temperature or by using materials which tend to promote the reaction. In the VCPS the gold nickel braze is more catalytic than any of the other materials used in the system. A test program was conducted by the Rocket Propulsion Laboratory of the Air Force to study the effect of hydrazine gas evolution in the presence of gold, nickel braze material. The results of this study are reported in AFRPL-TR-69-77 entitled "The Catalytic Decomposition of Hydrazine on Gold, Nickel, and a Gold/Nickel Brazing Alloy". From this report it has been concluded that a 140°F maximum hydrazine temperature for three months in the VCPS will produce decomposition at levels acceptable to the VCPS. In addition, short term exposure of temperature as high as 250°F for several one day periods can also be accommodated. Also, the VCPS was passivated with hydrazine at 120°F for 24 hours with no indication of pressure rise. Therefore, the transient (less than 2 hours) hot case temperature of 145°F is not considered a problem based on the above information.

38

44<

SVHSER 6226

.22

.71

Hamilton	
Standard	A@

TABLE I

GSFC SUPPLIED DATA

Material Properties	<u>En</u>	$\alpha_{\rm solar}$	
Vapor Deposited Aluminum	• 04	.12	
Black Paint	.87	•96	

Vapor Deposited Gold

(Tank)

Paddles

To:

View Factors from tanks

	FIJ	Radiating Area
Paddles	.21	37.3 ft ²
Cylindrical Skin	•055	8.0 ft ²
Conical Skin	•035	5.34 ft ²
Space	•70	-

.02

€ _H = .82

Item	Cold Cruise 60 ⁰	Cold Transient 10 ⁰	Hot Cruise 120 ⁰	Hot Transient
Solar Projected Area (1 Tank)	.265 ft ²	0	.343 ft ²	-
Temperatures				
Cyl. Skin	10 ⁰ C	-50°C @ 2hrs	5°C	-50°C @ 2 hrs
Lower Conic	-15 ⁰ C	-30 ⁰ C @ 2 hrs	3°C	38°C @ 2 hrs
Paddle	00C	-5°C @ 2 hrs	-2°C	-5°C @ 2 hrs

40

Hamilton U Standard A

÷ · · · ·

TABLE II

COMPARISON OF TEST RESULTS TO PRE-TEST PREDICTIONS

NODE	Hot Case Cr 120 ⁰ Spin A Prediction	ngle	600 Spin A	ngle	Cold Case T 2 hrs su Prediction	n off
	11001001000	1050	<u>licare oion</u>	1000	11001001000	1000
Tank 1 (Fuel)	82	84	112	72	67	10
Tank 2	85	-	88	-	-4	-
Tank 3	79	78	32	65	-13	20

Hamilton U Standard A®

TABLE III

THERMAL MODEL RESULTS

		Temperatures, ^O F		
Run	Case	Tank 1	Tank 2	Tank 3
Solar Simulation	Hot Cruise	84	-	78
Test Data	Cold Cruise	72		65
	Cold Trans	10		20
"A" Slosh	Cold Cruise	66	66	66
(Nodes Shorted)	Cold Trans	22	21	21
"B" Tank Internal				
Radiation	Cold Cruise	77	72	56
	Cold Trans	38	10	9
"C" Radiation + Gas	Cold Cruise	71	68	62
Convection	Cold Trans	29	17	17
"D" Radiation, Convec-	Cold Cruise	73	73	72
tion, Slosh, G.E. Test	Cold Trans	8	8	7
Conditions and Solar	Hot Cruise	84		81
Flux Adjustment				
"E" Run "D" Tanks	Cold Cruise	81	80	73
"As Is" in Space	Cold Trans	28	18	17

Hamilton Standard U A®

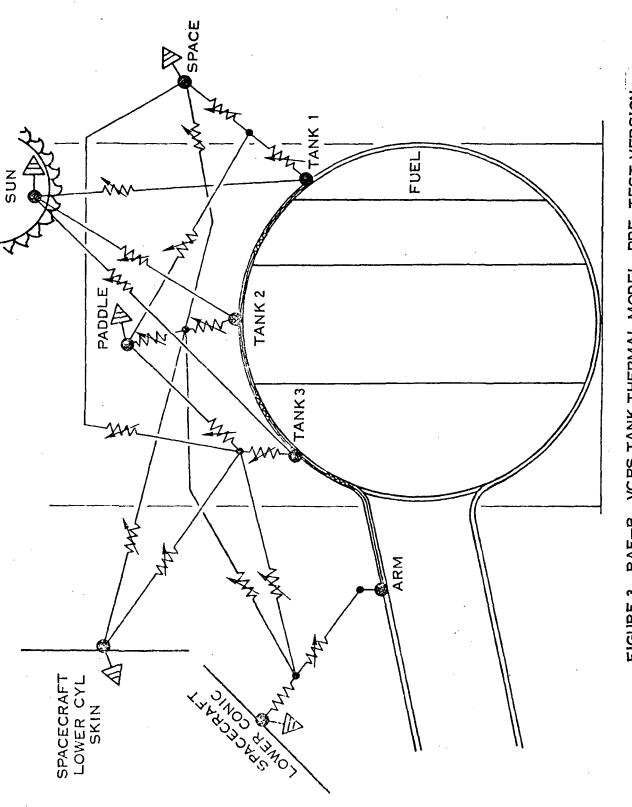
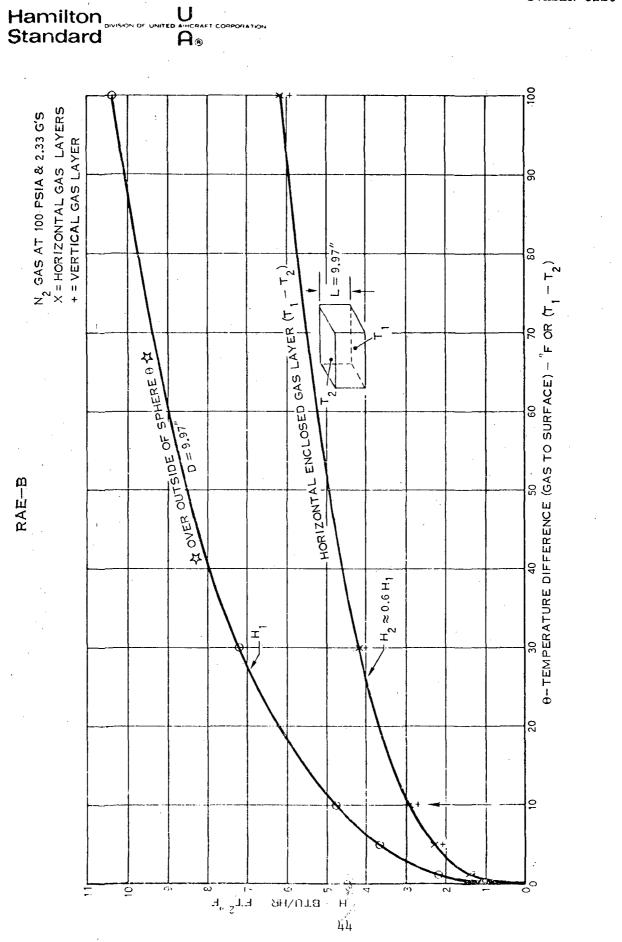
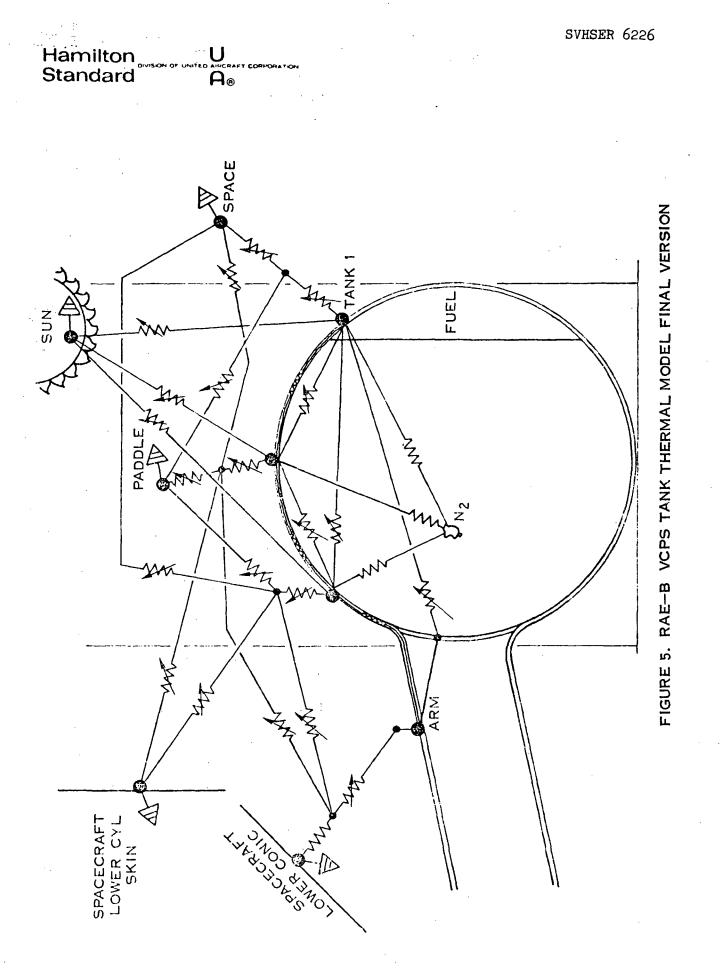
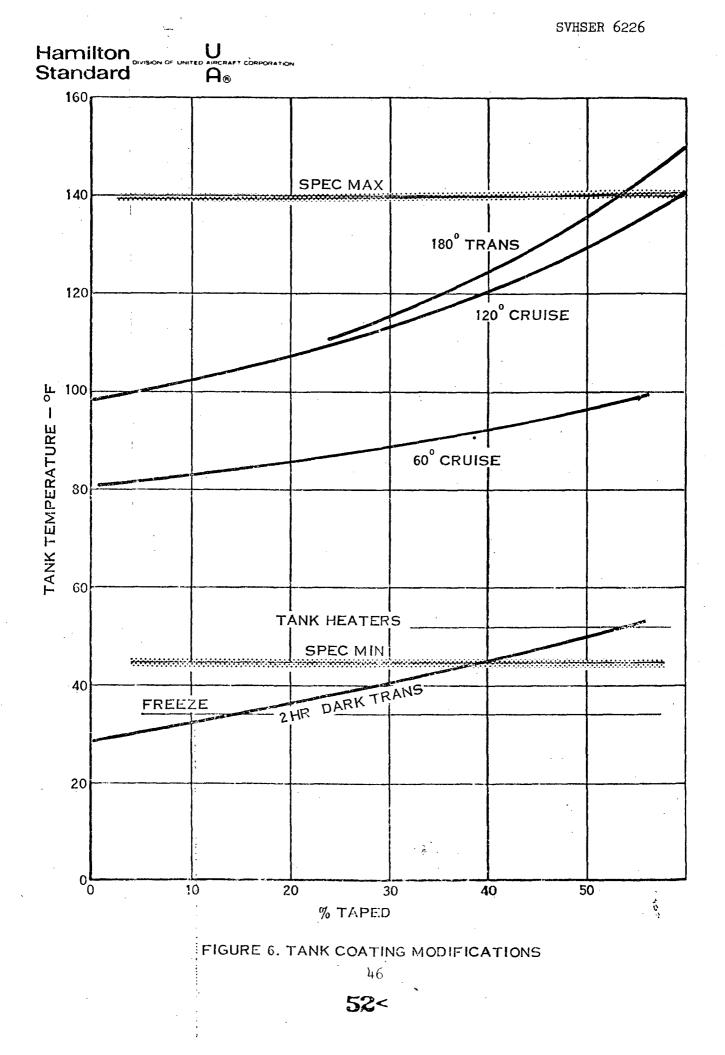



FIGURE 3. RAE-B VCPS TANK THERMAL MODEL PRE-TEST VERSION


43. 43.... **49**<



1 12

50<

SVHSER 6226

Hamilton U Standard A

RAE-B VCPS

PROPELLANT LINE THERMAL REPORT

Hamilton UNITED AIRCRAFT CORPORATION Standard A®

1.0 INTRODUCTION AND SUMMARY

This report presents the development and qualification of the RAE-B Velocity Control Propulsion System propellant line thermal configuration. Subsequent to a propellant line low temperature problem experienced during a solar simulation test at G.E., thermal analyses and propellant line development tests were performed. The resulting configuration indicated that significant improvement in line insulation could be attained but increased heater power would also be required. The new line insulation/increased heater power configuration was then incorporated in the VCPS and a thermal vacuum test was performed. Analysis of these test results indicate propellant line temperatures will be within specification under flight conditions.

2.0 DISCUSSION

The solar simulation test conducted on the VCPS at G.E. showed that the thermal design of the propellant lines was inadequate to maintain the propellant line temperatures above freezing.

2.1 Development Program

A development program was initiated where the test data was analyzed and tests of line insulations were performed at the detail level. This program provided the results shown in Table I and the following conclusions:

- a) Line insulation thermal effectiveness could be improved by utilizing loose wrap multilayer insulation with an overlapping seam covered by gold Kapton tape.
- b) The propellant line would require additional heater power even with the best insulation.

2.2 Verification Test

The VCPS propellant line thermal design was modified and the VCPS reassembled by rewiring the line heater to provide 1 watt/line at 12 VDC and reinsulating with loose wrap insulation utilizing gold Kapton tape (configuration #3 on Table I). In addition the existing thermo-couples were removed and replaced with GFE thermistors in the locations shown in Table II and Figure 1. The propellant tanks and +Z surface of the hub were covered with aluminized Mylar insulation to control the propellant line end condition in a zero sun angle condition.

A thermal vacuum test was conducted in the Hamilton Standard 10' x 10' vacuum chamber to provide temperature distribution data on the propellant line at zero sun angle, or worst case condition. This data was then reduced, via the VCPS thermal model, to provide the propellant line thermal characteristics for the appropriate VCPS flight conditions.

⁴⁰ 54<

Hamilton U Standard ABCRAFT CORPORATION

2.3 Test Results

The VCPS was operated in three modes during the thermal vacuum test to provide adequate data for analysis and to check the thermal model at more than one point. The three test conditions were steady state with 12 VDC heater input, steady state with 13.8 VDC heater input and 0 VDC heater input for 2 hours. Table III shows the raw data for each test phase. The chamber conditions were monitored throughout the test. Chamber pressure was maintained below 10⁻⁵ torr and the effective chamber sink temperature is shown in Table III.

The transient (power off) cooldown was performed to obtain an effective thermal mass per unit length characteristic for the lines. The effective cold wall temperature, measured with a suspended blackbody within the chamber, was approximately -190°F while data was being taken. Tank temperatures at the outlets were 50°F or below (they were cooling very slowly throughout the test).

The data analysis involved inputting the test conditions to the propellant line thermal model and "tuning" the insulation properties until the model reproduced the test data, resulting in insulation performance characteristics measured at the system level. Insulation conductance, emittance, and line thermal mass measured in this manner provide the basis for a new set of predictions for space operation. These predictions were made with the thermal model by replacing the test effective cold wall temperature with the space sink (-460°F) and adding solar input.

At both power settings, the minimum temperature occurred at position A-4, the tube clamp near the end of the arm. There appears to be a local heat leak at this point caused by the insulation penetration * of the clamp itself, along with instrumentation lead heat leaks from the many wires leaving the blanket at that location. (These leads will be clipped before flight, substantially reducing this heat loss). Minimum line temperature was 41.8°F at 12 volts and 48.5°F at 13.8 volts. The one hour transient cooldown produced an 18° temperature drop (48°F to 30°F) at location A-4 and similar $\Delta \Gamma$'s elsewhere. It should be noted that the line temperatures on the other instrumented arm were at least 10°F higher throughout. The more heavily instrumented line is the coldest of the four because it incorporates the fill and drain valve, the four thermostats and does not have the double insulation wrap in as many places as do the three other lines.

2.4 Thermal Model

The propellant line program divides a pair of lines (a tank on each end and the transtage Tee in the middle) into 70 nodes, 35 line nodes and 35 insulation nodes. The program has stored in a data file such data as the heater locations, clamp locations, and locations of Tee's (fill and drain tee and transtage tee) which are treated as heat leaks. A separate data file holds a solar input

2.4 (continued)

table for each spin axis angle. The solar input was calculated earlier in the RAE-B program thermal studies. The propellant lines were sketched onto the GSFC shadow photographs to determine the location of dark areas on the lines. Solar projected area outside of shadowed locations was then determined by drawing board projection of the solar vector onto the propellant line axis. This was done in 15° increments throughout the vehicle spin (360°) and the results numerically averaged over one spin to yield a table of solar intensity versus position for each propellant line.

The program is operated on a TYMSHARE Corp. Terminal. This allows rapid manipulation of the model to achieve a desired result.

2.5 Data Correlation and Extrapolation

The program was input for the 12 volt and 13.8 volt steady state conditions. It was found necessary to simulate the heat leak at location A-4 by decreasing the clamp thermal resistance from 500 $\mathrm{BTU/OF}$ -hr to 150 $\mathrm{BTU/OF}$ -hr. The primary criteria for acceptable correlation was matching the minimum temperature. Table IV shows the temperature distribution (key temperatures) for the test conditions and corresponding analysis results. The insulation properties necessary to produce these calculated distributions are shown also. It should be noted that the 13.8 volt case yields a higher insulation conductance (poorer performance) than does the 12 volt case. A tendency toward this behavior is expected since the conductance of superinsulation increases with insulation temperature. The higher conductance (C = .029) was used in the extrapolation of these results to space operation.

A number of transient cooldown runs were made to match the cooldown rate experienced in test. This yielded a thermal mass per inch value of .003 BTU/OF-in for later use in the space transient analysis.

The values of insulation conductance measured in this series of tests are somewhat higher than those measured in the tube element tests shown in Table I. This discrepancy was anticipated owing to the fact that it was much more difficult to apply insulation at the system level than it was to insulate the free peice of propellant line in the tube element test.

The higher insulation conductance was left in the model for conservatism and the solar input and space temperature (-460°F) were added. For cold case cruise (60° spin axis angle), an average power consumption of .64 watts/line (64% duty cycle) will occur with the temperature distribution shown in Table IV. From this temperature distribution, the cold case transient condition was input (1 hour

50

Hamilton U Standard A®

2.5 (continued)

with no solar flux $\sim 0^{\circ}$ spin axis angle). A line power value of one watt was utilized along with the effective thermal line mass determined in the test. The temperature distribution after the one hour dark period is shown in Table IV. The temperatures are above the specified minimum 45° F.

51

Hamilton Standard		CRAFT CO	PPORATION			
. · ·	Margin	None	I	Slight	Slight <.1	
	Power Required nsient SS Dark (vatts/line)	•68	Excessive	1.0	ω .	
	Power I Transient (watts/	1/3	Exce	۶.	ŗ.	
TABLE I INSULATION SUMMARY	ϵ outside	•05	दा.	.053 (SS) .06 (T)	.048 (ss) .06 (T)	
TABLE I LINE INSULATIO	Conductivity (BTU/ft2-hr-oF)	. 02	• 19	.025 (SS) .035 (T)	.011 (SS) .013 (T)	
	0. D. (in.)	•75	52.	J.O	1.35	
	Configuration	Design Pt.	Original VCPS (Test Sample)	2nd Generation (Cverlap Seam, Gold Kapton Tape)	3rd Generation (2nd + overwrap 5 layer)	
			T#	2 #	6#	

58<

Notation: SS = Steady State

= Transient

EH

SVHSER 6226

Hamilton U Standard A®

TABLE II

RAE-B VCPS THERMISTOR LOCATION

KEY	A - Propellant Lines B - Tank C - Arm and Hub D - Interior Lines	r	E - Compone F - Spacec: "R" Prefit	raft	l Bracket ng Thermistor
No.	Location				e (Thermocouple)
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ \end{array} $	Line A @ Line/Tank Vert Line A @ Line/Tank Horz Line A Line A Line A Line A @ Thermostat Line A @ Tee Line A @ Tee Line A @ Tee Line B @ Tee Line B Tank on Paint Stripe Tank Equator Tank in Mount Area Tank Thermistor #1 Tank Thermistor #2 Arm Hub Exterior Hub Shelf #1 Hub Shelf #2 Line A Internal Line B Internal REA #1 on Chamber		A=1 A-2 A-3 A-4 A-5 RA-1 A-6 A-7 A-6 A-7 A-8 A-9 A-10 B-1 B-2 B-3 RB-1 RB-2 C-1 C-2 C-3 C-4 D-1 D-2 E-1	Flt Flt Flt	N/A N/A 11 A 1 11 A 2 N/A Hardware 11 A 4 N/A 11 B 1 11 B 2 11 B 3 9A 9C 9B Hardware Hardware Hardware 11C N/A 11 D 1 11 D 2 10-1 10-2
20 21 22 23 24 25 26 27	REA #2 on Chamber TCV #1 Latch Valve Transducer Bracket Near Edge Bracket Middle Bracket Thermistor Filter		E-1 E-2 E-3 E-4 E-5 E-6 E-7 RE-1 E-8		N/A N/A 4 5 7 8-1 N/A Hardware N/A

Ref: Attached drawing for thermistor locations.

-

53

Då

Hamilton

1

-		

Effective Sink

.....

E-8

ł

TABLE III

"1920 "1920

			•			•	•		,					
	E-7		20.00 20.00 20.00	2860 2860 2860 2860 2860	62 ·3		285 285 285					60.3 56.3 53.6	1,01 1,01 1,1	1.24
	E-5			0 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			888 2.4.6	988 997	68 . 0	68.1 67.9		68.0 68.2 67.3	80.99 80.99 80.99	67.0 67.0
,	2 <mark>-</mark> 0		84 84 2.83 2.25 2.25	04-4-4- 04-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	48 . 3		12 20.03 20.03	50.8 9	50 . 8 50.8	50.8 50.8		6.64 19.9	04 19 19 19 19 19 19 19 19 19 19 19 19 19	5.04 14.6
(<u>F</u>)	L-0			22.28.09			56.9	26. 26. 26.	56.5 26.5	56 .5 55 .5		56.5 55.9 55.9	222	73.4 22.6
TEMPERATURES	c-1		1005 1005 1005 1005 1005 1005 1005 1005	00000 0000 0000	45.8	ŀ	45 43 6	1 5 0 0	54	45.0 45.4		45.5 45.5 45.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45.6 45.3
	с-2 С		0.0.4.0 38.80 38.90	0,00,00,00 0,00,00,00 0,1,1,0,0,0,00 0,0,0,0,	37.8		34.9 36.7	37.2	36 .9 36.9	37.5 37.8		37.7 37.9 38.2	38 .6	38•0 37•7
ACTUAL VCPS	в-3		37.9 37.9	37.9 37.9 37.9	37.0			3. 5. 3. 5.	33.9 33.7	33.6 33.5		33.4 33.4 33.4	33.1	0.0 33.0
ACT	A-1 0	•		X Z Z Z 0.0000			61.6 61.7	• •	• •			61.0 56.9 53.3	50 50 50 50 50 50 50 50 50 50 50 50 50 5	41.9 39.6
:	A-9			62.92 62.92 62.92 62.92		•	6.LL	1.1.8	7.77 7.77	78.0 77.9	•	76.1 70.8 66.5	28.0 28.0	54.4 51.9
	A-8		57.2 57.2	56.9 57.14 57.1	56.9		67.0 67.1	000 6,00	6.99 6.93	66.9 66.7		65 .3 56 .7 56 .7	1.61	45.9
	A-7		5.55 5.00	5.4.4.5 2.4.4.5	54.7		999 1999					63.5 60.12 26.51	10.00 110.00	45.9 44.3
	A-6		56.7 56.6	26.5 26.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.	56.3		67.3 67.1	66.3 66.3	67.4 66.8	67.1 66.8		62.8 58.0 54.4	50.5 47.1	43.9
	A-5			22 22 22 22 22 22 22 22 22			62.3 62.9	9 9 9 9 9 9 9	62.5 62.5	ୟ ଅନ୍ତ ଅନ୍ତ		60.8 56.2 52.3	69 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	41.2 39.0
	A-4		10.01 10.01 10.01	10.00 10.00 10.00	41.8		161 1600	18.9 18.9	1,8.7 1,8.7	43.6 48.5		1.14 9.14 14 14	34.0 0.4 0.4 0.4 0.4 0.0	32.1 30 .1
	A-3		600		6		10 10 10 10 10 10	mm	300	ເທຍາ		50.0 5250 5250	41.5 38.3	35 .2 32.1
	A-2	8	1001 1445 1445	1000 000 000	<u>vo</u>	2014	43.2 143.2	5, 1 15, 0 15, 0	1.0 10.0	10.1 10.1		41-6 41-6 40-1	38.3 37.1	37.8 34.7
	A-1	@ 15 ADC	5.12	S C C C	50.7	© 13.8 V	49.0 149.0	G ()	00	0100	rs Off	46.2 13.3 14	8.0.4 39.9	39 .0
	T1mc	16 hrs	22:15 22:30 22:45	23:00 23:15 23:30 23:30 23:45	8	5 hra @	5:15 5:30	no	6:15 6:30	0:45 7:00	Seaters	7:20 7:20	7:40	8:10 8:10

-1900 -11830 -11830 -11830 -11830 -11830 -11830 -11830 -118500 -118500 -118500 -118500 -118500 -118500 -118500 -118500 -118500 -

55.4 55.4 55.5 55.5 55.5 55.5

SVHSER 6226

	-1850 -1850 -1850 -1850 -1830 -1830 -1830 -1830 -1830 -1830 -1830 -1830 -1830 -1830 -1830 -1830 -1830 -1830 -1830 -1830 -1830 -1830 -18500 -1850 -1850 -1850 -1850 -1850 -1850 -1850 -1850 -1850 -1850	·		
	· · · · · · ·	میں ہے۔ مرجد کے میں		
	5272555 5272555 56555 5655 5655 5655 565			
	60.3 533.6 79.4 79.4 76.7 7 76.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
	68 0 67 0 67 0 67 0 67 0 67 0 67 0 67 0 67			
	644444444 6664644444444 666646444444444			
	888 888 888 888 888 888 888 888 888 88		•	
	********* ********** *********		-	
	37.7 38.6 38.5 38.5 37.9 37.7 37.7 37.7 37.7 37.7 37.7 37.7			
	88888888888888888888888888888888888888		•	
•	8122 3915 3915 3915 3915 3915 3915 3915 3915			
	76.5 66.5 74.4 7274.4 727.4 72.4 72			
:	602 56 56 56 56 56 56 56 56 56 56 56 56 56			· ·
•	603 603 603 603 603 7 603 603 7 7 603 603 7 7 603 7 7 603 7 7 7 603 7 7 7 7 603 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		-	
	62 52 52 52 52 52 52 52 52 52 52 52 52 52			
	60.82 11 12 12 12 12 12 12 12 12 12 12 12 12			
	11100011 3020011 3020011			
	833847580 833847580 833847590			
	444 2033 2015 2019 2019 2019 2019 2019 2019 2019 2019			
rs Off	22222222222 22222222222 22222222222222			

					FROF	TABLE IV FROFELLANT LINE TEMPERATURE CORRELATION (%)	TABLE IV	S CORRELAT	ION (%)	lation			<u></u>
Thermistor Location	A-3	A-4 (@ Clamp)	A-5	A-6	A-7	A-8 (© Transtage Tee)	A-1 (© Tank)	A-1 A-2 (© Tank) (© Tank)	. C (BTU/ft ² - hr ^o f)	rt ² - (1n.) F)	υ	Sink Temp. (or)	
Test Data	1.64	41.8	52.2	56 •3	54.7	56.9	50.7	†°9†	. 1	1.35		061-	
Thermal Wodel	h3.0	40.5	7.94	55.1	58.3	51.5	7 1 8	48	• 020	1.35	•02	-190	• •;
Test Data	53	4.8.5	62.3	66.8	1. 1 0	66.7	48.8	42.3	1	1.35	ł	-190	
Thermal Model	49.8	1t7.6	62.0	. 69	12.5	0°U_	ct t	с Ц	-029	1.35	•05	-190	ι.
Cold Cruise 60° spin angle 1 watt nominal	60.3	55.6	-55.9	51.6	52.5	ζ2 . 2	- 0	10	•029	1.35	-05	- 160	
Cold Transfent 1 hr @ O ^o spin angle, 1 watt	57.8	53 . 4	58.1	58.6	60.9	59.8	<u>0</u>	20	620.	1.35	•05	-1460	
		•	•										
	. ·	ı				•		÷		I			
													SV
						•							HSER
	•			•									622
													6 <u>`</u>
							• · -						• •

SVHSER 6226

Hamilton U Standard A®

6.0 <u>HSD POST DELIVERY ACTIVITIES</u>

DATE		TASK
3/19-3/22/73 GSFC	1.	Performed fluid load using H ₂ O to determine effect on system unbalance caused by fluid distribution in tanks. Results were accept- able within specified requirements.
5/14 - 5/22/73 KSFC	ʻ1.	Performed proof pressure test.
	2.	Performed calibration of VCPS pressure
	3.	Performed internal leakage test on VCPS latch valves and thrust chamber valves.
	4.	Loaded VCPS with N_2H_4 on balance table to verify proper fluid distribution and pressurized with GN_2 for flight.

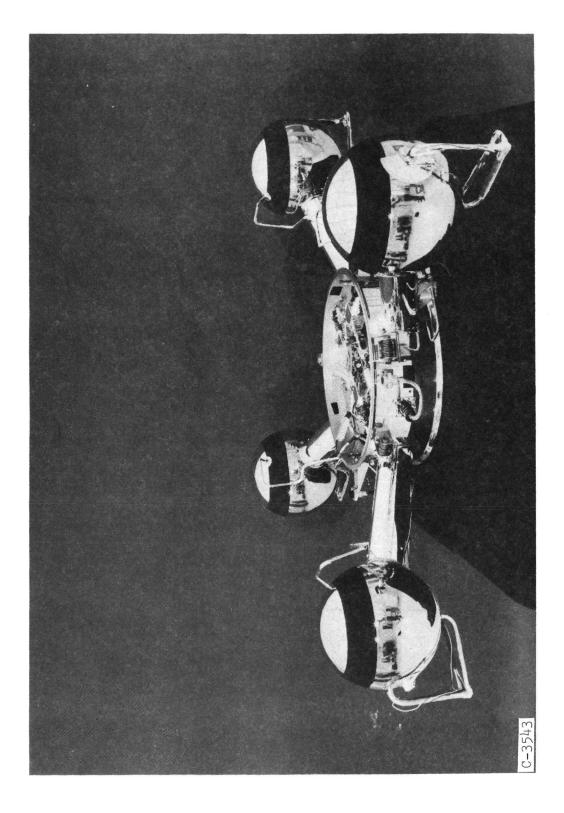
• The above tasks all gave acceptable results within specified requirements.

57

Hamilton	DIVISION OF UNITED AIRCRAFT CORPORATION
Standard	A®

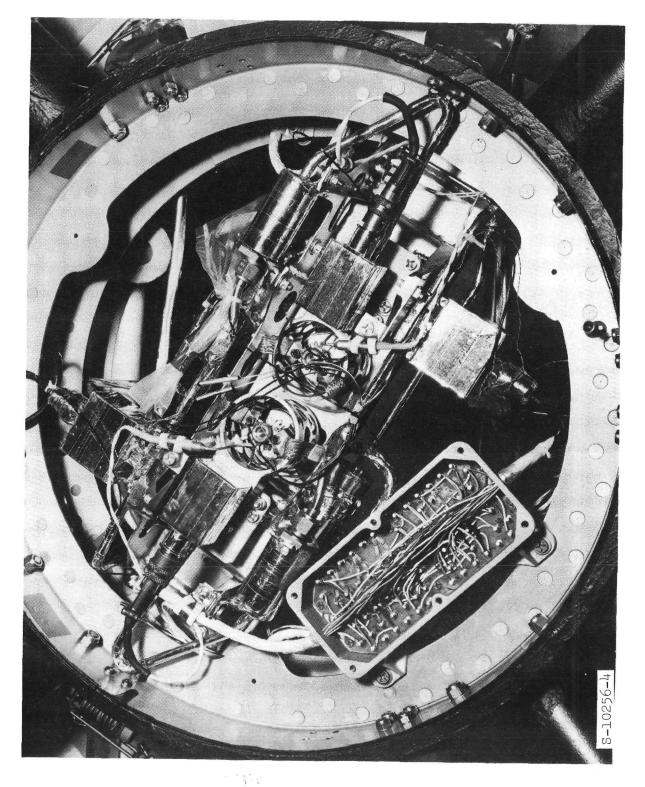
SVHSER 6226

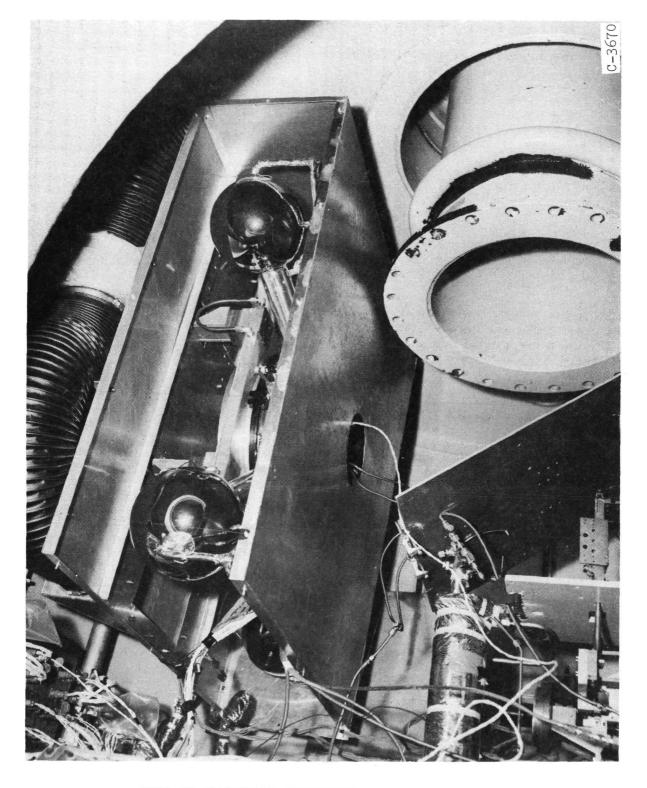
APPENDIX A

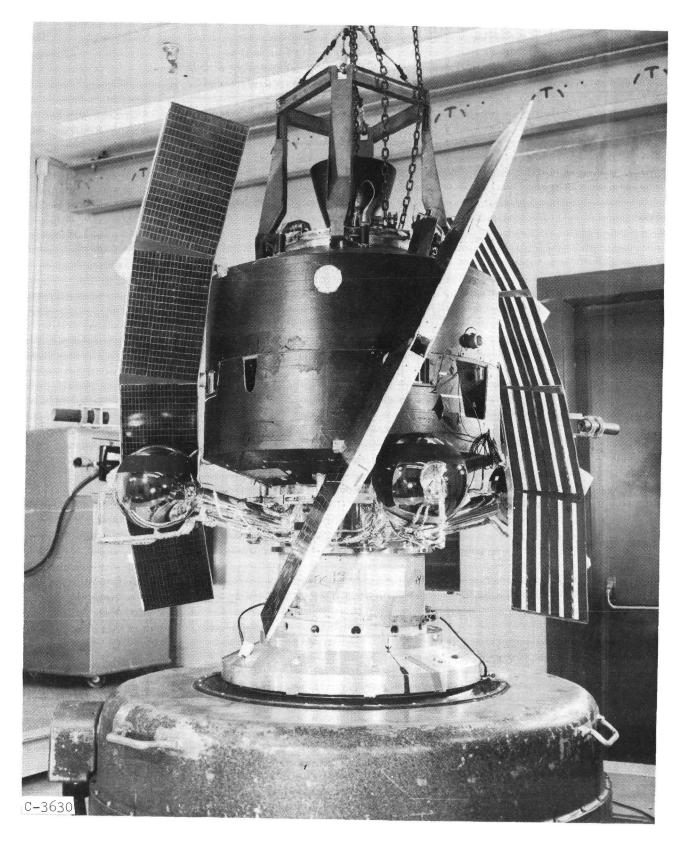

I

PHOTOGRAPHS

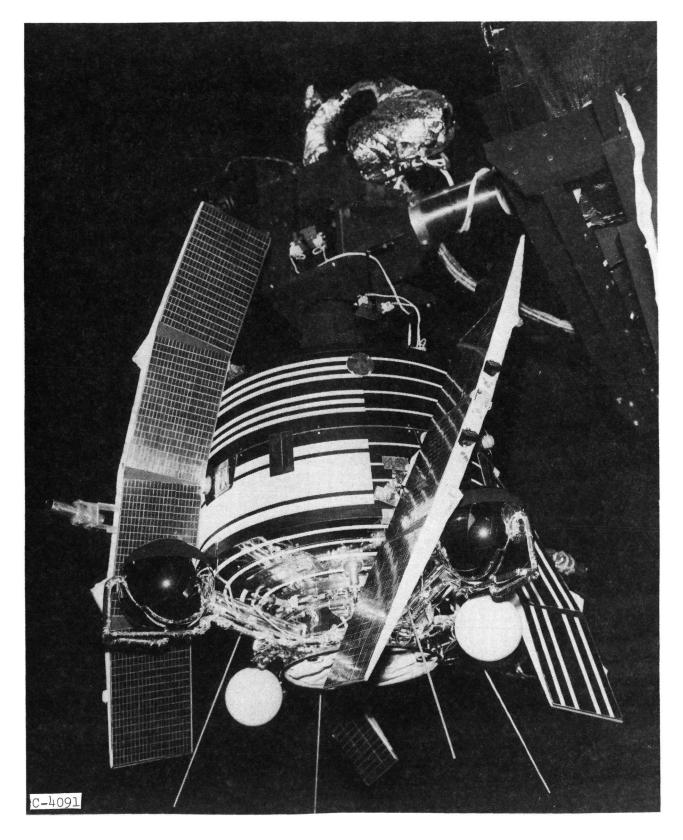
63<


į


COMPLETED VCPS


INTERIOR OF VCPS HUB

VCPS IN THERMALLY CONDITIONED FIRING FIXTURE (Sides removed for clarity)



VCPS AND SPACECRAFT AT VIBRATION TEST

A4

VCPS AND SPACECRAFT AT SOLAR SIMULATION TEST

Hamilton	DIVISION OF UNITED AIRCRAFT CORPORATION
Standard	A®

SVHSER 6226

APPENDIX B

T

GSFC MALFUNCTION REPORTS

Bi

GSFC MALFUNCTION REPORT

NOD 02908

(SFC MALFUNCTION REPORT	NOD 02908
Project	(2) Spacecraf	
RAE-B		
System or Experiment	(6) Date & Time Yr Mo Day	Time (7) Date Mo Day (8)Critical
	of Malfunction 712 328 3	2 0 0° Report 13 310
NAME	IDENTIFICATION NUMBER . SERIAL NU	JMBER MANUFACTURER
(9) Component		Hamilton
		Standard
(10) Assembly		Hamilton
		Standard
(11) Sub-Assembly		Thermal
HEATER TQA	S V 7 4 8 7 7 7 - 12 1 1	2 Systems
(12) Part	Manufacturers Part Number	Thermal
HEATER TQAL	7 6 - 3 4 6 4 - 1	Systems
	3 [] Integration Test 7 [] Bench Test	JK3423/12
Occurred During 2 [] Acceptance Test	5 [] Launch Operations 8 [] Post Launch R	eliability NO-77
(14) Environment 1 [_] Acceleration	3 [] Thermal-Vacuum 5 [] Humidity	7 []] Ambient A [] RF!/Ewc
When Foiled 2 (_) Shock	4 Temperature 6 [] Vibration	8 [] Acoustic 0 [] Vacuum
(15) Hardware Level 1 [_] Part	3 [] Assembly 5 [X] System (VCPS)
When Failed 2 [] Sub-Assembly	4 [] Component 6 [] Spacecraft	
6) REFERENCE		4.3.4.2.2.EL
acecraft Log Book #P	age Test Procedure SVHS	5019 Poro
	ine firing heater resistance was	
	rom heater element to case was 5	000 ohms vs required
value of "open circuit". Invest	tigation has been initiated.	
Targe	t closure date is 4/17/72	
Respo	nsible Engineer is Mr. E. K. Moo	re
?) Originator: Mr. E. K. MOORE Phone: (203) 623-1621-565 Organization: Hami	lton Standard
1	Do Not Write Below This Line	

INSTRUCTIONS

.5

- (1) Originator Fill in blocks (1) through (18), with all known information, as defined in instructions on the back of this form.
- (2) Distribute copies in accordance with project directions.

70<

GSFC MALFUNCTION REPORT

NAME IDENTIFICATION NUMBER SERIAL NUMBER MANUFACT (9) Component Hemilton Hemilton Standard (10) Assembly Hemilton Standard (11) Sub-Assembly Hemilton Standard (12) Part Manufacturers Part Number Bench Test (13) Malfunction 1 Qualification Test 3 Integration Test 7 Bench Test (14) Environment 1 Acceleration 3 Thermal-Vacuum 5 Humidity 7 Ambient When Failed 2 Sub-Assembly 3 Assembly 5 Supstem Vibration (15) Hardware Level 1 Part 3 Assembly 5 Supstem Vibration (16) REFERENCE Sub-Assembly 4 Component 6 Spacecraft Page	
(5) System or Experiment (6) Date & Time of Molfunction 7 2 3 2 8 3 2 0	A [] RFI/EM
C P S of Malfunction 7 2 3 2 8 3 4 0 of Report NAME IDENTIFICATION NUMBER SERIAL NUMBER MANUFACT (9) Component IDENTIFICATION NUMBER SERIAL NUMBER MANUFACT R B A IDENTIFICATION NUMBER SERIAL NUMBER MANUFACT (10) Assembly IDENTIFICATION NUMBER SERIAL NUMBER MANUFACT T C A IDENTIFICATION NUMBER Standard IDENTIFICATION NUMBER Standard (10) Assembly IDENTIFICATION NUMBER Standard IDENTIFICATION NUMBER Standard Thermal Standard IDENTIFICATION NUMBER Standard IDENTIFICATION NUMBER Standard (11) Sub-Assembly IDENTIFICATION NUMBER Manufacturers Part Number IDENTIFICATION Standard (12) Part Manufacturers Part Number Thermal Systema Systema Systema (13) Malfunction 1 Qualification Test 3 Integration Test 7 Bench Test Occurred During 2 Acceptance Test 3 Integration Test 7 Ambient (14) Environment 1 Acceleration<	
NAME IDENTIFICATION NUMBER SERIAL NUMBER MANUFACT (9) Component	
R S A Standard (10) Assembly Hemilitor T C A Standard (11) Sub-Assembly Standard Thermal E A T B F C A (12) Part Manufacturers Part Number Thermal Systems (12) Part Manufacturers Part Number Thermal Systems (13) Malfunction 1 Qualification Test 3 Integration Test 7 Bench Test 0ccurred During 2 Acceptance Test 3 Integration Test 7 Bench Test (14) Environment 1 Acceleration 3 Thermal-Vacuum 5 Humidity 7 Ambient (14) Environment 2 Shock 4 Temperature 6 Vibration 8 Accoustic (15) Hardware Level 1 Part 3 Assembly 5 System Standard (16) REFERENCE Sub-Assembly 4 Component 6 Spacecraft F Spacecraft Log Book # Page	
ID Assembly Hemilton ID A T E R T C A Standard ID Sub-Assembly Manufacturers Part Number Thermal ID A T E R T C A Standard ID A T E R T C A Standard ID A T E R T C A Standard ID A T E R T C A Standard ID A T E R T C A Standard ID A T E R T C A Standard ID Part Standard Systems Thermal ID Qualification Test 3 Integration Test 7 Bench Test Occurred During Qualification Test 3 Integration Test 7 Bench Test Occurred During 1 Acceleration 3 Thermal-Vacuum 5 Humidity 7 Ambient (14) Environment 1 Acceleration 3 Thermal-Vacuum 5 Systems Curres (15) Hardware Level 1 Part	A [] RFI/EM
T C A Standard II Sub-Assembly Standard Thermal II A T G A T A Standard II A T G A T A Standard II A T G A T A T B T C A Standard II A T B T C A Standard Thermal Systems III A T B T C A Standard Thermal Systems IIII A T B T C A A F B R T C A Standard Systems Thermal Systems Thermal <th< td=""><td>A [] RFI/EM</td></th<>	A [] RFI/EM
Image: Non-Assembly Image: Non-Assembly<	A [] RFI/EM
IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	A [] RFI/EM
XIE A T E T C A T G 3 4 6 1 Bysteme (13) Malfunction Occurred During 1 Qualification Test 2 3 Integration Test 5 7 Bench Test Post Launch Bellability 7 (14) Environment When Failed 1 Acceptance Test 2 3 Thermal-Vacuum 4 5 Humidity 7 Ambient 8 Accoustic (15) Hardware Level When Failed 1 Part 2 3 Assembly 4 5 System 5 System 5 System 7 (16) REFERENCE Page Test Procedure SWB 5619 Page	A [] RFI/EM
(13) Malfunction 1 I Qualification Test 3 Integration Test 7 Bench Test Occurred During 2 Acceptance Test 5 Launch Operations 8 Post Launch Bellability / (14) Environment 1 Acceleration 3 Thermal-Vacuum 5 Humidity 7 Ambient When Failed 2 Shock 4 Temperature 6 Vibration 8 Accoustic (15) Hardware Level 1 Part 3 Assembly 5 System VCPS) When Failed 2 Sub-Assembly 4 Component 6 Spacecraft (16) REFERENCE Page Test Procedure SWB 5619 Page	A [] RFI/EM
Occurred During 2 Acceptance Test 5 Launch Operations 8 Post Launch Reliability (14) Environment 1 Acceleration 3 Thermal-Vacuum 5 Humidity 7 Ambient When Failed 2 Shock 4 Temperature 6 Vibration 8 Acoustic (15) Hardware Level 1 Part 3 Assembly 5 System (VCPE) When Failed 2 Sub-Assembly 4 Component 6 Spacecraft (16) REFERENCE Page Test Procedure SWIP 5619 Page Page <td>A C RFI/EMO</td>	A C RFI/EMO
(14) Environment 1 Acceleration 3 Thermal-Vacuum 5 Humidity 7 Ambient When Failed 2 Shock 4 Temperature 6 Vibration 8 Acoustic (15) Hardware Level 1 Part 3 Assembly 5 System (VCPS) When Failed 2 Sub-Assembly 4 Component 6 Spacecraft (16) REFERENCE Page Test Procedure SWB Solo Page Page	
(15) Hardware Level 1 Part 3 Assembly 5 System (VCPS) When Failed 2 Sub-Assembly 4 Component 6 Spacecraft (16) REFERENCE Jage Test Procedure SWB 5619 Page	0 Vacuum
When Failed 2 Sub-Assembly 4 Component 6 Spacecraft (16) REFERENCE Page Test Procedure Page Page Page Page	
(16) REFERENCE Spacecroft Log Book # Page Test Procedure SVUB_561.9 Page	
Spacecraft Log Book # Page Test Procedure State 5619 Page	-3.4.2.2.B1
	ara
(17) Description of the Malfunction: After engine firing heater resistance was 56 ohea va req	utred
welne of 74 ± 5%. Resistance from heater element to case was 5000 ohma wa req	
walue of "open circuit". Investigation has been initiated.	
Target closure date is 4/17/72	
Responsible Engineer is Mr. E. K. Moore	
(18) Originator: Hr. B. K. Moore Phone: (203) 623-1621-565 Organization: Head 1 ton Standard	
Do Not Write in This Space	
(19) Cauca of the Molfunction, Feilure, analysis, included X-ray, insulation resistance, heater	r restato
(19) Couse of the Molfunction: Failure analysis included X-ray, insulation resistance, heater spectral analysis, conductometric carbon analysis and ignition test. Analysis	indicated
that organic contamination of the heater wire or MgO insulation, or both, result	lted in the
presence of elementary carbon in the MgO. This caused a partial electrical sho	
the heater wires and between the wires and the case.	
×××	DEX 3.012
Do Not Write in This Space 1 </td <td> 🗰</td>	🗰
(20) Corrective Action Taken: All heaters will be replaced by new heaters manufactured with	the inclusion
(20) Corrective Action Taken: All heaters will be replaced by new heaters manufactured with of the following steps.	USL(
A. Heater element supplier to degrease resistance wire in acetone.	
B. Heater element supplier to cut resistance wire to desired length and heat	electrically
	ntain
in air: (1) wire unsupported except at ends later removed, (2) heat to main	
in air: (1) wire unsupported except at ends later removed, (2) heat to main approximately 1,700° surface temperature for 2 minutes minimum, (3) prevention	
in air: (1) wire unsupported except at ends later removed, (2) heat to main	
<pre>in air: (1) wire unsupported except at ends later removed, (2) heat to main approximately 1,700° surface temperature for 2 minutes minimum, (3) prevent If Corrective Action is Required on Other Units, List Units by Serial No. Continued on next page. Do Not Write in This Space</pre>	tion of any
<pre>in air: (1) wire unsupported except at ends later removed, (2) heat to main approximately 1,700° surface temperature for 2 minutes minimum, (3) prevent If Corrective Action is Required on Other Units, List Units by Serial No. Continued on next page. Do Not Write in This Space (2) Failure Analysis YES NO Organization That Performed Failure Analysis Thermal Systems, with Ham</pre>	tion of any
<pre>in air: (1) wire unsupported except at ends later removed, (2) heat to main approximately 1,700° surface temperature for 2 minutes minimum, (3) preven If Corrective Action is Required on Other Units, List Units by Serial No. Continued on next page. Do Not Write in This Space []]]] (21) Failure Analysis YES NO Organization That Performed Failure Analysis Thermal Systems, with Ham Performed? 1 KX 2 [] Failure Analysis Report Number "Minutes of Meeting held at Date</pre>	tion of any
<pre>in air: (1) wire unsupported except at ends later removed, (2) heat to main approximately 1,700° surface temperature for 2 minutes minimum, (3) preven If Corrective Action is Required on Other Units, List Units by Serial No. Continued on next page. Do Not Write in This Space (21) Failure Analysis YES NO Organization That Performed Failure Analysis Thermal Systems, with Ham Performed? 1 KX 2 [] Failure Analysis Report Number Minutes of Meeting held at Date (22) Action Taken on 1 [] Rework/Repair 2 Modified 3 [X] Discarded 4 [X] Replaced 5 None Date</pre>	tion of any
<pre>in air: (1) wire unsupported except at ends later removed, (2) heat to main approximately 1,700° surface temperature for 2 minutes minimum, (3) preven If Corrective Action is Required on Other Units, List Units by Serial No. Continued on next page. Do Not Write in This Space []</pre>	tion of any
<pre>in air: (1) wire unsupported except at ends later removed, (2) heat to main approximately 1,700° surface temperature for 2 minutes minimum, (3) prevent If Corrective Action is Required on Other Units, List Units by Serial No. Continued on next page. Do Not Write in This Space []</pre>	tion of any
in air: (1) wire unsupported except at ends later removed, (2) heat to main approximately 1,700° surface temperature for 2 minutes minimum, (3) prevention is Required on Other Units, List Units by Serial No. Continued on next page. If Corrective Action is Required on Other Units, List Units by Serial No. Continued on next page. Do Not Write in This Space	tion of any
<pre>in air: (1) wire unsupported except at ends later removed, (2) heat to main approximately 1,700° surface temperature for 2 minutes minimum, (3) preven If Corrective Action is Required on Other Units, List Units by Serial No. Continued on next page. Do Not Write in This Space </pre>	tion of any
<pre>in air: (1) wire unsupported except at ends later removed, (2) heat to main approximately 1,700° surface temperature for 2 minutes minimum, (3) preven If Corrective Action is Required on Other Units, List Units by Serial No. Continued on next page. Do Not Write in This Space (21) Failure Analysis YES NO Performed? 1 KX 2 [] Failure Analysis Report Number <u>"Minutes of Meeting held at Date</u> (22) Action Taken on Failed Unit Organization That Performed Rework/Repair 2 Modified 3 [X] Discarded 4 [X] Replaced 5 None Date Required? (23) Is Retest 1 [] Yes 2 KX No If Yes, State Retest Requirements Required? (24) Retest Results Satisfactory Unsatisfactory Remarks: N/A N/A 1 [] 2 [] (25) Unit May Be Flight Test Only N/A * 1/4 (25) Unit May Be Flight Test Only N/A * 1/4 (25) Unit May Be Flight Test Only N/A * 1/4 (25) Unit May Be Flight Test Only N/A * 1/4 (26) Unit May Be Flight Test Only N/A * 1/4 (27) N/A * 1/4 (28) Unit May Be Flight Test Only N/A * 1/4 (29) Unit May Be Flight Test Only N/A * 1/4 (20) Unit May Be Flight Test Only N/A * 1/4 (20) Value Analysis A test Only N/A * 1/4 (21) * 1/4 (22) * 1/4 (23) * 1/4 (24) * 1/4 (25) * 1/4 (26) * 1/4 (26) * 1/4 (27) * 1/4 (27) * 1/4 (27) * 1/4 (28) * 1/4 (27) * 1/4 (27) * 1/4 (27) * 1/4 (28) * 1/4 (27) * 1/4 (27) * 1/4 (28) * 1/4 (29) * 1/4 (29) * 1/4 (20) * 1/4 (20) * 1/4 (20) * 1/4 (21) * 1/4 (21) * 1/4 (22) * 1/4 (23) * 1/4 (24) * 1/4 (25) * 1/4 (25) * 1/4 (25) * 1/4 (26) * 1/4 (27) * 1/4 (28) * 1/4 (29) * 1/4 (29) * 1/4 (29) * 1/4 (20) * 1/4 (20) * 1/4 (20) * 1/4 (20) * 1/4 (20) * 1/4 (21) * 1/4 (21) * 1/4 (22) * 1/4 (23) * 1/4 (24) * 1/4 (25) * 1/4 (25) * 1/4 (26) * 1/4 (26) * 1/4 (27) * 1/4 (27)</pre>	tion of any
in air: (1) wire unsupported except at ends later removed, (2) heat to main approximately 1,700° surface temperature for 2 minutes minimum, (3) prevent If Corrective Action is Required on Other Units, List Units by Serial No. Continued on next page. Do Not Write in This Space	tion of any
<pre>in air: (1) wire unsupported except at ends later removed, (2) heat to main approximately 1,700° surface temperature for 2 minutes minimum, (3) preven If Corrective Action is Required on Other Units, List Units by Serial No. Continued on next page. Do Not Write in This Space (21) Failure Analysis YES NO Performed? 1 KX 2 [] Failure Analysis Report Number <u>"Minutes of Meeting held at Date</u> (22) Action Taken on Failed Unit Organization That Performed Rework/Repair 2 Modified 3 [X] Discarded 4 [X] Replaced 5 None Date Required? (23) Is Retest 1 [] Yes 2 KX No If Yes, State Retest Requirements Required? (24) Retest Results Satisfactory Unsatisfactory Remarks: N/A N/A 1 [] 2 [] (25) Unit May Be Flight Test Only N/A * 1/4 (25) Unit May Be Flight Test Only N/A * 1/4 (25) Unit May Be Flight Test Only N/A * 1/4 (25) Unit May Be Flight Test Only N/A * 1/4 (26) Unit May Be Flight Test Only N/A * 1/4 (27) N/A * 1/4 (28) Unit May Be Flight Test Only N/A * 1/4 (29) Unit May Be Flight Test Only N/A * 1/4 (20) Unit May Be Flight Test Only N/A * 1/4 (20) Value Analysis A test Only N/A * 1/4 (21) * 1/4 (22) * 1/4 (23) * 1/4 (24) * 1/4 (25) * 1/4 (26) * 1/4 (26) * 1/4 (27) * 1/4 (27) * 1/4 (27) * 1/4 (28) * 1/4 (27) * 1/4 (27) * 1/4 (27) * 1/4 (28) * 1/4 (27) * 1/4 (27) * 1/4 (28) * 1/4 (29) * 1/4 (29) * 1/4 (20) * 1/4 (20) * 1/4 (20) * 1/4 (21) * 1/4 (21) * 1/4 (22) * 1/4 (23) * 1/4 (24) * 1/4 (25) * 1/4 (25) * 1/4 (25) * 1/4 (26) * 1/4 (27) * 1/4 (28) * 1/4 (29) * 1/4 (29) * 1/4 (29) * 1/4 (20) * 1/4 (20) * 1/4 (20) * 1/4 (20) * 1/4 (20) * 1/4 (21) * 1/4 (21) * 1/4 (22) * 1/4 (23) * 1/4 (24) * 1/4 (25) * 1/4 (25) * 1/4 (26) * 1/4 (26) * 1/4 (27) * 1/4 (27)</pre>	ilton of any ilton Standa Collaborat. 4/11/72

GSFC	MALFUNCTION	REPORT	

0	2	9	0	ζ

	GSFC MA	LFUNCTION REPORT	02908 NOD
Occurred During 2 [] Acc (14) Environment 1 [] Acc When Failed 2 [] Sho (15) Hardware Level 1 [] Par When Failed 2 [] Sub 6) REFERENCE	IDENTI IDENTI <td< td=""><td>f Mallunction</td><td>7 Ambient A RFI/EMC B Acoustic 0 Vacuum</td></td<>	f Mallunction	7 Ambient A RFI/EMC B Acoustic 0 Vacuum
acecroft Log Book # 7) Description of the Malfunction:	Page	Test Procedure	Para
 B) Originator: Do Not Write in This Space A) Cause of the Malfunction: 	Phone:	Orgonization:	
Do Not Write in This Space	act of wire and any	other heater element com	 ponent with organic
Statement of a subscription of the second statement of the	and a few rear and the set of the second start time, and the registric to the second start to the few second st	erminated heater assembly :	in air at 1,700°F for
a minimum of one h	our.		97R 4/2/12
Corrective Action is Required on Other Do Not Write in This Space	r Units, List Units by Serial N	No. S/N 001, 002, 004	
(21) Failure Analysis YES N Performed? 1 [_] 2	NO Organization That Perfor		Date
	work/Repair 2[] Modified ation That Performed Rework/	3 🗍 Discarded 4 门 Replaced' 5 🗍 Repair	None Date
(23) Is Retest 1 [7] Ye Required?	es 2 [] No If Yes, S	State Retest Requirements	
(24) Retest Results Satisfact		narks.	
(25) Unit May Be Flight Used For 1 [_	Test Only		
r Mo Day Date MR GSFC Pr Closed	roject Approval	GSEC MERT Approval Date	Contractor Alexander 4 White
	77	2 < ^{B3}	Copy 4

GSFC MALFUNCTION REPORT

NOD. 02

(1) Project Operation (2) Spacecroft 11131 RAE-B System or Experiment Doy (7) Dote Doy (6) Dute & Time Time Mo Mo ofReport of Malfunction 05 015 019 118 1 MANUFACTURER NAME IDENTIFICATION NUMBER SERIAL NUMBER Hamilton (9) Component VCPSI SIV | 7 | 4 | 8 | 7 | 2 | 0 - 1 1000 Standard (10) Assembly (11) Sub-Assembly (12) Part Manufacturers Part Number 1 [2] Qualification Test (13) Malfunction 3 [] Integration Test 7 [] Bench Test Occurred During Reliability: 2 Acceptance Test 5 [] Lounch Operations 8 Post Lounch 1 [] Acceleration 3 [x] Thermal-Vacuum 5 [] Humidity (14) Environment 7 [-] Ambient A REI/ When Foiled 2 🗌 Shock 4 [] Temperature 6 [] Vibration 8 Acoustic 0 Vocu 5 [X] System (VCPS) (15) Hardware Level 1 [] Part 3 Assembly When Failed 2 Sub-Assembly 4 [] Component 6 Spacecraft (16) REFERENCE SVHS 5619 4.3.11 Spacecraft Log Book #. Test Procedure . Para Page _ (17) Description of the Molfunction: VCPS was undergoing thermal verification testing at G. E., Valley Fo per step 11 of Ref. Quality Test Procedure. At the end of 2 hours, tank temp. was +11 F and line temp. was -13°F. The required temp. is 40°F min. Unit was returned to HS (Win: Locks, Ct.) for continuation of Quality Test (authorized by TWX GSFC to HS dated 5/12/72) Target closure date is 7/15/72. Closure responsibility E. K. Moore Originator: M. Bonar Phone: (203) 623-1621 x494 Organization: Hamilton Standard

Do Not Write Below This Line

INSTRUCTIONS

- Originator Fill in blocks (1) through (18), with all known information, as defined in instructions on the back of this form.
- (2) Distribute copies in accordance with project directions.

	GSFC M	ALFUNCTION REPORT	NOD 02909
ject			pacecraft (3) Operation (4) Units
242-3			HRS CYS
tem or Experiment			Day Time (7) Date Mo Day 86 Gritica:
		of Malfunction 11 050	0 of Report 1 = 1 3 1 3 2
NAM	E IDEN		RIAL NUMBER MANUFACTURER
Gompenent			Handractorer
	1111111111117171	18720-11]]]]] Standard
Assembly			
111111			
Sub-Assembly			
Part	Manufactu	yrers Part Number	
			97777777777777777777777777777777777777
		nch Operations 8 🗌 Post Launa	neh Enliability: 下下、5/18/72
Environment	1 Acceleration 3 Ther	rmal-Vacuum 5 🗌 Humidity	7 Ambient / A RFI/EMC
	2 Shock 4 Tem	perature 6 Vibration	8 Acoustic 0 Vocuum
	1 Port 3 Åsse 2 Sub-Assembly 4 Com	,, , ,	(4025)
	2 Sub-Assembly 4 Com	ponent 6 Spacecraft	
EFERENCE		C	SVIIS 5619 Para 14.3.11
aft Log Book #	Page	Test Procedure	
escription of the Malfund		The second se	T tending at G. S., Valley Store
			2 hours. took term. was +11 2
	as -lot. Ino routless	then. is hold min.	Unit was returned to H7 (.indian
etta, st.) fra d	consinuation of smali-		17 X 35FC to ES dated 5/12/72).
reat of apparato	ate 0 : 7/15/72.		
and the second	reenneuotterz z. K. Noor	ຸຈຸລ	
iginator:		1-1521 Marchi Organization:	Sevilton standard
Not W-ite in This Space			
use of the Malfurnation	A failure analysis of	the VCPS thermal dec	sign was conducted at Hamilton
			ication test to the original
and the second sec			d until the model prediction
			the following conclusions:
the second se	the second se	the second se	ature was duplicated by shorting
		of the tank nodes wer	re shorted during the thermal
Not Write in This Space			
and the second se			f the pressurant gas, internal
ation and prope	ellant sloshing c) the d	convection and radiat	tion whenomenon will exist under
			1) the thermal properties of the
			tly poorer than excected by the
and the second		Contraction of the second se	performed on line insulation re-
			perties were as poor as the VCPS
	d on Other Units, List Units by Serial		
Not Write in This Spac			
Failure Analysis Performed?	YES NO Organization That Perfo 1 [X] 2 [7] Failure Analysis Repor	ormed Failure Analysis_ HSD rt Number_ACS-2093-2.3-0	D99 Dote 31 Aug. 1972
Action Taken on Failed Unit	1 [X] Rework/Repair 2 [X] Modified Organization That Performed Rework	Repair HSD	
ls Retest Required?	1 [X] Yes 2 [] No If Yes,	State Rotest Requirements <u>Don</u>	ne - See above report
Retest Results	Satisfactory Unsatisfactory Re . 1 [X] 2 []	emarks:	
Unit May Be	Flight Test Only		
Used For	1 [X] 2 []		Λ
Mo Day Date MR	GSFC Project Approval	GSFC MRRT Approval	Date Gonifamor Eproval 10 01:0
Closed		74 < ^{B5}	- Inx paular 13/72
	77		Parid Z Copy 4

	11	SPL.	MALF		ĸ
2×			FTT FT Base I	0	

	GSFC MALFUNCTION REPORT NUD U2
(I) Project RAE-B	(2) Spacecraft (3) Operation (4) - Has
(5) System or Experiment	1: (6) Date & Time Yr Mo Day Time (7) Date Mo Day (8) of Malfunction TP (CLS OLD & L) of Report OC 1 (1)
NAME	E IDENTIFICATION NUMBER SERIAL NUMBER MANUFACTURER
F1319131.111	111137711187729-211111000 Standard
(10) Assembly	
(11) Sub-Assembly	
(12) Part	Manufacturers Part Number
-201	1 🖸 Qualification Test 3 🗇 Integration Test 7 🗇 Bench Test 2 🖸 Acceptance Test 5 🗇 Lounch Operations 8 🗇 Post Launch 🛛 Reliabilityrs 4. 4. 5/10
(14) Environment	1 Acceleration 3 🖾 Thermal-Vacuum 5 🗌 Humidity 7 🗌 Ambient / A 🗍 RFIA
223	2 Shock 4 Temperature 6 Vibration 8 Acoustic 0 Vacu
When Failed	1 Part 3 Assembly 5 System (7025) 2 Sub-Assembly 4 Component 6 Spacecraft
(16) REFERENCE	SVH3 5619 4.3.11
Spacecraft Log Book #	Page Test Procedure Para
	ction: VCP- was undergoing thermal verification testing at G. S., Valley F af. during Test Procedure. At the end of 2 hours, tank term, was 1127
and line term, we	is -1977. The required term. is 1009 min. Unit was returned to 117 (and
Locks, Ct.) for o	continuation of trial try Test (authorized by TMI CEFC to HE dated 5/12/72
Targat clours or	ate is 7/18/12.
	appresibility a. K. Moore
	r, f Nauer Phone: (203) 523-1521 xill: Organization: Healton Atendard
Do Not Write in This Space	
(19) Cause of the Malfunction:	(continued) ated. Hamilton then conducted a series of development tests on various l
	rations. It was found that line insulation could be manufactured and
	stantially improved thermal characteristics but that it would require add
-	power even when the best line insulation configuration was used.
	Agreement was then reached with MASA to proceed with the following action
and get a set of the s	alysis any changes to the tank thermal design required to maintain proper s b) remove and replace the line insulation with the best available confi
	the thermocouple instrumentation with G.F.E. thermistors d) rewire the pr
	rs to provide 1 watt heat input to each line e) conduct a thermal vacuum
	lant line, simulating worst case specification with zero sun input. The
	d on Other Units, List Units by Seriel No. (#20 continued on attached sheet)
Do Not Write in This Spac	
(21) Failure Analysis Performed?	YES NO Organization That Performed Failure Analysis <u>HSD</u> 1 [X] 2 [] Failure Analysis Report Number <u>ACS-2093-2.3-099</u> Date <u>31 Aug. 19</u>
(22) Action Taken on Failed Unit	1 🕅 Rework/Repair 2 🕅 Modified 3 🗋 Discarded 4 🗋 Replaced 5 🗋 None Date <u>Aug. 1972</u> Organization That Performed Rework/Repair <u>HSD</u>
(23) Is Kotest Required?	1 X Yes 2 No If Yes, State Retest Requirements Done - See above report
(^4) Retest Results	Satisfactory Unsatisfactory Remarks:
(25) Unit May Be Used For	Flight Test Only 1 K 2 []
Yr Mo Day Date MR Closed	
	B6 B6 B6 B6 B6 B6 B6 B6 B6 B6 B6 B6 B6 B
	75<

GSFC HALFUNCTION REPORT

NOD	02909
-----	-------

PAR-B	(2) Spacesaft (3) Operation (4) Units
stem or Experiment	(6) Date & Time Yr Mo Day Time (7) Date Mo Day (8)Critica of Malfunction 71 (7593) of Report 3513
NAM	IDENTIFICATION NUMBER SERIAL NUMBER MANUFACTURER
Gompenent	Haert] top
Assembly	
Sub-Assembly	
Part	Manufacturers Part Number
Malfunction Occurred During	1 Acceptance Test 3 Launch Operations 8 Post Launch Raliability: A. 5/18/72
) Environment	
When Failed	1 Acceleration 3 Thermal-Vacuum 5 Humidity 7 Ambient A RFI/EMC 2 Shock 4 Temperature 6 Vibration 8 Acoustic 0 Vacuum
) Hardware Level	1 Port 3 Assembly 5 System (VCPS)
When Failed	2 Sub-Assembly 4 Component 6 Spacecraft
EFERENCE	Page Test Procedure 5519 Para 1.3.11
raft Log Book *	Page Test Procedure Paro Paro
	iction: Will was under ping thermal verification testing at G. E., Valley Forme
T BT OF IL OT R	et. anling Sech Procedure. At the ond of 2 hours, tank term. was 411 7
d ling trade w	as - VI. The required toro. is hoor min Unit was returned to HT (Windsor
	continued to of the life Test (authorized by THI GSFC to HE dated 5/32/72).
	ata 18 7/14/12.
	apponsibility . K. Hoore
	1, 5 Phone: 2031 523-1521 x194 Organization: 53711ton Standard
o Not Write in This Spac	
AUS of all the Hali should be	X (#20 continued) analysis indicated that the proper temperature range would
aintained if t	he proper emittance to absorbence ratio is selected. The proper (K/ϵ) ratio
	vering 56% of the tank black paint strip area with vapor deposited gold
	the propellant tanks modified in this way, the min 60° cruise temperature is
	6°F with a 50°F min temp. during the 2 hr. dark transient. VCPS propellant
uraced to be 9	ated and the line heaters rewired in accordance with E.C. E40500-64. The
o Not Write in This Spac	
anostation in the	thermal vacuum test was performed and test data analyzed. The minimum
	under any flight is calculated to be 51°E. This Malfunction Report is
ed on the basi	s of the above action and the acceptance Hamilton Standard Thermal Report
2093-2.3-099.	
ective Action is Require	ed on Other Units, List Units by Serial No.
o Not Write in This Spec	
1) Failure Analysis Performed?	YES NO Organization That Performed Failure Analysis HSD 1 [X] 2 [] Failure Analysis Report Number ACS-2093-2.3-099 Date 31 Aug. 1972
2) Action Taken on Failed Unit	1 [] Rework/Repair 2 [] Madified 3 [] Discarded 4 [] Replaced 5 [] None Date Organization That Performed Rework/Repair HSD
3) Is Retest Required?	1 [X] Yes 2 [] No If Yes, State Retest Requirements Done - See above report
4) Retest Results	Sotisfactory Unsatisfactory Remarks: 1 (X) 2 (T)
5) Unit May Be	Flight Test Only
Used For Mo Day Dete MR	1 (X) 2 [] GSFC Project Approval GSFC MRRT Approval Date Contractor Approval (D) date
Closed	all Duce 15/72
	J 1 177 76 < B7 Para 2 Copy 4

SVHSER 6226

APPENDIX C

1

VIBRATION REPORT

77< Ci

F 1436 4/ 67		3.	· ***	
	SLS TEST ENGI		FILE CODE	TEP 771
بر. ج	TEST REP	-QRT	FILE CODE	
AND AND A		749770	-	
OGRAM RAE-B			S/N	
ME OF TEST QUAL				
DNCLUSIONS				
		·		
				<u></u>
COMMENDATIONS (OPTIC		995 mar - Marina Magnagan an a		
			an ann an 1920 ann an Arright an Argentana an	
BSERVATIONS (OPTIONAL RESPONSE CURV VIBRATION TEST	ies, log sher			
RESPONSE CURV	ies, log sher			
RESPONSE CURV	ies, log sher			
RESPONSE CURV	ies, log sher			
RESPONSE CURV	ies, log sher			
RESPONSE CURV	ies, log sher			
RESPONSE CURV VIBRATION TEST	IES, LOG SHER			
RESPONSE CURV	IES, LOG SHER			
NERATION TEST	IES, LOG SHER			
RESPONSE CURV	IES, LOG SHER			
RESPONSE CURV VIBRATION TEST	IES, LOG SHER	ETS AND	PLOTOS OF	= ABOVE
	IEF OF DESIGN	ETS AND	PLOTOS OF	= ABOVE
RESPONSE CURV VIBRATION TEST	IEF OF DESIGN	ETS AND		= ABOVE

230	v	٦	n	-	1	1	
		-	~	•	-	1	

	Memo File Code RAEB-VCPS-12/2
Memorandum to:	Page of 3
Program RAE-B	Test Item(s) VCPS
Date of Test 4-15 /4-18-72	Serial No.(s) 0000/
Name of Test QUALIFICATION	
Snecification AT-VCPS	

Subject:

<u>THE ABOVE ITEM WAS VIBRATED AT HSD</u> ON RIGZE IN A LOADED AND PRESSURIZED CONDITION. THE VERS WAS MOUNTED ON FIXTURE SVSK 79594. PORTIONS OF THE TESTING WERE PERFORMED WITH THE VERS ONLY AND OTHERS WERE PERFORMED WITH THE SPACECRAFT MOUNTED TO THE VERS.

