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REPORT OF RESEARCH ACTIVITIES - SUMMER, 1973

William J. Cook
Department of Mechanical Engineering

Iowa State University
Ames, Iowa

Introduction

This report covers the author's research activities at the NASA Langley

Research Center during the ten-week period June 11 to August 17, 1973. This

work was supported under NASA Contract No. NASl-11707-21, and was carried out

in the Hypervelocity Impulse Facilities Section of the Advanced Entry Analysis

Branch, Space Systems Division. Mr. Jim Jones served as immediate supervisor.

The effort involved work in the three areas described briefly below.

Correlation of Aerodynamic Heating Rates

This work involved a theoretical study of heat transfer for zero pressure

gradient hypersonic laminar boundary layers for various gases with particular

application to the flows produced in Langley expansion tube facility. A,

simple correlation based on results obtained from solutions to the governing

equations for five gases was formulated. See the attached first draft of a

paper entitled, "Correlation of Heat Transfer for the Zero Pressure Gradient

Hypersonic Laminar Boundary Layer for Several Gases," which will be submitted

to the AIAA Journal.

Heat Transfer Measurement in Short-Duration Flows

The author served as a consultant on data reduction techniques in relation

to the measurement of heat transfer rates in the expansion tube facility.
Techniques in use by the Langley scientists which were previously developed

by the author for reduction of data obtained from thin-film resistance thermo-

teter heat-flux gages were extended for use in conjunction with thin-film
thermocouple gages.

Shock Tube Boundary Layer Analysis

The author served as a consultant on the subject of high temperature
laminar boundary layer flows in shock tubes. Particular attention was directed
toward the laminar boundary layer on shock tube splitter plates in carbon
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oxide flows generated by high speed shock waves. Computer analysis of the

plitter plate boundary layer flow provided information that is useful in
nterpreting experimental data obtained in shock tube gas radiation studies.
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CORRELATION OF HEAT TRANSFER FOR THE ZERO PRESSURE GRADIENT
HYPERSONIC LAMINAR BOUNDARY LAYER FOR SEVERAL GASES

By William J. Cook1

NOMENCLATURE

C Chapman-Rubesin coefficinet, pp/pe"e

h Static enthalpy, J/kg

hr Recovery enthalpy, he + ru2/2

H Dimensionless enthalpy, (h - h )/he

k Thermal conductivity, W/(m K)

P Pressure, atm

q Heat transfer rate per unit area, (heat flux), W/m2

r Recovery factor

Re Reynolds number, XUePe/ e

M Mach number

T Temperature, K

s Exponent: cone, s = 1; wedge, plate, s = 0
St Stanton number, -qw/Peue (hr - h )

u x component of velocity, m/s

V y component of velocity, m/s

x Space coordinate parallel to wall, m

Y Space coordinate perpendicular to wall, m

8 u/ue

1 Associate Professor of Mechanical Engineering, Department of MechanicalEngineering, Iowa State University, Ames,Iowa 50010
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y Specific heat ratio, C p/Cv

SDimensionless shear stress, p(au/ay)/peu2

S Viscosity coefficient, kg/(m s)

p Density, kg/m3

f Shear stress variable, Eq. (3)

a Effective Prandtl number

Subscripts

e Boundary layer edge

w Wall

INTRODUCTION

Current research in the area of convective heating in high speed flows

includes studies using gases and gas mixtures to simulate aerodynamic heating

in planetary atmospheres. Test facilities such as the shock tunnel and the

expansion tube are useful for generating the required high-energy flows for

investigating aerodynamic heating over a range of high Mach numbers. Simple

configurations such as the sharp flat plate, the wedge, and the sharp cone

that avoid boundary layer pressure gradients are frequently used as basic

body shapes in such studies. This note is concerned with correlation of

hypersonic aerodynamic heating parameters for these body shapes for several

gases under test conditions encountered in these facilities and for conditions

under which the boundary layer is laminar.

Testing in the above-mentioned facilities characteristically involves

models with cold surfaces (relative to the recovery temperature) since, due

to short testing times involved, little change from the initial room temperature

of the model surface occurs. Hence, considerations here will be directed mainly

toward flows with the cold wall condition. Further, only the boundary layer

flow downstream of the region of interaction of any leading edge shock wave

and the boundary layer that occurs near the leading edge will be treated.

To a good approximation the self-similar laminar boundary layer equations

for flows with zero pressure gradient are then applicable.
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In order to assess the influence of the characteristics of various real

gases, hypersonic heating rates in air, argon, carbon dioxide, helium, and

hydrogen have been theoretically studied. These gases as ideal gases range

in molecular structure from monatomic to triatomic, the molecular weights

range from 2 to 44 and values of y vary from 1.28 to 1.67. In high Mach

number flows real gas effects can play an important role since, because of

pronounced dissipation effects, the temperature in the boundary layer can

reach large values. Real gas effects in hypersonic flows may be present

to varying degrees depending on the gas considered, e.g., carbon dioxide

dissociates at relatively low temperatures while helium exhibits ideal

gas behavior over a wide range of temperature. In view of these facts and

the range of gas characteristics considered, there is no assurance that a

precise universal correlation for heat transfer exists for a wide range of

flow conditions. However, insight for the present problem can be gained

by examining the boundary layer equations and solutions thereto for various

gases.

