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E UNIVERSITY OF GEQRGIA
DEPARTMENT OF MATHEMATICS
GRADUATE STUDIES BUILDING

ATHENS, GEORGIA 30602

January 5, 1973

Office of Grants & Research Contracts
National Aeronautics § Space Administration
600 Independence Avenue

Washington, D. C.

(ATTN: CODE 5C)

Dear Sir:

Attached is a final report on work accomplished including reprints of
journal publications and some preprints. As a result of two yecars of
- N.A.S5.A. support, I have 10 published journal papers, 6 published abstracts,
1 published technical report (and doctoral dissertation), 2 journal papers
which were submitted but not yet published at the expiration of the grant,
and several journal papers and one dissertation almost completed at the
expiration of the grant - all of which carry (or will carry) acknowledge-
ment of N.A.S.A. research support. (Listing follows.)

We have developed a useful analytic method and a very versatile and powerful
new computer technique for solving stochastic differential equations. We
recently computed some 14,000 terms for a series representing the solution
process of such an equation for our methods and other existing methods of
solution to compare results and errors involved - which show unequivocally
that we have achieved extremely important results because of your support.

I regret this work was not yet in a form to send to you with this letter
and final report although an earlier preliminary discussion was included.
The completed work will become a dissertation in June, 1973, and will then
be published with appropriate acknowledgement to N.A.S.A,

I, of course, regret the termination of N.A.S.A. support®since we clearly
have results which will be of value to N.A.S.A. and to other agencies as
well, Our work will tie in closely with the work of M.M.R, Williams on
kinetics of nuclear reactors, with the work of Klimontovich on plasmas,
to stochastic contrel, weather prediction, and several other areas. In
view of results achieved and under way, I hope N.A.S.A. will again be
involved with my group in the future. You will also be pleased to know
the U.S.S.R. Academy of Sciences new Merguelian Institute of Applied
Mathematics in Erevan, U.S5.S5.R., has asked to send postdoctorate researchers
to work with us on the new methods and several professors wish to come to
Georgia to work with us.
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I would like to express my appreciation to N.A.S.A. for its essential
support of this research and for its accomplishments for the U.S. in
space. With best wishes for your continued success.

Sincerely,

.
gl Y/

. George Adomian .
Professor of Mathematics

Copies to:

Office of University Affairs (Code Y)

Mr. J. Albus (Code RET), Data System§ Branch

Mr, Joseph T. Davis, Grants Officer

Dr. Samuel A. Rosenfeld, former Project Officer for Grant (Please Forward)

Dr. Raymond Wilson, former head of Applied Mathematics (Please Forward)
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Random Operator Equations in Mathematical Physics I, G. Adomian, (A70-26550)
Journal of Mathematical Physics, 11, No. 3, 1069-1084, March, 1970.
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G. Adomian, Journal of Mathematical Physics, 12, No. 9, p. 2031,
September, 1971.
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Journal of Mathematical Physics, 12, No. 9, 1944-1948, September, 1971. ,
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ABSTRACT

For f(x) ¢ C[a,b] and {¢k(x)} an orthogonal
set with weight function w(x) on [a,b] , an upper
bound for kggl(gk’wk)%akl where a, are generalized
Fourier coefficients is given for odd n by
JﬁiT(Ibw(x)dx)%HfH where ||f]] is the sup norm of f

a
on [a,b].
For even n , the bound is

b | _
[ (n+2) (] wGodx||£)? - mix(vzrlﬂ) lqok,tpk)%ak 12]% for
a

O <k £n , which is a little cumbersome so the result
for odd n would be more useful.

For the trigonometric case f ¢ C{-7,w] and

n y
w(x) = 1 , this result gives L la,| + [b | = 2/0%1 ||t]]
' k=0

for any n .



Given f(x) e Cfa,b] and letting {wﬂ} be an
orthogonal set of continuocus functions with weight
function w(x) on [a,b] , consider the generalized
Fourier series I ak¢k(x) converging uniformly to
f(x).

The normalized Fourier coefficients are given by
b b 9
a, = (£,0)/ (g, @) = j;w(x)f(x)¢k(x)dx/faw(x)¢k (x)ax .
By Bessel's inequality,
n 2 _ P 2 b 2
Z(g,p)a,.” = [ wi)E¥(x)dx = (J wix)ax) ||
k=0 a a

where f is the sup norm or maximum of f in [a,b] .

2
Denote (wk,gk)zak by A, and write

o 2 b 2
z lAkl < ([ wxdax) Ji£]|° . (L)
k=0 a

Suppose n 1is odd. We separate the left side into

pairs thus

(n—l)/2l |2 | l2 (Ib ( | u2
b A + |A =4 wx)dx||f .
' (n—l)/Z
We let the sequence {|a, | + |A2k+1|]kz be a
rearrangement of the sequence {|A2k| + IA2k+l|}(n—l)/2
k=0

such that |Aékl + lAék+1l z Iﬂé(k+1) + Aé(k+1)+1|

i.e., each pair is greater or equal to the next pair,



&.g., Aé + Ai = A' + Aé ’ Aé + Aé z Aé + A5 , etc.

Now using Tchbychev's inequality, we write

(n-1)/2 _ (n-1)/2
C T lagl o+ lag ., b% = &+ D £ (lag | + 18, D?

—_ P

_ (nwl)/z
s2L 1) T lag 1?4 lag,, P

Since sums are preserved

((n*}E)/Zl o |)2 ( )(n-%)/2| |2 | |2
A +{A = (n+1l A A
woo 2k T 1Rake oo 2K 2k+1
or simply,
(Ell (n+1) 2 A, |2 (2)
A ) = (n+1 A 2
k L
Combiningi(l) and (2)
n 2 b 2
(k£g|Akl) < (n+1)(faw(x)dx)HfH
hence our result
. 3 — P 3
Z |(g.q) % | = Jo+l ([ wx)ax) Bllz] . (3)
k=0 a

If n 1is even we can let An+1 = 0 to divide
into pairs as before, or somewhat more generally since
Zzero can be inserted anywhere in the sequence, let

© <j, sn and let [Aé]n+; be a rearrangement of
g



{O’AO’AL""’An] such that

|A

(i) |Aés| + |A2's+1I = |Aé(s+1)| + é(s+1)+1|

(ii) The zero is paired with the AJ }
o

We now have pairs as bhefore and again using Tchbychev's

ineguality, we have

n/zl |+ | 1»?
{ 2 Al + |AL Y o=
S=0 2s 2s+1

n/2
2 2 2
2(g + l)kZBlAésl + Ay 1% - G+ DAy <.
= o

Since the sums above are preserved,

1 2 a 2 n 2
(T A1) = (n+2)( T |A ) = (5 + 1)A.
k=ol i k=0‘ k| 2 Jo
Combining (1) and (4) (for O = jo £=n )
( % Ak)2 < (n+2)(fbw(x)dx)llfll2 - (% + DA, 2
k=0 a J o)

Finally (for even n )

n 2 ' B 9 j ‘ 2
T (o, )%, | = JQﬁ+2)( wx)dxl|£]|*) - & + DA
k=0l % % k Ia 2 jo

where ¢ =< jo £ n .