CONCLUSION: THE VCPS CAN WITHSTAND SPECIFIED VIBRATION WITH NO SIGNS THE OF DEGRADATION WHILE LOADED STRUCTURAL WITH 45±0.5LBS HIGH PURITY WATER, AND PRESSURIZED TO 2601 PSIA GN2.

CON'T

Test Engineer S. ME HMED JR Signature Sami Mehmed W Date of Report 5-12-72 ____ Date Mun 12, 1972 Approved _

Memo File Code RAEB- VCPS-12

Page No 2 of 3

DEVIATIONS: 1) RESPONSE DATA FROM LOCATION HZ PRESSURE TRANSDUCER MOUNT, TEST 14 LOOKS VERY QUESTIONABLE AS SHOWIN BY TRACE 49. THE ACCELEROMETER AT LOCATION HZ WAS NOT DAMAGED OR UNFASTENED, HOWEVER THE SIGNAL SHOWN ON TRACE 49 REPRESENTS NOISE ONLY. 2) TEST 16, TRACE 60 REPRESENTING LOCATION [HZ] MUST BE QUESTIONED SINCE TRACE 49 DOES NOT LOOK REALISTIC, TRACE 60 HOWEVER DOES APPEAR TO REPRESENT A REALISTIC LEVEL 3) TEST Nº 16 WAS ACCEPTED BY NASA REPRESENTIVE, MR 141. CALABRESE, AFTER THE FOLLOWING OVERTEST OCCURRED. (I.O.C. ACCEPTING THE TEST IS INCLUDED IN THE REPORT). SUBJECTED TEST ITEM TO 16.2 GPK FROM 23-27 HZ AND 12.9 GPK AT 82HZ. THE CAUSE WAS DUE TO A MALFUNCTION IN THE ELECTRONIC SWEEP/HOLD CONTROL LOGIC. 4) TEST 10, TRACE 23, LOCATION [BY] DATA WAS NOT SECURED BECAUSE THE ACCELEROMETER LOOSENED FROM ITS ATTACHMENT POINT CONT 80<

Memo File Code <u>RAEB-VCPS-1</u>212

Page No 3 of 3

DEVIATIONS CON'T
5) A REDUCED CONTROL CURVE FOR TEST
Nº 7, Y AXIS, IS NOT INCLUDED. THE
IN FORMATION WAS NOT RECORDED FOR THIS
TEST BECAUSE THE DATA PATCH CORD
WAS NOT PROPERLY CONNECTED TO THE
RECORDER INPUT
6) TEST NUMBER 17 AND TEST NUMBER 10
TRACES 24 AND 13 RESPECTIVELY INDICATED
TOLERANCE DEVIATIONS AT GOHZ AND 120 HZ,
THESE DEVIATIONS WERE CAUSED BY 60 HZ
NOISE WHICH WAS NOT DETECTED OURING
THE TEST.
RESULTS:
i) THE SPACE CRAFT C.G. DID NOT EXCEED
14.5 GPK DURING TESTING BETWEEN 16 AND
23 HZ AS LIMITED BY THE SPECIFICATION.
2) THE SPACE CRAFT C.G DID EXCEED 14.56PK
AS SHOWN ON TRACE 24 TEST 7 ONLY.
3) NO VISIBLE STRUCTURAL DAMAGE WAS
DETECTED.

81< ^{C-C}

HAMIL TON STANDARD	REPORT NO.
and the second	
Table of Contents	
Test Background A) Instrumentation and Calibration List	Section I
B) Block Diagram of Test System	
C) Illustration of Item & Transducer Loc	ation
D) Random Analysis Outline	
X - Axis	Section II
A) Sine Data	
B) Random Data	
Y - Axis	Section III
A) Sine Data	
D) Conder Date	
B) Random Data	
Z - Axis	Section IV
A) Sine Data	
F) Random Data	
r) Random Daba	
Pogs	Section V
A) Operator Log	
B) Instrumentation Master & Running LogC) Data Reduction Log	
>) Derog (Lease of the Inck	

82< Cl

Section I

Test Background

- A) Instrumentation and Calibration List
- B) Block Diagram of Test System
- C) Illustration of Item & Transducer Location
- D) Random Analysis Outline

1

(

LABORATORY OPERATIONS ENGINEERING TEST EQUIPMENT RIG 26 MB C210

ITEM	MANUFACTURER	ACCURACY	MODEL	S/N_
Signal Conditioner	Unholtz-Dickie	±2%	610RM-3	133
Signal Conditioner	Unholtz-Dickie	±2%	610 R	202
Logarithmic Converter	Moseley	±5%	N165-T2	451
Logarithmic Converter	Moseley	±5%	7561A	825 - 00944
Exciter Control	MB Electronics	±4%	N575/ 576	142
*Differential AC/ DC Voltmeter	John Fluke	±0.05%	803BR	582
Wide Range Oscillator	Hewlett Packard	±2%	200CDR	229 - 45434
Oscilloscope	Hewlett Packard	±5%	130C	3200-1326
*Counter	Anadex	±1 Count	CF200R	2933
Dynamic Analyzer	Spectral Dynamics	Linearity ±3% D.C. Out ±0.25db Filter Sig.±0.25db	SD101A	233
*Spectral Density Voltmeter	Ballantine	±2%	321	866
X-Y Plotter	Moseley	±5%	135	1542
X-Y Plotter	Hewlett Packard	±5%	7030A	823 - 01313
Dynamic Analyzer	Spectral Dynamics	±0.25db Log D.C.	SD101B	39
Sine Wave Center	Ling Electronics		SCO-100	39

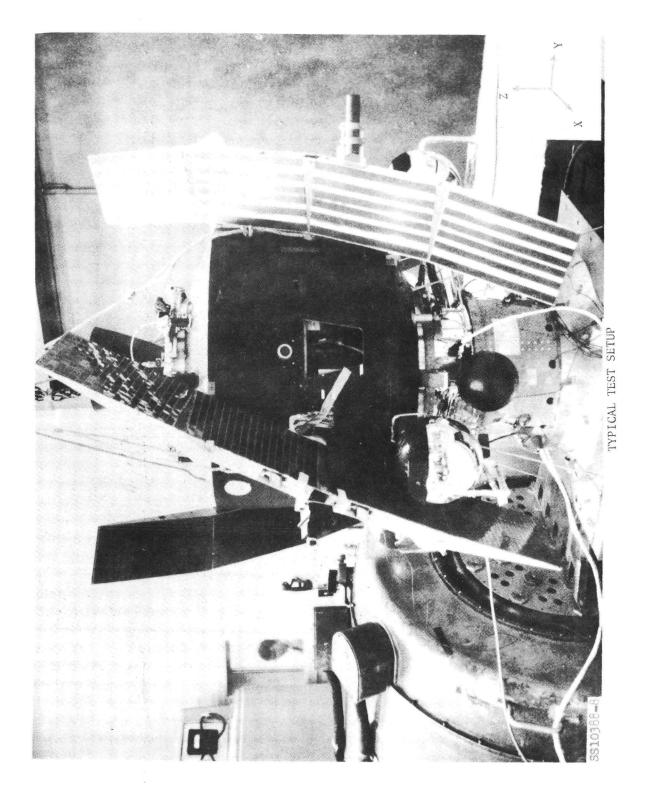
Standard Calibration Period - Entire system 2 months and also item * are 4 months.

^{c3} 84<

TEST EQUIPMENT (cont'd) RIG 26 MB C210

ITEM	MANUFACTURER	MODEL	S/N
Gal v anometer Amplifier	Honeywell	T 66 A - 500	6-3373
Attenuator	Hewlett Packard	350A	E11060
Constant Level Output Adapter	Spectral Dynamics	SD11	39
Tape Junction Unit	HSD	В	1
Oscilloscope	Tektronix	RM561-A	009168
Time Base Horiz. Plug-In	Tektronix	2B67	016133
Four Trace Vert. Amp. Plug In	Tektronix	3A74	003197
Spectrum Equalizer	Ling Electronics	SE80D	113
Spectrum Equalizer	Ling Electronics	SE80C	114
Channel Mode Selector	Ling Electronics	СМ40В	271
Low Frequency Equalizer	Ling Electronics	5lf-8a	174
Manual Selector Switch	Ling Electronics	SSM-100A	114
Channel Mode Selector	Ling Electronics	СМ4ОВ	263
Control Panel	Ling Electronics	CP-10B	170
Driver Amplifier	Ling Electronics	A-10	165
Dual Noise Generator	Ling Electronics	GRN200B	167

TEST EQUIPMENT (cont'd) RIG 26 ME C210

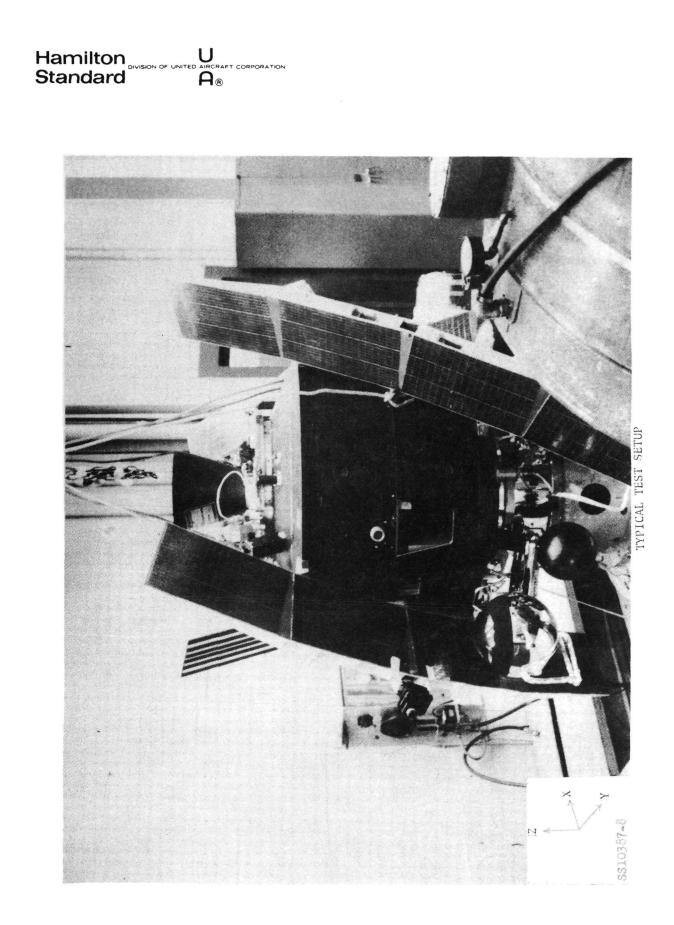

ITEM	MANUFACTURER	MODEL	S/N
Neter Range Selector	Ling Electronics	MR ¹ +OB	282
Meter Range Selector	Ling Electronics	MR4OB	278
Power Distribution	Ling Electronics	PB10	162
Displacement Limiter	MB Electronics	N20	429
Nultiple Level Control	MB Electronics	N661	3 ¹ +0
Multiple Channel Amplifier	MB Electronics	N270	401
Equalizer By - Pass	MB Electronics	N322	586
Control Panel	MB Electronics	N619	344
Amplitude Protector Control	MB Electronics	N56	481
Null Meter Panel	MB Electronics	N152	315
Power Supply	MB Electronics	N138	168
Amplifier	MB Electronics	5140	302
Exciter	MB Electronics	C210	251
Low Pass Filter	MB Electronics	N171	360
Power Supply	Ling Electronics	APS102	32
Power Supply	Ling Electronics	APSIOA	165
Power Supply	Ling Electronics	APS1130	113
Power Supply	Ling Electronics	APS103	27
Spectrum Analyzer	Ling Electronics	SA100	162CAB-A
Spectrum Analyzer	Ling Electronics	SA100	162CAB-B

86<

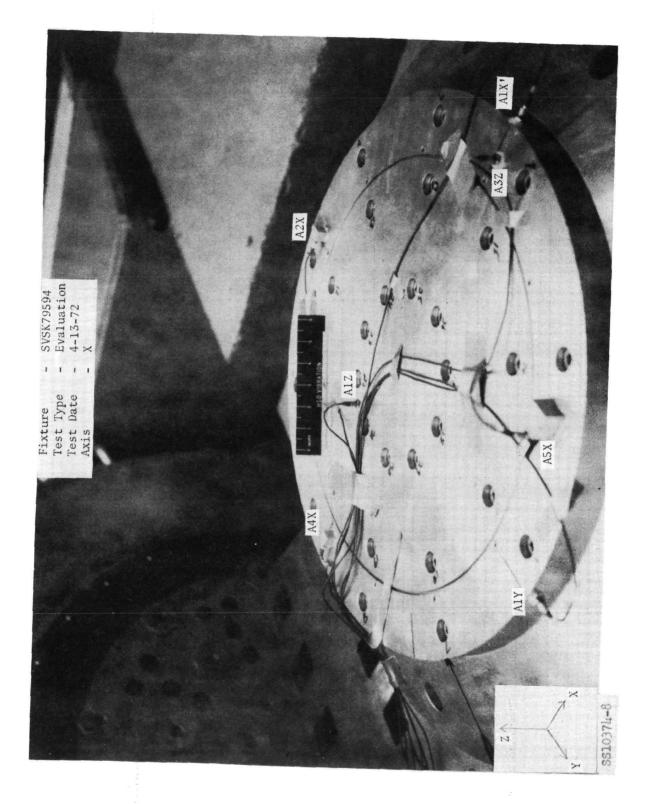
TEST EXUIPMENT RIG 26 MB C210 (cont'd)

ITEM	MANUFACTURER	MODEL	S/N
Master Schedule Selector	MB Electronics	N230	397
Signal Selector	MB Electronics	N151-T1	587
Signal Selector	MB Electronics	N151-T1	616
Tape Recorder	Ampex	FR1200	122 - 0301
Visicorder	Honeywell	1508	15-2098
Galvanometer Amplifier	Honeywell	т66л-500	6-3383
Signal Selector	MB Electronics	N151-T1	586
Waveform Synthesizer	Exact	20	375
Power Supply	MB Electronics	N141	135
Transducer Excitation	ENDEVCO.	SR1000EP	MBOl
Multiple Channel Scanner	MB Electronics	N280 - T2	403
Power Selector	MB Electronics	N320	215
Power Amplifier	MB Electronics	N290	467
Peak Notch Equalizer	MB Electronics	N20	722
Master Control Panel	MB Electronics	N240	579
Variable Gain Amplifier	MB Electronics	N310	434
X-Y Recorder Input Selector	MB Electronics	N74	317

Hamilton U BIVISION OF UNITED AIRCRAFT CORP

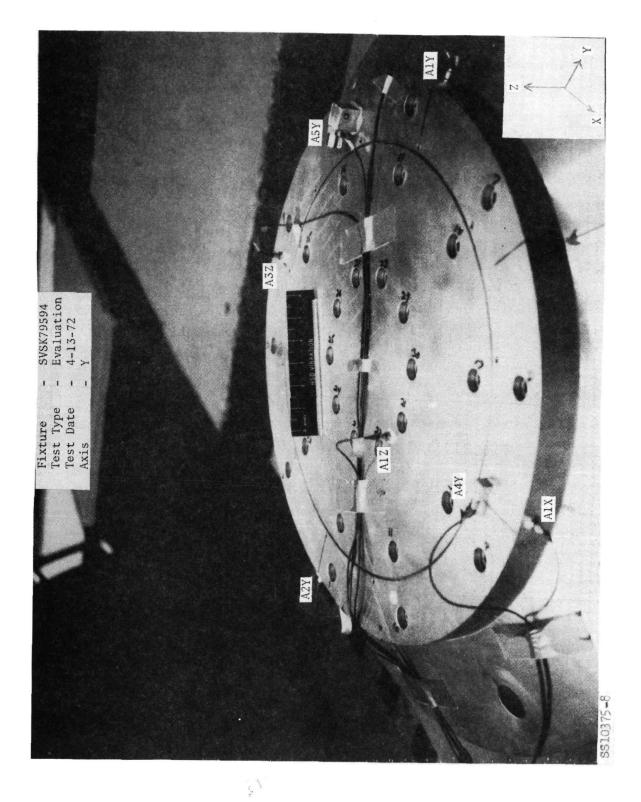

Laboratory Operations Engineering

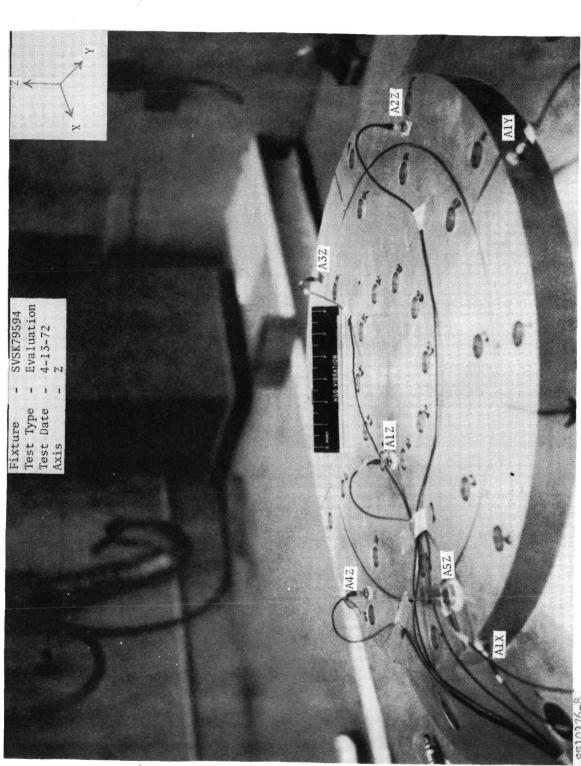
TEST EQUIPMENT


 Item	Manufacturer	Accuracy	Model	s/N	Calibrated	
Accelerometer	Endevco	±2%	2226	NB62	3-20-72 A	
Accelerometer	Endevco	±2%	2226	TD40	3-9-72 A	
Accelerometer	Endevco	±2%	2226	TE83	3-20-72 A	
Accelerometer	Endevco	± 2%	2226	TD44	3-20-72 A	
Accelerometer	Endevco	± 2%	2226	TG75	3-20-72 A	
Accelerometer	Endevco	± 2%	2226	WR11	3-9-72 A	
Accelerometer	Endevco	±2 %	2226	TD45	3-9-72 A	
Accelerometer	Endevco	± 2%	2226	TD48	3-9-72 A	
Accelerometer	Endevco	± 2%	2226	TG74	3-9-72 A	
Accelerometer	Endevco	<u>±</u> 2%	2222	XM21	4-10-72 A	
Accelerometer	Endevco	+ 2%	2222	YK20	4-10-72 A	
Accelerometer	Endevco	+2%	. 2222	XN 32	4-10-72 A	
Accelerometer	Endevco	±2%	2222	XJ29	4-10-72 A	ł
Accelerometer	Endevco	±2%	2222	RN81	3-23-72 A	ĸ
Accelerometer	Endevco	± 2%	2222	WF75	4-10-72 A	•
Accelerometer	Endevco	<u>+</u> 2%	2215	VG57	3-9-72 A	
Accelerometer	Endevco	<u>+</u> 2%	2215	VH49	3-9-72	
Accelerometer	Endevco	<u>+</u> 2%	2215	WH97	3-9-72	
Accelerometer	Endevco	±2%	2215	VH46	3-9-72	

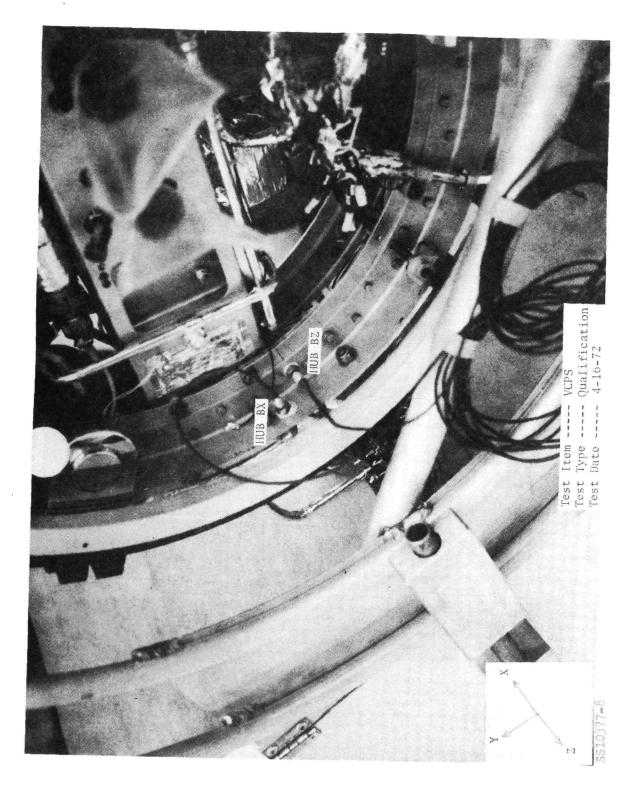
Standard calibration period is 2 months.

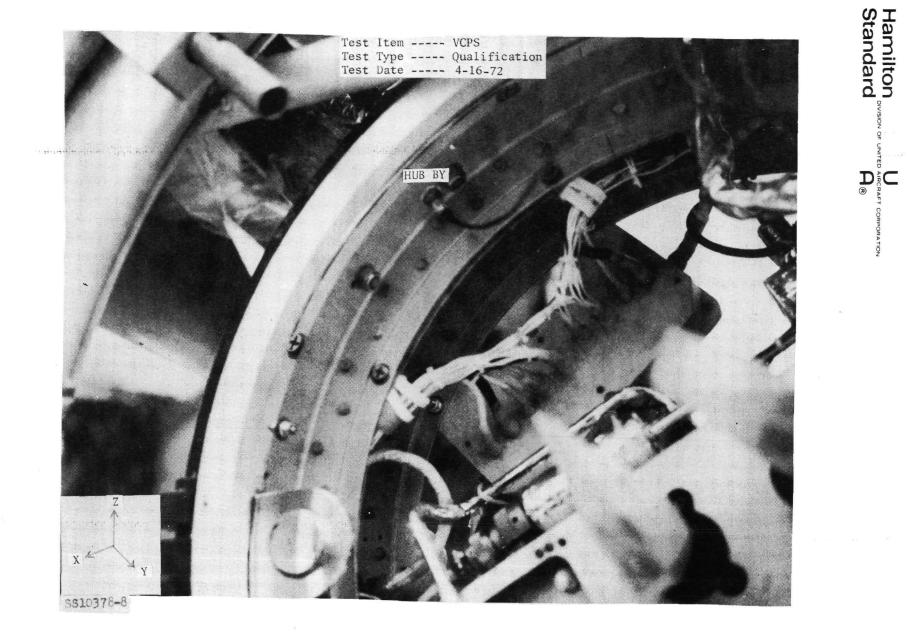
A = Used for this test.





C10


Hamilton UNITED AIRCRAI Standard A®

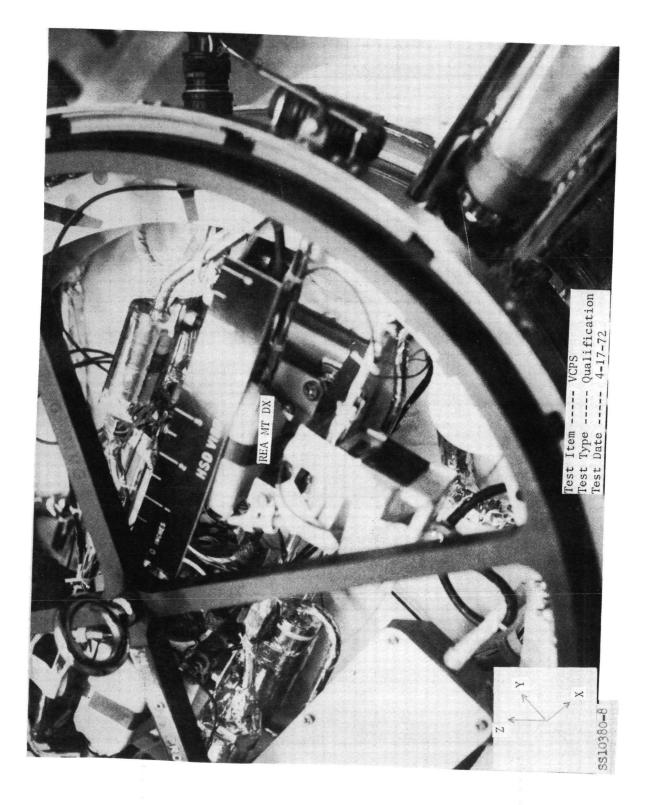

CORPORATION

ŝ

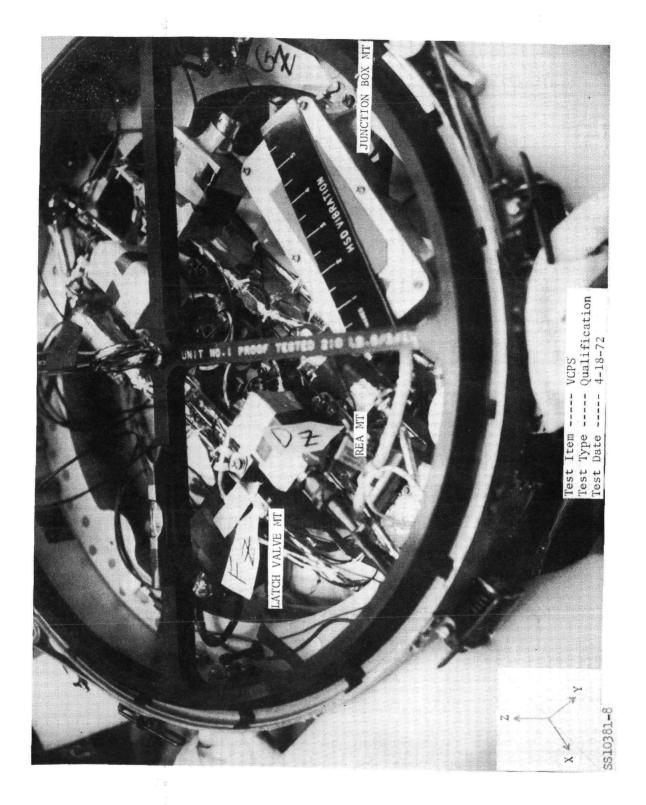
C12

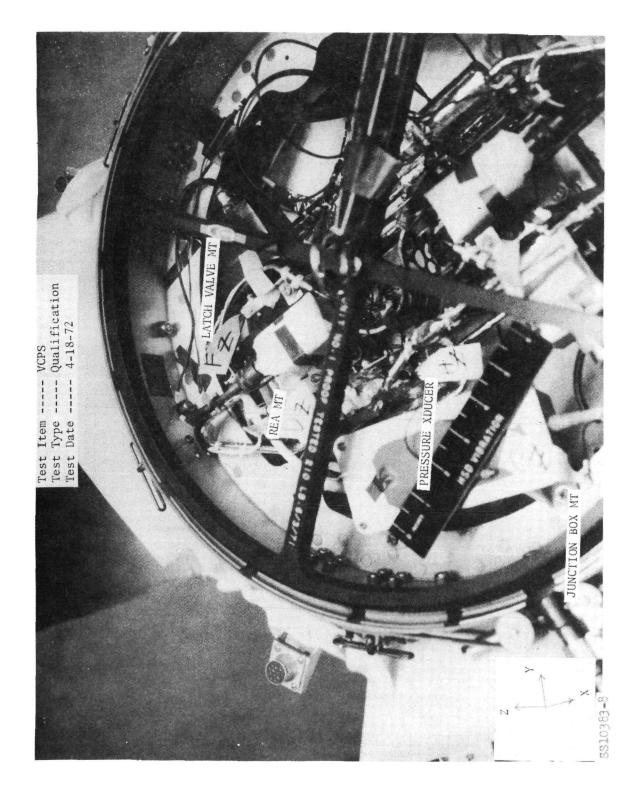
Hamilton U AIRCRAFT CORPORATION

Hamilton Standard

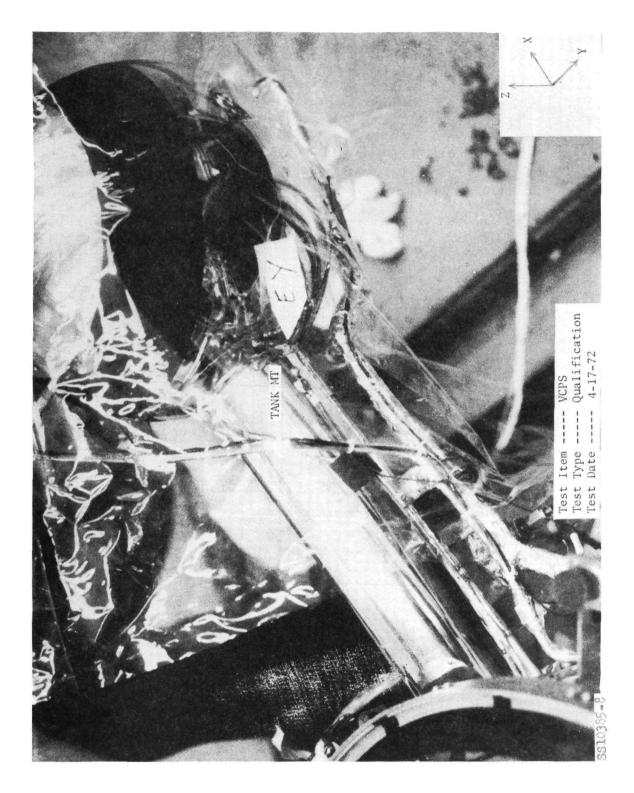

95< C14

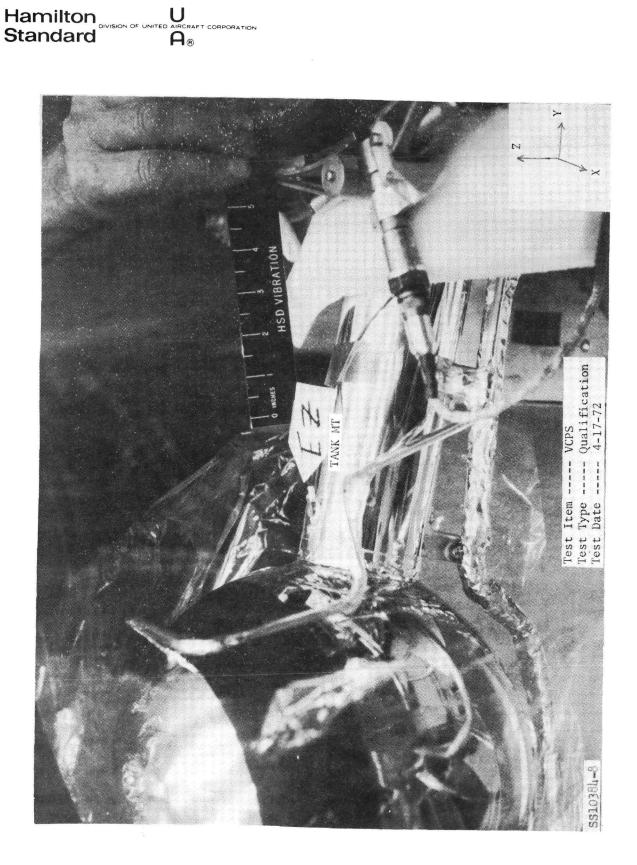
C16



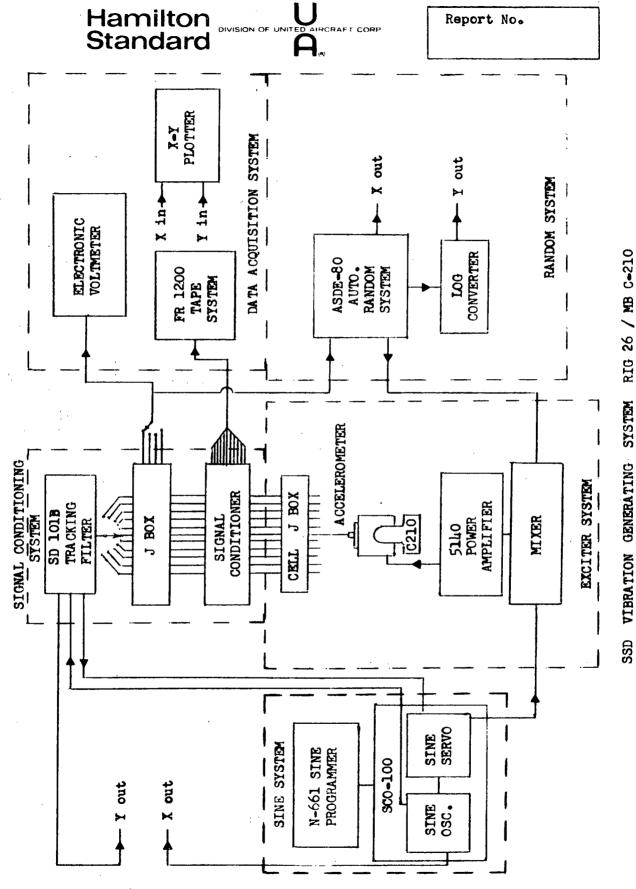



1. 29 . 19 (Mg - 1974) 1. 19 . 19 . 19 . 19 . 19 .


•



C20



CORPORATION

C22

Page

RANDOM VIBRATION ANALYSIS

METHOD B

The power spectrum density analyzer is a SD301B REAL TIME ANALYZER and a SD302A ENSEMBLE AVERAGER whose calibration for each test is based on a calibrated signal supplied from equipment listed in the instrumentation section.

1. ANALYZER PARAMETERS

Analysis Range Upper Limits (Hz)	Bandwidth (Hz) (3db Filter)	*Resolution (Hz)	Effective (Noise) Bandwidth (Hz)
20,000	60	40	64
10,000	30	20	32
5,000	15	10	16
2,000	6	4	6.4
500	1.5	1	1.6
100	0.30	0.2	0.32
50	0.15	0.1	0.16
10	0.03	0.02	0.032

*Spacing of filter location.

2. DEGREES OF FREEDOM

For real time analysis the bandwidth resolution is the reciprocal of the analysis period (BT = 1).

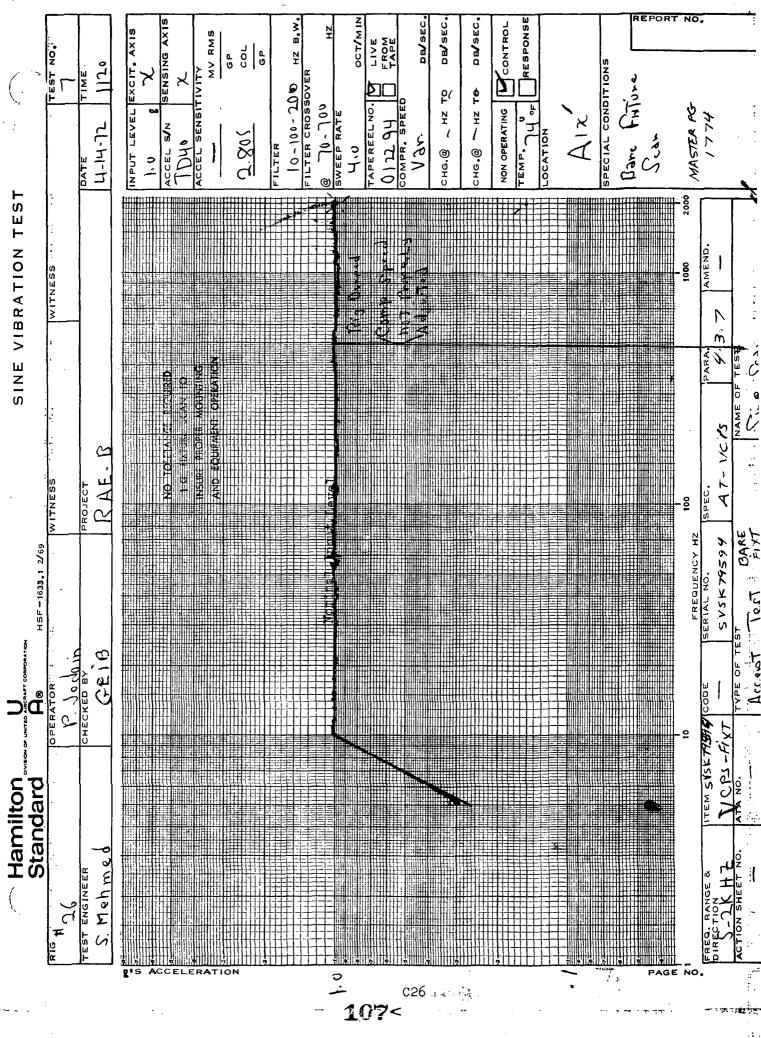
 $N = 2 \times B \times T_{\mathbf{X}}$ (No. of Ensembles)

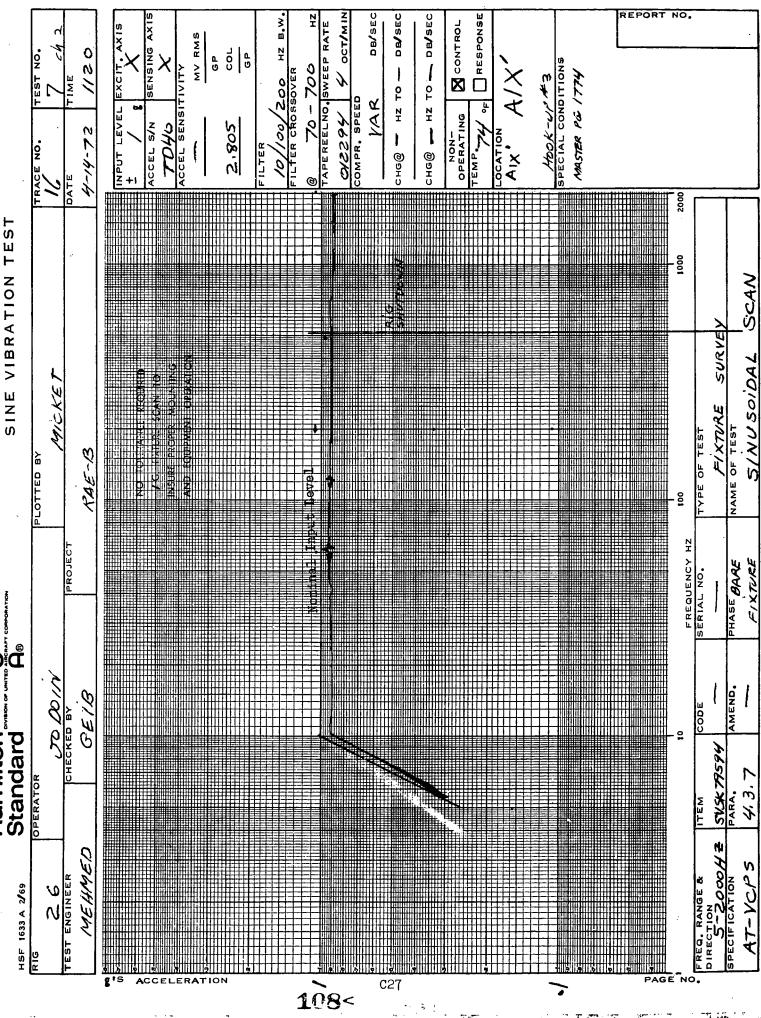
 $N = 2 \times No.$ of Ensembles

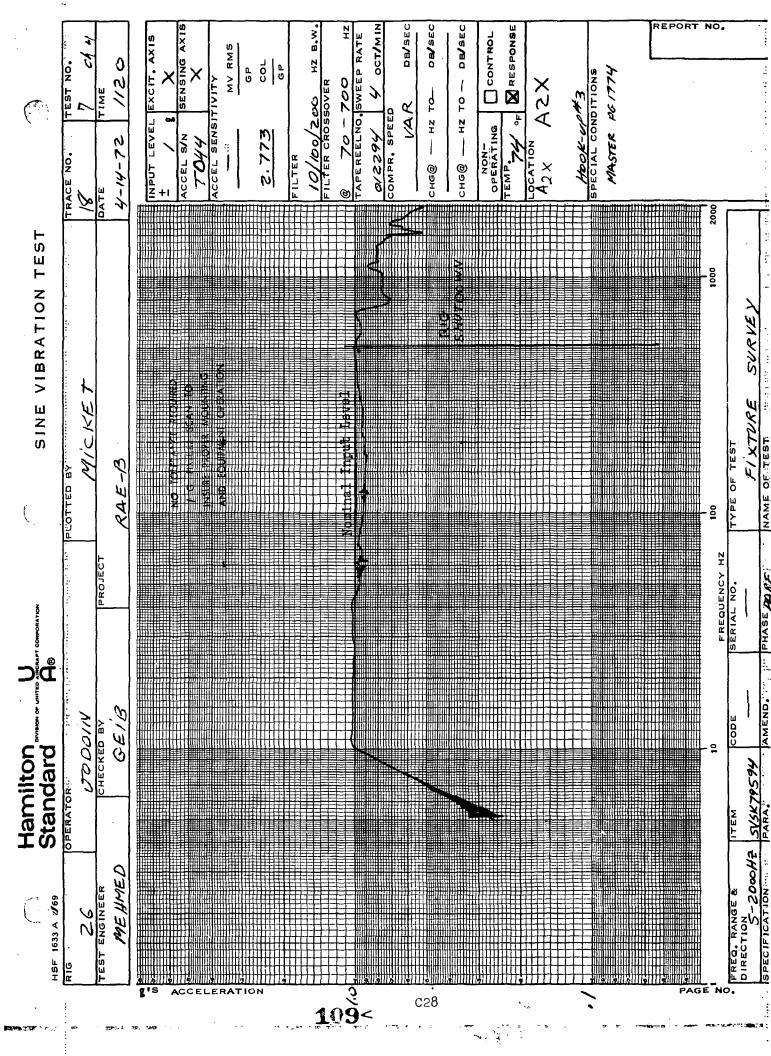
No. of Ensembles available:

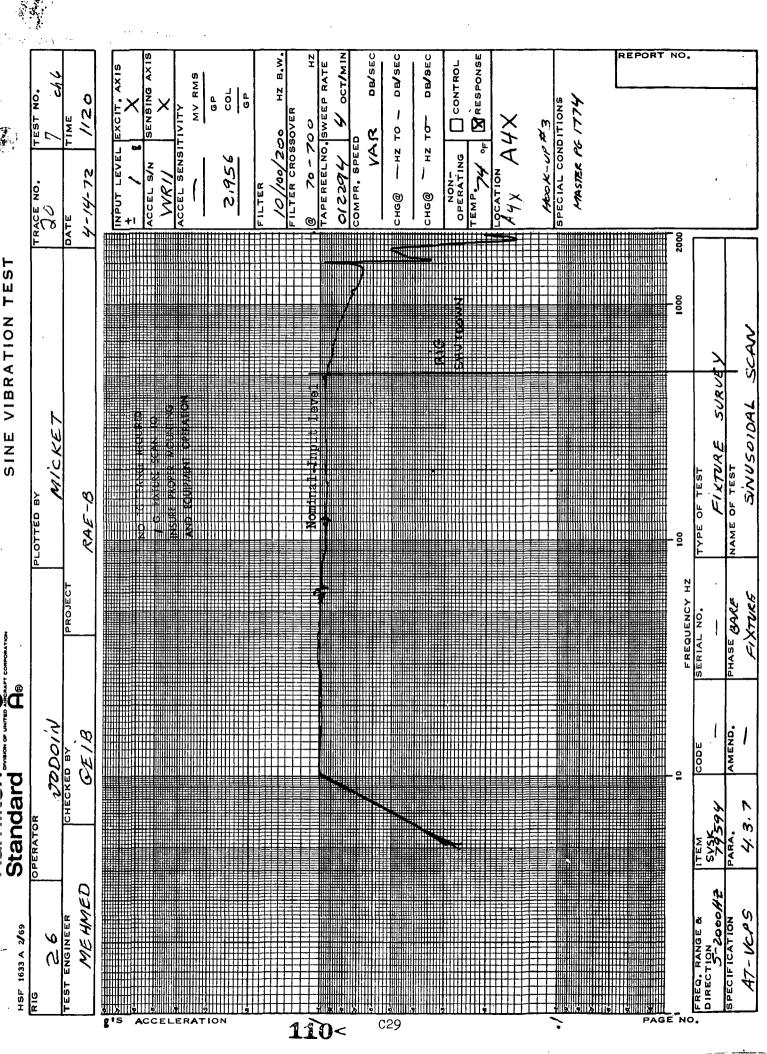
1, 2, 4, 8, 16, 32, 64 (normally used unless specified), 128, 256, 512, 1024.

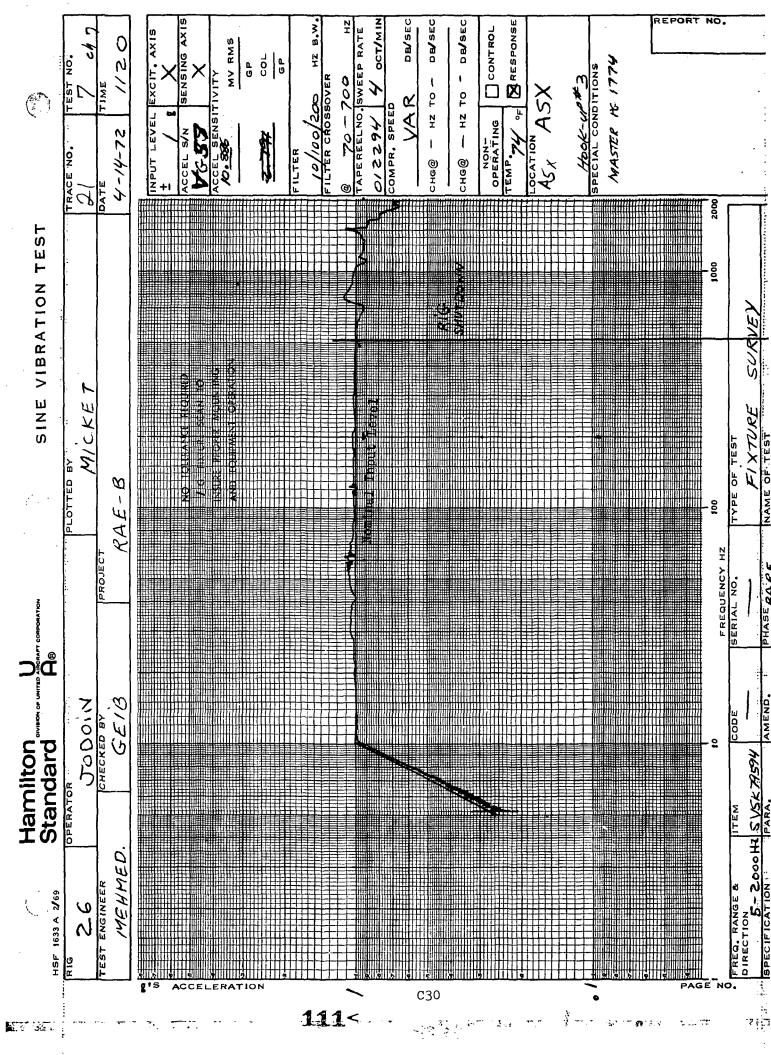
HS F-62A 7/62

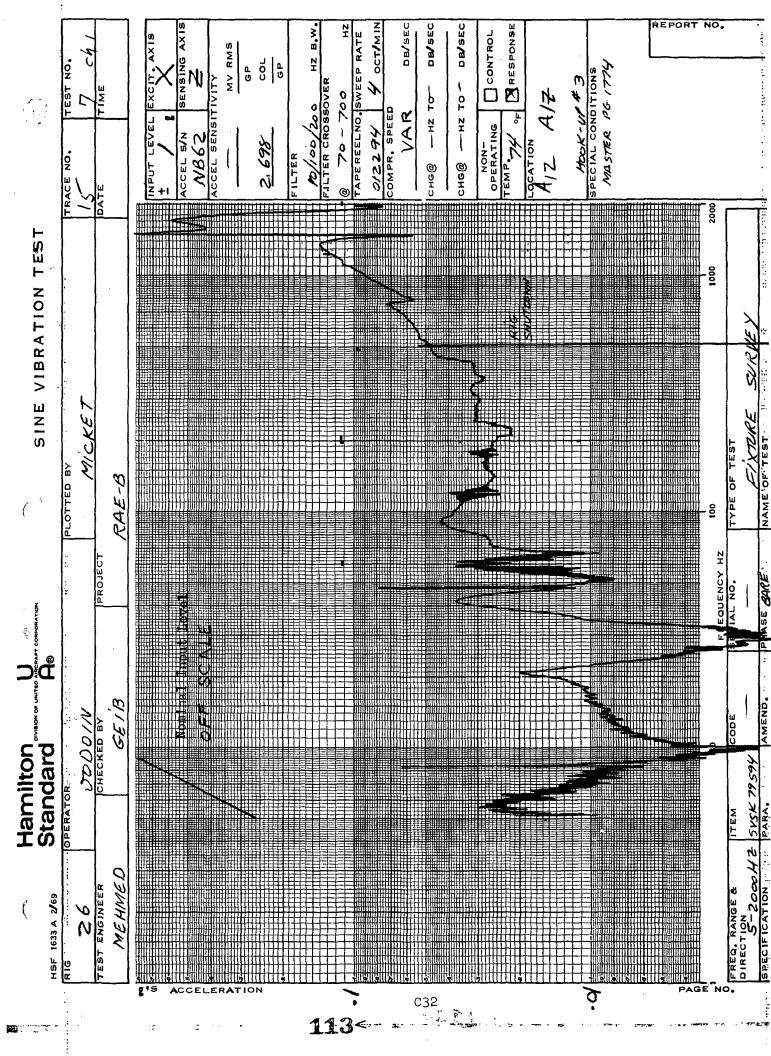

HÀMIL TON STANDARD REPORT NO.

