
Ground Operations Aerospace Language

GOAL

Final- Report

Volume III

Data Bank

(NASA-CR-136779) GROUND OPERATIONS N74-15889
AEROSPACE LANGUAGE (GOAL). VOLUME 3:
DA[A BANK Final Deport (International
Business Machines Corp.) 139 p BC $9.00 Unclas

CSCL 09B G3/08 28967

31 July 1973

https://ntrs.nasa.gov/search.jsp?R=19740007776 2020-03-23T12:41:15+00:00Z

Ground Operations Aerospace Language

GOAL

Final Report

Volume III

Data Bank

Contract NAS 10-6900

Approved by:
W W. Handley, Manager

Systems Programming and
Advanced Programs

-T

.... Federal Systems Division 31 July 1973

TABLE OF CONTENTS

Section Title Page

1.0 INTRODUCTION--- ---------------------------- 1-1

2.0 CONVENTIONAL PROGRAM I/0 DEVICE ADDRESSING--------- 2-1

2.1 Early Binding------------------------------ 2-1
2.2 Modified Early Binding---------------------- 2-1
2.3 Late Binding-------------------------------- 2-2

3.0 MEASUREMENT ADDRESSING IN SENSOR-BASED PROGRAMMING- 3-1

3.1 Binding in Saturn/Apollo Software----------- 3-1
3.2 Binding in the Goal Language--------------- 3-2
3.3 Extensions of Data Bank Usage Into Other

Areas -------------------------------- 3-2

4.0 IMPLEMENTATION OF LATE BINDING--------------------- 4-1

4.1 Late Binding in Goal---------------------- 4-2
4.2 Late Binding in a Goal System-Examples------ 4-2

5.0 MISCELLANEOUS- --------------------------- 5-1

5.1 Another Requirement for an Online Data Bank- 5-1
5.2 The Effect of Measurement Names on Data

Bank Usage---------------------------------- 5-2
5.3 Multiple Addressing Conventions for Online

Keyboard Usage------------------------------ 5-3
5.4 Implications of a Two-Data Bank System------ 5-6

APPENDIX A The Data Bank File Design------------------- A-i

APPENDIX B The Data Bank Functional Design------------- -1l

APPENDIX C DASD Size Estimates for Goal Data Bank
Implementation-------------------------- C-1

APPENDIX D Program Module Uescriptions----------------- D-1

APPENDIX E Data Record Formats--------------------- E-1

i

TABLE OF CONTENTS (Cont)

Section Title Page

APPENDIX F Sample Control-Card Input------------------- F-l

APPENDIX G Data Bank Maintenance Module Error Messages- G-1

APPENDIX H Pre-Processor Error Message List ---------- H-l

APPENDIX I Data Bank Pre-Processor Syntax Tables------- I-I

ii

1.0 INTRODUCTION

The GOAL (Ground Operations Aerospace Language) test programming language
was developed for use in ground checkout operations in a space vehicle
launch environment. To insure compatibility with a maximum number of
applications, a systematic and error-free method of referencing command/
response (analog and digital) hardware measurements is a principle feature
of the language. Central to the concept of requiring the test language
to be independent of launch complex test equipment and terminology is
that of addressing measurements via symbolic names that have meaning
directly in the hardware units being tested. To form the link from test
program through test system interfaces to the units being tested the con-
cept of a data bank has been introduced. The data bank is actually a
large cross-reference table that provides pertinent hardware data such
as interface unit addresses, data bus routings, or any other system values
required to locate and access measurements.

Three aspects of future aerospace operations can be considered key when
determining whether single or multiple data bank(s) can be justified.
First, the management of a very large number of sensor based measurements
at distinct facilities constitutes a large engineering management effort.
Secondly, verification and launch checkout of future ground and flight
hardwares will require use of this large measurements base in conjunction
with the generation of a large body of automation and test program software
packages. A third problem area is then created when combining certain aspects
of the first two - when hardware modifications are required as a result of
normal or abnormal operations these changes must be carried over into the
software programs also. The solutions to any or all of these problems are
further degraded when confronted with the potential space shuttle environ-
ment of tight launch schedules involving multiple vehicles.

Little can be accomplished in alleviating the problems of the large measure-
ments base or the large number of required test programs as these items are
controlled by engineering factors not under direct control of ground data
processing systems. Data processing equipments can be effectively used in
the support of the ground checkout and launch "business" just as they have
been in other applications of the scientific and commercial world. The
GOAL test programming language has evolved as an attempt at alleviating
the problem of generating and managing a large number of test programs.
The use of a data bank in conjunction with the GOAL language is vital since
its sole purpose is to assist the programmer in dealing with a large and
variable set of measurements and to make as easy as possible the intro-
duction of the effects of hardware changes into the test programming system.
Accordingly, throughout the remainder of this document, the aspect of mean-
ingful use of measurements and the software impacts of hardware measurements
changes will be discussed over and over again. A significant portion of this
document will deal with suggestions as to improvement of operations using
the GOAL language compiler data bank and extending the use of a measurements
data bank into online use in ground operations.

1-1

2.0 CONVENTIONAL PROGRAM I/0 DEVICE ADDRESSING

2.1 EARLY BINDING

In general, software communication with any external computer accessible
device is considered an input/output operation. The process of associating
actual device addresses with input/output instruction sequences is known
as "binding" in data processing parlance. The binding of device addresses
to I/O instruction can be effectively accomplished at or before program
execution.

"Early binding" techniques have been customary in the past with compiled
high level languages such as FORTRAN. Thus, at the time that the pro-
grammer coded the sequence

WRITE (6,10) A, B, C

directing output to symbolic device #6, it had already been determined
(usually by compiler decree) that device #6 was to be, for instance, a
tape drive at device address A. Once compiled, only tape drive A could
be used as a target for the output operations directed to device #6. If
for unseen reasons tape drive A was not operational, the early binding
of this device address A to the symbolic name 6 forces one of the follow-
ing two alternates:

1. If at all possible, the program run is held in abeyance until
the required tape drive becomes operational.

2. If the program must be run, a workaround for the required hard-
ware address change must be effected. In the traditional early binding
situation for FORTRAN, the following steps are required:

o Assign an alternate tape drive to replace the non-
operational drive A. Assume that tape drive C
(symbolic address #8) was available.

o The FORTRAN source program is then modified such
that every WRITE statement addressing device #6
is redirected to device #8. The statements of
concern must be repunched.

o The revised source program must then be recompiled
prior to its use.

2.2 MODIFIED EARLY BINDING

A significant improvement to the classic early binding problem can be
effected by associating symbolic device addresses with actual hardware
addresses via compiler control cards or special source program control
cards at compile time. Thus, with "modified early binding" the problem

2-1

of the previous FORTRAN example would be resolved by modifying a device
control card and recompilation of the source program. Note that modifi-
cations to the actual source program are no longer required in this
instance - this could amount to a significant number of changes in many
programs. Several programming languages have directly or indirectly
adopted this technique of improved early binding. For instance, the
sole purpose for the ENVIRONMENT DIVISION Section of a COBOL program
is to implement this feature.

2.3 LATE BINDING

"Late binding" became a reality with some of the more advanced Operating
Systems available late in the so-called 2nd Generation era of software.
With late binding, the actual hardware address versus symbolic address
linkage is to be made after compilation. Thus, the salient feature of
this type of binding is that no source program modifications or re-
compilations are required to accommodate device address changes. Late
binding is usually one of the service functions of an Operating System.
The actual binding or device selection is customarily performed imme-
diately before execution of the program involved. In the selection of
specific devices for allocation to a program, the Operating System may
follow control card direction as to exactly which device is desired;
some Operating Systems are capable of selecting any appropriate device
from a pool of available devices.

2-2

3.0 MEASUREMENT ADDRESSING IN SENSOR-BASED PROGRAMMING

The data processing environment in which a sensor-base (process control)
program must operate is in many areas parallel with the traditional batch
scientific or commercial environment. As such, many of the tried and true
solutions to traditional batch programming problems can be expected to
bear similar fruit in the process control environment. The two environ-
ments are not the same, however, and it should not be surprising if some
of the solutions to the past problems do not yield equivalent results;
in some instances, new solutions to new problems must be sought.

Sensor-base measurements (discrete and analog inputs/outputs) form a set
of simple input/output devices to manipulate - the measurements problem
in the process control environment is not one of complexity but one of
sheer bulk. As the total number of input/output device addresses grows
larger, the possibility of an individual address change becomes more
significant. Experience has also shown that the negative aspects of the
software binding techniques discussed previously become more intractable
for the case of managing a system of process control programs. For instance,
a single discrete measurement address change may require several hundred
changes to a dozen or so programs - all of which must then be recompiled
and reintroduced to the online system before run time.

3.1 BINDING IN SATURN/APOLLO SOFTWARE

In the process-control environment of SATURN/APOLLO, the discrete or analog
measurement symbolic name and measurement hardware address were synonymous.
By the choice of such a symbolic naming scheme, early binding of symbolic
name and hardware address was forced on the process-control software - at
the assembler language level as well as at the high-order language level.
Thus, the following succession of events could be anticipated following a
hardware change - possibly as minor as a single address modification:

o The first problem falls properly in the area of configu-
ration management - that of finding from a system of (n)
software modules just which ones access the measurements
whose addresses have been changed. In general, a manual
search of program listings has been the only method of
solving this problem.

o Having determined which program(s) require modification,
the imposing task of source program modification can ensue.
Two factors accentuate the difficulty of this endeavor.
First, it is common for a single measurement to be mentioned
many (possibly, hundreds) of times within the bounds of a
single program; the problem of finding and making all of the
required changes is a very real problem. Often, "almost all"
of the changes are located and made. Secondly, the modifi-
cation task must in many instances be attended to by personnel
not responsible for coding the original programs; this adds
a factor of difficulty to any program change.

2:-I1

o All of the modified software modules must then be re-
assembled or recompiled prior to use. Some may also
require revalidation of program operation after changes.
Once the update process has completed, the updated
modules will replace the currently active modules in
the online system.

o If the measurement address changes were only temporary,
the above sequence of operations must be reversed to
return the software system to its original configuration.

3.2 BINDING IN THE GOAL LANGUAGE

The disadvantages of early binding in the existing SATURN/APOLLO computer
languages were well known when specifications were first drafted for GOAL
(Ground Operations Aerospace Language). This high level language, intended
for use in the post SATURN/APOLLO time frame introduced the concept of a
"data bank" as a repository for all sensor-base hardware procedural,
addressing, and routing data. With the initial implementation of the
GOAL language, this data bank took the form of a disk-resident file from
which the GOAL compiler could randomly access data relative to all avail-
able measurements. GOAL also introduced a meaningful symbolic naming
scheme for all hardware measurements and classifies such devices as
"function designators." As an example, the discrete signal that
activates/deactivates 28 volt stage power might have been addressed
in the SATURN/APOLLO software via its hardware address, e.g., DISCRETE
OUTPUT #414 - early binding of the hardware address is thus completed.
The same measurement could be addressed in a GOAL program by the symbolic
function designator name "28V STAGE POWER." Using the function desig-
nator name as a search argument, the GOAL compiler would query the data
bank during compilation and determine that a discrete output measurement
at hardware address 414 was being referenced. This GOAL implementation
of a modified early binding technique eliminates many of the frustrations
of accommodating measurement address changes. All such changes will be
introduced to the GOAL system by an update to the data bank. Recompila-
tion of the appropriate test programs will then effect the required
modifications in the programs.

3.3 EXTENSIONS OF DATA BANK USAGE INTO OTHER AREAS

One of the basic design philosophies of the GOAL language stipulates that
a GOAL test program must have the ability of addressing measurements and
specifying test points at the lowest level possible within the bounds of
a given system configuration. It was recognized that the level of access
or the method of accessing a particular measurement could vary significantly
- dependent upon the physical or geographic site at which the program was
to operate.

3-2

As an example, consider a flight component called "Box A". A test program
is developed that will issue stimuli to Box A and measure subsequent Box A
responses in a fashion that will verify the internal operational status
of Box A. As illustrated in Figure 3-3-1, both the type as well as quantity
of test hardware which might exist between the test program host computer
and Box A could vary significantly at three geographical sites at which
testing of Box A is required.

o At the manufacturing site, the final acceptance test
interface is shown as comprising a simple hybrid set-
up solely dedicated to the testing of Box A.

o At the launch site, Box A assumes the role of a single
component within a complex vehicular hardware system.
The test interface in this instance is quite complex
since it addresses the entire vehicle - only a small
portion of the overall interface can be dedicated to
the control or testing of Box A.

o During preventive or fault isolation maintenance, a
third variant of interface exists between the test
program and Box A. In this instance, controllable
diagnostic test hardware has been introduced. Al-
though Box A is shown as being the sole object of
test, maintenance testing could well have been
directed at a larger system within which Box A was
a minor component.

In each of the instances in the example, the contents and operation of
the test program could be assumed to be constant, i.e., the procedure
used for the internal verification testing of Box A is the same ir-
respective of the location of Box A. The method of sensor-based
measurement address binding now becomes most significant. If early
binding is chosen, the test program must be programmed in a unique
manner in each of the locations of the example. This implies unique
program coding as well as unique verification of the proper operation
of the program at each site. The function designator naming scheme
and data bank concept of GOAL combine to make it possible to fulfill
the test program obligations of all three sites with a single source
program. Since each site will support its own version of the GOAL
data bank, a compilation of the same program at each site will result
in an executable module tailored to each of the distinct interface
requirements.

3-3

Test
Computer

_ ~ Box
A

Box A
Test
Program Hybrid Test

. Harness

FINAL ACCEPTANCE TEST AT MANUFACTURING SITE

Ground
Test Interfaces ---

Computer

Additional Box

Computers Vehicle A

Box A
Test Hardwire and

Program 1 RF Linkages

LAUNCH COMPLEX PRE-FLIGHT TESTING

Test

Computer

Diagnostic
Test Box
Hardware A

Box A
Test

Program PREVENTATIVE OR FAULT ISOLATION MAINTENANCE

Figure 3-3-1. SAMPLE HARDWARE CONFIGURATIONS

3-4

4.0 IMPLEMENTATION OF LATE BINDING

The single inconvenience encountered in a system which incorporates early
or modified early binding is that of requiring program re-compilation to
adjust for input/output addressing changes. Put in other words, the
actual binding operation takes place during (and only during) compilation.

To effect late binding, the binding process must ensue after compilation;
this essentially divorces the compiler from binding responsibilities but
introduces the requirement that another program accomplish the binding.
In many modern systems this binding responsibility will be delegated as
a utility service task for the Operating System. Generally, lack of late
binding resources within a given data processing system can be attributed
to one or more of the following reasons:

o Occasional recompilation of a program to adjust for
input/output device reassignment is not considered
by some users to be an inconvenience worth mentioning.

o That which could be cleanly designated as an "Operating
System" is absent in many small or so-called "mini" systems.
The high-level language compiler (if any) of such a system
must produce a program module that is completely self-
supporting - it can be loaded and carried through all
phases of execution without assistance from other pieces
of software. Manual assistance, e.g., control-card
direction after compilation is almost never required,
nor, in most instances, possible.

A method will be presented later in this document in
Section 4.2 to demonstrate that late binding can be
effectively implemented on a system which hosts only
a computer of small capability. This would seem in
contradiction with the statements preceding, however,
the "small" computer of Section 4.2 will be augmented
considerably by offline support of a larger system on
which the burden of compilation and software binding
will be placed.

o In some systems the effort associated with implementing
a late binding scheme was simply not justified in the
minds of the system designers. Not only must the high-
level language compilers and the Operating System software
be of greater scope, but the use of a late binding system
is generally more complex for the programmer.

4-1

4.1 LATE BINDING IN GOAL

Two features must be present in the GOAL execution-time, i.e., online,
system if late binding is to be effected. The first is the software
module that will actually accomplish the binding operation. This can
be conveniently delegated to either a utility program or a utility
service of the online operating system. The second need is that of a
large cross-reference table that can be used to relate symbolic measure-
ment names to actual hardware accessing data; in other words, an online**
data bank is required.

Two positive factors make the operation of late binding in the GOAL

language system distinct from the implementation customarily found in

scientific and commercial data processing systems. First, the compile
of a GOAL program and the execution of the same program will probably
be accomplished on different computer systems. This means, for instance,
that the qualifications that must be met by the computer system that

hosts compiler operations need not be reflected or duplicated by the
execution-time computer systems, or vice versa. Secondly, for the GOAL
system, no appreciable user effort is required to effect or control the
binding operation whereas traditional late binding techniques customarily
involve modest to extensive control-card direction by the programmer.

4.2 LATE BINDING IN A GOAL SYSTEM - EXAMPLES

Figure 4-2-1 illustrates the process flow of the production of a loadable
program module via the first implemented GOAL compilation process. The
file marked "intermediate text" in this case is the source program in
another more readily processable format. Within the intermediate text
file is the reformatted source program plus all applicable hardware
addressing or usage data as supplied by the compiler data bank. In the
instance of Figure 4-2-1, the translator program provides the interface
between online SYSTEM-X and the general-purpose intermediate text form
of the user program. Each distinct online system will require a unique
translator program. The program module shown as output from the trans-
lator is complete; function designator hardware binding was accomplished
at the GOAL compilation step - in this instance, modified early binding.
The final step of the programming sequence is the introduction of the
tailored program module to the program library associated with the online
computer of SYSTEM-X.

**"Online" is perhaps a poor choice (as will be seen later) to attach to
the data bank associated with the binding task. For the present, let it
suffice to say that the word "online" is used strictly to establish a
distinction between the online data bank and the data bank associated
with compiler operations (the compiler data bank).

4-2

A possible method of accomplishing the transition from the current GOAL
modified early binding system to a late binding variant is demonstrated
in Figure 4-2-2. This diagram can be seen to differ significantly from
that of the current modified early binding system of Figure 4-2-1 in the
flow logic following the translator phase. Preceding the translator,
the compiler data bank now contains no hardware binding data. Function
designator data consists of symbolic name and associated hardware type
(discrete, analog, etc.), description. The translator program of the
late binding system accomplishes the same general functional task as
before, i.e., translating the intermediate text format of the user pro-
gram into an acceptable form for use on the online system. The output
of the translator is unique in the late binding system - declared data
and program text (direct or indirectly executable code) are combined
into a distinct output labeled the "program module." Associated with
each program module is a second output from the translator - the
"measurements table." This table will contain no entries for those
programs which make no reference to external input/output devices
(including sensor-base devices). For any other program which will
require binding of function designator name to hardware address, the
measurements table will contain individual table entries - one for
each unique function designator mentioned in the program. Each table
entry will indicate the function designator symbolic name in con-
junction with table space (reserved, but not filled in at translate
time) sufficient to hold any associated hardware addressing, usage,
accessing, scaling, or routing data. The symbolic function designator
name will be used as a search argument when seeking hardware binding
data from the online data bank.

Shown in Figure 4-2-2 as a peripheral to the computer online SYSTEM-Y
is the data bank (called the "online" data bank) from which the hard-
ware binding data** can be extracted. Introduction of the entire program
to the online computer program library takes place in the following two-
step operation:

1. The program module is transferred and edited into the online
computer program library in exactly the same fashion as with the modified
early binding system.

2. The measurements table will be entered into the measurements table
library via a utility program entitled the "table editor" in Figure 4-2-2.
The table editor will locate each function designator in the online data
bank by using its name as a search argument. Once a function designator
has been found in the online data bank, all pertinent hardware accessing
data (binding data) will be filled into the space reserved for it in the
measurements table. The completed table will then be written into the
measurements table library.

**There is a definite need for an online data bank for use in areas other
than late binding support. More on this later, in Section 5.1.

4-3

The "program fetch" (locating and fetching a program into computer storage
prior to its execution) operation of the online computer Operating System
as shown in Figure 4-2-2 will require modification to accommodate location
and load of both the program module and its associated measurements table.
Even though late binding involves a distinction between program module and
measurements table, no more computer memory should be required at execution
time to support a late binding operation than that which would have been
used in an early or modified early binding system.