{(3)

b 1
(1f A; =0 the right side becomes [ (n+2) ([ wix)dx) }1®|g]]
a

o

which is not as tight a bound.) Thus the lowest bound
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(not 1l.u.b.) is
Z (00, | o
3 a s R U
AR e Sl .
b
[(n+2)(faw(x)dfoH2) -~ m;x(§+1)|(¢k,mk)éaklz]ﬁ (6)
where O =k s n .

Example: Trigonometric series for f£(x) ¢ C[-w, ]

a =]
f(x) = == + Da, cos kx + b, sin kx
2T Tk k
wix) = 1
2m if k = O
(G 0) -
7 if k # ©
By (1),
2
a n
emE=2) + La 2 v 0,2 s 21r||f|]2
2 “ Ay k
k=1
or
n a 2
Za’ + b -2 =2|)
k=0

a result also apparent from Parseval’'s ‘formula

X J‘nl l2 ao‘?‘ z 2 2
= f(x)|{"8x = -~ + T a,” + b
or
noog 2 %2 L " 2 2
kzoa.k + bk - = 3 j. lf {(x) i dx = 2Hf|| .
= thw



By (2), we have

( % 1ak|+|bk|)2 s 2{n+1) % Iak|2+|bk|’?’-(n+1)ao2
k=0 k=0

Combining, we have

n
T la | + [b | = 2/0+1 |i£][ .
k=0
Cheney1 gives the bound m/2n-1 |[fl . It's easy

to see 2+n-1 ||| € w/2n-1 ||f|] for 211 n =21 .

As an elementary example let f(x) = T in

[-7,7] - We get immediately

f(x) =2(sinx-81zgx+51%3x— cee) For the sum
3

T fa, o+ |bk] , the bound stated here is 4m , which
-0

is quite close to the actual sum, while Cheney's bound

is ngz .

Acknowledgement: This work has been supported by the
National Aeronautics and Space Administration

(NGR 11-003-020),
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A Decomposition for Some Operators

by

Bernard B. Morrel

Let H be a complex Hilbert space and let A(H)
denote the algebra of all bounded linear operators on H .,
Then T ¢ B(H) is abnormal (sometimes, completely non-normal)
if there is no non-trivial subspace M < H which reduces
T and such that the restriction of T to M is normal.ﬁﬁf;}/
Every T ¢ #(H) may be written uniquely as the direct sum
of a normal operator To with an abnormal operator T1
We shall refer to TO and T1 as the normal and abnormal
parts of T , respectively.

A theorem of von Neumann ([7], p. 96) asserts that every
isometry V on a Hilbert space H is unitarily equivalent
to the direct sum of a unitary operator and a pure isometry
of multiplicity d = dim [(VH)"] (cf. [3], problem 118).
It develops that the scalar d is a complete set of
unitary invariants for the abnormal part of the isometry "V .
An operator T 1is quasinormal if T commutes with T*T
In particular, every isometry is quasinormal. 1In [1],
Brown obtains both a canonical form and a complete set
of unitary invariants for the abnormal part of a quasinormal

operator. In the isometric case, Brown's results specialize

to those of wvon Neumann.
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In section 1 of this paper we obtain a decomposition
for operators, which,as is shown in section 3, is a
generalization of Brown's work on quasinormal operators.

We associate with each T ¢ B(H) a (not necessarily
proper)} subspace _Hl(T) of H which is invariant under
™ and reduces [T] = T'T - TT" . If V ¢ BH) is
isometric, for instance, one has Hl(V) - (VH)© . We
establish that the structure of the abnormal part of T
is completely determined up to unitary equivalence by the
restrictions of T & and [T] to Hl(T) . In case

d = dim (Hl(T)) < ® . the structure of the abnormal part
of T 1is determined by two d-by-d matrices.

The results of section 1 are of little interest if
HI(T) is too large. In section 2 we study conditions
under which Hl(T) = H . We show that if T is abnormal
and nearly a finite-dimensional operator (in some appropriate
sense), then Hl(T) = H . This suggests that the results
of section 1 will be of most interest if the operator being
studied is far from being finite-dimensional.

The main result of section 3 is that if T 1is sub-
normal, then Hl(T) is the closure of the range of [T] .
This means, for example, that the structure results given
in section 1 may be easily applied to subnormal operators
whose self-commutator is of finite rank. It also enables
us to deduce the results of Brown and von Neumann mentioned

above from our results in section 1.
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In section 4 we give an application of our results to
the study of quasitrangular operators.
The author would like to express his thanks to
P.R. Halmos, T.L. Kriete, III, and to Marvin Rosenblum
for a number of helpful conversations concerning the results

in this paper.

§1. We begin with several lemmas which may be of interest

independent of their application here.

LEMMA 1.1: Let H be a Hilbert space and let A,B ¢ B(H)
o
Then M = /ker(ABS - B%A) is the largest subspace of

s=1
H for which BM < M and ABv = BAv for every Vv e M .

PROOF: It is clear that M is a subspace of H . Pick
v e M and let w = Bv . Then for all integers s z 1

we have AB°w = ABS+1v - BS*tay = B® (BAv) = BS(ABV) = BSAw ’

since v ¢ M . Hence BM C M . The relation

M € ker (AB - BA) implies that ABv = BAv for all v ¢ M ,
Next, let Y be a subspace of H such that BY CY

BAy for all y ¢ Y . Then BY CY for all

and ABy

s z=1. If y €Y , then AB2y = AB(By) = BA(By) =

B(ABy) = B2Ay . By induction, BSAy = ABSy for every
-]

y ¢ Y and all s 21 . Hence, Y C rwker(ABS - B%4) = W
s=1
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An easy modification of the proof of Lemma 1.1 yields

a proof of the following result:

LEMMA 1.2: Let A,B € B(H) . Then the largest subspace
MCH such that AMC M, BM CM and ABv = BAv for

every v ¢ M is

@ »
M=1{) [ ) ker(a™s® - B%a")
r=1 s=1

Although we shall not use the results in this general-
ity, we note that Lemmas 1.1 and 1.2 both hold in case the

underlying space is a Banach space.
An immediate consequence of Lemma 1.2 and the definition

of reducing subspace is the following:

COROLLARY 1.3: Let T e #(H) . Then the largest subspace

H, of H which reduces T and such that TIH0 is normal

is

B = [ () ker(@®HTr® - 15"
r=1 s=1

Furthermore, TIH; is abnormal.

Our next lemma is the basis for the subsequent

decomposition theorems.

LEMMA 1.4: Let T € #/(H) . Put M, = H ,and, for all

k =21 , define

M, = ﬁ (M ker (¢r)¥1® - T°(r")™)
r=1 s=1 v



Then

i.) Mk—D—Mk+1 for all k = O ,

ii,) TM, &M for all k =20,

k= M
*
1;?.) T M CM,_; forall k =1,
iv.) T'M, M. for all k =0,

L
Mk+l for all k = 0 .