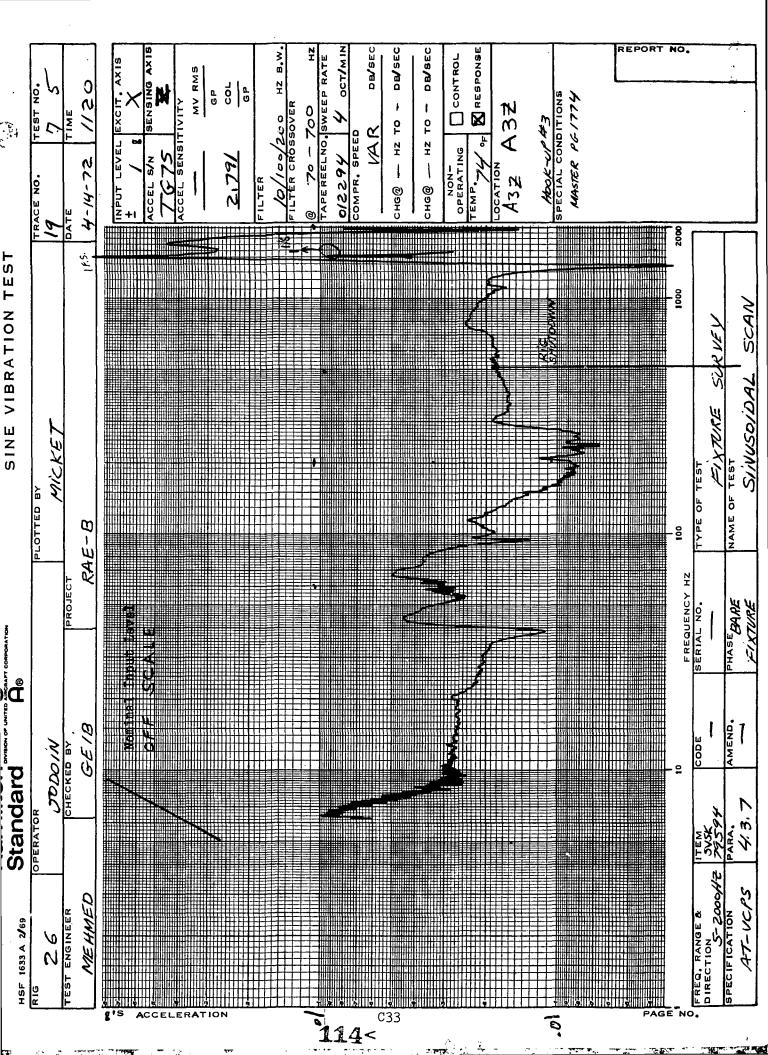

Section II

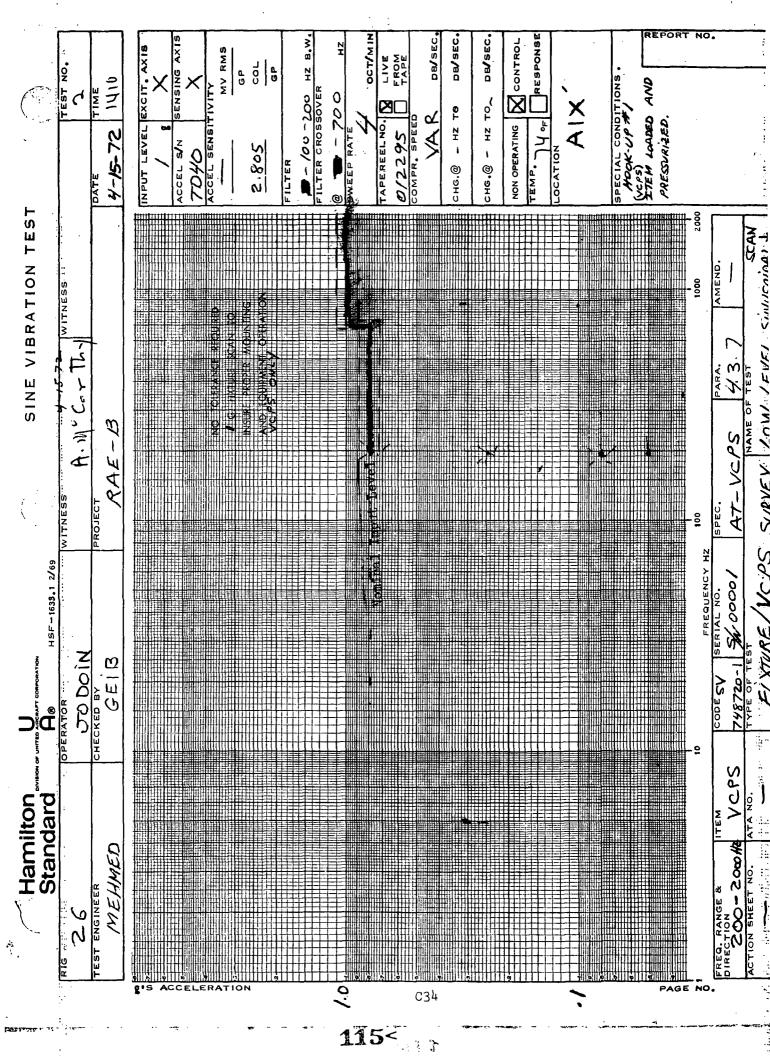

B) Random Data

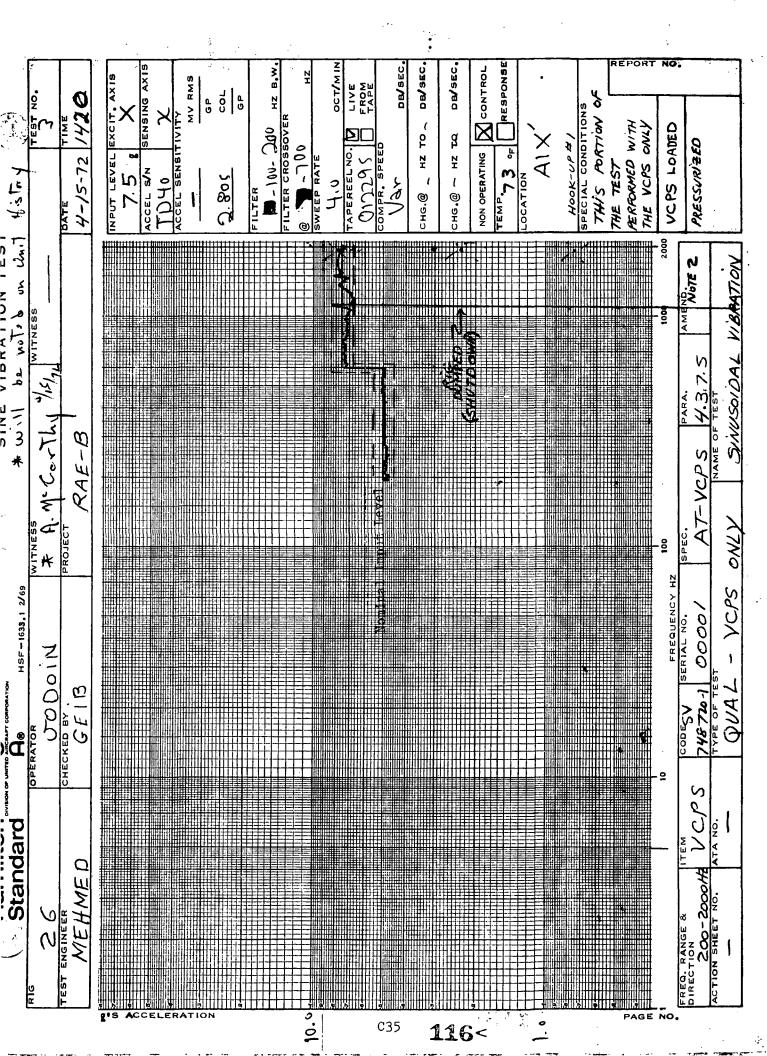

HS F-62A 7/62

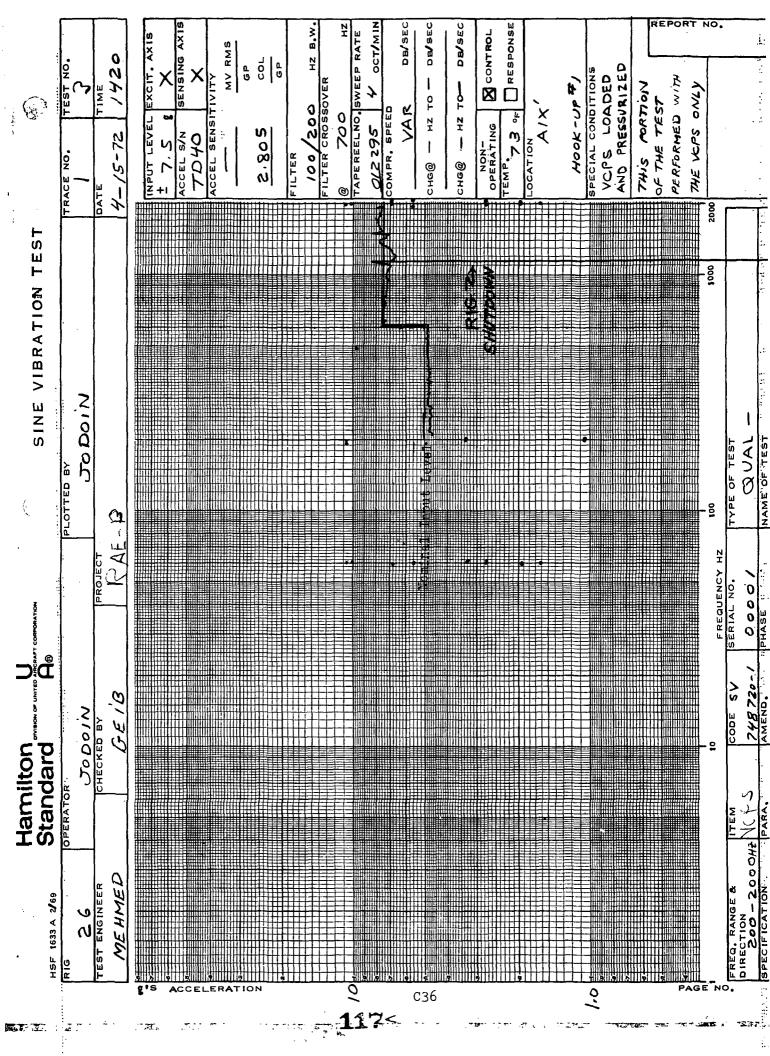

 \cdot

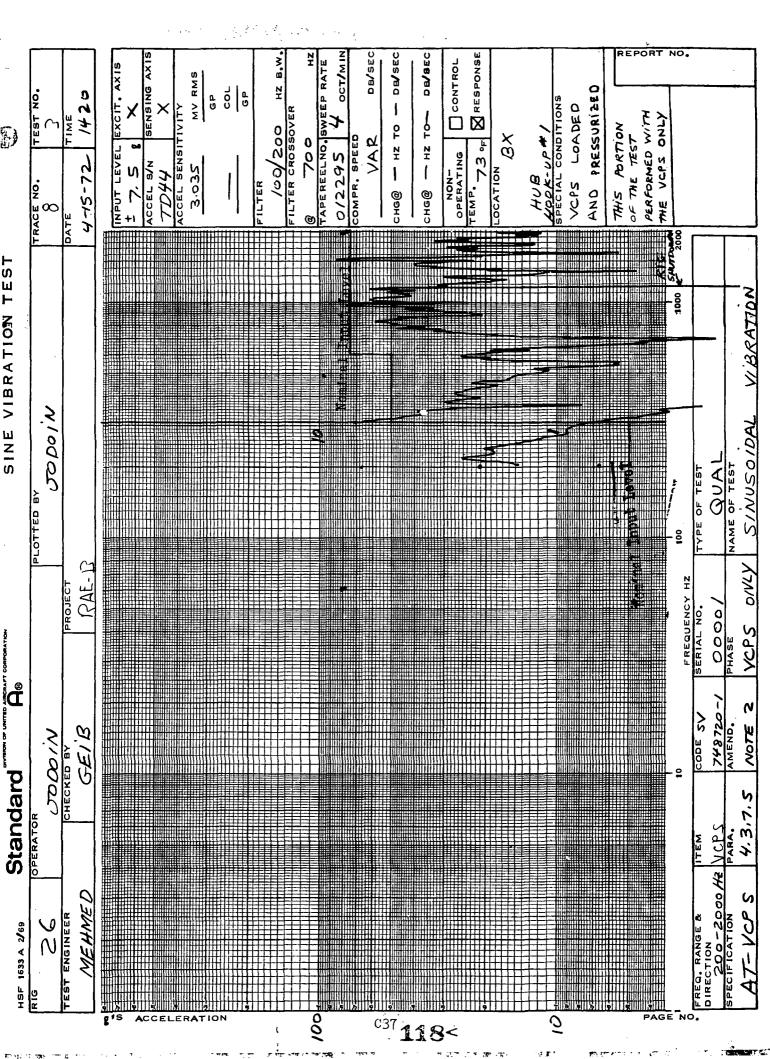


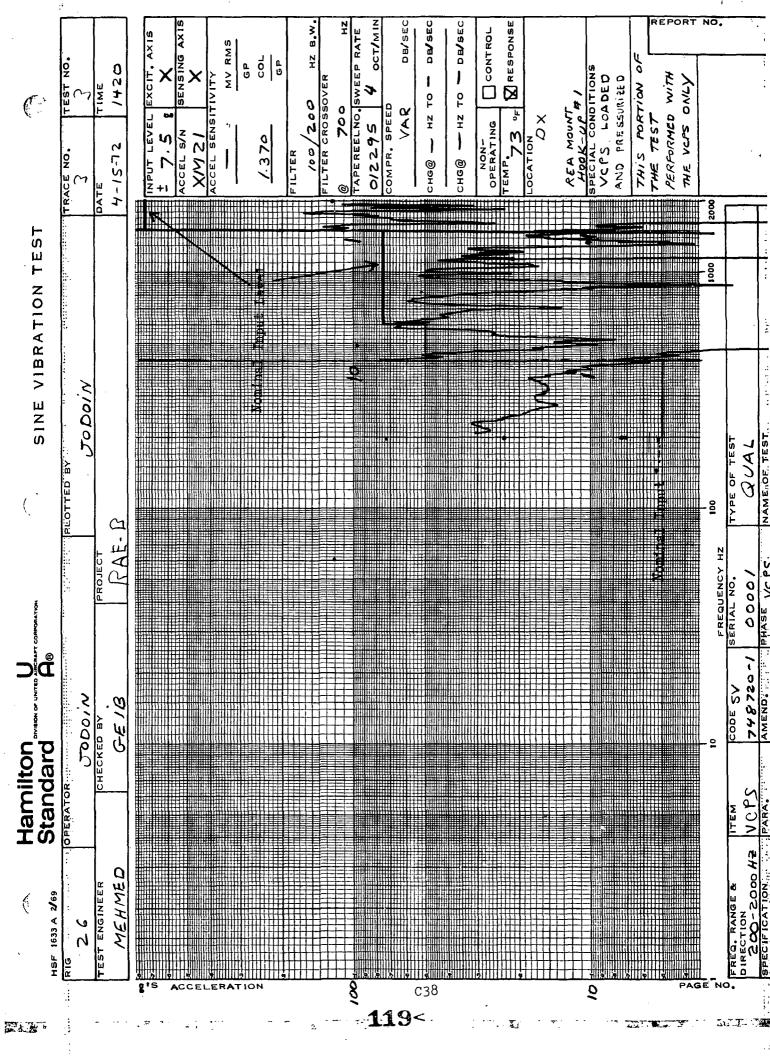


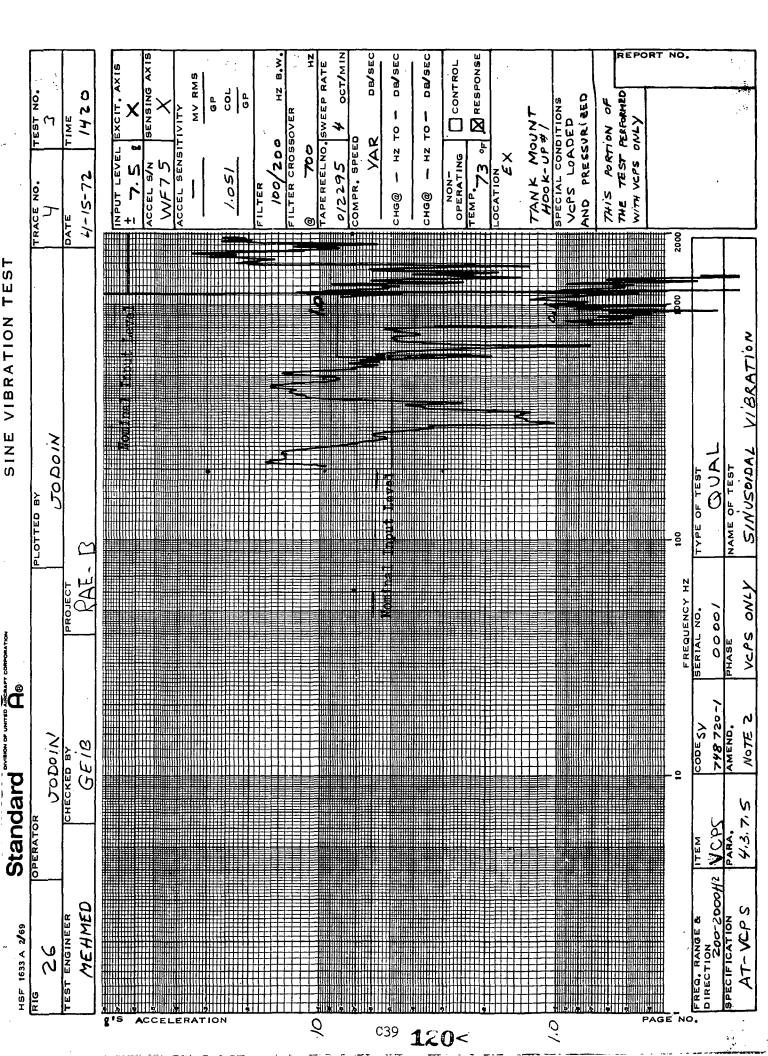


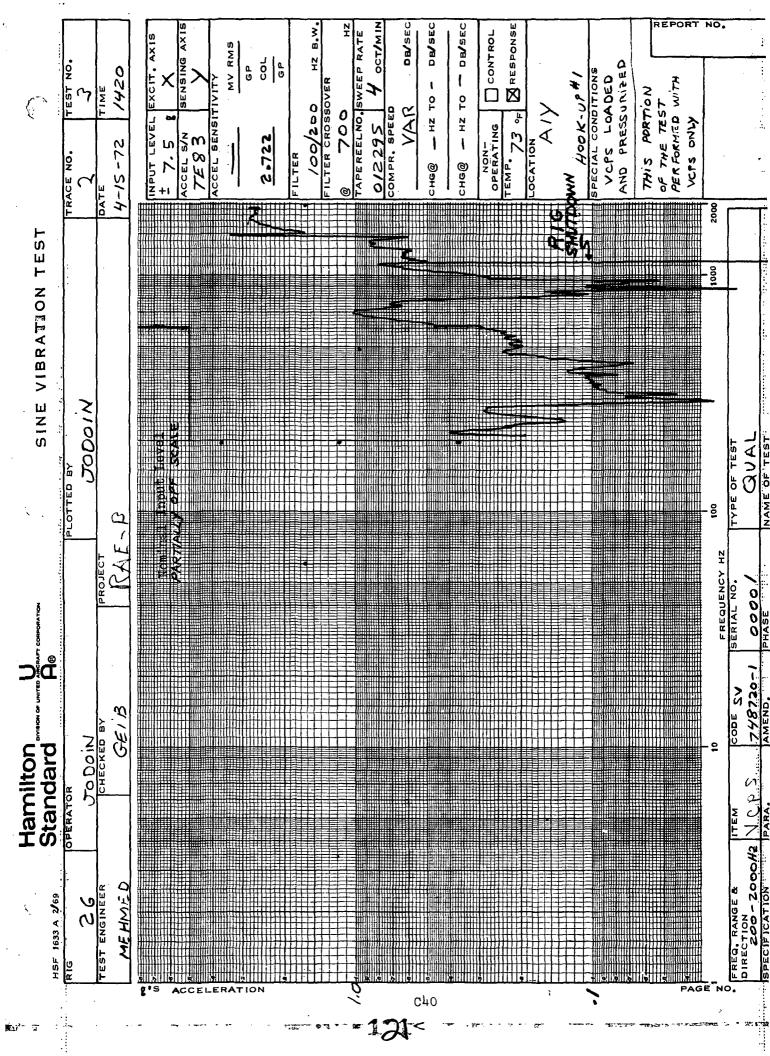


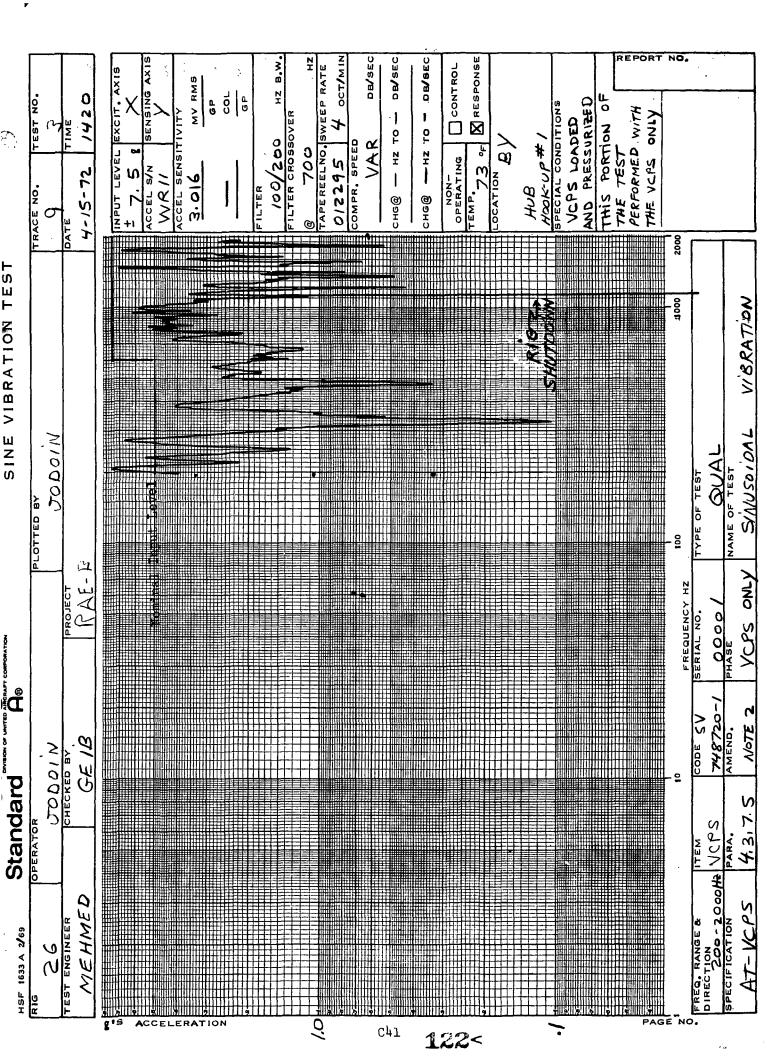


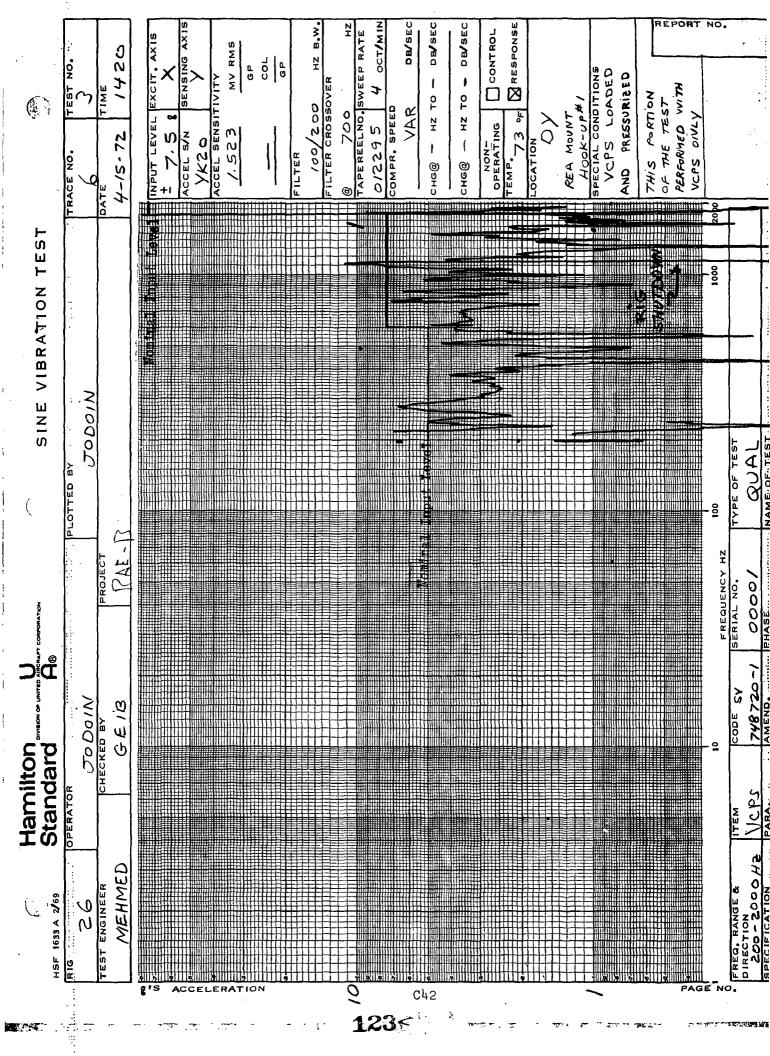


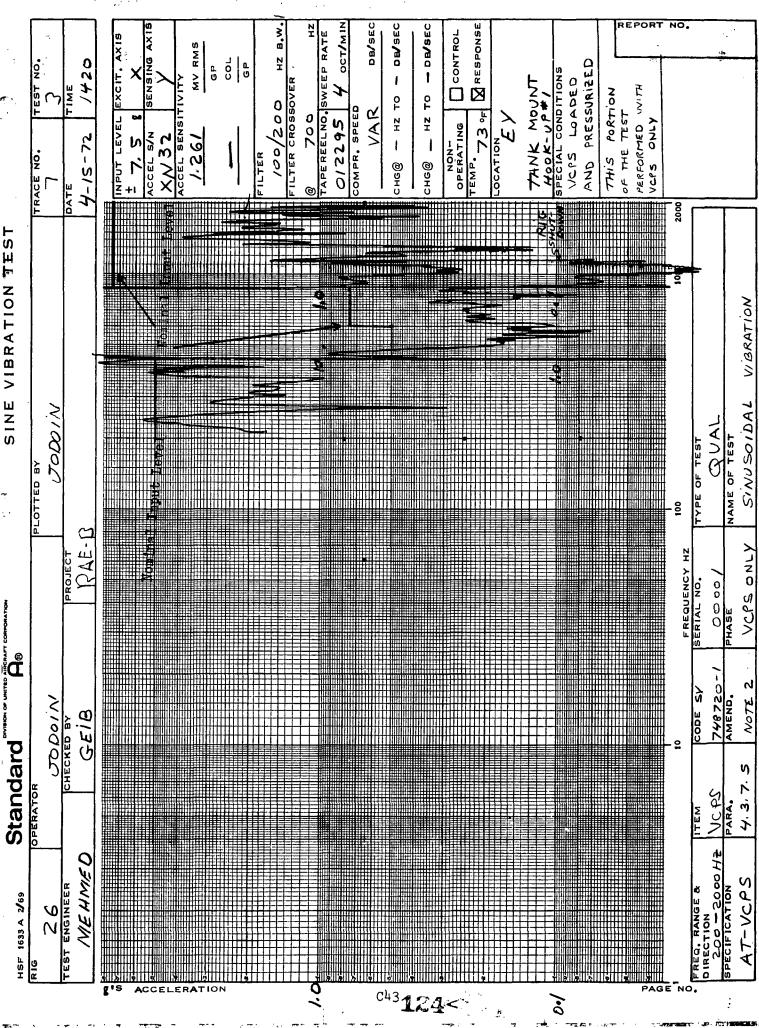


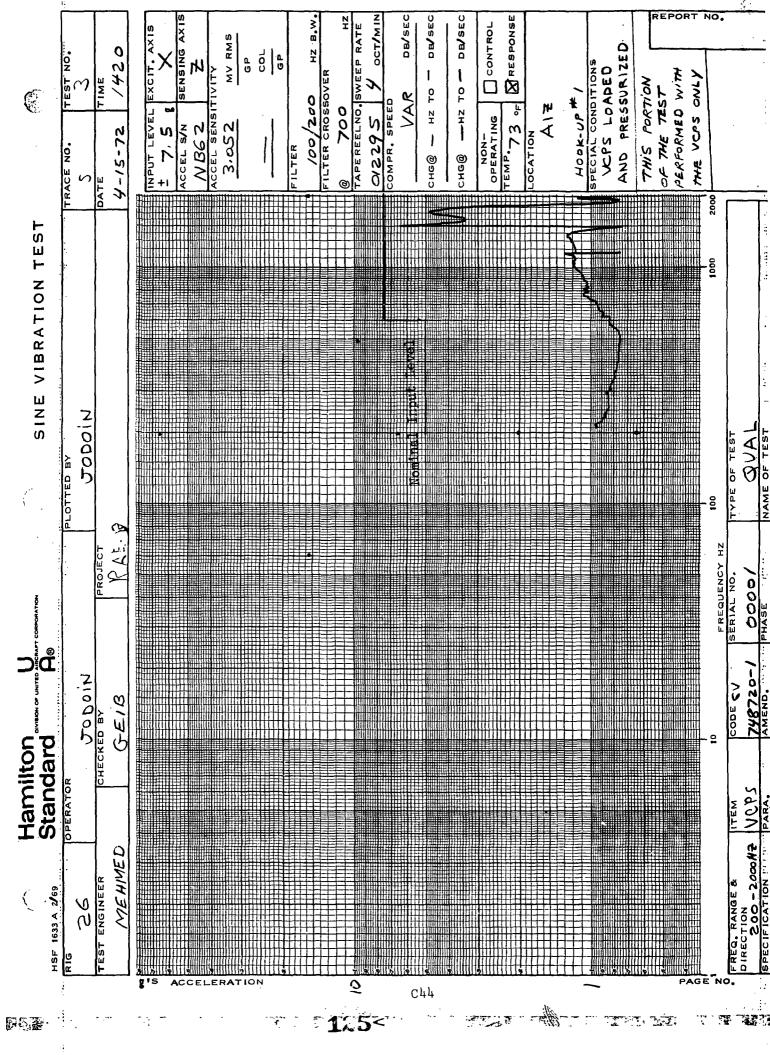


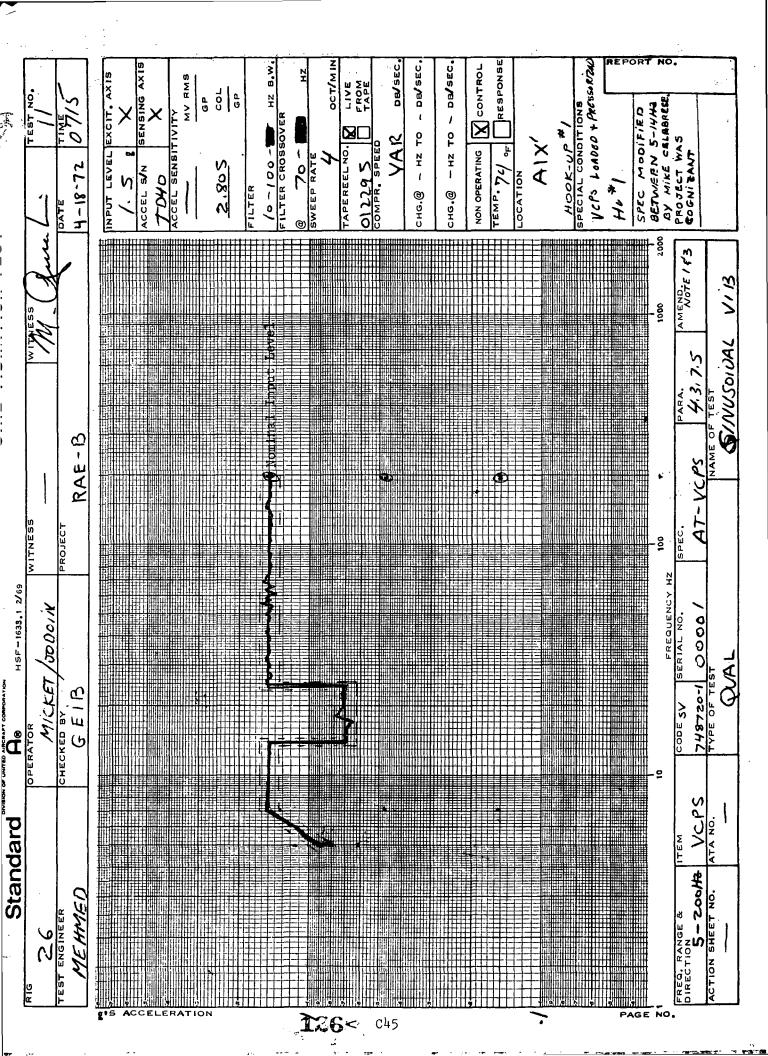


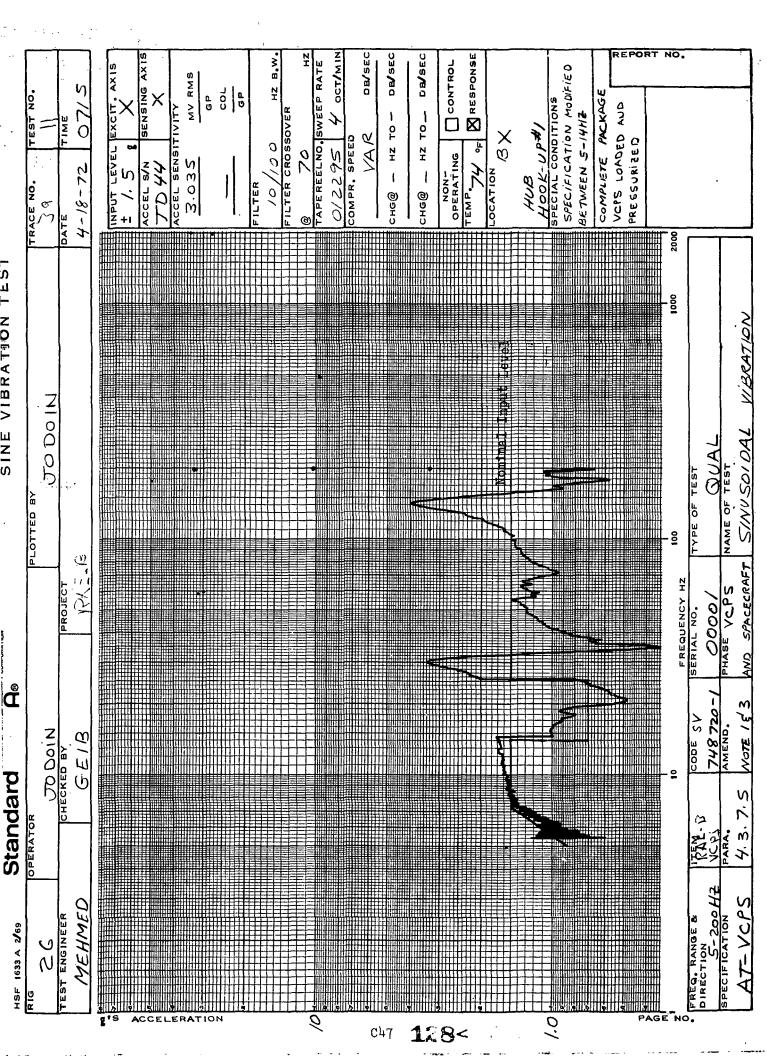


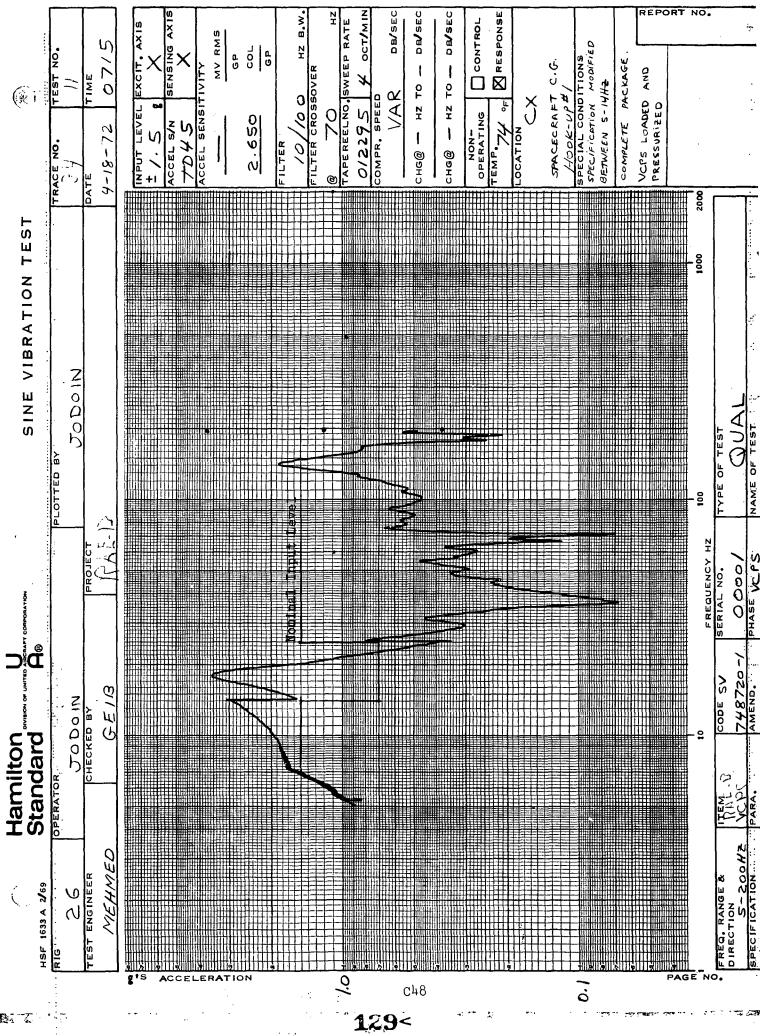


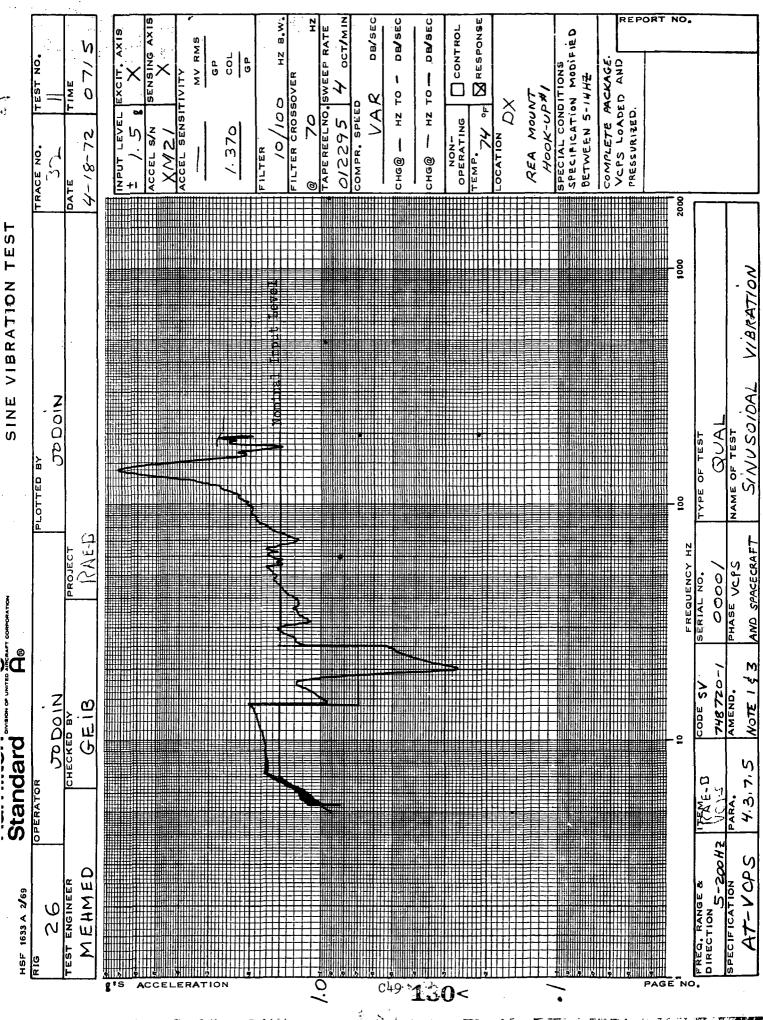


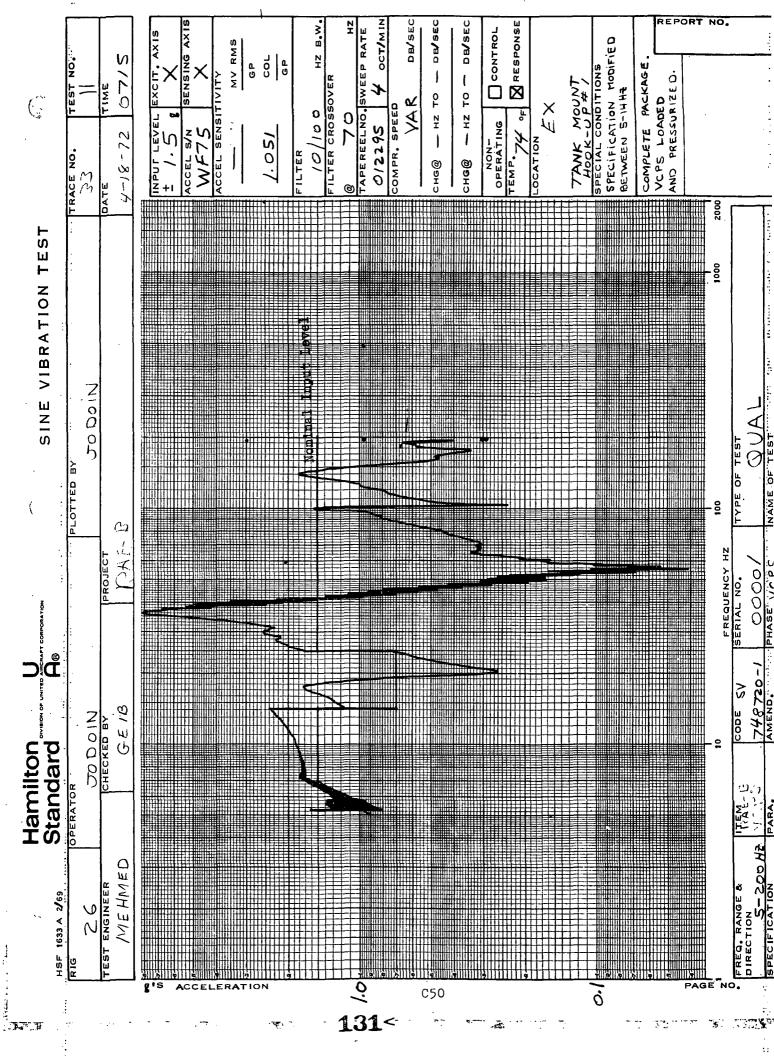


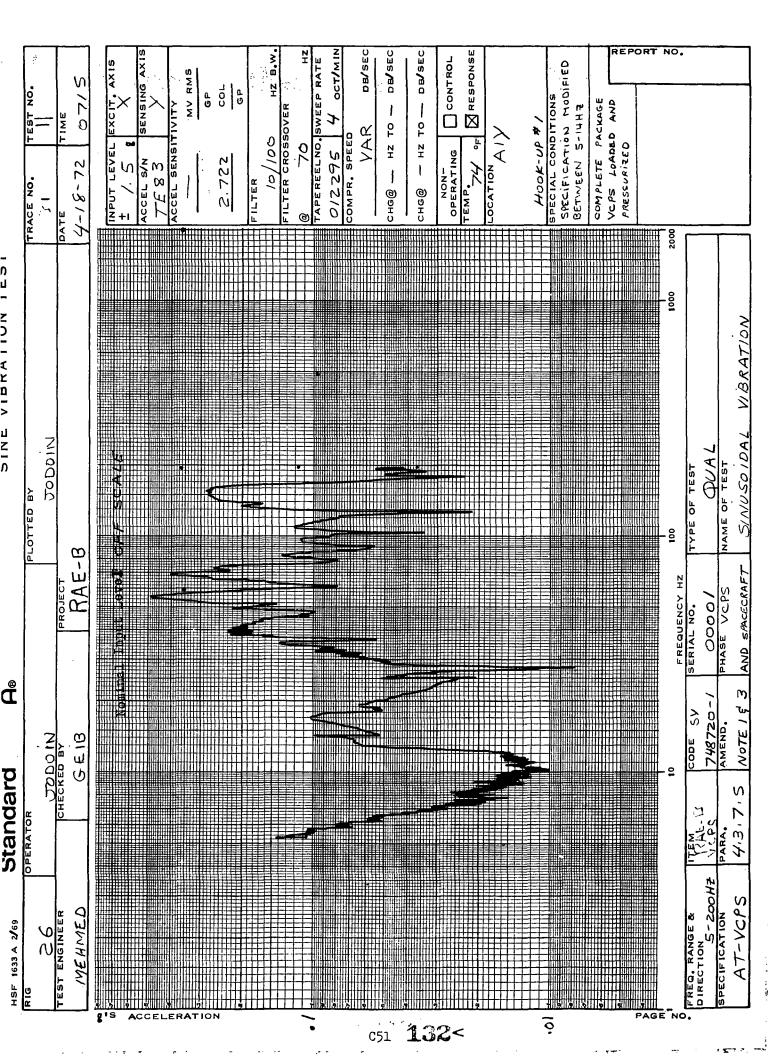


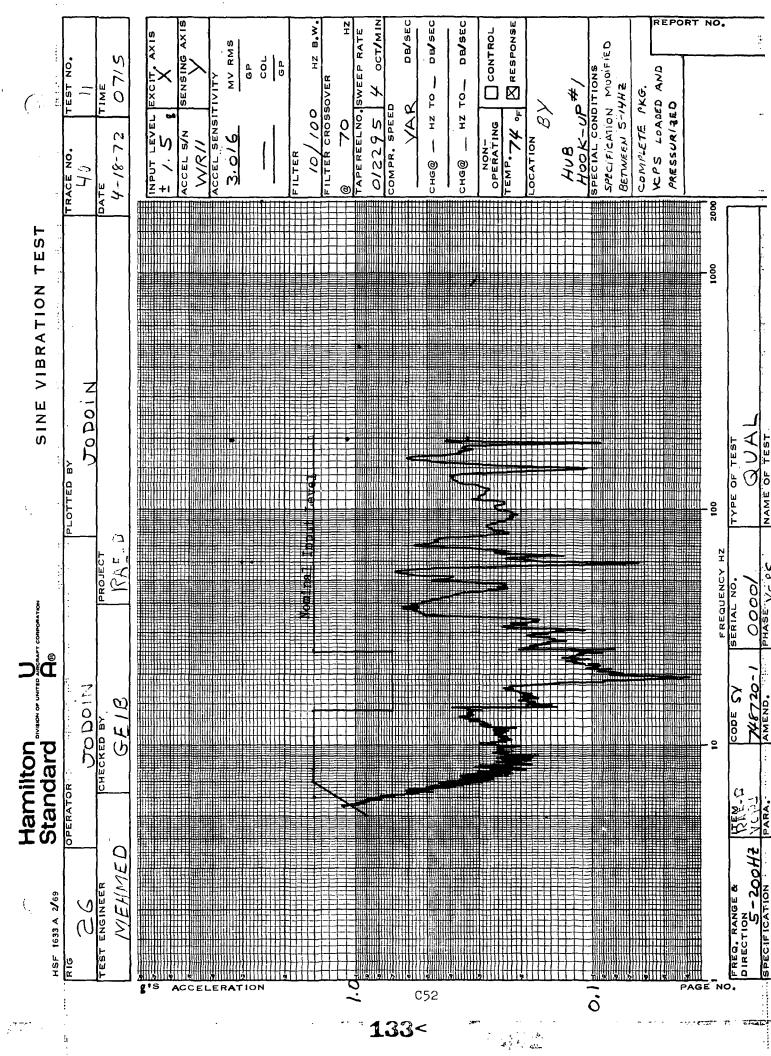


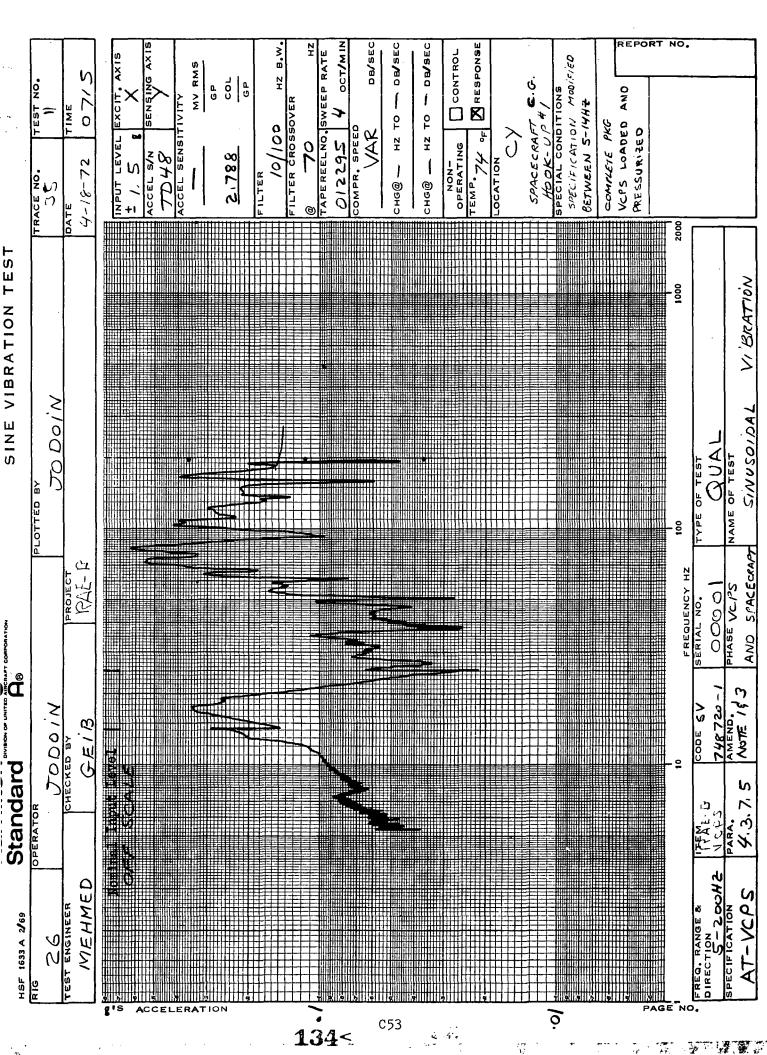


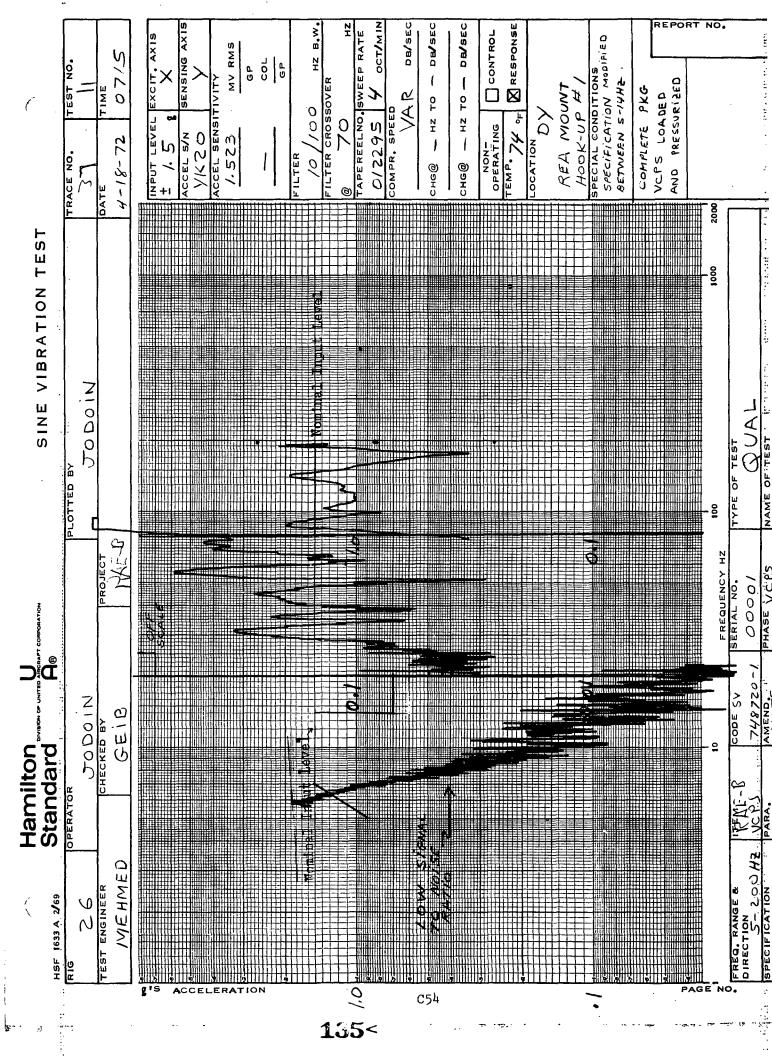


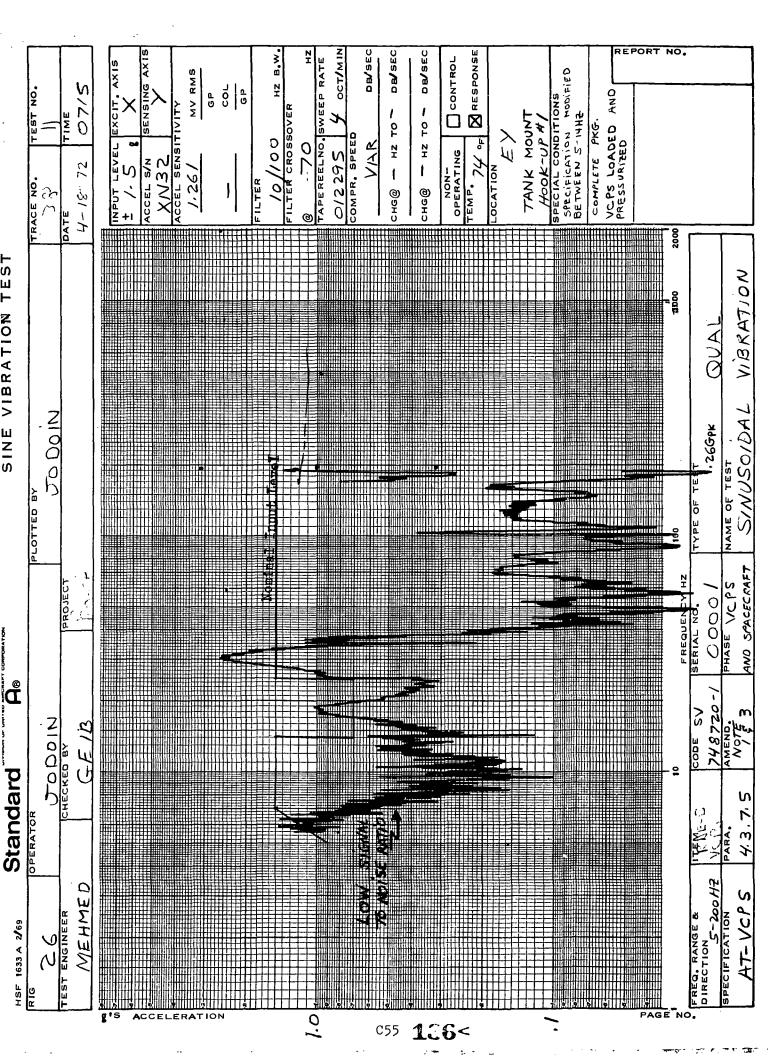


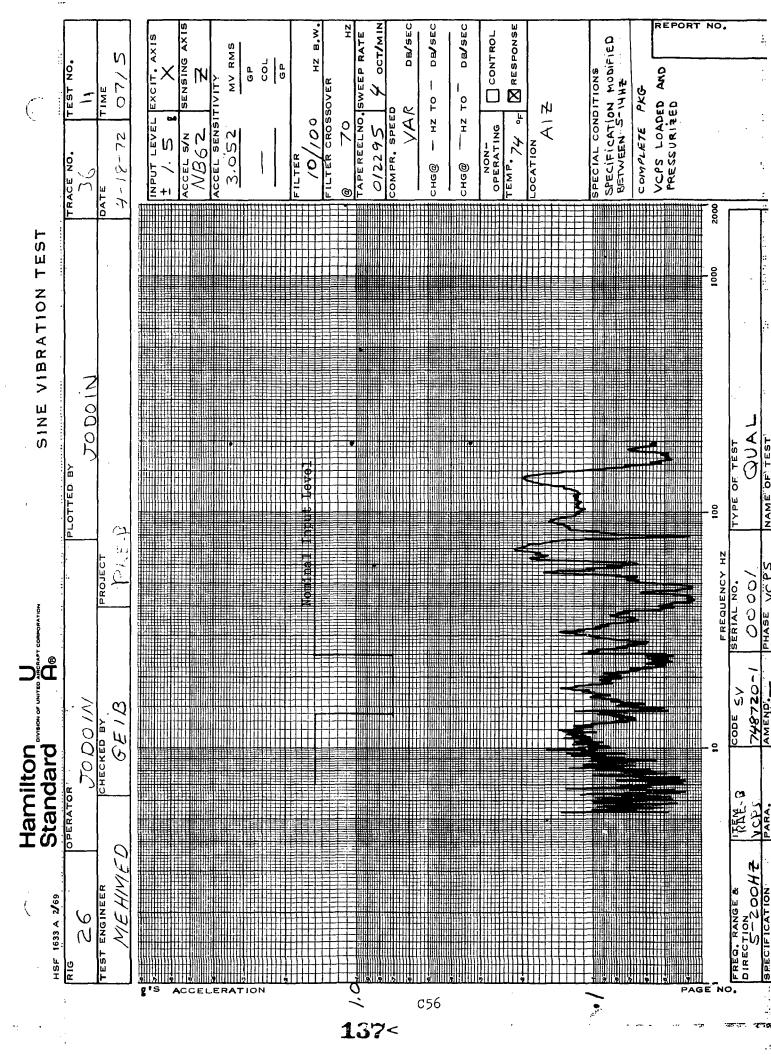


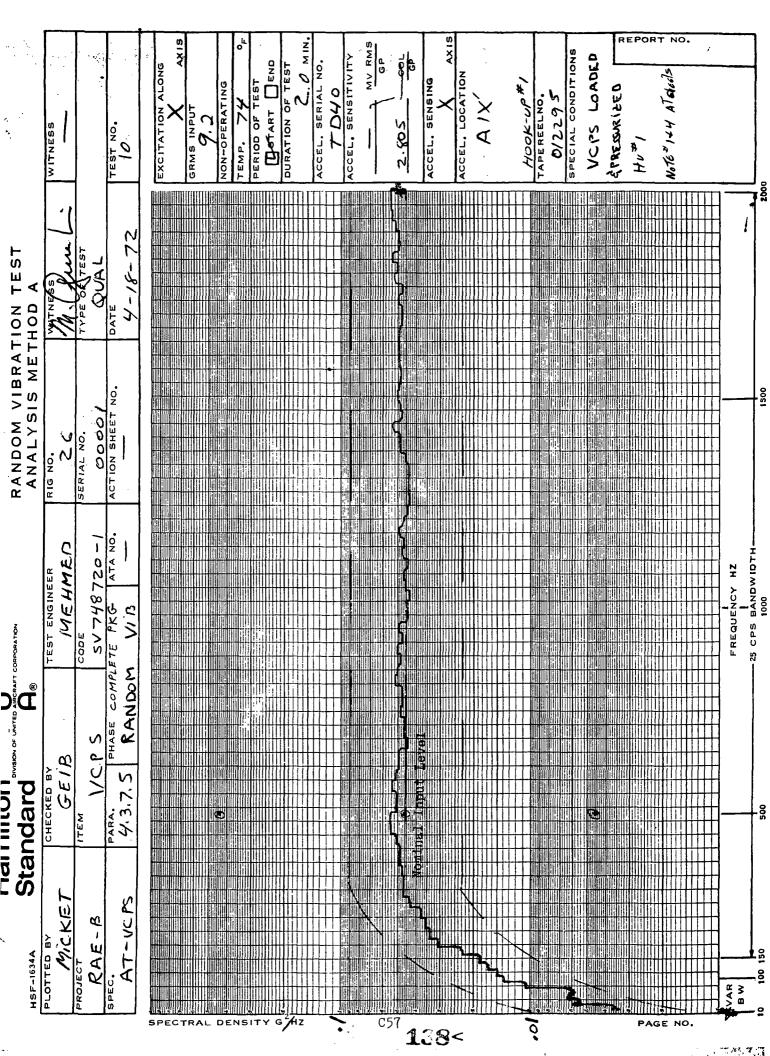


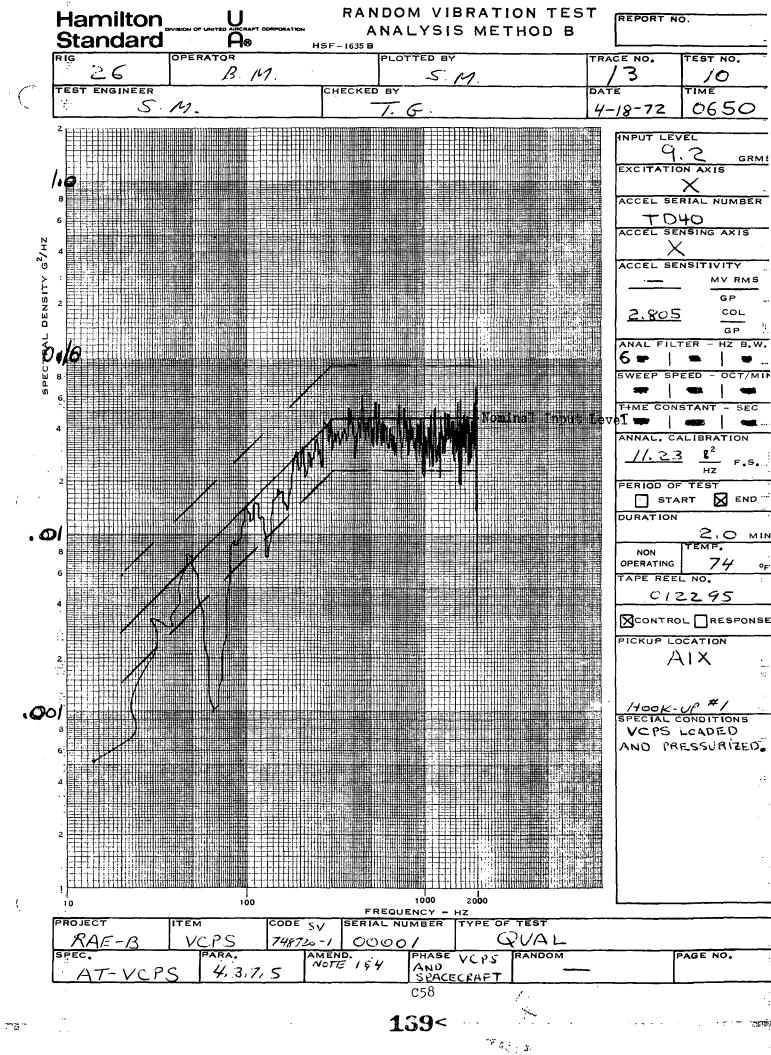

Υ.,

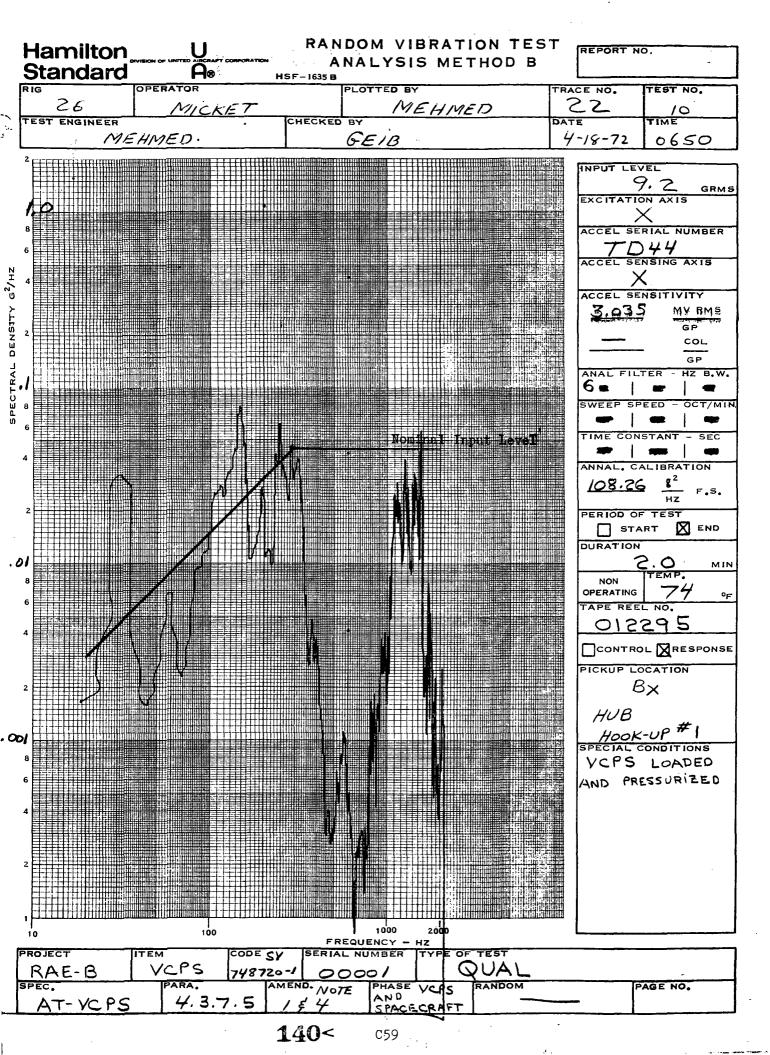


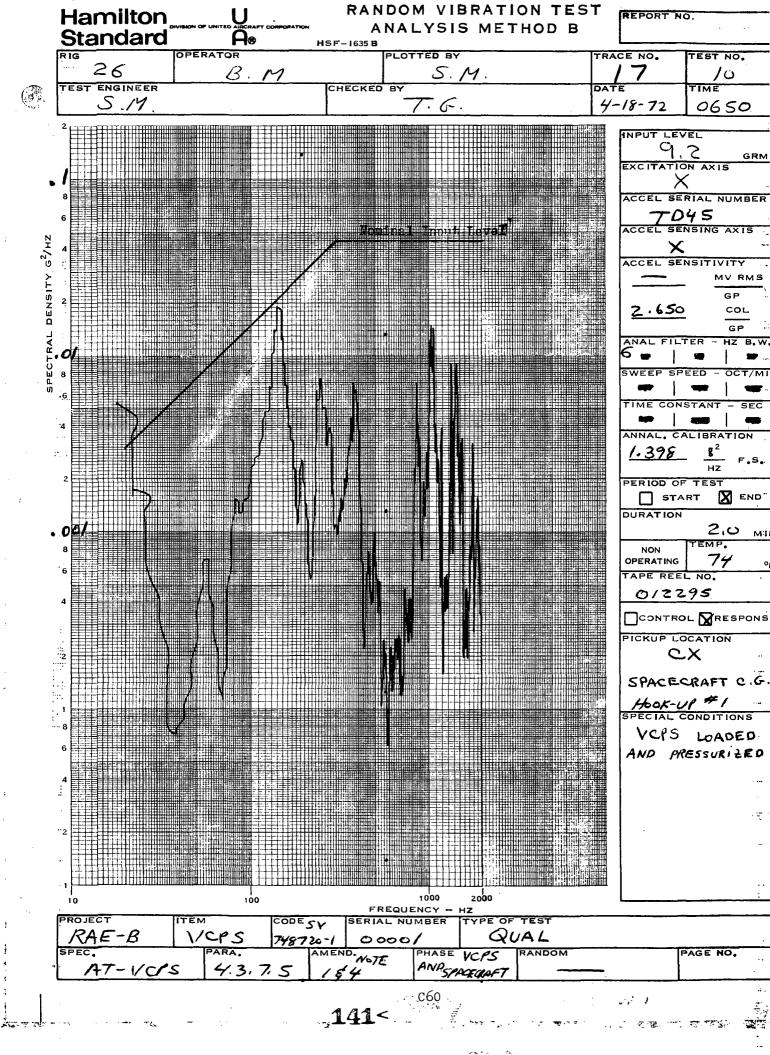


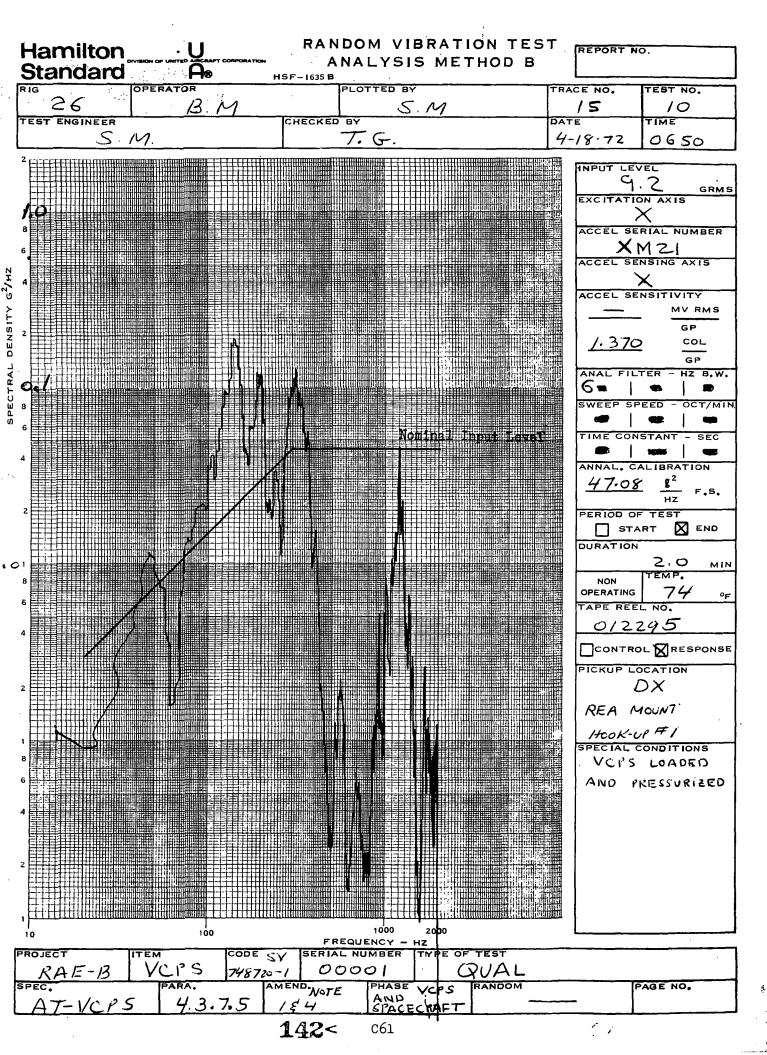


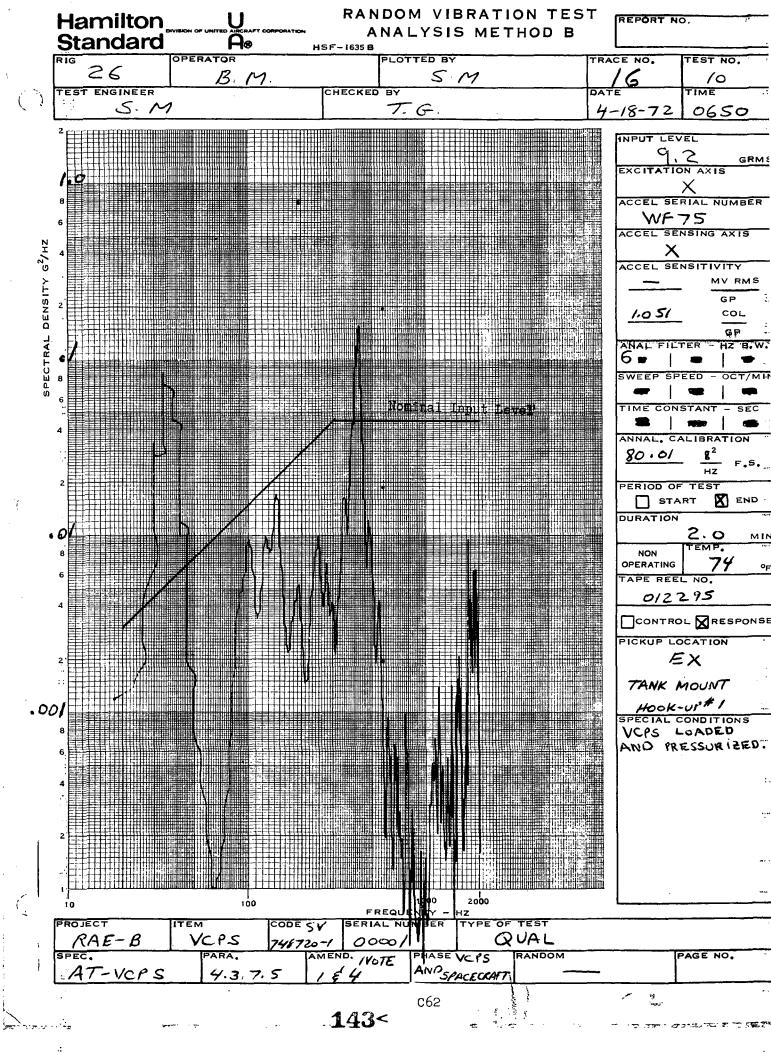


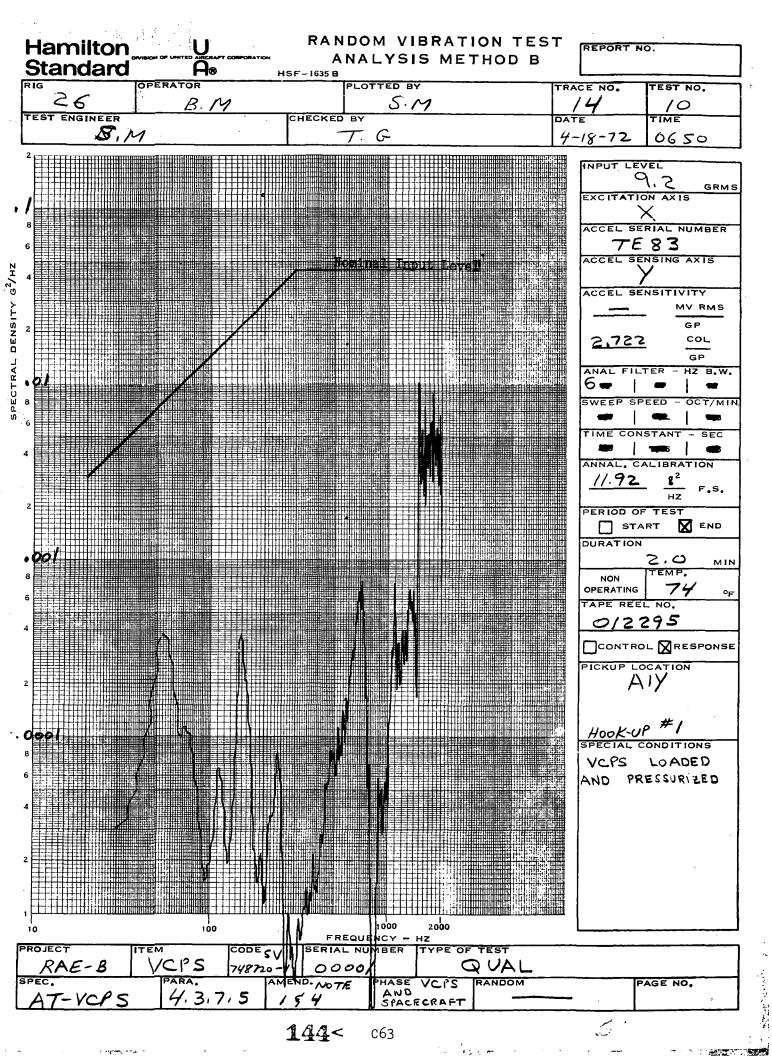


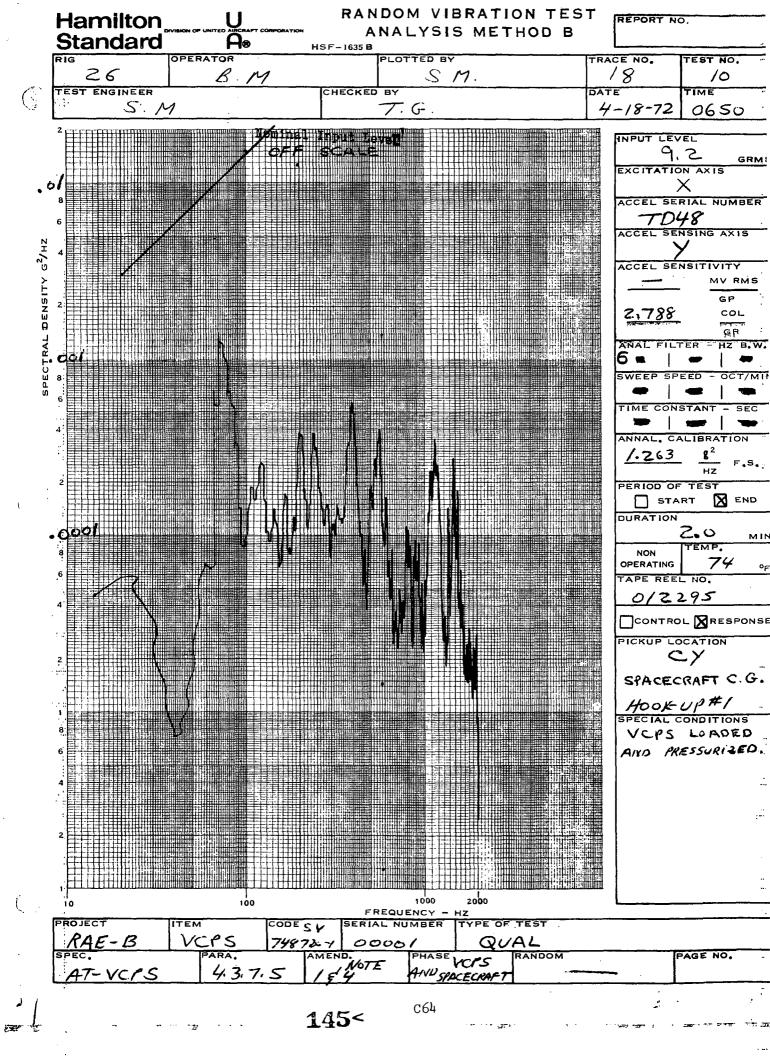


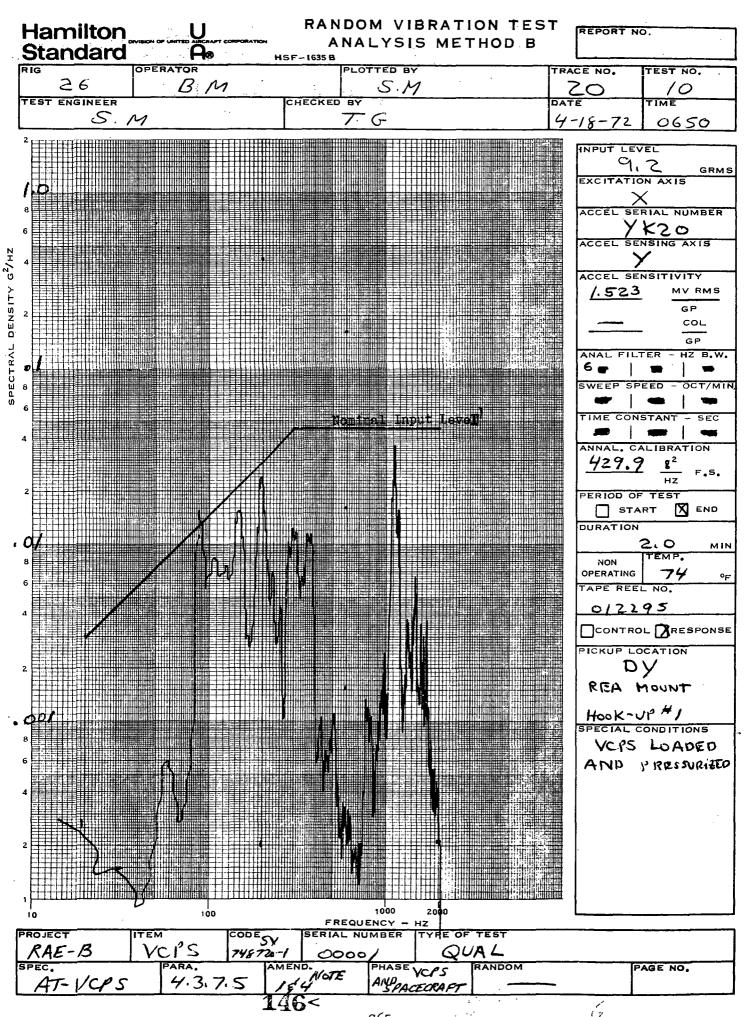


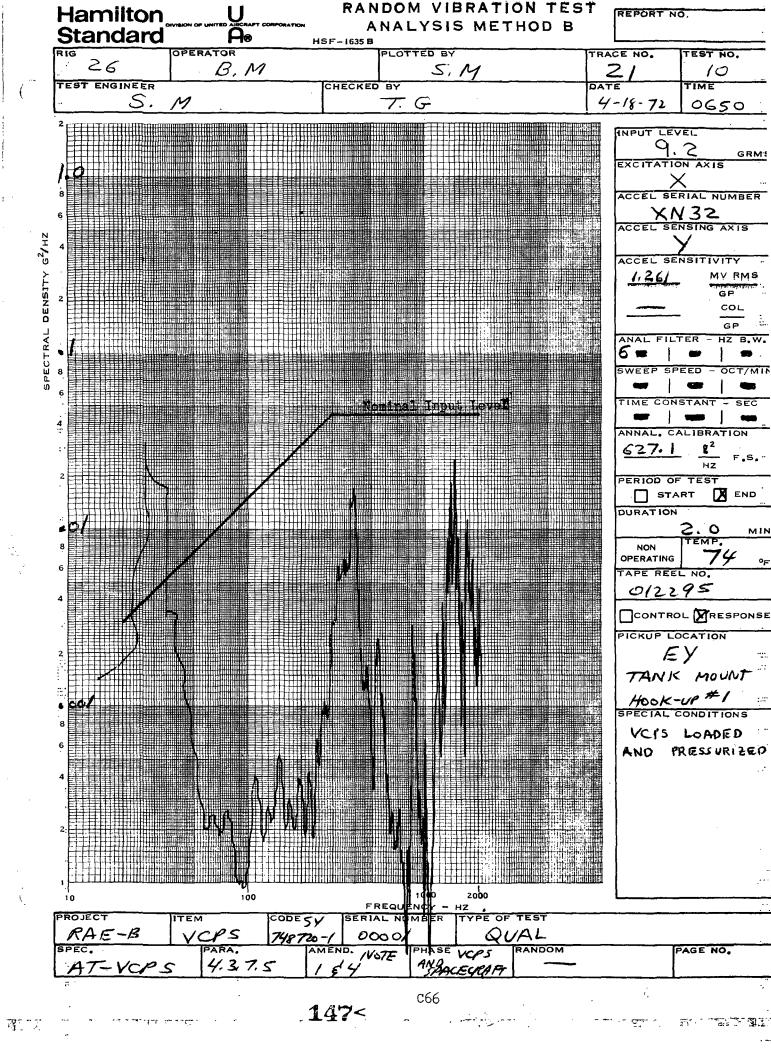


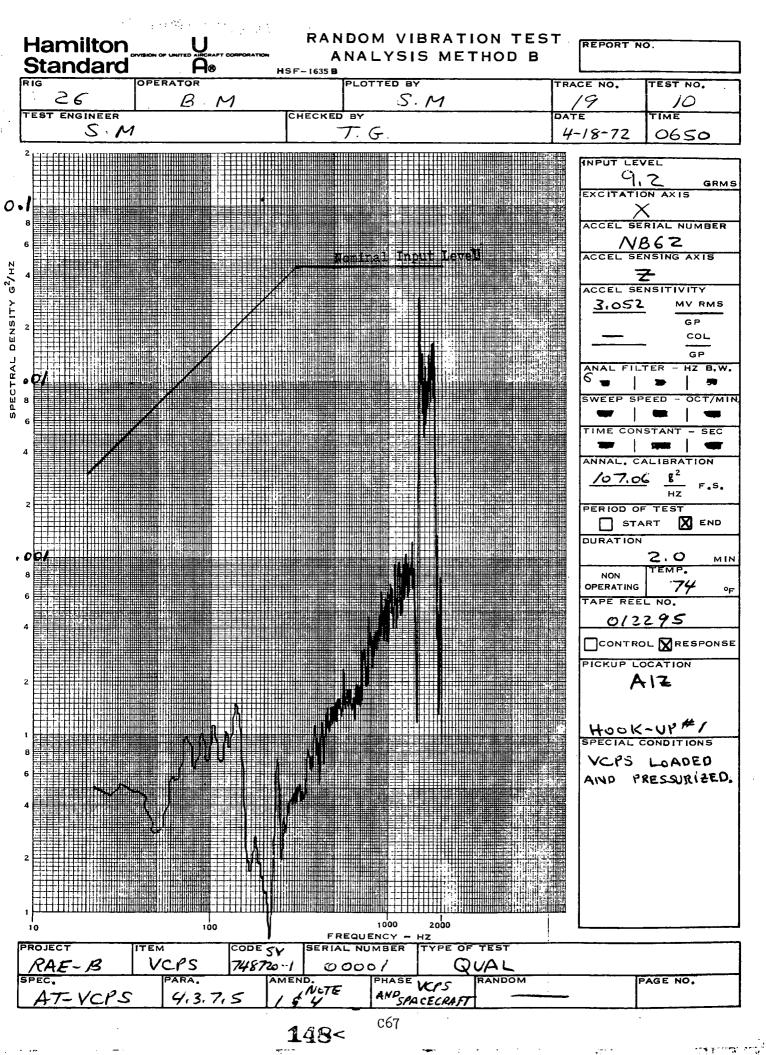












C65

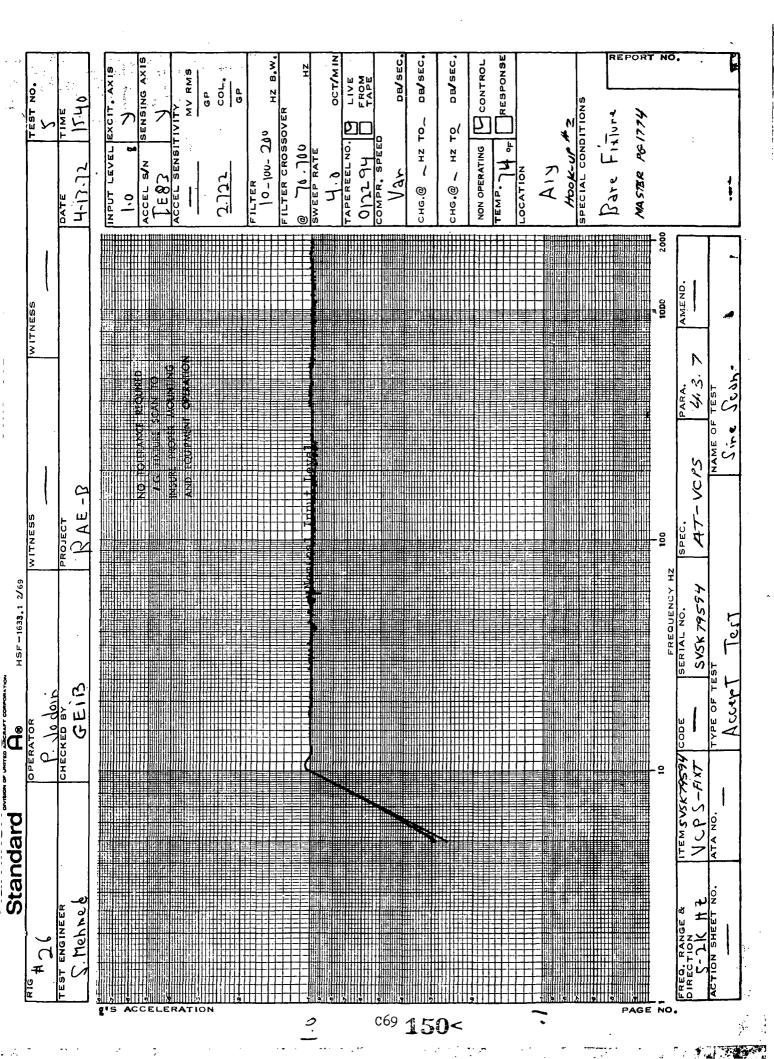
HAMIL TON STANDARD

REPORT NO.