Online SYSTEM-Z as depicted in Figure 4-2-3 is offered as an example of
extending late binding capability into a hardware system of unusually small
capacity. The computer of online SYSTEM-Z is assumed incapable of support-
ing an online data bank as a normal peripheral device. A practical instance
of this situation might be in the case of a so-called "mini" computer system.
Even in this instance, ability to accomplish late binding has significant
advantages - predominant is the ability to accomplish binding without re-
quiring program recompilation. The late binding operation in this system
occurs at translate time on a computer of higher capability than the online
mini system. The translator data bank is labeled "online" to distinguish
it from the compiler data bank. The program module produced for use on the
target online computer would be complete, i.e., all binding accomplished.
The program module is not shown as entered to a program library since a
computer system of this minimal size suggests that such a program library
might also be beyond the support capability of the system. Tape (magnetic
or paper) or punched cards could be an acceptable storage media for the
program module.

4-4

GOAL
Source

Online SYSTEM-X

GOAL ___ SYSTEM-X Utility
Compiler Translator Program

Intermediate Complete
Text Program
File Module

SYSTEM-X
Program _ _ Online
Library Computer

Compiler
Data Bank

Figure 4-2-1. - GOAL Program Production Flow
As Implementea with Modified Early binding

Online SYSTEM-Y

GOAL . .Prog ram SYSTEM-Y

Program Program
Program (Library

Utility
Program

GOAL SYSTEM-Y Online
Compiler Translator Computer

Intermediate
Text
File Table

Editor -

Compiler Measurements
Data Bank Table SYSTEi-Y

Measurements
Table Library

Onlineuata BankI

Figure 4-2-2.- GOAL Program Production Flow
Demonstrating a Possible Late
Binding Implementation Scheme

L .9_

GOAL
Source

Program

Online SYSTEM-Z

GOAL / SYSTEM-Z O
Compiler " Translator -Computer

Intermediate Complete
Text Program
File Module

Compiler Online
Data Bank Data Bank

Figure 4-2-3. - Entending Late Binding Support to an Online
GOAL System which Hosts a "Mini" Computer

5.0 MISCELLANEOUS

5.1 ANOTHER REQUIREMENT FOR AN ONLINE DATA BANK

Previous experience with the computer environment of SATURN/APOLLO has
indicated that the execution of many process-control programs requires
continual man-machine monitoring and communication. In particular, test
programs used in fault isolation tasks generally rely on their human
counterpart for redirection and specific remedial actions in the detection
and reporting of hardware anomalies. Some type of keyboard-driven terminal
appears to be the most effective man-machine communication medium. Many
actions that originate as a keyboard request or entry deal actively,
passively, or both, with the status of sensor-base hardware measurements.
If the launch complex terminal operator is to have the capability of
formulating queries relative to the status of measurements via his key-
board (either associated with or divorced from the operational requests
of any test program which may be running at the time), a measurement ad-
dressing or name convention must be established.

As discussed previously, the SATURN/APOLLO era approach to measurement
naming centered about hardware dependent terminology, e.g., the discrete
measurement controlling "2nd stage LOX vents" would be referred to via its
hardware routing "discrete output number 414" (or, simply "DO 414"). The
rationale has already been presented as to why the GOAL test programming
language addresses measurements by meaningful symbolic function designator
names rather than by hardware dependent terms. The same justifications
can be extended into the keyboard operations are to enable selection of
a meaningful measurement convention.

That the measurement addressing technique associated with keyboard operations
should be the same symbolic scheme as that which has been chosen for the GOAL
test programming language seems almost indisputable. To do otherwise would
make it mandatory that a single unique measurement be addressable by one
name within the bounds of a test program but require still another distinct
"name" be used in making keyboard referral to the same measurement. The
implications of such an incompatibility can be readily projected into the
amount of additional training required for keyboard operator and test program
writer personnel; a significant amount of additional hard copy support docu-
mentation would also be required to keep track of legitimate synonymous
measurement names and to draw parallels between the names used in manual
keyboard operations procedural documentation and the names to be found in
test program listings.

When making keyboard access to measurements by hardware descriptive symbols,
e.g., "DO 2344" (discrete output # 2344), the terminal software can easily
transform the symbolic address to an actual hardware address. Even an
extreme such as the more cryptic 14-character name convention used for
Digital Data Acquisition System (DDAS) measurements in the SATURN/APOLLO
system lends itself to ready conversion by a strictly software method into
its physical routing equivalent. Any type of name convention whereby certain
or all of the characters of the name impart hardware relations or processing

5-1

information will always appeal to those personnel whose principal tasks
involve heavy reliance on circuit diagrams or other systems drawings or
prints. To the keyboard operator, such a name scheme severely lacks many
human factors attributes. First of all, it is admitted that such schemes
yield names that are quite cryptic and therefore easily entered via key-
board - but, such names because of their cryptic nature are difficult to
remember exactly. Secondly, with a truly symbolic name such as "28VDC
GROUND POWER", a spelling error (even a single character error) almost
always results in an illegal name and the keyboard operator can be so
notified via an appropriate error response from the online computer oper-
ating system. On the other hand, a single character misspelling with a
hardware codified name can many times result in a syntactically legal
name and the logical error can pass by undetected. Consider the example
of the single character misspelling of "DO 4144" in lieu of "DO 4145" -
both could be completely legal references to actual measurements. The
terminal or operating system software packages have no method whatsoever
of making the distinction between what was requested and what was intended.
A third difficulty arises when a measurement must be rerouted and its
addressing changed. In the case of codified measurement names, physical
address modification dictates revision of the symbolic measurement name
also. Such changes in turn force "red-line" or permanent editing of
references to the rerouted measurements in system drawings and hard-
copy documentation.

The introduction of function designator type name standards for keyboard
usage implies that some type of data bank be online available to at least
the computer that accomplishes keyboard request processing. This require-
ment can be merged with the desire for late binding facilities in the
online system; a single online data bank can fulfill all obligations of
both tasks.

5.2 THE EFFECT OF MEASUREMENT NAMES ON DATA BANK USAGE

As a general rule-of-thumb, when a file is used as a repository of variable
data, it should be searched using search arguments that do not change, i.e.,
constant search arguments. Consider the everyday use of a telephone direc-
tory; a constant name is used as a search argument to locate variable data
(address and phone number). Assume that an individual named "J. Doe"
maintains residences in 20 locations. It would be possible to query the
appropriate 20 telephone directories with the constant name "J. Doe" and
retrieve 20 variable phone numbers. Now, if the directories were restruc-
tured to be ordered by telephone number rather than by surname, their
usefulness (at least by human beings) becomes severely curtailed. For
instance, with the present example, the task of determining the location
of 20 occurrences of the constant "J. Doe" is resolved in one of two ways.
The first technique requires that the 20 variable phone numbers (which are
now the search arguments) be already known - in which case, of what use
are the telephone directories? The second method dictates a serial search
of the 20 directories; a messy proposition, even with the assistance of
data processing equipment.

5-2

The above concept of utilizing constant search arguments to retrieve
variable file contents is vital from an efficiency standpoint when
considering the design of either the compiler or the online data banks.
Specifically, measurement (function designator) names used as search
arguments into data banks should be constant. This indicates that any
name convention which uses characters of the symbolic name as indications
of hardware routing or other access information is unacceptable for names
used as data bank search arguments. The hardware indication characters
of such names are subject to change, thus making the entire name a variable.
Violations of the constant search argument principle leads to one or more
of the following ramifications:

o The possibility of the keyboard operator utilizing one
measurement name convention and the test program writer
another implies that at least two or more symbolic names
must exist for each single measurement. The net effect
is that all readability between measurement names as they
exist on program listings and what appears at the output
of operations terminals disappears.

o If one name convention is used for keyboard operations and
another for offline compiler usage, then two data banks of
entirely distinct format and usage conventions must be
maintained. The very real possibility of each data bank
being in a different state of update becomes a constant
maintenance headache - more so because such errors of
incompatibility are virtually impossible to diagnose or
prevent by installing software maintenance safeguards.

o In the unlikely event that the GOAL language is forced to
relinquish the function designator name convention and adopt
a variable name scheme, then the present GOAL test programming
luxury of addressing the "system under test" rather than the
"test system" must be abandoned.

5.3 MULTIPLE ADDRESSING CONVENTIONS FOR ONLINE KEYBOARD USAGE

In the keyboard operations area there is a definite need for an abbreviated
method of addressing measurements. The test program writer can afford the
time required to code with pencil long (up to 32 characters) function
designator names. A keyboard operator will find entry of such names a
time consuming process - particularly during the times when he must address
several measurements in rapid succession. In an effort to establish a
name scheme that will be useful and acceptable to a wide variety of users,
it is obvious that more than one distinct conventions are required. The
most important consideration to remember is that these distinct methods
can coexist and not be in contention with one another (if implemented
properly). If, on the other hand, one name scheme must be selected thus
excluding all other(s), then the resulting compromises and drawbacks must

5-3

also be acceptable since one name convention will simply not fulfill the
needs and desires of all users in an equitable manner. In the following
paragraphs, a technique will be demonstrated to prove that several name
conventions can be used in a compatible manner. The conventions themselves
plus their individual methods of implementation must be carefully selected
to prevent the negative aspects of one convention/implementation from
carrying over into another area. In some aspects of the system illustrated
below, the negative aspects of one convention/implementation can be effec-
tively cancelled by the positive features of one or more of the other
convention/implementations.

Consider each sensor-based hardware measurement to be addressable as
follows:

1. By symbolic function designator name, e.g.,

<GROUND POWER COOLING PUMP>.

2. By a unique "measurement number", e.g., 1436.

3. By a symbolic name in which the characters indicate hardware
routing of accessing information, e.g., lO/A14C2/16.

The function designator version will follow the current GOAL language
requirements of one to thirty-two characters enclosed within brackets.
The measurement number mentioned in 2., above, will be a constant number
whi.ch has been assigned to this particular measurement; each measurement
in the system will have such a number assigned to it, starting the se-
quence at one, 1. Of prime importance is that this number be considered
just as "constant" as the symbolic function designator name - absolutely
no hardware implications are present in these numbers. The hardware-
dependent symbolic name mentioned in 3.,above, can be formed using any
rules suitable to the user group concerned with such terminology. The
example extended above was generated strictly as an example. Since this
name version utilizes hardware-dependent characters in its formation,
the resulting name is not a constant. Certain drawbacks associated with
using variable names as data bank search arguments were presented hitherto
in Section 5.2. When a variable name version is used in conjunction with
a fixed convention, most of the negative aspects of the sole use of the
variable technique are nullified. The problem remains of assuring that
the variable name is updated in a timely and precise manner whenever the
inevitable measurement hardware changes occur.

Specific rules in regards the use of the three names presented in the
example above are as follows:

o The function designator and measurement number are
constant and will not change throughout the life of
the measurement. The hardware dependent version can
be expected to change if hardware accessing modifi-
cations are required.

5-4

o Only the function designator name convention can be
used in the GOAL test programming language.

o All three name versions can be used interchangeably
for addressing measurements via keyboard terminal.

The use of all versions at the online terminals implies that a variety of
users can be serviced - each using the convention most suitable to his
needs. All three versions will seek hardware accessing and scaling infor-
mation from the appropriate measurements record of the online data bank.
The function designator and hardware dependent versions will require a
data bank directory search prior to locating the required measurements
record. A significant feature associated with the measurements number
name version is that the number can point directly to the measurements
record. In the example, a measurement number of 1436 would lead to access
of the 1436th data bank record; thus, no prior directory search would be
required. The use of measurements number names would be feasible in place
of the function designator types in the measurements table application
mentioned in Section 4.2. This would result in an appreciable time savings
in the update of the measurements table library; elimination of the direc-
tory search decreases the total number of input/output operations required
to locate a given measurements record in the data bank by approximately 75%.

As an example of terminal output, using any one of the three names mentioned
previously will result in the following terminal sequences:

(keyboard
input) <GROUND POWER COOLING PUMP>?

(terminal
response) <GROUND POWER COOLING PUMP> = M1436 = 1O/A14C2/16 = ON

Thus, use of any one name will result in appearance at the terminal of the
selected name plus the other two versions in addition to the measurement
status. The output format illustrated above was chosen carefully since
certain drawbacks of using individual name conventions can be eliminated.
Consider the following advantages and features:

o It was mentioned previously that a short name convention
(like the measurement number) can be very attractive to
a keyboard user from the standpoint of brevity and rapid
entry. Such names are subject to misspelling errors that,
in general, cannot be detected. For example, consider the
following input/output sequence:

(Inquiry) M1436?

(Response) M1436 = ON

If the user had entered the 1436 measurements number in
error thinking that it was associated with the "STAGE II
LOX VENTS", no indication of error can be ascertained in

5-5

abbreviated output sequence above. The extended output
illustrated in the previous example would have served as
an error indication when the terminal operator noted that
the <GROUND POWER COOLING PUMP> name was not what he intended.

o If a user was in doubt as to the exact spelling of one name
version of a given measurement, and he knew either of the
other two, then a simple keyboard query using the known
name will suffice to determine the unknown version(s). This
gives the online keyboard operator a convenient method of
cross referencing measurement names. Consider the instance
of a technician in a remote location who required the hardware
dependent name for the "Ground Power Cooling Pump" for use in
circuit diagram reference. Intercom correspondence with any
available launch complex terminal operator will provide the
required name.

5.4 IMPLICATIONS OF A TWO-DATA BANK SYSTEM

Consider an automation system which is supported by a general purpose GOAL
compiler. For each active and distinct online system there also exists a
separate translator program whose function is to tailor the general-purpose
GOAL program module as produced by the compiler to the specific needs of
each online system. Within the same system framework there exists a data
bank to support compiler operations called the "compiler data bank". Each
distinct online system will be supported by a separate "online data bank".
The following salient features and considerations attendant to such a system:

o Maintenance of the compiler data bank with regard to function
designators is considerably simplified in a system with two
data banks. For each function designator, the compiler data
bank need contain only symbolic function designator name plus
measurement type (discrete, analog, etc.), data. Specifically,
no addressing data is to be present in this data bank; there-
fore, hardware addressing changes have no maintenance implica-
tions in this data bank. Function designator maintenance within
the compiler data bank involves only addition and deletion of
measurements.

o Absence of hardware measurement data in the data bank asso-
ciated with the compiler implies that only one logical data
bank need be used at compile time to store measurement
information for all programs. All measurement names for all
distinct online systems can be present in the same compiler
data bank.

o Presence of an "online data bank" implies that the keyboard
language and the offline compiled test program language have
consistent name conventions.

b- 6

o To inject late binding capabilities into the GOAL test
programming system, translator production of both a
program module plus a separate measurements table were
discussed in Section 4.2. As an indirect advantage of
having the measurements used within each test program
isolated as a separate data structure, consider the
following hypothetical problem: "...the Stage-II AC
Bus Overload Indicator is faulty, but cannot and need
not be replaced until tomorrow. What test programs,
if any, would be effected by unavailability of this
measurement?..." Such a question could be introduced
to the online system via keyboard. A relatively simple
software utility routine could be devised to search the
tables located in the measurements table library for an
occurrence of the measurement name(s) of concern. The
name(s) of the test programs containing such measurements
would then be output to the terminal that initiated the
search. The attractive aspect of seeking an online
solution to such problems is that the answers so derived
are generated very rapidly and 100% confidence can be
placed in the accuracy of the results. Such information
can form the basis for a great many technical and manage-
rial decisions that would otherwise be either impossible
to resolve, or so time consuming as to be impractical.

o Measurement addressing changes are introduced to the
online system via a two-step process. First, a utility
program is used to inject addressing modifications to
the online data bank. This program could be run on a
computer system distinct from the computer associated
with the online data bank. This would be quite feasible
in the event that the data bank was to reside on a remov-
able disk pack. The utility operation could also be
accomplished in an interactive manner with commands
entered via keyboard terminal. The data bank update
process involves locating the required measurement record
in the online data bank by using the function designator
name as the search argument. Once the record has been
found, the required measurement addressing data can be
modified and the revised record rewritten back to the
data bank. Once all data bank update(s) have taken
place, the second step involves starting a utility
service program to propagate any measurement addressing
changes into the measurements table library. The action
of this service process would be as follows:

* Fetch a measurements table from the library.

5-7

* Compare each function designator name in the
table against the list of modified function
designators. If present in the table, revise
the table addressing data accordingly.

* If any table revision has been necessary, rewrite
the table back to the measurement table library
and proceed with the next table. If no changes
were required in the current table, proceed im-
mediately with the processing of any remaining
table(s) in the library.

Modification of a program's measurement table would likely
be logged as a significant data processing event. If the
data bank update was accomplished online, the keyboard
operator would be notified of the results of the update
by an appropriate output message indicating program name
and the function designator(s) that underwent change. Such
changes could be introduced into an online and operational
system in a convenient and timely manner - the concept of
introducing an expedient temporary hardware change or over-
ride that is destined to remain in effect for a short
duration (say, a manner of hours) andthen reverting to a
normal system configuration becomes an attractive and
practical possibility. A crude estimate of the time re-
quired to accomplish a data bank update appears in the
following example:

Let: P = 100 = Total number of test programs in
the current online program library

R = 10 = Average number of DASD read operations
required to completely access a mea-
surements table for a single program

M = 50% = Percentage of programs whose measurement
tables will require modification due to
recent measurement addressing change

W = 3 = Average number of rewrite operations
required for those tables to be modified

T = 8 = Average number of read/write operations
that can be accomplished per second on
the DASD used for the measurement table
library

Negligible computer central procesor time required for
all operations involved in the measurement table update

5-8

Then:

Total time required for
measurements table = P R + .P W x M
library update (seconds) T T 1M

= 100(10) + 100(3) x 50
88 TOT

= 143.75 Seconds

5-9

APPENDIX A

THE DATA BANK FILE DESIGN

A. INTRODUCTION

Within this Appendix are indicated the criteria which evolved into the
functional design of the data bank file of the first GOAL compiler
implementation. Although the original implementation utilized IBM
Direct Access Storage Devices (DASD) and support software, it is felt
that the file design could be successfully transcribed to the DASD of
other manufacturers. Specifically, the file design relies on no fea-
tures that are found only on IBM DASD or support software. In general,
the following functional DASD capabilities must be present to support
the current data bank design:

o The DASD must be capable of supporting a data set
organization of fixed length logical records.

o Random read and write access to any one of the (n)
records within a data set of (n) total records must
be possible by specifying the relative record number
utilizing the first record of the data set as the
origin. With the additional requirement of fixed
length logical records, the absolute address of a
given record can be easily determined by knowing the
relative record position.

o To accomplish data bank maintenance in the same fashion
as that of the current IBM implementation, a general
purpose sort utility program is required. If in another
system such a program is not available or feasible,
adequate computer storage must be available to accomplish
the sort operation in a memory resident fashion.

A.1 GENERAL FILE DESIGN

The records of any file must be logically organized such that they can be
inserted or retrieved for processing. In the selection of a certain file
structure, all of the following are to be considered:

o File Creation - separate program(s) must usually be
developed to initialize the first copy of a file.
Thereafter, a revised or new copy of the file is
created by update of an existing version. The GOAL
data bank requires a special initialization program
to prepare the DASD storage before records can be
inserted.

A-i

o File Use - Usually, a given file application will
dictate that the file be usable either to read records
from or to write into. The data bank application
requires both read and write capability within the
same program.

o File Maintenance - Very few files can be envisioned
that will not require either periodic or sporadic
maintenance. The term "maintenance" is generally
construed to mean the addition, replacement, changing,
or deletion of records. The data set design will in
some ways dictate and other ways be constrained by the
maintenance techniques or requirements. In the case
of the data bank, the existence of a sort utility program
makes directory maintenance immensely easier.

o File Backup - This may be .as simple a process as copying
the file on to another medium (magnetic tape is popular
for this usage) to enable partial or complete recovery
from an unforeseen disaster to the file prime copy. The
GOAL data bank system has been structured such that the
directory data set can be completely destroyed and
successfully recovered using the contents of the data
bank set alone. The data bank data set must be backed
up by copy to another medium such as tape. As this
time, no specific software modules have been provided
to effect these recoveries.