PROOF: Parts iv.) and v.) of the assertion follow

immediately from parts ii.) and iii.) upon taking orthogonal

complements, and part i.) follows directly from the

definition of the subspaces Mk
Part ii.,) is trivially true if k = 0O . For r 21,

. -]
Lemma 1.1 implies that (-] ker[(T*)rTS - TS(T*)r] is an
s=1

invariant subspace for T , and hence, so alsoc is Mk for

every k =2 1

i

Part iii.) is trivial if k 1 , so suppose that

k 22 . Let x ¢M_ and put z = ™% . Then since
* *
x ¢ M CM , we have (T Sz = ()T (rS1*x) = (1rF) TS,

But if r + 1 = k , then, since x ¢ M for every p = k ,

P
*
we have (Té)rTSz = TS(T*Ir+1x = TS(T*)rz . Thus
z € Mk—l and iii.) holds.

If we let {e, [k 2 0} be the standard orthonormal

basis for Lz and if we let T be the unilateral shift



on Lz , then it is instructive to note that
= 3 - .
My sp{ej|3 2k} for k 20
THEOREM 1.5: Let T ¢ B(H) . Then there exists a (finite

or infinite) sequence {Hj|j 2 0} of pairwise orthogonal
subspaces of H such that

i.) H = Ho @ H1 ® ... @ Hk e ...

L
ii.) H, reduces T, T|H0 is normal, and T|Ho

is abnormal.
iii.) T H, CH

. *
iv.) T H,_ C Hk 1 @ g

T  for all k =2,

v.,) TH, C H @ H,; for all k =21

S’

vi.

H ©H_ =\v/{Hk,THk} for all k = 1

vii.) dim Hk z dim Hk+l for all k =1

PROOF: We associate with T the subspaces Mk as was
[--]

done in Lemma 1.4. Put H_= ] M_, or, equivalently,
[ -] *
- ﬂ ﬂ ker ((TH)TTS - 15(1%)T)
r= '-_"

From Corollary 1.3, H_ reduces T , TIH0 is normal,

and TlH; is abnormal.
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Next, define H,_ = M. (M for all k =2 1 Since
’ Kk Kk k-1 ‘

=
H = fﬁ\M , we have H_L1 H., for every j > O . Noting
¢ k=1 ° J

-
for every j 21 and that H E_Mi S M

that H, < M,
J — J- J—}_

1

whenever 1 £ j-1 , we conclude that Hi i Hj if i< 3,

or equivalently, H, 1 Hj if i # j . By induction,

M, =H,. ®H, ©@ ... ® H

Kk 1 2 k 21

k ?
It follows immediately that

H=H @H, @ ... ®H_ @ ...
fe) 1

Thus, both i.) and ii.) hold.

Part iii.) follows from Lemma 1.4, since

* *_ 1 L
TH =THN SM -H

We shall prove iv.) and v.) simultaneously. Note

L L

first that TH; = TM; C M, = H} ® H, . Using Lemma 1.4
* *
again, we have T H, CT My = H; ® H, . Also,
i Lo -
TH, CTM; C Mg - H; ® H, ® H; . Note that if x; € Hj

and Xy € H2 , then

*
<Tx2,xl> = <x2,T xl> = 0 ,

. *
since T x; ¢ H; . Hence TH, CH, ® H; and iv.) and

v.) hold in case k = 2.. BSuppose that it has bheen
%

shown that TH, € H, @ H, and that T H, C H. @ H,

J—"3 Jj+1 J — -1 H.J

. * * o1 L
- =

for 21l j <m . Then TH . <CTM ;&M ,
Hy @ H, @ ... @ Hm+1 But if vy ¢ Hl @ ... @ Hm¢1 s



then Ty € H1 @ ... ® Hm , and so, if x ¢ Hm+l , we

* *
= = c
have <y,T x> <Ty,x> ¢ . Thus, T Hm+1 < Hm ® Hm+1

1 L
We also have TH , S TM 4 M _,=H ®... @H -
If x ¢ Hm+1 and y € H1 @ ... @ Hm , then
T*y e Hy @ ... @ Hm and <Tx,y> = <x,T*y> = 0, so that
TH .1 < Hoq @ H .o - By induction, both iv,) and v.)
hold.
Since TH, C H, ® H_  , for every k = 1 , we have
\¢ﬁH TH, 1 ELHk @ Hy 1 for every k 2 1 . Assume that
v eH @©H_, and that v is orthogonal to V{H ,THk}
where k =z 1 1is fixed. Clearly, v ¢ Hk+1 . The fact that
<v,Tx> = 0 for every x € H  together with v.) implies
<v,Tx> = 0 foxr every Xx ¢ H1 ® ... @ Hk . Thus, T*v is
orthogonal to H1 @ ... ® Hk 3 that is, T*v € Mk . But
*
since v, T Vv ¢ Mk , we have
5 ()5 v = 15 (M) ¥(r*v)
*
- (S (1*v)
*
= (05X (*15v)
*
= (T )k+1
k+1 = "
for every s =21 . Hence V g M r_\ ker((T IS w15 (1)e)
r=1 s=1

i.e., veM_ 4 . Then v e [Hk+1 r\Mk+1] = {0} and

vi.) holds. Part vii.) follows immediately from vi.)

.
»



It is worth noting that if T 1is the unilateral
shift, then H_ = {0} , while for k 21, H_ is pre-
cisely the one-dimensional subspace spanned by e 1

If T ¢ B(H) , then we shall use the notation Hk(T) ,
k =0,1,2,..., to denote the subspaces associated with T
as in Theorem 1.5. Note that in case H = HO(T) @ Hl(T) s
Theorem 1.5 is nothing more than the decomposition of T
into a normal and an abnormal part. 1In case
H = HO(T) ® Hl(T) , we shall say that T has a trivial
decomposition.

If T ¢ B(H) is abnormal (so that H_(T) = {0} ) and
if we let P_ : H —> Hk(T) denote the orthogonal projec-

k
tion of H onto Hk(T) for k 2 1, and if we define

Tyy = PiT|Hj

for all i,j =1 , then T is represented by the matrix
of operators {Tij] acting on the direct sum of the spaces

H k =21 . Parts iii.), iv.), and v.) of Theorem 1.5

k 3
assert that Tij = Q0 if either j > 1 or j < i-1l

Thus T is represented by a matrix of operators whose
non-zero (operator) entries lie on either the main diagonal
or the first subdiagonal of the matrixz. To simplify the

notation, let D, = T. . and let Si = T for every

i i,1i i+l,i

i=21. From part vi.) of Theorem 1.5, we have ran Si

dense in Hi for 1 =21, or, equivalently, that

+1
ker SI = {0} for i =1
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In the next two theorems we exhibit a canonical form
for operators which have a non-trivial decomposition. The
technique to be used is a modification of the proof of the
fact that every weighted shift is unitarily equivalent to
a weighted shift with non-negative weights (cf. [3], problem
75). Roughly speaking, we wish to show that the matrix of
operators {Tij} described above is unitarily equivalent
to a matrix of operators of the same form with non-negative
operator weights along the first subdiagonal. Some
technical difficulties arise from the fact that the spaces
{Hk} may be of different dimensions.

For simplicity, we break the reduction to canonical

form into two parts.

THECREM 1.6: Let T ¢ S(H) be abnormal. Then there exist

a (finite or infinite) sequence of Hilbert spaces

J, 2 Jdy 2 ... and corresponding sequences of operators

1 2

' v
Di HE I > Ji and Si H > J.