ANALYSIS

The method employed here to solve the governing boundary layer equations

is that of Crocco (e.g., see Ref. 1), in which the boundary layer equations

in terms of x and y as the independent variables are transformed to

equations that have x and u as the independent variables. For real gas

flows in thermochemical equilibrium, the laminar boundary layer equations
with B = u/u and x as the independent variables and t = V(au/ay)/p 2

and H = (h - he)/he as dependent variables are:

Momentum,

S

Q a [ [ (1)

Energy,

U2

H = et + Hjj - P x (2)
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where s = 1 for the case of the cone and s = 0 for the plate and the wedge.
In Eq. (2) a = a(h,p) is the effective Prandtl number that serves to incorp-
orate real gas effects with regard to energy transport. Continuity is

implicitly satisfied in Eqs. (1) and (2). The boundary conditions for these
equations are,

OT/ B = 0, H = Hw , at a = 0

r = 0, H = 0, at B = 1

The boundary condition on t at B = 0 results from u = v = 0 at the wall.

By employing a separation of variables solution of the form r(x,8) = 0(B)/X(x),
the shear stress becomes,

T(x,B) = 0(B)/(Re)1/2  (3)

After Crocco, the term Hx  in Eq. (2) is taken as zero. Substituting Eq. (3)
into Eqs. (1) and (2),

00 + 3SCa/2 = 0 (4)

000H = (ue/he)02  + 0(A Hg) (5)

where C = p/p e e . The boundary conditions become

0 = O0, H = Hw , at B = 0

0= 0, H = 0, at B = 1

In integrated form Eqs. (4) and (5) can be written as,

1 P 11/2
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and

1

H(s) = -H ( 0) d - dP

1 P

+ H n (x)d ad d dP

where O(8) = [0(0)]1-a(B). Equations (6) and (7) are coupled since C = C(h,p).

The heat flux qw = -k(6T/ay)w for the gas becomes

1/2
S= -Ow (H )wPeuehe/w (Re) (8)

where w and (H ) are obtained from simultaneous solution of Eqs. (6) and

(7). Substitution of Eq. (8) into the Stanton number expression yields,

St(Re)1/ 2  w(HB)w (9)
aw [(w)1/ 2  ue2 H

where the recovery factor r has been taken as (aw )1/2

It is useful to examine the equations that lead to the terms in Eq. (9)

in order to determine how the various flow quantities and gas properties

influence St(Re)1/2. To solve Eqs. (6) and (7) for Ow and (H )w  certain

quantities must be specified. For a given gas the variations of the properties

a, T, and pp with h at the specified pressure are required. Specification

of Tw and Te  then establish hw  and he and therefore H w. In addition,

C = pP/pe1e and a can then be determined as functions of H.
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Finally, with specification of u , the term u2/he  in Eq. (7) is

[established. Thus, if Tw , Te, u , and the gas properties as a function

of h are specified, sufficient information is available to solve Eqs. (6)

and (7) for OW and (H )w . Therefore, if Tw , Te, u ,e and the pressure

p are specified, and various gases are considered, any variation that occurs

in 0w and (H )w  will arise from differences in the relations for T, pp,

and a vs h for the various gases. It should be noted however that fixed

values for Tw and Te do not yield the equal values of Hw for all gases

except for the case Tw = Te. Therefore, if comparisons are to be made between

the solutions to Eqs. (6) and (7) for various gases at conditions other than

Tw= Te, they should be made at the same values of Tw and Hw rather than

at the same Tw and Te. On this basis, specification of fixed values of

T , p, u2/he, and Hw  would permit the variations of pp and a vs h

on Ow and (H)w  for various gases to be assessed. The terms u2/he and

Hw also appear in the denominator of Eq. (9). The term u2/he  is related

to the Mach number. For ideal gases u2/he = M2(y -.1). Thus for large

Mach numbers u2/h >>H . The Prandtl number aw in the denominator of

Eq. (9) for the cold walls considered here is related to y. (According to

the theory of Eucken2 the Prandtl number for gases can be closely approximated

by 4y/(9y - 5).) Therefore, for high Mach numbers the denominator of Eq. (9)

is related to the Mach number and y. Computations performed to examine the

influence of variations of gas properties on Eq. (9) and the terms therein

are presented in the next section.

RESULTS

Figure la shows solutions to Eqs. (6) and (7) for a plate (s = o) in terms

of *(B) and H(s) obtained for carbon dioxide and helium for the values of
Tw,  p, u/he, and Hw noted in the figure. The numerical method employed

to solve Eqs. (6) and (7) is outlined in ref. 3. Figure lb shows C(B) and a(B)
for each of the gases. Property values for carbon dioxide were obtained from
refs. 4 and 5. Thermodynamic properties for helium were computed from ideal
gas equations. Also the relation v a T0O 647 and a constant Prandtl number

(o = 0.688) were employed for helium.