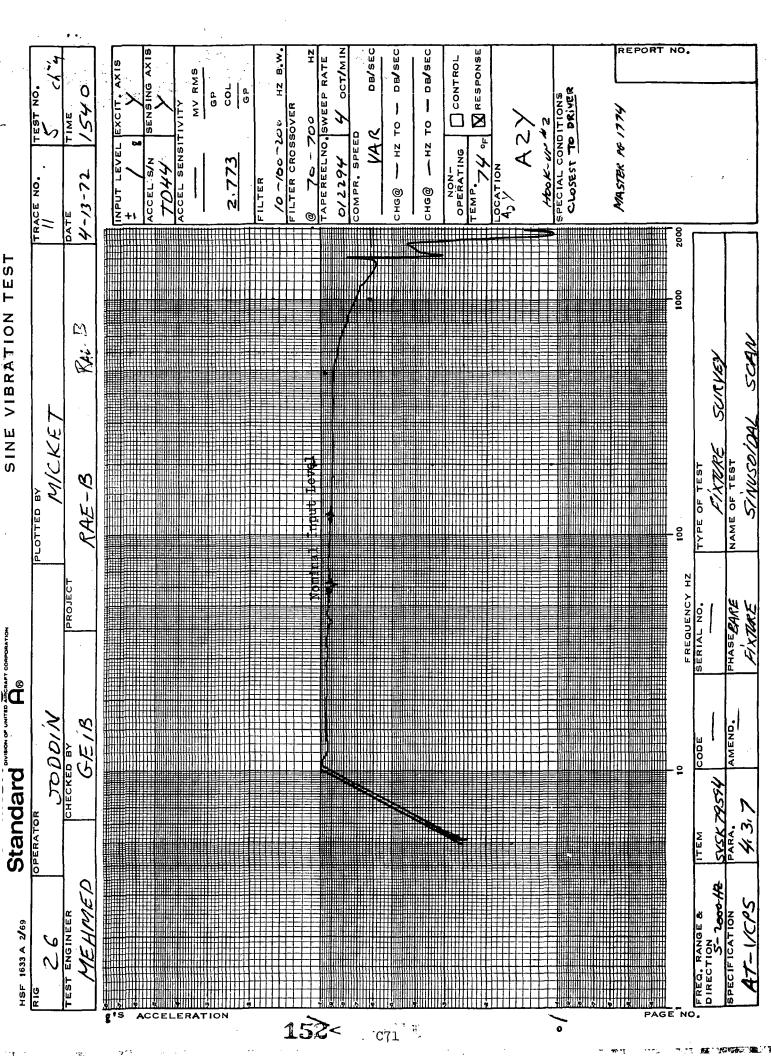
t

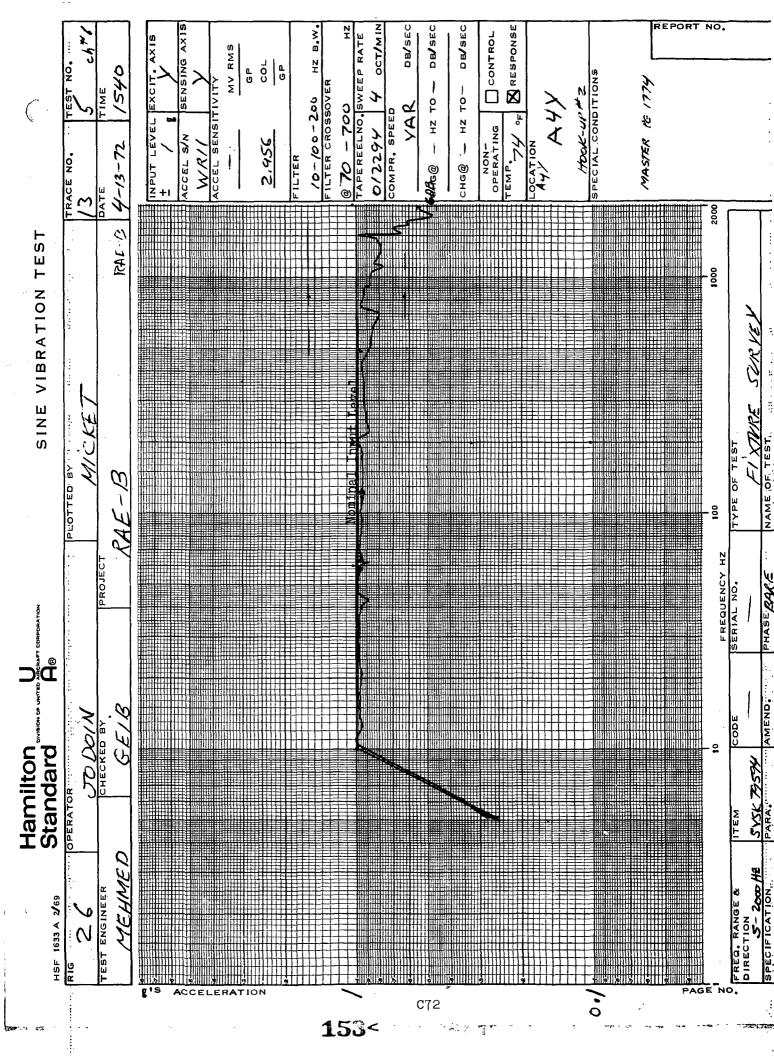
3.

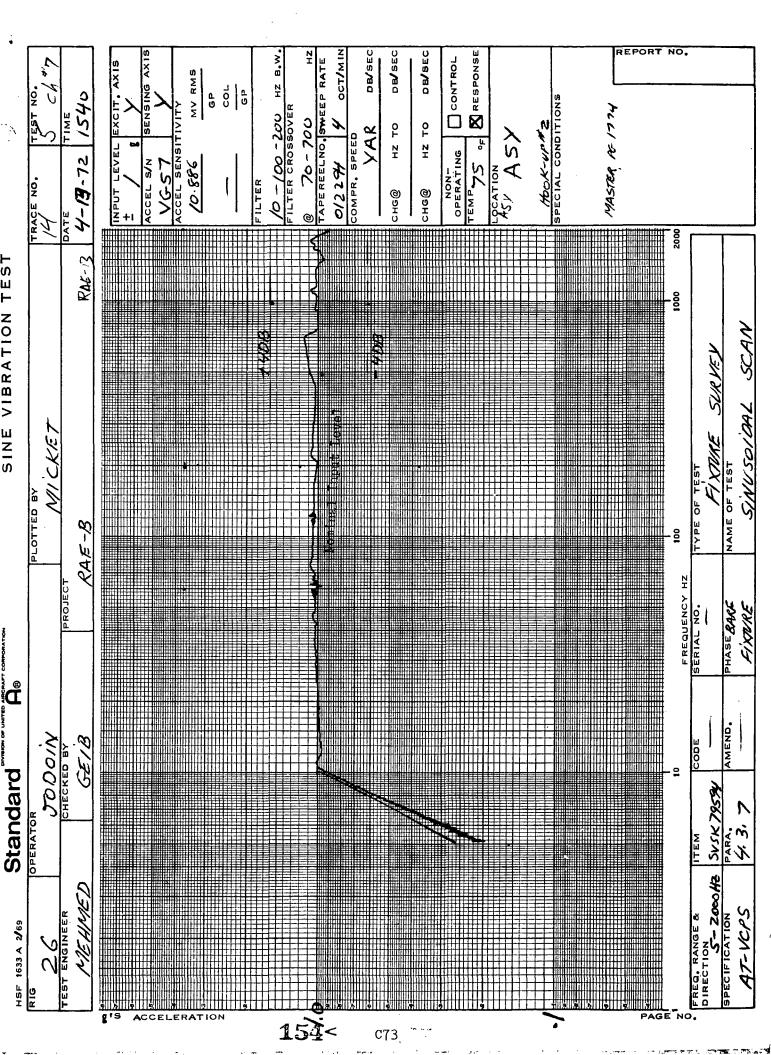
Section III

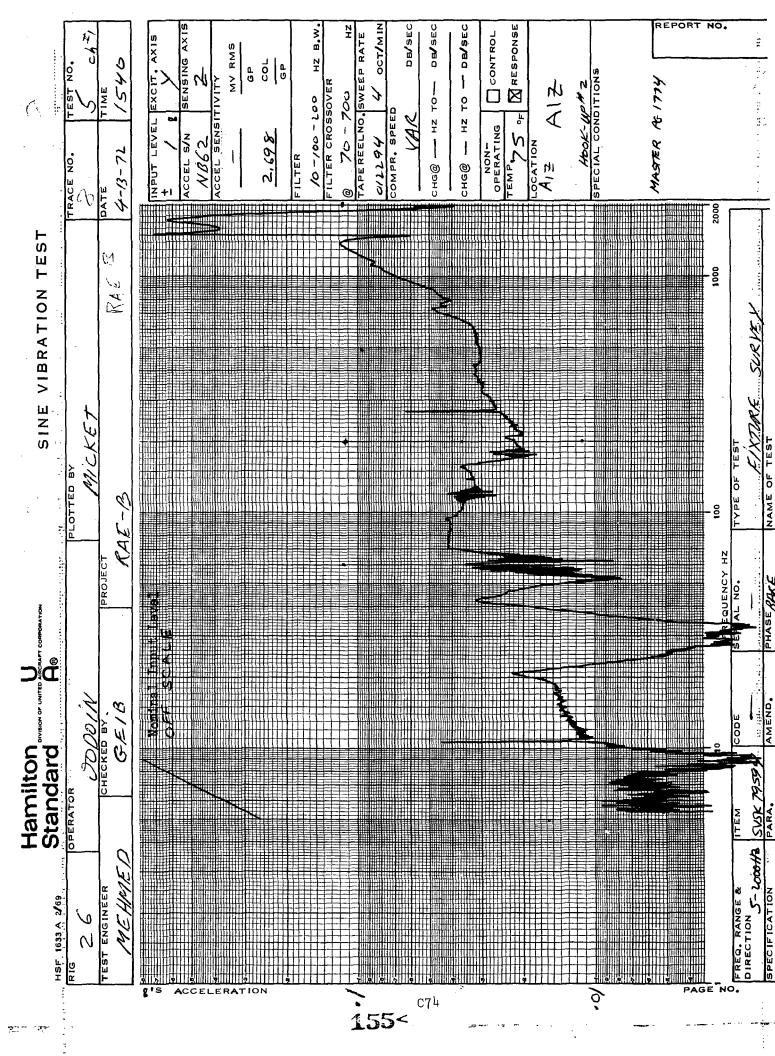

Y - Axis A) Sine Data

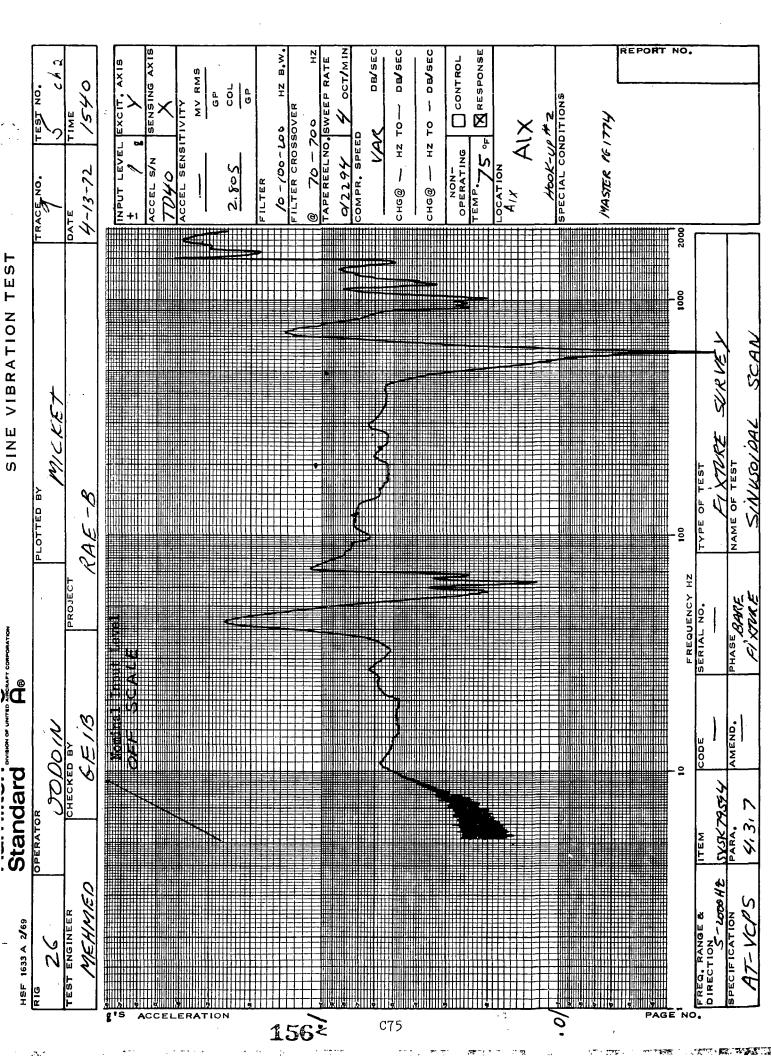
B) Random Data

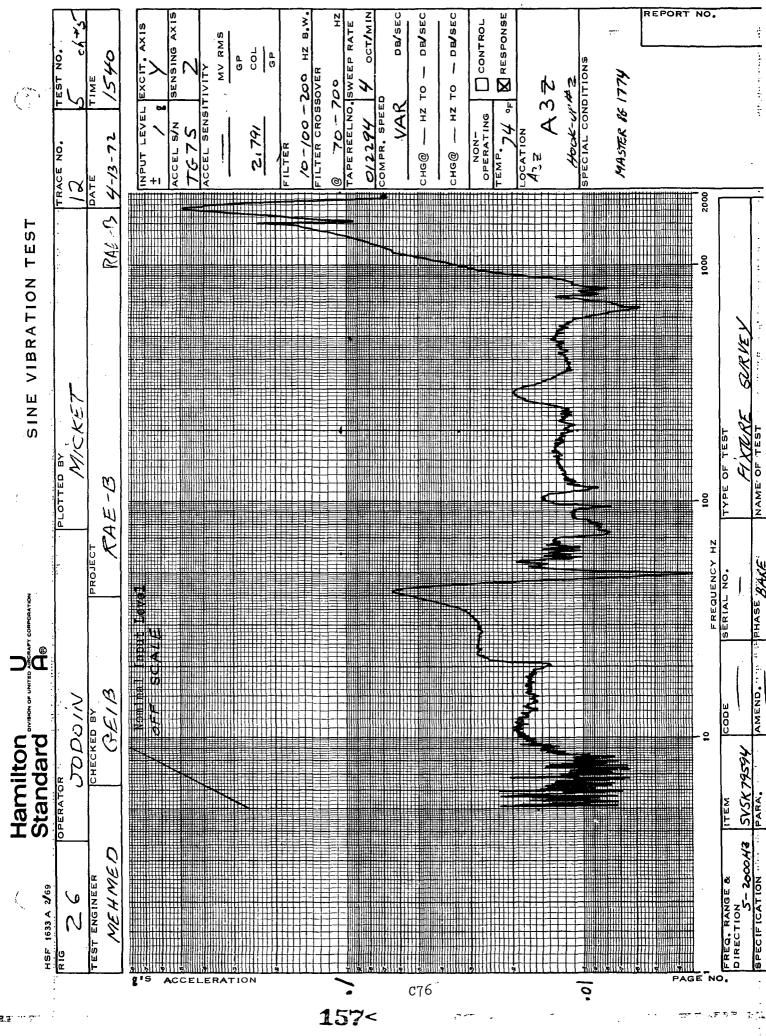

HS F-62A 7/62

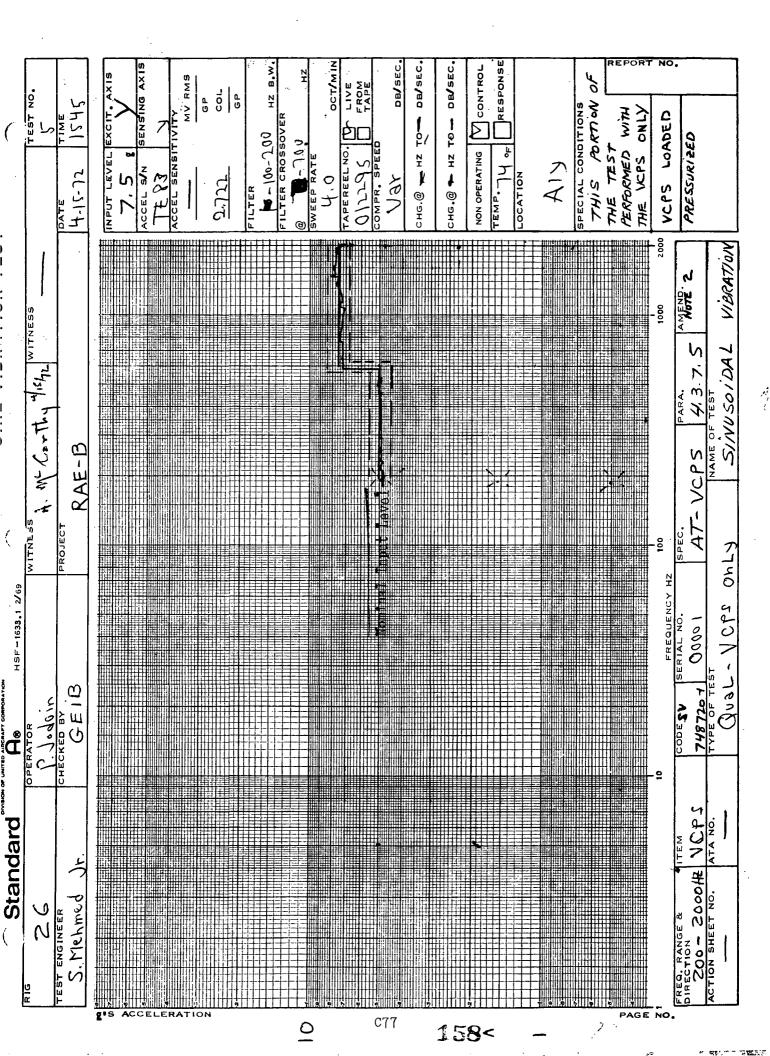

~ .

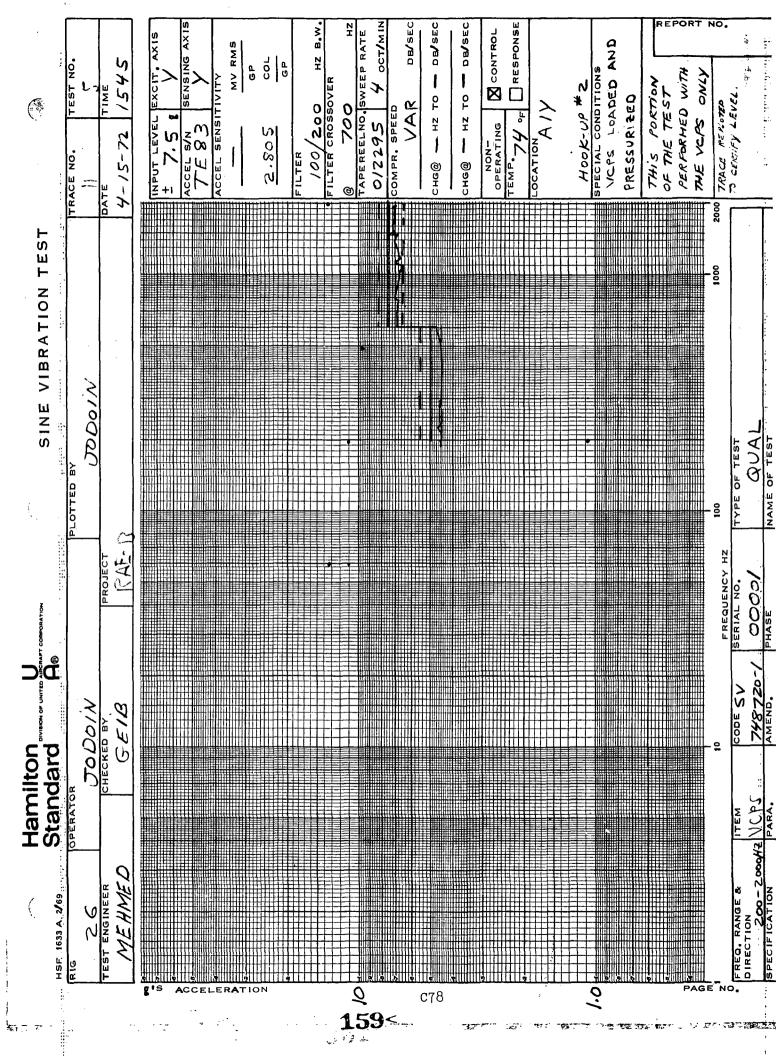

149<

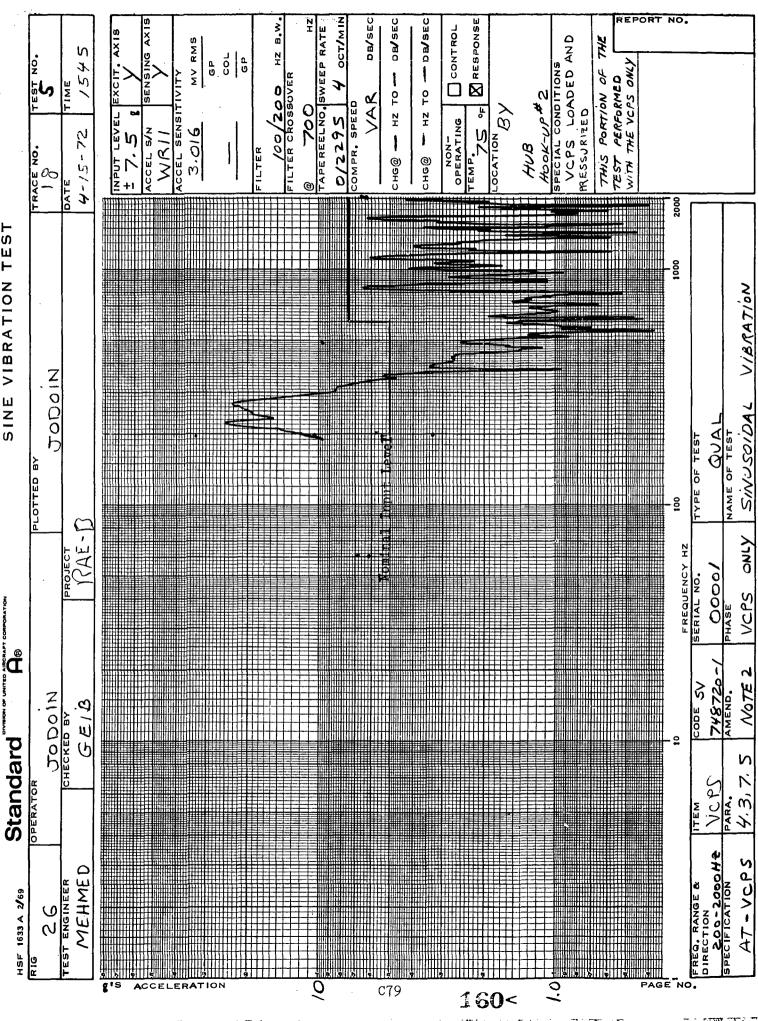


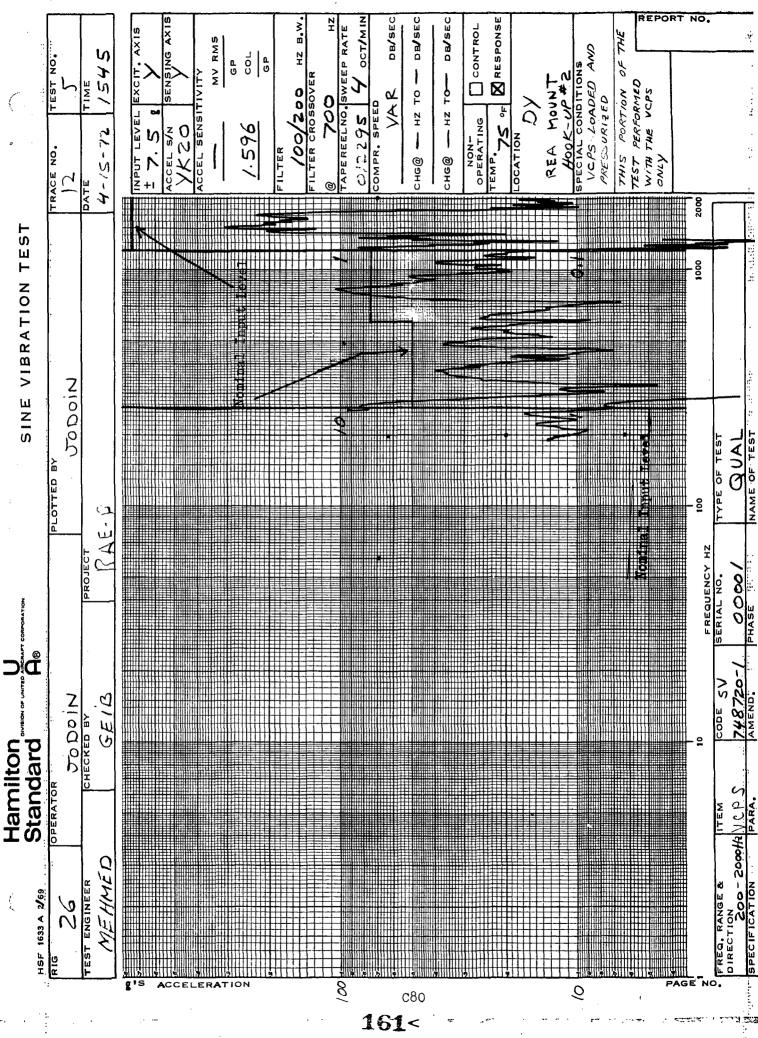


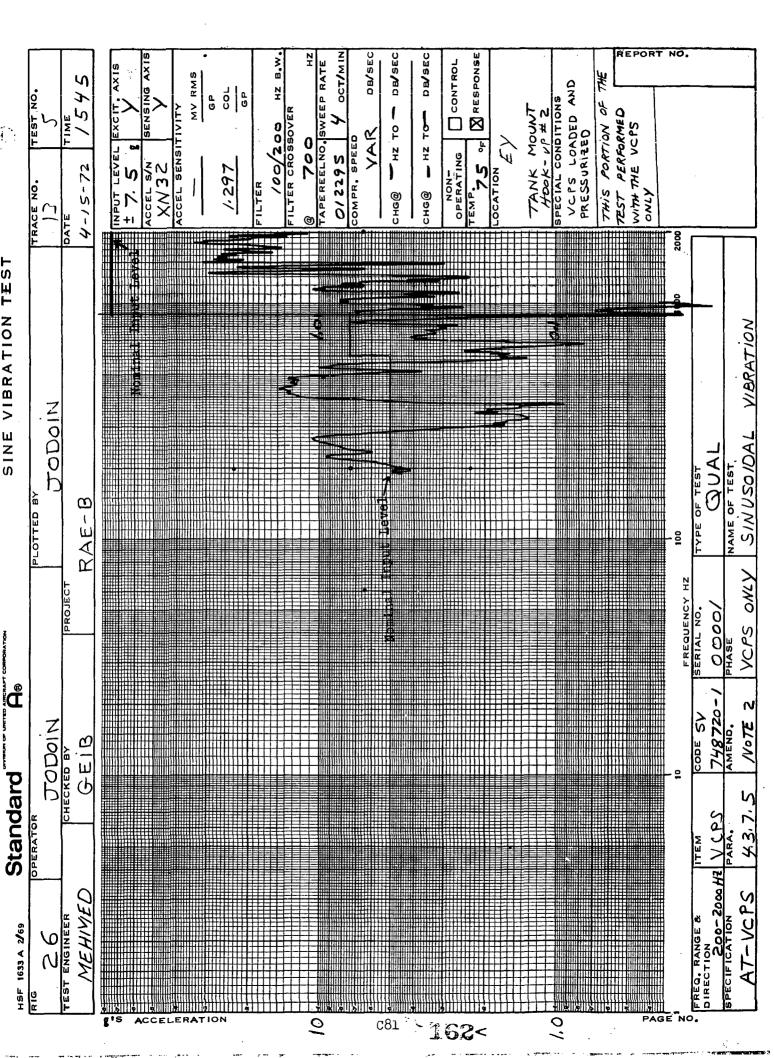


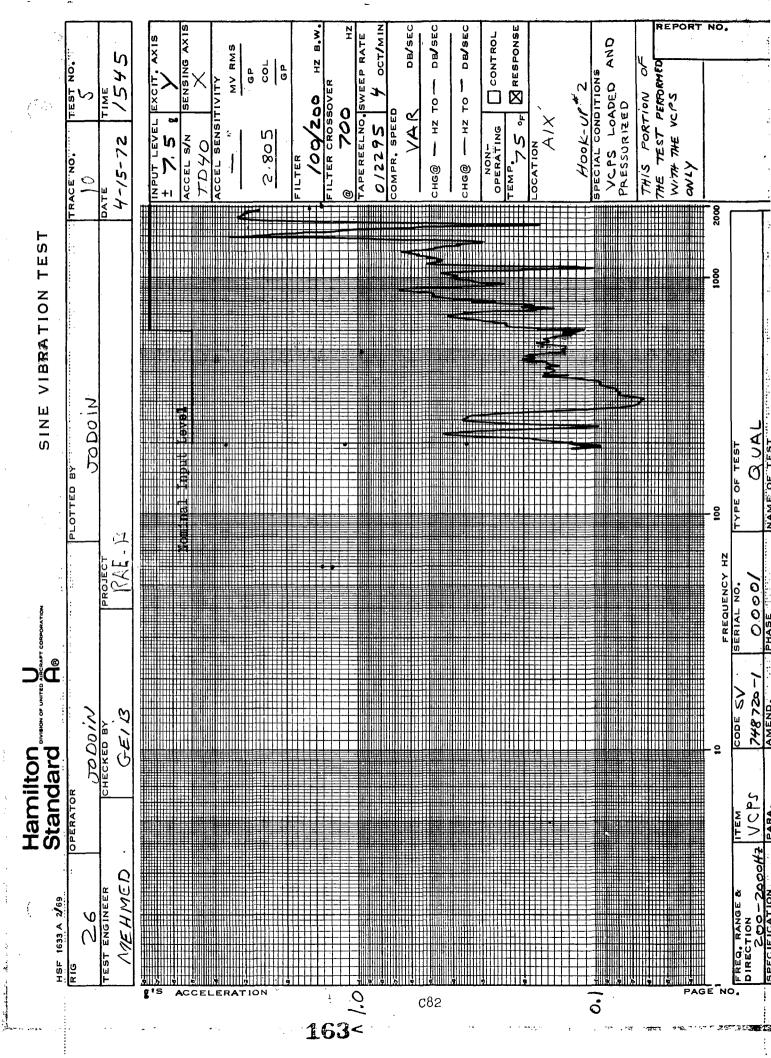


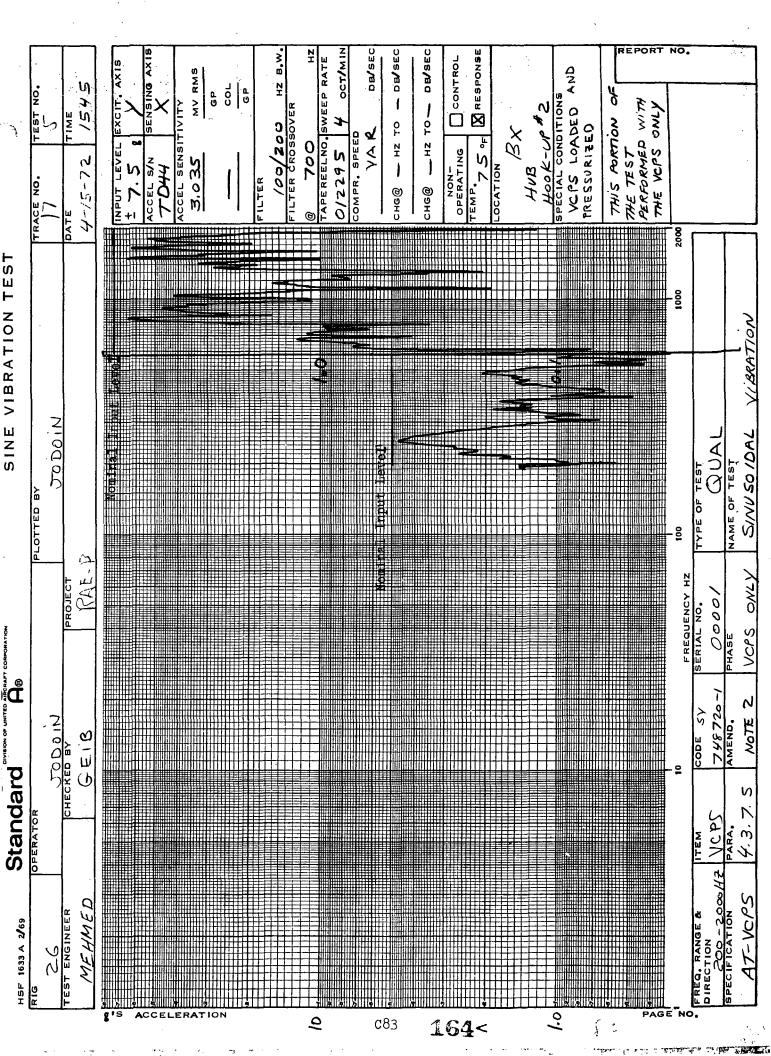


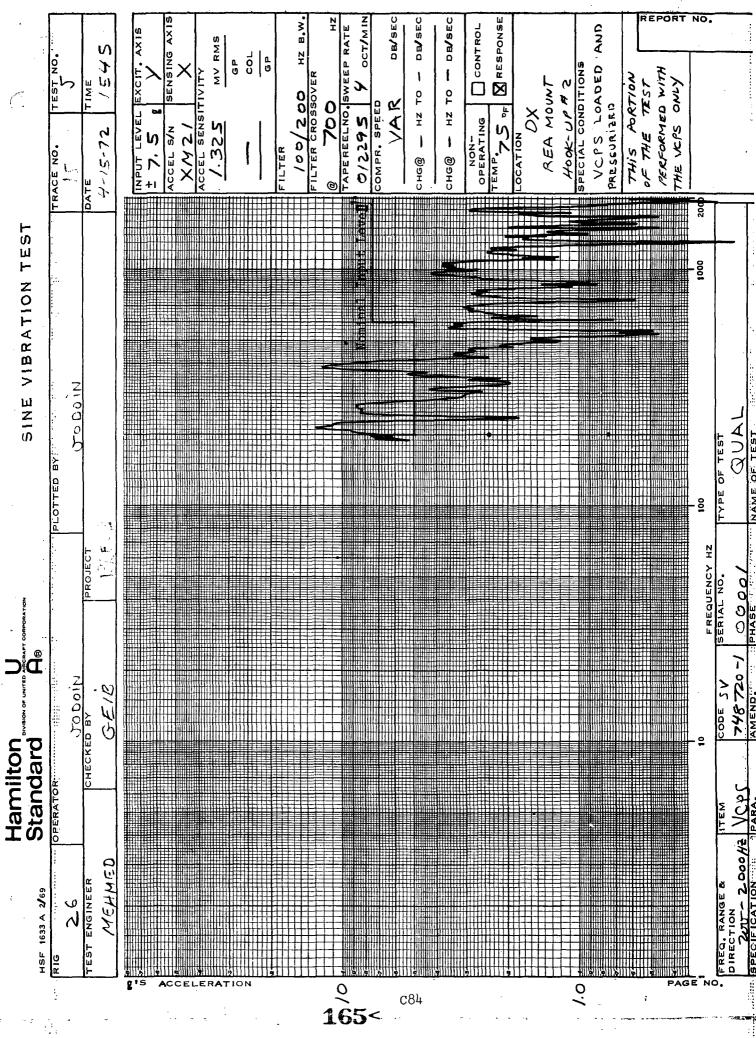


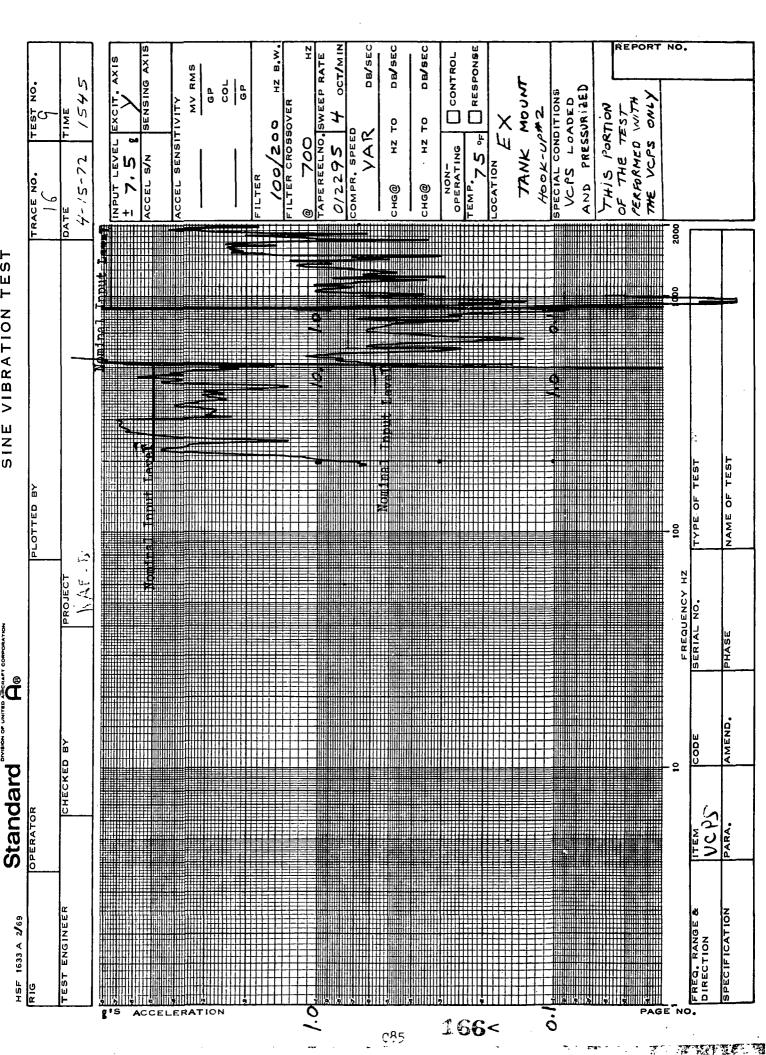


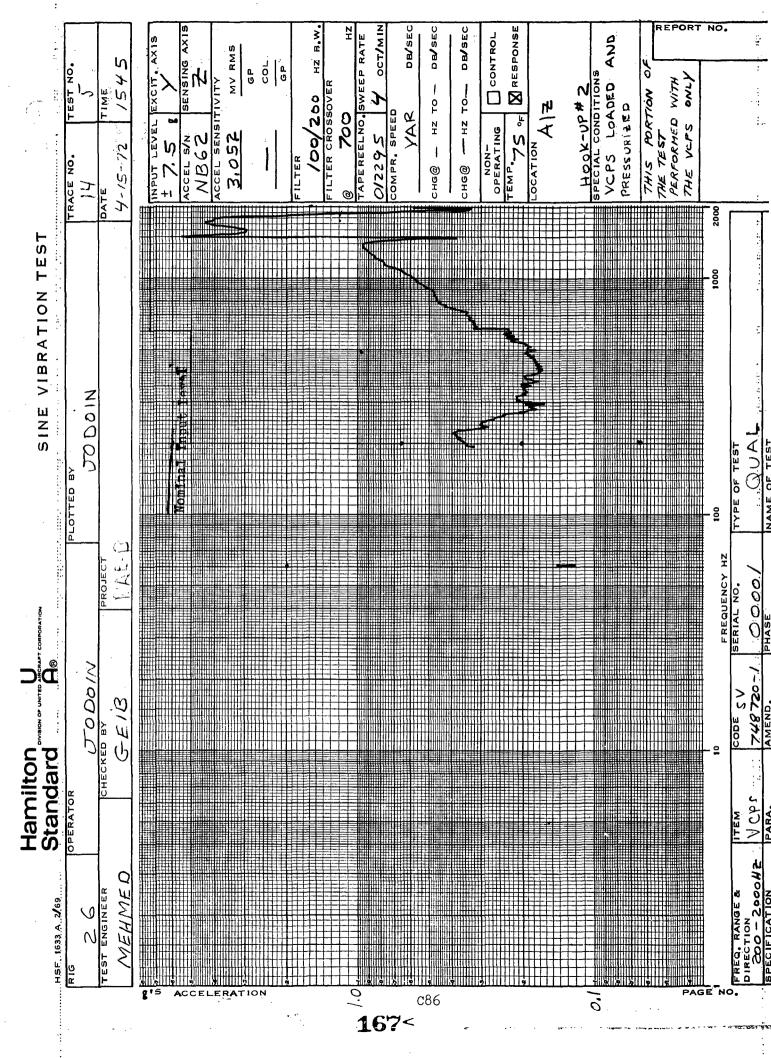


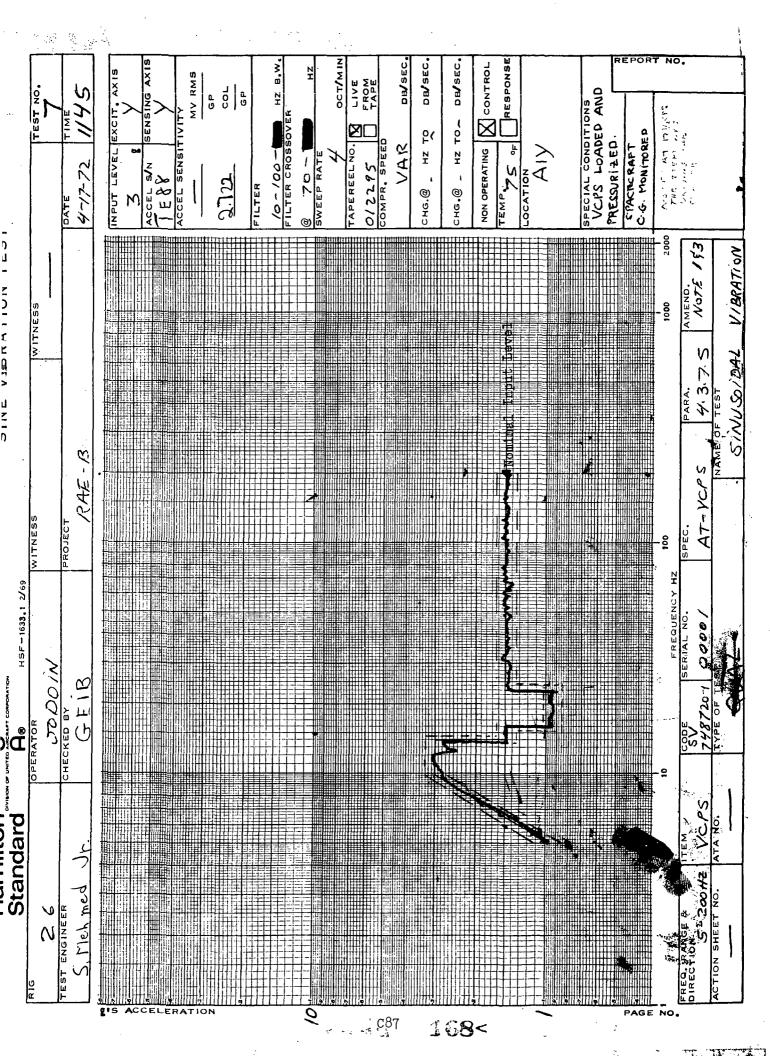


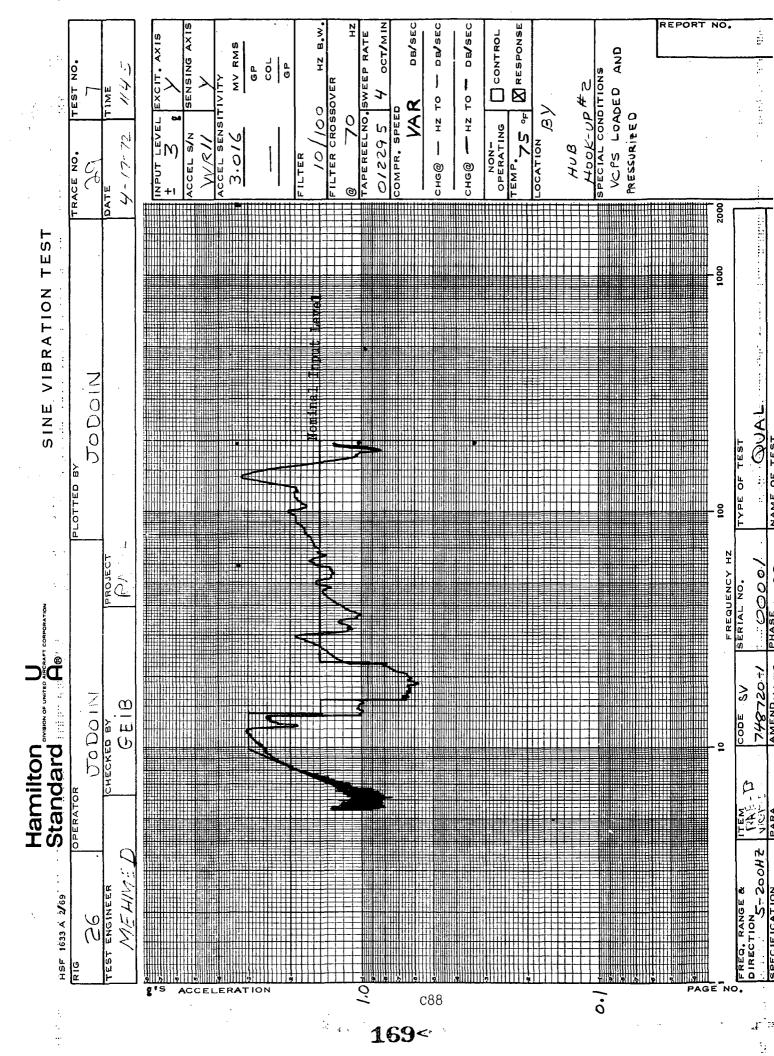


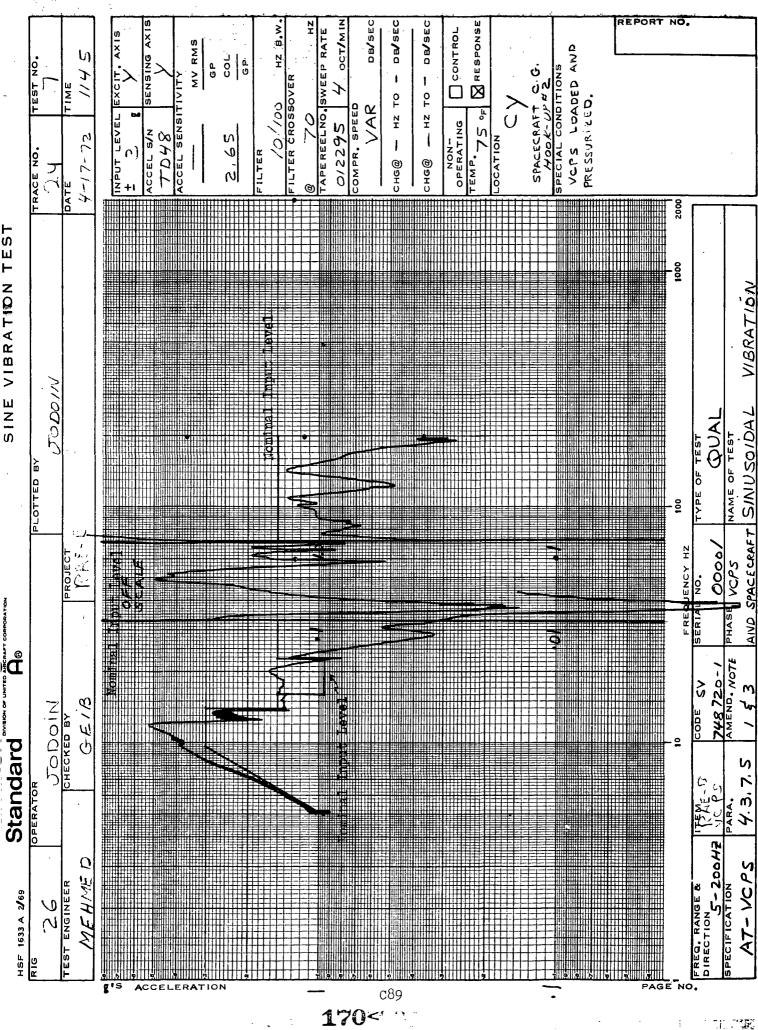


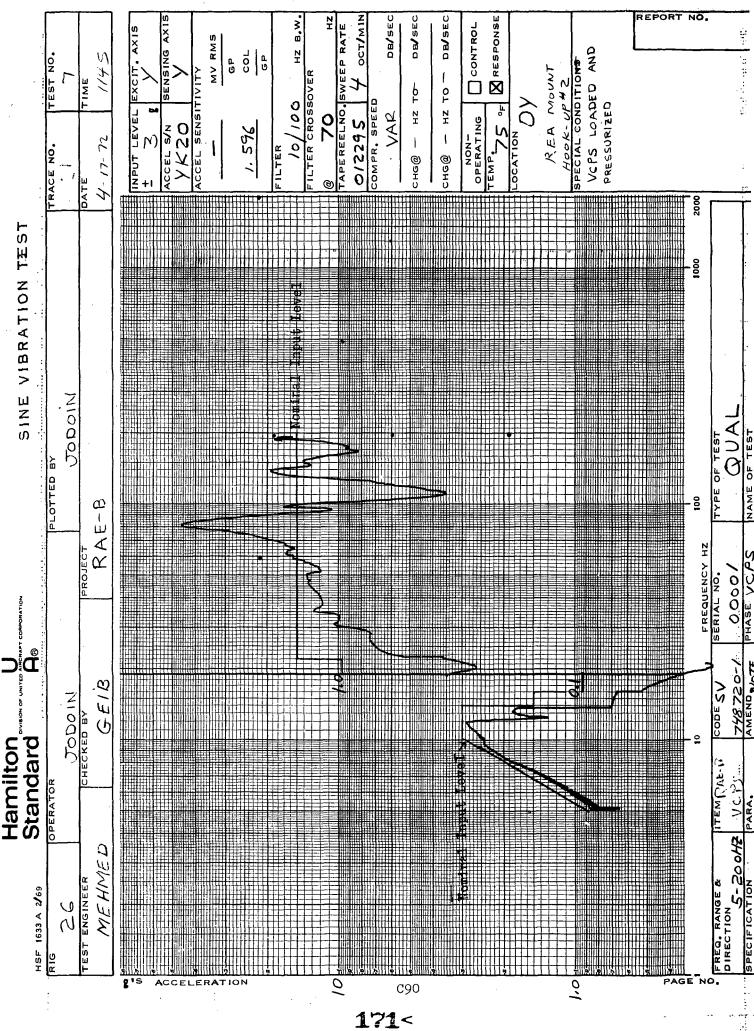

22(9⁻¹)

