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ABSTRACT

A method first presented by Goodman is used to derive an equation for the

statistical effects associated with laser returns from satellites having retroreflecting

Lrrays of cube corners. The effect of the distribution on the returns of a satellite-

racking system is illustrated by a computation based on randomly generated numbers.
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THE STATISTICS OF LASER RETURNS FROM CUBE-CORNER

ARRAYS ON SATELLITES

C. G. Lehr

1. INTRODUCTION

The retroreflecting arrays on certain satellites currently in orbit are examples of

what Goodman (1965) calls "rough targets. " He predicts that the laser returns from

such objects will have a statistical variation; that is, their energies will vary signifi-

cantly from the mean pulse energy calculated from the range equation, and this varia-

tion will occur in a random manner. Consequently, the energy will vary from one

pulse to the next to a much greater extent then might be expected from the change in

satellite range over the time between successive pulses.

This "scintillation, " or random energy variation, from pulse to pulse occurs when

the coherence length of the laser radiation is comparable to or exceeds a typical

dimension of the satellite's retroreflecting array. The optical phase differences of

waves reflected from individual cube corners are preserved, and a random interference

pattern, similar to the speckle pattern commonly observed with CW lasers (Eaglesfield,

1967), is produced when these waves combine. In the case of the satellite-tracking

laser, however, the receiver is far removed from the reflecting surface, and the

individual bright and dark spots in the speckle pattern become very large by the time

they reach the receiving telescope. In fact, the area of one of these spots is comparable

to that of the aperture of the telescope, and hence there is hardly any aperture averag-

ing. As a result, a large signal is obtained when a bright spot nearly fills the aperture,

and a small one, when a dark spot takes its place.

This work was supported in part by grant NGR 09-015-002 from the National Aeronautics
and Space Administration, Research and Technology Operating Plan (RTOP), number
161-05-02, "Laser Techniques."
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It is interesting to note that the diffraction spreading of the reflected beam has an

important effect on the statistics of the returned signals. If the receiving telescope

were close to the retroreflector, the bright spots would be much more closely spaced

and the intensity variation would be averaged out over the aperture of the receiver.

It is apparent, therefore, that the problem cannot be solved by using geometrical

optics, even when the phase changes along the rays are considered. In this report,

Goodman's analysis will be presented in a simplified form applicable to the special

case of satellite tracking.

The statistical effect for a typical laser system is illustrated with an example

computed by generating a sequence of random numbers.
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2. THEORY

Goodman's derivation of the effects of target-induced scintillation is more general

than is needed for the case of satellite returns. First, he considers both specular

reflectors (each consisting of one cube corner) and rough reflectors (many cube cor-

ners). He analyzes both the case where the reflecting array totally intercepts the

transmitted laser beam and that of partial interception. Further, he allows for two

possibilities: that the receiving telescope can resolve the reflected energy distribution

from the target, and that it cannot. The theoretical considerations are simplified

when there is a restriction to earth satellites, because we need to consider only

1) rough reflectors that intercept a small fraction of the transmitted laser beam and

2) reflectors that are sufficiently distant to be unresolved by the receiving tele-

scope.

It is helpful to consider first the physical conditions and assumptions on which the

analysis is based. To begin with, the number of cube corners on the array will not

enter the analysis specifically. We can assume that this number is large in the sense

that the central-limit theorem (Arley and Buch, 1950) applies; i. e., the amplitude of

the electric-field vector at a point in a plane in front of the retroreflector has a normal

distribution. The polarization of this field is assumed linear. It is also assumed that

since the relative positions of the individual cube corners do not change during the

~20-ns duration of the laser pulse, the distribution is stationary. A satellite with a

speed of 7 km/s will move 140 pm in this time, but this motion will not significantly

change the relative distances of the cube corners within the array. For the relative

motion to be a significant fraction of an optical wavelength for the duration of a

Q-switched pulse, the satellite rotation rate would have to be of the order of 1 per

second. Another assumption is that the amplitude of the laser radiation does not

fluctuate during the pulse; in other words, the pulse duration T is much smaller than

the coherence time T (Troup, 1972).
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Using the scalar theory of diffraction (Huygens-Fresnel principle), Goodwin shows

that the energy distribution of the return signals depends on M, the number of correlation

cells intercepted by the receiving telescope. These cells are equivalent to the bright

spots in the speckle pattern. The value of M depends on the satellite range, the laser

wavelength, and the diameters of the retroreflector and the receiving telescope.