It is noted that the influence of the difference between the curves for
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C(B) and o(B) on the profiles for *(B) and H(B) is small, but that

the values for w (H )w noted in the figure differ by about 20 percent.

However, the values of St(Re)1 /2 computed by Eq. (9) for the two gases

differ by less than one percent. This suggests that St(Re)I/2 and u2/h

are the correlating variables. Figure 2 presents results in terms of St(Re)1/ 2/y4 W

vs u2/he for air, argon, carbon dioxide, helium, and hydrogen. The term

v-s permits the results to be applied to the cone or the plate and wedge.

The properties for argon and .hydrogen were obtained from ref. 4. Those for

air were taken from ref. 6. The Mach number and ue/he ranges applicable for

each gas are shown in the figure. Results obtained for Hw = 0 and Hw = -0.68

are indicated by the open and filled symbols respectively. These values of

Hw correspond to T e/Tw = 0 and T e/Tw 3, and cover the range of T e/Tw
commonly encountered in shock tunnel and expansion tube flows. With the

exception of carbon dioxide the results are relatively insensitive to the

value of Hw . The results in Fig. 2 were obtained for p = 0.01 atm. However,

computations at p = 1 atm for carbon dioxide (for which variation in pressure

was expected to have the most influence) yielded results that are within one

percent of those shown in Fig. 2, indicating that there is no significant

influence of pressure for the conditions considered here.

For simplicity a straight line has been fitted through the points in

Fig. 2. The computed results deviate by at most five percent from this

curve. Thus for most engineering purposes this simple relation should be

sufficiently accurate for the gases considered for Fig. 2. In view of the

wide range of gas characteristics considered here it is reasonable to

expect this relation would be applicable with the same accuracy to other

gases and gas mixtures provided the cold wall condition is maintained and

Hw is within the range noted in Fig. 2.

B-7



REFERENCES

i. Van Driest, E.R., "The Laminar Boundary Layer with Variable Fluid
Properties," Preprints of Papers, Heat Transfer and Fluid Mechanics
Institute, 7, 127-141, 1954.

2. Kennard, E.H., Kinetic Theory of Gases. New York: McGraw-Hill Book Company,
Inc., 1938, pp. 180-182.

3. Cook, William J. and Chapman, Gary T., "Characteristics of the Unsteady
Shock-Induced Laminar Boundary Layer on a Flat Plate," The Physics of
Fluids, 15, 2129-2139, (1972).

4. Marvin, Joseph G. and Deiwert, George S., "Convective Heat Transfer in
Planetary Gases," NASA Technical Report TR R-224, 1965.

5. Hilsenrath, J.; Beckett, C.W.; et al.: Tables of Thermodynamic and
Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide,
Hydrogen, Nitrogen, Oxygen and Steam. Pergamon Press, New York,
Oxford, 1960.

6. Hansen, C. Frederick, "Approximation for the Thermodynamic and Transport
Properties of High Temperature Air," NASA Technical Report TR R-50, 1959.

B-8



i ... H, Carbon dioxide

0.4 .- 0, Carbon dioxid -...-i. ---- 4.0

- . . -H- Helium -.
- ~ -'N 3.0

0.2 - - 2.0
Hel i um

0.1 1.0

-r

-1.0
0 0.2 0.4 0.6 0.8 1.0

a. 0 and H vs B

1.4- .- 2 ..

--------- /h = 45 p = 0.01 ratm

1.3 H = -0.68 T = 300 K
.... --. " i .... - + W • 'i.--.+ .. : :-

,2..

1.2. Gas Me Ow(HB)w St (Re)1/2

1 J CO2  11.8 5.291 0.3323

He 8.20 4.443 0.3339

1.0-

S0.9T- 0.9C, Carbon dioxide '

, Carbon dioxide

. .i I . : , Hel um

0.7 .__

0.6 ,-:-: i -"C. Helium

0.5

0 0.2 0.4 0.6 0.8 1.0

b. C and o vs B

Fig. 1 Comparison of results for carbon dioxfde and helium.

B-9



St(Re) /2/(3) 1/ 2  0.385 - 0.0011(u2/he) :
0.4 . e e ..

0.3 -4

T 300 K .

RA E .. .. .. .. .

Open symbols, H 0.8 - I .I I 
Filled symbols, Hw = -0.68 RAIGE .

0.2 Gas Me

0 AIR . AIR 6.0-11.1 13.6-68.1 ..

6 HYDROGEN ARGON 6.0-10.0 20.0-66.6

0 ' ARGON CARBON DIOXIDE 6.4-15.8 14.0-58.2
E HL , .. HELIUM 5.7-9.9 . 21.6-65.0

. ARGON IO :i'i. ; '  :: CAHYDROGEN 6.2-11.1 16.0-51.0

0 .. .. . ..

0 IQ 20 30 2 40 50 60 70 80o HELIUoe ot f f r g .

Fig. 2 Correlation of heat transfer for several gases.
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