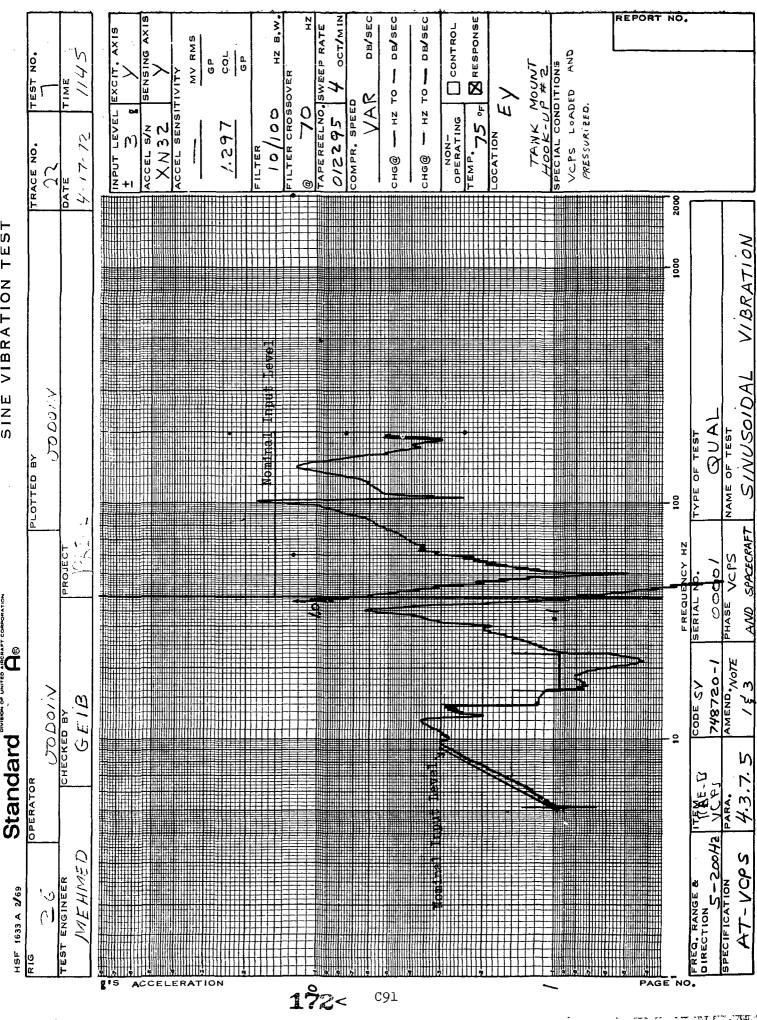


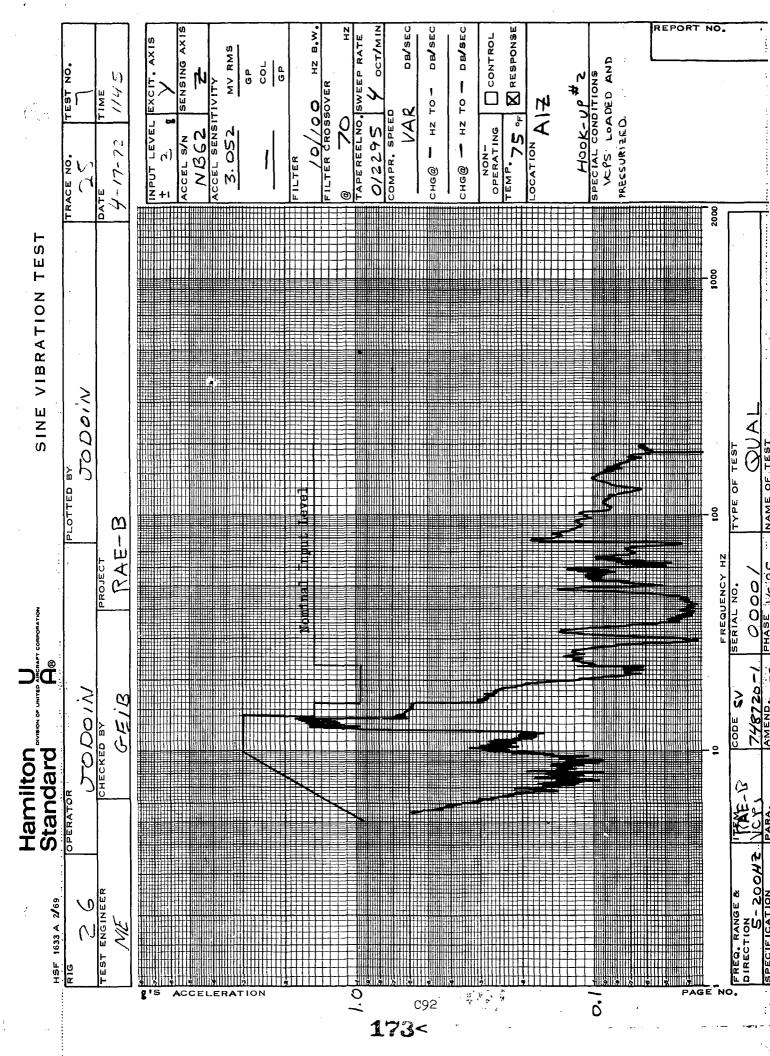


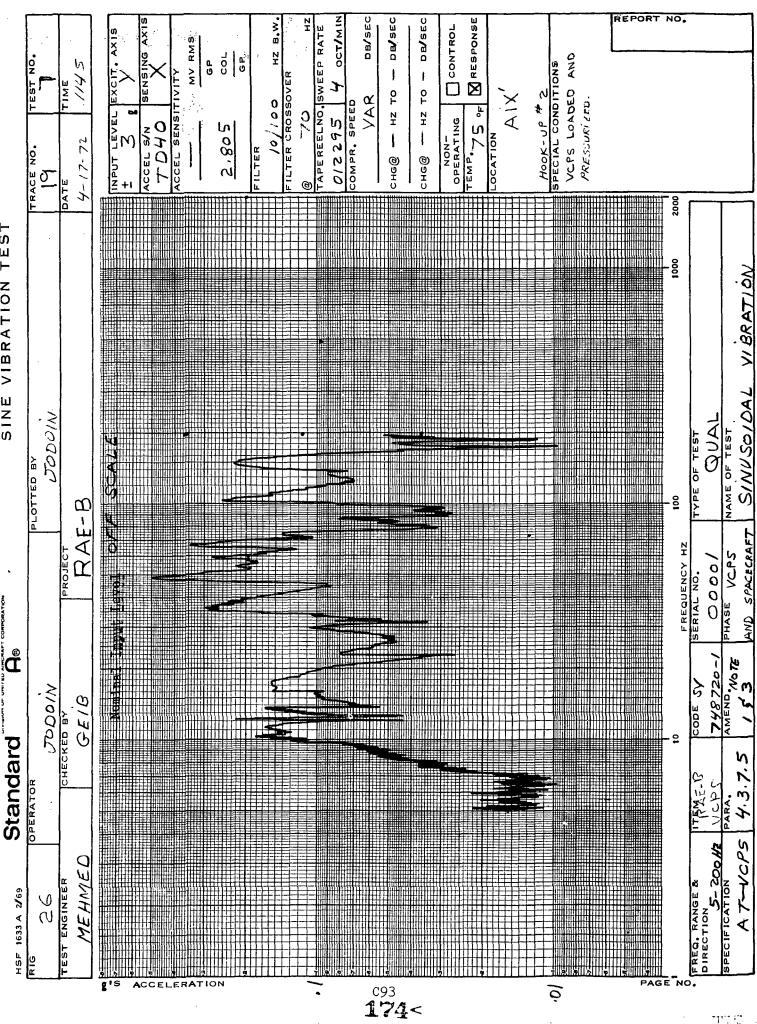


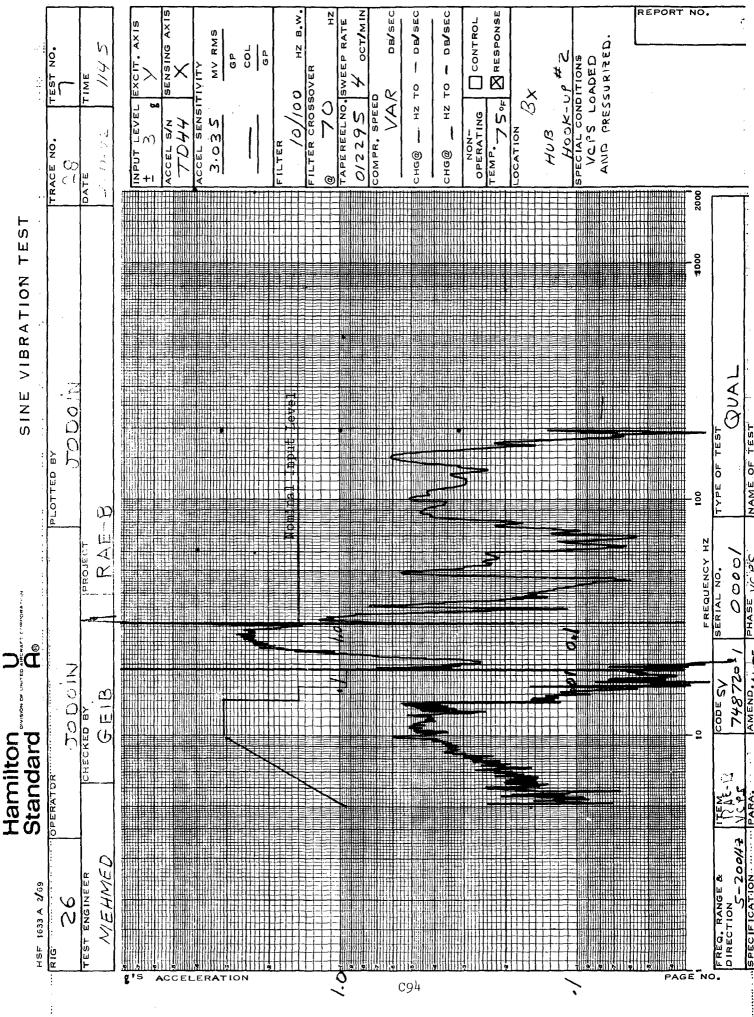


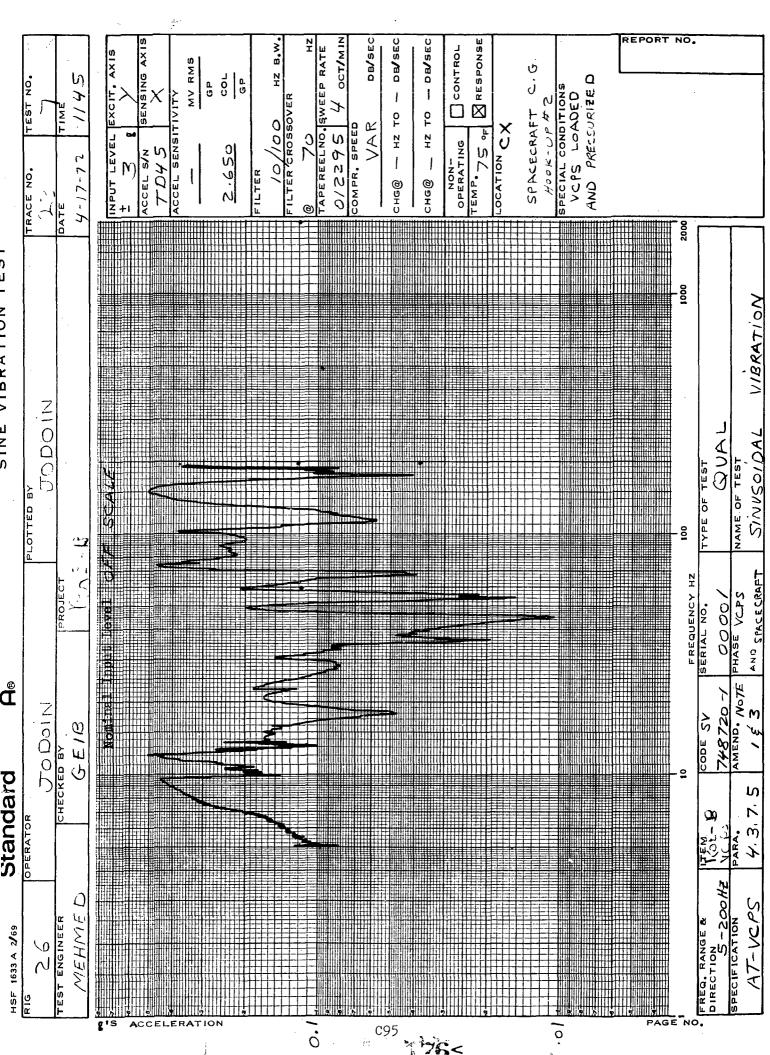


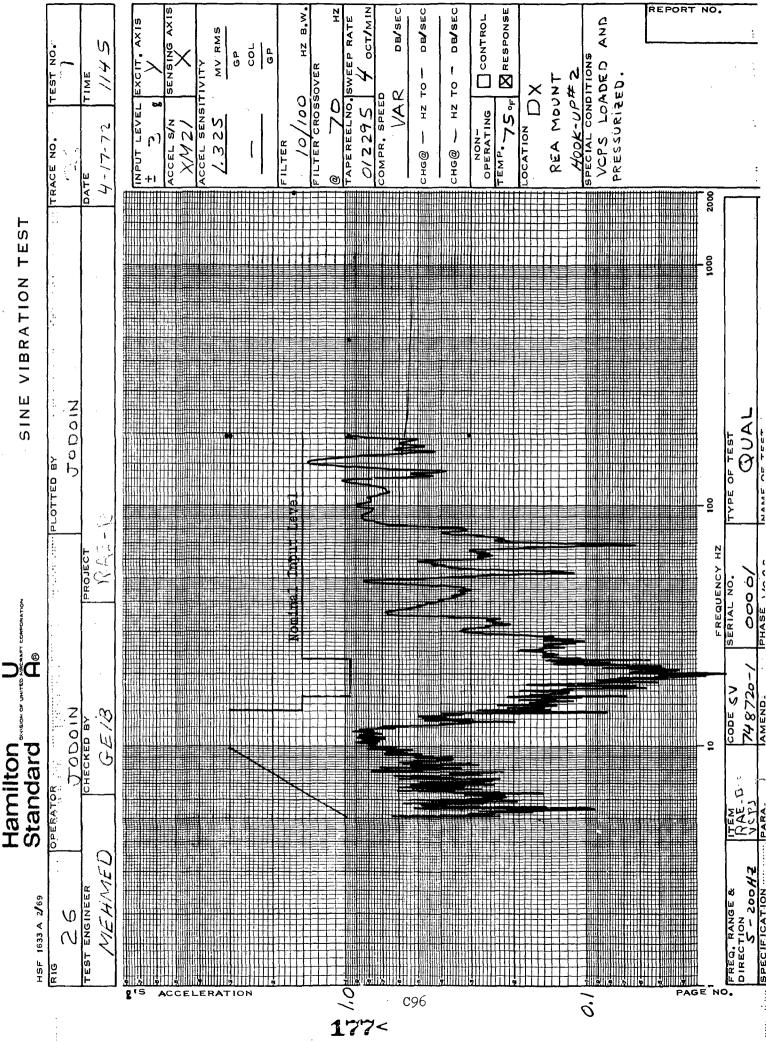


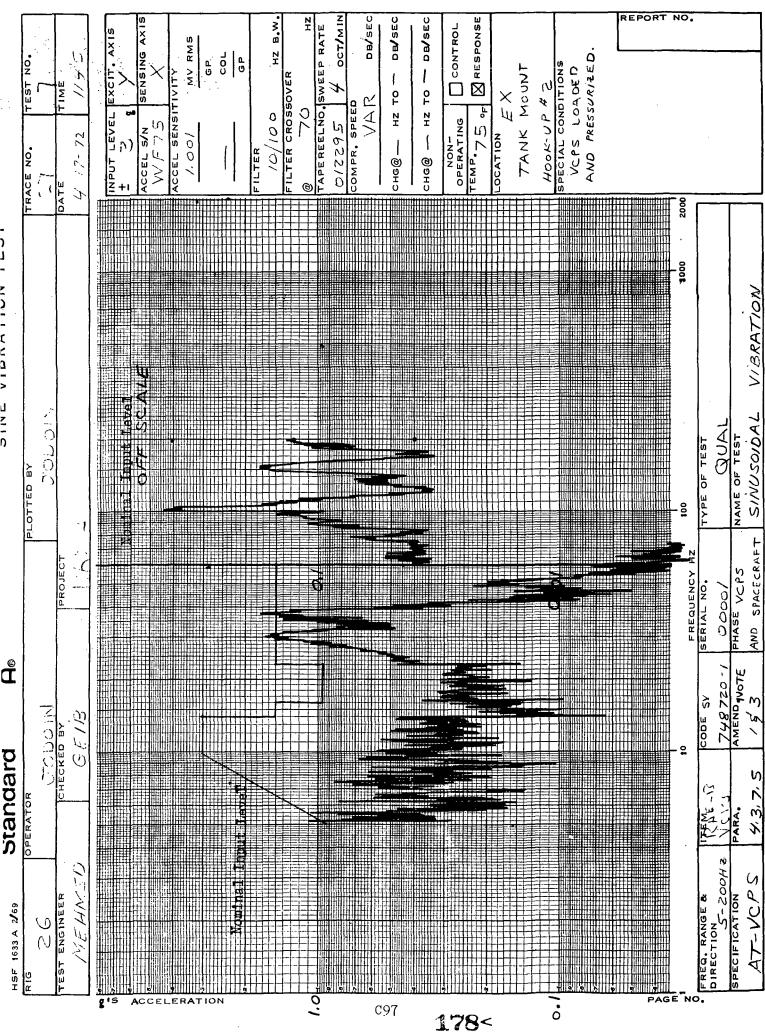




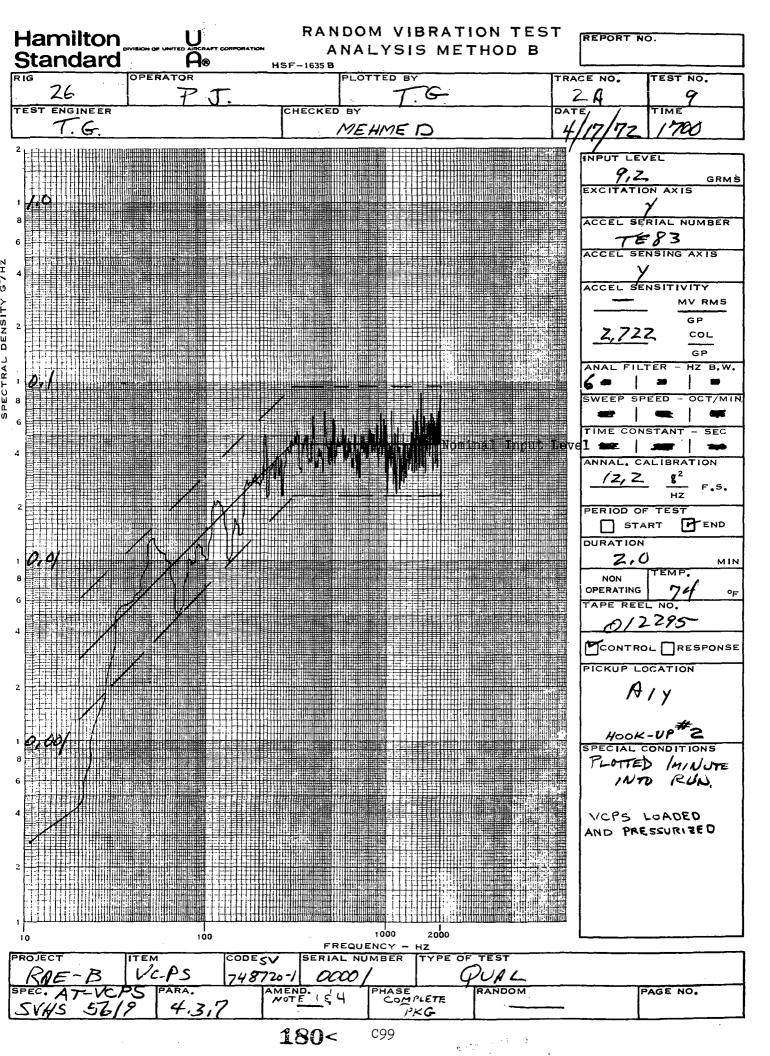


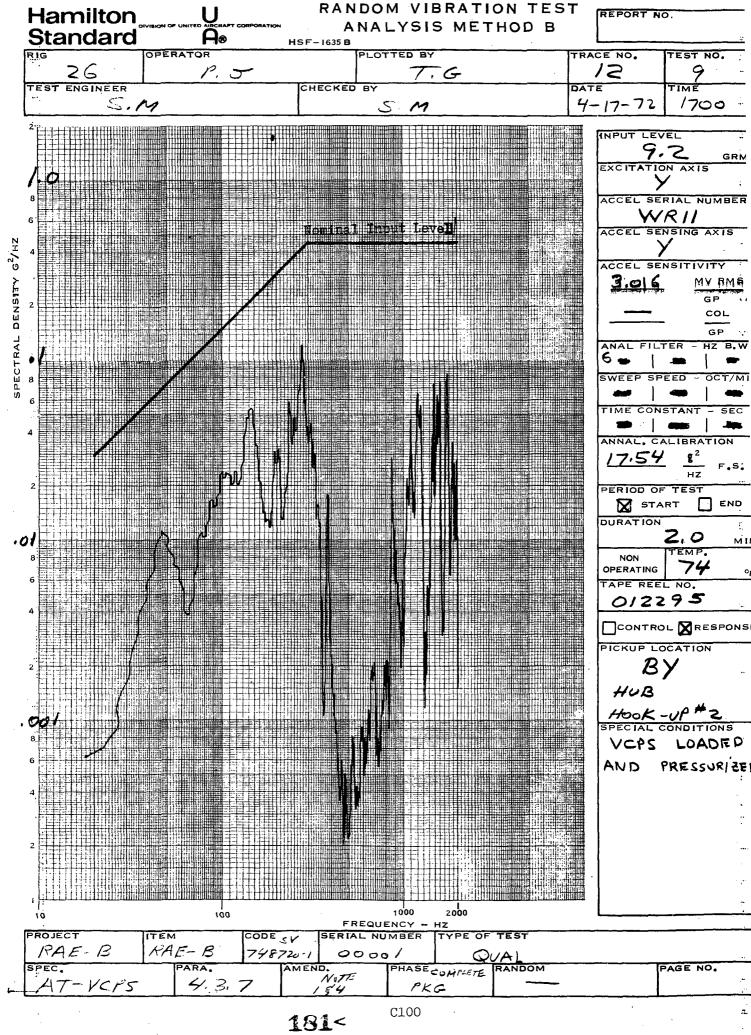

S I N E

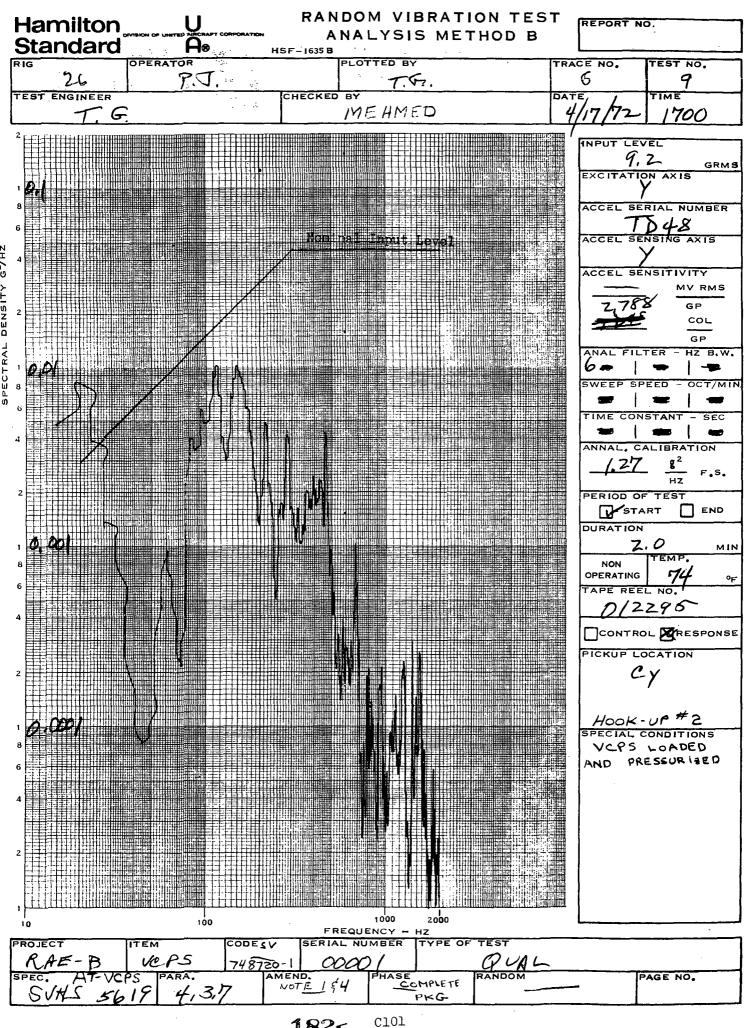




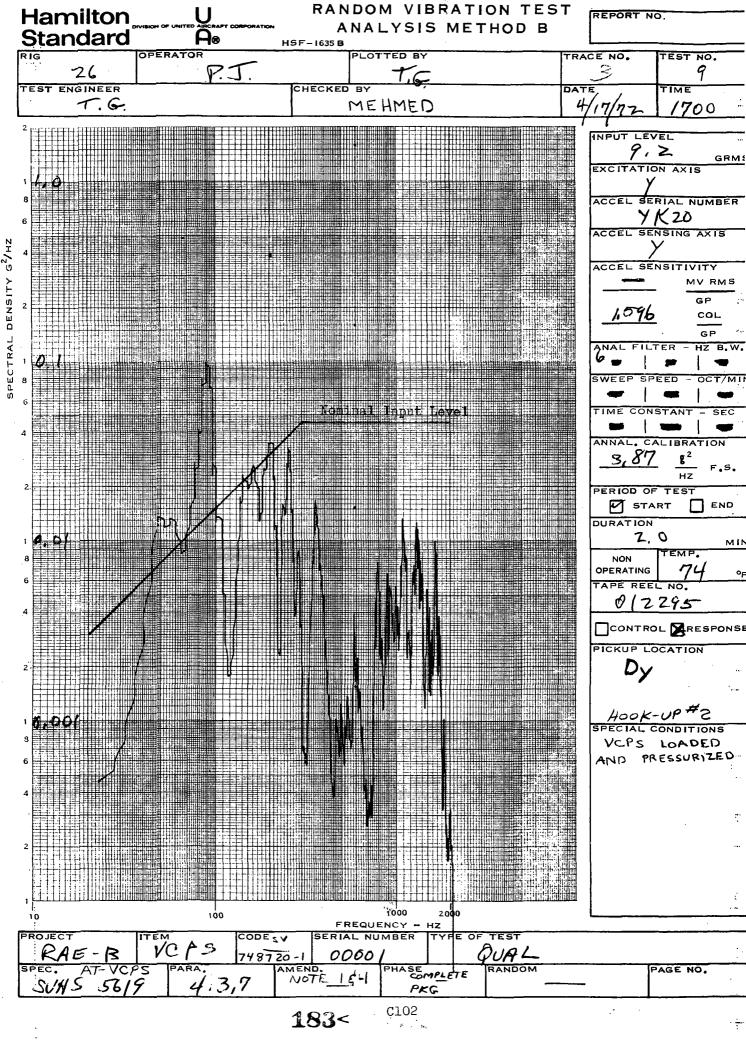
175<

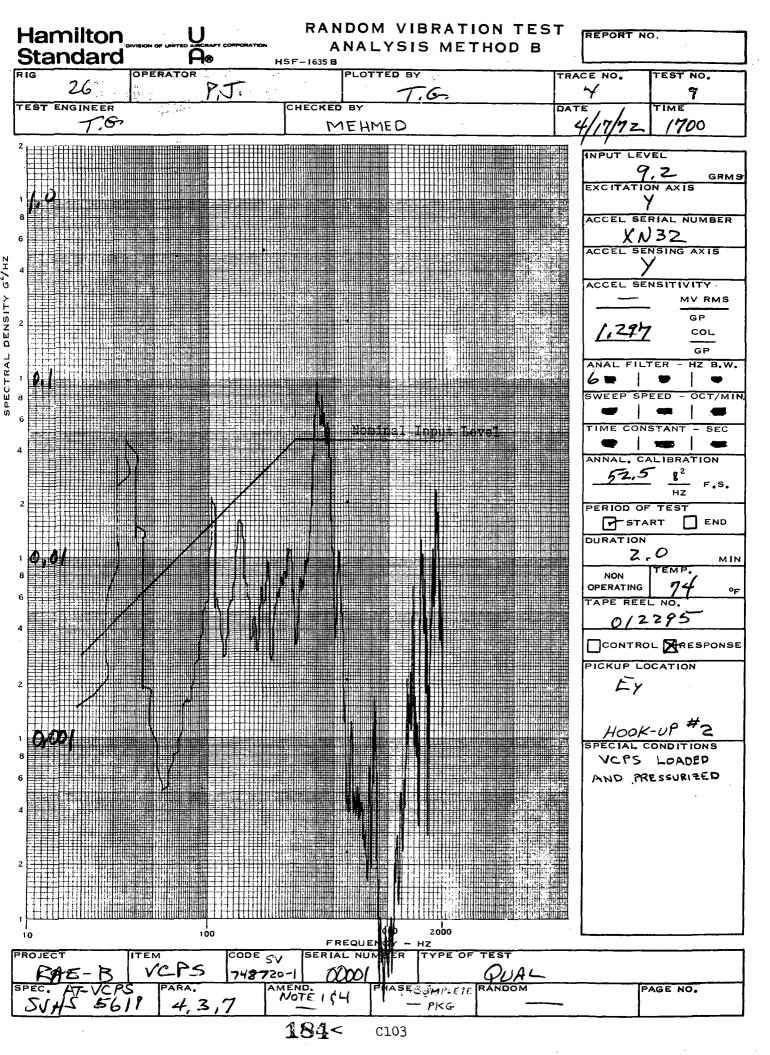


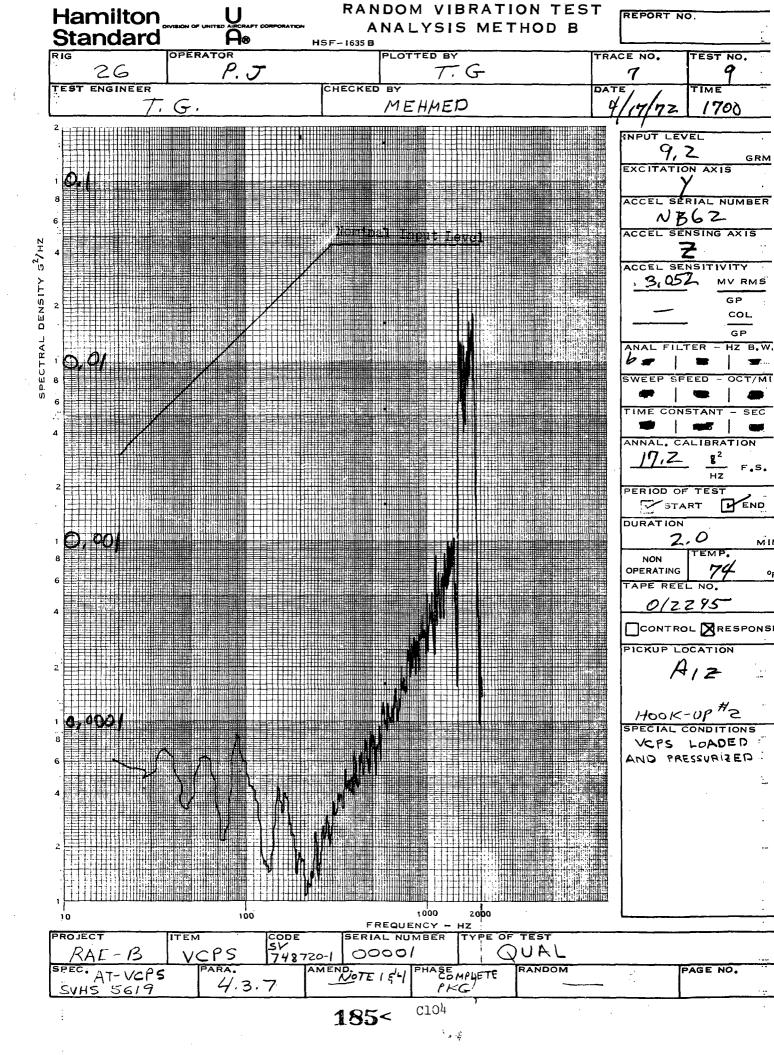


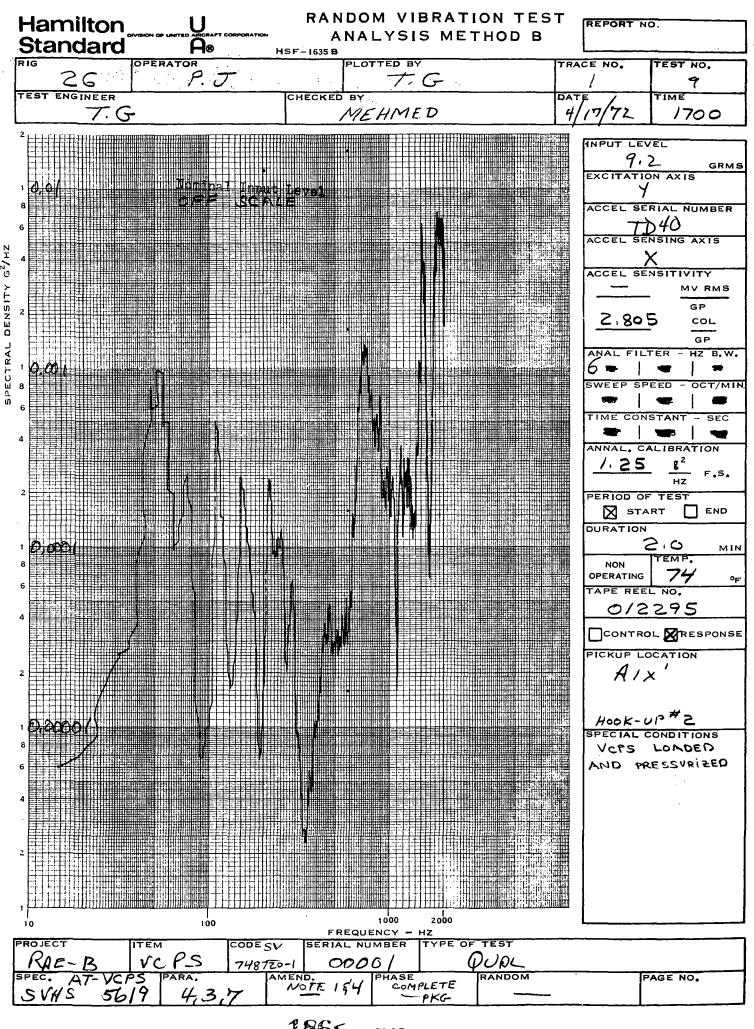


ロミーの

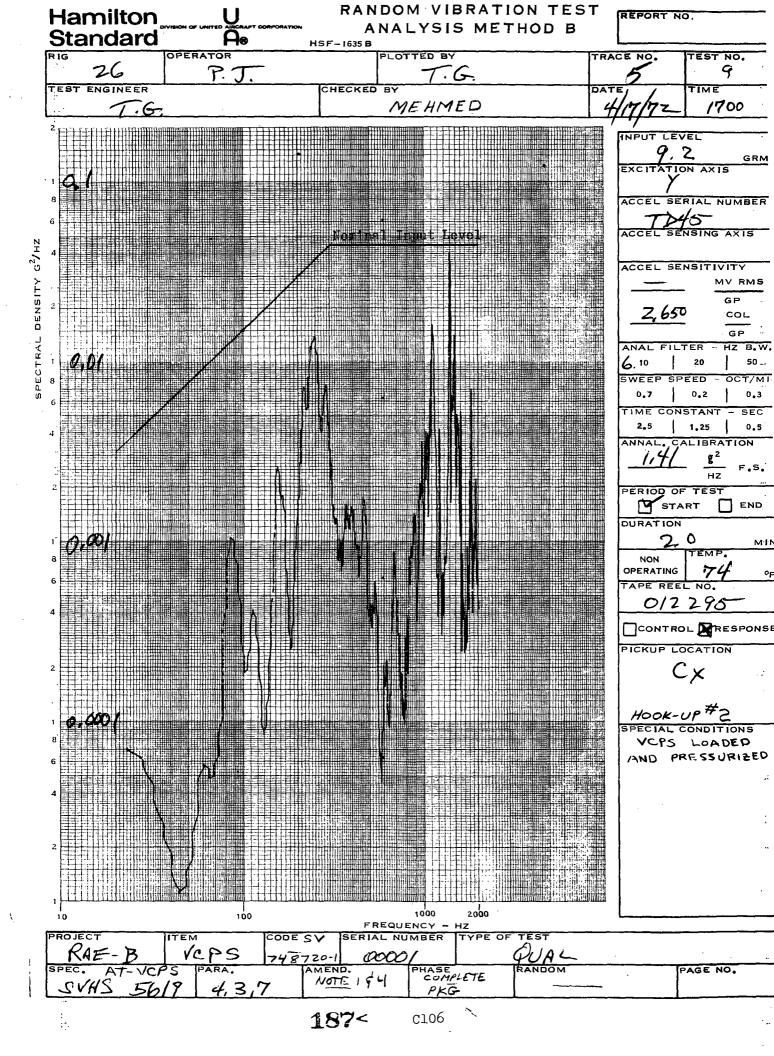

		Hamilton	DIVISION OF UNITED APPCARET COPPORATION			BRATION TEST		
:	HSF-1634A PLOTTED BY	CHECKED BY				Bille	H-7-12	3
		VCPS Wil	Syder Craft	соре SV74872.0-1	SERIAL NO.	TYPE OF TEST		
	AT-VCPS	HARA.	PHASE Rand -	COMPLETE ATA NO. PKG	ACTION SHEET NO.	DATE 4-11-72	TEST NO.	
SPE							EXCITATION	ALON
CTRA							GRMS INPUT	T AXIS
							SH 1	
NSIT							PERIOD OF	0F TEST
ΓΥ G							G'START	
/HZ							DURATION OF	OF TEST MIN.
-							ACCEL. SERIAL NO.	
•							ACCEL. SEA	SENSITIVITY
(MV RMS
298				يرين جاري کر ميري کر اور ميري مرك مي کر ميري کر ميري کر ميري ميري ميري مي				COL
1							ACCEL. SEV	GP
79								AXIS
}<							ACCEL. LOC	LOCATION
10								
5							012295	ло. У У.
							SPECIAL CO	CONDITIONS Dade d
.*							1 2	, l
<i>ः 1</i>							SPACECRAFT FINSTALLED	
PAGE							Note 1 6'H	
NO.								NO.
••								

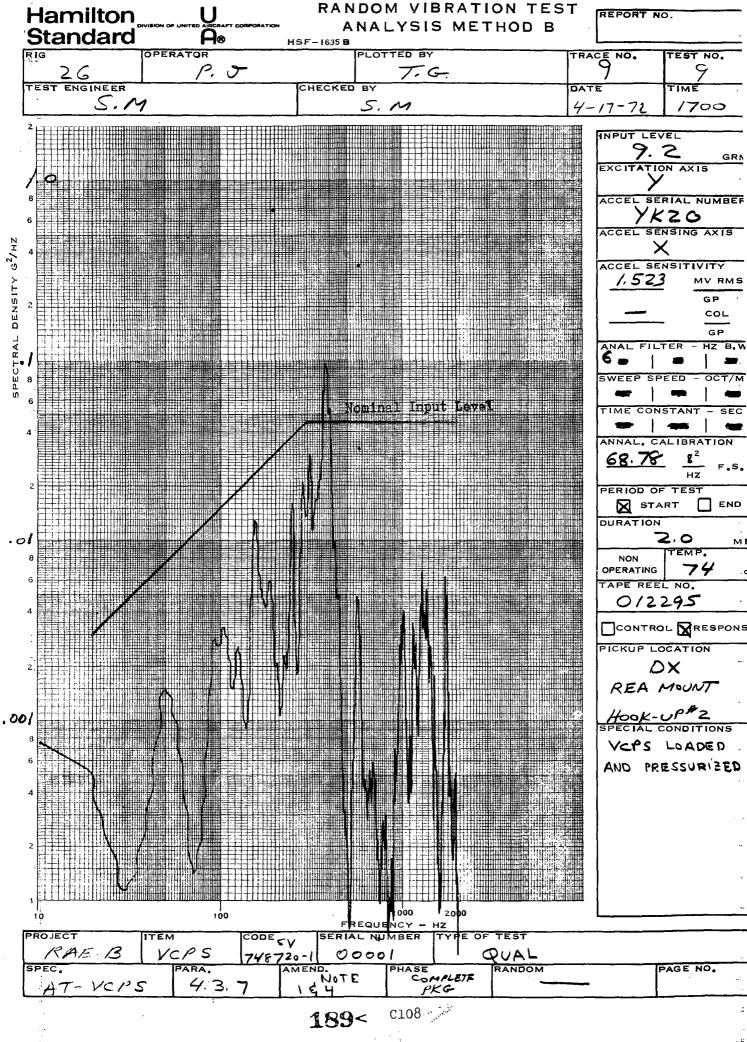


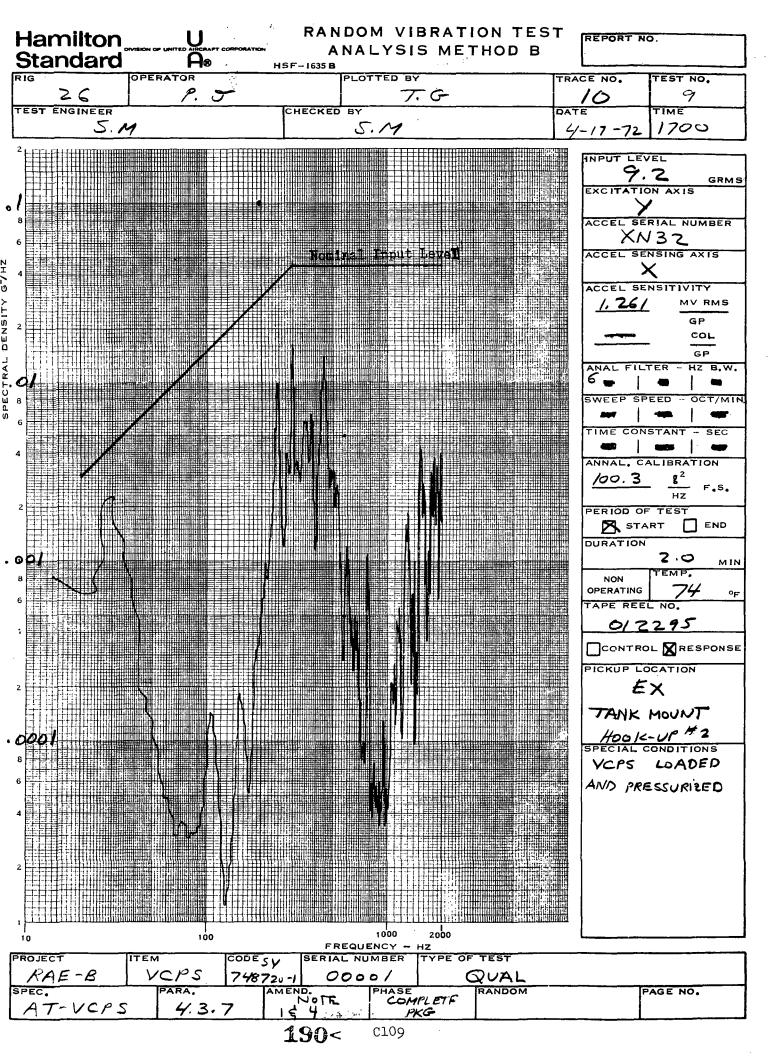




182<






186< C105

(,

à:

5

÷

1.1

. . .

· .