A.2 DATA FILE CHARACTERISTICS

The following inherent characteristics form the basis for selecting an
efficient method of file organization:

o Size - A file so large that it cannot be all online
(available to the system) at one time dictates very
specific organization and processing techniques. The
data bank was designed with the intent of having all
of the file online, but resident on DASD. Generally,
only one record at a time will be of interest in data
bank utilization. These records must be randomly
accessible.

o Growth Potential - It was convenient to size the original
data bank at a capacity (8000 entries) considerably above
that currently being used (approximately 2000 entries).
Thus, the data bank may expand significantly without
requiring an overall size increase of the data set. If
and when an increase in overall capacity is required,
this can be accommodated with modest effort within the
framework of the original data bank design. The original
data bank support and maintenance modules were written

A-2

in FORTRAN - because of FORTRAN language constraints,
a data bank resizing will require changes to the
declarations section of several modules. Except at
very infrequent intervals, it is considered unlikely
that resizing will be required; the inconveniences
resulting from these software changes were not there-
fore, considered prohibitive.

o Activity - In regards the amount of activity, an inactive
file may be referred to 'so inTfrequently that the particular
file structure or processing technique chosen does not matter.
The GOAL data bank is considered a file which typifies the
other extreme, i.e., an active file to be heavily used by
the GOAL compiler. The file structure was chosen carefully
to avoid an inordinate amount of time searching for desired
records.

The percentage of activity is also a factor of consideration.
The data bank is an application which requires retrieval of
only a low percentage of the available records in a file
during an average processing run. This use implies a random
type organization such that any record can be located con-
veniently without having to scan all or a large number of
other records in the file. In the GOAL data bank each
record may be essentially considered an independent data
entity having no relationship (physical or logical) with
any other record of the file.

In some instances the activity distribution can be a file
design factor. If some group of records are more frequently
significant than others, some method of locating these
records is in order so that they can be effectively fetched.
The Data Bank Reference Records in the GOAL data bank are an
example of records of this type; they have been located in
a fixed specific area within the file so that they can be
efficiently searched and processed.

A.3 FILE PROCESSING CHARACTERISTICS

The usage of a file usually dictates the type of processing in which the
file will be involved. Sequential processing of a file implies that the
records will be processed in a monotonically increasing or decreasing
sequence. A deck of cards or magnetic tape is ideally suited to this
application type. To be effective, the records of a sequentially
processed file must be sorted according to the sequence to be followed
in processing. The records are then written in a physically contiguous
fashion in the file. Thus, the next record to be processed is always
immediately adjacent to the current record. Although sequential processing
can be extremely rapid in many applications, its use demands that all input
transactions be batched (collected) and sorted to the same physical key
sequence as the file before processing.

A-3

Random processing allows (or, rather, requires) that all records of the
file be accessible and writeable in a random order. No collection or
sorting of input transactions is required before processing. The same
could be said of the records within the file itself, i.e., there is no
required record sort sequence or rules concerning which records need be
physically adjacent. The GOAL compiler requires access to the data bank
in a strictly random manner; the actual method chosen for implementing
the data bank allows sequential processing also.

A.4 DATA BANK CONTENTS

GOAL compiler support was the prime function of the data bank in the first
implementation of the GOAL language. This encompasses data records of
the following type:

o Function Designators - In almost all instances, a
function designator record contains sensor-base
hardware data such as measurement type (discrete/
analog, input/output, etc.) and physical hardware
addresses.

Note - The term "function designator" is used
within the GOAL language for purposes
other than symbolic names for sensor-
based measurements.

o GOAL Subroutine References - These records provide
abbreviated system dependent names for GOAL sub-
routines.

o GOAL Macros - These records contain user-written
and system macros to be used as writer aides during
compilation of a GOAL test program.

The functional design presented in Appendix B indicates a few other record
types in the data bank file used for file structuring and searching aids.
Most (possibly, 99+%) of the data bank file records will be function
designator records. A direct access (random) file structure for relative
record retrieval must contain fixed length logical records. Since the
file contains records of varying data context, the fixed record length
must be large enough to accommodate all of the data of the largest record
type.

Records of other types will then utilize only a portion (and, consequently,
waste the remainder) of the total record capacity. Fortunately, the record
type requiring the largest record capacity was the function designator type;
total waste space will therefore be minimized in the file. An individual
function designator will require only one data record for its description.
A GOAL subroutine will require only one record for its name reference. A
macro will require two or more records.

A-4

A.5 DATA BANK USAGE

The GOAL language stipulates that each function designator, macro, or
subroutine is identified by a unique 1 - 32 character symbolic name.
The GOAL compiler queries the data bank providing only this 1 - 32
character name. Using this name as a search argument (record key), the
data bank software must either locate and retrieve the required record
or signify that a record associated with the supplied key does not exist
within the data bank.

Features of the GOAL language also require that a number of uniquely named
'data banks' is resident in one data bank file.

A-5

APPENDIX B

THE DATA BANK FUNCTIONAL DESIGN

B. INTRODUCTION

Within this Appendix is presented a functional description of the data
bank design as implemented for use by the initial version of the GOAL
compiler.

B.1 BASIC SPECIFICATIONS

The principal functions of the GOAL data bank are outlined in the following:

o The data bank shall provide for the storage and retrieval
of uniquely named GOAL function designator records, macro
records, and subroutine reference records.

o Function designator, macro, and subroutine records are to
be individually retrievable by specifying: (1) the name
of the aata bank in which the record is assumed to reside,
and; (2) the unique record name. Record names are assumed
to be unique only within the bounas of the specific data
bank in which they are found, e.g., the record called A
can be the only record with that name within the data bank
in which it is found. There can be, for instance, a record
A within a data bank called X; another record A can exist
in data bank Y, etc.

o The data bank system shall provide a file organization
capable of supporting and selectively using several
uniquely named independent data banks. The total number
of data banks to be supported at any one time shall be
selectable at file initialization time. Provision has
been made to allow increase of the number of allowed data
banks after file initialization without requiring complete
reinitialization of the system; utility software has not
been provided to accomplish this extension at this time.

B.2 GENERAL APPROACH

The data bank will be a disk resident file constructed primarily for random
(non-sequential) processing.** The file structure is to support random access
to any uniquely named record (member) by supplying the record's symbolic name
(record key). To support this operation, two disk resident data sets will be
required. One will be referred to as the "data bank," "data bank file," or

**The file structure chosen allows for sequential as well as random processing.

B-1

"data file." This data set will contain the GOAL function designator,
macro, and subroutine records. The second data set will be deemed the
"data bank directory," or "directory." The directory will contain an
index to all named records in the data bank. Each index entry will
consist of the record name, an indication of the uniquely named data
bank in which the record logically resides, and the relative record
position of the record within the data bank data set. All of the index
entries within the directory shall be sorted in a manner that is
conducive to efficient search.

The operational concept of the data bank is analogous in every way except
physical record layout to the technique required to use an everyday
telephone directory. The telephone number and address are the data
records of the telephone directory; the names are the record keys. If
one is to conduct an efficient search through so large an assortment of
keys, the keys must be placed in a physical structure in such a way that
some type of search is strategically possible. For alphanumeric keys
(such as human names or data bank record names), sorting the keys into
alphanumeric collating sequence is a method which allows effective human
or machine search.

Figure B-l illustrates the functional relationship between the distinct
elements of the data bank system. In the data bank design, the data portion
of the file is resident in the data bank data set while the sorted grouping
of record keys is to be found in a distinct data set called the directory.
Accompanying each key in the directory is the record location (in the data
bank) where the data associated with that key is to be found. This split
arrangement of keys in one data set and data in another has four distinct
maintenance advantages over the combined record technique of the telephone
book, to wit:

o The directory must be in sorted key sequence for search
reasons. When maintenance decrees the addition or deletion
of records, the directory must be re-sorted to accommodate
the new keys and to eliminate the old. It is to be noted
that the keys must be sorted to accomplish this aim - there
is no requirement that the data be rearranged in any manner.
By involving only the contents of the data bank directory in
the maintenance key sort operation, the speed at which both
the sort and the directory data set reconstruction can be
accomplished is significantly enhanced.

o With distinct directory and data bank data sets a larger
number of keys can be present in a given size of record than
would be possible if both keys and data were present in the
same size record. The speed at which the directory search
can be accomplished will be almost wholly dependent on how
many input operations are required to fetch records contain-
ing keys.

B-2

If a small number of keys are present in each record,
then many records may be required, etc. A crude analogy
exists in the example of the telephone directory - if the
current directory page size were increased to newspaper
size sheets, one would have to turn fewer pages to find a
given key. In contrast, if the telephone directory were
reprinted on 3 x 5 cards, a great deal of page turning
would be required.

o Although the directory must be maintained in sorted order,
there is no reason why the effort must be expended to
maintain a sorted data bank file (containing the data).
Put in another way, the data records, once entered into
the data bank, need never be reshuffled to accommodate
new or deleted records. This feature leads to a signifi-
cant savings in maintenance time. As an illustration to
the contrary, consider the maintenance required for a non-
random sequentially organized data set, e.g., a magnetic
tape. The time spent in reshuffling (recopying) the entire
data set to accommodate one record addition/deletion/change
could comprise 99.99% of the total maintenance time. This
disproportionate time mix degrades even further as the data
set size increases.

o By avoiding a reshuffle operation on record addition/deletion
in the case of the data bank file, it was possible to adopt
a scheme for effectively reclaiming the space vacated by
deleted records. Once a record has been deleted, the record
position becomes available for use in adding a new record in
a subsequent maintenance run. During data bank initialization,
all free records are chained together to form what is referred
to as the "free record queue," i.e., all record spaces avail-
able for use. When a record is to be added to the file, the
first available record on the free queue is removed from the
chain and used for the addition. When a record is deleted,
the record space is reinserted to the head of the free queue
chain, thus making the space reusable.

B.3 GENERAL DIRECTORY STRUCTURE

The illustration of Figure B-l depicts the directory as a single table con-
taining one entry for each record in the data bank. Such a directory that
contains (n) entries for (n) record references is deemed an "inverted"
directory. If it were possible for the table to be totally memory resident
at use or maintenance time, access to any record of the file would proceed
at maximum speed - a simple memory table search followed by one I/O read

B-3

would be required. Unfortunately, such a single-level table becomes
prohibitively large even for a relatively modest size data bank file.
It must therefore be broken into segments of a size such that any one
can be conveniently contained in computer memory.

Figure B-2 indicates an example of a directory that has been structured
into a series of blocks ("directory blocks" or "directory records") in
two levels. In general, two types of blocks are present - one "master"
block and several "lower level" blocks. The lower level blocks accumu-
latively represent the single inverted directory table broken into
segments of a more practical size. Each individual entry in a lower-
level block consists of a record name and a pointer (record number) to
that record in the data bank file. If the directory contained only lower-
level blocks, any one of which could be memory-resident at a given time,
then a block-by-block serial search would be required to locate a record
in the directory. Access of any one directory block would require one I/O
read operation. As a method of eliminating the serial search and thus
enhancing overall directory search speed, a master directory block has been
introduced as shown in Figure B-2. This block indicates the contents of
all of the lower-level blocks of the directory. Each master block entry
points to a lower block and indicates the highest (in collating sequence)
named entry in that block. If the master block can be made memory-resident,
a search for a given record proceeds as follows:

1. Via the master block, determine the lower-level block which
must contain the sought name. In the example of Figure B-2,
a name "D" must be contained in block 3 since block 2 contains
as the highest entry "B", and block 3 as the highest entry "G".

2. Access the required lower-level block.

3. Search the lower-level block for the required name.

4. After finding the directory entry containing the record name
in the lower-level block, use the record number portion of
the entry to fetch the sought record from the data bank file.

The above process requires only two I/O read operations to find and retrieve
any given named record from the data bank file; note that the assumption has
been made in this instance that the master block was memory-resident before
the search started.

Since the directory itself is a direct-access (randomly organized) data set,
it will be significantly easier to manipulate if all records (blocks) are of
constant or fixed record length. This results in a "balanced" directory -
each block contains a constant number of directory entries. The unbalanced
directory of Figure B-2 has been rearranged to a balanced form in Figure B-3.

b-4

The "directory blocking factor" (N), i.e., the total and constant number
of directory entries possible per directory block, for this illustration is
four (4). Note that for a two-level balanced directory there will always be
(N) blocks at the lowest level; this then implies the following size
relationships:

Given a directory blocking factor (N):

Total number of blocks
in the directory data set = N + 1

Directory block size (words
or bytes) = N x (Directory entry size in

words or bytes)

= the amount of computer memory that
must be present for one directory
block

Total number of named records
that can be referenced in the
directory = N2

Using the above as a basis for determining directory blocksize, assume that a
data bank to support a total of 8,000 entries is required:

Let (N) = 90

Total entries supported = N2 = 8,100

Directory blocksize = N x (directory entry size)

= 90 x 76 (current implementation
directory entry size)

= 6,840 bytes

The directory blocksize in the above instance has grown to a very large entity-
requiring a large memory block for support. If the master block is to remain
memory-resident, and the lower-level blocks retrieved as required one-at-a-time,
a total of 13,680 bytes of computer memory would be required to support
directory operations alone. This is considered a severe cost to service a data
bank file of 8,000 records. The eventual size of the operational GOAL data
bank could run as high as 30,000 to 100,000 entries. A two-level directory to
support such a sizeable data bank would require directory blocks of enormous
capacity.

The solution selected to obviate the above sizing problem is illustrated in
Figure B-4. Here, the two-level directory has been expanded vertically into
a three-level balanced version. Figure B-5 represents a tabular comparison

b-b

of the size potentials between two-level and three-level directories. The
calculations are related to an IBM 2314 disk unit which supports a total
track capacity of 7,294 bytes (data plus inter-record gaps, as required).
The directory blocking factor (N) was considered in the range of 10 to 50
entries per block - this upper limit will support a data bank of 125,000
entries with a three-level directory.

B.4 GENERAL CONTENTS OF DIRECTORY RECORDS

Figures B-6 and B-7 depict the layout of the master, upper-level, and the
lower-level directory blocks. Each block is seen to be composed of a block
header and (N) directory entries. The block header indicates:

o the record (block) number in the directory file

o the total number of entries possible in the block (N)

o the total number of directory entries currently in use in the
block

Each directory entry is seen to contain:

o A delete field - used during maintenance to delete reference
to an existing record

o A record name - consisting of a data bank reference number
and a 1-32 alphanumeric character symbolic name

o A pointer to another record (record number) either in the
directory data set (master and upper-level blocks) or to
the data bank file (lower-level blocks only)

As indicated above, the total record name contains two significant portions -
the data bank reference number and the proper alphanumeric name. Each uniquely
named data bank is assigned a unique reference number when the data bank is
originally created. This reference number becomes the first 32 bits of the
names of all records contained within that data bank. The data bank reference
number is actually the record number of the applicable Data Bank Reference
Record in the data bank file.

Figure B-8 indicates pictorially the relative positioning of all blocks to be
found in the directory data set. The actual block numbering scheme and order
of loading is indicated in Figure B-9.

B.5 DATA BANK FILE CONTENTS

Figures B-10 and B-11 tabularize the general record types and contents of the
records to be found in the data bank file. The relative positioning of the
records within the file was indicated in Figure B-8. All data bank records are
fixed in length and each contains a header followed by a data segment.

B-b

B.5.1 Data Bank Capcity Record

This record is the first record of the file. The data bank initialization
program composes this record in accordance with control card input when the
data bank file is first established. Figure D-l indicates the initialization
action. Only a portion of the header and none of the data portion is used in
this record type. A brief description of the field contents is given below;
the exact record format is to be found in Appendix E.

Record Number - This record is located first in the file so
that the use and maintenance modules can find it without search.

Total number of Records Available (RAVAIL) - This is the total
number of record spaces which were allocated for the data bank
file when it was originally created. This value is established
during initialization (read from a control card).

Total Number of Records Still Unused (FQTOT) - This field represents
the total number of records remaining on the Free Queue for use in
adding new records to the data bank. This is initialized to the
total number of records reserved for the entire file minus those used
for the capacity record and the data bank reference records.
Symbolically:

FQTOT = RAVAIL - (DBMAX + 1)

Pointer to Head of Free Queue (FQPTR) - A field indicating the first
record available for allocation in the data bank. The next time that
a new record is added, the record at the head of the Free Queue is
used. This field is initialized to point to the first record beyond
the data bank reference records in this file. Symbolically:

FQPTR = DBMAX + 2

Maximum Number of Allowed Data Banks (DBMAX) - This is the total number
of uniquely named data banks that will be allowed to exist. DBMAX is
initialized to the amount read in via control card during initialization
plus one more to allot for a mandatory data bank called "SYSTEM." This
SYSTEM data bank will become a part of the system at initialization time.

Total number of Data Banks Now in Use (DBCUR) - This field reflects
how many data banks are currently being used. The value is initialized
to one (1) - to account for the mandatory SYSTEM data bank.

Directory Blocking Factor (DBF) - This value has been hardcoded into the
data bank initialization program and is set at 20 for the current
implementation. A change of this value will dictate several changes to
different program modules - discussion of these changes is covered in
this document, Appendix C.

8-7

B.5.2 Data Bank Reference Records

These records follow the capacity record in the data bank file. One
reference record exists per allowed data bank - the user specifies via
control card during data bank initialization as to the total desired. A
factor of thirty (30) will be used for the original implementation. The
first data bank reference record (record number 2) will be initialized for
the data bank called "SYSTEM." All other reference records are initialized
to the unused state and will remain so until data bank(s) are established
during normal maintenance. A detailed discussion of the record fields is
given in Appendix E. A brief coverage of the general contents is below:

Record Number - This set of records appears in the data bank
starting at record position number 2. The data bank called
SYSTEM will be initialized at record position 2. Record positions
will be assigned to subsequently established data banks on a first-
come, first-serve basis.

Forward Chain - All data bank reference records will be chained
together at initialization time. This chain provides an efficient
method of serial search to determine if a given data bank exists
or not. Also, when adding a new data bank reference, the chain is
followed until an unused reference record is located.

Type Field - All but the type field associated with the reference
record for the mandatory SYSTEM data bank will be initialized to
one (1), which implies the record is unused and free for use. When
maintenance requires the addition of a new data bank, the reference
record chain is followed until a vacant (type = 1) record is located;
this record position will then be used for the new data bank.

Maximum Number of Allowed Data Banks - Established during file
initial izati on.

Data Bank Number - The data bank reference numbers are established
during initialization to be equal to the record numbers in which
the fields appear. Each named data bank is referenced by the user
via a symbolic (alphanumeric) name. Within the data bank software,
all references to data banks are made by use of data bank reference
numbers. This number becomes a portion (the leading 32 bits) of
each record name in the system that "belongs to" or is associated
with that data bank.

Data Bank Name - The 1-32 alphanumeric character data bank name.
The first character must be a letter.

Revision Label - This field is optional with any given data bank.
If present, it is a 1-32 character name. If the revision label is
not used in a given record, this field will be totally blank.

B-8

B.5.3 Other Data Bank File Record Types

Table B-12 tabularizes the functional contents of all record types to be
found in the data bank file. Data Bank Reference records have already been
discussed. The remaining record types consist, in general, of a header and
a data area. Function Designator and Subroutine Name records will always
occur singularly - accordingly, the header (see Figure B-ll) for these types
will be consistent in format as indicated in the following:

Record Number - As required

Forward Chain - Always null (zero)

Type Field - See Table B-12; as required

Total Number of Records This Chain - Always one (1)

Pointer to Last Record, This Chain - Always points to this record
number (the record containing the field)

Data Bank Number and Record Name Fields - Always used

Print Expansion - One to 32 character name; record name as it is to
appear on compiler listings; this may or may not be the same as the
record name field

Data Portion - Used as required for record type; Appendix E indicates
an exact record description.

Macros will be represented in the data bank file by a Macro Header record
followed by one or more Macro Skeleton records. The records pertaining to
one macro will be linked via their respective forward chain fields. Figure
B-ll indicates that the header of the Macro Skeleton recoras is abbreviated
from the type normally found on other record types. The macro skeleton card
image occupies a portion of the header as well as all of the normal data
segment. The maintenance processing program will scan each macro skeleton
card, locate each occurrence of a formal parameter, and replace each occurrence
with the following character sequence:

Ist Character = & (ampersand)

2nd Character = Single digit, 1-0, representing formal parameters
one through 10, inclusive

3rd Character = & (ampersand)

4th through
Next to Last = & (ampersand)

Last Character = Blank

A maximum of ten (10) formal parameters will be allowed for any given macro
in the current implementation.