Goodwin computes a relation between M and the normalized range RX/1f 0 R' where R

is the satellite range, X is the laser wavelength, and 10 and IR are the lengths of the

sides of a square retroreflector and a square receiving telescope, respectively. For

a satellite-tracking system, the normalized range is about 1. 3 and the corresponding

M from Goodwin's Figure 4 is 1. Since an exact calculation of M for the general case

is very difficult, Goodwin made a few simplifying assumptions, several of which are

undoubtedly valid when satellite ranges are of the order of a megameter. Two of them,

however, might have some small effect: The first is that both the target and the

receiver have square apertures, and the second, that the receiving aperture can be

divided into correlation cells within each of which the energy is constant and statistically

independent of that in any other correlation cell.

It seems that for the purpose at hand, the number of correlation cells can be

determined more simply by considering how well the retroreflector is resolved by the

receiving telescope. If it cannot be resolved at all - i.e., if the telescope sees it as

a point source - then M = 1. If there is resolution, an approximate value of M can be

determined as follows. Consider the observation of a retroreflector at a distance R

from a receiving telescope of diameter DT. The full width of the resolution angle of

the telescope is approximately 2X/DT radians. Hence, intensity variations across

the retroreflector must have diameters at least 2RX/DT in order to be resolved.

If the retroreflector is DR in diameter, it contains about DR/(2RX/DT) resolution ele-

ments. Equating this number of resolution elements to the number of correlation cells

gives

M= [DTD (1)

where the brackets indicate that M must be a positive integer greater than zero. For

DT = D R = 0 . 5 m R = 0. 2 Mm, and X = 694 nm, we get M = 1. Thus, we will assume

that the retroreflectors on satellites are unresolved by the laser systems that track

them.
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Since the retroreflector is unresolved, we neglect the spatial distribution of its

reflected electric field at the receiving telescope. Only a time variation in the ampli-

tude of this field will remain, and it will be the same at any point within the aperture

of the receiving telescope. This E field is represented by the following equation:

E = X cos wt + Y sin ct = A (cos wt+) , (2)

where X and Y are electric-field phasors assumed to be of a single polarization, and

Sis the optical frequency (2. 713 X 1015 rad/s for a ruby laser). Both X and Y are

random variables, normally distributed with zero mean values and equal standard

deviations, a > 0. The corresponding energy W is proportional to A2, where

W=X 2  y2=A2  (3)

From the central-limit theorem, X and Y are independent variables with the following

jointly normal density distribution

x-1/2 -1 x 2 -1/2 -1
f (x, y) = (2-r) - 1/ 2  -1 exp (2r) 1 exp (4)

2 2 2
Since w = x + y , equation (4) becomes

f Y(x,y y) = (22 exp 2 =f (w) (5)

where the functional designation f,(w) represents the fact that the probability density

depends not on x and y individually, but only on the function of the two of them, which

is given by

g(x, y) = w (6)

Captial letters indicate random variables, and lower-case letters designate the out-
comes of the random experiment represented by the random variables.

5



where g(x, y) = x + y . In this case, the probability density fw(w), dependent on w

only, can be obtained from the joint distribution f (w), dependent on both x and y, by

use of the geometrical method (Parzen, 1960). First, we obtain the generalized volume

V (which is an area in this two-dimensional example):

V = ff dxdy=ia 2 = , (7)

g(x, y)_w

from which the derivative is dV dw = T. Thus,

dV (w) -1
f(W) = fg(W) exp dw (8)