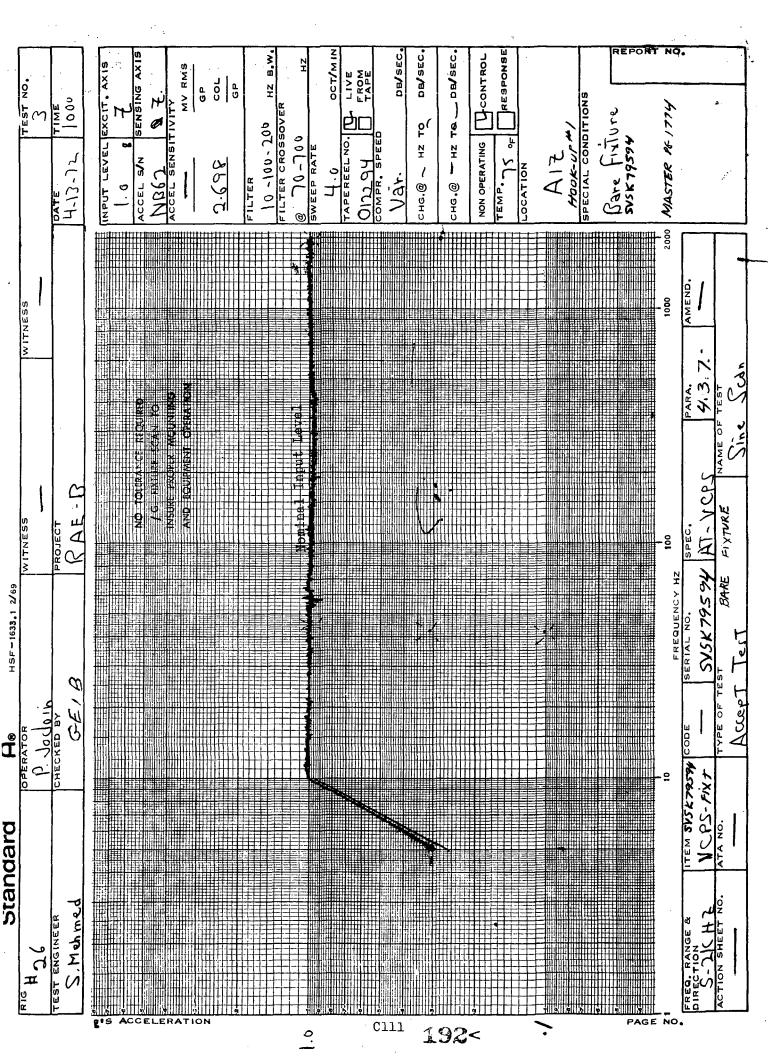
Section IV

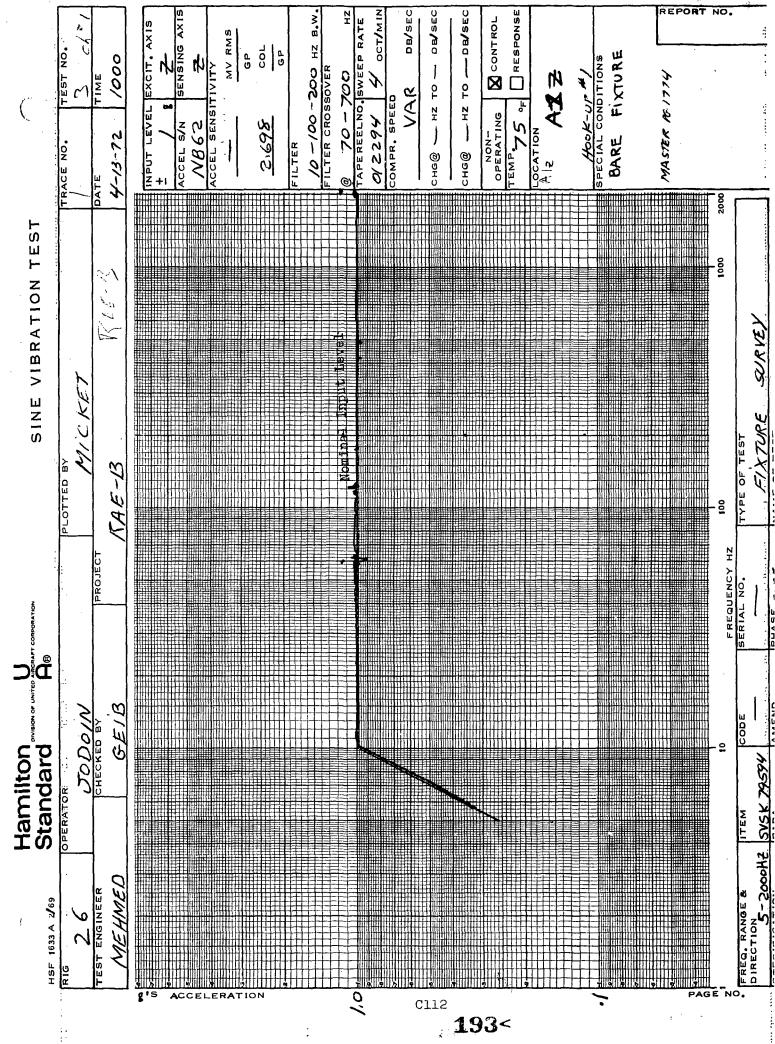
Z - Axis A) Sine Data

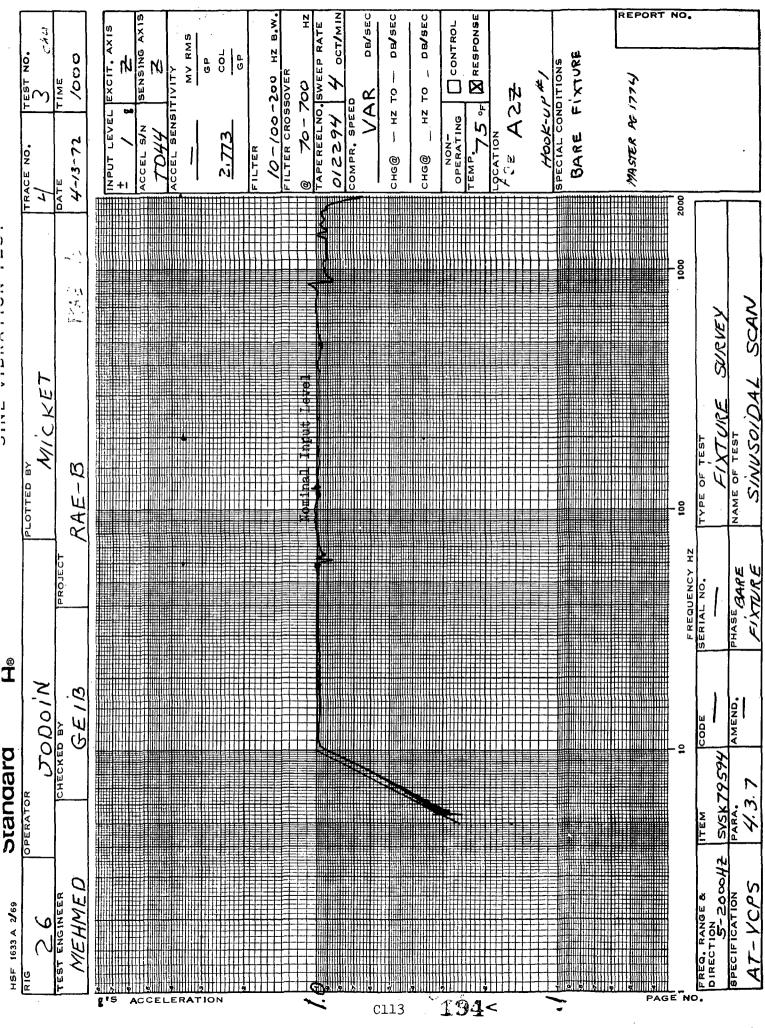
191<

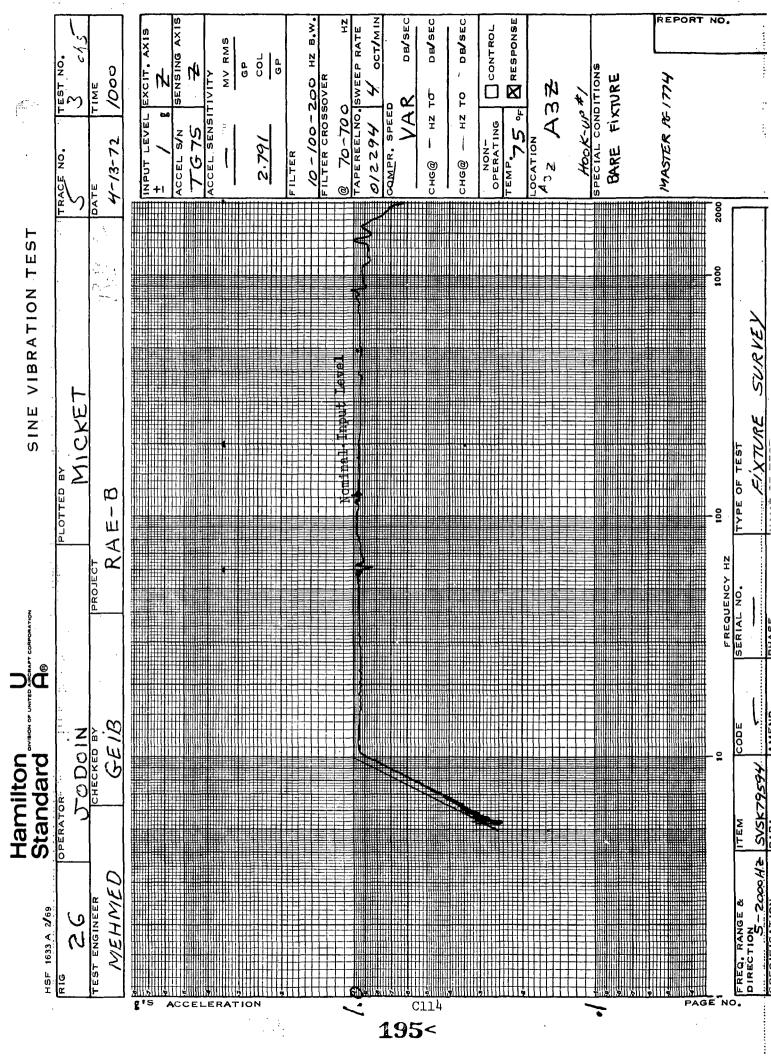
2

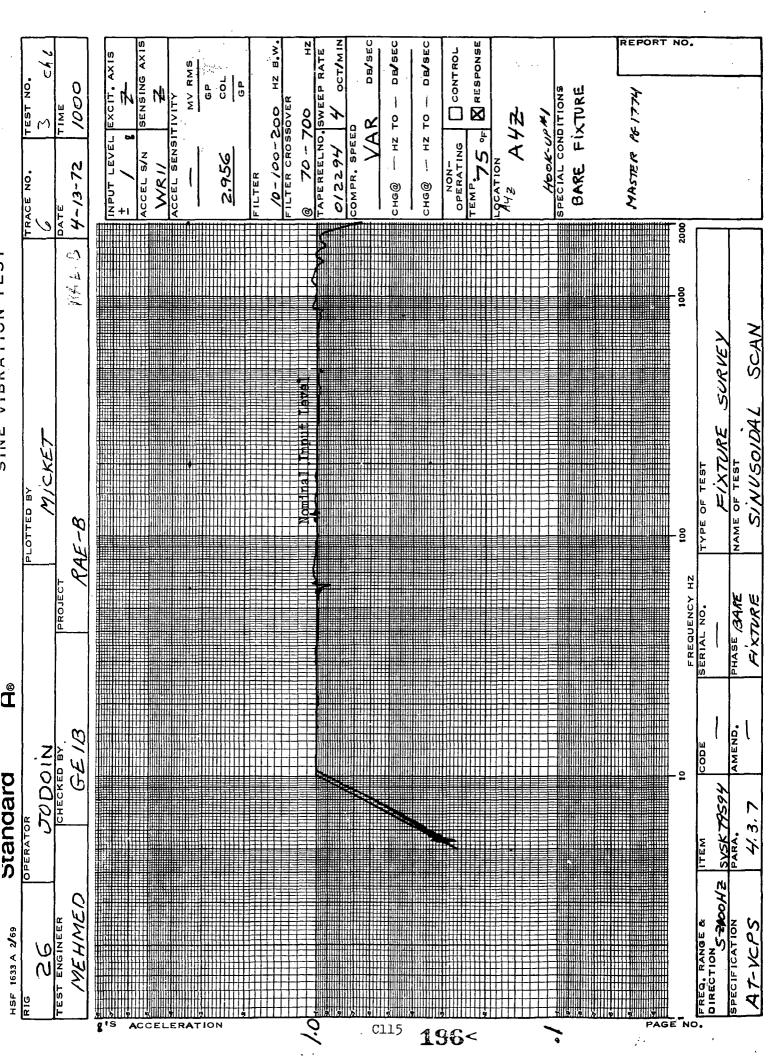
C110

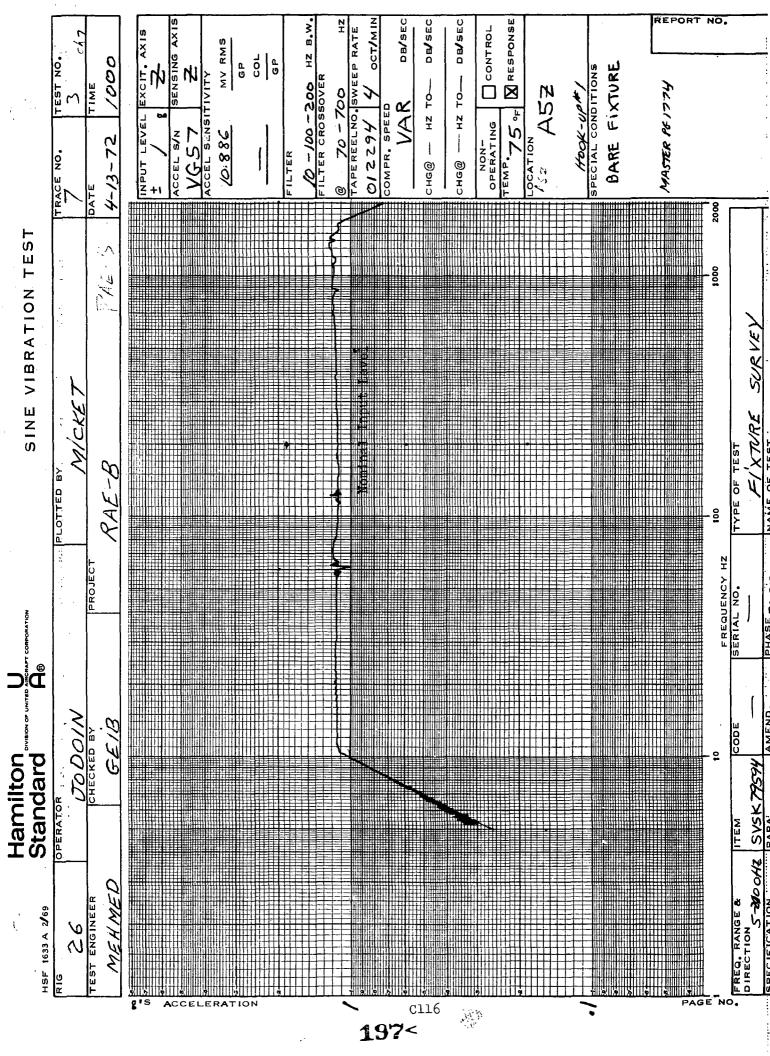

B) Random Data

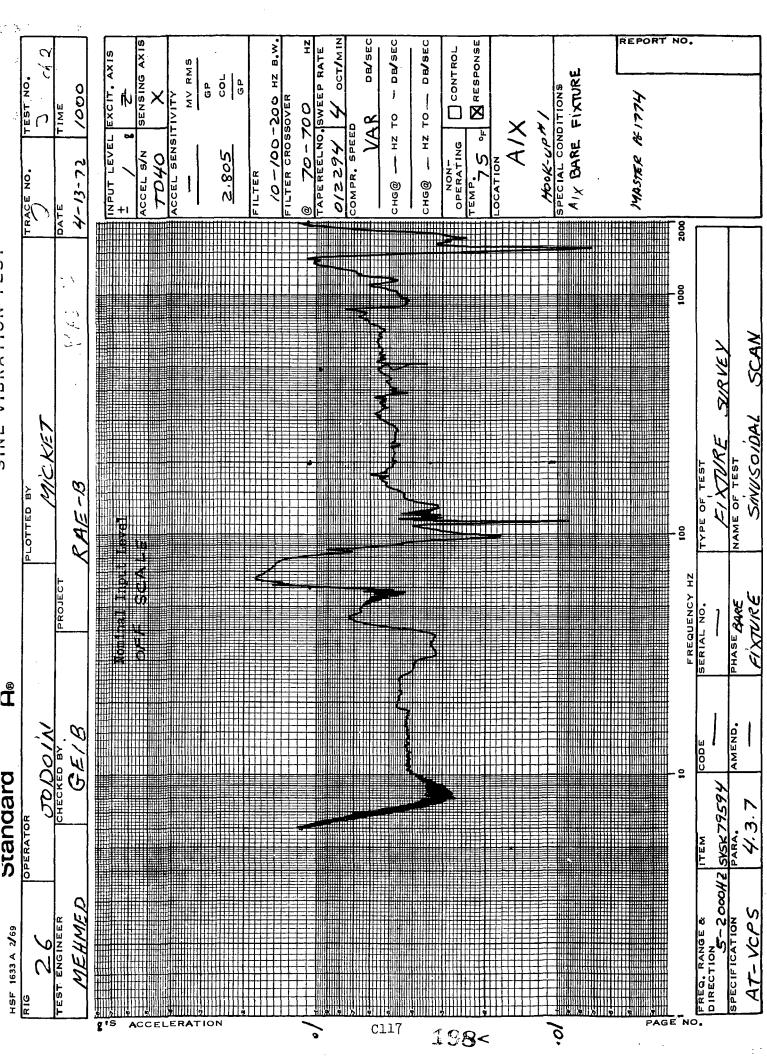

HS F-62A 7/62

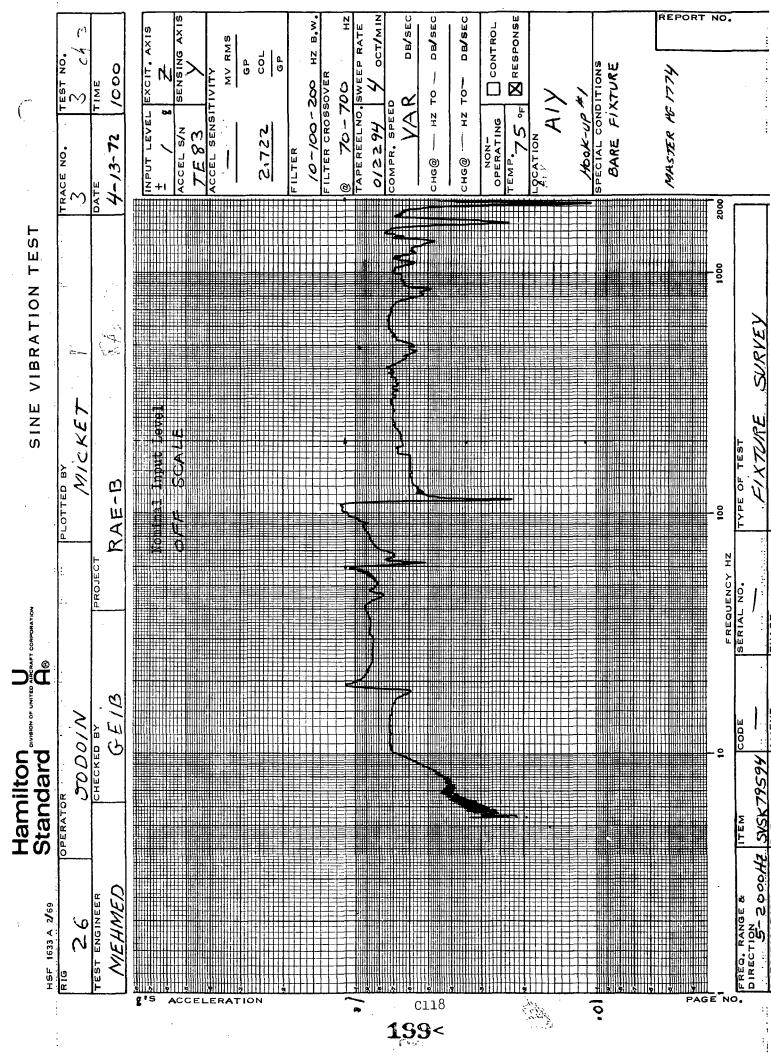

國黨

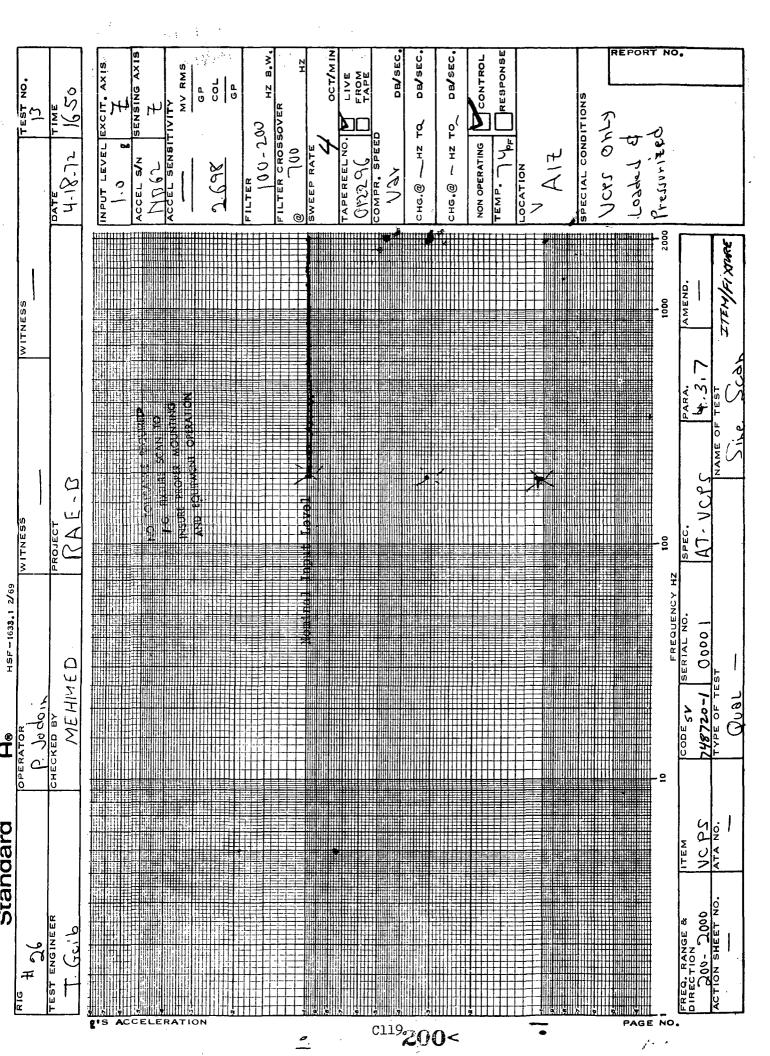

2

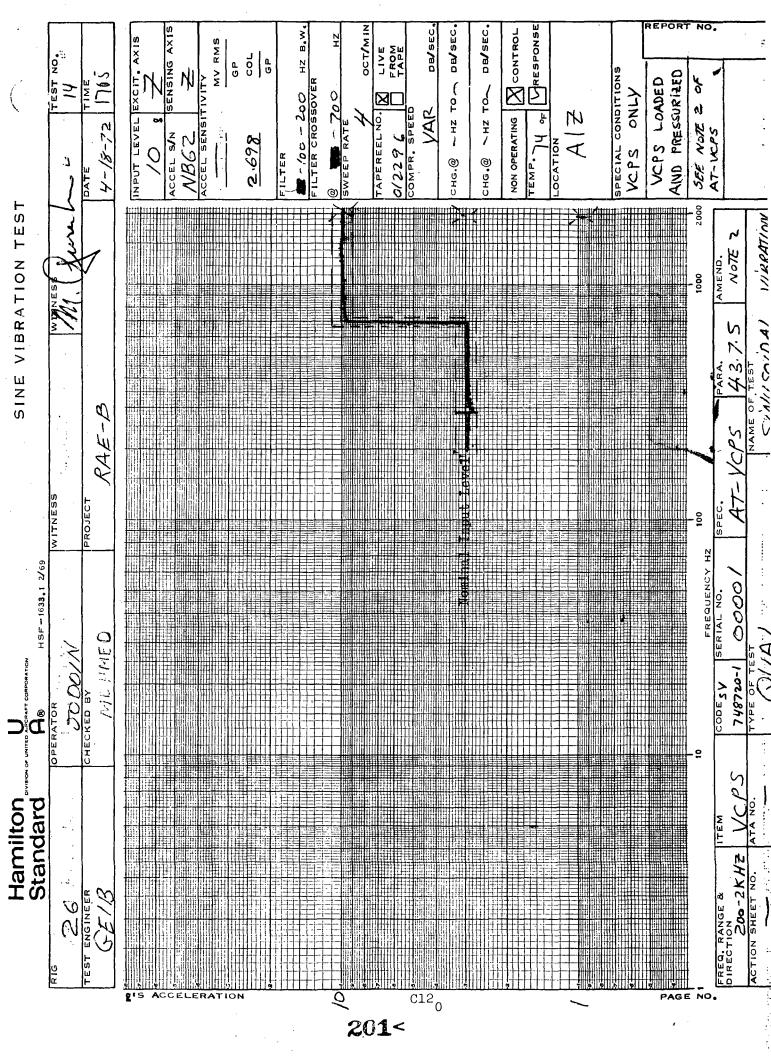

Ć,

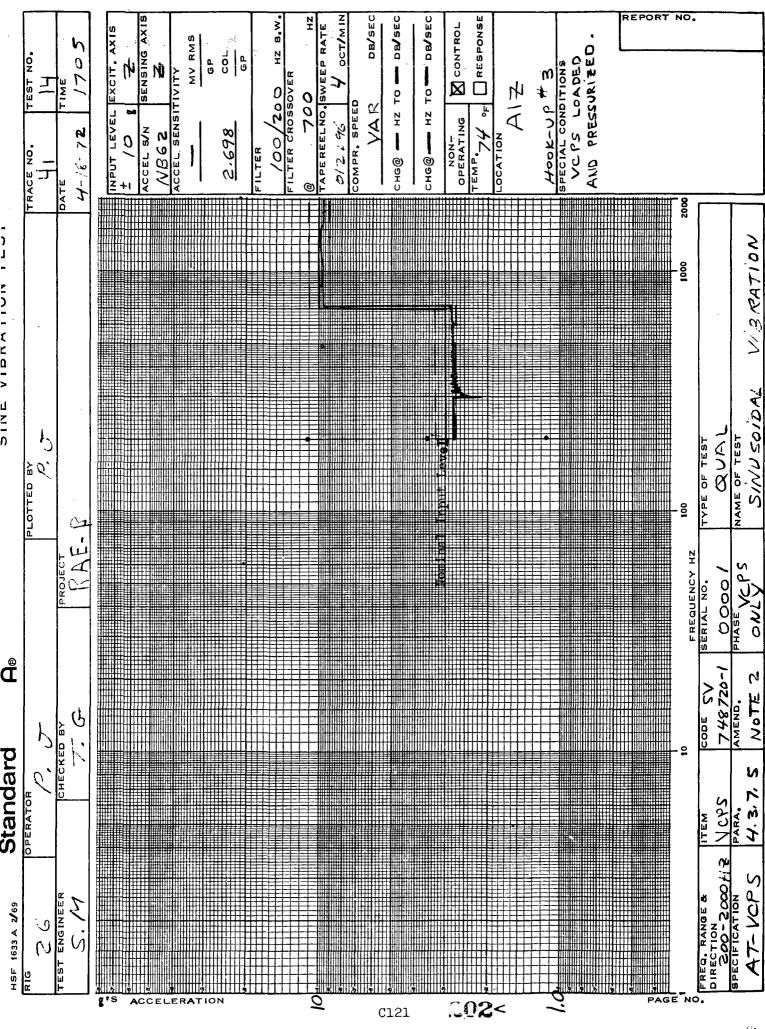


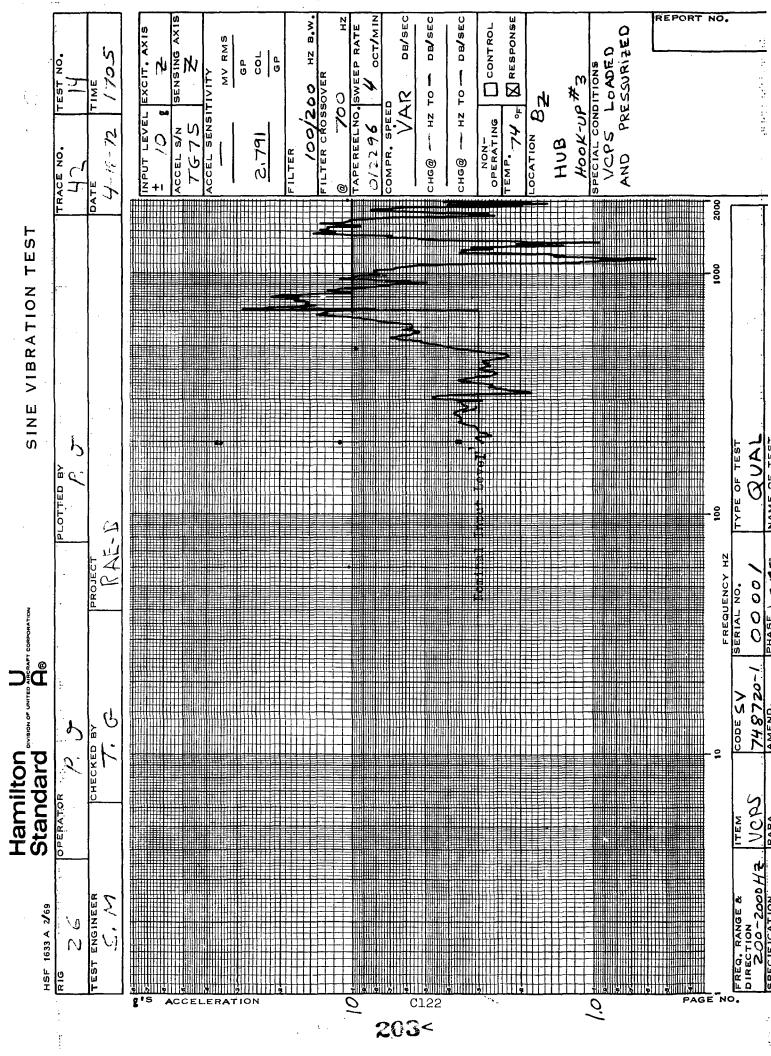


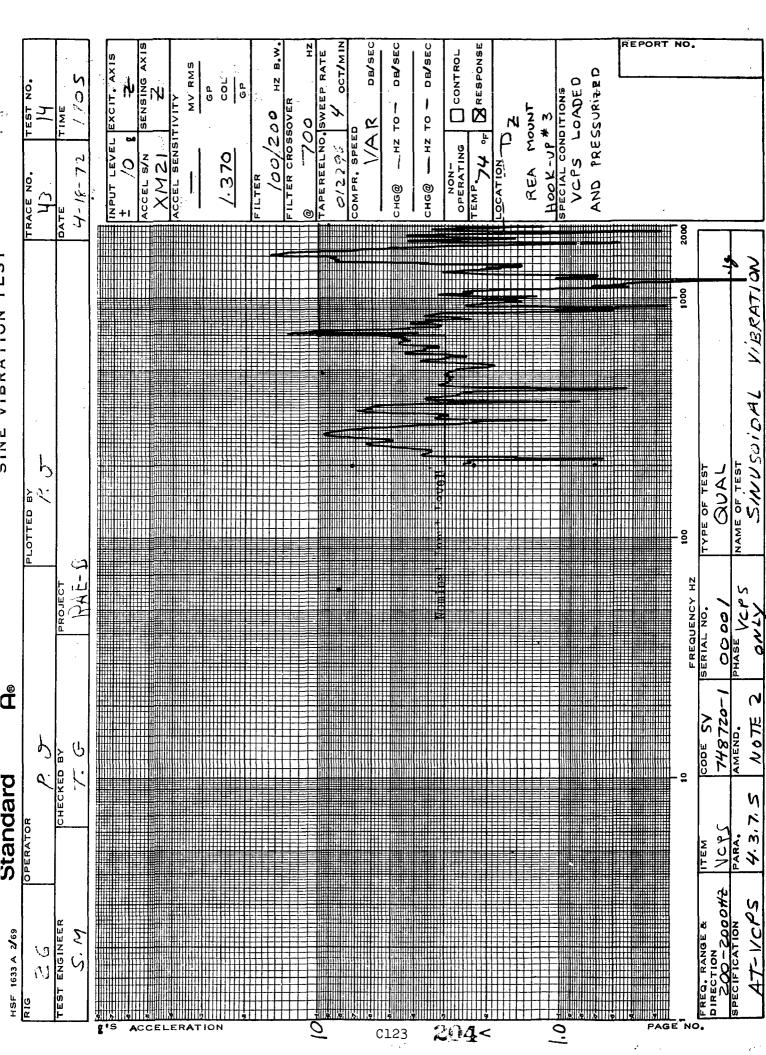


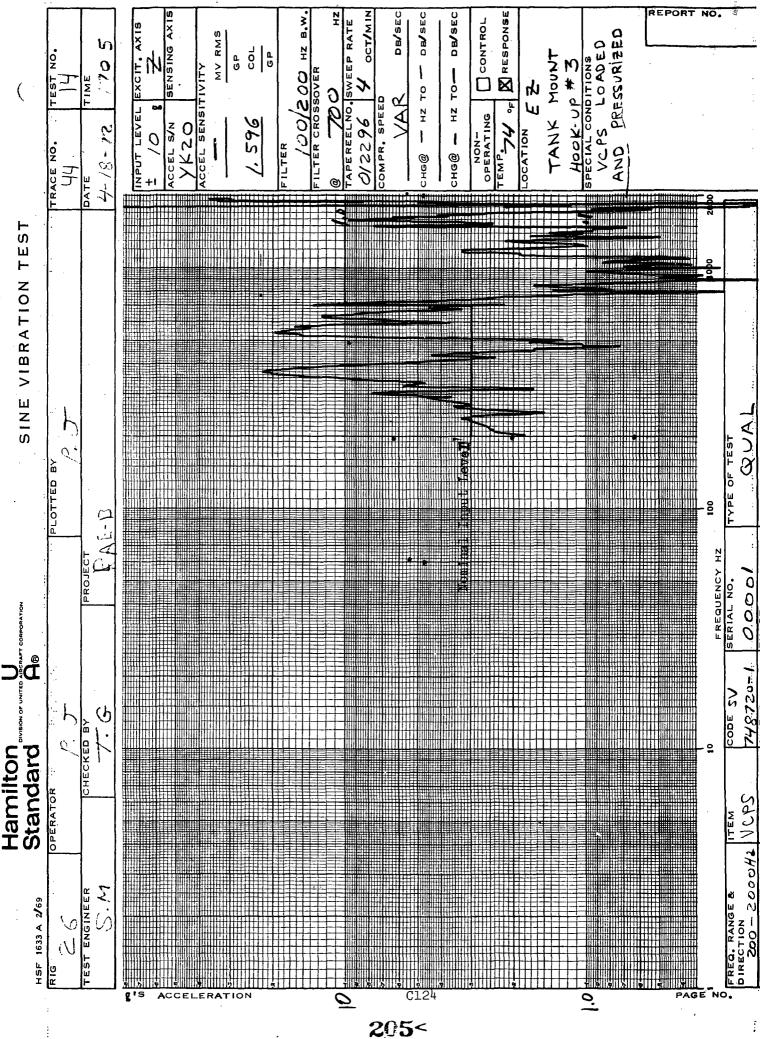


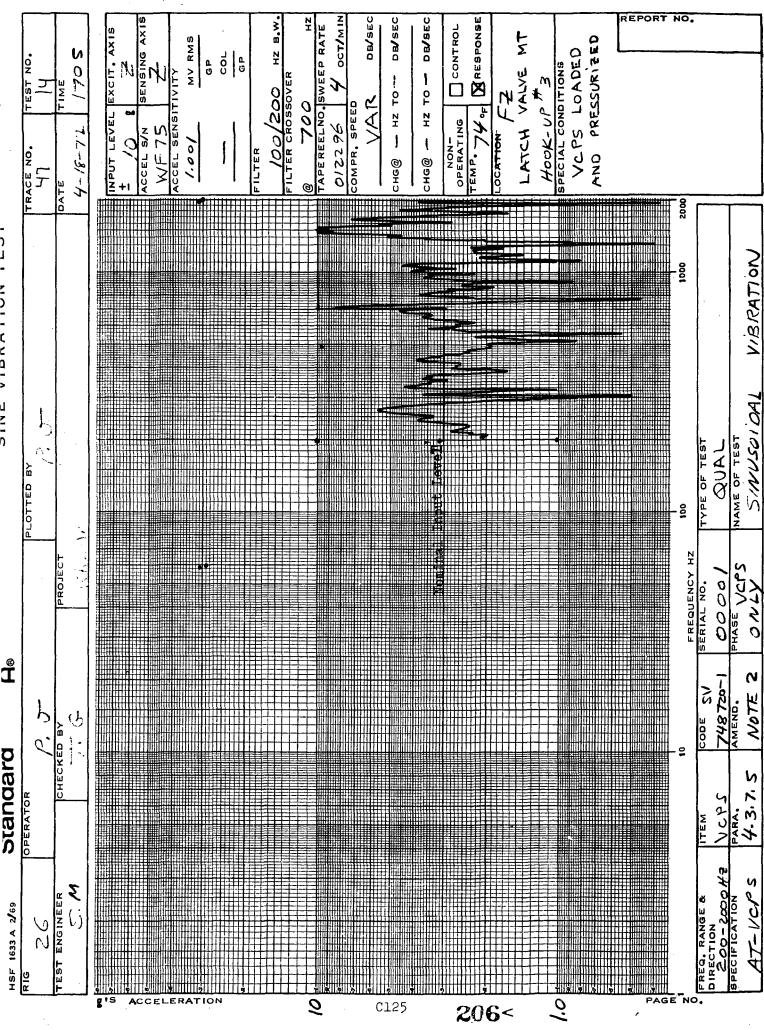




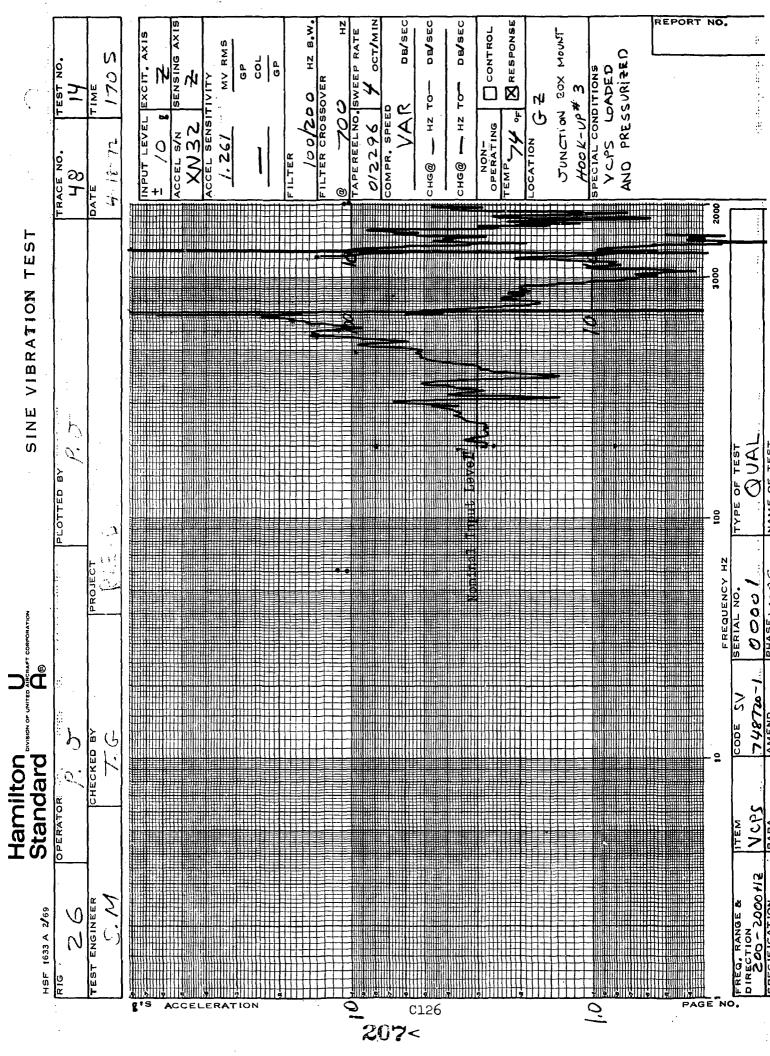


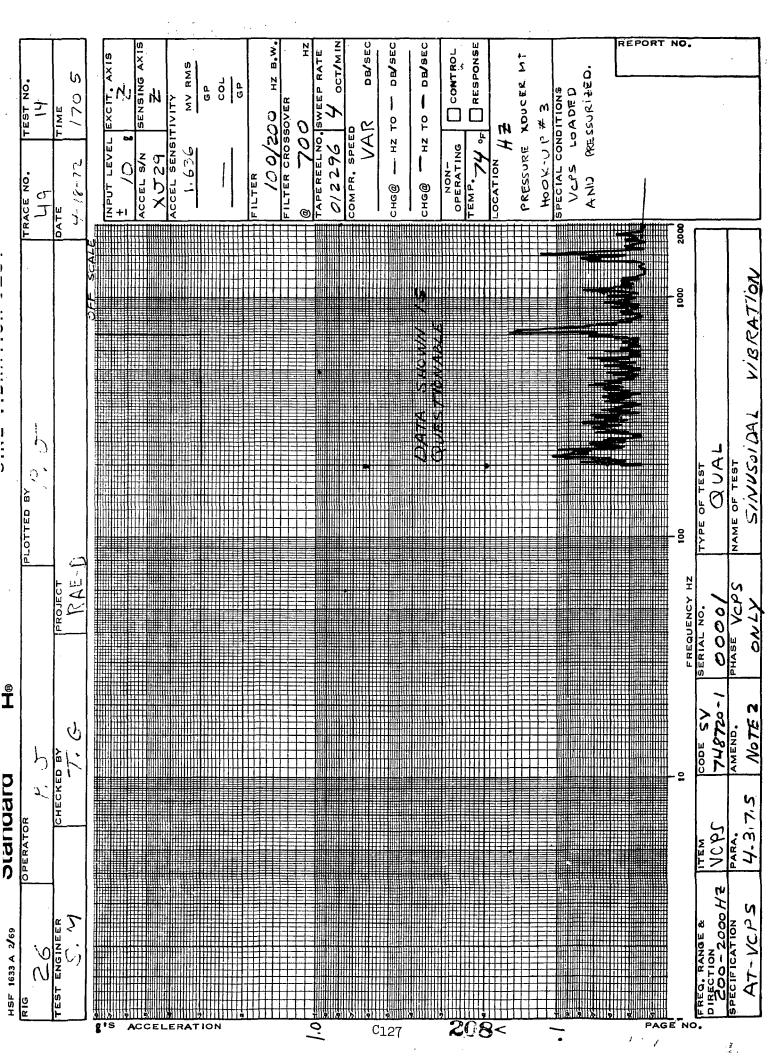


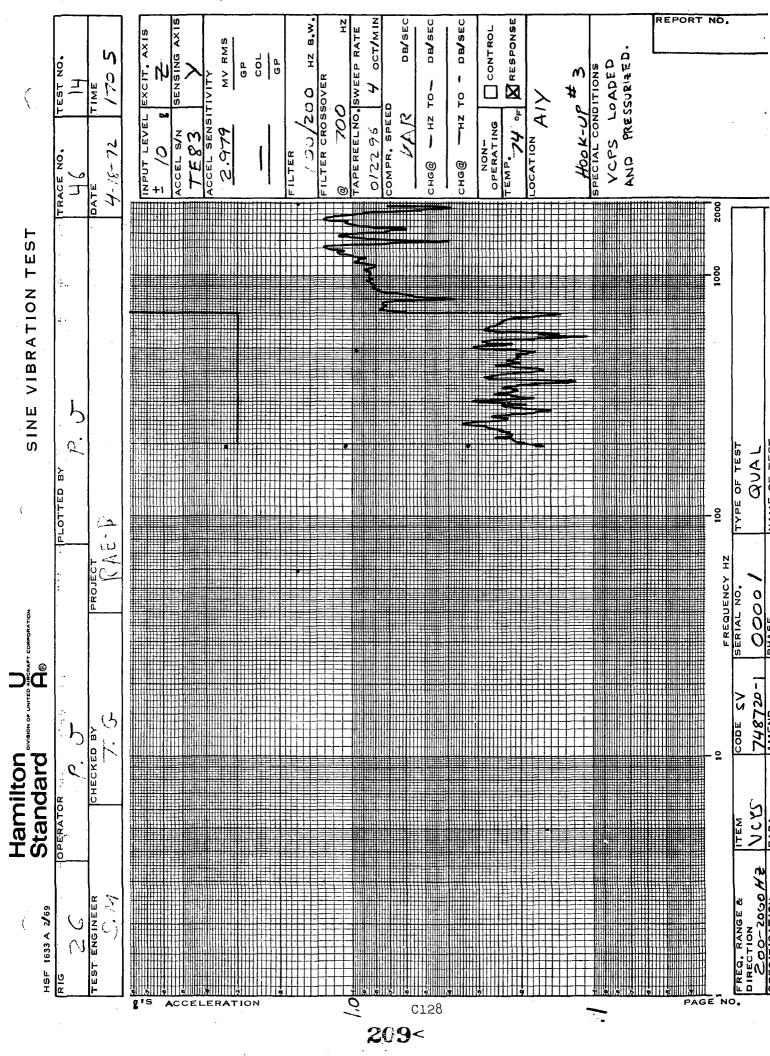


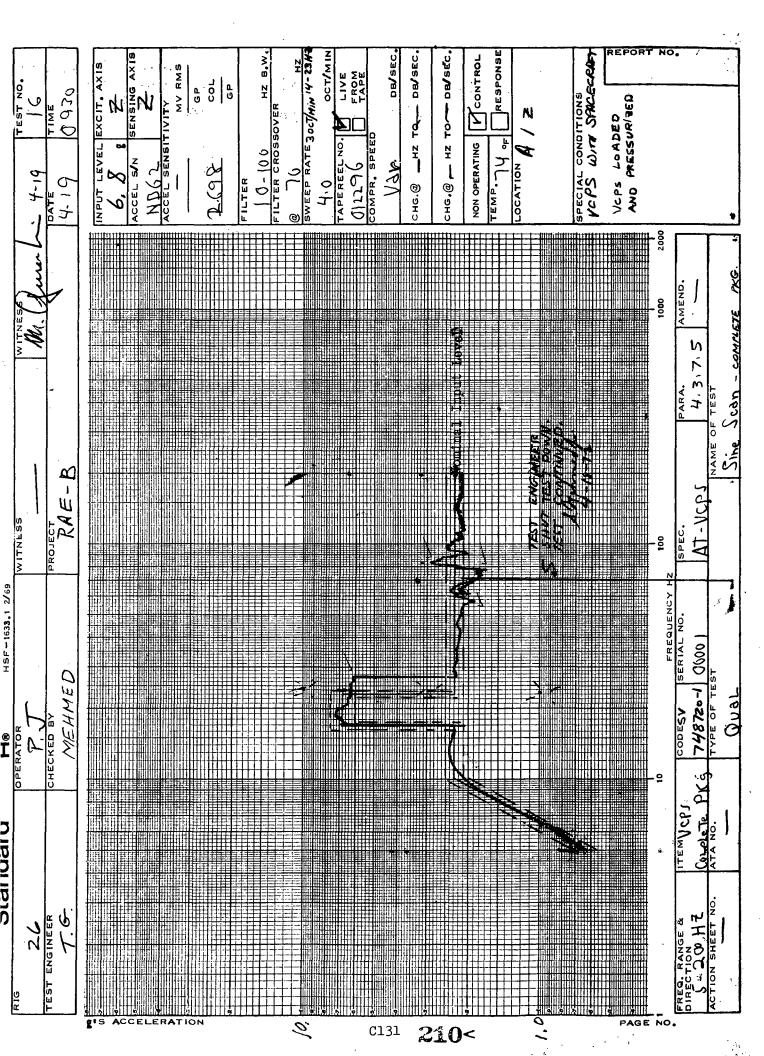


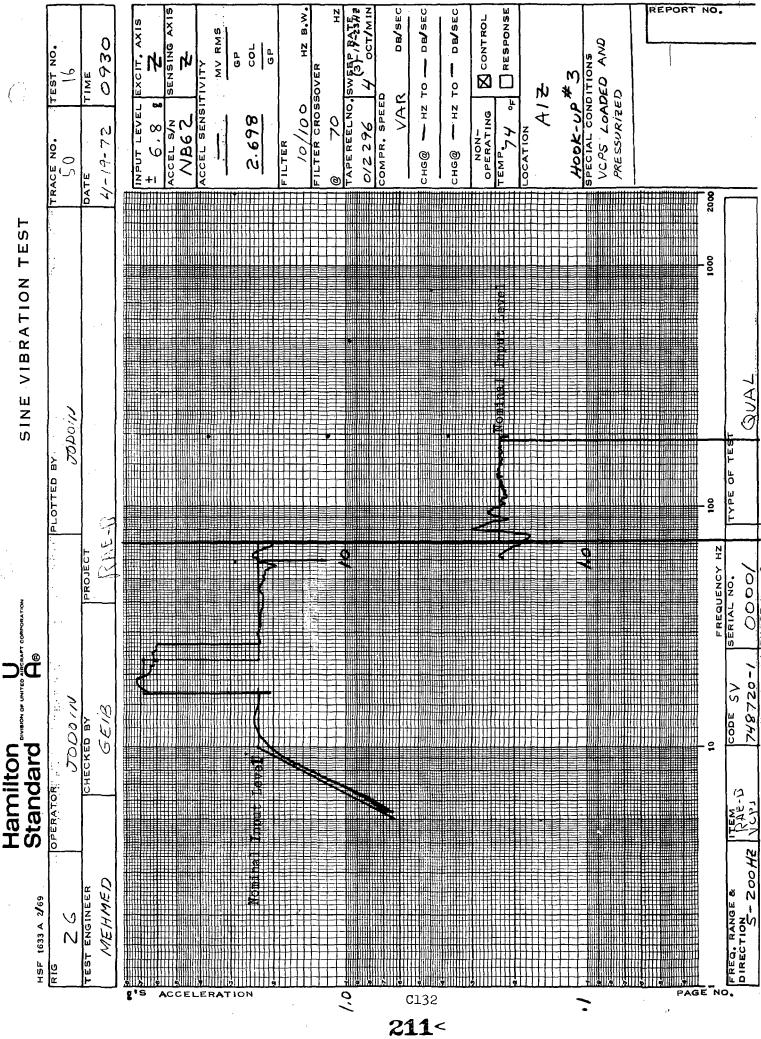
コミーク

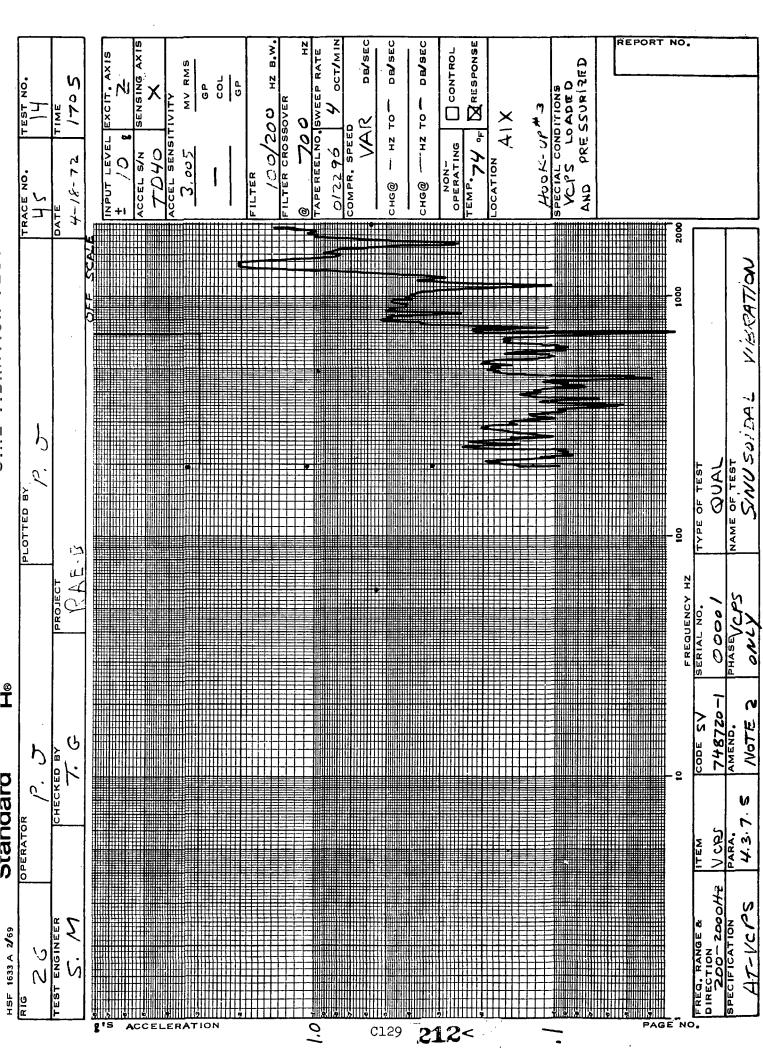


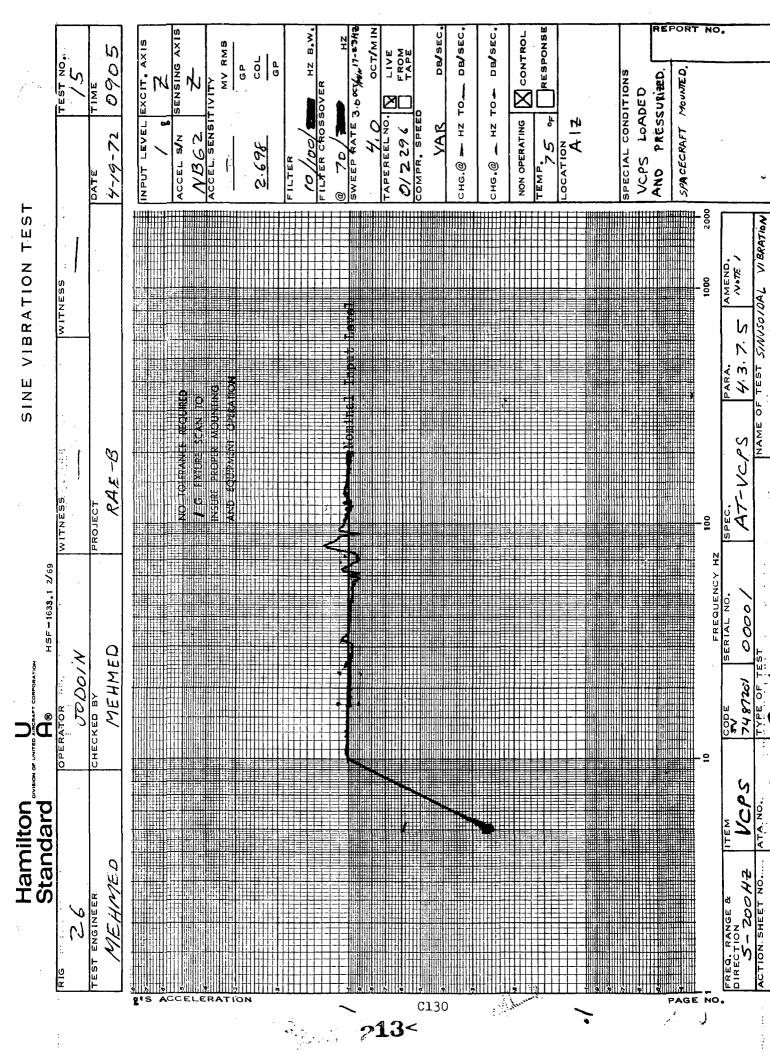


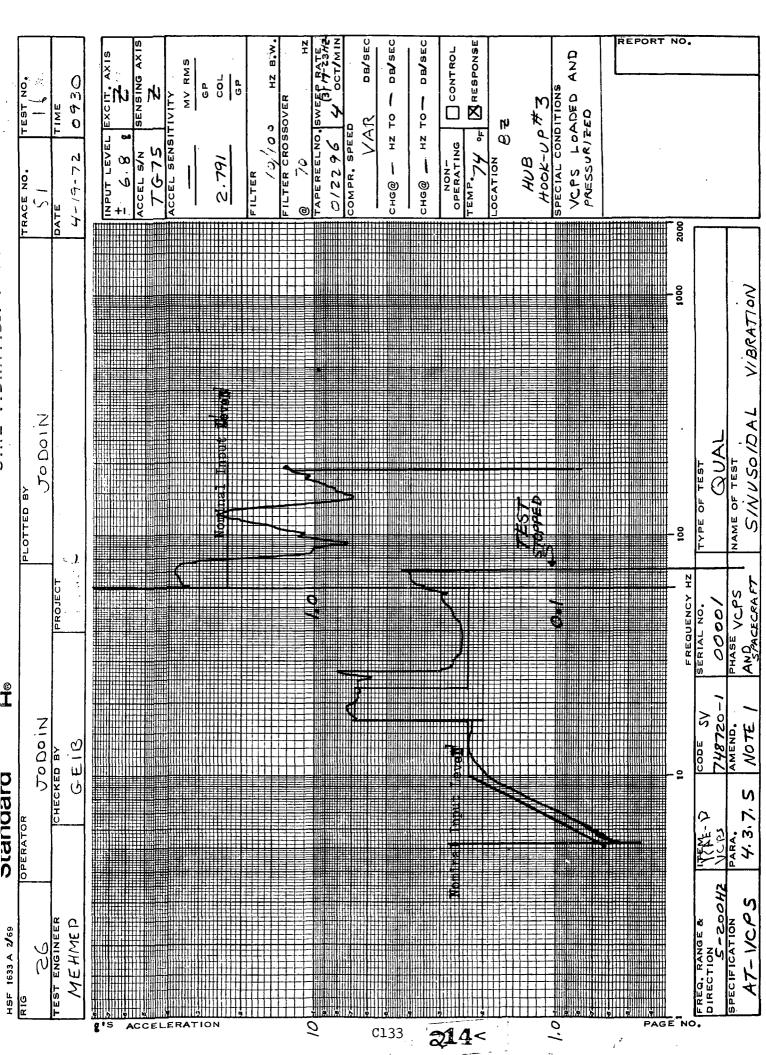


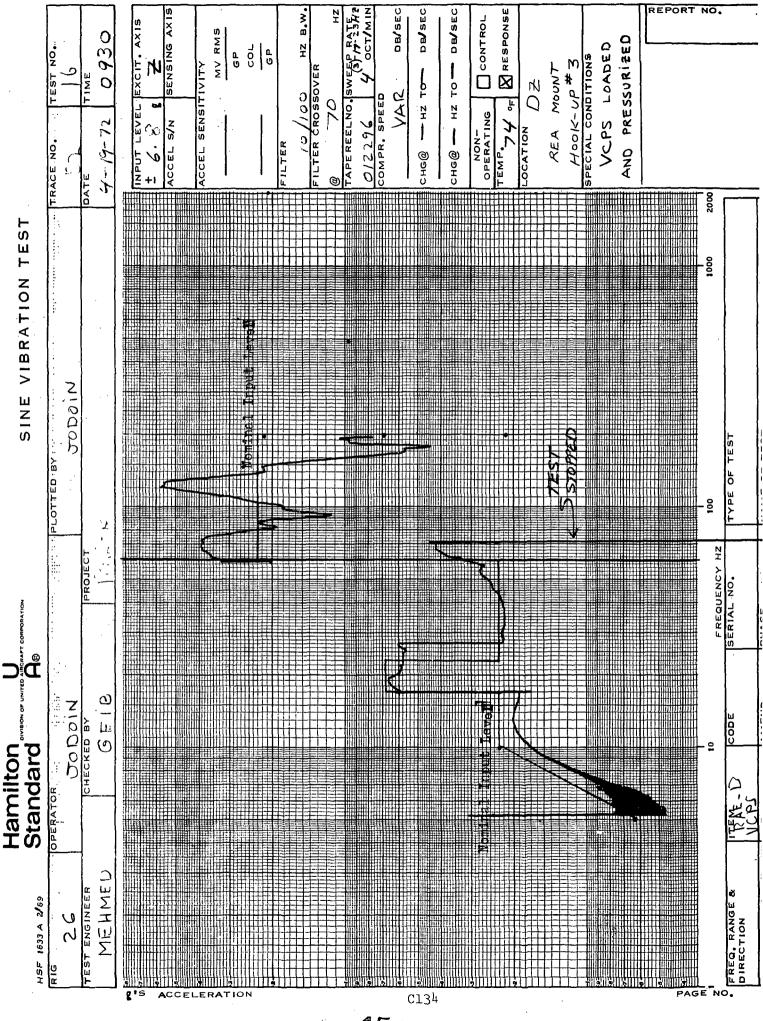


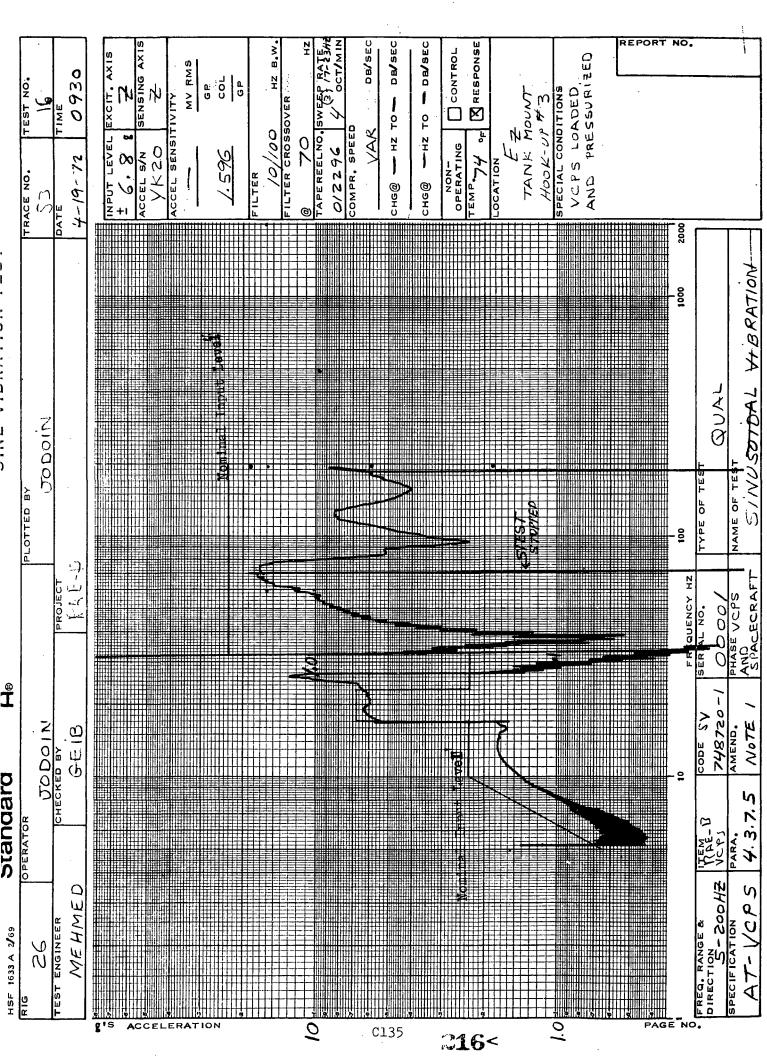

2) - C20-2 U I N L

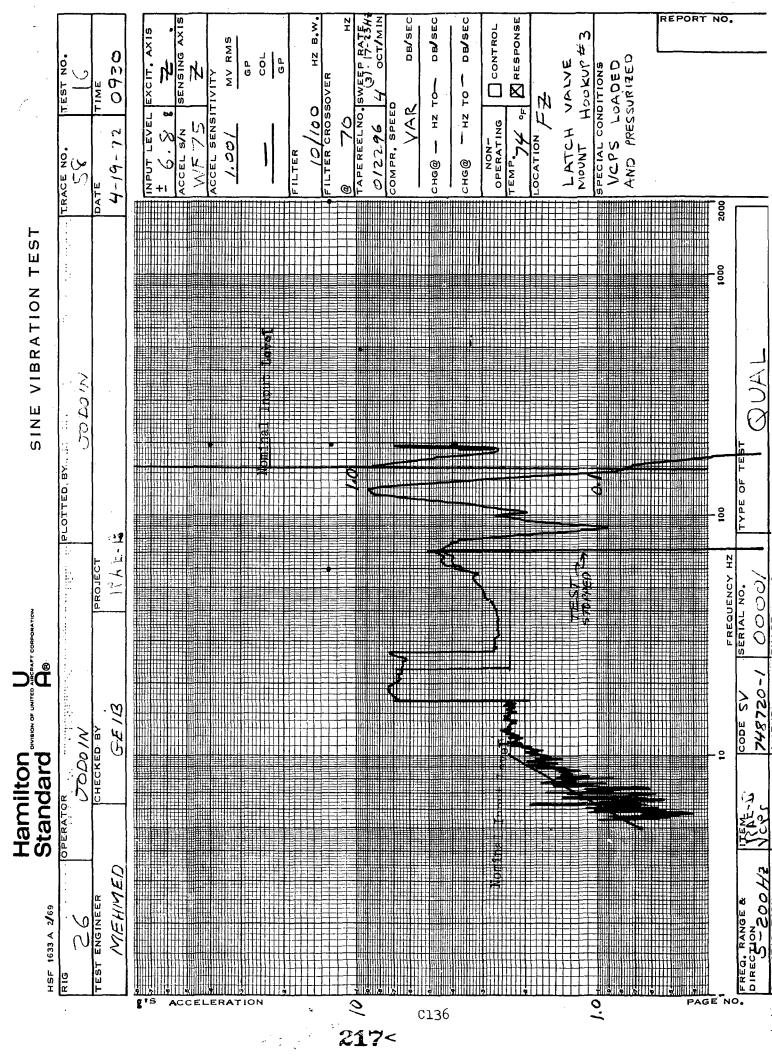


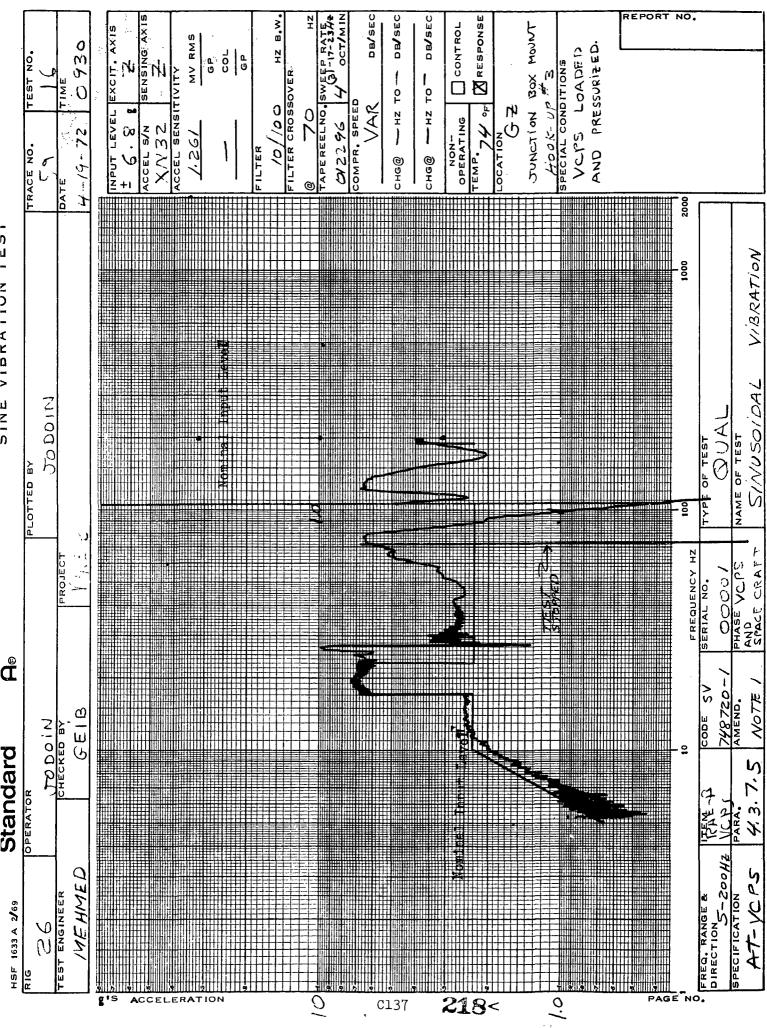


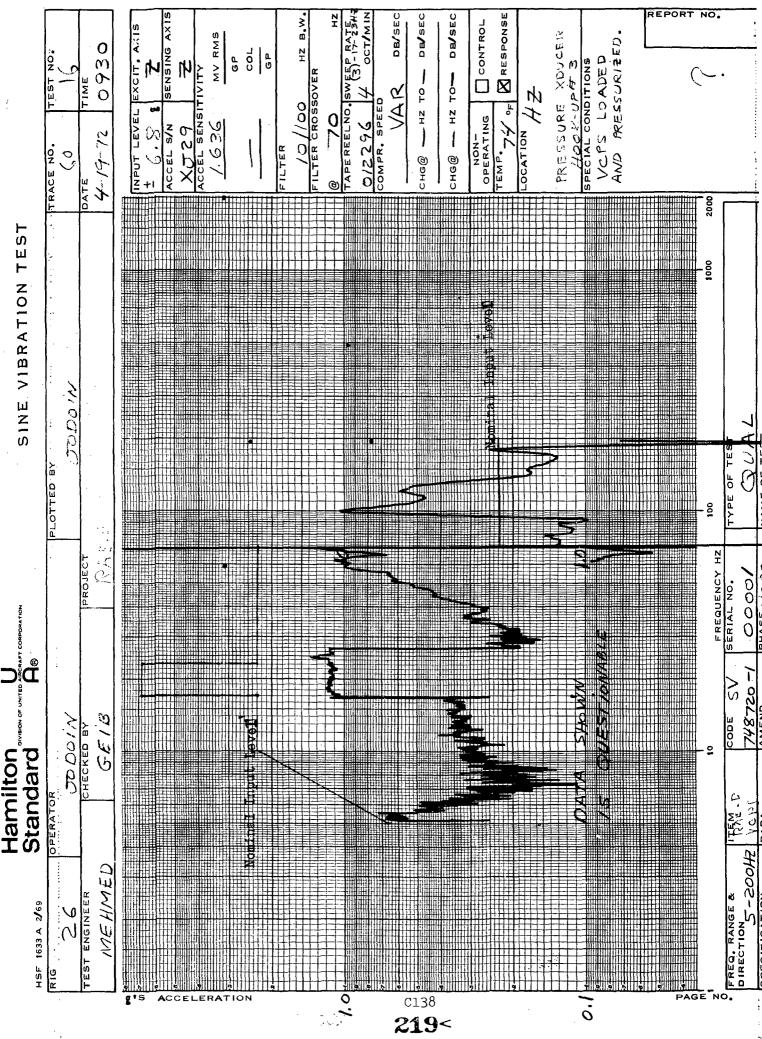


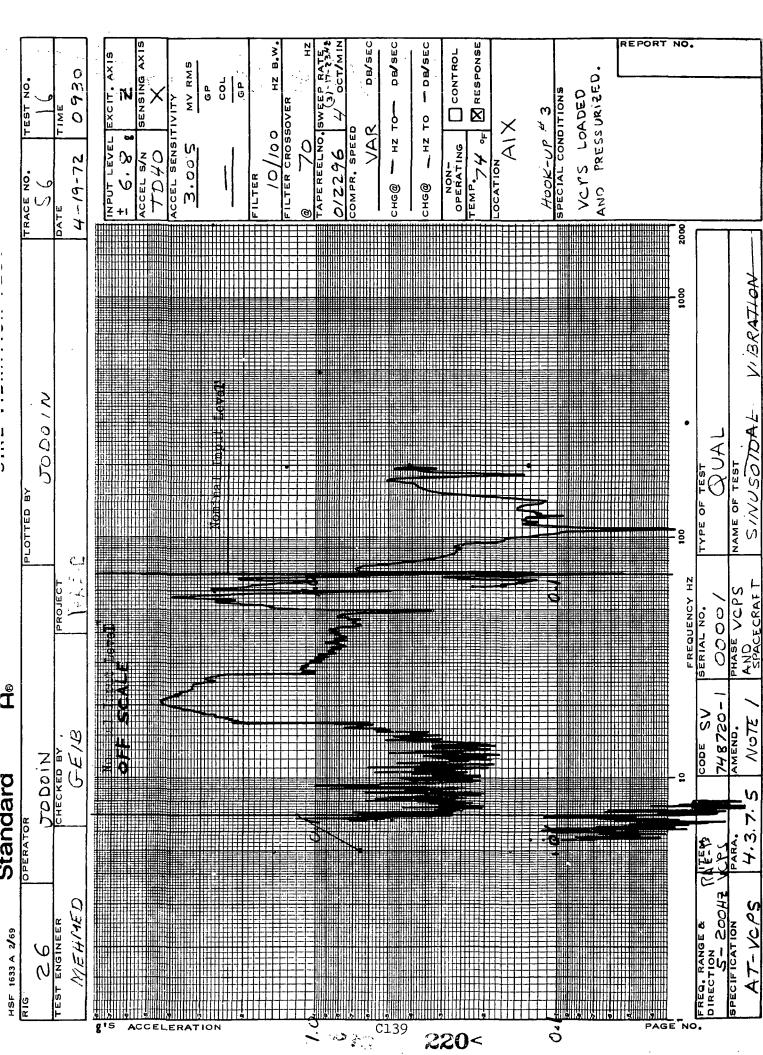


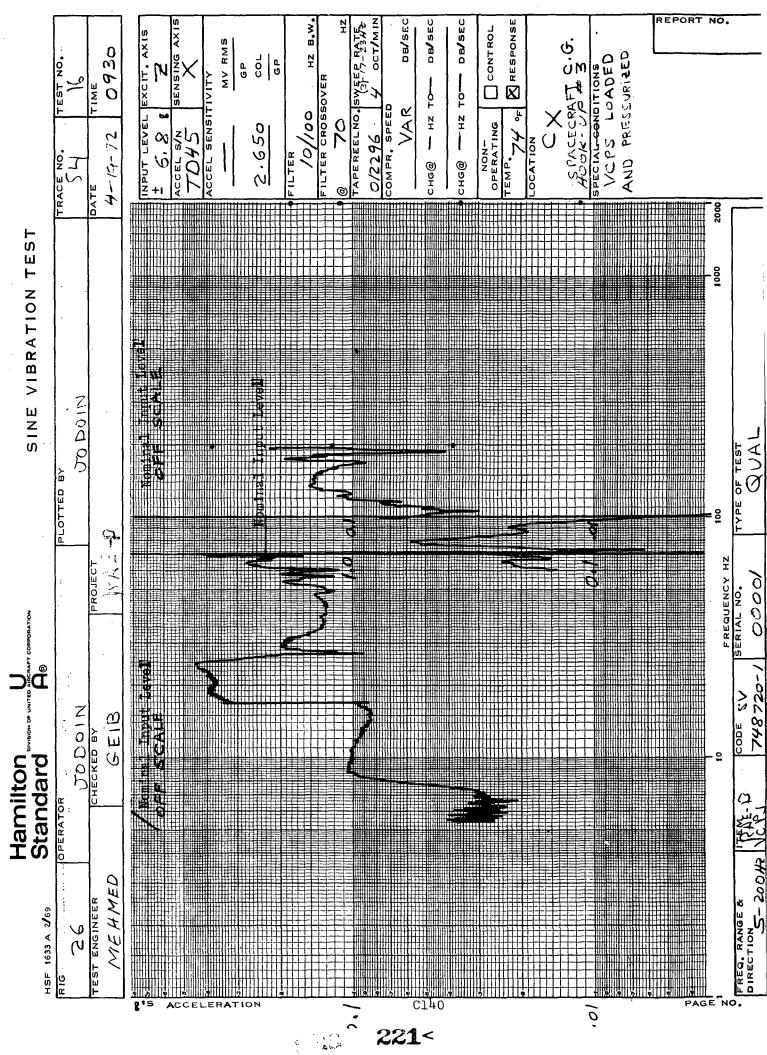


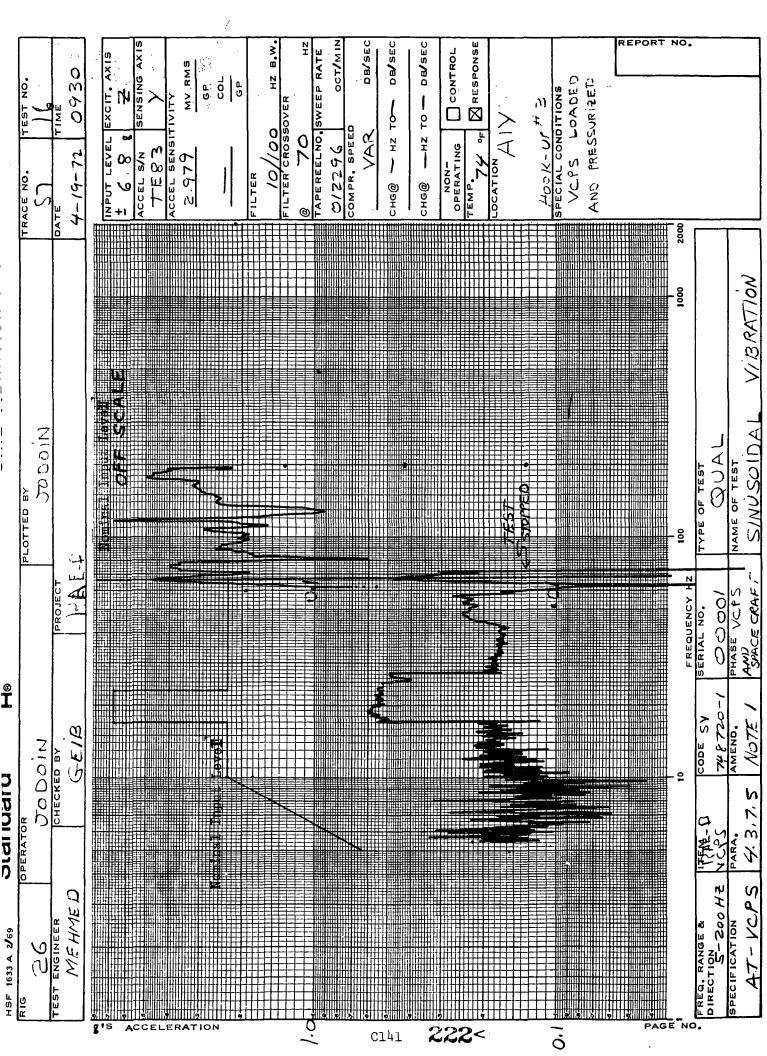


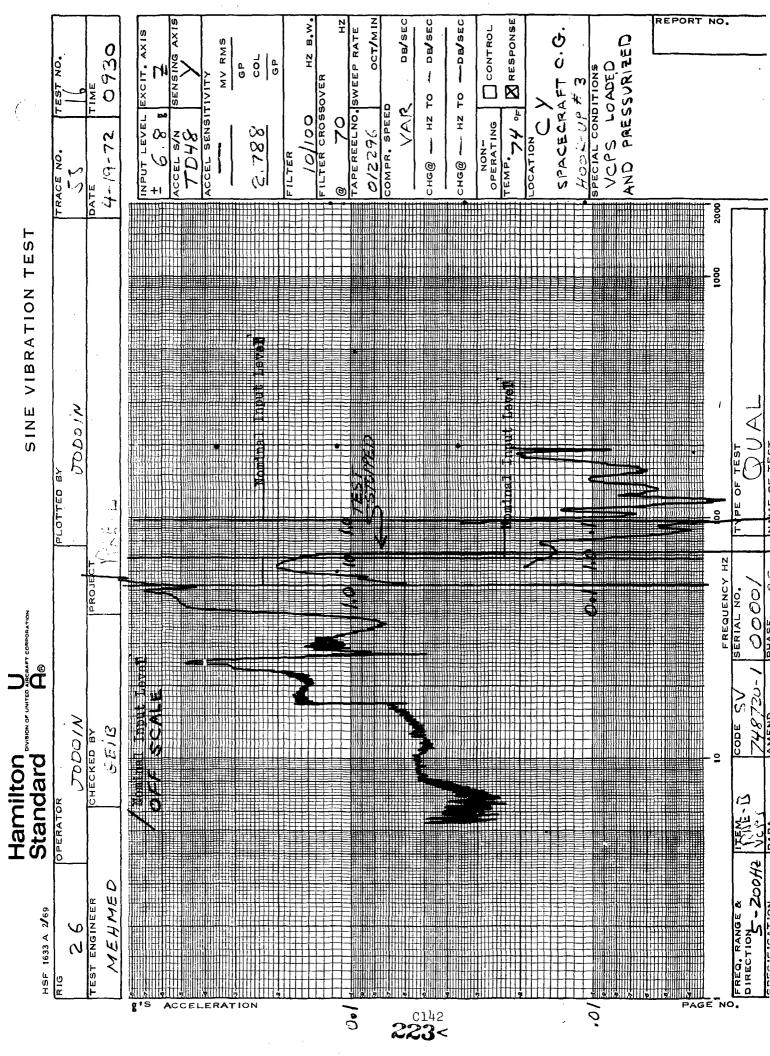


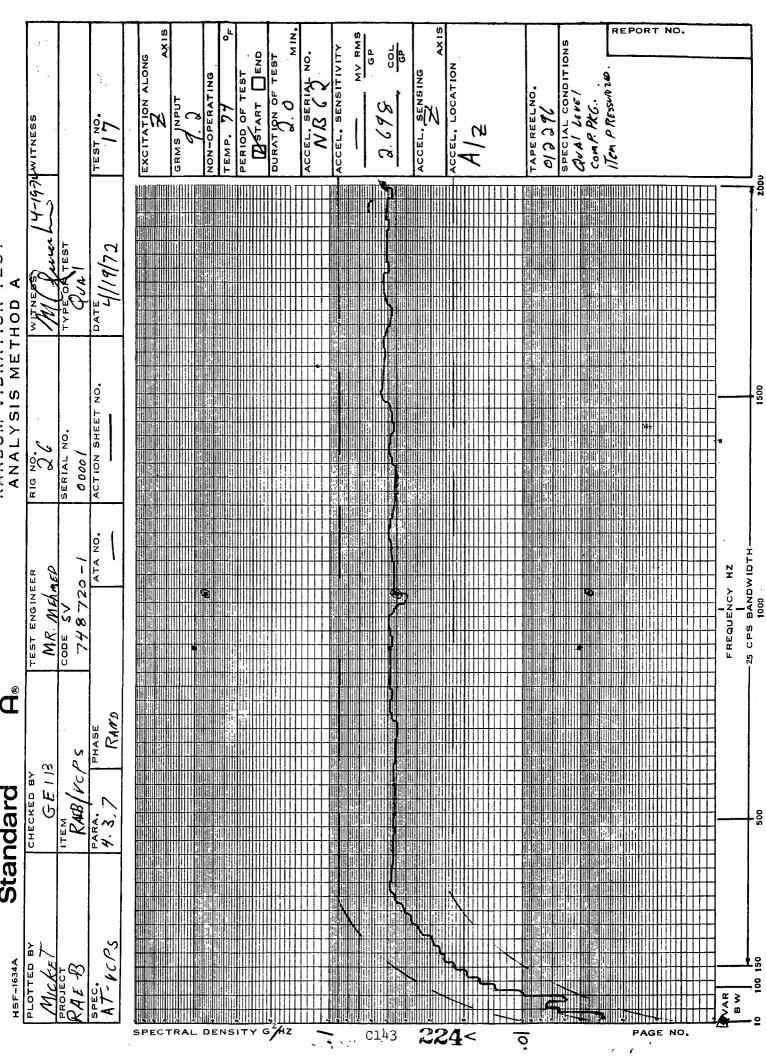

215<

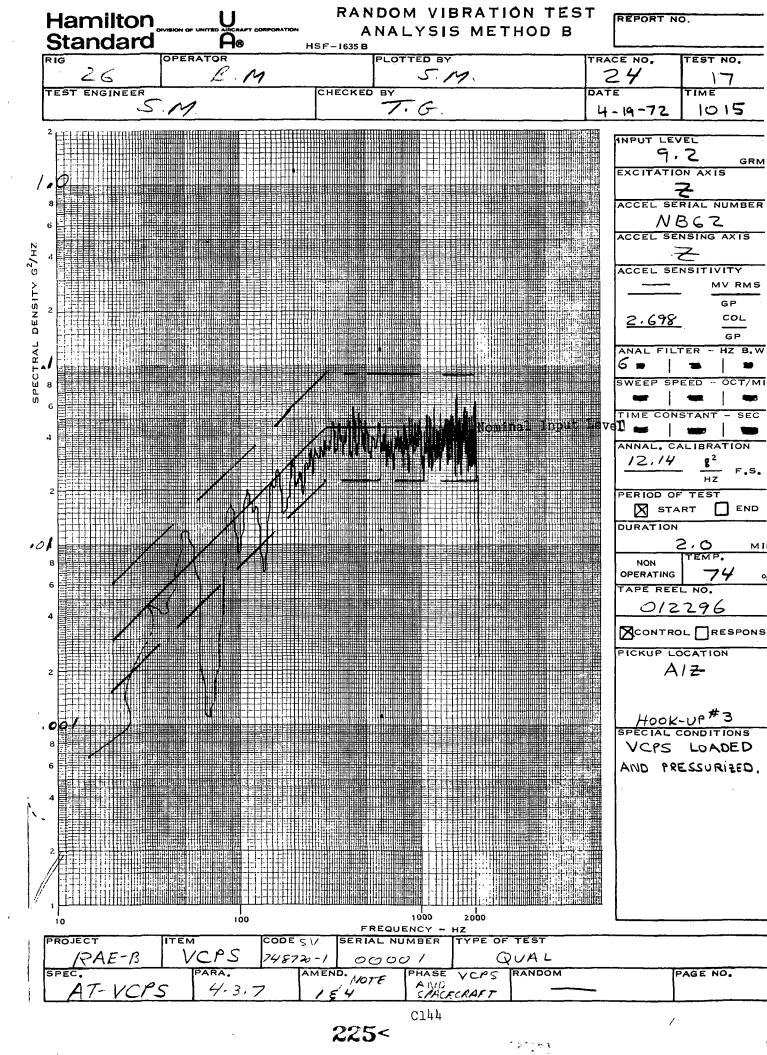


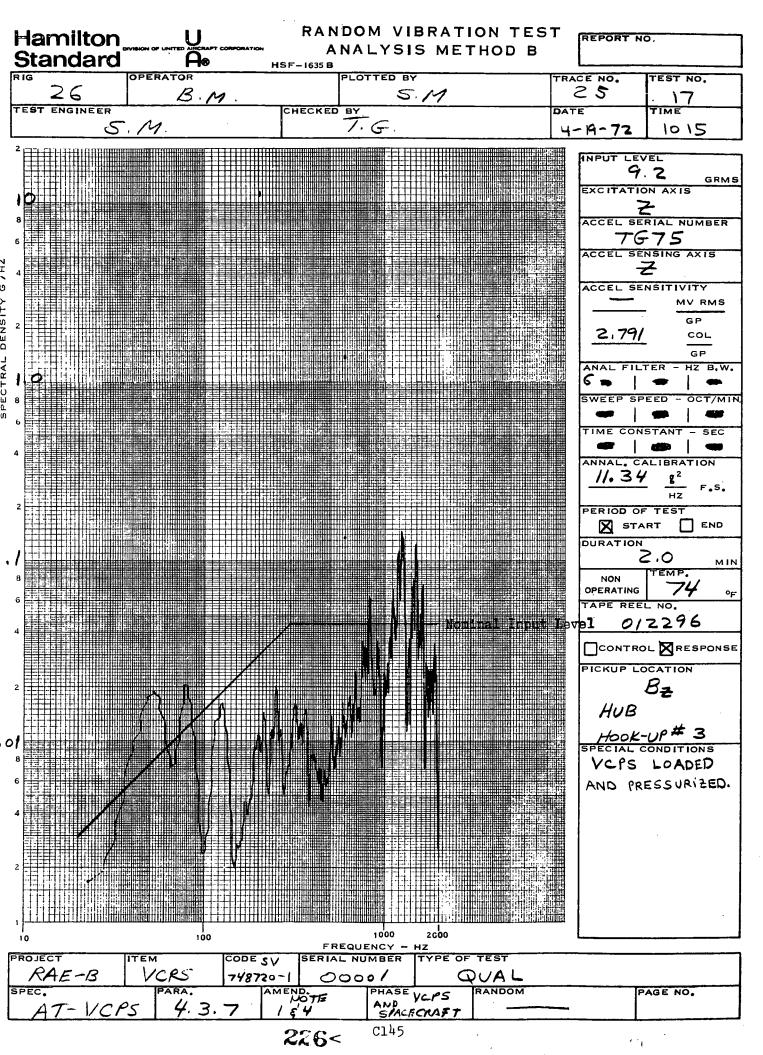


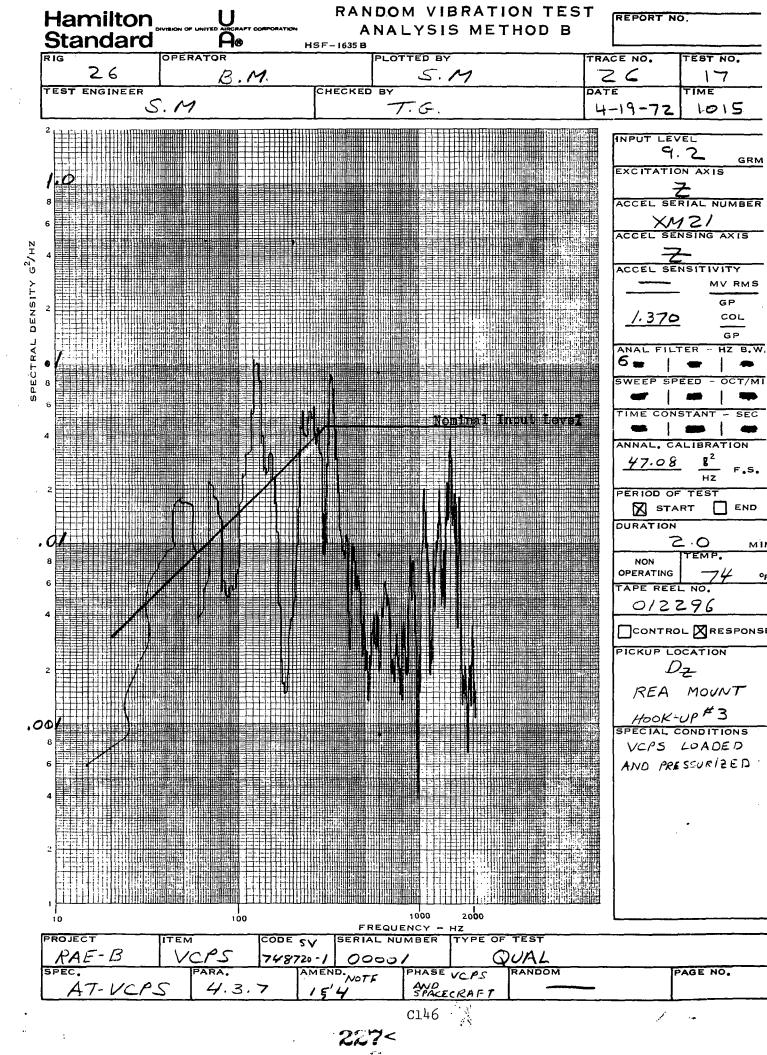


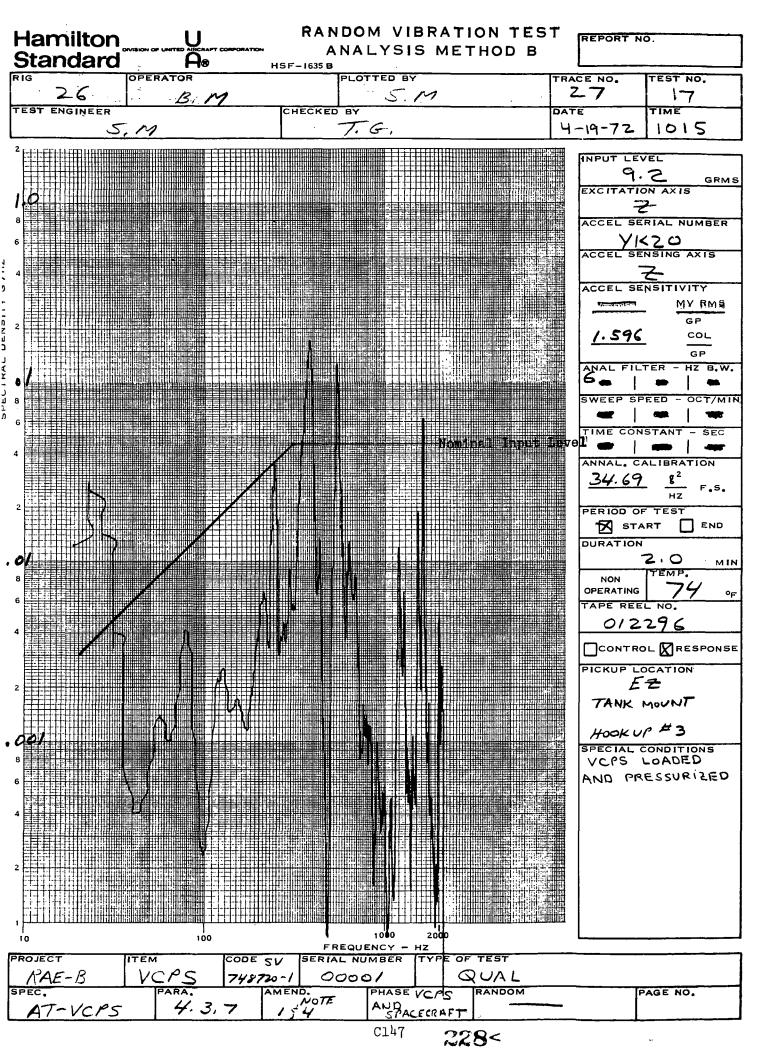

コココロ

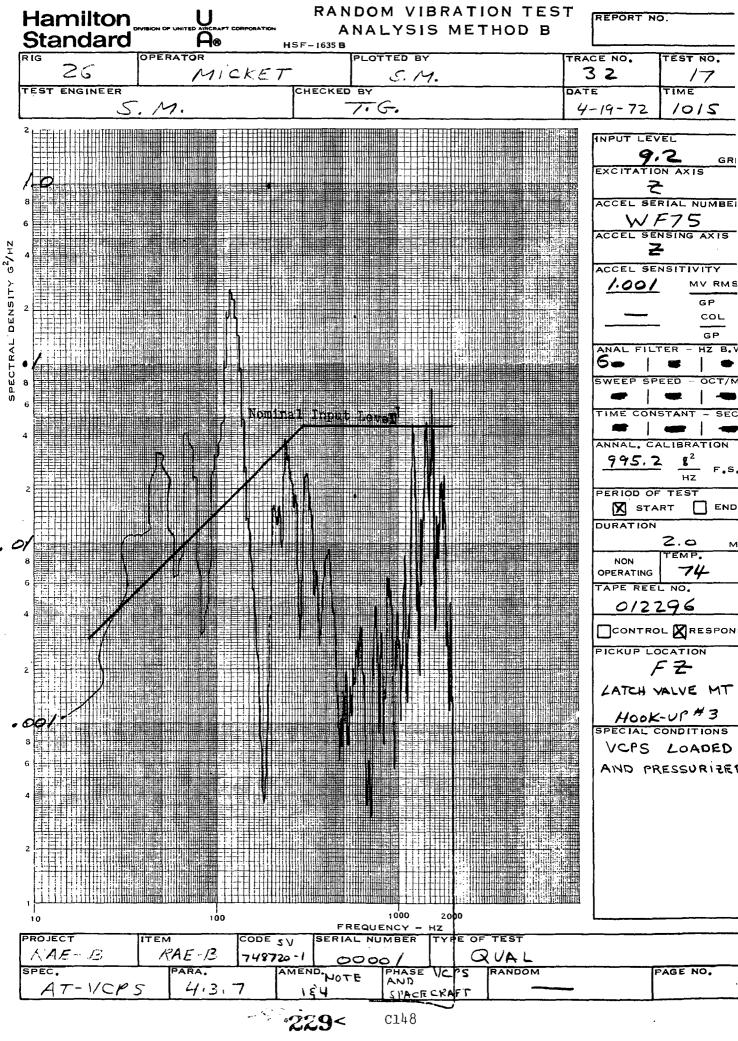


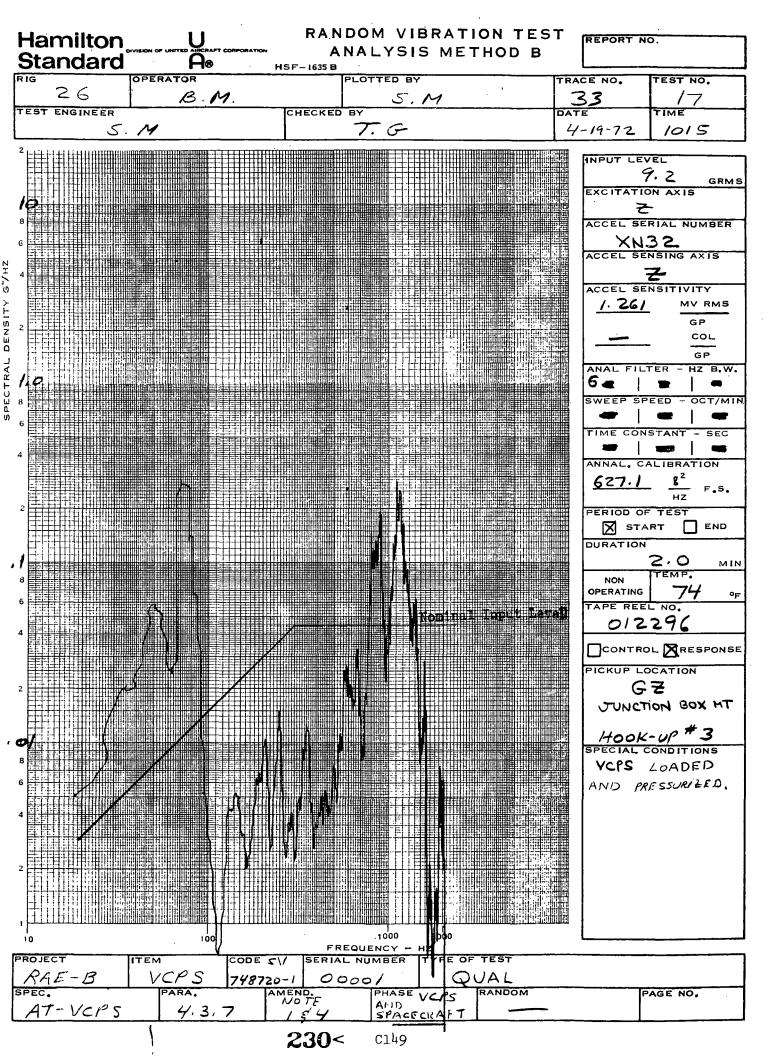


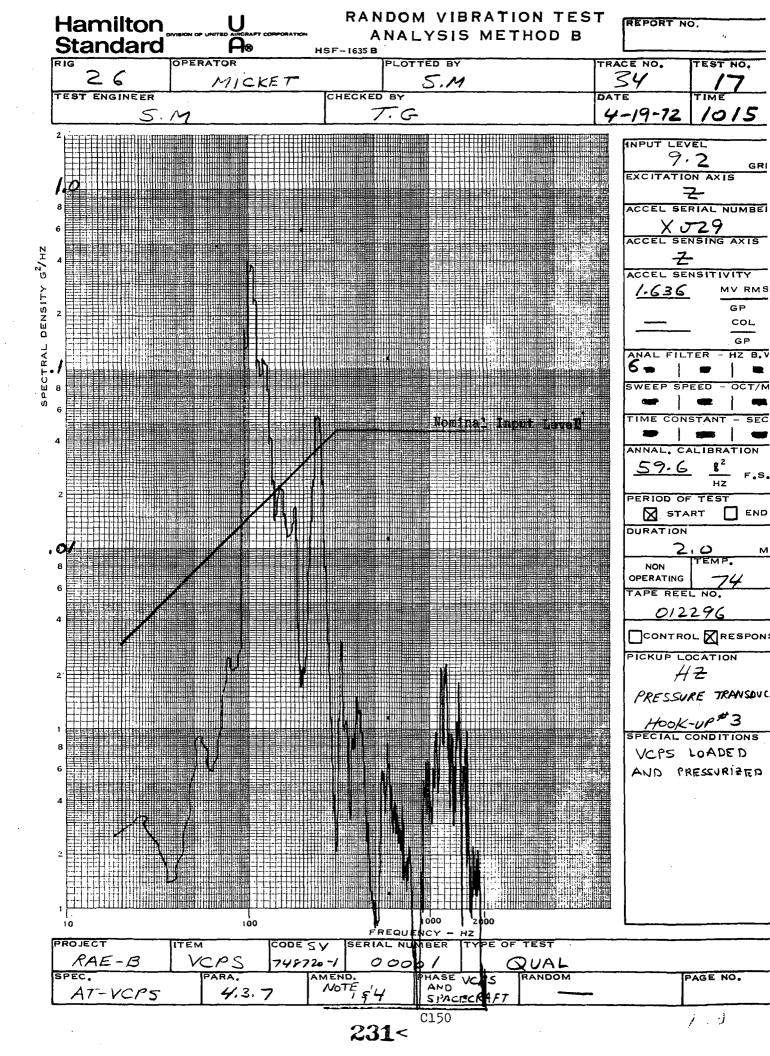


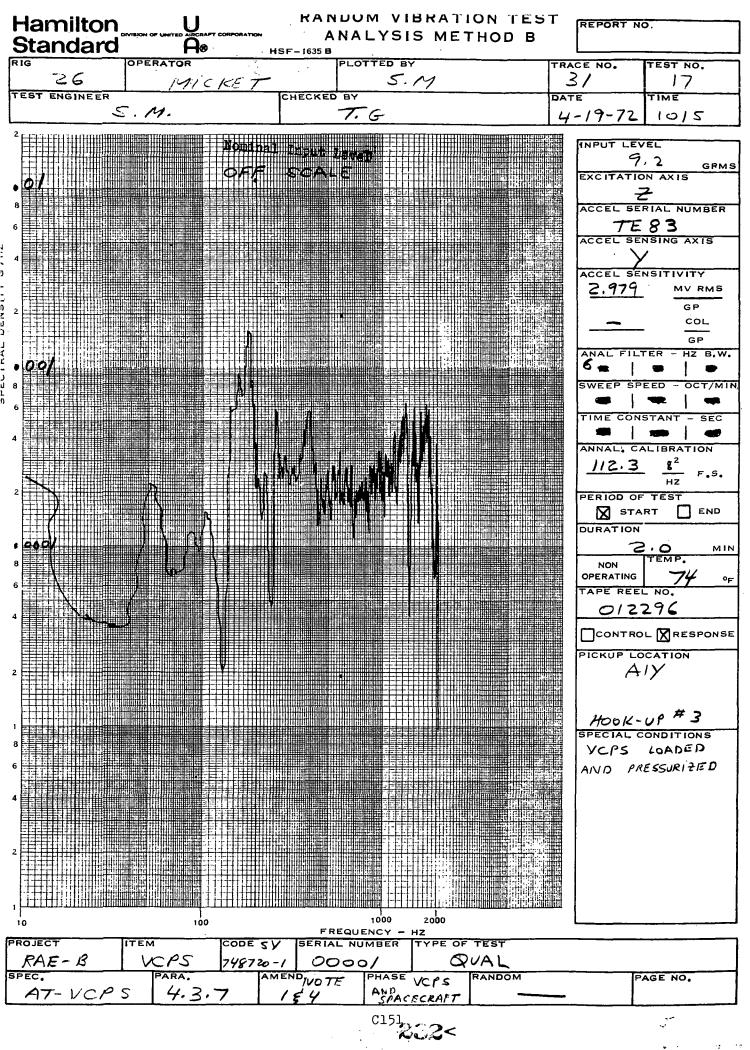


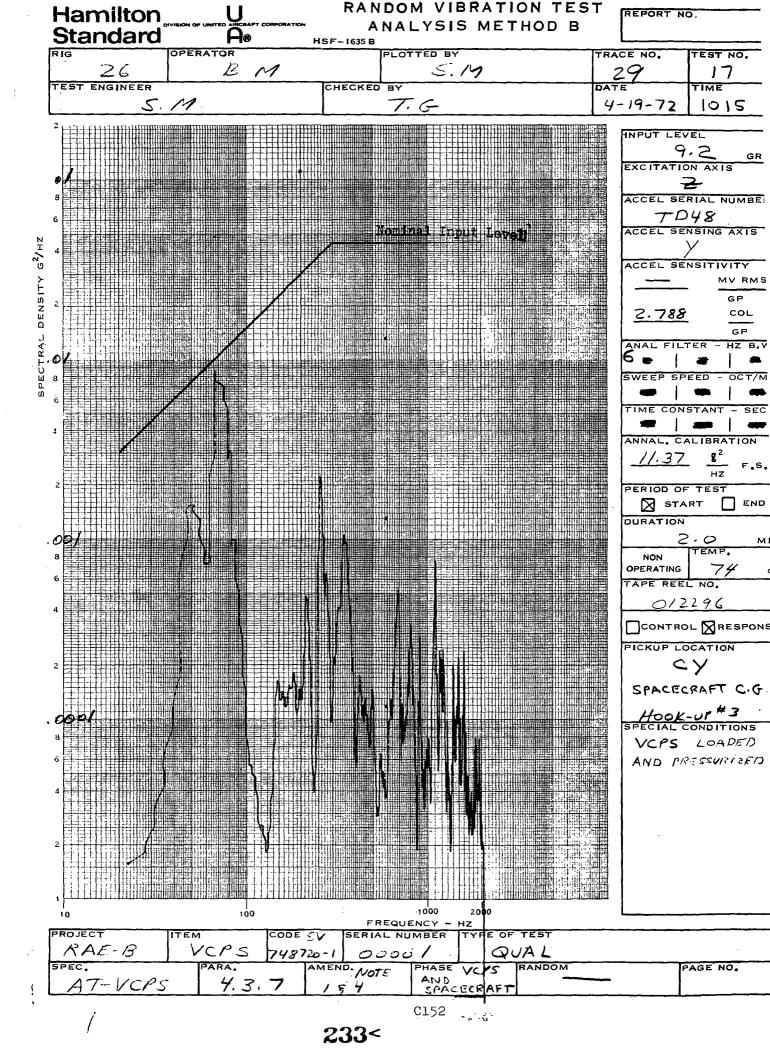


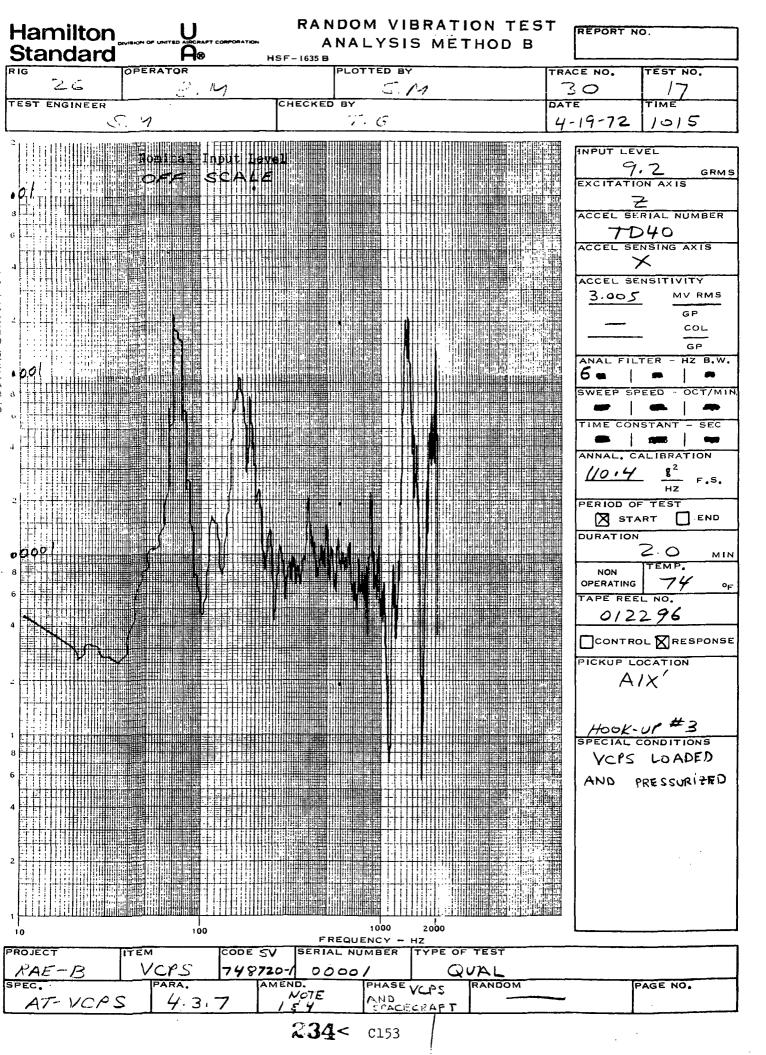


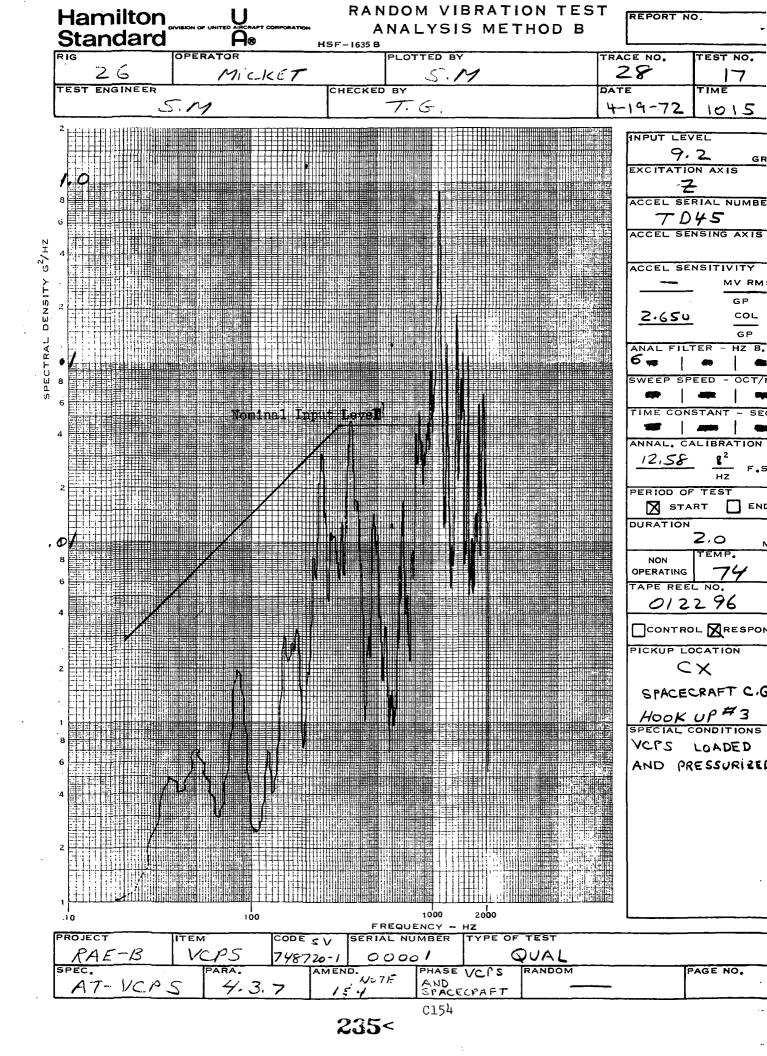












HAMIL TON STANDARD

REPORT NO.