B-9

"THE DATA BANK" >

DATA BANK DIRECTORY O DATA BANK FILE

Record
Location

Record Record
Name Location

ALPHA 4213
ALPHA 4213 10 Beta Record

11 Delta Record
BETA 10

DELTA 11 4213 Alpha Record

GAMMA 7211

7211 Gamma Record

Figure B-I. FUNCTIONAL RELATIONSHIP OF DATA BANK ELEMENTS

Block 1

B 2 DIRECTORY MASTER
BLOCK

G 3

SIMPLIFIED TWO-LEVEL INVERTED Highest Pointer (BlockDIRECTORY K 4 Collating Number) to one ofSequence) the lower level
Record Name Directory Blocks

M 5 TYPICAL MASTER BLOCK ENTRY

TYPICAL LOWER-LEVEL BLOCK ENTRY

Databank Pointer (Record T 6
Record Number to the
Name Databank file

X 7

Block 2 Bl k 3 / Block 4 Block 5 Block 6 Block 7

A B D G J K L M Figu T B2.

Figure B-2.

Block 1

DIRECTORY MASTER
BLOCK

M 3

(N)

ILLUSTRATION OF TWO-LEVEL Entries (N) = Directory Blocking Factor;
BALANCED DIRECTORY X total number of directory

entries per directory block

N/U N/U "N/U" = Not Used At Present;
Available for Future Use

Block 2 Block 3 Block 4 Block 5

A ** J Q N/U

(N)
B K Entries T N/U

D L W N/U

G M X N/U

** Pointers to Databank File Omitted
in this Illustration

Figure B-3.

(1)

M/2 MASTER
BLOCK

X/6

Z/10

(2) (6) (10)
(N)

D/3 R/7 Z/11 UPPER
SLEVEL

M/5 X/9

A F K N S V Y(N)
LOWER

LEVEL
B H L P T W Z BLOCKS

D J M R U X

(3) (4) (5) (7) (8) (9) (11) (12) (13)

Directory Blocking Factor = N = 3 in this example

Maximum # Databank Member Names = N3 = 27 (Only 20 used in this example)

Total # Directory Blocks Required = (N)2 + (N) + 1 = 13 in this example

Directory Block (Record) Numbers Shown in Parenthesis Above

Figure B-4. SAMPLE DATABANK DIRECTORY SHOWING BLOCK STRUCTURE

***ASSUMING 76-BYTE DIRECTORY EiTRY SIZE
***BLOCXSIZE INCLUDES 12-BYTE HEADER

*********** 2-LEVEL ********* *********** 3-LEVEL *********

BLOCK WASTE * TOTAL TOTAL * * TOTAL TOTAL *
PER PER TOTAL DIRECTORY SPACE TOTAL DIRECTORY SPACE

N BLOCKSIZE TRACK TRACK ENTRIES BLOCKS ALLOCATION ENTRIES BLOCKS ALLOCATION

10 772 8 1118 100 11 2 1000 111 14
11 848 7 1358 121 12 2 1331 133 19
12 924 6 1750 144 13 3 1728 157 27
13 1000 6 1294 169 14 3 2197 183 31
14 1076 6 838 196 15 3 2744 211 36
15 1152 5 1534 225 16 4 3375 241 49
16 1228 5 1154 256 17 4 4096 273 55
17 1304 5 774 289 18 4 4913 307 62
18 1380 4 1774 324 19 5 5832 343 86
19 1456 4 1470 361 20 5 6859 381 96
20 1532 4 1166 400 21 6 8000 421 106
21 1608 4 862 441 22 6 9261 463 116
22 1684 4 558 484 23 6 10648 507 127
23 1760 3 2014 529 24 8 12167 553 185
24 1836 3 1786 576 25 9 13824 601 201
25 1912 3 1558 625 26 9 15625 651 217
26 1988 3 1330 676 27 9 17576 703 235
27 2064 3 1102 729 28 10 19683 757 253.
28 2140 3 874 784 29 10 21952 813 271
29 2216 3 646 841 30 10 24389 871 291
30 2292 3 418 900 31 11 27000 931 311
31 2368 2 2558 961 32 16 29791 993 497
32 2444 2 2406 1024 33 17 32768 1057 529
33 2520 2 2254 1089 34 17 35937 1123 562
34 2596 2 2102 1156 35 18 39304 1191 596
35 2672 2 1950 1225 36 18 42875 1261 631
36 2748 2 1798 1296 37 19 46656 1333 667
37 2824 2 1646 1369 38 19 50653 1407 704
38 2900 2 1494 1444 39 20 54872 1483 742
39 2976 2 1342 1521 40 20 59319 1561 781

Figure B-5. (1 of 2)

***ASSUMING 76-BYTE DIRECTORY ENTRY SIZE
***BLOCSIZE INCLUDES 12-BYTE HEADER

*********** 2-LEVEL ********** *********** 3-LEVEL **********

BLOCK WASTE * TOTAL TOTAL * * TOTAL TOTAL *
PER PER TOTAL DIRECTORY SPACE TOTAL DIRECTORY SPACE

N BiLOCKSIZE TRACK TRACK ENTRIES BLOCKS ALLOCATION ENTRIES BLOCKS ALLOCATION

40 3052 2 1190 1600 41 21 64000 1641 821
41 3128 2 1038 1681 42 21 68921 1723 862
42 3204 2 886 1764 43 22 74088 1807 904
43 3280 2 734 1849 44 22 79507 1893 947
44 3356 2 582 1936 45 23 85184 1981 991
45 3432 2 430 2025 46 23 91125 2071 1036
46 3508 2 278 2116 47 24 97336 2163 1082
47 3584 1 3710 2209 48 48 103823 2257 2257
48 3660 1 3634 2304 49 49 110592 2353 2353
49 3736 1 3558 2401 50 50 117649 2451 2451
50 3812 1 3482 2500 51 51 1250-00 2551 2551

Figure B-b. (2 of 2)

(N) Individual Directory Entries Per Block

BLOCK HEADER DIRECTORY DIRECTORY DIRECTORY
ENTRY # 1 ENTRY # 2 ENTRY # (N)

ITYPICAL BLOCK HEADER FOR
MASTER (RECORD #1) AND
IUPPER-LEVEL BLOCKS

Total # Total #
Block Entries Entries now
(Record) Possible in in Use inNumber this Block this Block

t A TYPICAL DIRECTORY ENTRY FOR MASTER
Header Length = 12 Bytes - OR UPPER-LEVEL BLOCKS

Pointer (Block #) Delete Databank Search Key(N) = Directory Blocking to Block at Next Field Reference (MemberFactor Lower Level Number Name)
(32-Chars)

K- Length of Individual Entry = 76 Bytes

Figure B-6. DATABANK DIRECTORY: MASTER AND UPPER-LEVEL BLOCK LAYOUT

(N) Individual Directory Ent es Per Block 1

BLOCK HEADER ENTRY # 1 ENTRY # 2 ENTRY # (N)

Block Total # Total #

(Record) Entries Entries nov
Number Possible i in Use in

this Block this Block

kHeader Length = 12 Bytes /

Pointer (Record #) Databank Search Key
(N) = Directory Blocking to Member Record Delete Reference (Member Name)

Factor in Databank File Field Number (32-Chars)

SLength of Individual Entry = 76 Bytes

Figure B-7. DATABANK DIRECTORY: LOWER-LEVEL BLOCK LAYOUT

Record #1

DATABANK
Master (N) Upper-Level Directory DIRECTORY
Block Blocks

(N)2 Lower-Level Directory
Blocks

N = Directory Blocking Factor = 20 in Release Version

Record Size = FIXED = (N) x (Directory Entry Size) + 12

= (20) x (76) + 12 = 1,532 Bytes in Release Version

Record #1
DATABANK

Databank (M) Databank Name (N)3 - (M+l) Individual FILE
Capacity Reference Member
Record Records Records

M = Total # Allowed Individual Databanks = 30 in Release Version

Record Size = FIXED = 172 Bytes

Figure b-8. PICTORIAL LAYOUT OF DATABANK FILE AND DIRECTORY

(N) LOWER-LEVE (N) LOWER-LEVEL (N) LOWER-LEVEL
BLOCKS BLOCKS BLOCKS

Record #1 Rec #2

First Second
Master Upper Upper

Block Block Bo k
UB#l J Bl

1-__ _ _ _ UJ# ------

DATABANK
DIRECTOR

Records #
(UB#1) + 1 to
(UB#1) + (N),
Inclusive

Record # UB#2 = UB#1 + N + 1

Records # (UB#2) + 1 to
(UB#2) + (N),
Inclusive

(N) = Directory Blocking Factor

Figure B-9. DATABANK DIRECTORY: BLOCK NUMBERING ALGORITHM

[MACRO] MACRO Total #
Header Name Formal

I e Parameters

Header Skeleton Card Image
(80 Chars)

...(as many Skeleton Card Records as required)...

Header Skeleton Card Image
(80 Chars)

GOAL FORTRAN
[SUBROUTINE] Header Subroutine Subroutine

Name Name

FD Print FD FD
[FUNCTION- Header Name Expansion Type Address

DESIGNATOR]

[DATABANK Databank Databank
REFERENCE Header Reference Name
RECORD] Number

[DATABANK
CAPACITY Header
RECORD]

Figure B-10. DATABANK FILE: FUNCTIONAL RECORD CONTENTS

B-20

DATABANK CAPACITY RECORD

RAVAIL FQTOT FQPTR DBMAX DBCUR DBF

Record Total # Total # Pointer Maximum Total # Directory
1 Available Records to First Number Databanks Blocking Unused

Records Still Record on Allowed Currently Factor
Unused Free Databanks In Use

Queue

DATABANK REFERENCE RECORD

Record Forward Type = 1 Maximum Pointer
Chain (Unused) Number to Last Databank Databank Revision

Allowed Databank # Name Label Unused
Type = 2 Databanks Reference (or blank)
(In Use) Record

HEADER OF ALL OTHER RECORD TYPES - EXCEPT MACRO SKELETON RECORD

Total # Pointer
Record Forward Type Records to Last Databank Record Print Data Portion
Chain on This Record, # Name Expansio of Record

Chain This
Chain

MACRO SKELETON RECORD

Record Forward Type 5 Macro Skeleton Card Image
Chain

Figure B-11. GENERAL CONTENTS OF THE HEADER PORTION OF DATABANK RECORDS

DATA BANK FILE
GENERAL CONTENTS OF RECORDS

Type General Contents
Field Record Description Header Data Portion of Record

1 Data Bank Reference Hybrid Unused
(Unused)

2 Data Bank Reference Hybrid Unused
(In Use)

3 Function Designator Standard FD Type
FD Address or Subroutine Name

4 Macro Header Standard Total Number of Formal
Parameters in Macro.

5 Macro Skeleton Hybrid Macro Skeleton Card Image

6 Subroutine Name Standard Equivalent FORTRAN
Subroutine Name

NOTES: (1) Explicit record contents by field are to be
found described in APPENDIX E

Figure B-12.

B-22

APPENDIX C

DASD SIZE ESTIMATES FOR GOAL DATA BANK IMPLEMENTATION

C. INTRODUCTION

As indicated in Appendix B, the physical storage space required by the data
bank on external DASD is directly proportional to the blocking factor of the
data bank directory file. Table C-l of this Appendix illustrates the total
DASD space requirements for both the data bank and the directory files in
terms of directory blocking factor (N). Table C-l also illustrates the
implications of using a 2-level versus a 3-level directory structure. The
relatively ineffective use of DASD storage in the case of a 2-level system
was the deciding factor that led to the use of a 3-level directory in the
original GOAL data bank implementation.

Table C-1 is intended for use as follows:

1. Determine the total number of named entries to be supported
in the GOAL data bank.

2. Find an equal or higher value entry in the "TOTAL ENTRIES"
column of the 3-level directory section of the table.

3. From the entry selected in Step 2, the blocking factor (N)
can be determined. The total amount of IBM 2314 Disk unit
space (in physical tracks) required to support a data bank
of the chosen size is indicated on the same line as the
blocking factor.

Use of Table C-l is demonstrated in the following example:

o A data bank is required to support 30,000 named entries.

o The value of closest proximity to 30,000 in the TOTAL
ENTRIES column of the 3-level directory section is 32,768.
This corresponds to a blocking factor of 32.

o A data bank and a directory file to support 30,000 (the
chosen system will actually accommodate up to 32,768) named
entries will require a total of 1,790 disk tracks.

For the initial GOAL data bank implementation, a blocking factor of 20 was
selected in sizing the data bank. This will allow support of a total of
8,000 named entries and require a total of 414 disk tracks.

One IBM 2314 disk pack can provide 4,000 data tracks of DASD storage.
Table C-l indicates that data banks selected with blocking factors in
excess of 42 will require that more than one physical disk pack be used.

C-1

Table C-I. (1 of 2)
** ALL SIZES IN BYTES
** (N) = NUMBER OF DIRECTORY ENTRIES PER DIRECTORY BLOCK

172: DATA BANK PHYSICAL RECORD SIZE
26: TOTAL DATA BANK RECORDS PER TRACK
76: DIRECTORY ENTRY SIZE

************ 2-LEVEL ************* ************ 3-LEVEL *************

TOTAL DATA DIRECTORY TOTAL TOTAL DATA DIRECTORY TOTAL

N ENTRIES TRACKS TRACKS TRACKS ENTRIES TRACKS TRACKS TRACKS

10 100 4 2 6 1000 39 14 53

11 121 5 2 7 1331 52 19 71
12 144 6 3 9 1728 67 27 94
13 169 7 3 10 2197 85 31 116
14 196 8 3 11 2744 106 36 142
15 225 9 4 13 3375 130 49 179
16 256 10 4 14 4096 158 55 213
17 289 12 4 16 4913 189 62 251
18 324 13 5 18 5832 225 86 311
19 361 14 5 19 6859 264 96 360
20 400 16 6 22 8000 308 106 414
21 441 17 6 23 9261 357 116 473
22 484 19 6 25 10648 410 127 537
23 529 21 8 29 12167 468 165 653
24 576 23 9 32 13824 532 201 733
25 625 25 9 34 15625 601 217 818
26 C76 26 9 35 17576 676 235 911
27 729 29 10 39 19683 758 253 1011
28 784 31 10 41 21952 845 271 1116
29 841 33 10 43 24389 939 291 1230
30 900 35 11 46 27000 1039 311 1350
31 961 37 16 53 29791 1146 497 1643
32 1024 40 17 57 32768 1261 529 1790
33 1089 42 17 59 35937 1383 562 1945
34 1156 45 18 63 39304 1512 596 2108
35 1225 48 18 66 42875 1650 631 2281
36 1296 50 19 69 46656 1795 667 2462
37 1369 53 19 72 50653 1949 704 2653
38 1444 56 20 76 54872 2111 742 2853
39 1521 59 20 79 59319 2282 781 3063

Table C-1. (2 of 2)

** ALL SIZES IN BYTES
** (N) = NUMBER OF DIRECTORY ENTRIES PER DIRECTORY BLOCK

172: DATA BANK PHYSICAL RECORD SIZE
26: TOTAL DATA BANK RECORDS PER TRACK
76: DIRECTORY ENTRY SIZE

********** 2-LEVEL ************* ************ 3-LEVEL *************

TOTAL DATA DIRECTORY TOTAL TOTAL DATA DIRECTORY TOTAL
N ENTRIES TRACKS TRACKS TRACKS ENTRIES TRACKS TRACKS TRACKS

40 1600 62 21 83 64000 2462 821 3283
41 1681 65 21 86 68921 2651 862 3513
42 1764 68 22 90 74088 2850 904 3754
43 1849 72 22 94 79507 3058 947 4005
44 1936 75 23 98 85184 3277 991 4268
45 2025 78 23 101 91125 3505 1036 4541
46 2116 82 24 106 97336 3744 1082 4826
47 2209 85 48 133 103823 3994 2257 6251
48 2304 89 49 138 110592 4254 2353 6607
49 2401 93 50 143 117649 4525 2451 6976
50 2500 97 51 148 125000 4808 2551 7359

C.1 MODIFICATION OF GOAL DATA BANK MAINTENANCE PROGRAMS

The GOAL data bank maintenance programs were generated using FORTRAN as
the implementation language. Sizing modifications of data bank capacity
by altering the directory blocking factor are effected by changes to
FORTRAN declaration type statements in the maintenance program modules.
Blocking factor modification must then be extended to the Operating System
/360 Job Control Language (JCL) statements that govern the physical size
allocation of the data bank and data bank directory files on disk.

Table C-2 is a list of the FORTRAN declaration statements that will require
modification due to blocking factor change. Variables indicated with an
"N" prefix, e.g., N, Nl, N2, etc., will be replaced with the appropriate
numeric constants from Table C-4. In all data bank maintenance program
modules where the declarations appear, they must be so modified and the
programs recompiled.

Table C-3 is a list of the Operating System/360 JCL statements effected by
blocking factor change.

Table C-4 is a tabular list of constants that are to replace the "N" prefix
variables of Tables C-2 and C-3. Substitution constants are provided for
blocking factors ranging from 10 to 50. For the relation of blocking factor
versus total number of supported data bank entries, see Table C-l.

C.2 FORTRAN DECLARATION STATEMENTS AFFECTED BY DIRECTORY BLOCKING
FACTOR CHANGES

The following FORTRAN declaration statements are directly affected by block-
ing factor modifications within the GOAL data bank directory file. Variables
that appear below with an "N" prefix, e.g., N, N2, etc., are to be replaced
with appropriate values from Table C-4. In any data bank maintenance program
module in which these declarations appear, they must be modified, replaced,
and the programs recompiled when data bank size changes occur.

GIVEN: N = Directory Blocking Factor

INTEGER DBLOCK (Nl)

INTEGER ENT (2, N)

INTEGER*2 SK (34, N)

EQUIVALENCE (ENT(I,I), DBLOCK(4)),

(SK(l,l), DBLOCK(N2))

DEFINE FILE 10 (N3, 172, L, AVDB)

DEFINE FILE 11 (N4, N5, L, AVDIR)

DEFINE FILE 13 (N4, NS, L, AVUTL)

DEFINE FILE 18 (N3, 172, L, AVDB)

DEFINE FILE 19 (N4, N5, L, AVDIR)

Table C-2.

C-4

C.3 OPERATING SYSTEM/360 JOB CONTROL LANGUAGE STATEMENTS FOR GOAL
DATA BANK CREATION

The following JCL statements are directly effected by changes to the GOAL
data bank directory file blocking factor. Names that appear below with an
"N" prefix, e.g., N, Nl, N2, etc., are to be replaced with appropriate
constants from Table C-4. The JCL statements are presented in the format
usually adopted when creating the data bank and the data bank directory
data sets from scratch. It is to be noted that the IBM 2314 disk pack
supports 4,000 physical data tracks. A blocking factor (N) of value 42
(as presented in Table C-1) requires 3,724 tracks total. For blocking
factors in excess of 42, the JCL statements presented below must reflect
allocation of the data bank and the data bank directory data sets to two
(2) or more-disk volumes.

Table C-3.

//FT1OFO01 DD DSN=GOAL.DATAB,
// UNIT=SYSDA, BOL-SER=XXXXX,
// SPACE=(172, (N3),,CONTIG),
// DCB= (RECFM=F, LRECL=172, BLKSIZE=172),
// DISP= (NEW, CATLG, DELETE)

//FT11FO01 DD DSN=GOAL.DATAD,
// UNIT=SYSDA, VOL=SER=XXXXX,
// SPACE=(N5, (N4)_,,CONTIG),
// DCB= (RECFM=F, LRECL=N5, BLKSIZE=NS),
// DISP= (NEW, CATLG, DELETE)

//FTI8FO1 DD DSN=GOAL.DATAB1,
// UNIT=SYSDA, VOL=SER=XXXXX,
// SPA CE=(172, (N3),, CONTIG),
// DCB= (RECFM=F, LRECL=172, BLKSIZE=1 72),
// DISP= (NEW, CATLG, DELETE)

//FT19FO01 DD DSN=GOAL.DATAD1,
// UNIT=SYSDA, VOL=SER=XXXXX,
// SPACE=(N5, (N4), ,CONTIG),
// DCB= (RECFM=F, LRECL=N5, BLKSIZE=N5),
// DISP= (NEW, CATLG, DELETE)

C-b

C.4 BLOCKING FACTOR CONSTANTS TO BE APPLIED IN THE DECLARATIVES OF
TABLE C-2 AND THE JOB CONTROL LANGUAGE STATEMENTS OF TABLE C-3

In the table presented below, (N) is the data bank directory blocking factor.
The table below covers the same range of blocking factor (range of 10 to 50)
as that of Table C-l.