. iy E
i i jo1 With ker(Si) = {0}

and Kker Si == Jiea.I , such that T 1is unitarily

i+l
equivalent to the operator T' defined on J1 @ Jq @ ...
. 1 2 r = t
by the matrix {Tij] of operators given by Ti,i D; ,
' = ? ' - : . . .
T i+1,1 8 and T 1,3 O if i #j, g+ 1

Further, H (T') = J_ for k 21

PROQOF: We shall assume that all of the subspaces Hk(T) s

k =1 , are non-zero. Put J; = H;(T) and define
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* _—
J —>H1(T) by W, =1 on J; . Put D; =Dy .

1 1

Recall that S J, — Hz(T) and that cl(ran Sl) =

1 1
i . _
H2(T) . Let J2 = (ker Sl) S;Jl . Then dim J, =

dim[ (ker §,)7] = dim[c1(ran §;)] = dim Hy(T) . Pick a_

unitary operator W; : H2(T) —> Jg (onto Iy ) and

. | I * 1 ]
define S = WZS W W281 Then Sl Jl — dg - Slnge
ker S = {0} , we have ker(Si)* = ker(S* = {0}
and since J, = (ker SI)L , we have Kker S = ker 8§, =

. t _ w¥
JlS Jg . Setting D, = WyD W, , we see that
' . e pp——
D2 : J2 > J2
Suppose that we have defined Hilbert spaces

2 J2 2. 2 Jm , that we have picked unitary operators

w-*nd

W. mapping Hi(T) onto J, , i=1,2,...,m, and that

'r_* s =
we have put Di = wiDiwi for 1 1,2,...,m and

Si wl+1slwl for i =1,2,.,..,m-1 . Then define

L . _
Jop1 = [ker(Sme)] . Since cl{ran Sm) = Hm+1(T) , we
have dim(Jm+1) = dim (Hm+1(T)) . Pieck a unitary operator

*
m+1

Sm = W

mapping H (T) onto Jm+1 and define

m+1

S w . Then, as ahove, S& maps Jm into J

m+1 m+1 ?

¥ t
ker(Sm) = {0} , and ker Sy = I, I, - Next, put

*

T —_ - ' .
Dm+1 Wm+1Dm+1Wm+1 , hoting that Dm+1 is an operator on

Jm+1 -
Continuing this process, we obtain a sequence

J, 2 Jz = ... of Hilbert spaces and a sequence of unitary

1
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operators {Wi] with W, mapping J, onto Hi(T) for
all i 2 1 . The associated sequences of operators {Di]

and [Si] are as in the statement of the theoren.

Next put J = J1 @ J2 ® ... and define W = Wl @ W2 & ...
Then W is a unitary operator mapping J onto H , and,
*
of course, the operator T' = W TW ¢ A(J) dis unitarily
equivalent to T . A straightforward computation with the

representations of T and W as matrices of operators
shows that the matrix of T' relative to the decompositiocn

J=J, @ J2 ® ... 1is as desired.

1
Since T' = W'TW , we find that for all r,s > 1,

the equation
T ) - () = wi rHTTS - 55w

holds, so that w* maps Mk(T) onto Mk(T') in a

one-to-one fashion for all k 2 1 , It follows immediately

that Hk(T ) = Jk for all k =1

DEFINITION: Let J1 = Jg = ... be a finite or infinite
sequence of Hilbert spaces and let J = J1 @ Jg @ ... ® Jk ® ...

Let Ei denote the orthogonal projection of Ji onto

J E;Ji and let "i denote the orthogonal projection of

i+l
J onto J;, for all i >0 . Let T ¢ #(J) . Then we say
that T 1is in standard form if Mk(T) = Jk+1 @ Jk+2 @ ...
for k =21 and if there exist operators DE [ B(Ji) and

non-negative operators Pi € B(Ji) with ker Pi = JfgﬁJj+1
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such that m,T|J =0 if k>i or k<i-1, m, T3y

I
=]
OF ]

and 7w, T|J, = E;P, for all i > O .
1 11

i+l

THEOREM 1.7: Let T e B(H) be abnormal, Then T is

unitarily equivalent to an operator in standard form.

PROOF: We may as well replace T by the operator T' of
Theorem 1.6. We also retain the notation of Theorem 1.6.

. B . _— NN
Define V; = I on J; . Next, write 8p = Ul((Sl) 510

Ulpl , S0 that 31 is a non-negative operator on Jl and Ul

is a partial isometry with initial space (ker Si)L =

Jot © Jy and final space cl(ran 8;) = Jy . Since Uy

. . * .

is onto J2 , it follows that U1 J2 —_— J1 is an
isometry with range J2 . Thus, V; = ElUI is a unitary

*_, Gk B * _
operator on J2 and V281V1 = V1U1P1 = E1U1U1P1 E1P1
Suppose that we have defined unitary operators Vi € B(Ji)
for 1 =i <£<m and

* 1 * —
such that V,(8§ ;) Vy_ y = E; 1Py 4

- ; _ (v¥eanyrary 1B
non-negative operators P, € B(Ji) by P, (Vi(Si) SiVi)

for 1 < i £m . We consider the polar factorization

*
' . ' . .
Sme Uum of Sme . Arguing as above, Um : Jm+I———> Jm

is an isometry with final space Jm+1 , so that

%

* .
mel " EmUm is a unitary coperator on Jm+l . Thus we

v
obtain a (finite or infinite) sequence of unitary
operators Vi € B(Ji) and a sequence Pi € B(Ji) of

non-negative operators such that ker Pi = Ji@ Ji+1
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* . _ . .
and Vi+lsivi = Eipi for all i > 0 . We define

*
DE = V.D!V. for all i > 0 and put

iYi'i
V=V, @V, ® ... ®8V,_® ... . Then V ¢ #(J) is unitary,
so that T" = V*T'V is unitarily equivalent to T' , and
hence, to T . A straightforward calculation shows that

" - : 3 R " — ot = "
mT"|J, =0 if k>1i or k<i-1, that wT"|J, =V D]V, = D}

. .
. B N " . M =
fori i > 0 , and that w7 T |Ji Vi,15iVy = E;P, for

all i1 > 0.
Finally, we note that an argument analogous to that used

in Theorem 1.6 shows that Hi(T") =J for all k > O .

k
We note also that H_(T") = VWH_ (T) and H_(T) = (VW)*Hk(T")

for all k > O .

To simplify our notation, we shall assume in the future
that if T ¢ B(H) 1is abnormal and is in standard form, then
H = H1 @ H2 1

(operator) entrtes of the matrix representation for T will

® ... , where H; 2 H, 2 ... . The diagonal

be denoted by D and the subdiagonal entries by Sk =

k

EkPk for all k > 1

Next, suppose that T e B(H) is abnormal and that T
is unitarily equivalent to T(l) € B(H(l)) sand to
T(z) € B(H(z)) , Where T(i) is in standard form for
i=1,2 . Then there exists a unitary operator U such
that T(l) = U*T(z)U . Arguing as in Theorem 1.6, we see
that U maps Mk(T(l)) onto Mk(T(z)) for all k = 1

@ @

Viewing T s and U as matrices of operators,
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this means that U is a diagonal matrix with diagonal
(operator) entries Uy > where Uk is a unitary operator

(1)) onto Hk(T(z)) for all k =21 ., With

mapping Hk(T
some more work, the details of which we omit, one verifies

the relations

Pél) = U.P (2) U -
[E (1)]* (L) _ (E(2))* (2) U
and
Eél)[Eél)]* = UyyrF éz)[ECZ)]*Uk+1
for all k 21 . 1In effect, these relations assert that

each of the non-zero entries in the matrix representation
of T(l) is unitarily equivalent to the corresponding

(2) It follows that the representation of

entry of T
an operator in standard form is essentially unique.