The mean value of this density function is

oo

w=(292) f w exp - dw= 20C

0

and thus

-- 1 w
fW() =w exp , w 2 0 , (9)

which is the negative-exponential energy-density distribution given by Goodman in his

equation (5). If the received energy is expressed by a continuous variable equal to the

mean number of received photoelectrons, equation (9) can be written

-- 1 / n\
p(n) =n exp , n0 , (10)

where p(n) is the probability that the energy entering the receiver is equivalent to n

photoelectrons.
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The random variable N, which corresponds to n, represents the effects of target

roughness. Another random effect is due to the cathode emission: If K is the random

variable representing the electrons emitted from the cathode when the energy input to

the receiver is N, we have the following Poisson conditional probability function,

p(KIN) = - exp (-n) , k 0 (11)

Our interest is in finding the probability p(k) of the emission of k electrons when there

is a return whose mean value is n, the quantity obtained from the range equation. We

derive p(k) from equations (10) and (11) and from

p(k) = p(K N) p(n) dn (12)

0

Then from equations (10), (11), and (12), we have

co

p (k) k ndn exp (-n) exp n exp n I+ dn

0 nk. 0 n

00

k + l  u exp (-u) du = (k -1) 1

nkbl nk bk +  nbk+l0

where b = 1 + i/n and u = nb. Hence,

p(k) k0 . (13)
1+n l+n

Equation (13) has the form of a geometric distribution starting with k = 0 rather than

with the usual convention of k = 1. Goodman presents it as his equation (31) and calls

it by its other designation, a Bose-Einstein distribution. Its mean value is n and its
-2 1/2standard variation is (n + n) , which approaches n as n increases.
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Figures 1 to 4 show plots of equation (13) for n = 1, 10, 100, and 1000 photo-

electrons. Although the curves are drawn as continuous lines, they are valid only for

discrete values of the ordinate k. These figures also plot the Poisson distribution,

which accounts only for the randomness of photoelectron emission from the cathode.

The Poisson curve is equation (11), with n = n; the statistical variation in the energy

entering the receiving telescope has been removed. For n = 1, the Poisson and

Bose-Einstein curves are similar. For this reason, we see that scintillation from the

reflector has little effect on weak returns such as those obtained in lunar ranging. As

n increases, the two distributions begin to differ significantly. Figure 4 shows that for

n = 1000 photoelectrons, the Bose-Einstein curve is so flat and extended that the

received signal k may be very different from n.
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Figure 1. Photoelectron distribution for n = 1.

0.14

0.12 -
POISSON

0.10 -

0.08
p(k)

0.06

0.04

0.02 - BOSE-EINSTEIN

0 I I I I I 1 1I I

0 2 4 6 8 10 12 14 16 18 20

k

Figure 2. Photoelectron distribution for n = 10.
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Figure 3. Photoelectron distribution for n = 100.
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Figure 4. Photoelectron distribution for n = 1000.
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3. EXAMPLE

Another way to look at the effect of equation (13) on laser returns is to generate ran-

dom numbers on a computer and use them to compute a set of simulated returns. The

first step is to calculate F(x), the distribution function corresponding to p(k), defined as

F(x) = P[k x] ; (14)

this is the probability that the number of received photoelectrons will be less than or

equal to some number x. The probability F(x) goes from 0 to 1, with all values between

these limits equally probable. Hence, the returns can be simulated by generating

random numbers between 0 and 1 for values of F(x). If n = qNc, where N c is the mean

number of received photons and 77 is the conversion efficiency (photoelectrons/photon)

of the receiver, then

x x+l

F(x) = =1- - 1- c 1 (15)
l+n c!\)+n/

j=0

Solving equation (15) for x results in

log [1 - F(x)]
x = - 1 . (16)

log [l7Nc/(1 + 7Nc)]

Figure 5 was obtained from equation (16) for a typical receiver efficiency of 7 = 0.018
3 7

electrons/photon and for values of N between 10 and 10 . We randomly generated
c

F(x) for each Nc, and then obtained x from equation (16). In this case, x represents

the random variable K, the number of photoelectrons in a received pulse. The straight

line in the figure represents k = 0.018 Nc, which relates k and N through the receiver

efficiency without consideration of statistical effects.
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