Table C-4.

iv N1 N2 V 3 114 N5

10 193 24 1000 111 772

11 212 26 1331 133 848
12 231 28 1728 157 924
13 250 30 2197 183 1000
14 269 32 2744 211 1076
15 288 34 3375 241 1152
16 307 36 4096 273 1228

17 326 38 4913 307 1304
18 345 40 5832 343 1380
19 364 42 6859 381 1456
20 383 44 8000 421 1532
21 402 46 9261 463 1608
22 421 48 10648 507 1684
23 440 50 12167 553 1760
24 459 52 13824 601 1836
25 478 54 15625 651 1912
26 497 56 17576 703 1988

27 516 58 19683 757 2064
28 535 60 21952 813 2140
29 554 62 24389 871 2216
30 573 64 27000 931 2292

31 592 66 29791 993 2368
32 611 68 32768 1057 2444
33 630 70 35937 1123 2520

34 649 72 39304 1191 2596
35 668 74 42875 1261 2672
36 687 76 46656 1333 2748

37 706 78 50653 1407 2824
38 725 80 54872 1483 2900
39 744 82 59319 1561 2976
40 763 84 64000 1641 3052
41 782 86 68921 1723 3128
42 801 88 74088 1807 3204
43 820 90 79507 1893 3280
44 839 92 85184 1981 3356
45 858 94 91125 2071 3432
46 877 96 97336 2163 3508
47 896 98 103823 2257 3584
48 915 100 110592 2353 3660
49 934 102 117649 2451 3736
50 953 104 125000 2551 3812

C-6

APPENDIX D

PROGRAM MODULE DESCRIPTIONS

D. INTRODUCTION

Included in this Appendix are short verbal descriptions of all of the
program modules required to generate and support the GOAL data bank
system. In this Appendix:

o Figure D-l indicates the functional flow during data bank
and data bank directory initialization.

o Figure D-2 is the functional diagram of the data bank
maintenance process.

o Figure D-3 represents the elements involved in the data bank
initialization process. Also indicated on this diagram is
the operation of the data bank print utility program. The
operation and use of these two programs is completely inde-
pendent of one another - they have been included on the same
diagrams for convenience.

o Diagrams D-4, D-5, and 0-6 depict the three phases of the data
bank maintenance process.

o Following the above diagrams are descriptions (one module per
page) of the programs and subroutines required to support the
data bank. The program modules and their system names are as
follows:

Data Bank Print Utility

Mainline = SUPERD
Subroutines = SLEW

Data Bank Initialization Program

Mainline = DBI
Subroutines = None

Data Bank Maintenance Program

Mainline = MAINT
Subroutines = BEGDB NAMESR RCRETN

BUST SPECFY VNAME
DELDB DBEND COMPAR
DELETE DBSEEK SPACE
MACRO FIND SVSAVE

U-i

Data Bank Pre-Processor

This module is actually the GOAL compiler; action as
a data bank pre-processor is achieved by providing
the proper syntax tables. Documentation covering the
GOAL compiler module is in separate documentation.
The syntax tables required for data bank maintenance
usage are included in this document as Appendix I.

U-2

DATABANK
CAPACITY RECORD

Record
Number

DATABANK
INITILIZATION Total Number
CONTROL CARDS of Records

T yAvailable
Type(1) in Databank

Card File

Type(2) Total Number
Card - Records Now

Available on
Free Queue

Pointer
(Record #) to

- First Record
DATABANK on Free Queue

INITILIZE
PROGRAM Maximum

Maximum
1\/ Number of

AllowedDirectory Blocking Allowed
Factor from Constant Databnks
Compiled into the
Initilization Program Total Number

* Writes Dummy .. of Databanks
Blocks Currently in

Use
* Writes Zeroed * Writes Capacity

Block Headers Record

* Writes Dummy Databank Directory
Name Reference Blocking
Records Factor

* Forms Remaining Records
on to Free Queue

DIREC-
TORY DATA

BANK

S_ DATABANK INITIALIZATION

Figure U-1
U-3

CONTROL D AN N SORT SORTED NEW
MAINT- DIREC- DIRECTORY

CARDS 1 ENANCE TORY UTILIT DIRECTORY
PROGRAM ENTRIE

New Member Records Entries to be
are Added to the Deleted are Marked
Databank File in the Directory

Old Members to be
Deleted are Removed
from the DatabankDIREC- DIRECTORY > MERGE OLD DIRECTORY WITH NEW BY:

TORY CONSTRUCT
PROGRAM * Removing Entries Marked for

Deletion

* Inserting New Entries
If Merge Successful,

DATA Final Operation is

BANK Replacement of the
Old Directory with
the New Directory TEMPORARY

U- DNEW
DIRECTORY

Figure 0-2. DATABANK MAINTENANCE PROCESS

Initialization
Control

L-Parameters

Data Bank
Directory

Work Data Set //FT05FOO1

Data Bank
//FT3FO1 Initialization

_Program Listing

(DBI)

//FT11F001 //FT0F001

Data Bank
Directory ED Data Bank

File

//FT11FOO1 //FTIOFOOl

Data Bank Print _ Letters in circles are
Utility Program Data Set Reference

Numbers; see
(SUPERD) APPENDIX E for

record formats

//FTO6FOO

_ / DATA BANK
Printer Dump INITIALIZATION AND

All PRINT UTILITY
Data Banks PROGRAMS

NOTE - PROGRAMS (DBI) AND (SUPERD) MAY Figure D-3.
BE RUN INDEPENDENTLY OF ONE
ANOTHER U-b

A2
Al

Data Bank
Control //FTO5FOOl .Pre-Processor //FTO6FOO1 Pre-

Deck Program Listinc

//FT20FOO1

OFixed-Format
Control Card

Images

//FT05F001

Data Bank
Maintenance

//FTO9F0 1 Program //FTO6FO01 M a inten ance

(MAINT)
Alpha

Character
Reference

D Directory

New
Unsorted
Directory
Entries

S//FT12F001 //FT10F001 Data Bank

To PHASE-2 PHASE-1 DATA BANK
Maintenance MAINTENANCE

Process PROCESS

Letters in circles are Data Set Reference
Numbers; see APPENDIX E for record Figure D-4
formats Figure D-4

U-6

From New
PHASE-1 Unsorted

Maintenance F Directory
Process Entries

//SORTIN

//SORTWKO2
//SORTWKO3 L //SORTLIB Standard

. 0OS/360
Sort

Library

Standard

OS/360

I Sort/Merge //SYSOUT Sta t is tic

Listing

Utility

Program

Three (3) Intermediate
SORT Work Data Sets (IERRC0O0)

, Sorted
Control //SYSIN //SORTOUT f\ Directory

Card - Entries

Letters in circles are To
Data Set Reference PHASE-3
Numbers; see Maintenance
APPENDIX E for Process
record formats

PHASE-2 DATA BANK
MAINTENANCE

PROCESS

Figure U-5.

D-7

From New
PHASE-2 Sorted

Maintenance K Directory
Process Entries

//FT12F001

Data Bank Directory
Construct Maintenance //FTO6FOO1 Maintenanc

Program Listing
(DCON)

//FT13FOO1 //FTllFOO1

Data Bank

O rDirectory

Directory

Work
Data Set

Letters in circles are Data Set PHASE-3 DATA BANK
Reference Numbers; see MAINTENANCE
APPENDIX E for record PROCESS
formats

Figure D-6.

U- 8

GOAL DATA BANK ROUTINE

NAME - SUPERD

TYPE - FORTRAN Mainline

FUNCTION - Provides printer dump of the current data bank

contents

CALLED BY - Not Applicable

SUBROUTINES
CALLED - SLEW

DESCRIPTION - This module prints the contents of all active

data banks. Using the directory, all members of

each data bank are listed in alphabetic order by

member (record) name.

D-9

GOAL DATA BANK ROUTINE

NAME - SLEW

TYPE - FORTRAN Subroutine

FUNCTION - Provides paging and title strips for SUPER data bank

print utility program

CALLED BY - SUPERD

SUBROUTINES
CALLED - None

DESCRIPTION - Provides paging and title strip printing for the

SUPERD print utility program.

U-10

GOAL DATA BANK ROUTINE

NAME - DBI

TYPE - FORTRAN Mainline

FUNCTION - Data bank file and data bank directory initilization

(record pre-formatting)

CALLED BY - Not Applicable

SUBROUTINES
CALLED - None

DESCRIPTION - Under control-card control, this module pre-formats

the records of the data bank file and the data bank

directory by:

o composing and writing the data bank capacity
record;

o initializing and writing all data bank reference
records; these records also require chaining
together;

o filling the remainder of the data bank with
a chain of dummy records;

o writing dummy blocks into the data bank
directory and directory utility data set.

u-1H

GOAL DATA BANK ROUTINE

NAME - MAINT

TYPE - FORTRAN Mainline Program

FUNCTION - Mainline root program for all phase 1 maintenance

actions; reads control card input and invokes the

proper subroutine for further processing

CALLED BY - Not Applicable

SUBROUTINES
CALLED DELDB, DBEND, SPECFY, SVSAVE, MACRO, DELETE,

BEGDB, NAMESR, BUST

DESCRIPTION This module serves to process input cards, determine

their nature, and invoke the proper subroutine for

completion of the processing. Each subroutine, after

accomplishing its required action, returns control to

MAINT for further processing of the input stream.

U-12

GOAL DATA BANK ROUTINE

NAME - BEGDB

TYPE - FORTRAN Subtoutine

FUNCTION Process a BEGIN DATABANK control card; open a

Data Bank for maintenance

CALLED BY - MAINT

SUBROUTINES
CALLED - VNAME, DBSEEK, BUST

DESCRIPTION - This subroutine is utilized to process a BEGIN

DATABANK control card. The named Data Bank is sought

within the current Data Bank data set. If it already

exists, the Data Bank open flag (DBN) is set with the

Data Bank reference number. If the Data Bank is new,

the DBN flag is set in the same manner; the new Data

Bank Reference Record is composed and written into the

Data Bank before return to the caller.

D- 13

GOAL DATA BANK ROUTINE

NAME - BUST

TYPE - FORTRAN Subroutine

FUNCTION Output to the printer a standard error number

diagnostic message.

CALLED BY MAINT, BEGDB, DELDB, DELETE, MACRO, NAMESR, SPECFY,

DBEND, DBSEEK, FIND, VNAME, SPACE

SUBROUTINES
CALLED - RCRETN

DESCRIPTION - An error message number provided as a parameter by the

caller module is printed in a standard error message

format. A non-zero Return Code is established in the

OS/360 via a call to RCRETN from this subroutine.

U-14

GOAL DATA BANK ROUTINE

NAME - DELDB

TYPE - FORTRAN Subroutine

FUNCTION - Process a DELETE DATABANK control card

CALLED BY - MAINT

SUBROUTINES
CALLED - VNAME, DBSEEK, BUST

DESCRIPTION - The reference number of the required Data Bank is

located via the DBSEEK subroutine. Using this number

and the Data Bank Directory, all members of the named

Data Bank are returned to the record Free Queue in the

Data Bank data set. The existing Directory references

to the deleted members are marked for deletion.

U-15

GOAL DATA BANK ROUTINE

NAME - DELETE

TYPE - FORTRAN Subroutine

FUNCTION - Deletes a named member from the current open

Data Bank; processes a DELETE control card

CALLED BY - MAINT

SUBROUTINES
CALLED - VNAME, FIND, BUST

DESCRIPTION - The Data Bank Directory is used to locate the

control card named member in the Data Bank currently

opened. Once the required record is located, it is

returned to the Data Bank Free Queue. The applicable

Directory entry is marked for deletion.

u-16

GOAL DATA BANK ROUTINE

NAME - MACRO

TYPE - FORTRAN Subroutine

FUNCTION Processes MACRO control cards; enters the new

MACRO into the Data Bank currently open

CALLED BY - MAINT

SUBROUTINES
CALLED - VNAME, SPACE, BUST

DESCRIPTION - Processing of all MACRO input cards is accomplished

in this subroutine. Space is retrieved within the

currently open Data Bank, and the new MACRO records

composed and inserted.

0-17

GOAL DATA BANK ROUTINE

NAME - NAMESR

TYPE - FORTRAN Subroutine

FUNCTION - Provides processing for Subroutine Name Records

CALLED BY - MAINT

SUBROUTINES
CALLED - VNAME, SPACE, BUST

DESCRIPTION - Subroutine name control cards are parsed and processed

via this subroutine. Subroutine name record construction

is accomplished and the new record written into the

currently open Data Bank.

U-18

GOAL DATA BANK ROUTINE

NAME - SPECFY

TYPE - FORTRAN Subroutine

FUNCTION Used to process SPECIFY control cards; creates new

Function Designator Records

CALLED BY - MAINT

SUBROUTINES
CALLED - SPACE, BUST

DESCRIPTION - New Function Designator records are created by this

subroutine. All parsing of the SPECIFY card contents

is accomplished within this subroutine.

D-19

GOAL DATA BANK ROUTINE

NAME - DBEND

TYPE - FORTRAN Subroutine

FUNCTION Closes an open Data Bank; this subroutine processes

an END DATABANK control card

CALLED BY - MAINT

SUBROUTINES
CALLED - BUST

DESCRIPTION - This subroutine is invoked to process an END DATABANK

control card. The data bank open flag (DBN) is set

to the zero (off) state. Only DELETE DATABANK control

cards will be recognized by the MAINT mainline until

another Data Bank is opened (via a BEGIN DATABANK

control card).

U-20

GOAL DATA BANK ROUTINE

NAME - DBSEEK

TYPE - FORTRAN Subroutine

FUNCTION - Determines if a named Data Bank already exists

CALLED BY - BEGDB, DELDB

SUBROUTINES
CALLED - BUST

DESCRIPTION - Using a Data Bank name (name plus revision label, if

appropriate), this subroutine returns one of three

pieces of information to the caller:

(1) If the Data Bank already exists, the caller is

informed of the Data Bank reference number;

(2) If the Data Bank does not yet exist, the caller

is informed of a Data Bank reference record

number that is available for establishing a new

Data Bank;

(3) If the Data Bank does not exist and all usable

Data Bank reference records have been utilized,

an appropriate error indication is given.

U-21

GOAL DATA BANK ROUTINE

NAME - FIND

TYPE - FORTRAN Subroutine

FUNCTION - Locate a specific member of a given Data Bank

CALLED BY - DELETE

SUBROUTINES
CALLED - COMPAR, BUST

DESCRIPTION - Using the Data Bank Directory, this subroutine locates

a required member. The name of the member is supplied

as a calling parameter; the required Data Bank reference

number is provided as the first four bytes of the name.

Upon finding the required member, the sought record is

brought into memory and the caller informed of its

relative record number within the Data Bank data set.

U-22

GOAL DATA BANK ROUTINE

NAME - RCRETN

TYPE - Assembler Language Subroutine

FUNCTION The function of this subroutine is to establish the

OS/360 Return Code upon termination of the MAINT phase

1 maintenance module. Execution (go/nogo) of the

programs in subsequent job steps is controlled via this

Return Code.

CALLED BY - BUST

SUBROUTINES
CALLED - None

DESCRIPTION Non-error execution of the MAINT module results in a

zero Return Code indication upon MAINT termination.

Subsequent phases of the maintenance process can use

this code as an indication that normal execution can

continue. Should an error occur during MAINT execution

that would render execution of the subsequent maintenance

steps inappropriate, a non-zero Return Code is

established by call to the RCRETN subroutine from the

error diagnostic subroutine BUST.

u-23

GOAL DATA BANK ROUTINE

NAME - VNAME

TYPE - FORTRAN Subroutine

FUNCTION - Validates and isolates a name bounded by parenthesis

CALLED BY - BEGDB, DELDB, DELETE, MACRO, NAMESR

SUBROUTINES
CALLED - BUST

DESCRIPTION - This subroutine scans an indicated portion of an input

card and attempts to isolate a standard name bounded by

parenthesis. The name can be 1 - 32 characters in

length. The first character must be a letter; subsequent

characters can be letters and/or digits. An appropriate

error message is issued if an error is detected in

either the name contents or in the delimeters.

U-24

GOAL DATA BANK ROUTINE

NAME - COMPAR

TYPE - Assembler Language Subroutine

FUNCTION Perform a logical (non-arithmetic) compare of

two EBCDIC names

CALLED BY - FIND

SUBROUTINES
CALLED - None

DESCRIPTION - This subroutine is used as a FORTRAN function

subprogram. It is designed to be used in an

arithmetic FORTRAN statement;.the value returned to

the caller is either (-1), (0), or (+1). Two named

parameters are compared logically with the following

implications:

Parameter
Relation Return

A < B -1

A = B 0

A>B +1

D-25

GOAL DATA BANK ROUTINE

NAME - SPACE

TYPE - FORTRAN Subroutine

FUNCTION Finds a place to write a new record into the

Data Bank data set

CALLED BY - MACRO, NAMESR, SPECFY

SUBROUTINES
CALLED - BUST

DESCRIPTION - This subroutine locates the next available singular

record space in the Data Bank. The Data Bank Free Queue

total and pointer fields are updated and the Data Bank

Capacity Record re-written with the adjusted totals.

The record selected for availability has been read

into memory and is ready for use when return to the

caller is effected.

0-26

GOAL DATA.BANK ROUTINE

NAME - SVSAVE (Alternate entry point. to RCRETN subroutine)

TYPE - Assembler Language

FUNCTION The memory address of the OS/360 Supervisor is

established via this entry to the RCRETN subroutine.

This address is required for subsequent correct operation!

of the RCRETN subroutine.

CALLED BY - MAINT

SUBROUTINES
CALLED - None

DESCRIPTION - The address of the OS/360 Supervisor is required for

operation of the RCRETN subroutine; this address is

used as a RCRETN return point. The address is establishe1

as a part of the initilization sequence of the MAINT

mainline program.

U-27

APPENDIX E

DATA RECORD FORMATS

E.1 INTRODUCTION

This Appendix contains record descriptions for all of the data sets re-
quired for data bank and data bank directory initialization, maintenance,
and usage. Each of the data sets is referred to by a "file reference
letter". The reference letters are those used in the functional flow
illustrations of Appendix E. They are itemized in the table following:

File
Reference See

Letter Figure Data Set Description

AI D-4 Pre-processor program control card input

A2 D-4 Pre-processor program listing

A D-4 Fixed-format control card images

B D-4 Maintenance program alphanumeric character
set reference

C D-4 Phase-1 maintenance program listing

D D-3 Data bank directory
D-4
D-6

E D-3 Data bank file
D-4
D-6

F D-4 New unsorted directory entries
D-5

G D-5 Standard OS/360 Sort/Merge utility program
library (SYSI.SORTLIB)

H D-5 Sort/merge utility program listing

I D-5 Sort/merge utility program intermediate work
data sets

J D-5 Sort/merge utility program control card

E-1

File
Reference See
Letter Figure Data Set Description

K D-5 Sorted new directory entries
D-6

L D-6 Directory work data set

M D-6 Directory construction program listing

N D-3 Initialization program control card input

0 D-3 Initialization program listing

P D-3 Printer dump of data bank

Figures E-l through E-4 inclusive, form a sequential sample of the printer
listings that might occur as the result of a data bank maintenance operation.