The next theorem deals with the relations that hold
among the entries in the standard form for T . It shows
that the structure of the abnormal part of an operator is

determined by the action of the operator on the subspace

Hl(T)

THEOREM 1.8: Let T e B(H) be abnormal and in standard

form. Put C = [T]lHl(T) . Then
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] : *
i.) [Dl] = C - 58, ,
*
ii.) [Dl] = 8,_18;_1 - 8;8; for i 22
s * * .
iii.) SiDi+1 = Disi for i =21

Further, the operators Di ;s 1 22 and the operators
Pi ' Ei , 1 21 , may be determined explicitly in terms

of C and D1

PROOF: Note first that

- -]
ker[T] 2 M, (T) = (] ker (T*T"-1"1%)
r=1

Hence, c¢l(ran[T}) C (Ml(T))L = H;(T) . It follows that
H,(T) reduces [T] , so that C = [T]|H;(T) is well-
defined. 1In fact, [T] =C ® ¢ . If we represent |[T]

as a matrikx of operators relative to the decomposition

H=~H ®H, ® ... ®H_@ ... ,
then we obtain a matrix [Ci j} of operators with
3
Cl,l = C and Ci,j =0 if i+j > 2

Using the matrix representation for T relative to

this same decomposition for H , we obtain another expression

for [T] . Direct comparison of the entries in these two

representations for ([T] yield equations i.) , ii.) , and

iii,).

To complete the proof, note first that
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b 3
ker §; = ker(8;8,) = ker(C—[Dl]) , so that H, =

1
(ker Sl)L = cl{ran(C-[Dl])} . Hence, H, (and thus, Ey )

* *
is determined by ¢ and Dl . Noting that slsl = PlElElpl

- 3
and that ElEl

onto H2 , we have, since H2 = c¢l(ran Pl) , that

€ B(Hl) is the orthogonal projéction of

H

= %
(%]

L
P, = (5;5)% = (C—[Dl])% :

LI 2 _
We note for future reference that slsl = E1P1E1 = P1|H2

. * * .
From iii.), S;Dy = D8, . If X e B(Hz) is any

E3
operator satisfying S;X = Dlsi , then S;(Dz-X) = 0 and,

] x B ko
since ker 8, = {0} , D, = X . Note also that S,S;D, =

* _ * =1 * .
Slnlsl and hence, D, = (Slsl) SlDlsl . The expression
on the right in the last equation represents a bounded

*
operator even though slsl will not, in general, have a

bounded inverse. Substitution from above yields

1
hv = (D-[Dy ) le(C—[Dl]%V

for all v ¢ H2

A messy but rather easy use of induction completes the

proof. We omit the details.

" The formulas-in Theorem 1.8 are much more manageable
in the special case- dim.Hl‘%;dim Hkicforwall‘ k2.1 . The
operators Ek: are unnecessary in this case, so that .’

Sk = Pk 20 for all k =21 . 1In this case,ong . ohtains:
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the formulas

and

1

D = P_ for all k = 1

k1 = P DkP

k

The formulas in Theorem 1.8 are easy to handle oniy in
special cases. An important observation, however, is that
the structure of an abnormal operator T 1is determined by
its action on the subspace Hl(T) . In case Hl(T) is
an infinite-dimensional subspace, then, in the absence of
stronger hypotheses on [T] and D, , nothing has been
gained. JIf dim Hl(T) < ® , however, Theorem 1.8 asserts
that the structure of {(the abnormal part of) T is

determined by two finite-dimensional operators,

82, it is easily seen that the'&edbmbosition-for operators
given in Section 1 may be trivial. If T 1is normal, for
instance, then H = HO(T) . Even if T 1is abnormal, the
decomposition will be trivial if ker[T] = {0} , since

H = Hl(T) in this case; In this section we shall consider

other conditions which imply that our decomposition is trivial.

LEMMA 2.1: Let T ¢ #(H) and suppose that M is a subspace
of H such that TM C M and M Cker[T] . Then T|M is

hyponormal, If T|M is normal, then M reduces T
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PROOF: Write

A B
T:
0 C
with respect to the decomposition H = M @ M- . Then

[a]-BB*  A¥B-BC”
[T] =
B*a-ce*  [c]+BB"

The fact that M C ker[T] implies that M reduces |[T]

Let X = [T]IML. Then [T] has the representation

[T] = 0 ® X relative to H =M ® M- . Equating corresponding
entries in the two representations for [T] yields

[A] = BB* 2 0, so that A = T|M is hyponormal. If A is

*
normal, then BB =0 . Thus B =0 and M reduces T .

THEOREM 2.2: Let T ¢ B(H) have compact real part. Then

H = HO(T) @ Hl(T)

PROOF: We may as well assume that T is abnormal. Assume
that H # Hl(T) and let A = Tl(Hl(T))l . From Lemma 2.1,
A is hyponormal. Since Re T is compact, so also is
Re A

Putnam has shown ([5], p. 43) that if T is hyponormal
and abnormal, then the measure of the spectrum of Re T is
positive. Since a compact self-adjoint operator has

countable spectrum, it follows that a hyponormal operator
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with compact real part is normal. In particular, A is
normal. By Lemma 2.1 again, [Hl(T)]l reduces T and
T[(H]_(T))'L is normal, a contradiction, since T was

assumed to be abnormal,

It is interesting to note what happens in case H
is a finite-dimensional Hilbert space. Since every operator
on a finite~dimensional space is compact, if follows from
Theorem 2.2 that our decomposition is always trivial for
finite-dimensional operators. Hence, non-trivial examples
of our decomposition, much like non-unitary isometries, are
purely infinite-dimensional phenomena.

As a consequence of Theorem 2.2 we obtain a simpler
expression for the normal subspace of an operator having

compact real part.

COROLLARY 2.3: If T e BA(H) has compact real part, then

E- -]
Hy (T) = M ker (T*1r*-18T")
r=1

PROOF: Hl(T) = HeHl(T)

= My (T)

o=
M ker (T* ¥ -1 1%)
r=1
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§3. Since our decomposition is trivial for operators on
a finite-dimensional Hilbert space, we shall assume hereinaf ter
that the underlying Hilbert space H is infinite-dimensional.
Note that the easiest way to guarantee that the decomposition
of an abnormal operator T is non-trivial is to assume that
dim Hl(T) < ® , This ensures that H # Hl(T) , of course,
but it also means that H, (T) # {0} for all k =1 , since,

from Theorems 1.5 and 1.6, we have
dim(#,(T) & ... @ Hk(T)) < k dim Hl(T) < e

The condition dim Hl(T) < @ jg difficult to verify in
many cases. In this section we will show that this condition
is easy to verify in case T 1is subnormal.