. 155

Section V

Logs A) Operator Log

..

B) Instrumentation Master & Running Log

C) Data Reduction Log

MAE-B Protect Stan Date Fifture Stan Date Fifture Stan Date Fifture Stan Date Pifture Stan Date Piftur	Hamilto, Standard auson or unite Area concontron WINDSON LOCKS, CONNECTICUT 96096	Standard auson or unite connecticut seose	ard avision or united							TEST ACC GINEER MICHMC	H I I P	153		SHEET TEST PLAN MODEL NO. PART NO.	HEET I OF I TEST PLAN NO. AT - MODEL NO. RAE - PART NO. SVSK 7	- VCP	NC P	<u>'</u>	71
	SPALE & LIFE SYSTEMS LABURATURT LOG OF TEST	OT/PO	OT/PO	OT/PO	OT/PO	OT/PO	OCT NIN	¥ ₹	₹ JE	Z 6 T & ENG. ORI	DER NO.			OPERATC	D Su	odoin			
E Structure E Stru	Run Time G'I Scan Bart Axis mode Rak Rate	Axis mode Reak	Lo Lo	Lo Lo	Lo Lo		Scan Rate												
	Z Sine 1.0 4.0	Z Sine 1.0 4.0	1, G H.0	1, G H.0	1, G H.0	Ч.0			Jare	Pistur.]	4					•		
	1515 J Sine 1.0 4.0	J Sine 1.0 4.0	Sine 1.0 4.0	Sine 1.0 4.0	1.0 4.0	Ч.0			Jare	Fiture		-4							
	Sine 1.0 40	1 Sine 1.0 4.0	Sine 1.0 40	Sine 1.0 40	1.0 4.0	۲ ن			Bare			- 4							
	6 1010 × Sine 1.0 4.0	X Sine Ivo	Sine 1.0	Sine 1.0	0,1		Ч,0				2								
	x 0C11	x Sine 1.0	Sine 1.0	Sine 1.0	0.1		4.0		i.	5	\$								
					· · · · · · · · · · · · · · · · · · ·	· · · ·				 									
											 		 				-		
													ļ						
										-	 		 						
														-					
												-							
					-														

C156

237<

Ĩ,

÷

														22-2			L V J C	1 + 00			•					
HER PLAN NO. AT - VC PS NOOR NO. VC PS, RAFER	PART NO. 34 148 130-1 BERIAL NO. 00001 OPERATORS 7 JODAIN			VCPS ONLY	JODU -	umphatic PKS.	d: 2010/02 4-17-72			DKHE VOPI GNLY	17. COMPLETE PK	HZ. Cu-p	intreveller Que L													
				200-200C		5-200 42	* < Witness	+ HU /	H9,42	H4+3 200.	S M	~ #	40 2 601													
Jib. TesT med Jr.	ONDER NO.	6. 101 A	T UILLI TIUSI				<u>, 1</u> 0 0 0	4.2 8.0				(1.7 3.0													
TVPE OF TEST 7 UNAL TEST ENGINEER		DI LISV	L'3-1		H.3.7	12.1	4,3,1	4.3.7		ST.C.H		4.3.75	4.3.7.						-	- 1						
CONTON	· /too	Gr Scon	1 .0		<u>л. к. с</u>	0.1	1 1		<u>, 1</u>			00 ·	•				 									
	ORATORY		1.0	, 7 , S		<u>m</u>	J		0.1	10.0	0.	. 00 ف				 	UAC						-	-		
	MS LAB	mode	1 1	Sine	Sine	Nine Vine	puel	CINC/	Sine	Sine	Sine	Sine	KAND				 			4						
dard	LIFE SYSTEMS LABORATORY LOG OF TEST	Avic -	X	א	~	ア	<u>オ</u> >	< >	([1	3	71-	r+- (*			 				1 1		 			 	
Hamilto, Standard	SPACE & LII	Time	0141	14.20	1545	245	1 100	1 2 1 2 - C - C - C - C - C - C - C - C - C -	1650	Sor	0005	06.20	cla				 Gudo m			9 1						
Hamilto.	SP	tun Run	1 1		νr		_					9	2				 RK8	<								
Har						LI-H	4/10				<u>ч</u> .19	157					REMARKS:			1	:-					
• •					~					2	3 8						,									

. . and a second - ...

.

VIBRATION

1

TEST LOG

DATE 4/19/72

PROJECT	RAE-B
TEST TITLE	QuAI

ITEM UCPS

S/N 0001/507+5730-1CODE ENGINEER MR MEAMED

Print	RUN	TIME	TEST						PREAMPLIFI	R SETTINGS						VIB AXIS	INPUT	SCAN	COMP	CONTROL	т	APE	VISI- CORDEF
	NO		CODE	1	2	3	4	5	6	7	8	9	10	11	12		LEVEL	RATE	SPEED	FILTER	SPEED	TIME	SPEED
	16	0930	RUN	10	38	30	30	10 30 AT 7	10 24=30	20	20	30	20	A	20	Z	6.8 k 9.2 GRMS	4.0	VAR;	10/100	15 1e	1.0	:4/ /1P5
229	Π	1015	Run	.30	30	30	30	30	30	50	50	50	.50	C	20	2	9.2 GRMS	-	>	~	S W. 'ER	2.0	-
96		_												C Ø							MED		
														1									
-														A									
		-			1					_													
													<u> </u>						· · · · · · · · · · · · · · · · · · ·			<u> </u>	
									·											· · · ·			
					<u> </u>	· ·														<u> </u>		· · · · · ·	
			 				<u> · · ·</u>																
	+		<u> </u>																				
-		_																					
		· · ·																				 	
			<u> </u>	$\left \right $																		 	
Į									 														
•	HSF 17	5.8			1																		

			MASTER PA	SE NO 17.7
			MASTER PAGE LOG PAGE Jopoin /M	NO. /99
		OPERATOR	JOPOIN/M	licket
SI- Der Eed	RIG	REMARKS	- <u></u> .	· · · ·
\$	24	COMP PKG + PAG	Al HU#3 ESSURIZED	SAUT DONA C 92HZY CONTINUED ON FROM COMZ
-		Random Qual		
				<u>.</u>
•				
			u	
			- <u> </u>	
			· · · · · · · · · · · · · · · · · · ·	
		·	·	
			· · ·	

			_											IBRAT	ION 1	EST L	.OG		- /	./				MASTER PAGE NO 177
		RAE-				EM I	ICPS	5		<u>S/N</u>	000 5v75	01 18720	-, C	ODE				DATE	4/1.	5/72				LOG PAGE NO. 199
EST	TITLE	QUA	/							ENG	INEER		hME	P										OPERATOR Jopain/Muckat
	T	1	.				•							<u> </u>	Г <u>Г</u>	<u> </u>	T	T	1	г			F	T
run No	TUME	TEST	1	2	3	4	5	PREAMPLIFI	ER SETTINGS	8	9	10	11	12	VIBL AXIS	INPUT LEVEL	RATE CIANU	SPEED	CONTROL FILTER	SPEED	TIME MJ/N	VISI- Corder Speed	RIG	REMARKS
5-72	0930	CA/	1:00	1000	1000	1000	1000	1600	100	100	100	100		160	-	-	-	-	-		1.0		2	1.0 VPK CA/@ 200 HZ CA # 1 TO 6 HU#1 200 MURAS @ 200 HZ CA # 7 TO 12
2	1410	RUN	10	3	10	10			50	20	20	Sa	T A	50	v	١G	4.0	VAR	100/ 100/ 200	↓	1.0	-	N.	TTEM/FIXTURE SCAN 200-2000HZ HOOK-UP#1 MRESSURE RECORDED ON SANDBORN. VCPS ONLY
		RUN	30	10	100	-*			1	50	50	× 100	C	50			<u> </u>		10/102/	P	1.0	_		QUAL LEVEL ON CHAN # \$10.
		CAL	1000				1000	1000		_					X	7,5 G-	4.0	VAR	/2005		1.0	-		1.0VPK CAL @ 200HZ FOR
/	 		10			30				50	50	100	+6		· · · · ·				10:-	<u>u</u>				HOOK-UP Nº 2 QUAL LEVEL
-17-7	2	RUN	1000	1000	1000	1000	1000	1000			30	100		50	<u>у</u>	7.56	4.0	WAR	-	MED	1.0			200-2000HZ VCPS ONLY 1.000/TPK CAL@ 200 HZ HU3
	09/0	RESONA	1 4	10/3	30	30	10	10/	To	20	20	50		50	: v	21.06's To	MANIA /	VAQ.	ouT 10		1,3 1,5			Ch # 1 TO 6 FOR ALLE CHAMPECT 6 REBONANCE SEARCH
<u>14</u> 7	1145	RUN	10			-		- 3 /10 10	30 50		20	50	_ A	50		~ 1.405	4	UAR;	10/		2.0			Hut . 5/200HZ QUAL LEVEL HUt 2
9				10	30	30	18			50		50		50,		3.0			1160/20		3,0			CNTR/ C1#2 CONTRETE TKG. TEN PRESSURIE COmpLote Pkg, ITEN Pressurized
	1	Run	/0	30		30	10		<u> </u>	60	/20	120	1	2.0	3	GRMS	-		-		des t			Random Qual. Run Har #2 Complete Picg. IT- Pressuriand
A	-18-72	Run	20		100 30	1000		100 100	رین / ا	-	50	100		100		2.5 GRMS	-	<u> </u>	-		1.0			Equal IZing Have 2
4	950 -15-72	RUN		30	30	30	10	10	1 **	50	50	50		50	X	9.16			-		2.0			ZHEM PRESSURIED. EQUALIZATION TIME NOT NOTED. COMPLETE PKG
/	°715	$\bigcirc 1$	10	10	30	30	10	10	50	.25	20	50		50	X Far	1.5 1.00 PK 1-6	4.0	VAR	19/00		1.0		-	ITEM ARESSURIERD HU #1 QUAL SINE 1.0 VPK @ 200 HZ Ch # 1 TO 6 HUZ
2	101-5	CA/	1000	1000	1000	1000	1000	1000	100-	100	100	100		100	Z	200 MURAS-7-12		OUT	out	Ċ	2.0	-		200 MU RAS @ 200 HZ Ch # 7 10 12 200 AV RAS @ 200 HZ FOR ACLE/
3		CA/		-					-	-			M	ØID	N//K	- cht, j			sut					ChANCE ON Ch 12 Hut 3
3	1650	RUN	-3	3/10	- 3/	3/0			-50-	50	50	50		50	Z	1.0g's PK	4.0	VAR	10/100/		1,0	0,2" SEC		VCRS ONLY H. U.# 3 RESSURIZED
4	1705	RUN	30	, 100	100	100	10	-	50	57)	-50	50		50	Z	10. g'= PK	4.0	VAR	on ela		1,0	0.4" Sec		RESSURIZED
3	0905	Run	10	10	10	10	10	10	20	20	20	20		20	Z	1.06 PK	4.0	VAR,	10/	- 1	2.0	.4" SEC		
		NEXT	She	ET CHAN	# 199 G-BN	8 ATT	BA	TO .	20 (2	. //	1/N.												26	5/200 HZ ITEM/FIXTURE SLAN HU# 3 COMP PKG ITEM PRESSER. 200
7 178.8			`≠	1		7,	1	Ø	300	HZ														359

_

- 4

.

VIBRATION TEST LOG

ITEM VCPS S/N

DATE 4-13-72

PROJECT RAE.B TEST TITLE Acceptance Test

ENGINEER S. Mehmed

CODE

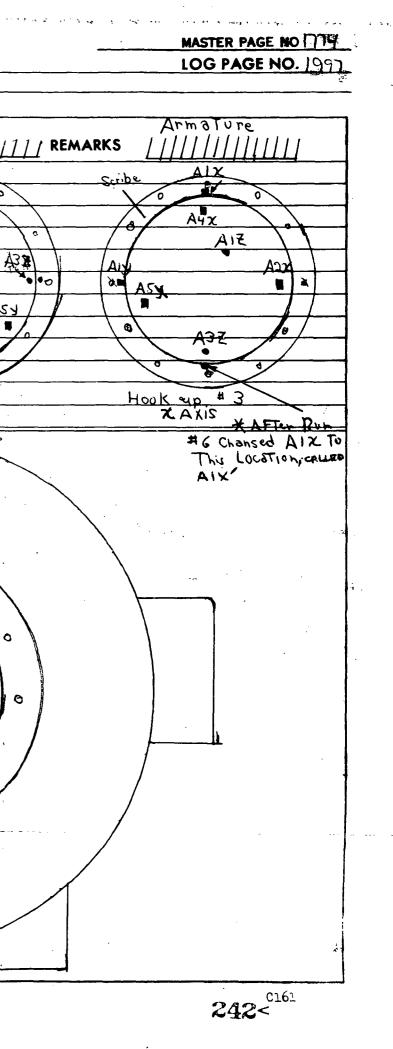
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	RUN		TEST	1					PREAMPLIF	IER SETTINGS				·		140 197	INPUT	SCAN	СОМР	CONTROL	т	APE	VISI- CORDER
NO	NO	TIME	CODE	1	2	3	4	5	6	7	8	9	10	11	12	VIB. AXIS	LEVEL	RATE	SPEED	FILTER	SPEED	TIME (Min_r	SPEED
0	1	1232	Car	1000	1000	1000	1000	1000	1000					A		-	~	-	~	-	15	1.5	_
1	2.	0930	Cal	-	-	-	-	-	-	100				С		-	~	-	-	-		1.0	-
5	3	1000	RUN	3	3	3	10	10	10	10				C		Z	G	HOLT	VAR	10/100/	l'	2.1	•4"/se
9	4	1	RUN	3	3	3	З	3	3	20		-	-	L		y	1.6	Hack	VAR	10/100/	h T	2.1	.47 Isa
4	5	1540	Run	3	3	3	3	3	З	20				g		Y	1.06	4/sct min	VAR.	10/100/	Ŕ	2./	, 4 SEC
4	-14-72 6	1010	RUN	3	3	3	3 avrid	3	3	20 avrid						X	1 PK	Hout/ Min	VAR	10/100/200	m e d	2.1	.4" sec .4" sec
	7	1120	RUN	3	3	3	10	3	3	50						. <i>X</i>			UAR;	101.	1	21	. 4 %. 500
																		1			T T		
<u>}</u> –						1												+			ر بر ا		
-										· ·		[B a		
	· · · ·									<u> </u>						- -		٤		<u> </u>	d d		
							<u> </u>														· · ·		
																, b							
								<u> </u>															
																				 		. 	
			ŕ																				
								 					-										· ·
) 														•						ļ	+		
				-																			

HSF 175.0

MASTER PAGE NO 1774

OPERATOR P. Jodoin

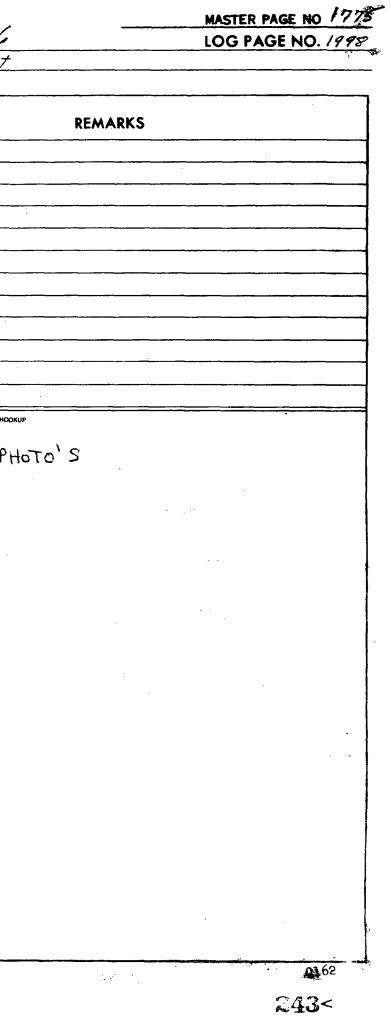
ER ED RIG REMARKS H21#1 Ħ 26 I VOLT PK. Cal. @ 200 H7 200 MN CaL @ 200 HZ S- 2000 H2 BARE FIXTURE SCAN HOOK-UP #1 1, EC S/2K BARE FINTURE SCAN HUTZ 1 Ch#3 CNTR/ LOC # AIY STOK BAREFINTURE SUAN æ Ch "3 CUTR/ LOC AIX (Ch "6 NIM REMARY) 5/2K BARE FIXTURE SLAN HU "2 Ch"3 CUTR/ LOC AIX (Ch "6 NIM REMARY) 5/2K BARE FIXTURE SLAN HU "3 C. *...* Ch#2 ONTRI CUC * AIX S/DK BARE FIXTURE SCAN HU# 3 Ch 2 ONTRI LOC AIX' С % r . -٤


C160

241<

DATE	4-13	3	72									MAS	TER \	VIBRA	TION	LOC	<u>.</u>	_				
PRO.	JECT RA	E-1	3	IT	EM	VC	PS		S/I			CODE				١	NPIA	52-102	- 124A	RIG	26	
TEST	TITLE -A	CCE	PTANC	CE -	TES	T		· · · · · · · · · · · · · · · · · · ·			151	lehmed				(OPERA	TOR) Joc	lein		
		<u> </u>																<u></u>				
CH.	MEAS	UREM	ENT	•	TRAN	ISDUCE	R	F	ULL SCALE	VISIC	DRDER	JUNCTION	וואוד	RECO	RD AMP	PRE	AMP	LP.		T	apre	
	VARIABLE	UD/EF	LOC.	TYPE	s/n	EXCITE VOLTS	SENS		DUIVALENT	TRACE	g/inch	SIGNAL ATT CONDITIONER	s/N	TYPE	s/n	TYPE	s/n	FILTER		111	<u>/////</u>	1
1	Accel	Ca	AIZ	2226	NB62	CHARIE	2.698	3		i	10	16	1								AZY	\geq
2	۰,	ca 1	AIX		TDYO	1 1	2.805	1 1	1	2	io	16	2							0		
3	l.	Cà	ALV	2226	TE83		2.722			3	10	10	3									
4	b	C ₄	AZE	2226	TOYY		2773		/	Ч	10	lu	4						^ °	/	13	
5	1,	Ca S	A3 2	1	TGIS	: 1	2.791	17		5	10	iu	5						AIN	AY	•	
6	11	à	AHZ		WRI		2.956	$\left \left\{ \right. \right\}$	H2171	G	10	10	6		·		-20		õ	•		
7	L,	er	ASZ	2215	NGS7	Volatie	10.886		\					TP-A	59	TC-A	50	OUT	T			A
8									1		1			1						6		
9									1					1						\overline{X}	EIA_	
10				1	1			1	1	1	1	+	1	1					5. 6	0		0
11	AC COL	2	1		1			/	/						1				⁴ t	Hook	24p #2) ·
12				1	<u> </u>	1		\square			†		1	1					ر		YAXIS	
1	Accel	ca	AIZ.	2226	NB62		2.698	K		1	10	ATTn.	<u>. t </u>	- <u> </u>	<u></u>						SHETCH TEST HO	XOKUP
2		cà	AIX_		TDYO	1	2,805			2	10	10										-
3		Cd 3	AIN	1 -	TE83	<u> </u>	2.722	-	/	1	10	10										
4	1	दुव	A25	2226	T		2.773			4	10	10				/						
5	<u>- 11</u> 	cğ	A317		TG75		2.791	+	/	5	10			-		1			-			
6	U	Cà	AUEZ	1	WRI	<u> </u>	5900	Char	Sed TO RUNES		10	10			/	/						
7	Accel	EF	ASN		VGST				Hel=5													
8	ACCA	1-1-	423	4112	1.031	VOLIS	10.991	ᡲᡰ᠆ᠻ᠆ᡃ	<u> </u>			- ·							0		0	
9	<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>	+		╂───	<u> </u>	4	\int		7		/			219594		
10			<u> </u>	<u> </u>		<u> </u>	<u>+</u>	+	<u> </u>			-			/			0 /A	42 -			
11	ACCO			+	<u> </u>	<u> </u>	<u> </u>	+ +	• • • • • • • • • • • • • • • • • • • •		<u> </u>	4		ł					٩١		A35	
12	FAC 0	ra_		+	+	<u> </u>	<u> </u>	1/-		<u> </u>		1					AD	ASZ		L		
		ca	0.7		1.0(0		6 (00	K—		<u> </u>	10						A					
2	Accel	Ca	AIZ		NB62	·	2.698		AIX	2	<u> </u>	ATT D.		1								1
3	<u> </u>	3	AISX			┼───	9.805	+	AIX		10	10	L								A2Z	
4	<u>h</u>	2	AIN		TE83	<u> </u>	272	·	}	13-	10						· \	• 🔨			· /	้ง
5	h	Ŭ Ĉa	Azx		TD44		2713	<u> </u>	}	4	10	10						×`				
	<u>h</u>	rs-	A37		TG75	┢	b.791	├ -/	110.11-	5	10	10 4			\setminus			RIBE	0	AIY	~	
6	<u> </u>	EF	AYX	2226		1	2.956		H4#3	6	10	10		-	- /					ניה		
7	Accel	EF	ASX	12226	NGST	VOLTS	0.880	4_}		╄	<u> </u>	4										
8	ļ	 	↓	┨	ļ	ļ	ļ	\downarrow	·			4				\mathbf{i}					-	
9				 	ļ		<u> </u>			<u> </u>	 			_			<		·			
10	L	 	ļ	<u> </u>		 	ļ	$\downarrow \downarrow$	·	ļ	ļ	Į Ž		-• χ	-		N					
11	Ac. Co	La	 	 	ļ	ļ				 	ļ	4										/
12	L		L	L		L	ļ	1/		L												
								1									<u> </u>					:
H	175.7																					

·- · · · ·


· · ·

DATE 4/15/72		MASTER VIBR	ATION LOG		
PROJECT RAE-B	ITEM VCPS	S/N SU 748720 1 CODE	WPIA51-103-	IOTA RIG	24
TEST TITLE QUAI		ENGINEER MR. MEMMED	OPERATOR	JODOIN: /.	Micke.

Сн	MEASU	JREME	ENT		TRAN	SDUCE		FULL SCAL		visico	RDER	JUNCTION U	VIT	RECOR	D AMP	PRI		LP.	
но.	VARIABLE	UD/EF	LOC.	TYPE	s/n	VOLTS	ChARCE SENS	EQUIVALEN	ATT	TRACE	g/INCH	SIGNAL CONDITIONER	s/N	TYPE	s/n	TYPE	s/N	FILTER	
1	ACCE!	CA,	AIX'	2226	TD40	-	2.805		įo	1	10								
2	13	CA 2	AIY	2226	TE83	-	2.722		10	2	10								
3	1)	CA 3	Dx	2222		-	1.370		10	3	1ċ								
4	10	C44	Ex	2222	WF75	-	1.051		10	4	15								
5		C45	Ĺx	2226	D45		2.650		10	5	10								
6	<i>11</i>	CAG	CYth	2226	1674		2.718	(#0	<i>i</i> e	l	10	CHANGE	10 11	548 S	ENS 2	\$788	- Krx		
7	14	EF7	AIZ	2026	NB62	3.052	-	11									7		
8		EF 8		2222	YK20	1.523	-												
9	- 11	ĔF g	EY .	2222	XN32	1.261	-												· · · · · · · · · · · · · · · · · · ·
10	Accel	EFIO	BX		TOHY		-	7	50	7	,10.0								
11	AC CO,	A		AC	Coll	4	-	1		AC C	01A.								
12	Auri	EFII	BY	2226	WRI	3.016	- /												
1	ACCEL	CAL	AIX'	2226			2.505		.0		10		<u> </u>	1		<u> </u>			SKETCH TEST HOC
2		CHZ	AIY	2226			2.722		10	2	10								D-0-0
3		CA3	рy	2222			1.596		10	3	10								REFERENCE PI
—		CA4	EY	1	XN32		1.297		10	4	10	4							
. –		CAS	CX		7045		2.650	T HU	10	5	10	\mathbf{x}							
6*	11	CAG		2225			2.719	#>	C,	4	10 -	CHANGED CHARGE S	тот (= 2из =	D48 2.788	P'A				
7	1	EF7	AIZ	T T	NBGZ		T	>			1	Quertant 5	TARTING	S WITH	<i>POPK</i>				
8	.//	EF8	DX	2222	•								N 6				•••		
9	†	FF9	EX	T	WF75														
10		EFID	BX		7044	ł						4							
11	Acr	T		A		DLA	1 1												
12	ACCEL	_	BY	2226					20	7	10.0								
1	ACCEL	CA1	AIZ	2226		-	3,698		10	1	10			· •					
2	,	FA2	BZ	2226			2.79/		10	2	10						•		
3		CA3	Dz	2222	XM2		1.370	1	10	3	10	-							
4		CA4	EZ	2222	YK20	-	1.596		10	Ч	10			ļ					
. 5	ACCE 1	CAS	CX	2224	1045		2.650	1	10	6	10								
6	ACLEI	CAG	[2226	1048	-	2.788	(-#	10	6	10			1					
7		<i>EI</i> 7	AIX'	2226				13	-	-	•			<i>:</i>					
8	/		AIX	2226	1		1		-										
9	ACCE	EF9		2222				1	10	7	10	4							
10			G 2	2222			-	1	10	8	10								
11	AC			prover		1.00/	1				+	4							
12	ACCE!		HZ	2222	XJ29	1626	-		-10	9	10	CHANGED TO VOIT SENS	RNSI	STARTING	w/Run	13 -	¥		
	11-261	EFIS EFIS						/	20	9		FRN81 UISI	CAL	DATA	Lar 14	 Z-	: <u> </u>		
н	6 F 175 7	<u>, r (j -</u>	il		±			<u> </u>	au			0	0111.		100 11				

•

v

		•				<u>51</u>	NUSOIDAL DA	ATA REDUC	TION LOG				:		.
•	MA ዓጥም	. ס	ÅGF	NO. /	1フフ		· _	E-B		4-17	-77 5		- 4		42. 5 1 -
			5	0 01			PROJECT <u>QL</u> ITEM <u>SVSK 7</u>					.P.I. <u>A</u>			
	CAL V				DO MVri		1000 MVpk			•	•	APE R		0007	27/1
	CALCU								,				0122	294	•
				N x CA	L VOL	TAGE	MVrms	OR	MVpk			•			
			CA		CEL SI		MVrms/Gpk		Coul Gpk						
															-
·n	TRACE	R	UN	CHAN	S/N ACCE	SENS		(ACCEL S	SENS) I	CAL/RUN LOG ATT	CAL/RUI			F.S.	;
Al	<u>z)/</u>	5	7	/	NB62	2.698		3/2-698		20	<	1.1	2	1	
4/X	2			2	7040	2.805	3 1000	2.805		20	.T.	1.0	<u>z</u> .	1	
ly	3			3	TE 83	2.722	3 100 0	3/2.722		- 30	<u> </u> .[1.1	<u>o</u> .	/	
27	ÿ	i		4	1044	2.773	10 1000	10/2.173		20	//	3,	<u>c</u>	/	
55	5			5	7675	2.791	10 10 00	10/2.741		20	≤ 1	3.	45 /	<u> ن</u>	
٧ ٢	6			6	WRII	2.956	10 1000	10/2.954		200	/1	3.	4	1	()
5Z				7	VG-57	10.886	10 100	19/100×20		0000	10	5 1.9	85	<u> </u>	-
-72											\leq				
12	_	c	5	1		<u></u>	3 1000			20	1	1.1	2		•
IX	9			2			3 1000			20		1.0	7	11	
iy)10			3			3 1000			20 20	10	0 1.1	10	/	
2 2	Δ			4			3 1000	3/2.773		0000	10/10	1	08	/	
37	. /2			5		<u> </u>	3 1000	3/2.771		20	10	1.0	7	1	
чY	<u> 3</u>	 		6			3 (000			0000		0 1.0	120	/	
5)	14		L	7			20 100	2% × 200 		20/20		10 3	168	1	•
2	15	-	2	(3 1000			20/20	10	1.	12	1	
X	16			2			3 1000			20 00	10	10 1.	07	<u> </u>	
- 'Υ	17		1	3			3 (000			20 20	10	11.	10	1	•.
X	18			4			10 ,000			20 20	10	10 3	.6	1 4	I
;2	. 19		Γ	5			3 1000			2020	10	[].	57	L	
γx	20			6			3 (000			20/20	10	2 1.	07	<u>l. </u>	
ïΧ	21		J	7	V	1 ¥	50 100	5% x 200		20/20	10		.25	1-	133
							244<	Ç163				I			

RANDOM DATA REDUCTION LOG

ς.

		-				RANDOM D	ATA REDUCTION 1	LOG		
				· 1	 1					
(.a						RAE-P TEST			
18 B -				-		ITEM_VC	SERIA	,		- /30
· .	CAL VOL				MVrms	· •	-	(AT 200Hz)	DEG. OF FREI	······································
	CALCULA	TION	CONS	T. <u>3989</u>	MV ² rmu HZ(G	s(Grms) ²	OR 9.82(10)	+ <u>MV²pk (Grms</u> HZ (Gpk)2	$)^2$ Based on	E.BW=6.4
P1. 1	CALCULA	TION	CONS	T- 1595		5.928-(1	0) ⁴ Based on 1	-		
									· · · · · · · · · · · · · · · · · · ·	
•	 د			S/N	SENS.	RUN/CAL	(RUN/CAL) ²	CAL/RUN	CAL/RUN	CALIE
0122	TRACE	RUN	CHAN	ACCEL	ACCEL	ATT.	(ACCEL SENS)		OUTPUT ATT.	PT
HU RUN Nº LI	9 0X	9	8	YK20	1.523	25 100	4×10 ² (1.523)*	203 100	0 10	68.78
N.	10 EX		9	XN32	1.261	20/00	<u>X</u> . = = •	202 10	0 20	100.3.
	11 BX		10	TD44	3.035	20 100	4×10-2 (3.035)2	200 10	0 20	1.7.32
	12°CY	I_{\perp}	12	WRII	3.016	~	4×10-2 (3.016)2	20 30	0 20	17.54
	$\overline{\frown}$							- (D	0	
HUNHI	(13V)	To.	1	TD40	2.805	30,000	9×10-4 (2.805)2	200,00	0 20	123 /
са» (И ° 1 .	IYAIY	Ť	2	TE83		30 1000	9×16 ⁴ (Z17Z2) ²	10 0 0		11.92 .
0	XISV	1-1	3	X1421		30 1000	9×104	20 5 (5)	\wedge	47.08
	(16)		ý			30 1000	9 ×10-4 (1,051)2	200-1-	0 10	
cX	172		5		1.051		(1,051) ⁻ 1 × 10 ⁻⁴ (2,650)	10 20	0	80.01
	1 18,1		6	TD45	j j	10 1000	14.24	100	0	1.398
ر بار . بر م		\rightarrow	7	TD48	2.788	100-	125	()	0	1.263 -
	219.V		8	NB62	3.052		(3.052) ² .25	0	0 28	107.06
	20	-+		YK20	1.363		1,523	O	0	429.9
トノ	210	-+	9	XN 32	1.261		وي المحمد التي المحمد الحمد المحمد الم	(r)	0 10	627.1 /
PX	22		10	<u>T044</u>	3,035		.25.7	67	10	108.26
EY	(23 5)		• / 2	VYRII	3.016	50 100	123 (3.5) 1/0	WOATA -	FORL OFF	109.63
							 			1
Ę										↓ ┥
1 · .										

c164 245<

.

a. (

6

RANDOM DATA REDUCTION LOG

April 24th

11.5

MASTER PAGE	NO	177	5	PROJECT_1	RAE-B TEST	DATE 4-18-77	D.R. DATE		• • • •
TAPE REEL N					^ -	L NO. 0000/			
CAL VOLTAGE	:	200	MVrms			(AT 200Hz)	DEG. OF FREI	e. <u>/2</u>	8
CALCULATION	CONS	r. 3989	MV ² rm HZ(G)	s(Grms) ² pk) ²	OR 9.82(10)	+ <u>MV²pk (Grms</u>) HZ (Gpk)2) ² Based on	E.BW=6	•4
CALCULATION	CONS	r. 159 5	 or	-3,928 (1	0)4 Based on I	5.8W=16			
,,∿ TRACE: BUN	CHAN	S/N ACCEL	SENS.	•	$\frac{(\text{RUN/CAL})^2}{(\text{ACCEL SENS})^2}$	CAL/RUN INPUT ATT.	CAL/RUN OUTPUT ATT.	CAL PT	F.S.
24/17	1	NBG2	2.698	30,000	9×10-4	109	0 25	12.14	1.0
25	Ζ	TG75	2,791	30/000	9×10-4 (2,791)2	10	0 10	11.34	10
260	3	XMZI	1.370	30 1000	9 X10 4	203	0 1	47.08	1.0
27	4	YKZO	1,596	30 1000	9×1054 (1.596)2	10 70-	0 20	34.69	سي.
28	5	TD45	2,650	30 1000	9410-4 (21650)2	100 0	0 20	12.58	1.0
29	6	T 048	2,788	30 1000	94104	1000	0/10	//.37	./
130	7	TD40	3.005	50 100	. 2 5	2000	0 20	110.4	/उग • 0]
31 4	8.	TE 83	2.979	50 100	·23 (979) ²	20	0 20		.01
3242	9	WF 75	1.001	50 100	125 Trad	2010	0 20	995.2	1.0
33 500 1	10	X/V32	1.261	50 100	.25	2000	0 10	627.1	1000
341541		XJ29		20 100	.014 (1.636) ²	200 10	0		1.00
			,						
·			_						
		-	······						
			# !			0.7.7		1	
		;						1	2 •
		<u></u>	······································						•
		<u></u>						1	
· · ·								1 1	
			Å	<u> </u>			<u> </u>	ا مىيىتى بىرىكى بىر	·

c165 246<

RANDOM DATA REDUCTION LOG

2. **2** 22

> י אין אין גריי גריי ג

÷

.

					•						ī
MASTE	R PA	GE	NO	177	5	PROJECT	RAE-B TE	ST DATE 4/17/7	2 D.R. DATE	4/17/	72
Te at 1	REEI	N	10.01	2295		ITEM VCP	5SE	RIAL NO. 0000	[_w.p.i. <u>Asz</u>	-102-	121
CAL VO	-			200			OR 1000M	/pk (AT 200Hz)	DEG. OF FRE	E. 128	
CALCUI	LATI	ION	CONS	T. 3989	9 M2	pk) ²	OR 9.82(10	0) ⁴ <u>MV²pk (Grma</u> <u>HZ (Gpk)</u> 2	s) ² Based on	E.BW=6	4
CALCUI	LATI	ON	CONS	T. 1599	5.6 OR	3.928 (1	.0) ⁴ Based on	n E.BW=16	•		
TRACE	RI	JN	CHAN	S/N ACCEL	SENS. ACCEL	RUN/CAL	(RUN/CAL) ² (ACCEL SENS) ² CAL/RUN INPUT ATT	CAL/RUN OUTPUT ATT.	CAL PT	F.
	_										,
ŀ	6	1		TDAO	2.805	10 1000	1x/0== 7,89 = ,127	KN -0 10	0 20	1,25	Ø,
22	24		2	TE 13	2,172	1000	9×1074 739 =1,22x	-4 10 20	20	12.7	1
3			5	YKZO	1.596	10 1000	1×10-4 254 = 394)	NO 20 20	0 10	387	1
4			4	1	1,297	50 /	9×10-4 1.68 = 5,35	70 20 20	0 :20		il.
5			5	7045	2,650	10 1000	1×10-4=142	-4 (4) 10	0	141	Ø,
() •			6	7548	2.79	10 1000	1×10-4	-1010	10	1.27	T
7		7	7	NB62	MV/2 3.05	20 100	4×10-2 9,3=,43×	0 0 20 -2 0 20 0 0 20	20	172	1
			f								-
8	10	- 4	/	7040	2,105	30 1000	97164 1.14W	" (D10 20	0 20	11.2	1
	<u></u>						[1	-
9		1	8							••••••••••••••••••••••••••••••••••••••	
(0			9		· · · · · · · · · · · · · · · · · · ·						·
			10		· · ·					· · · · · · · · · · · · · · · · · · ·	
12			12							· ·	
<u> </u>					,	:					
				<u> </u>	;						
			<u></u>		+					.	
			<u></u>							1	1 .
K <u>-</u>	•				<u>,</u>					1	6
	÷			· •			·				-

247<

.....

...:.

•

.

SINUSOIDAL DATA REDUCTION LOG

: ...

1.5

	.							· · ·				
					•••	`.		E-B_TEST DA	/			
			:		:		-	S SERIAL	NU. <u>000</u>	0/ W.P.1	• <u>A\$/-</u>	103-10/A
CAL V)LT/	AGE						(AT 200 Hz) HU#1 & #2 RESI	ectivel. to	or channel "	1-6	•
CALCUI	LAT:	ION	1	C.r R	J. H F	SPR CHAN	.,	7-12				••••
CALp	t =			L VOLT		MVrms MVrms/Gp		OR <u>MVpk</u> Coul				
						uri met o h		Gpk				
							•					P == 1 == == == == == == ===============
TRACE	R	UN	CHAN	S/N ACCEL	SENS ACCEL		1		LOG ATT	CAL/RUN RANGE ATT	CAL PT_	F.S.
1	3	;	1	TD40	2.805	30/1000	5	30/218:05	2020		10.7	10.6
2			21	TE 83	2,722	10 1000	0	19/21722	20 20	1	3.68	1.0
3			3 1	XM 21	1,370	100 1001	~	109/1270	20	171	73	100/10/1
: 4			4	WF75	1.051	30 1000	5	39/1051	20 20/01		30	10/1
5			-		3.05A	100 100		200/305-2	20 0	10	65.7	lo
6			81	укго	1.523	10 /		160/ /150/	20/20/0	10	65,5	<u> </u>
:7			9.2	XN32	1.261	50 100	-1	100/1.251	20-0/2de	10	79.5	1.0/10/1.0
. 8			10	ŢD44	3.035	100 100	\neg	200.	20	10	66.6	
9		,	12	WRII	3.016	50 100		10.97	3020	10	33.2	1,0
							7					
: 102	5	5	1	T0 40	2.805	10 1000	,	10	2020	10 10	3.58	1.0
in			2	TE83	2.722	30 100		30/2 124	20	10	T	10
124			3	YK20	1	100 100		100/1513	20 200	10 10/1	1	100/10/1.0
13			4	XN32	1.297	30 100		20/1297	20 200	10 10	23.2	
142		/	7		3.052			200/3.052	20	10	65.7	1.0
150			8	XH21	1.325	50 100	\neg	100/ /1.325	20	10	75.8	
16	/		9	WF75	1.001	50 100		100/ /1001	20 0/20	10	1	1.0/10/1.0
170	/	-	10	TD44	3.035	100100	7	20%3.5%5	20 20/0	10	1	100/10
18	N		12	WRIT	3.016	50 10		100/310/6	20 20	10 10	33.2	
		.		1								
				 		2						
-			<u>ند م</u>	<u> </u>	L					1		

c167 248<

SINUSOIDAL DATA REDUCTION LOG

(

.

		<u>s</u>	INUSOIDAL DATA I	EDUCTION LOG			*****
	MASTER PAGE NO	. 1775	PROJECT RAE-	TEST DATE	4-15/4-19	D.R. DATE	
***	TAPE REEL NO.	0/2295	ITEM VCPS	SERIAL NO	0000/	W.P.I. A5/	-103-
	CAL VOLTAGE	USE CAL RUN #1	1000 MVpk (A. or 6 For HUH1 &	200 Hz) 2 RESTRECTIVELY	Por channe	2*1-6	
	$CALpt = \frac{RUN}{CAL}$	K CAL VOLTAGE ACCEL SENS	MVrms MVrms/Gpk	DR <u>MVpk</u> <u>Coul</u> Gpk			

						,			,		
HU#	Z TRACE	RU	N CHAN	S/N ACCEL	SENS ACCEL		(RJJN/CAL) & CAL (ACCEL SENS)	LOG ATT	CAL/RUN RANGE ATT	CAL PT	F.S.
	17 191	17	1	7040	2.805	10 1000	10/ 12:805	20	1	3.58	
	120	1	2	TE83	2,722	10 1000	10/2,722	20	1	3.68	•1
Contraction of the local division of the loc	or 214		3	YKZO	1.596	30 (000	30%,595	2020/0		18.8	10.0/1
	81224		4	XN32	1.297	30 (600	30/1.297	20 20/01		23.Z	10.0/1.
(C+23V	<u>_</u>	5	7045	2,650	10 1000	10/2,650	20		3,77	1
Ċ	ct 244		6	7048			10/21788	20 20/0/2		3.6	1.0.1
ť.	A125	4	7	NB62	3.052	50 100	100/3.052	20	10	33.2	1.0
	0+26	1	8	X1421	1.325	20 100	40/1.325	2020	10	30.5	1.0
	6t27V	<u>_</u>	9	WF-75	1.001	20 100	40/1.001	20/0	10	40	1.0/11
-	6t 28V	/ /	10	7044	3.035	50 100	100/31035	20 20/01		33.4	1.0/1
	15 29 V		/2	WRII	3.016	50 100	100/3,016	20 20	10	33.3	1,0
9√ [≯] ₽	+30	<u>]]</u>	IV	TD40	2.805	10 1000		2020	1	3.58	1.0
	N 31		21	TE 83	2.722	10 1000		2020	1	3.68	
	0+32		3	XM21	1.370	30 1000	39/1.370	2020	10	21.9	1.0
	Et 33		41	WF75	1.051	30 1000	30/1.051	20 20	10 1	30	1.0
	ct-34	! 	50	1045	2,650	10 1000	19/2,65	20 20	1	3.77	1.0
	035		61	7048	2,788	10 1000		200		3.6	
	A1736		7	NB62	3.052	50 100		20 20	10	33.2	1.0
	0/37		8 L	YKZO	1.523	20 100	40/1.523	20/0		26.3	1.01.
Ć	\$ 38		9	XV32	1.261			20 20/0	10	31.7	1.0
	0739		100	1044	3.035	50 100	and the second se	20 20	10 10	33.2	10
	040	V	12	WRI	3.016	120 /	10%3,016	20 20	10	33.4), å
							C168				

c168 249<

•	÷ .		ų	· .	•				- ²		
MASTE	RF	PAGE	NO.	177	<u>5</u> 1	PROJECT <u>R</u>	AE-B TEST DA	ATE 4-19	7-71 D.R.	DATE 4	-21-72
TAPE	REE	el n	10. <u>Q</u>	1229	<u> </u>	ITEM VC.	25 SERIAL	NO. 000	00/W.P.I	. <u>As/</u>	-103-10/#
CAL V	OLI	TAGE					(AT 200 Hz)		· · ·	-	
CALCU	LAT	ION	I .	CAL	RUN	-/z					
CALp	t =	= RU CA		AL VOLT		<u>MVrms</u> MVrms/Gpk	OR <u>MVpk</u> Coul Gpk				
3 TRACE				S/N	SENS		(RUN/CAL) x Sag.		CAL/RUN	CAL	F.S.
1241		RUN 4	CHAN	ACCEL		ATT 30/000	(ACCEL SENS)	LOG ATT	RANGE ATT	рт //. З	10.0
2 42			2	76-75		100,000	100/2.791	20 20			10.0
743			2	XM21	1.370	100 1000	100/1.27	20 20	10		10.0
£244			4	YK20	1.596	100 1000	1	30200	10		10,0/1.0
1445			7	7D40	3.005	50 100	100/3.005	30/20	10	33.4	1.0
1446			8	7 693	2.979	50,00	100/2,919	2020	16	33.4	10
X 47			9	11075	1.001	50 100	15 91.001	20 20	10	100	10.0
x48			10	Xa/32		50 100	100/1.261	3020	10	79.5	10.0100 10.0
FE49)	J	/	12	XOZ9	1.636	50 100	109/1636	20	10 / 1	61.3	1.0
1250	10	5	1	NB62	2.698	10 1000	10/21098	2020/40		3.72	1.0/10.0
i 51			2	TG75	2,791	30 1000	30/2.791	20/200		10.8	10/1.0
* 52			3	XM21	1.370	30 1000	39/137	20/0	10	21,9	10.01.0
153			4	YKZO	1.596	30 1000	3 % S96	20	10	18.8	10.0/10
7 <u>54</u>			5	7045	2,650	10/30 1000	10/2/05 30/ 2165	20 0120	111.	3.78	.1119.1
155			6	TD48		10/30 1000	19/21788 21/2 1788	20 20 20		3.6/	-1/1.0 10/1.0
14.56			2	1040	3.005	20 100	40/ 13:005	20 200	10	1 · ·	
157			8	TE83	2.979	20 100	492.9 19	20	10	13.4	1.0/.1
58			9	WF75	1.001	20 100	40/1.001	20 20/0		40	10/1.0
r 59			/0	XV32	1.261	205 100	40/1.261	20 200	10 10	31.7	10.0/1.0
(60)			12	X J29	1.636	25 100	.49/1636	20/40	10	24.4	1.0/10
					•••						1
					,	•.	C169				

c169 **250**<

Į

189

Hamilton U Standard A®

SVHSER 6226

APPENDIX D

ł

GSFC MASS PROPERTIES REPORT

V.C.P.S. MASS PROPERTIES

<u> BALANCE</u>

NOTE: ALL ANGLES ARE REFERENCED AS FOLLOWS. THE S/C +X AXIS_IS_DEFINED AS O. ANGLES INCREASE C.W. LOOKING DOWN ON THE TOP OF THE V.C.P.S.

A SINGLE BALANCE WT_WAS MOUNTED ON THE UPPER RIM OF THE VCPS INTERIOR_STRUCTURE. THE WT TOTALED <u>426 gm</u>, WAS LOCATED <u>8.29</u>" FROM THE GEOMETRIC CENTER OF THE VCPS, AND AT AN ANGLE OF <u>220</u>".

AFTER THE ADDITION OF THE ABOVE WT. THE RESIDUAL IMBALANCE LEVELS WERE DETERMINED TO BE AS FOLLOWS:

RESIDUAL IMBALANCE (LIGHT SPOTS) FULL FUEL ZERO FUEL REPENT CONDITION CONDITION 2 1 JUN 1072 5 20.8 on-in/62° 14.4 on-in/15t TATIC 605:6 oy-in²/115° 454.2 oy-in²/123 YNAMIC 252<

V.C.P.S. MASS PROPERTIES WT, M.I., C.G., (ZERO FUEL CONDITION) NOTE: ALL MEASUREMENTS MADE WITH BALANCE WT ADDED TOTAL WEIGHT = 41.6 LBS. SPIN M.I. = 1.703 SLUG-FT2 LATERAL #1 MI = . 0.925 SLUG-FT2 LATERAL #2"MI = .. 0.883 SLUG-FT2 C.G. LOCATION = ... 4.33 " (FORWARD OF THE AFT' SEPARATION INTERFACE * RELEVED LATERAL AXES ORIENTATIONS 21, HHX 1972 133 121/919 313 LAT #1 LAT #2 D2 253<

V.C.P.S. MASS PROPERTIES WT, M.I., C.G., (FULL FUEL CONDITION) NOTE: ALL OF THE VALUES FOR THE FULL FUEL CONDITION. WERE OBTAINED BY ANALYTICALLY ADDING 45 LBS OF HYDRAZINE TO THE ZERO FUEL CONDITION. IT WAS ASSUMED THAT ALL OF THE FUEL WAS LOCATED IN THE TANKS. - 11.25 LES/ TANK THIS CREATES A SLIGHT ERROR DUE TO THE PRESENCE DF A CERTAIN AMOUNT OF FUEL IN THE FEED LINES. TOTAL WEIGHT = 86.6 LBS. 7 RE SPIN MI. = · · · · 7.2 SLUG-FT2 2 1 JUN 1972 LATERAL #1 MI. = .. 3.7 SLUG-FT2 LATERAL #2 MI = 3.7 SLUG-FT² C.G. LOCATION = 5.11" (FORWARD OF THE AFT) D3 254<

Hamilton	DIVISION OF UNITED AIRCRAFT CORPORATION
Standard	A®

APPENDIX E

SVHSER 6184 - RAE-B

GAS MANIFOLD MODIFICATION REPORT

Ei ~55<

RAE-B VCPS GAS MANIFOLD

ł

MODIFICATION REPORT

Prepared by:

E.K. Moore

RAE-B Project Manager

Approved by:

R. L. Steinberg

RAE-B Program Manager

ł

Date:

15 March 1973

Hamilton Standard

INTRODUCTION

This report summarizes the program undertaken by Hamilton Standard in response to contract change order #18 to modify the Radio Astronomer Explorer -B, Velocity Control Propulsion Subsystem (RAE-B, VCPS) to offset intertank transfer of fluids.

The need for such a modification was revealed during a Goddard Space Flight Center (GSFC) system analysis wherein it was shown that an initial minor VCPS fluid unbalance would ultimately cause major unbalance and vehicle Z axis perturbation.

The program at Hamilton Standard included a study of various methods to eliminate intertank transfer of fluids, the implementation of the selected system and acceptance testing to confirm system leakage and cleanliness integrity.

25?< E2

Hamilton U Standard A®

OBJECTIVE"

· · ·

To select and implement a method of preventing intertank transfer of fluids in the RAE-B VCPS with minimum impact on weight, reliability, schedule and the Propellant Servicing Cart (PSC) configuration.

1

Hamilton DIVISION OF UNIT U Standard A®

CONCLUSIONS

- 1. A method was selected which did not require changes in basic loading and pressurizing procedures.
- 2. The method was implemented without sacrifice of system cleanliness or leakage as evidenced by acceptance testing.
- 3. Weight increase was minimal at plus 0.4 pounds.
- 4. The modification to the subsystem requires rebalancing and redetermination of mass properties.
- 5. The VCPS modification was accomplished within the time period allotted.

E4

· Cari

Hamilton	DIVISION OF UNITED	U	C088004470
Standard		A ®	

RECOMMENDATIONS

- It is recommended that:
- 1. The VCPS be rebalanced and mass properties be redetermined by the NASA.

1

2. Liquid and gas loading procedures be reexamined including both vacuum and pressure fill methods.

260

5**0**< E5

DISCUSSION

I. Study Phase

A number of candidate methods to prevent intertank transfer of fluids were studied and were previously reported. See Appendix A, "RAE-B VCPS Intertank Propellant Transfer Modification Report". The report suggested either of two methods be used.

Method IV-B provided a weight saving but required new fluid and gas loading procedures. Method III added a small amount of weight but did not require new liquid and gas loading procedures. GSFC elected to use Method III.

II. Design Phase

The design requirements for implementing Method III, which utilizes four Fill and Vent Valves instead of a single Fill and Vent Valve, consisted of:

Establishing locations for four fill and vent values so that; one common mounting bracket design could be used, pressurizing hoses could be installed without interference with each other or space vehicle components, weight increase was minimized and finally, unbalance was held to a minimum.

It was determined that two brackets and valves could be attached to the hub in quadrant + x-y and two in quadrant - x+y. In each quadrant the valves would face one another but be offset along the Z axis for hose clearance. The new gas lines from tanks to valves utilized existing arm mounted tube clamps to minimize new hardware and reduce hole drilling requirements. Page 2 of drawing SV748720 Appendix B, shows the new valve, bracket and gas line locations.

The new bracket is similar in design to other brackets, but is covered with aluminized mylar tape instead of gold plate as a procurement expediency. Drawing SV755431, Appendix B, shows the new valve bracket.

The bracket used to locate the original Fill and Vent Valve was left attached to the +x arm so that the arm would not have to be detached to remove the loose rivet segments from the interior of the arm which would have resulted if the bracket were removed.

261<

E6

Hamilton UNISION OF UNITED AIRCRAFT CORPORATION Standard A®

III. Qualification Test Phase

The value and bracket were assembled and subjected to a qualification test per specification SVHS 5997 (See Appendix C).

The value which was planned to be used for the test was the VCPS spare (GFE) Fill and Vent Value. This value leaked excessively when tested and rather than delay testing pending disposition of the value by GSFC, a new value was substituted and the test resumed.

The qualification test was completed without incident except that the test unit was misindexed relative to the X-Y axis by 36° . Since the misindexing resulting in higher effective loadings to the test unit than the true position, GSFC agreed that the outage was acceptable.

The leaking valve was delivered to GSFC for failure analysis. The bracket was delivered to government stores as a VCPS spare and the qualification valve was installed as one of the four on the VCPS.

The qualification test report is in Appendix D.

IV. VCPS Modification Phase

The VCPS modification was accomplished in several steps:

- 1. Gas manifold removal
- 2. Bracket and valve installation
- 3. Tube fit-up, cleaning and passivation
- 4. Tube welding
- 5. In process inspection

Step 1. To accomplish gas manifold removal without system contamination, the following procedure was used for each tubing cut:

- a. Pressurize system to 5 psig using dry filtered nitrogen.
- b. Slowly cut tubing using "chipless" tube cutter.
- c. Install squaring tool and square end of cut tube using fine cut file.
- d. Ream tube I.D. and remove burrs.
- e. Remove squaring tool and flood area with clean Isopropyl Alcohol to remove all visible particles. Allow to drv.

f. Tape tube end.

ет 262<

Hamilton UNISION OF UNITED AIRCRAFT CORPORATION

Step 2. The hub bracket mounting holes were drilled and burred using the following procedure:

a. Remove insulation blanket from hub.

b. Establish hole locations

c. Set up shop vacuum to catch drill chips

d. Drill and burr holes

e. Assure all chips have been collected

After hole drilling and burring, the brackets were mounted to the hub, then the valves were mounted to the brackets using required bolts, washers and nuts. The brackets were taped with aluminized mylar tape before installation.

Step 3. After the values had been installed, each tube which had been prebent to design layouts, was fitted and cut to length, following which it was cleaned to specification HS 3150 level CE-5. (See Appendix E for CE-5 level).

Following cleaning, the tubes and valves were passivated per note 68 of drawing SV748720 except pressure was 15 psia. The passivation procedure is as follows:

- a. One hour application of a 30-35% N₂H₄ remainder H₂O solution at 73 ± 10°F with wetted interior portions of the tubes and valves completely filled.
- b. Fill completely as in step (a) with 100% N₂H₄ and attach an external ullage volume of 30 ± 2 cu. in. With the system vented, raise the temperature to 120 ± 5°F. After 4 hours, close the vent and maintain temperature for 24 hours while monitoring pressure. Pressure rise shall not exceed 7 psid in 24 hours. Note: If pressure rise does exceed 7 psid, terminate test.

No pressure rise was observed in the 24 hour period.

Following passivation, tube cleanliness was again verified to the CE-5 level.

E8

Step 4. Prior to tube welding, the tubes were taped with aluminized mylar to within approximately 1 1/2 inches of the tube ends. The tubes were then held in position by a fixture clamp at one end and by the Astro-Arc welding head at the other. Each weld was made automatically using previously established machine settings. Two weld samples were made prior to welding and two additional samples were made after all welding was complete. All weld samples were radiographically examined.

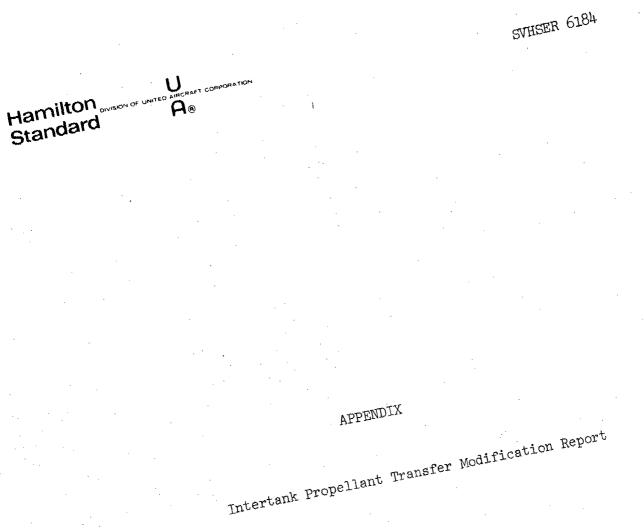
Step 5. Following welding, each of the eight welds was die penetrant inspected and "snoop" checked at 300 psig. The system was then checked for cleanliness per HS 3150 using isopropyl alcohol.

Finally the insulating blanket was reinstalled and the VCPS released for Acceptance Testing.

V. Acceptance Test Phase

Following the modifications and in-process inspections (Phase IV), the unit was acceptance tested per SVHS 5618 ATA No. 2 (See Appendix F). The acceptance test consisted of the following individual tests:

Examination of Product Weight Proof Pressure External Leakage Contamination Check Post Test Inspection


Following completion of the contamination check, and before Fost Test Inspection, taping with aluminized mylar tape was completed.

All tests were completed in accordance with acceptance criteria.

VI. Schedule

The VCPS was modified in accordance with the plan and schedule of Appendix G.

E9

ł

_{E10} 265< Hamilton U Standard A®

RAE-B VCPS

INTERTANK PROPELLANT TRANSFER MODIFICATION REPORT

E11

266<

PREPARED BY: Thomas Marotta arette

Carl Arvidson

APPROVED BY:

Earl K. Moore

Hamilton Standard A®

CONTENTS

INTRODUCTION

SUMMARY

RAE-B VCPS PROPELLANT FEED SYSTEM MODIFICATION TRADEOFF

FLOW ANALYSIS OF HS SELECTED MODIFICATION

SUMMARY OF FLOW DEMONSTRATION TEST

13

267< E12

Hamilton U Standard Alechaet corporation

INTRODUCTION

At the direction of NASA/Goddard Space Flight Center to modify the VCPS to prevent intertank propellant transfer, a study of various system modifications was undertaken to decide which changes would have the least impact (manufacturing, weight and cost) to the subsystem. Also, a flow analysis of the selected tank isolation methods was prepared to further substantiate the choice. This report includes both the various system tradeoffs and the flow analysis associated with the VCPS modifications.

SUMMARY

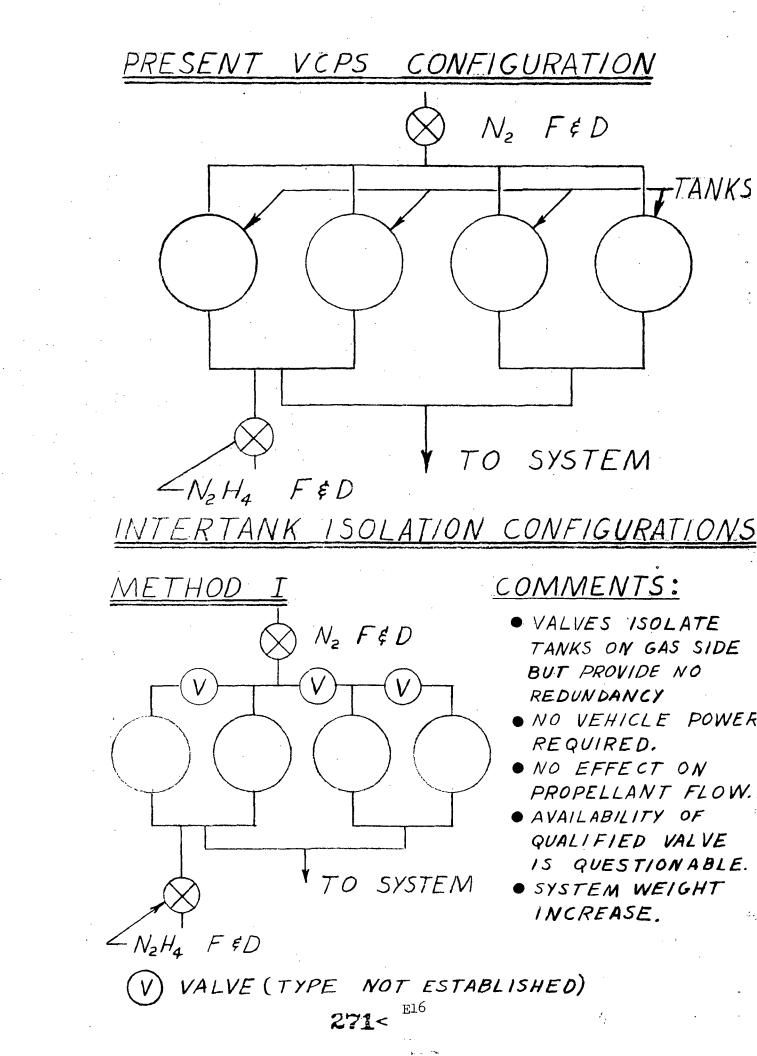
After reviewing the various modification options which could be incorporated on the VCPS, the analysis associated with modification Method IV-B, and the demonstration flow test, changing the VCPS propellant feed system to the configuration illustrated in the Method IV-B schematic appears to be the best approach for retrofitting the VCPS. This method offers the advantages of lighter weight and minimum impact on mechanical changes to the VCPS and GSE Cart.