E-2

GOAL COMPILER SOURCE RECORD LISTING

RECORD SOURCE RECORD

1 BEGIN DATABANK (SAMPLEDB) REVISION A ;

2 SPECIFY <PRIMARY GSCU ON SWITCH> AS LOAD TYPE DISCRETE ADDRESS 252

3 SPECIFY <VENT MOTOR FIELD> AS LOAD TYPE ANALOG ADDRESS 0063 ;

4 SPECIFY <CDC SET CKT> AS LOAD TYPE CLOCK ADDRESS 0040 ;

5 SPECIFY <MANIFOLD PRESSURE LOW LAMP> AS SENSOR TYPE DISCRETE ADDRESS 4123

6 SPECIFY <IU COOLANT PRESS> AS SENSOR TYPE ANALOG ADDRESS 0049 ;

7 SPECIFY <EST> AS SENSOR TYPE CLOCK ADDRESS 6 ;

8 SPECIFY <LINE PRINTER> ALSO AS <360/PRINTER> AS SYSTEM TYPE PRINTER ;

9 SPECIFY <CRT2> AS SYSTEM TYPE CRT ADDRESS 1 I
10 SPECIFY <LOG> AS SYSTEM TYPE TAPE ;

11 SPECIFY <PRINTER BUSY> AS SYSTEM TYPE INTERRUPT 0 ;

12 SPECIFY <PROCEDURE IN PROGRESS FLAG> AS SYSTEM TYPE FLAG 1 ;

13 SPECIFY <GOAL SR NAME> AS SUBROUTINE (FORT23) ;

14 NAME (POWER ON) SUBROUTINE (FORT4) ;

15 NAME (ABCDEFG) PROGRAM (FORT25) ;

16 BESIN MACRO ABC (A),(B),(C),<A> ;
17 (ABC) = (A) ;
18 (DEF) = (B) ;
19 (GHI) = (C) ;
20 (JKL) = <A> ; Figure E-1. SAMPLE DATA BANK

21 END MACRO ; PRE-PROCESSOR

22 END DATABANK ; LISTING

23 FINIS Refer to File Reference Letter A2

GOAL COMPILER DIAGNOSTIC SUMMARY

TOTAL NUMBER OF SOURCE RECORDS: 23
TOTAL NUMBER OF STATEMENTS: 19
TOTAL NUMBER OF WARNINGS: 0
TOTAL NUMBER OF ERRORS : 0
HIGHEST CONDITION CODE WAS 0

DATABANK (SAMPLEDB) (A)
SPECIFY <PRIMARYGSCUONSWITCH> LOAD DISCRETE 0252
SPECIFY <VENTMOTORFIELD> LOAD ANALOG 0063
SPECIFY (CDCSETCKT> LOAD CLOCK 0040
SPECIFY <MANIFOLDPRESSURELOWLAMP> SENSOR DISCRETE 4123
SPECIFY <IUCOOLANTPRESS> SENSOR ANALOG 0049
SPECIFY <EST> SENSOR CLOCK 0006
SPECIFY <LINEPRINTER>

<360/PRINTER> SYSTEM PRINTER
SPECIFY <CRT2> SYSTEM CRT 0001
SPECIFY <LOG> SYSTEM TAPE
SPECIFY <PRINTERBUSY> SYSTEM INTERRUPT 0000
SPECIFY <PROCEDUREINPROGRESSFLAG> SYSTEM FLAG 0001
SPECIFY <GOALSRNAME> SUBROUTINE (FORT23)
NAME (POWERON) SUBROUTINE (FORT4)
NAME (ABCDEFG) SUBROUTINE- (FORT25)
MACRO (ABC)

(A)
(B)
(C)
<A>

(ABC) = (A) ; Figure E-2. SAMPLE PHASE-1 MAINTENANCE PROGRAM
(DEF) = (B) ; FIXED-FORMAT CONTROL-CARD IMAGES
(GHI) = (C) ;
(JKL) = <A> ; Refer to File Reference Letter A

END MACRO
END DATABANK

*** TOTAL DIRECTORY ENTRIES GENERATED = 15 ***

*** TOTAL DIRECTORY ENTRIES DELETED = 0 ***

IER0361 - B = 90 Figure E-3.
IER0371 - G = 700
IER0381 - NMAX = 17460 SAMPLE SORT/MERGE PRINTER OUTPUT
IER045I - END SORT PH
IER0491 - SKIP MERGE PH Refer to File Reference Letter H
IER0541 - RCD IN 17,OUT 17
IER052I - EOJ

EDUIRaGIQASIIAILCI Figure E-4.

20: DBF SAMPLE PHASE-3 MAINTENANCE PROGRAM LISTING

14: WMAX Refer to File Reference Letter M

239: DRTOT
224: OLDTOT

0: DELTOT
15: SORTOT

0: ZERO BALANCE

DATABANK NAME: SAMPLEDB
REVISION: A

REFERENCE 0: 11

MEMBER RECORD RECORD
MUMIEB MUMBEa --- IXEE--- --- 1C.1E .- - - -HREEL. MEA.EBNMB8E ...E----------- ------- I EX 1i A10

225 509 MACRO (4 PARAMETERS) ABC

225 510 MACRO SKELETON (ABC) = V1

225 511 MACRO SKELETON (DEF) = &2

225 512 MACRO SKELETON (GHI) = &3 ;

225 513 MACRO SKELETON IJKL) = E4

226 508 SUBROUTINE FORT25 ABCDEFG

227 497 <FD> LOAD CLOCK 40 CDCSETCKT CDCSETCKT

228 502 <FD> SYSTEM CRT 1 CRT2 CRT2

229 500 <FD> SENSOR CLOCK 6 EST EST

r 230 506 <FD> SUBROUTINE FORT23 GOALSRNAME GOALSRNAME

231 499 <FD> SENSOR ANALOG 49 IUCOOLANTPRESS IUCOOLANTPRESS

232 501 <FD> SYSTEM PRINTER LINEPRINTER 360/PRINTER

233 503 <FDO> SYSTEM TAPE LOG LOG

234 498 <FD> SENSOR DISCRETE 4123 MANIFOLDPRESSURELOWLAMP MANIFOLDPRESSURELOWLAMP

235 507 SUBROUTINE FORT4 POWERON

236 495 <FD> LOAD DISCRETE 252 PRIMARYGSCUONSWITCH PRIMARYGSCUONSWITCH

237 504 <FD> SYSTEM INTERRUPT 0 PRINTERBUSY PRINTERBUSY

238 505 <FDO> SYSTEM FLAG I PROCEDUREINPROGRESSFLAG PROCEDUREINPROGRESSFLAG

239 496 <FD> LOAD ANALOG 63 VENTMOTORFIELD VENTMOTORFIELD

Figure E-5. SAMPLE DATA BANK PRINTER DUMP LISTING

Refer to File Reference Letter P

Record Name : Control Card Input

File Reference Letter : Al, A2, A

FORTRAN Symbolic Base Declaration : Not Applicable

Record Format Number : Not Applicable

These three data sets form the control input for the data bank maintenance
process. They are discussed separately below:

(Al) Pre-Processor Program Control Card Input

These control cards direct the maintenance process. They are totally
free-form in conformity with the syntax diagrams presented in this
document as Appendix I. A sample listing of control card variations
is to be found in Figure E-l.

(A2) Pre-Processor Program Listing

The pre-processor program is actually the GOAL compiler module directed
by a suitable syntax table. The listing that is output is an 80-80 list-
ing of the control cards input, plus any errors that may have been
detected in the control-card input. The pre-processor error messages
are to be found in this document in Appendix H. Figure E-1 provides an
example of the listing.

(A) Phase-1 Maintenance Program Control-Card Input

This data set forms the input control for the Phase-i data bank main-
tenance program (MAINT). The card images may be punched and entered
directly to MAINT, or, the images may be artificially generated as a
normal output from the data bank pre-processor program.

The control image consists of a total of six (6) distinct fields in
fixed positions. Not all fields are required for any control card type.
Figure E-6 describes the bounds of the six fields.

A sample of the variations of control images possible is illustrated in
Figure E-7. Usage of the various types is discussed in the following
paragraphs:

o A data bank is opened for maintenance by the appearance of a
DATABANK control card; the same data bank is closed by an END
DATABANK card.

o All control variations, with the single exception of a delete
data bank (DELETEDB) option, are legal only between a LbATABANK
and an END DATABANK pair. The DELETEDB option is legal only
when a data bank has been closed.

E-7

o All function-designator types except for PRINTER, CRT, TAPE,
and SUBROUTINE require an address field (see "F5" field, Figure
E-6). This address field is a mandatory four-digit field - lead-
ing zero(s) to be supplied as applicable.

o For the examples of function designators indicated in Figure E-7,
the print expansion field and the function designator name fields
are identical. If the print expansion field is to be unique, two
control images will be required. See page 2 of Figure E-7.

o The total number of formal parameters allowed on a macro will be
ten (10). Each parameter may be a GOAL name or function designator.

E-8

2 3 5 6 7 8 90 11 12 13115 16 17 18 19 20 21 22 23 2 25 26 27 28 29 30 31 32 33 39435 36 37 38 39411 422 95 6 47 48 9 50 51 52 53 55 56 57 58 59 6061 62 63 64 65 6667 68 69 70 71 72 73 74 75 76 77 7879 80

FF F

Figure E-6. FIXED FIELD LAYOUT - DATA SET REFERENCE LETTER "A"

DATABANK (ILLUSTRATIONS)

SPECIFY <PRIMARY GSCU ON SWITCH> LOAD DISCRETE 0252

SPECIFY <VENT MOTOR FIELD> LOAD ANALOG 0063

SPECIFY <CDC SET CKT> LOAD CLOCK 0040

SPECIFY <MANIFOLD PRESSURE LOW LAMP> SENSOR DISCRETE 4123

SPECIFY <IU COOLANT PRESS> SENSOR ANALOG 0049

SPECIFY <EST> SENSOR CLOCK 0006

SPECIFY <LINEPRINTER> SYSTEM PRINTER

SPECIFY <CRT2> SYSTEM CRT 0013

SPECIFY <LOG> SYSTEM TAPE

SPECIFY <EVENT12> SYSTEM INTERRUPT 0000

SPECIFY <REMEMBER SYSTEM FLAG 0614

SPECIFY <GOAL SR NAME> SUBROUTINE (FORT23)

MACRO (SAMPLEMACRONAME)

(PARM1)

READ <GMT> AND SAVE AS (PARMI) ;

END MACRO

END DATABANK

Figure E-7. SAMPLE FIXED-FORMAT CONTROL-CARD IMAGES

(Page 1 of 2) (DATA SET REFERENCE NUMBER "A")

DELETE (OLDNAME)

DELETE <OLD FUNCTION DESIGNATOR> (More control-card samples)

DELETEDB (OLDDATABANK) (REVISIONXXX)

Note: The print expansion field and the function designator name are identical on

all of the samples presented on page 1 of this figure.

The following example is presented to illustrate the format required to enter

a function designator with unique name and print-expansion formats - 2 cards

SPECIFY <NORMAL FD NAME> (Note - remainder of first card left blank)

<FD PRINT EXPANSION NAME - 2ND CARD> SENSOR ANALOG 0049

Figure E-7. (Page 2 of 2) SAMPLE FIXED-FORMAT CONTROL-CARD IMAGES

Refer to File Reference Letter A

Record Name : Alphabetic Character Reference

File Reference Letter : B

FORTRAN Symbolic Base Declaration : CHRTAB

Record Format Number : Not Applicable

This dataset forms the character reference to be used in scanning
control-card records. The dataset consists of a single card image
to be punched as follows:

Card Card Card
Column Character Column Character Column Character

1 1 21 K 41 <

2 2 22 L 42 (

3 3 23 M 43)

4 4 24 N 44 (apostophe)

5 5 25 0 45 +

6 6 26 P 46

7 7 27 Q 47 *

8 8 28 R 48 /

9 9 29 S 49 ?

10 0 (zero) 30 T 50 #

11 A 31 U 51 $

12 B 32 V 52 "n

13 C 33 W 53 &

14 D 34 X 54

15 E 35 Y 55

16 F 36 Z 56

17 G 37 = 57 blank

18 H 38 : 58-80 blank

19 I 39 ;

20 J 40 >

E-12

Record Name : Databank Maintenance Module Listing

File Reference Letter : C

FORTRAN Symbolic Base Declaration : Not Applicable

Record Format Number : Not Applicable

The output from this module is basically a single-spaced printer listing
of the input card deck (File Reference Letter = A).

If the step terminates due to error, the following message will appear on
the same line as the last input card processed:

***** ERROR # NNN OCCURRED *****

For a description of the error message numbers ("NNN" in the above message),
see the standard error message listing section of this document.

If the step proceeds normally to conclusion (no errors), the following totals
are printed after the last control card:

*** TOTAL DIRECTORY ENTRIES GENERATED = NNNNNN ***

*** TOTAL DIRECTORY ENTRIES DELETED = NNNNNN **

For an example of this listing, see Figure E-2.

E-13

e' Directory Header Block - .

A Directory Block
Symbolic-> HRN HTA HTU (N Directory

Bytes- 4 4 4 Entries)

Directory I Total # Total #
Block # IEntries Entries

Possible Used
(N)

Record Name : Directory Block

File Reference Letter : D, L

I FORTRAN Symbolic Base Declaration : DBLOCK (383)
4t-DIR (19)

Record Format Number Not Applicable

A Directory Entry

Symbolic-- ENT(1,N) ENT(2,N) SK(1,N) SK(2 N) SK(3-34,N)

Bytes--> 4 4 2 2 !64 (32-char)

Record Delete D t a k
Pointer Field Databank # Search Key

O=active
1=DELETE

Record Name Databank Capacity Record

File Reference Letter : E

FORTRAN Symbolic Base Declaration CAPCTY (43)

Record Format Number : RI

Field Type:
FW HW Length A=Alpha Symbolic

Subscript Subscript (Bytes) N=Numeric Name Field Description

1 1 4 N Rl Record number; always = 1 for Capacity Record

2 3 4 N RAVAIL Total # record allocated for databank

3 5 4 N FQTOT Total # records on FREE-QUEUE

4 7 4 N FQPTR Pointer to first record that is on the FREE-Q

5 9 4 N DBMAX Total # databanks allowed

6 11 4 N DBCUR Total # databanks currently in use

7 13 4 N UBF Directory blocking factor

8-43 15-86 144 NOT USED IN THIS RECORD FORMAT

Record Name : Databank Name Reference Record

File Reference Letter : E

FORTRAN Symbolic Base Declaration : DBREC (43)

Record Format Number : R2

Field Type:
FW HW Length A=Alpha Symbolic

Subscript Subscript (Bytes) N=Numeric Name Field Description

1 1 4 N DBRN Record Number

2 3 4 N PNEXT Pointer to next Databank Reference Record; if this
is the last record in the chain, PNEXT = 0

3 5 4 N RTYPE = 1 (one) means record currently not in use
= 2 (two) means record in use

4 7 4 N RECTOT Set to equal the total number of allowed databanks

5 9 4 N PLAST Pointer to last Databank Reference Record

6 11 4 N SDB Databank reference number; set to equal the current
record number (DBRN)

7 13 64 A SER 32-character databank search key (member name); in
FORTRAN 32A1 (halfword) format

23 45 64 A EPR 32-character databank name REVISION title; if none
specified, field is blank; in 32A1 FORTRAN halfword
format

39-43 77-86 40 NOT USED WITH THIS RECORD FORMAT

Record Name : Function Designator Record

File Reference Letter : E

FORTRAN Symbolic Base Declaration : DBREC (43)

Record Format Number : R3

Field Type:
FW HW Length A=Alpha Symbolic

Subscript Subscript (Bytes) N=Numeric Name Field Description

1 1 4 N DBRN Record number

2 3 4 N PNEXT Always zero with this record type

3 5 4 N RTYPE Record type = 3 indicates a Function Designator

4 7 4 N RECTOT Always = 1 for this record type

5 9 4 N PLAST Pointer to last record in this sequence; for this
record type, always set to point to this record,
i.e., PLAST = DBRN

6 11 4 N SDB Databank reference number of the databank of which
this Function Designator is a member

7 13 64 A SER 32-character Function Designator search key; in
FORTRAN (32A1) halfword format

23 45 64 A EPR 32-character Function Designator print expansion
name in FORTRAN (32A1) halfword format

39 77 2 N GPDATA (1) Function Designator type:
1 = Load Discrete 7 = System Printer
2 = Load Analog 8 = System CRT
3 = Load Clock 9 = System Tape
4 = Sensor Discrete 10 = Issue Subroutine
5 = Sensor Analog 11 = System Interrupt
6 = Sensor Clock 12 = System Flag

Record Name : Function Designator Record (Continued)

File Reference Letter : E

FORTRAN Symbolic Base Declaration : DBREC (43)

Record Format Number : R3

Field Type:
FW HW Length A=Alpha Symbolic

Subscript Subscript (Bytes) N=Numeric Name Field Description

* * For Function Designator Types 1 through 9, inclusive, and 11, 12 * *

N/A 78 2 N GPDATA (2) Function Designator hardware address

40-43 79-86 16 NOT USED WITH THIS RECORD VARIATION

* * For Function Designator Types 10 * *

I N/A 78 2 N GPDATA (2) Subroutine FORTRAN name lengtn (1 to 6, max)

40-42 79-84 2-12 A GPDATA (3) Subroutine FORTRAN name; one to six halfworas
through (8)

43 85 4 NOT USED WITH THIS RECORD VARIATION

Record Name : MACRO Header Record

File Reference Letter : E

FORTRAN Symbolic Base Declaration : DBREC (43)

Record Format Number : R4

Field Type:
FW HW Length A=Alpha Symbolic

Subscript Subscript (Bytes) N=Numeric Name Field Description

1 1 4 N DbRN Record Number

2 3 4 N PNEXT Always non-zero with this record type; points to
first MACRO Skeleton record (type = 5) of the MACRO

3 5 4 N RTYPE Record type.- 4 means MACRO Header Record

4 7 4 N RECTOT Total # records for this MACRO; sum of all MACRO
Skeleton (type = 5) + 1 for MACRO Header record

5 9 4 N PLAST Points to last MACRO Skeleton (type = 5) record
belonging to this MACRO

6 11 4 N SDB Databank reference number of the databank to which
this MACRO belongs

7 13 64 A SER 32-character MACRO name in FORTRAN (32A1) format

23 45 64 A EPR 32-character blank (field unused in this record type)
field in (32A1) FORTRAN format (nalfworas)

39 77 2 N GPDATA(1) Total # of format parameters aeclarea witn this
MACRO; NOTE - it is possible for a MACRO to have
no (zero) fonnal parameters

N/A 78-86 18 NOT USED WITH THIS RECORD TYPE

Record Name : MACRO Skeleton Record

File Reference Letter : E

FORTRAN Symbolic Base Declaration : DBREC (43)

Record Format Number : R5

Field Type:
FW HW Length A=Alpha Symbolic

Subscript Subscript (Bytes) N=Numeric Name Field Description

1 1 4 N DBRN Record Number

2 3 4 N PNEXT If not last skeleton record for this MARO, points
to next skeleton image; if last, PNEXT = 0

3 5 4 N RTYPE Record type = 5

m 4-43 7 160 A IMAGE Scanned and processed MACRO skeleton card-image
in FORTRAN (8OAl) format

o

Record Name Subroutine Name Record

File Reference Letter : E

FORTRAN Symbolic Base Declaration : DBREC (43)

Record Format Number : Rb

Field Type:
FW HW Length A=Alpha Symbolic

Subscript Subscript (Bytes) N=Numeric Name Field Description

1 1 4 N DBRN Record Number

2 3 4 N PNEXT Zero

3 5 4 N RTYPE Record type = 6

4 7 4 N RECTOT Always = 1 for this record type

5 9 4 N PLAST Points to this record number (DBRN)

6 11 4 N SDB Databank reference number of the databank to which
this subroutine belongs

7 13 64 A SER 32-character subroutine GOAL name in FORTRAN (32A1)
halfword format

23 45 64 A EPR Unused in this record type

39 77 2 N GPuATA(1) Unused in this recora format

N/A 78 2 N GPDATA(2) Number of characters in subroutine FORTRAN name,
range is 1 to b

40-42 79-84 2-12 A GPDATA(3) Subroutine FORTRAN name; one to six nalfworas witn
thru (8) characters in FORTRAN (Al) format

43 85 4 NOT USED IN THIS RECORD FORMAT

Record Name : New Directory Entry

File Reference Number : F, K

FORTRAN Symbolic Base Declaration : SORT (20)

Record Format Number : Not Applicable

One New Directory Entry

Symbolic ---- STYPE DRPTR DELF DDBN SERCH (32)

Bytes 4 4 4 4 64 (32-char)

Sort Record Delet.e Databank Search Key
Record i Pointer Field Reference (in (32A1)
Type = 0 Number FORTRAN halfword

* (active) format
1 = Process Record (DRPTR = total # new directory entries)
2 = Normal Directory Entry
3 = EOF (End-of-File) Dummy Record

Record Name : Standard Sort/Merge Library

File Reference Letter : G

FORTRAN Symbolic Base Declaration : Not Applicable

Record Format Number : Not Applicable

This dataset is the standard Sort/Merge Utility Program library required
for operation un-er OS/360. This dataset is generated as a portion of
the Operating System and is customarily cataloged under the data set name
"SYSI.SORTLIB".