We recall that T ¢ B(H) is subnormal if there exists
a Hilbert space K 2 H and a normal operator N ¢ 5(K)
such that NH CH and T = N|H , in which case N is
called a normal extension ¢f T . We say that N is a
minimal normal extension of T is the smallest subspace
of K which contains H and reduces N 1is K itself.
Halmos has shown that every subhormal operator has a
minimal normal extension and that this extension is unique
up to unitary equivalence. For proofs of these facts and
an excellent discussion of subnormal operators, see [3],

Chapter 16.
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LEMMA 3.1: Let T ¢ B(H) be subnormal. Then
*
1.) ker[T"] € ker ((TH¥T® - T5(0™)T) for r,s > 0.

[- -
ii.) ker[T"] = () ker ((T)¥T® - t5(r™)¥) for all r > o0 .
s=1

iii) () ker[T"] = H_(T)
r=1

PROOF: Let N ¢ 8(K) , K2 H , be the minimal normal
extension of T . Since NH CH and T = NIH , We may
write
T X
N =
0 Y
with respect to the decomposition K = H @ H' . Then
k
Nk T Xk
0 vk

— — n=
for all k = 1 , where Xl = X and Xn+1 TXn + XY

™K. + XY for all n =21 . Computing both (N*)rNS

1
*
and NS(N )r and equating corresponding entries yields

(1) (THYTS - 15 (rhHT - x x*
s r
and

*.r .1
@) (@ = x, 0"

for all r,s > O . Putting r = s in (1) gives
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ker[T" ] = ker(Xer) = ker X: for all r =21, Thus,
ker ((T5HYTS - TS(T)¥) - ker(XSX;S' 2 ker X: = ker[T'] ,
and i.) holds.

[~~]
* * i
From i.), [ | ker((T)¥1T° - (")) contains
=1

ker[T'] for r = 1 , and since the reverse containment is

n

trivial, the two sets are equal. Part iii.) is an immediate

consequence of pért ii.) and Lemma 1,3.

Recall that if T g B(H) , then
k had * *
M (T) = [ ) (M ker ((rHFT5-15(1)") |
I‘ﬂ

s=1

if T is subnormal, then, applying Lemma 3.1, we obtain
K r
M (1) = g:} ker [T ]

In particular, if T ¢ /A(H) is subnormal, then

Hl(T) = (Ml(T))L = ¢l(ran[T]) . This shows that if T is

subnormal and abnormal and if H # cl(ran[T]) (in parti-
cular, if [T] has finite rank), then our decomposition
for T will be non-trivial.

It follows from Theorem 1.5 and the remarks above that

K
if T is subnormal, then M (T) = {1\ ker[T'] is invariant
r=1

uhder T . Actually, a stronger statement is at hand.
Taking adjoints in equation (2) in the proof of Lemma 3.1

* *
and putting r = 1 , we get XsT = YXS for all s > 0 .,
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E=

r is invariant under T for all

Thus, ker[Tf] = ker X
r 21 . 1Incase 1r = 1  this observation is due to
Stampfli ([6]).

If T is subnormal and abnormal and if H # cl(ran[T]),
or equivalently, if ker[T] # {0} , then it follows from
Theorem 1.8 that the structure of T 1is determined (up to
unitary equivalence) by |[T] and T*|H1(T) . In the special
case in which [T] is of finite rank, the structure of the
abnormal part of T 1is determined by two matrices. In
case T is abnormal and |[T] is of rank one, there are

two constants which are a complete set of unitary invariants

for T .

PROPOSITION 3.2: Let T ¢ £(H) be subnormal with one-

dimensional self-commutator. Let U denote the unilateral
shift on 22 . Then there exist scalars s, , dl(s1 > 0)
such that T is unitarily equivalent to the direct sum of

a normal operator and SlU + dII

PROOF: We may as well assume that T is abnormal. We
have dim(Hl(T)) = dim(el(ran[T])) = 1 . It follows from
Theorem 1.5 that dim(H, (T)) =1 for all k =21 . S8ince
H is the direct sum of the spaces Hk(T) , k =z 1, and
since H is infinite-dimensional, we must have
dim(Hk(T)) =1 for k =z 1! . From Theorem 1.8, T is
unitarily equivalent. to a matrix with scalars di on

the main diagonal, positive scalars 2 on the first
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subdiagonal, and zeros in the other eantries. Further,

. * * .
since Skdk+1 = dksk and since Sy >0, k=z1l, we

have dk = d1
* *

2 2
we have O = [dk] = Sp_15k-1 ~ S5k ~ lSk_1| - |Sk|

for all k =2 1 . From Theorem 1.8 again,

for all k =2 2 ., We then have S = Sy for all k =1
and we conclude that T is unitarily equivalent to

SlU + dlI

A careful examination of the proof of Proposition 3.2
shows that the result holds if we assume only that
T ¢ B(H) satisfies dim(Hl(T)) =1 . Since one may
conclude from this that T 1is subnormal, the apparent
generalization is really an artificial one. Finally, we
note that Proposition 3.2 has been obtained independently
by K. Clancey ([2]).

Recall that T e S(H) 1is quasinormal if T commutes
with T'T , or, equivalently, if T [T] = O = [T]T . Thus,
if T is quasinormal, then ™% = 0 for every x ¢ cl(ran|[T])

The following lemma was first proved by A. Brown in [1].

LEMMA 3.3: If T e #(H) is quasinormal, then T 1is

subnormal.

PROOF: Write x ¢ H as x = x;+x, , where x; e cl(ran[T])

and X, € ker[T] . Then
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<[T]x,=> = <[T]x,xy> + <[T]x,x,>

= <x, [T]x> + <x, [T]x,>

1

<xgs [Tlxp> + <xy, [T]xy>

* *
= <x2,T Tx2> - <x2,TT x2>

NTX2“2 =0 .

1
Thus, T is hyponormal. Note that c¢l(ran[T]?) =
*
cl(ran[T]) , so that T [T]%'= 0 = [T]%T . A direct
computation shows that the operator X defined on

H®H by

is normal., Hence, T 1is subnormal.

THEOREM 3.4: (A. Brown, [1]) Let T ¢ A(H) be quasinormal.

1
Put R = cl(ran[T]® and C = [T]|R . Then T is unitarily

equivalent to the direct sum of a normal operator with the

operator defined on R @R @ ... by the matrix of operators
1
- = 2 = — -
{Ti’j} with Ti+l’i C® for iz1, Ti,j 0 if
i # j+1

PROOF: We may as well assume that T is both abnormal
and in standard form. Since T is subnormal, we have

* *
= R, and since T [T] = 0, we have T |H, = 0 , or,

H 1

1
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in the notation of section 1, D, = 0O . BSince SIDi+1 =
D;S; and ker s; = {0} for all i =1, we have D; = O
for all i =21

We next observe that since Di = 0 for i =21 , the
inclusion ker Si Cker T holds for all i =21 . But T
is both abnormal and hyponormal, and hence, ker T = {0} .

Thus ker 8, = {01 for all i =1 , and, since

H.