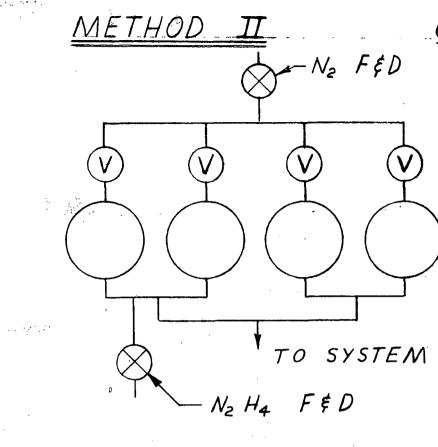
The addition of individual fill and drain values for each tank is also an acceptable approach but results in additional VCPS weight and a more complex VCPS rework. This approach, Method III, was not analyzed since the fill procedure is identical to that used for the present system except for manifolding the four pressurant fill and drain values together. This permits simultaneous gas pressurization of the tanks from a single source on the GSE Cart.

E14

Hamilton U Standard A BE AND A COMPORTATION

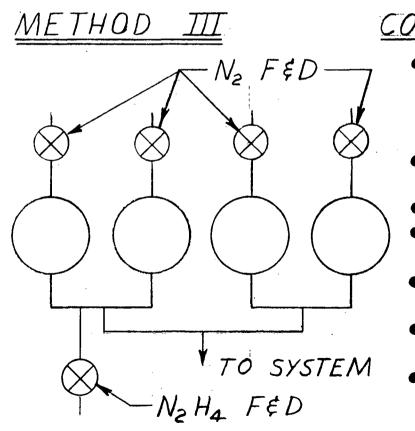
RAE-B VCPS PROPELLANT FEED SYSTEM MODIFICATION TRADEOFF


The following propellant feed system schematics represent methods of accomplishing prevention of intertank propellant transfer. Each schematic modification has comments regarding the impact of the change to the VCPS, to the RAE-B spacecraft, or to the GSE.

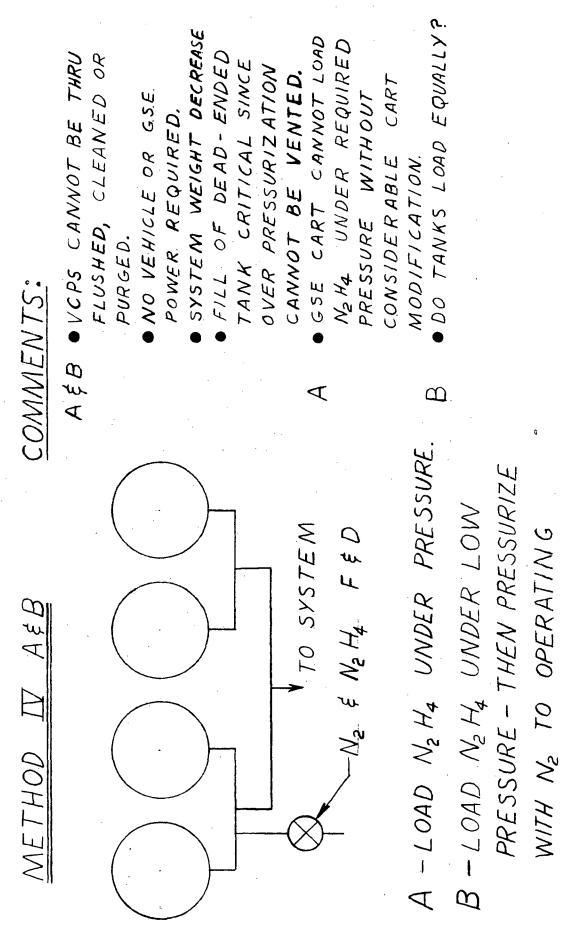

After reviewing the various options available to prevent intertank propellant transfer, the subsystem modification which appears to offer the greatest advantages is Method IV-B. This change offers the least impact to the system while providing a subsystem of lighter weight. The second choice would be Method III where the use of RAE-B qualified hardware could be utilized with no restraints on the spacecraft other than additional weight of the VCPS. The flow analysis which is in the following section is for Method IV-B.

The weight impact of the two modification methods considered is as follows. The results are for the worst case which assumes the VCPS balance weight to be in the region of the existing gas manifold.

Delta Weight


Method IV-B	\approx .411 lbs reduction
Method III	\approx 1.18 lbs additional

COMMENTS:


- VALVES ISOLATE TANKS ON GAS SIDE AND PROVIDE RE-DUNDANCY.
- NO VEHICLE POWER REQUIRED.
- NO EFFECT ON PROPELLANT FLOW.
- AVAILABILITY OF QUALIFIED VALVE QUESTIONABLE.
- SYSTEM WEIGHT INCREASE.

COMMENTS:

- VALVES ISOLATE TANKS - NO POSSIBIL-ITY OF INTERNAL LEAKAGE
- NO VEHICLE POWER REQUIRED.
- NO GSE. POWER REQ'D.
- NO EFFECT ON PROPELLANT FLOW.
- USE OF RAE-B
 QUALIFIED HARDWARE
- FOUR POTENTIAL OVER-BOARD LEAK SOURCES
- SYSTEM WEIGHT

L17

Elő

PRESSURE.

<u>COMMENTS</u> :	 VALVES ISOLATE TANKS AND PROVIDE REDUNDANKY VEHICLE POWER REQUIRED DDDITIONAL TELEMETRY CHANNELS PROBABLY REQUIRED. IMPACTS SPACE CRAFT ELECTRICAL EQUIPMENT FAILED CLOSED POSITION CAN CAUSE LOSS OF MISSION. VALVES HAVE THERMAL MAL ANAL VSIS AND MAY REQUIRE HEATERS. SYSTEM WEIGHT INCREASES AVAIL BILLITY OF QUALIFIED VALVE IS QUESTIONABLE. 	· · · · · · · · · · · · · · · · · · ·
METHOD V	$\left(\begin{array}{c} & & & \\ $	·

.

E19 274<

. .

.

•

COMMENTS:	 VALVES ISOLATE TANKS BUT PROVIDE NO REDUM- DANCY. REMOVAL OF TWO EXIST- ING LATCHING VALVES FROM SYSTEM CHANGES ORIGINAL PHILOSOPHY OF SYSTEM CHANGES ORIGINAL PHILOSOPHY OF SYSTEM. LATCHING VALVE CIRCUIT REQUIRES ADDITIONNL POWER. IMPACT ON SPACE CRAFT ELECTRICAL EQUIPMENT IMPACT ON SPACE CRAFT ELLECTRICAL EQUIPMENT OF ANY LATCHING VALVE CAN OF ANY LATCHING VALVE CAN CAUSE LOSS OF MISSION. VALVES HAVE THERMAL IMPACT ON LINE THERMAL SYSTEM WEIGHT INCREASE. 	
METHOD VI	La contraction of the second	DALLAD LAJ

ł

E20

FLOW ANALYSIS OF HS SELECTED MODIFICATION

The flow analysis presented in this section is prepared against propellant feed system modification Method IV-B. The analysis is divided into the following three sections:

Propellant Fill

A®

Hamilton

Pressurant Fill

Propellant Withdrawal

The primary objective of these analyses is to determine the unbalance effects, if any, on the VCPS.

The propellant fill case is not of primary concern other than assuring that propellant flows to all tanks equally with the exception of the line volume effects. The primary goal of the pressurant fill analysis is to determine the degree of unbalance that exists between propellant tanks after pressurant fill and the system pressure has stabilized -- equal pressure in all tanks. The objective of the propellant withdrawal analysis is to determine the propellant expulsion efficiency. Without the tank pressurant manifold, each tank blows down independently where it is possible for one tank to ingest pressurant just before the others because of slightly different initial pressurant volumes.

The analysis indicates that an unbalance of 13 oz-in may exist after propellant and pressurant loading without adjustment of the balance weight. To assure that the system does fill as predicted for Method IV-B, an evaluation of the fill process would be demonstrated using the actual VCPS. This would be accomplished by cutting into the pressurant manifold at discreet positions, which would not affect the final direction of the modification, and sealing off these lines.

The propellant "blow-down" analysis indicates that the expulsion efficiency will be 99.83 percent instead of 99.98 percent which was initially predicted.

E21 276 <

DUE TO LIQUID FILLING CASE I -UNBALANCE τY + X --- X Ra PIO Piz Pıı 6 B P,

FIG. I

THE PROBLEM IS TO DETERMINE ANY UNBALANCE RESULTING FROM INITITIAL LIQUID FILL. THE PROBLEM STEMS FROM THE INITIAL GAS VOLUME IN THE TANKS AND PARTICULARLY IN THE SYSTEM LINES, DURING THE FILLING PROCESS; THE GAS IN THE LINES IS DISPLACED TO THE TANKS AND COMBINES WITH THE GAS ALREADY IN THE TANKS TO BECOME COMPRESSED. THE FACT THAT THE TANKS WILL HAVE A DIFFERENT AMOUNT OF GAS, BECAUSE OF THE DISTRIBUTION OF THE PLUMBING, WILL RESULT IN SOME PROPELLAN MASS UNBALANCE UPON PRESSURE EQUALIZATION IN THE SYSTEM

ANALYSIS

STATEMENT OF PROBLEM

- ASSUME AT END CONDITIONS Py = Pio = Pi1 = Piz
- · ASSUME THAT DURING LIQUID FILLING, VAPOR LIQU INTERFACE IS MAINTAINED SUCH THAT GAS IN LINES IS COMPLETELY DISPLACED INTO THE TANKS (ASSUMPTION VISUALLY CONFIRMED

E22

· Assume Distribution OF GAS IN SYSTEM RESULTS AS FOLLOWS

 $TANK 9: V_9 = 25\% V_{1-2} + V_{2-5} + V_9 INITIAL$ $TANK 10: V_{10} = 25\% V_{1-2} + 33\% V_{2-3} + V_{3-6} + V_{10,N,T,TAL}$ $TANK 11: V_{11} = 25\% V_{1-2} + 33\% V_{2-3} + 50\% V_{3-4} + V_{4-7} + V_{11,N,T,TAL}$ $TANK 12: V_{12} = 25\% V_{1-2} + 38\% V_{2-3} + 50\% V_{3-4} + V_{4-8} + V_{12,N,T,TAL}$

WHERE V IS THE VOLUME ASSOCIATED WITH THE DIFFERENT COMPONENTS SHOWN IN FIG. I

A CONSIDER NOMINAL CASE		
FROM TABLE I		•
$\frac{LINES}{VI-z} = \cdot 4362 \text{ in }^3$	V9,NT =	508.90 INS
$V_{2-5} = .8376 \text{ in }^3$ $V_{2-3} = .1919 \text{ in }^3$		509.46 IN3
V3-6 = 1.0295 IN3		508.63 m
$V_{3-7} = 1.1168 \text{ in }^3$ $V_{4-7} = 1.0295 \text{ in }^3$	Vizinit =	510,01 in 3
V4-8 = 1.0295 m 3		

INTITAL GAS VOLUMES

. .

 $V_{9} = (.25 \times .4362) + (.8376) + 508.90$ $\overline{V_{10}} = (.25 \times .4362) + (.33 \times .1919) + (1.0295) + 509.46$ $\overline{V_{11}} = (.25 \times .4362) + (.33 \times .1919) + (.50 \times 1.1168) + 1.0295 + 508.63$ $\overline{V_{12}} = (.25 \times .4362) + (.33 \times .1919) + (.50 \times 1.1168) + 1.0295 + 510.01$

 $\overline{V_{9}} = 509.847 \text{ IN}^{3}$ $\overline{V_{10}} = 510.662 \text{ IN}^{3}$ $\overline{V_{11}} = 510.390 \text{ IN}^{3}$ $\overline{V_{12}} = 511.770 \text{ IN}^{3}$

VT = TOTAL INITIAL GAS VOLUME IN SYSTEM = V9 + VIOTUI, VII

ASSUME INITIAL PRESSURE = 15 PSIA ::78<

Assume Addition OF 45/85 OF Properiant To
The Sistem

$$VP = \frac{45}{P} = \frac{45/16m}{.036/16m_3} = 1750 \text{ m}^3$$

 $P = \frac{45}{P} = \frac{45/16m}{.036/16m_3} = 1750 \text{ m}^3$
 $P = \frac{45}{P} = \frac{45}{.036/16m_3} = 1750 \text{ m}^3$
Assume An Isothermal Fill Process
 $P = \frac{15 \times 2042.647}{P_{T}} = 38.654 \text{ psin}$
 $P = \frac{15 \times 2042.647}{1792.647} = 38.654 \text{ psin}$
 $P = \frac{15 \times 2042.647}{1792.647} = 38.654 \text{ psin}$
 $P = \frac{15 \times 2042.647}{1792.647} = 38.654 \text{ psin}$
 $P = \frac{15 \times 2042.647}{1792.647} = 38.654 \text{ psin}$
 $P = \frac{15 \times 2042.647}{1792.647} = 197.850 \text{ m}^3$
 $V_1 = \frac{15 \times 502.847}{38.654} = 197.850 \text{ m}^3$
 $V_2 = \frac{15 \times 510.662}{38.654} = 198.061 \text{ m}^3$
 $V_1 = \frac{15 \times 510.662}{38.654} = 198.061 \text{ m}^3$
 $V_2 = \frac{15 \times 571.770}{38.654} = 198.594 \text{ m}^3$
 $V_2 = \frac{15 \times 571.770}{38.654} = 311.055 \text{ m}$
 $V_{Pq} = 508.90 - 197.850 = 311.055 \text{ m}$
 $V_{Pq} = 508.90 - 198.061 = 310.569.$
 $V_{P,1} = 510.01 - 198.594 = 311.4167$

;

, Y

•

. ;

•••

MASS OF PROPELLANT IN TANKS Mg = 11.1978 16ms M10 = 11.2066 16ms M.1 = 11.1804 10ms

-Y ...

M12= 11.2109 16ms

-X

C.G. SHIFT $\overline{Y} = (11.2109 - 11.197B) \times 23.5$ 65 x = (11,2066-11,1804)=235 V = +.00473 X= +.00946 IN

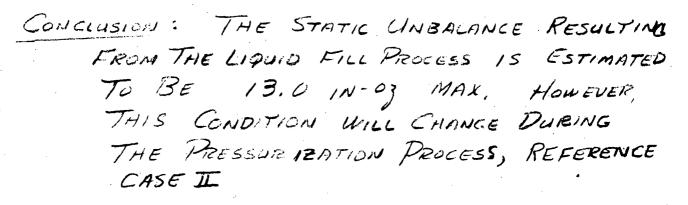
TORQUE DUE TO C.G. SHIFT : T= Mass × 1 x + y = T= 65 165 x 1603 x 1,00473"+,00446" = 65×16+,010 5 T= 11.00 IN-03 280<

B. CONSIDER AN EXTREME CASE WHERE THE TOLERANCES OF THE TANKS & LINES ARE IN A CONDITION THAT WILL MAKE THE UNBALANCE A MAXIMUM, INVESTIGATE EFFE OF HAVING LINES IN MIN & MAX CONDITION ASSUME THE FOLLOWING - (APPARENT WOREF. CONDITI V2-5 15 MAXIMUM V3-6 = MINIMUM VIZ IS NOMINAL Vainin AcruALS VIOINIT ACTUALS V2-3 15 NOMINAL V3-4 15 MINIMUM VA-7 15 MAXIMUM VA-B 15 Minsimam · FROM TABLE I V2-5 MAX = ,9741 1N3 V3-6min = ,8841 ,N2 V1-2 NOM = . 4362 V9.N = 508.90 IN 3 V2-3 NOM = . 1919 Vio.N = 509.46 1~3 V3-4 MIN = ,9583 VIIIN = 508.63 IN 3 VA-7 MAX= 1.1973 V12.N = 570.01 IN3 V q-8 min = . 8841

GAS VOLUME BEFORE LIQUID FILLING

 $T_{ANK} \overline{9} \quad \overline{V_{9}} = (.25 \times .4362) + (.9741) + 508.90 = 509.983 \text{ in}^{3}$ $" 10 \quad \overline{V_{0}} = (.25 \times .4362) + (.33 \times .1919) + .8841 + 509.46 = 510.516 \text{ in}$ $! \quad \overline{V_{1}} = (.25 \times .4362) + (.33 \times .1918) + (.50 \times .9573) + 1.1973 + 508.63 = 510$ $" 12 \quad \overline{V_{12}} = (.25 \times .4362) + (.33 \times .1918) + (.50 \times .9573) + .8841 + 510.01 = 511$ $\overline{V_{T}} = T_{0T} \text{ Finde} \quad G_{AS} \quad V_{0LUME} \quad I_{N} \quad S_{VSTEM} = 2042.523 \text{ in}$ $A_{SSUME} \quad I_{N} \quad i_{TIAL} \quad \overline{P_{RESSURE}} \quad O_{F} \quad S_{VSTEM} = 15 \text{ psiA}$ $A_{FTER} \quad ADD_{ING} \quad 45 \text{ Ibs} \quad \overline{P_{0PELLINNT}} \quad W_{HAT} \quad I_{S} \quad G_{AS} \quad V_{0L}$ $\overline{V_{9}}_{\text{FINAL}} = 2042.523 - 35 \text{ is} = 792.523 \text{ in}^{3}$ $\overline{F_{INAL}} \quad \overline{P_{RESSURE}} \quad I_{N} \quad E_{ACH} \quad T_{ANIK}$ $E^{26} \qquad P_{FINAL} = 15 \times 2043.523 \text{ is} = 38.659 \text{ psiA}.$ $\overline{792.523} = 38.659 \text{ psiA}.$

TANK GAS VOLUMES FINAL	•
$V_{9} = \frac{15 \times 509.983}{38.659} = 197.887 \text{ IN}^{3}$	•
$V_{10} = \frac{15 \times 510.516}{38.659} = 198.089$	
VII = 15 × 510,479 = 198.069 38.659	
V.2 = 15 x 511.545 = 198.483 38.654	
TANK PROPELLANT VOLUMES, FINAL	
Vpg = 508.90 - 197.187 = 311.013 1N3	
Up10 = 509.46 - 198.084 = 311.376	
Vp11 = 508.63 - 198.069 = 310.561	
V,2 = 510.01 - 198.483 = 311.527	
MASS OF PROPELLANT IN EACH TANK	
$M_{q} = 11.1964$ lbm	
M10= 11.2095 16m	
$M_{ii} = 11.1802$ lbm	
- 4	
Miz= 11,2149 16m	
LOOK AT C.G. SHIFT É UNBALANCE	
$()$ + χ	
M10=11.2095	
$-Y$ \rightarrow	
$M_{q} = 11.1464$ $M_{12} = 11.2149$	
Mil = 11. 180 2	


282<

E27

7

) - x

C.G SHIFT $\overline{Y} = (11.2149 - 11.1964) \times 23.5 = +.00668$ $\overline{X} = (11, 2095 - 11, 1802) \times 23.5 = +.01059$ STATIC UNBALANCE (UNS) T = 65 × 16 V. 00668 +. 010592 = 13.024 IN-03

TABLE

LINE VOLUME SUMMARY

LINE	VOL NOM (IN3)	VOL MAX (IN3)	Vormin (INS)
/- 2	. 4362	.5074	, 3746
2-5	. 8376	.9741	.7193
2-3	. 1919	,2231	. 1648
3-6	1.0295	1. 1973	. 8841
3-4	1.1168	1.2988	,9583
4-7	1.0295	1, 1473	. 8841
4-8	1.0295	1.1973	. 8841

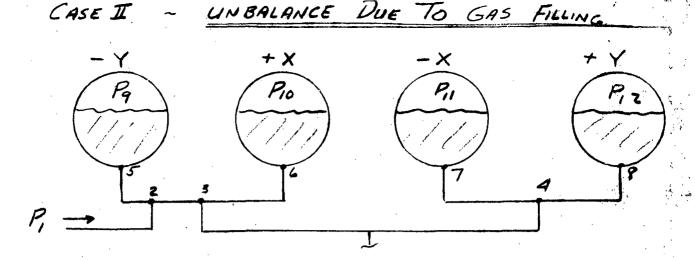
TANK

AXIS

VOLUME SUMMARY

TANK.

.9 -Y 10 + x11 - X 12 $+\gamma$


(ACTUALS) VOLUME JN 3 508.90 509.46 508.63 510.01

REF ACCEPTANCE TEST DATA

E29

284<

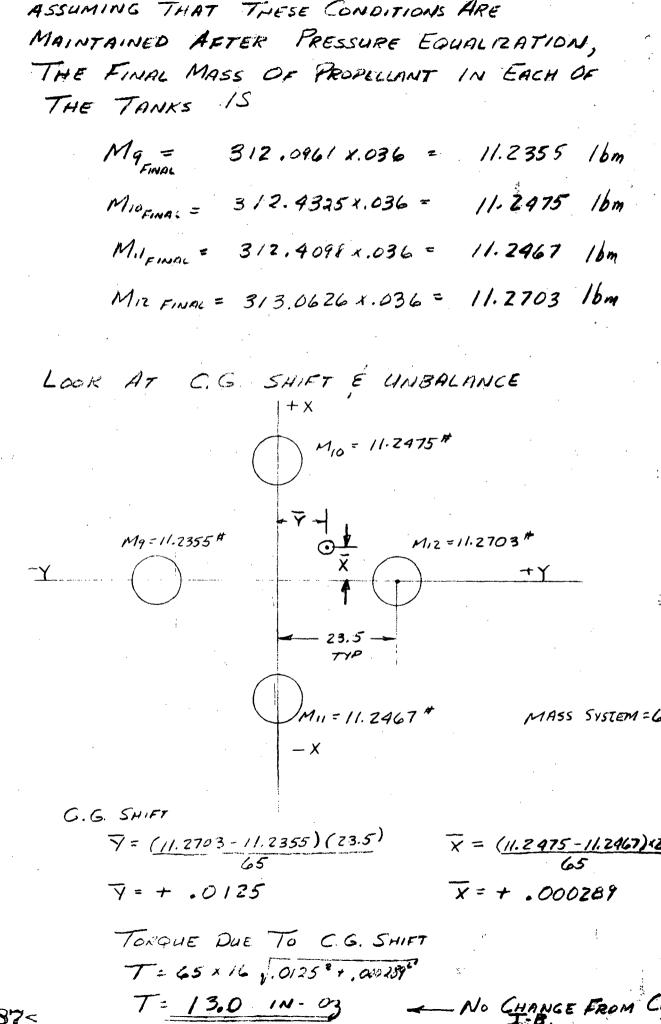
.

STATEMENT OF PROBLEM DETERMINE WHAT UNBALANCE WILL RESOLT FROM THE GAS PRESSURIZATION PROCESS AND SUBSEQUENT STABILIZATION OF LIQUID

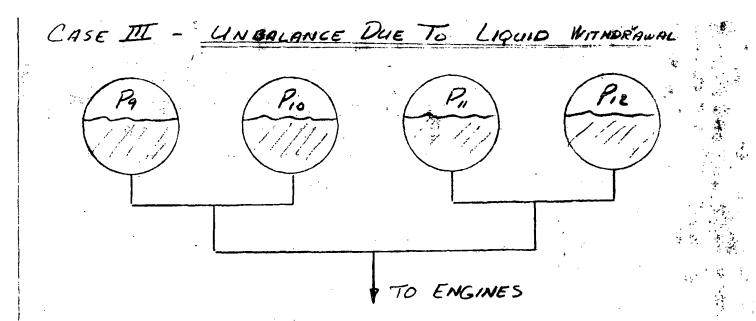
ANALYSIS

THE APPROACH WILL BE TO TAKE THE RESULTS OF THE MASS DISTRIBUTION DETERMINED IN CASE I-B AND DETERMIN WHAT THE FINAL DISTRIBUTION OF PROPELLANT WILL BE WITH THE SYSTEM FULLY PRESSURIZED.

I · ASSUME THAT INITIALLY, THE PROPELLANT DISTRIBUTION IS THE SAME AS CASE I-b


VOL. OF PROPELLANT IN EACH TANK INITIAL VPg = 311.013 1N3 VP10 = 311.376 in 3 REF Pg. 6 VP, = 310.561 IN 3 E30 Pp, = 311.527 in 3 285<

· Assume THAT UPON INITIATION OF GAS FLOW, ALL THE PROPELLANT IN THE LINES FLOWS INTO THE TANKS AND REMAINS IN THE TANKS DURING A FILLING OF GAS. (ASSUMPTION VISUALLY CONFIRMED)


Assume THAT EQUALIZATION OF PRESSURES OCCURS WITHOUT THE FLOW OF PROPELLANT FROM TANK TO TANK. (ASSUMPTION VISUALLY CONFIRMED)

FINAL VOLUMES OF PROPELLANT IN EACH TANK:

$$V_{P_q} = V_{P_q} + 25\% V_{1-2} + V_{2-5}$$

 $V_{P_{10}} = V_{P_{10}} + 25\% V_{1-2} + 33\% V_{2-3} + V_{3-6}$
 $\overline{V}_{P_{11}} = V_{P_{11}} + 25\% V_{1-2} + 33\% V_{2-3} + 50\% V_{3-4} + V_{4-7}$
 $\overline{V}_{P_{12}} = V_{P_{12}} + 25\% V_{1-2} + 33\% V_{2-3} + 50\% V_{3-4} + V_{4-8}$
USING THE SAME CONDITIONS AS CASE I-B (Pg 5)
 $\overline{V}_{P_q} = 311.013 t (25x.4362) + (.9741) = 312.0961 m^3$
 $\overline{V}_{P_{10}} = 311.376 + (.25x.4362) + (.33x.1919) + .8841 = 312.4325$
 $\overline{V}_{P_{12}} = 310.561 + (.25x.4362) + (.33x.1919) + (.50x.9583) + 1.1473 maximized
 $V_{P_{12}} = 311.527 + (.25x.4362) + (.33x.1919) + (.50x.9583) + .8841 = 313.000$$

E32

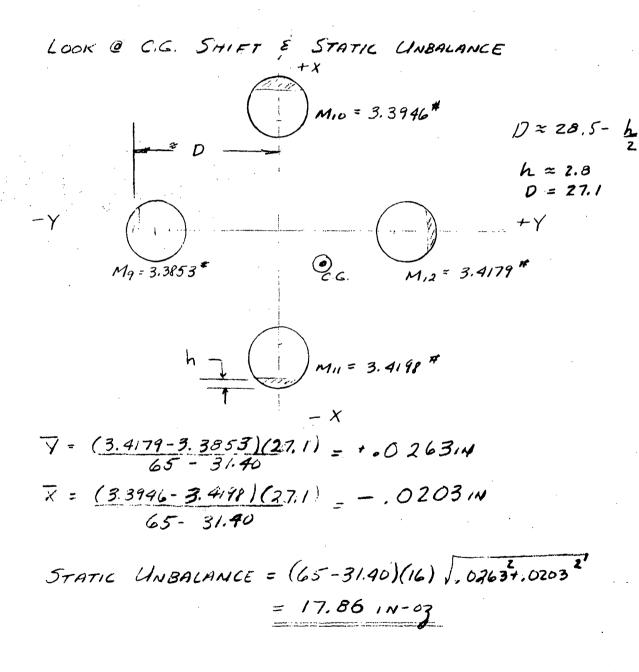
STATE MENT OF PROBLEM

• DETERMINE UNBALANCE RESULTING DURING LIQUID WITHDRAWAL FROM THE SYSTEM. USING A SYSTEM WHERE THE TANKS ARE NOT JOINED TO A COMMON GAS. MANIFOLD. THE FACT THAT THERE ARE INITIALLY DIFFERENT VOLUMES OF GAS AND PROPELLANT IN EACH TANK (AT THE SAME INITIAL PRESSURE) MEANS THAT EACH TANK WILL EXPELL PROPELLANT. AT DIFFERANT RATES IN ORDER TO MAINTAIN A PRESSURE BALANCED SYSTEM. THE NET RESULT IS PROPELLANT MASS UNBALANCE IN THE VARIOUS TANKS.

· DETERMINE EFFECT ON EXPUSION EFFICIENCY,

ANALYSIS

THE APPROACH WILL BE TO ASSUME THAT THERE IS SOME PROPELLIANT MASS AND GAS VOLUME DISTRIBUTION (BASED ON RESULTS OF CASE I & IT ANALYSIS). REMOVING PROPELLANT E33 288< FROM THE SYSTEM WILL PRODUCE A FINAL CONDITION IN THE SYSTEM (P9 = PIO = PIIZ PIZ) WHEREBY THE FINAL GAS VOLUMES AND PROPELLANT MASSES IN EACH TANK CAN BE ESTIMATED AND RELATED TO UNBALANCE AND EXPULSION EFFICIENCY,


E34

ASSUME A MASS DISTRIBUTION AS DETERMINED IN CASE I FOR INITIAL CONDITION VOL. OF PROPELLANT IN EACH TANK . $V_{P_0} = 312.0961$ 11 3 $\overline{V}_{P_{0}} = 312.4325$ 1113 REF. Pg 10 = 312.4098 IN3 Vp. VP12 = 313.0626 1~3 ... THE VOLUME OF GAS IN EACH TANK IS Vqq = 508.90 - 312.0961 = 196.8039 IN3 Vy10 = 509.46 - 312.4325 197,0275 τ, Vg = 508.63-312.4091 = 196.2202 V912 = 510.01 - 313.0626 = 196.9474 TOTAL GAS VOL = 786.999 1N3 ASSUME INITIAL PRESSURE IN EACH TANK = 275psin AFTER IST MIDCOURSE CORRECTION, DM = 31.4 16m $\Delta V p = \frac{3/.4}{.036} \cdot 872 \text{ in}^3$ 275 × 786.999 = 130.455 pSIA P =VOLUMES OF GAS IN EACH TANK AFTER IST. MID-COURSE CORRECTION $V_{qq} = \frac{275 \times 196.8039}{130.455} = 414.8639 \text{ IN}^3$ $V_{g_{10}} = \frac{275}{130.455} = 415.3353 \text{ m}^3$ 130.455 Vg, = 275 × 196,2202 = 413.6333 IN3 130.455 Vg,2 = 275 × 196,9474 130.455 = 415.1664

E35 **290**<

THEREFORE THE MASS OF PROPELLANT IN EACH OF THE TANKS AT THE END OF THE 1ST MIDCOURSE CORRECTION 15:

 $Mq = (508.90 - 414.8639) \times 036 = 3.3853/bm$ $M_{10} = (509.46 - 415.3353) \times 036 = 3.3946$ $M_{11} = (508.63 - 413.6333) \times 036 = 3.4198$ $M_{12} = (510.01 - 415.1664) \times 036 = 3.4179$

. E36

NOW LOOK AT END OF MISSION WHERE GAS INGESTION INTO THE LINES OCCURS: AT THE TIME OF GAS INGESTION, ASSUME THAT THE VOLUME OF PROPELLANT IN THE TANK AT WHICH INGESTION OCCURS IS Vp = .0311N 3 (THIS QUANTITY HAS BEEN DETERMINED FROM PREVIOUS ANALYSIS DATED 7-71 BY P.FALK) AS A FIRST GUESS ASSUME THAT INGESTION OCCURS AT TANK 9. ". FINAL PRESSURE = 275 1 196,8039 = 106.355 psin (508.90-,031) ... FINAL VOLUME OF PROPELLANT IN OTHER TANKS IS Vpg = .031 in 3 VP10 = 509.46 - 275x 197.0275 = . 010 m 3 106.355 VP11 = 508.63 - 275× 196.2202 = 1.263 1N3 106,355 VP12 = 510.01 - 275x 196.9474 = . 7551N3 106.355 NOTE: SINCE VPIO L VPg INGESTION WILL OCCUR IN TANK 10 FOR THIS CONDITION THEN, THE FINAL PRESSURE BECOMES PF = 275 × 197.0275 = 106.360 (509.4(.-.031))·. Mpg = (508,90 - 275 x 196.8039):036 = 00173 16, 106. 940 = . 00111 Fm MPis = .031x,036 MP11 = (508.63 - 275×196.2202)×.036= .04630 MP12 = (510.01 - 275x 196.9474) X.036 = 02829 106.360

E37 292<

TOTAL PROPERIUMIT MASS IN TANK = .0774316
LORE AT (I.G. SHIFT & STATIC UNBALANCE
TX

$$M_{10} = .00111$$

 $D = 28.5$
 TIP
 $-Y$
 $M_{10} = .00173$
 $M_{10} = .02829^{\circ}$
 $CG.$
 $M_{11} = .0463^{\circ}$
 $M_{12} = .02829^{\circ}$
 $CG.$
 $M_{12} = .02829^{\circ}$
 $CG.$
 $M_{12} = .02829^{\circ}$
 $M_{12} = .0$

.

;

•

2

.

.....

SUMMARY OF FLOW DEMONSTRATION TEST

Hamilton Standard

He

Prior to preparing the flow analysis for Method IV-B a laboratory test set-up was made of the system to demonstrate physically how the liquid and gas flowed in this configuration. Using flasks and tubing the conceptual arrangement of the VCPS tanks and lines was simulated. This set-up was then connected to a source of water and nitrogen to demonstrate the liquid and gas fill procedure. A sketch of the demonstration set-up is included.

The fill procedure was that which would be required to fill the arrangement as shown in Method IV-B where the propellant must be loaded prior to final pressurization thru the single fill and drain port. Water was introduced into the system and the flow observed as each of the line and flasks filled. As expected, the line to the flask closest to the fill port started to fill first with flow continuing to the remaining flasks. This filling sequence results because the gas remaining in the lines is displaced and compressed into each of the flasks. In the actual system this procedure will occur and the first part of the preceding flow analysis shows the magnitude of this effect. After partially filling the flasks with water, nitrogen was introduced slowly into the set-up and the flow visually observed. Again the fluid in the line closest the fill port was displaced first with the longest lines filling last. As the flasks were pressurized with nitrogen there was no evidence that any uneven flow condition existed other than the initial distribution of fluid within the feed lines to the flasks. The magnitude of the propellant quantity differences between tanks after final pressurization and stabilization is shown in the previous analysis section. As a part of the flow demonstration test, the flasks closest and farthest from the fill port were weighed prior to and after filling and pressurization. The difference in weight was that attributable to the fluid displaced in the manifold. The fluid flow analysis and demonstration test appear to indicate that the tanks will fill equally by Method IV-B with any propellant unbalance being the result of tank geometry tolerances and propellant displaced from the feed lines.

\$103

E39

E40

INLET CONNECTED TO SOURCE OF WATER & NITROGEN

TES

METHOD IV-B TE CONFIGURATION

Hamilton U Standard R®

APPENDIX

Specification SVHS 5997

"Valve and Bracket, Qualification Test Plan For"

- -

\$

	CODE IDENT NO.	SPECIFICATION NO.	RE
		SVHS 5997	
Standard A	®	PAGE 1 OF 6	· · · · · · · · · · · · · · · · · · ·
	וויידעראר אפר בר הוו א ידע ד אזנ		
SPECIFICATION TITLE			
	QUALIFICATION TEST PLAN FC	R	••••••
			· · · · · · · · · · · · · · · · · · ·
and the second sec	_		
PREPARED BY E.K. 10	DATE APPROVED B		/29/ DAT
APPROVED BY	APPROVED BY	, <u> </u>	
PROJECT	DATE	PURCHASING	DAT
APPROVED BY	APPROVED B		DAT
		MANUFACTORING	
APPROVED BY	DATE APPROVED BY	DESIGN	/-ን፦ DAT
APPROVED BY SPEC. CONTROL	APPROVED BY	/	
			, DAT
APPROVED BY	DATE	Operations	1/3/ DAT
APPROVED BY		•	
	DATE	·	DAT
CUSTODIAN			
λ_{1}	12/1/2000 00100	_	
EXP. RELEASE D. L. MOULT	DATE	· E	DAT
ана — — — — — — — — — — — — — — — — — —	•		
n'	•		
	E42		
THIS DOCUMENT IS THE PROPE ON THE EXPRESS CONDITION T			
IN PART, OR USED FOR MANUE	ACTURE FOR ANYONE OTHER	THAN UNITED AIRCRAFT	-
CORPORATION WITHOUT ITS WI			

DOES NOT LIMIT THE RIGHT TO USE INFORMATION OBTAINED FROM ANOTHER SOURCE.

Hamilton L Standard F	CRAFT CONFORATION	CODE IDENT NO. 73030	SPECIF SV HS	ICATION NO. 5997	REV
WINDSOR LOCKS, CONNECTICUT 06006				PAGE	2

1.0	SCOPE	
	the Valve and Bracke bracket will be adde tests and the tests	fies the Qualification Testing to be performed on et to be used on the RAE-B VCPS. The value and ed to the VCPS subsequent to its qualification required herein will demonstrate the suitability acket for use on the qualified subsystem.
2.0	GENERAL	
2.1	Applicable Documents	<u>B</u>
2.1.1	Military	
	MIL-STD-810	Environmental Test Methods
2.1.2	Others	
•	S-723-P-19	Subsystem Specification, VCPS
	S-320-G-1	General Environmental Test Specification for Spacecraft and Components
	S-320-RAE-3	Subsystem Test Specification for RAE-B
	NHB 5300.4 (1B)	Quality Program Provisions for Space Systems Contractors
,	NPC 200-3	Inspection, System Provisions for Suppliers of Space Components
· · · · ·	NPC 250 -1	Reliability Program Provisions for Space Systems Contractors
3.0	TEST OBJECTIVE	

The purpose of this qualification test is to demonstrate the suitability of a Fill and Vent Valve and Bracket subassembly for use on the qualified RAE-B VCPS.

4.0 TEST PROGRAM

The test program shall consist of the following tests:

Test	I.	Test Paragraph
Leakage Vibration Leakage		4.1.1 4.1.2 4.1.1

E43

Hamilton U	CODE IDENT NO.	SPECIFICATI	
Standard A.	73030	BV HS 599	
WINDSOR LOCKS, CONNECTICUT 06056			PAGE 3

....

4.1	Test Descriptions
4.1.1	Leakage
4.1.1.1	Objective - The purpose of the leakage test is to demonstrate leakage integrity of the valve before and after being subjected to vibration.
· .	
4.1.1.2	Facilities - The leakage test shall be performed using standard helium leak test equipment, such as the Veeco leak detector.
4.1.1.3	Test Setup - The leakage test shall be setup and tested per Figure 1.
4.1.1.4	Test Procedure
	a. Mount the valve per Figure 1.
·	b. Calibrate the helium leak detector.
•	c. Pressurize the value to 300 \pm 5 psia with helium with the cap off.
	d. Record valve leakage rate for 3 minutes.
	e. Depressurize and cap the valve.
	f. Pressurize the value to 300 ± 5 psis with helium.
	g. Record valve leakage for 3 minutes.
	h. Shut off helium supply and depressurize.
	NOTE: To close fill and vent valves, torque nut to 25 ± 2 in-lbs above running torque. (Running torque is that torque required to turn nut before valve bottoms out). To open fill and vent valves, turn nut 1 1/2 turns in opening direction from closed position. When caps are installed, torque to 45 - 60 in-lbs.
4.1.1.5	Acceptance Criteria
· ·	a. Leakage in the uncapped condition shall not exceed 1.0 x 10 ⁻⁴ scc helium.
	b. Leakage in the capped condition shall not exceed 1.0 x 10 ⁻⁶ scc helium

E44

299<

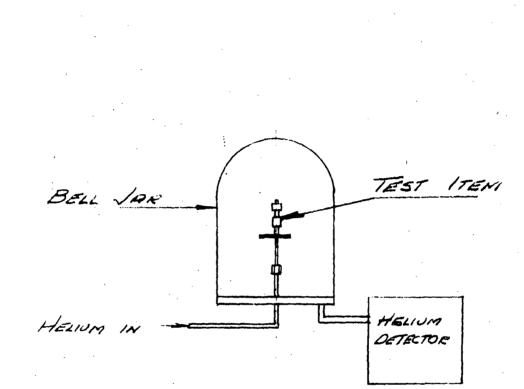
• •

Hamilton U Standard A.	CODE IDENT NO. 73030	SPECII gyHS	FICATION NO. 5997	REV	
WINDSOR LOCKE, CONNECTICUT 06096			PAGE	E 4	-

4.1.2 Vibration

- 4.1.2.1 <u>Objective</u> The purpose of the vibration test is to demonstrate the capability of the value and bracket to withstand without deleterious effects, the vibration requirement of SP-723-P-19.
- 4.1.2.2 <u>Facilities</u> The vibration test shall be performed at Hamilton Standard in the Space System's Laboratory.
- 4.1.2.3 <u>Test Setup</u> The value and bracket shall be hard mounted to a fixture per Figure 2. Accelerometers shall be installed per Figure 2. The value shall be closed and capped (see note paragraph 4.1.1.4). For axis definition see SV748720.
- 4.1.2.4 <u>Test Procedure</u> Subject the value and bracket to the vibration levels below.

Sinusoidal


Axis	Frequency (Hz)	Level	Sweep Rate Octave/Min.
Z	5-11	.48 in. DA	2.0
	11-17	± 2.3 gpk	2.0
	17-23	± 6.8 gpk	1.5
	23-200	± 2.3 gpk	2.0
	200-700	± 3.0 gpk	2.0
	700-2000	± 10.0 gpk	2.0
Х & Ү	6-8.9	•75 in. DA	2.0
	8.9-14	± 3.0 gpk	2.0
	14-200	± 1.5 gpk	2.0
	200-600	± 5.0 gpk	2.0
	600-2000	± 7.5 gpk	2.0

Random

Axis	Frequency (Hz)	PSD	Grms	Duration
X, Y, Z	20 20-500 300-2000	.0029 g ² /Hz +3 db/oct .045 g ² /Hz	9 .1 6	4 min. per exis

NOTE: The filter roll off characteristic above 2000 Hz shall be at a minimum rate of 40 db/octave or greater.

4.1.2.5 <u>Acceptance Criteria</u> - Visual examination shall reveal no permanent damage.

got Hitta

BVHS \$997 Page: 5

FIGURE 1

E46. 301<

LUCALE ITALE PREELED WETERS ON THIS PART OF VALUE BVH8 5997 ' FREE CE FOR X,Y \$2 RESPONSE MS/6996-10 DE MS24673-2 OR EQUIV. 5 PLACES NASGZOCAL OR EQUIV. 7 PLACES Santea Actor Brancis VALVE 9,00 p. 8,70 BRACKET PAN EV756+31-1 MS 21043-3 2 PLACES (OR EQUIV.) MOUNTING 1 FIXTURE 0 Õ SEE SVTABTRO FOR AXIS DEFINITION FK 2 E47

Hamilton UNITED AIRCRAFT CORPORATION Standard A®

. .

. .

. .

SVHSER 6184

- <u>-</u> -

· ·

APPENDIX

Qualification Test Report

04 04

Е48

-200

SLS TEST ENGINEERING TEST REPORT

FILE CODE TER 2769 DATE 3/30/73

ROGRAM RAE-B TEST IT	EM VALVE &	BRACKET	S/N
AME OF TEST QUALIFICATION	0	ATE OF TEST 211	2 - 2/21/73
EST SPECIFICATION SVH55997	т	EST PLAN	
ONCLUSIONS THE FILL AND	ENT VALVE	SATISFIED 1	EAKAGE
TEST REQUIREMENTS BEFC	RE AND AFT	TER BEING SU	BJECTED TO
THE VIBRATION TEST ENVIRUN	MENT. NO	STRUCTURAL C	AMAGE WAS
ESERVED ON THE VALUE OF	2 CRACKET I	AS A RESULT C	F VIBRATION.
ECOMMENDATIONS (OPTIONAL)	·	·	

·			
BSERVATIONS (OPTIONAL) TUE I	EM WHIC	H SULCESSFUL	LLY
COMPLETED THE QUALIFIC	· · ·	•	
EVTELASI-1. AND FILL & VEN	T VALVE F	21N SV722430	-1, 5/N 31713-2
COPIES OF THE VIBRATION	TEST CONT	ROL CURJES	AND A SUMMARY
F THE LEAKAGE TEST RES	JUTE ARE	INCLUDED. V	ALVE SIN 24512-2
FAILED LEAKAGE BEFURE VI	BRATION. T	HE VALLE WA	S FLUSHED
WITH I FA AND RETESTED,	RESULTING	IN KNOTHER	LEAK TEST FAILUN
THE VALVE WAS SHIPPED TO	NASA FOR	ANALYSIS AL	UD REPLACED
DITH SIN 31713-2.	·		
OTAL TEST TIME			
NOURANCE CYCLES NONE			·
RIGINAL COPY	<u>:</u>		
C: CHIEF OF RELIAB / CHIEF OF DESIG EST ENGINEERING FILE	N	· · · · · ·	_
EST ENGINEER WALTER E. SMIT	- <u>H</u> API	PROVED/DATE	bestEnless
IGNATURE W.E. Smill			5/30/73
ATE 3/30/73	E49		
	304<		

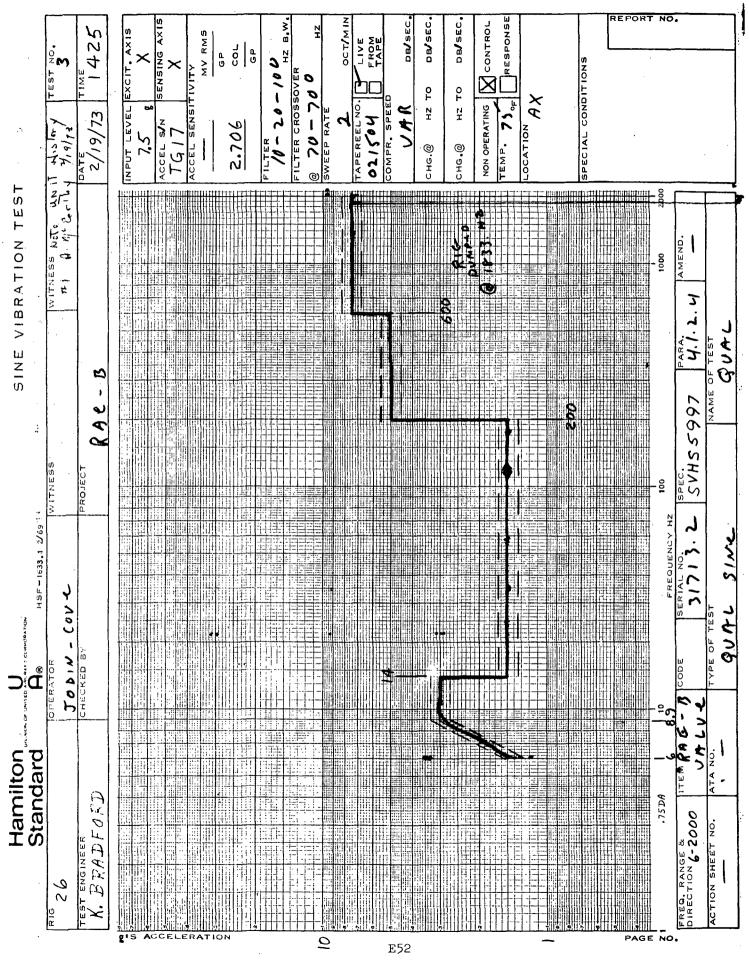
MANUFACTURER VIACO	TTAT ITEM		E VENT ANNE		2—18828—c			W C. S. WULL	, á	31301-13	r
Justifier Kantonia Used intermentation Used intermentation Used intermentation Used intermentation steff term fill term fill term fill steff term fill term fill fill fill steff term fill fill fill fill fill steff fill term fill fill fill fill steff fill fill fill fill fill steff <th></th> <th></th> <th>1</th> <th></th> <th>UFACTURER VACC</th> <th>0</th> <th></th> <th></th> <th></th> <th></th> <th></th>			1		UFACTURER VACC	0					
Los Fort, are, res, res, res, res, res, res, res, r	P/N SV7224				1			APPR	IOVED BY		
PREF RE TEST CONDITIONS PARE LECMAGE CETMON MMA, TEST CONDITIONS MMA, MMA, MMA,	┢──		SPEC.	TEST TITLE		MEASURE		NO. 54	MPLES	REMARKS	
Every E			REF.	TEST CONDITIONS	SPEC, LIMITS	MIN.	MAX.	TESTED	PASSED	DATA SHEET	
Cappeo la cape de la calera de	2/16/73		NH N NH N	REFORE N							
UNCAPPEO INU-SACISE MAX .2x10-7 LEAN AGE APTER VIGRATTOU CAPPEO SAME AS I.2×10-7 UNCAPPEO SAME AS I.2×10-7 UNCAPPEO SAME AS .2×10-7		<u></u>		•••	INIO SUCISEL. MAL		6×10-1				
LEAK AGE AFTERC LEAK AGE AFTERC LORATION CARREN LANCE					XID Stelste Max		-2×10-7				
Louxe. R. J. M. S. P. C. J. R. S. C. J.	51/13										
T-OLAS.				CAPPEO			1.2×10-7				
				URCAPPED	Ger NE		1-01×3.				
			: 								
	<u> </u>										ж. ^г
					· · · · · ·						1. 1
											199 - 199 199

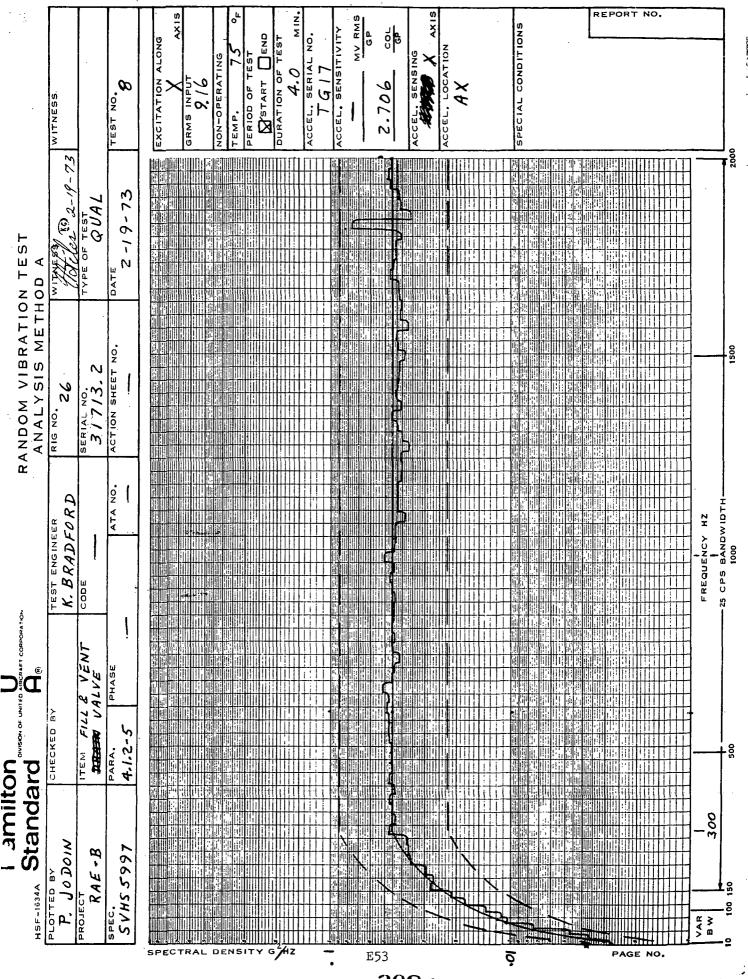
•

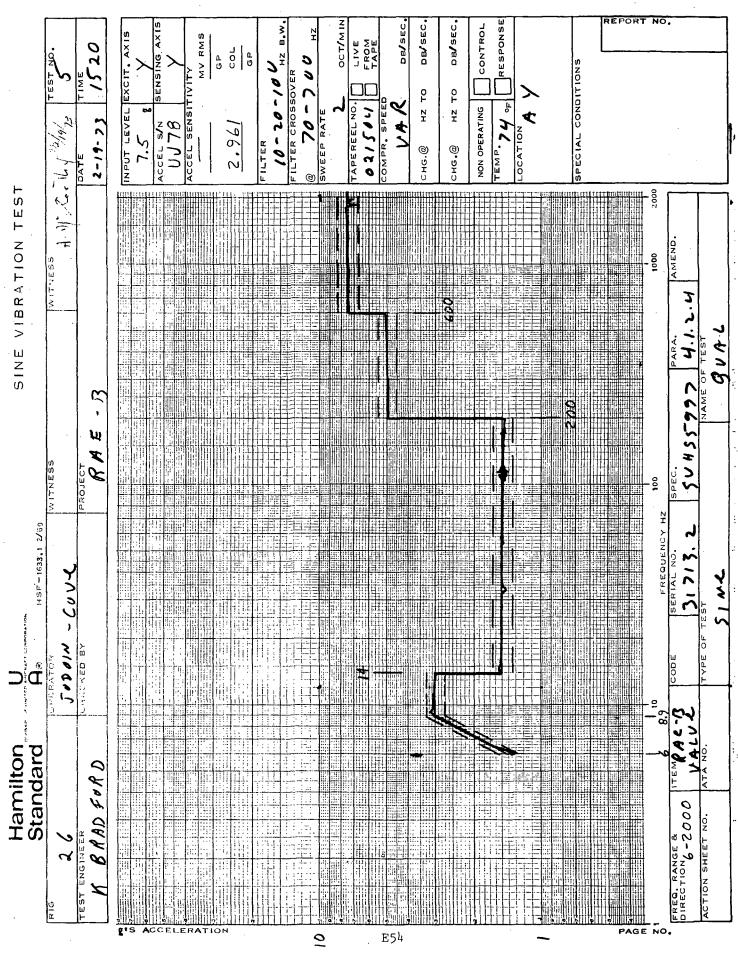
E50

.

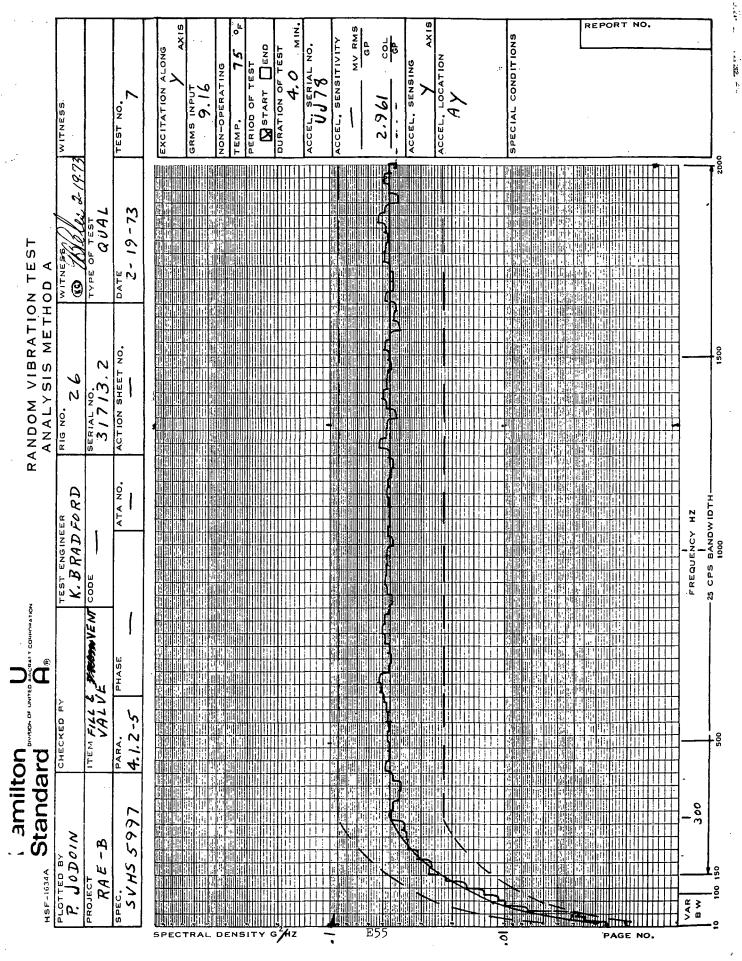
Ha	milto	on Stan	dard					Ó	Hal.	QUAL VID. Test	Test			TE9	TEST PLAN NO.	IC .	LOPZ 2H	57	
SONIA	OR LOCK	WINDSOR LOCKS, CONNECTICUT 06096	CUT 06094	4	L L			тезт е: М		ENGINEER K Reind Daud	~			Ň	MODEL NO.		.	Valve	
	i						_4	NAME OF RIG	F RIG		2			PAR	PART NO. SV	-12H22LNS	_	Bracket	
	ネ	SPACE & LIFE SYSTEMS LABORATORY	FE SYSI	TEMS L	-ABORAT	ORY	<u>I</u>		لی # ک					SER	SERIAL NO.	_	1		
			LOG OF TEST	F TESI			Ъ0	PROJEC	T & ENG	PROJECT & ENG. ORDER NO. ASI - RLS - 001A	SIA			1do	OPERATOR9	HIDDUL	LUVE		
	Ruh #	Time	A.	AXIS Mode	dc	ΰŏ	r cher		TU JU	Time 1155		Æ		 					•
	رم	140S	×	Ō	Sine	1.0	3.0		1		±	H-1:1-H							
	m	ואשב	א א		Sine	J.S.	D.6		· 1		5	4.1.2-5							
	7	ISOS			Sine	<u>ا</u> رد	ی بر				7	א-גויא	-7					·.	
	S	للاككا	7		Sine	,S S	ہ بی		1		<u></u>	41.2-5		A. y Carl		3/1/13			
	~	1820	> 		RAND	,	1		9.16	4,0	4	4.1.2-5	<u>()</u>	1992	led 5	2-19-73	3.	-	
	ø	1915	×<		RAND	١	1	<u> </u>	9.16	4.0	4	4.1.2 -5	ر .						
2-20-73										1			•						
	2	/BS	ץי 	Z RA	CANID	1	1		91.6	4.0	5	5- 2-1-15		_ V	é				
	2	0///	ч ч	5	SINE		3,0		.1	1	7	4.1.2-4	Ç	1 VI	clo.				
	7	//35		7 51	Sihie	0/	2.0		1		ア	4.1.2.5	E -	W 3	۲.				
													P 						
			· ·																
																-			
								_											
			-								-								
	<u> +-</u>	19R	RUN	2	8	Z	×	کر ت	2	- 4	vere	an ka	OBE	J.	- A	36°			
		2 AC	4	<u>ve, 2</u>	<u>B</u>	A d	てして		N.Y.	DRIENTATIO	201								
			-					-			_	_			_		+		
REMARKS:		DeAs	gresent	H.	to	stert	÷ t°	runs	· ()	4. c. Th		62-61-8) œ	8352
_		-									-								

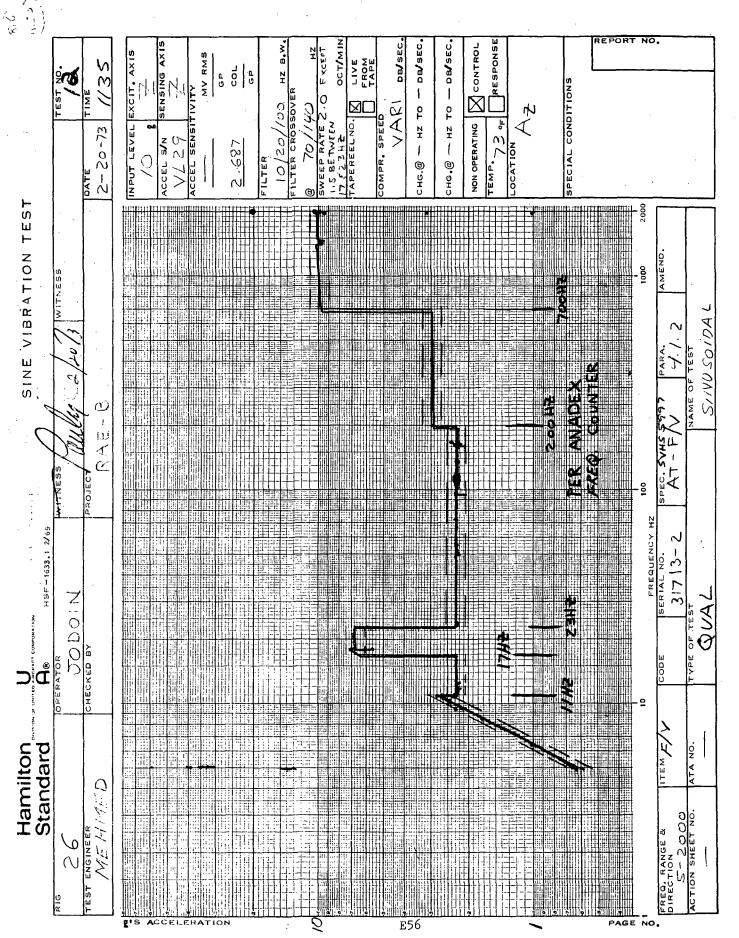

۱ ۱ ;


÷


. .

÷


E51 306<



 $\mathbb{N}^{\mathbb{N}}$

*

			···.	AX IS		ST OF	ω IN.	· · · · · · · · · · · · · · · · · · ·	MV RMS GP	COL	AXIS	-	 ions 235	 REPO	RT NC		<u> </u>	
	WITNESS	•	TEST NO.		GRMS INPUT	TEMP. 74	DURATION OF TEST	VL 29 Accel. Sensitivity	I.	87	ACCEL. SENSING	ACCEL. LOCATION	 TIME OF DAY 1035					
NN TEST Hod A	WITNESS	TYPE OF TEST QUAL	рате 2-20-73															2000
RANDOM VIBRATION - ANALYSIS METHOD	RIG NO. 6	SERIAL NO. 317/3, 2	ACTION SHEET NO.															1500
£	U ENGINEER	CODE	ATA NO.															25 CPS BANDWIDTH
DUNSTO- OF UNITED CONTOUR TOP	кео вү	LAL VAL	2															300
Standard	JODOIN	AE - B	VH - TA VH S SY9 7															0 150
·	PLOTTED	PROJE	SPEC.			ENSITY	G /HZ	1 . 10'	E	57			0	P	AGE N	•.	VAR A	10 100

Hamilton Standard

SVHSER 61.84

APPENDIX

CE-5 CLEANLINESS LEVEL

E58

CE-5 Cleanliness Level

Particle Size (Microns)	Particle Count (Particles/ft ²)	Non-Volatile Residue (grams)	Visual Inspection
5-10*	1200	N/A	Required
10-25	200		
25-50	50		
50-100	5**		
100	0	· ·	· ·

*Particles below listed ranges shall cause no discoloration of membrane filters.

**Metal particles larger than 50 microns in size, shall not be allowed.

E59

___4<

Hamilton Standard CORPORATION AIRL H.

APPENDIX

ł

Acceptance Test Plan

. . . .

Е60

allean Generater	a U	SPECIFICATION NUMBER	
LOCKE, CONNECTICUT OCCOS		ATA NUMBER 2	
ORITY FOR TEMPO Specification I	RARY ALTERATION REQUIREMENTS	CODE IDENT NO. 73030	
K. Noore	Goddard Space F1		
See attachment			· ·
			,
м 			
	:		· · ·
			·
		· · ·	
	·		
YTEST REGORDING X YES	NO		
ABREMBLY	<u> No</u>		
VOPS P/N SV748720-1	ITE INVOLVEB		
VOPS P/N SV748720-1 ATION OF FARTS ON ADDEMDI	NO NO		
VCPS P/N SV748720-1 ATION OF FARTS ON ASSEMBL	LIZE INVOLVEB		
VCPS P/N SV748720-1 ATION OF FARTS ON ADDEMDI NO	TES INVOLVEB		
NO	LIZE INVOLVEB		
NO	NO		
NORS P/N 8V748720-1 ATTEN OF FARTE ON ASSEMBLY NO NARHINE N/A INETRUCTIONE			
VORS P/N SV748720-1 No NARHINE N/A None	AND/OR 1 UNITS	SERIAL NUMBER RECORD	
NORIEATION SAPIRES	AND/OR 1 UNITS	SERIAL NUMBER RECORD COVENNMENT	
NORIEATION EMPIRES		BPECIFICATIONS CONTINS	1-11-73
NORISATION SAPIRES		BPECIFICATIONS CONTINS	

SVHS 5618 ATA No 2 SHEET 2

- Change to read: "The PAT is conducted to verify the leakage integrity 3.0 of the VCPS."
- 4.3 Add - Isopropyl alcohol per TT-I-735

4.4 Change to read: "The Acceptance Test shall be conducted in the following sequence:

	Test	Ref. Paragraph
	Examination of Product Weight Proof Pressure External Leakage Contamination Check Post Test Inspection	4.5.1 4.5.3 4.5.4 4.5.6 4.5.8 4.5.8 4.5.7
4.5.2	Delete.	· · · · · · · · · · · · · · · · · · ·
4.5.3.4	Change to read, "The dry weight of the co	ompleted VCPS shall be noted."
4.5.4.2	Add to end of sentence, "or equivalent."	. n ==0000
4.5.4.3	Change to read:	
	 "b. Connect the gas fill and vent values the four pressurant fill values." c. Delete f. Delete g. Delete "using GN2" 	to the gas manifold and open
4.5.5	Delete.	· · · · · · · · · · · · · · · · · · ·
4.5.6.3	Change to read: "a." delete	
Figure I Figure II	Delete Delete	
ADD	• • • • • • • • • • • • • • • • • • •	
4.5.8	Contamination Check	
4,5.8.1	Objective: To demonstrate that the VCPS contaminated the VCPS.	modification has not
4.5.8.2	Description of Test	
1 A		Branch and

- 4.5.8.2.1 Test Facilities - The contamination check shall be performed using the Flush Rig 100 and shall be performed in the Hamilton Standard clean room facilities.
- 4.5.8.2.2 Test Instrumentation - Instrumentation shall be as required by SVP 161.

SVHS 5618 ATA NO. Z SHEET 3

4.5.8.2.3 <u>Procedure</u>

- a. With the four fill and vent valves open, load isopropyl alcohol into the VCPS until alcohol discharges from each of the four vent valves.
- b. Close the vent valves and rotate the VCPS to wet tank internal surfaces.
- c. Open the vent values and drain the VCPS, collecting an effluent sample and verify the VCPS cleanliness as directed by SVP 161.

d. Vacuum dry the VCPS at 2000 microns until the VCPS does not exhibit a pressure rise to the vapor pressure of IPA after removing the vacuum source.

Acceptance Criterion - The effluent sample checked shall meet the cleanliness level of CE-5 per SVHS 3150.

4.5.8.3

Hamilton U Standard A®

SVHSER 6184

APPENDIX

SCHEDULE

Е64

319<

ł

SVHSER6184 RAE-B GAS MANIFOLD MODIFICATION - RONASA TO SELENS 21 PREPARA PREME QUAL PLAN Recense 123 North Frence 27 Deliver To 2/2 PERSON DUNE 200 PERSON STORES (39) CHRUSE & PELENSE ASSY LUNG DW63 TJER MANUFACTURE 218 PELIVER TO DW63 FINISH STRS PEDCURE FILL & 2/9 EECEIVE 2/4 DELIVER ! VENT VALVES & INSPECT TO FIN STES PREPARE MASA (120 PREPARE FIXTURES) REVISE GSE APPROVAL FAT SHEETS PROCEOURE ATP PREMARE MANIE 2/2 MANUFACTURE (2/21) PAT MANIFOLD MANIFOLO × . DWSS PREMARE MANIPOLD 279 PREMARE PROCEOURE ATP

E65 320<