E-23

Record Name : Sort/Merge Utility Printer Output

File Reference Letter : H

FORTRAN Symbolic Base Declaration : Not Applicable

Record Format Number : Not Applicable

Indicated below is a sample of the output as produced by a successful run of
this utility program. Space allocation for the three intermediate work
datasets (File Reference Letter = I) was 100 tracks for this run.

IER036I - B = 90
IER0371 - G = 625
IER038I - NMAX =
IERO45I - END SORT PH
IER0491 - SKIP MERGE PH
IER0541 - RCD IN 30,OUT 30
IER052I - EOJ

The exact meaning of the above numbered messages is contained in the following-
OS/360 Reference Manual:

IBM System/360 Operating System
Sort/Merge
Form # GC28-6543-6

The only real significance that this message sequence has to the GOAL compiler
is that no error messages are present.

E-24

Record Name : Sort/Merge Intermediate Storage

File Reference Letter I

FORTRAN Symbolic Base Declaration : Not Applicable

Record Format Number : Not Applicable

These three datasets form the intermediate workspace required for the Sort/
Merge Utility program operation. The total disk space (in tracks) for a
2314 Disk sort is given by the following formula:

SPACE = 3 (# of directory entries to be sorted - max) + 6
174

This computed space is to be divided evenly between the three datasets. The
formula above is a condensation of the standard Sort/Merge computation covered
in Section 2, pp 43 of the following OS/360 reference manual:

IBM System/360 Operating System
Sort/Merge
Form # GC28-6543-6

Figure E-8 of this document tabularizes the storage requirements for the sort
work data sets for directory blocking factors ranging from 10 to 50.

E-25

Figure E-8. (Page 1 of 2)

THE POLLOWING IS A TABLE INDICATIliG THE DISK WORK SPACE
REQUIRED TO SORT NEW DIRECTORY ENTRIES IN THE SECOND
STEP OF THE DIRECTORY-UPDATE PROCESS. THE TOTAL TRACKS
INDICATED BELOW ARE TO BE DIVIDED EQUALLY (ROUNDI'G UP
IF REQUIRED) BETWEEIN THE THREE WORK SPACE ALLOCATIOS.

*** FIXED LENGTH SORT IvNPUT/OUTPUT RECORD SIZE (BYTES) 80
*** TOTAL IUMBER IiTERMEDIATE SORTWKJI STORAGE AREAS 3
*** I = DIRECTORY BLOCKING FACTOR

**** 2-LEVEL ***** **** 3-LEVEL *****

TOTAL SORTWK TOTAL SORTWKII
N ENTRIES TRACKS ENTRIES TRACKS

10 100 8 1000 24
11 121 9 1331 29
12 144 9 1728 36
13 169 9 2197 44
14 196 10 2744 54
15 225 10 3375 65
16 256 11 4096 77
17 289 ii 4913 91
18 324 12 5832 107
19 361 13 6859 125
20 400 13 8000 144
21 441 14 9261 166
22 484 15 10648 .190
23 529 16 12167 216
24 576 16 13824 245
25 625 17 15625 276
26 676 18 17576 310
27 729 19 19683 346
28 784 20 21952 385
29 841 21 24389 427
30 900 22 27000 472
31 961 23 29791 520
32 1024 24 32768 571
33 1089 25 35937 626
34 1156 26 39304 684
35 1225 28 42875 746
36 1296 29 46656 811
37 1369 30 50653 880
38 1444 31 54872 953
39 1521 33 59319 1029
40 1600 34 64000 1110

E-26

Figure E-8. (Page 2 of 2)

*** FIXED LEIGTH SORT ILPUT/OUTPUT RECORD SIZE (IYTES) : 80
*** TOTAL NUMBER INTERMEDIATE SORTWKNZl' STORAGE AREAS : 3
*** I = DIRECTORY BLOCKING FACTOR

**** 2-LEVEL ***** **** 3-LEVEL *****

TOTAL SORTWKI TOTAL SORT WI?:
N ElITRIES TRACKS NITRIES TRACKS

41 1681 35 G8921 1195
42 1764 37 74088 1284
43 1849 30 79507 1377
44 1936 40 85184 1475
45 2025 41 91125 157P
46 2116 43 9733 10085
47 2209 45 103823 1797
48 2304 46 110592 1913
49 2401 48 1176049 2035
50 2500 50 125000 2102

E-27

Record Name : Sort/Merge Utility Control-Card Input

File Reference Letter : J

FORTRAN Symbolic Base Declaration : Not Applicable

Record Format Number : Not Applicable

This dataset contains a single control-card with entry as depicted below.
This entry commences in card-column 2 and extends through card-column 55,
inclusive. The only blank character between column 2 and 55 is that between
the words "SORT" and "FIELDS".

cc cc5
2 6

SORT FIELDS=(1,4,BI,A,13,4,BI,A,17,64,CH,A),SIZE=ElOOO

This causes the Unsorted Directory Entry File (File Reference Letter = F) to
be sorted by the following sequence:

Primary Sort - Sort Record Type (Ascending)

2 - Databank Reference Number (Ascending)

3 - 32-character Entry Name (Search Key) (Ascending)

E-28

Record Name : Directory Construct Listing

File Reference Letter : M

FORTRAN Symbolic Base Declaration : Not Applicable

Record Format Number : Not Applicable

An example of the listing of concern is to be found in Figure E-4 of this
Appendix. In general, the following results from a correct and complete
directory construction operation:

NEW DIRECTORY STATISTICS

20: DBF

14: WMAX

239: DRTOT
224: OLDTOT

0: DELTOT
15: SORTOT

0: ZERO BALANCE

The meaning of the symbolic counts depicted above are as follows:

DBF : Directory blocking factor of the current directory

WMAX : Maximum number of directory blocks containing any entries

DRTOT : Total number of named entries currently supported in the
directory data set

OLDTOT Total number of entries that were supported in the directory
before the current additions/deletions were made

DELTOT : Total number of directory entries that were deleted as a
result of the current maintenance action

SORTOT : Total number of sorted new directory entries that were
processed from the input data set (File Reference Letter K)

ZERO BALANCE : A cross check made of the above counts to attempt error
checks; the balance will always be zero for a correct
maintenance process. Numerically,

ZERBAL = DRTOT - (OLDTOT - DELTOT) - SORTOT

E-29

Record Name : Databank Initialize Control-Caras

File Reference Letter : N

FORTRAN Symbolic Base Declaration : None

Record Format Number

The following two control-cards are required for each databank initialization
run:

cc cc
1 1
0 5

8000 TYPE-1 CARD: TOTAL # RECORDS AVAILABLE IN DATABANK.

30 TYPE-2 CARD: TOTAL # DATABANKS TO BE ALLOWED.

The first type card indicates via the integer (right-justified to column 10)
the total # of records allocated for the databank (File Reference Letter = E).
This number must be the cube of the Directory Blocking Factor. Thus the
example above indicates the total for a Blocking Factor of 20.

The second control-card indicates the total # of databanks to be allowed. The
integer is right-justified to card-column 10.

The commentary shown on both card types as beginning in column 15 is optional
and may be omitted. No data beyond card-column 10 is processed by the
initialization module.

E-30

Record Name : Initialization Program Printer Output

File Reference Letter :

FORTRAN Symbolic Base Declaration : Not Applicable

Record Format Number : Not Applicable

The following printer sequence ensues upon successful completion of the
initialization sequence. The example below indicates a databank initialized
with 8000 records total, 30 databanks allowed, and a Directory Blocking Factor
of 20.

DATABANK CAPACITY RECORD

RECORD # : I
TOTAL # RECORDS ALLOCATED : 8000

TOTAL # RECORDS ON FREE-QUEUE : 7969
HEAD OF FREE-QUEUE RECORD CHAIN : 32
MAXIMUM # OF ALLOWED DATABANKS : 30

TOTAL # DATABANKS CURRENTLY IN USE : 0

E-31

APPENDIX F

SAMPLE CONTROL-CARD INPUT

F. INTRODUCTION

The purpose of this Appendix is to provide a sample of the control-
card input to the data bank pre-processor program. In this regard,
refer to Appendix D, Figure D-4, which pictorially represents the
data flow during data bank maintenance. The following is to be noted:

o The control-card input, data set reference letter
Al of Figure D-4 is represented by the sample input
shown in Figure F-l of this Appendix.

o Figure F-2 is a sample of the fixed-format control
card images as produced by the pre-processor program.
Refer to data set reference letter A of Figure D-4.

The exact content of the card-image records is given in Appendix E
(Data Set Record Formats) for data set reference numbers Al and A.

F-1

SAMPLE PRE-PROCESSOR CONTROL-CARD INPUT

** This example of Pre-Processor Program input results in the output of the
fixed-format card images shown on Figure F-2.

BEGIN DATABANK (SAMPLE) REVISION A ;
SPECIFY <PRIMARY GSCU ON SWITCH> AS LOAD TYPE DISCRETE ADDRESS 252 ;
SPECIFY <VENT MOTOR FIELD> AS LOAD TYPE ANALOG ADDRESS 0063 ;
SPECIFY <CDC SET CKT> AS LOAD TYPE CLOCK ADDRESS 0040 ;
SPECIFY <MANIFOLD PRESSURE LOW LAMP> AS SENSOR TYPE DISCRETE ADDRESS 4123
SPECIFY <IU COOLANT PRESS> AS SENSOR TYPE ANALOG ADDRESS 0049 ;
SPECIFY <EST> AS SENSOR TYPE CLOCK ADDRESS 6 ;
SPECIFY <LINE PRINTER> ALSO AS <360/PRINTER> AS SYSTEM TYPE PRINTER ;
SPECIFY <CRT2> AS SYSTEM TYPE CRT ADDRESS I ;
SPECIFY <LOG> AS SYSTEM TYPE TAPE ;
SPECIFY <PRINTER BUSY> AS SYSTEM TYPE INTERRUPT 0 ;
SPECIFY <PROCEDURE IN PROGRESS FLAG> AS SYSTEM TYPE FLAG I ;
SPECIFY <GOAL SR NAME> AS SUBROUTINE (FORT23) ;
NAME (POWER ON) SUBROUTINE (FORT4) ;
NAME (ABCDEFG) PROGRAM (FORT25) ;
BEGIN MACRO ABC (A)(B),(C),<A> ;

(ABC) = (A) ;
(DEF) = (B) ;
(GHI) = (C) ;
(JKL) = <A> ;

END MACRO ;
END DATABANK ;
FINIS

Figure F-l.

SAMPLE PRE-PROCESSOR PROGRAM CONTROL-CARD OUTPUT

** The fixed card images shown below are the Pre-Processor program
output resulting from the input card set shown on Figure F-1.

DATABANK (SAMPLE) (A)
SPECIFY <PRIMARYGSCUONSWITCH> LOAD DISCRETE 0252
SPECIFY <VENTMOTORFIELD> LOAD ANALOG 0063
SPECIFY <CDCSETCKT> LOAD CLOCK 0040
SPECIFY <MANIFOLDPRESSURELOWLAMP> SENSOR DISCRETE 4123
SPECIFY <IUCOOLANTPRESS> SENSOR ANALOG 0049
SPECIFY <EST> SENSOR CLOCK 0006
SPECIFY <LINEPRINTER>

<360/PRINTER> SYSTEM PRINTER
SPECIFY <CRT2> SYSTEM CRT 0001
SPECIFY <LOG> SYSTEM TAPE
SPECIFY <PRINTERBUSY> SYSTEM INTERRUPT 0000
SPECIFY <PROCEDUREINPROGRESSFLAG> SYSTEM FLAG 0001
SPECIFY <GOALSRNAME> SUBROUTINE (FORT23)
NAME (POWERDN) SUBROUTINE (FORT4)
NAME (ABCDEFG) SUBROUTINE (FORT25)
MACRO (ABC)

(A)
(B)
(C)
<A>

(ABC) = (A) ;
(DEF) = (B) ;
(GHI) = (C)
(JKL) = <A>

END MACRO
END DATABANK

Figure F-2.

APPENDIX G

DATA BANK MAINTENANCE MODULE ERROR MESSAGES

G. INTRODUCTION

Presented in a tabular form in this Appendix is a listing of the possible
error messages that can be generated from the data bank maintenance programs.
It is to be noted that the error messages for the pre-processor program are
listed separately in this document in Appendix H.

G-1

Error Program
Number Module Description

1 MAINT Control card type unknown - a data bank has
not yet been opened (a BEGIN DATABANK statement
has not yet been encountered)

2 MAINT Control card type unknown - a data bank has
been opened (a BEGIN DATABANK statement has already
been processed)

3 DBEND END DATABANK control card contents invalid

4 VNAME Too many characters in a name, or, the
BEGDB rightmost name delineator was omitted

5 VNAME Leftmost delineator in a name is not the
BEGDB expected character or is missing

6 VNAME A character found in a name is not a valid
letter of the alphabet or a valid digit (0-9)

7 VNAME The first character in a name is not a letter

8 BEGDB Keyword error on a BEGIN DATABANK statement

9 BEGDB Trying to initilize a new data bank but the
maximum number of allowed data banks has
already been reached

10 DBSEEK Wrong record type (not type = 1 or 2) found
when searching through the data bank reference
record chain in the data bank file

11 DBSEEK Chaining error in the data bank reference records
section of the data bank file

12 SPECFY Keyword error, missing, or out of sequence on
a SPECIFY statement

13 SPECFY Delineator problem (missing or invalid) on
a function designator name

14 SPECFY End-of-file found on input data set while
attempting to read the second card of a
SPECIFY statement

15 SPECFY Error encountered in parsing a subroutine name
or in the delineators surrounding a subroutine name

16 SPECFY Discrete/analog/clock/interrupt/flag address field
contains an illegal (non digit) character

U-2

Error Program
Number Module Description

17 FIND Program logic error when attempting a data bank
directory search

18 SUPERD A data bank function designator record has been
found but the function designator type field is
zero or negative

19 SUPERD Same problem as 18, above, however the function
designator type field is greater than 11

20 SUPERD A macro skeleton record has been found in a
macro chain in the data bank file, but the record
type is not type = 5

21 NAMESR Keyword error on NAME SUBROUTINE control card

22 NAMESR Error encountered in parsing a FORTRAN-equivalent
subroutine name

23 MACRO Error in one of the keyword fields on a macro

24 MACRO Error in a parameter field parse on the BEGIN
MACRO statement

25 MACRO End-of-file found in input data set before the
end of a macro was found

26 MACRO Too many formal parameters found on a BEGIN
MACRO statement (more than 10)

27 MACRO Ran out of space in the data bank file while
entering a macro

28 MACRO Program logic error encountered when processing
the macro header record chain

29 MACRO A macro has no skeleton cards

30 SPECFY Error encountered in parsing a SYSTEM type keyword,
i.e., PRINTER, TAPE, CRT, INTERRUPT, FLAG

31 DELETE Keyword error found on a DELETE control card

32 DELETE Delimeter error on the name field

33 DELETE Member named for deletion is not in the data bank

G-3

Error Program
Number Module Description

34 DELETE A function designator was scheduled for deletion
(the name on the DELETE card was bounded by
brackets); the record found in the data bank
is not a function designator (type = 3) record

35 DELETE Name to be deleted was bounded by parenthesis,
indicating that the record type was not a function
designator; the record found in the data bank
has a function designator type field (type = 3,
or less)

36 DELETE Logic error encountered while attempting to
make a directory deletion

37 SPECFY Error in address field - non-numeric characters
in a digit field

40 DCON Record sequencing error in the sorted directory
entries data set

41 DCON End-of-file found on sort input data set before
first record read and processed

42 DCON End-of-file record missing in the sort data set

43 DCON Duplicate record name in the directory (a single
data bank contains two records with the same
alphanumeric names)

46 DELDB Keyword contents invalid on a DELETE DATA EANK
control card

47 DELDB Cannot locate the data bank to be deleted

48 DELDB Logic error in data bank deletion process; cannot
locate the required data bank reference record
by using the data bank reference number

G-4

APPENDIX H

PRE-PROCESSOR ERROR MESSAGE LIST

H. INTRODUCTION

As mentioned in Appendix D, Program Module Description, the data bank
pre-processor program is actually the GOAL compiler module driven by a
suitable syntax table. The syntax equations required are covered in
Appendix I. The error messages to be generated are taken from the
standard GOAL compiler message list, a copy of which is included in this
Appendix. The actual message numbers of concern for the data bank pre-
processor program are:

131 844 911

800 847 918

804 903 927

808 904 939

829 909 952

836 910 999

H-i

COMPLETE GOAL COMPILER MESSAGE LIST (Page 1 of 5)

100 INVALID ROW DESIGNATOR OR KEYWORD 'ROW' IS MISSING
101 INVALID C3LUMN INDEX NAME OR C3LUMN INTEGER NUMBER.
102 INVALID ROW INDEX NAME OR ROW INTEGER NUMBER.
103 INVALID LIST INDEX NAME OR LIST INTEGER NUMBER.
104 INVALID REFERENCE OR KEYWORD FOLLOWING KEYWORD 'SEND' OR 'APPLY'.
106 INVALID OR MISSING EXTERNAL DESIGNATOR -FROM-
108 INVALID OR MISSING EXTERNAL DESIGNATOR - TO -
110 INVALID INTERNAL NAME WHICH MUST BE DECLARED AS A STATE VALUE.

112 INVALID INTERNAL NAME OR STATE WHICH MUST BE DECLARED AS STATE VALUES.

114 INVALID INTERNAL NAME WHICH MUST NOT BE DECLARED AS STATE OR TEXT

122 INVALID INTEGER NUMBER OF ENTRIES.
124 INVALID INTERNAL NAME OR STATE
128 INVALID NUMBER NAME.
129 INVALID NUMBER NAME. THIS NAME IS PREVIOUSLY DEFINED.
130 INVALID NUMBER PATTERN OR NUMBER.
131 INVALID NUMERIC VALUE - MUST BE 1-4 DIGITS.
132 INVALID QUANTITY NAME.
133 INVALID QUANTITY NAME. THIS NAME IS PREVIOUSLY DEFINED
134 INVALID QUANTITY VALUE.
138 INVALID STATE VALUE.
140 INVALID TEXT NAME.
141 INVALID TEXT NAME. THIS NAME IS PREVIOUSLY DEFINED.
142 INVALID NUMERIC LIST NAME.
143 INVALID NUMERIC LIST NAME. THIS NAME IS PREVIOUSLY DEFINED.
144 INVALID NUMERIC TABLE NAME
145 INVALID NUMERIC TABLE NAME . THIS NAME IS PREVIOUSLY DEFINED.
146 INVALID INTEGER NUMBER OF COLUMNS.
147 INVALID INTEGER NUMBER OF COLUMNS. THE LIMITS ARE 0 THROUGH 45.
148 INVALID INTEGER NUMBER OF ROWS.
149 INVALID INTEGER NUMBER OF ROWS. THE LIMITS ARE I THROUGH 45.
150 INVALID COLUMN NAME.
151 INVALID COLUMN NAME OR KEYWORD 'C3LUMN' IS MISSING.
152 INVALID QUANTITY LIST NAME.
153 INVALID QUANTITY LIST NAME. THIS NAME IS PREVIOUSLY DEFINED.