= i = i i = 2
14l cl(SiHi) » we have dim H, dim H; for all i

We have shown that T is a matrix of operators on R @R @ ...

whose only non-zero entries are the non-negative operators
5. = Pi , i 21, which appear on the first subdiagonal.
From part ii:) of Theorem 1.8, we have O = [Di] =

- 8] for all i =z 1 , and hence, Si = S1 for

all i 22 . From part i:) of Theorem 1.8, O = [Dl] =

E
cnsi .  Hence Si = C® for all i =1

*
If V g B(H) is isometric, then V Vv =1 and V
is quasinormal. Recall that if V is isometriec and if P

denotes the orthogonal projection on (VH)L , then

o
VV = I-P , so that [V] I - (I-P) = P . This implies

(VH) "

It

that Hl(V) = ¢l(ran|[V])

COROLLARY 3.5: (von Neumann, [7]) Every isometry V ¢ B(H)

is unitarily equivalent to the direct sum of a unitary

operator with a unilateral shift of multiplicity dim(VH)L
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* *
PROOF: A normal isometry is unitary, since V V=1 = VV

Noting that [V]|H1(V) is the identity operator on (vH)"
and applying Theorem 3.4, we see that V is unitarily

equivalent to the direct sum of a unitary operator and a
matrix of operators on R @R ® ... with identity operators

on the first subdiagonal and zeros elsewhere, i.e., a

unilateral shift of miltiplicity dim R = dim(VH)l

We note that if T is quasinormal, then a complete set
of unitary invariants for [T] 4is a complete set of unitary
invariants for the abnormal part of T . In case V is an
isometry, the fact that [V] = I on H (V) = ran[v] = (vHE)*
means that the scalar dim(ran[V]) = dim(VH)" is a complete

set of unitary invariants for the abnormal part of V .

§4. We conclude with a simple application of our decomposition
theorems to the study of quasitriangular operators. Recall
that T ¢ A(H) is triangular if there exists an increasing
sequence {Ek} of projections of finite rank such that

{Ek} —> I strongly as k ——> ® and such that

TE

- E TEk =0 for all k . We say that T 1is quasi-

k k
triangular if there exists an increasing sequence {Ek]

of projections of finite rank such that {Ek} —> 1
strongly as k —> ® and HTEk—EkTEkH —> 0 as
k —> o . It is clear that every triangular operator is

quasitriangular. We note that the study of quasitriangular
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operators was initiated by Halmos ([4]). We shall use the
facts, first proved in [4], that every normal operator is
guasitriangular and that the direct sum of two quasi-

triangular operators is quasitriangular.

PROPOSITION 4.1: Let T ¢ #(H) be abnormal with

dim(Hl(T)) < ® , Then T is 4. triangular operator.

PROOF: Let Ek denote the orthogonal projectiocn of H

onto [I'.d'k(T)]“L for all k =2 1 . From Theorem 1.5, the
sequence {Ek} is an increasing sequence of projections of
finite rank, and since TMk(T) EiMk(T) for all k =21, we
- E T E,
mality of T implies that £al M, (T) = {0} , or,

also have T*E =0 for all k =21 . The abnor-
-~

equivalently, that Ek tends strongly to I as k tends

to infinity.

The preceding proposition, together with Lemma 1.3

and Halmos' results, yield the following:

COROLLARY 4.2: Let T ¢ A(H) satisfy dim(Hl(T)) < w

*
Then T is quasitriangular,

COROLLARY 4.3: Suppose that T e #B(H) is subnormal and

that its self-commutator has finite rank. Then T* is
quasitriangular.

The answer to the following question is apparently
unknown.
QUESTION: If T is subnormal and has compact self-

*
commutator, is T quasitriangular?
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PROPAGATION IN RANDOM MEDIA-
G. Adomian, University of Georgia

Abstract The problem of wave motion in a stochastic medium is
treated as an application of stochastic operator theory to the
case of partial differential equations and wave equations.
Stochastic Green's functions are found for the two point cor-
relation of the solution process for a scalar wave equation
with randomly time-varying index of refraction without mono-
chromaticity assumptions. The Tesults are connected to the
theory of partial coherence and _can be used to calculate spec-
tral spreading in a "hot' medium.



PROPAGATION IN STOCHASTIC MEDIA*

G. Adomian, University of Georgia
L. H. Sibul, Pennsylvania State Univ. 0O.R.L.

Consider the scalar wave equation

2 21 - -
v }r(r:t:w) I [_2' * a(rat:w)]YCratin = x(r,t,w)
C

2
dt - 3
where t € T represents time, r e R>, we $ on a probability
space (£, 7 ,u). The quantities x and o, and consequently vy,
are all stochastic processes (s.p.} dependent on space position
and time, i.e., random fields. The deterministic operator L is

~ given by the ordinary d'Alembertian V2 - (1/c2)32/3t2 and the
random part of the stochastic operator by E = (BZ/Btz)u.

Letting L =P we write the above as

y(@,tw) = FT,t,0) + L' (0%/0t2)a (@, t,0)y (5.t ,u)
where L-1 is the inverse of the operator V2 - (1/c2)(32/8t2).
Denoting the Green's function for L_l by G{(t,t), the last term
is rewritten as [ G(t,t)(8°/9t%)a(t)y(t)dr, i.e., the random
operator K is —(az/atz)d(t).

After integrating twice by parts we can write
2 2 ‘
y(t) = F(t) + [1°6(t,m) /3t a(n)y (1) de
if quantities G(t,T) —gg-a(r)ym and [36(t,1)/3t]a(r)y ()

vanish as t + + « which we suppose does happen either because of
the initial conditions (G and G' zero) or because ¢ is a reducible-
to-stationary stochastic process.

o

We write TI(t,T1) = % (—ljme+1(t,T) with K, = K as before,

=0
BZG(t T)
K(t,7) = =20 g0 .
aT
'»Kz(t,T) = K(t,rl]K(rl,T)dTl
BZG(t,T ) BZG(T »T)
1 1
=j-——-—2 a(‘rl) — oL('r)dT1
BTI aT

*
This work has been supported by the National Aeronautics and
Space Administration (NGR11-003-020).



Ks(t,r] =‘[K(t,T1)K2(T1,TJdT1, etc.

T(t,7) = K(t,7) - K (t,1) + K (£,7)
= K(t,1) -‘[K[t,leK(Tl,T)dTl + j}'K(t,Tl)K(%l,Tz)
. K(TZ,T)dTlde - .
2260t 1) 0%G(t, 1)) 8°6(r,, )
= S a(n) -f 5 5 a{r Je(r)dr, =+
JT 811 aT
2 2. 2
3G({t,r,) 9°G({r,,t.) ?¥G(1,,T) _
+ f]" 1 ; Z 22 a(Tl)u(Tz)u(T)dTlde-
811 812 ot

Thus we can determine the s.g.f. (stochastic Green's function)
either for the spectral density s.m. (statistical measure) if it
exists, or immediately the more general two point correlation

‘(and mutual coherence functions) thus Ry(t .t ) =
f]’G (tl,t »07 UZ)R (Ul,cz)dc dcz whe;e GH, is. fOund from h(t ),

o

the random Green s function.

The first term of GH (which we do not write out) shows the

results for waves propagating in a deterministic medium. The
other terms of GH involving statistics of T show the effects

of spectral spreading due to the stochastic medium. These are
the terms lost by a monochromatic assumption. The calculation
for a specific case presents considerable difficulty but can be
made knowing the statistics (i.e., s.m.) of o (such as correla-
tion if o is gaussianj}.