GOAL COMPILER MESSAGE LIST (Page 2 of 5)

154 INVALID QUANTITY TABLE NAME.
155 INVALID QJANTITY TABLE NAME. THIS NAME IS PREVIOUSLY DEFINED.
156 INVALID STATE LIST NAME.
157 INVALID STATE LIST NAME. THIS NAME IS PREVIOUSLY DEFINED.
158 INVALID STATE TABLE NAME.
159 INVALID STATE TABLE NAME. THIS NAME IS PREVIOUSLY DEFINED.
160 INVALID INTERNAL NAME OR NUMBER PATTERN
162 INVALID TEXT LIST NAME.
163 INVALID TEXT LIST NAME. THIS NAME IS PREVIOUSLY DEFINED.
164 INVALID INTEGER NUMBER OF CHARACTERS.
165 INVALID INTEGER NUMBER OF CHARACTERS. THE LIMITS ARE 1 THROUGH 132.
166 INVALID TEXT TABLE NAME.
167 INVALID TEXT TABLE NAME. THIS NAME IS PREVIOUSLY DEFINED.
168 INVALID DELAY STATEMENT FOLLOWING THE VERB DELAY OR WAIT.
172 INVALID REFERENCE OR KEYWORD FOLLOWING THE VERB ISSUE .
173 INVALID LEAVE STATEMENT - LEAVE CAN ONLY BE USED WITHIN A SUBROUTINE
174 INVALID RESUME STATEMENT.
175 INVALID LEAVE STATEMENT.
176 INVALID PERFORM SUBROUTINE STATEMENT FOLLOWING THE SUBROUTINE NAME.
180 INVALID RECORD DATA STATEMENT FOLLOWING THE KEYWORD DISPLAYPRINT OR RECORD.
182 INVALID STEP NUMBER OR KEYWORD 'ALL' IS MISSING.
184 INVALID TEXT, NAME OR FUNCTION DESIGNATOR FOLLOWING THE VERB REPLACE.
186 INVALID TEXT OR KEYWORD 'ENTRY' IS MISSING FOLLOWING THE VERB REQUEST.
190 INVALID REFERENCE OR KEYWORD 'PRESENT VALUE OF' FOLLOWING THE VERB SET.
195 INVALID WHEN INTERRUPT STATEMENT FOLLOWING THE KEYWORD 'OCCURS'.
200 THE NUMBER DF ENTRIES INITIALIZED EXCEEDS THE NUMBER SPECIFIED.
201 THE NUMBER OF COLUMN TITLES EXCEEDS THE SPECIFIED NUMBER OF COLUMNS.
202 THE NUMBER OF ENTRIES INITIALIZED IS LESS THAN THE NUMBER SPECIFIED.
203 THE NUMBER OF COLUMN TITLES IS LESS THAN THE SPECIFIED NUMBER OF COLUMNS.
204 THE FUNCTION DESIGNATOR SPECIFIED IS NOT DEFINED IN THE DATA BANK.
206 INVALID ROW FUNCTION DESIGNATOR. IT IS PREVIOUSLY DEFINED IN THIS TABLE.
210 INVALID COLUMN TITLE NAME. THIS NAME IS PREVIOUSLY DEFINED IN THIS TABLE.
212 EXECUTION RATE AS SPECIFIED IS GREATER THAN TEN MINUTES.
214 CONCURRENT STATEMENT DOES NOT HAVE A STEP NUMBER.
216 CORRESPONDENCE IS INVALID (SHOULD BE 1 TO 1, 1 T3 MANY OR MANY = MANY)
218 INVALID NUMERIC FORMULA (UNBALANCED PARENTHESES)
220 INVALID INTERNAL NAME (NOT DECLARED AS NUMERIC OR QUANTITY)
222 INVALID INTERNAL NAME (NOT A SINGLE ELEMENT)

GOAL COMPILER MESSAGE LIST (Page 3 of 5)

224 INVALID NUMERIC FORMULA (SIZE EXCEEDS COMPILER CAPACITY)
228 FUNCTION DESIGNATOR SPECIFIED IS NOT A SUBROUTINE PARAMETER.
300 INVALID MACRO LABEL- DOES NOT START WITH A LETTER.
301 INVALID MACRO LABEL- LONGER THAN 32 CHARACTERS.
302 INVALID MACRO LABEL- CONTAINS AN ILLEGAL CHARACTER.
303 INVALID MACRO LABEL- MACRO LABEL IS MULTI-DEFINED.
304 INVALID MACRO PARAMETER - DOES NOT START WITH A LETTER.
305 INVALID MACRO PARAMETER - LONGER THAN 32 CHARACTERS.
306 INVALID MACRO PARAMETER - CONTAINS AN ILLEGAL CHARACTER.
307 INVALID MACRO PARAMETER - MACRO PARAMETER IS MULTI-DEFINED.
308 EXPECTED SEMICOLON ';' NOT FOUND AFTER PROCESSING THE 10 MAXIMUM PARAMETERS.
309 EITHER COMMA ',' OR SEMICOLON ';' WAS OMITTED.
310 LEFT PARENTHESIS '(' MISSING ON PARAMETER FOLLOWING COMMA.
311 MACRO TO BE EXPANDED AND/OR EXECUTED IS NOT DEFINED.
312 MACRO TO BE EXPANDED AND/OR EXECUTED NEEDS PARAMETERS - NONE WERE SUPPLIED.
313 INVALID SJBSTITUTION PARAMETER - CONTAINS AN ILLEGAL CHARACTER.
314 INVALID SJBSTITUTION PARAMETER - CONTAINS NO CHARACTERS.
315 NUMBER OF PARAMETERS IN STATEMENT AND MACRO ARE NOT THE SAME.
316 NUMBER OF PARAMETERS IN STATEMENT EXCEEDS NUMBER OF PARAMETERS IN MACRO.
317 INVALID SJBSTUTUTION PARAMETER - LONGER THAN 79 CHARACTERS.
318 INVALID MACRO BODY - CONTAINS NO CHARACTERS.
350 INVALID CHARACTER STRING - CONTAINS AN ILLESAL CHARACTER.
351 INVALID CHARACTER STRING - CONTAINS MORE THAN 32 CHARACTERS.
352 INVALID REPLACEMENT CHARACTER STRING. CONTAINS MORE THAN 80 CHARACTERS.
353 INVALID REPLACEMENT CHARACTER STRING. CONTAINS AN ILLEGAL CHARACTER.
354 REPLACEMENT NAME, CHARACTER STRING OR FUNCTION DESIGNATOR IS MULTI-DEFINED.
400 NUMBER OF DATA BANKS IN USE HAS EXCEEDED THE MAXIMUM OF 10.
402 DATA BANK SPECIFIED IS ALREADY IN USE.
406 INVALID DATA BANK NAME. THE DATA BANK NAME IS MULTI-DEFINED.
408 UNABLE TO FREE DATA BANK AS NONE IS BEING USED AT THIS TIME.
410 SPECIFIED DATA BANK NAME DOES NOT EXIST.
412 UNABLE TO FREE DATA BANK AS IT IS NOT IN USE AT THIS TIME.
413 LABEL ERROR - THE STATEMENT FOLLOWING AN UNCONDITIONAL GO TO IS NOT NUMBERED
414 STRUCTURAL ERROR ** PREAMBLE STATEMENT FOUND IN PROCEDURAL BODY.
415 SYMBOL TABLE OVERFLOW HAS OCCURRED. A MAXIMUM OF 9999 ENTRIES IS ALLOWED.
800 INVALID ADDRESS - MUST BE 1-4 DIGITS.
802 INVALID COMPARISON TEST.
804 INVALID DATA BANK NAME.

GOAL COMPILER MESSAGE LIST (Page 4 of 5)

805 INITIALIZATION OF REFERENCED **SUBROUTINE PARAMETER** NAME IS NOT ALLOWED.
806 INVALID OR MISSING EXTERNAL DESIGNATOR.
807 END PROGRAM STATEMENT IS INVALID DURING A SUBROUTINE COMPILATION.
808 INVALID FUNCTION DESIGNATOR.
809 END SUBROUTINE STATEMENT IS INVALID DURING A PROGRAM COMPILATION.
810 INVALID NUMBERNUMBER PATTERN,QUANTITY,STATE,TEXT OR INTERNAL NAME.
812 INVALID INTEGER NUMBER.
814 INVALID INTERNAL NAME.
816 INVALID OR MISSING REFERENCE FOLL3WING THE COMMA.
826 INVALID NUMERIC FORMULA.
828 INVALID OUTPUT EXCFPTION.
829 INVALID NAME OR FUNCTION DESIGNATOR.
830 INVALID SUBROUTINF PARAMETER (NAME OR FUNCTION DESIGNATOR).
832 INVALID OR MISSING PROGRAM NAME.
834 INVALID QUANTITY OR INTERNAL NAME
836 INVALID REVISION LABEL.
838 INVALID ROW DESIGNATOR.
841 INVALID STEP NUMBER. THIS STEP NUMBER IS PREVIOUSLY DEFINED.
842 INVALID STEP NUMBER.
843 INVALID PERFORM PROGRAM OR PERFORM SUBROUTINE STATEMENT.
844 INVALID SUBROUTINE NAME.
845 BEGIN PROGRAM OR BEGIN SUBROUTINE FOUND DURING A PROGRAM COMPILATION.
846 INVALID TABLE NAME.
847 INVALID FORTRAN SUBROUTINE NAME.
848 INVALID TEXT CONSTANT.
849 A TEXT CONSTANT ENTRY EXCEEDED THE MAXIMUM NUMBER OF CHARACTERS SPECIFIED.
850 INVALID TIME VALUE.
852 INVALID FUNCTION DESIGNATOR TYPE IN THE SPECIFY STATEMENT.
853 INVALID RDW FUNCTION DESIGNATOR TYPE. MUST BE A LOAD OR SENSOR ANALOG.
854 INVALID ROW FUNCTION DESIGNATOR TYPE. MUST BE A LOAD OR SENSOR DISCRETE.
855 INVALID ROW FUNCTION DESIGNATOR TYPE. MJST BE A SYSTEM FUNCTION DESIGNATOR.
856 THE NUMBER OF ROW FUNCTION DESIGNATORS EXCEEDS THE NUMBER OF ROWS.
857 THE NUMBER OF ROW FUNCTION DESIGNATORS IS LESS THEN THE NUMBER OF ROWS.
900 KEYWORD NOT FOUND - AND.
901 KEYWORD NOT FOUND - RETURN.
902 KEYW3RD NOT FOUND - AND SAVE AS.
903 KEYWORD NOT FOUND - ADDRESS.
904 KEYWORD NOT FOUND - AS.
907 KEYWORD NOT FOUND - READINGS OF.

GOAL COMPILER MESSAGE LIST (Page 5 of 5)

908 KEYWORD NOT FOUND - CHARACTERS.
909 KEYWORD NOT FOUND - CRT, PRINTER, TAPE, INTERRUPT, OR FLAG.
910 KEYWORD NOT FOUND - DATABANK OR MACRO.
911 KEYWORD NOT FOUND - ANALOG, CLOCK, OR DISCRETE.
912 KEYWORD NOT FOUND - ENTRIES.
913 KEYWORD NOT FOUND - EXCEPTIONS.
914 KEYWORD NOT FOUND - EQUAL TO OR =.
916 KEYWORD NOT FOUND - FROM
918 KEYWORD NOT FOUND - LOAD OR SENSOR OR SYSTEM.
920 KEYWORD NOT FOUND - OCCURS.
922 KEYWORD NOT FOUND - UNTIL.
924 KEYWORD NOT FOUND - PRESENT VALUE OF.
925 KEYWORD NOT FOUND - COLUMNS.
926 KEYWORD NOT FOUND - ROWS AND.
927 KEYWORD NOT FOUND - REVISION.
930 KEYWORD NOT FOUND - SUBROUTINE.
934 KEYWORD NOT FOUND - TIMES.
938 KEYWORD NOT FOUND - TO
939 KEYWORD NOT FOUND - TYPE.
940 KEYWORD NOT FOUND - WITH.
941 KEYWORD NOT FOUND - WITH ENTRIES.
944 KEYWORD NOT FOUND - WITH A MAXIMUM OF, EQUAL TO OR =.
945 BEGIN PROGRAM OR BEGIN SUBROUTINE FOUND DURING A SUBROUTINE COMPILATION.
946 KEYWORD NOT FOUND - PERFORM PROGRAM, VERIFY, DISPLAY, PRINT, OR RECORD.
948 KEYWORD NOT FOUND - NUMBER, QUANTITY, STATE OR TEXT.
952 KEYWORD NOT FOUND - PROGRAM OR SUBROUTINE.
954 KEYWORD NOT FOUND - AND INDICATE RESTART LABELS OR SEMICOLON ';'.
986 KEYWORD NOT FOUND - THEN OR COMMA ','.
987 INVALID PAGE NUMBER FOLLOWING THE WORD PAGE. LIMITS ARE 1-999.
988 INVALID LINE SIZE FOLLOWING PAGE SIZE. LIMITS ARE 80-110.
989 INVALID PAGE SIZE FOLLOWING THE WORD LINE. LIMITS ARE 1-32767.
990 INVALID DATE TEXT CONSTANT FOLLOWING THE WORD DATE. LIMITS ARE 1-8.
991 INVALID TITLE TEXT CONSTANT FOLLOWING THE WORD TITLE. LIMITS ARE 1-100.
992 INVALID SEQUENCE FIELD NUMBER FOLLOWING THE WORD SEQ. LIMITS ARE 0-10.
993 INVALID COMPOUND COMPILER CONTROL CARD.
994 INVALID COMPILER CONTROL CARD.
995 THIS STATEMENT IS NOT RECOGNIZED AS A GOAL STATEMENT
996 EXPECTED DOUBLE DOLLAR SIGN '$$' NOT FOUND
998 EXPECTED COMMA ',' NOT FOUND.
999 EXPECTED SEMICOLON ';' NOT FOUND.

APPENDIX I

DATA BANK PRE-PROCESSOR SYNTAX TABLES

I. INTRODUCTION

As mentioned in Appendix D, Program Module Description, the data bank pre-
processor program is actually the GOAL language compiler program. Syntax
tables have been provided which direct the GOAL compiler in its action as
pre-processor. The current documentation relative to the compiler and its
syntax tables are to be found in Volumes I and II. The syntax tables
utilized for the release version have been entered as table number 8 in
the syntax table library. These syntax equations are indicated in symbolic
form on the pages following in this Appendix.

I-1

PRE-PROCESSOR INPUT CONTROL-CARD SYNTAX DIAGRAMS (Page I of 5)

DATABANK I , BEGIN STATEMENT END . FINISI
INPUT DATABANK TYPES DATABANK

DELETE

DATABANK

SPECIFY

DELETE

STATEMENT

SATEMENT

TYPES

NAME

SUBROUTINE

MACRO

DEFINITION

I-2

FUNCTION FUNCTION
DESIGNATOR

SPECIFY SPECIFY DESIGNATOR

- AS SENSOR TYPESDEVICE

DEVICE
LOAD

TYPES

SYSTEM
SYSTEM TYPES

FORTRAN*
SUBROUTINE NAME

DEVICE ANLO A\
TYPES TYPE ANALOG ADDRESS

CLOCK

*LIMITED FORTRAN NAME

I-3

PRE-PROCESSOR INPUT CONTROL-CARD SYNTAX DIAGRAMS (Page 3 of 5)

PRINTER

CRT ADDRESS

SYSTEM
TYPES TYPE TAPE

INTERRUPT

-A VALUE

FLAG

3

VALUE NUMERAL

ADDRESS ADDRESS NUMERAL

LETTER

FORTRAN* - (LETTER 0-

NAME

NUMERAL
*LIMITED FORTRAN NAME

I-4

PRE-PROCESSOR INPUT CONTROL-CARD SYNTAX DIAGRAMS (Page 4 of 5)

NAME NAME NAME SUBROUTINE FORTRAN*

SUBROUTINE NAME NAME NAME
PROGRAM

DELETE REVISION
DATABANK DELETE DATABANK NAMEDATABANK LABEL

NAME

DELETE

STATEMENT DELET E

FUNCTION

DESIGNATOR

MACRO BEGIN MACRO MACRO END

DEFINITION STATEMENT SKELETON MACRO

END
MACRO END MACRO

I-b

PRE-PROCESSOR INPUT CONTROL-CARD SYNTAX DIAGRAMS (Paqe 5 of 5)

o May not include
MACRO words 'END MACRO'

SKELETON o Must not have more
than 40 cards without
a semicolon

I-6

PRE-PROCESSOR SYNTAX TABLES (Page 1 of 2)

1 8 0 -1
*** DATA BANK PREPROCESSOR SYNTAX TABLE -- SYNTAX TABLE #8

<DB PRODUCTION> = #5225 <DB STMT> #10 ;
<DB STMT> = <MACRO DEFN MODE> I <BEGIN STMT> I <END STMT> 1 <SPECIFY>

<DELETE STMT> I <SUBRTN NAME> I <FINIS> ;

<MACRO DEFN MODE> = #56 <MDMOI> ;
<MDMO1> = <MDM02> 1 #502 ;
<MDM02> = 'END MACRO' #503 $999 ';' ;

<BEGIN STMT> = 'BEGIN' $910 <81> ;
<Bl> = <82> I <B3> ;

<82> = 'MACRO' #501 ;
<B3> = 'DATABANK' $804 <NAME> #5201 $927 <REVISION LABFL>

$999 ';' #5202 ;

<END STMT> = 'END DATABANK' $999 ';' #5203 ;

<SPECIFY> = 'SPECIFY' $808 <FUNCTION DESIGNATOR> #5204 <ALT FORM>?
$904 'AS' $918 <SPL> $999 ';' #5205;

<SPl> = <SP2> I <SP3> I <SUBRTN> ;
<SP2> = <SP4> $939 'TYPE' $911 <SP5> $903 'ADDRESS'

$800 <SP7> ;
<SP7> = <ADDRESS> #5217 ;
<SP4> = <LOAD> I <SENSOR> ;

<LOAD> = 'LOAD' #5206 ;
<SENSOR> = 'SENSOR' #5207 ;

<SP5> = <(DISCRETE> I <ANALOG> I <CLOCK> ;
<(DISCRETE> = 'DISCRETE' #5209 ;
<ANALOG> = 'ANALOG' #5210 ;
<CLOCK> = 'CLOCK' #5211 ;

<SP3> = 'SYSTEM' #5208 $939 'TYPE' $909 <SP6> ;
<SP6> = <PRINTER> I <TAPE> I <CRT> I

<INTERRUPT> I <FLAG> ;
<PRINTER> = 'PRINTER' #5212 ;
<TAPE> = 'TAPE' #5214 ;
<CRT> = 'CRT' #5213 $903 'ADDRESS' $800 <SP7> ;
<INTERRUPT> = 'INTERRUPT' $131 <SP9> ;
<SP9> = #23 #5222 ;
<FLAG> = 'FLAG' $131 <SP8> ;
<SP8> = #23 #5223 ;

<SUBRTN> = 'SUBROUTINE' $847 <FORTNM> #5218 ;

<DELETE STMT> = <DELETEDB> I <DELETE> ;
<DELETEDB> = 'DELETE DATABANK' $804 <NAME> #5201 $927

<REVISION LABEL> $999 ';' #5220 ;
<(DELETE> = 'DELETE' $829 <FD OR NAME> $999 ';' #5221 ;

I-7

PRE-PROCESSOR SYNTAX TABLES (Page 2 of 2)

<SUBRTN NAME> = 'NAME' $844 <NAME> #5201 $952 <SNI>
$847 <FORTNM> #5218 $999 ';' #5224 ;

<SN1> = 'SUBROUTINE' I 'PROGRAM' ;

<ALT FORM> = 'ALSO' $904 <AFl> ;
<AFi> = 'AS' $808 <FUNCTION DESIGNATOR> #5216
<ADDRESS> = #23 ;
<REVISION LABEL> = 'REVISION' $836 #27 #5219 ;
<FD OR NAME> = <FD> I <NM> ;

<FD> = <FUNCTION DESIGNATOR> #5204 ;
<NM> = <NAME> #5201 ;

<FORTNM> = #29 #5226 ;
<NAME> = #29 ;
<FUNCTION DESIGNATOR> = #20 ;

<FINIS> = 'FINIS' #5215 ;

* #5201 - MOVE DB NAME TO OUTPUT BUFFER
* #5202 - WRITE FIXED FORM 'DATABANK' RECORD
* #5203 - WRITE 'END DATABANK' STMT
* #5204 - MOVE FUNCTION DESIGNATOR TO OUTPUT BUFFER
* #5205 - WRITE FIXED FORM 'SPECIFY' RECORD
* #5206 - #5214 MOVE FD TYPES INTO OUTPUT BUFFER
* #5215 - SET ENDFLG = 1 AND RETURN
* #5216 - SUPPORT ALTERNATE FORM FD - OUTPUT FIRST LINE
* #5217 - MOVE ADDRESS INTO OUTPUT AREA
* #5218 - MOVE SUBROUTINE NAME INTO OUTPUT AREA
* #5219 - MOVE REVISION LABEL TO OUTPUT AREA
* #5220 - WRITE FIXED FORM 'DELETEDB' RECORD
* #5221 - WRITE FIXED FORM 'DELETE' RECORD
* #5222 - MOVE 'INTERRUPT' AND VALUE TO OUTPUT AREA
* #5223 - MOVE 'FLAG' AND VALUE TO OUTPUT AREA
* #5224 - OUTPUT 'NAME SUBROUTINE' RECORD
* #5225 - SET PREFLG = 1
* #5226 - LIMIT FORTRAN SUB NAME TO SIX CHARACTERS

END ;

I-8