In the general nonstationary case, we make the time domain
iterative treatment, and if we assume gaussian behavior for .the
index of refraction, we observe the odd terms vanish in the
series (terms involving produdts of odd numbers of a's) and the
even terms are negative. Thus in forming products y(tl)y[tz)

' for correlations, the contribution of the spectral spreading or
‘non-monochromatic terms of G (i.e., the last three of the
four term expression} are all positive.

~ Our procedure involves no assumption of statistical independence
of the solution s.p. or wave function and the stochastic 1ndex
of refraction and makes no closure approximations.

The first application of this work was the processing of a
signal by a "stochastic filter" which randomly sampled the signal



at intervals of time governed by a probability law. Work on
optimization of stochastic systems and numerous other applica-
tions is immediately suggested.
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STATIONARITY CONDITIONS FOR

~STOCHASTIC DIFFERENTIAL EQUATIONS

This is a preliminary study of possible necessary and
sufficient conditions to insure stationarity in the solution
process for a stochastic differential equation. It indirectly
sheds some light on ergodicity properties and shows that the
spectral density is generally inadequate as a statistical
measure of the solution. Further work is proceeding on a
more general theory which gives nécessary and sufficient

conditions in a form useful for applications.
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SECTION 1

The following definitions and notation will be used
consistently throughout this thesis.

(&, 9,4) will be a fixed (but otherwise arbitrary)
probability space with points «w € &, a o-algebra 4 of
subsets (probabilizable events), and a complete measure
W such that u(e) = 1.

A random variable (r.v) x = x(w will be a finite

real-valued (or complex valued) measurable function defined

on &, i.e., we require that {w:x(w} < A} € 7 for all real

numbers ). If x(w is complex-valued, we require that

x(w = u(w + iv{(w) where u and v are real-valued r.v.'s.
Given a r.v. x(w), E(x) or <x> denotes the integral

J x(w du(w if this integral is defined.

Given a parameter set T (which we usually take to be

the real numbers), a stochastic process (s.p.) or random

function (r.f.) on T is a real or complex-valued function
X:T X & —> R{C) such that for each fixed t €T the function
xt(uﬂ = X(t,«) is a r.v. Very often in our notation we
will suppress the variable w and write X(t) for the r.f.
Notice that a s.p; has two convenient interpretations.
First of all, a s.p. is a famil& of r.v.'s indexed By T,

i.e., X = {xt(w):n —> R} On the other hand, if we

teT”

emphaSize the variable t and let T = R, then a s.p. X is a



collection of real-valued functions of a real variable
(indexed by &). These functions are called the sample
paths (realizations, trajectories) of the process. The
measurability of X with respect to the variable w says
nothing about measurability with respect to the t, and in
general the sample paths may be very badly behaved. How-

ever, we will consider only measurable processes, i.e.,

functions X{(t,«) which are measurable with respect to

the o-algebra o xJ where o is the family of Lebesgue
measurable subsets of the real line. Then all the sample
paths will be measurable.

We let Lz(m) denoté the Hilbert space of all square
integrable r.v.'s on & making the usual identification of
r.v.'s which are equal almost everywhere with respect to
the measure M,

We say that a r.f. X(t,«) is second order if each

r.v. X, t €T, is a member of Lz(&). Thus X is second
order if and only if [_|X(t,w |%du(w) < = for all teT.
Note that a second order r.f. X induces a map into a

space of r.v.'s Y:T —> Lz(n) defined by (Y(t))(w) =X(t, ).

The covariance function associated with the r.f. X is de-

fined by r%(s,t) = E(X(s)X(D)).
Once again let T = R and let X(t,«w be a second order

s.p. Let Y be defined as in the preceeding paragraph..

We say that X is continuous in the mean square sense at i,

if 1.i.m. X(t) = X(to). This is equivalent to saying that
t—t
¢

the function Y{(t) is continuous at t0 relative to the



standard topology on the reals and the norm topology on

12(n). similarly, we say that X(t) is differentiable in

mean square at t0 if there is a r.v. (second order) r

such that 1.i.m. 2(£)=X(to)
t=t t-t

C 0

= r., Thus X is differentiable

in mean square at to it and only if Y(t) is differentiable

at tO’ and moreover r = g% (to). This same analogy carries
over to integration (Riemann, Riemann-Stieltjes, Lebesgue-
type) in mean square of X and the corresponding integration
of Y. Hénce the study of the mean square analytic properties
of a (second-order) s.p. X is equivalent to the study of the
corresponding properties of a function Y:R —> Lz(ﬂ).

Throughout this thesis we will deal with the concept

of wide-sense stationarity. Moreover, without loss of

generality we consider only zero-mean processes, and con-
sequently we take as the defining characteristic of a

stationary process X the existence of a correlation function

f such that I;(s,t) = f{t-s). We define the spectral
- 2mitu 1
e

density function of the process by ¢(u) = | f(t)dt.

1We use this definition of correlation function in
accordance with Adomian [1]. Often in the literature the
correlation function is defined g(s-t) = E(X(s)X(t)) which
is the complex conjugate of our definition. We let

e(u) = jeznltuf(t)dt be the spectral density function of

- =27itu

the process whereas some authors may have y(u) = je f(t)dt

as the spectral density function. This of course will be
the complex conjugate of our spectral density function.



Usually we consider only real processes, however if some
result takes on a much cleaner form in the complex case
we will note it.

The physical interpretation of stationarity is well
known (see Yaglom [11]). The following geometrical
interpretation may provide some insight however. Note that
a secohd-order process with the real line as the parameter
set is a map X:R —> Lz(ﬁ) from the reals into a particular
Hilbert space. Hence the relationship E(X(s)X(t)) = f(t-s)
is merely a restriction on the behavior of the inner pro-
ducts of points in chra which lie on the curve associated
with X. In particular, HX(t)H2 = E(X(t)X(t)) = £(t~t) = £(0)
for all t, and so the curve X must lie on a sphere of radius
f(0) centered at the origin. Forrstationary X,
E(X(8+T)X(t+7)) = E(X(s)X(t)) for all s, t, and T, and so
if we think of the inner product as determining an angle
between say the vectors X(s) and X(t), then this angle is
invariant under translations of the parameter set, e.g.
the angle between X(s)} and X(t) is the same as the one
between X(0) and X(t-s). A circle in R? centered at the
origin is an example of such a curve if the standard para-
meterization is taken: thus, consider the curve
x(t) = €, cos t + ey sin t where ey and €q are the standard
basis vectors for Rz. In general, we can replace the unit
vectors by arbitrary orthogonal vectors in Lz(n) of equal
norm, call two such (distinct) Qectors A and B. Then the

process defined by X(t) = A cost + B sint is really just



a circle in LZ(C), and a simple calculation shows it is
stationary. One of the most powérful results in the
general theory of stationary processes is that every
(continuous) stationary process is the limit of sums of
processes of this special type.

One is naturally interested in determining what sort
of transformations of stochastic processes preserve station-
arity. For the moment, we interpret the term "stochastic
transformation in the loosest sense, namely we call any
rule which associates one or more processes with another

process a stochastic transformation (s.t.)z. In this

sense there are many s.t.'s which carry stationary pro-
cesses into stationary processes, and we list here just a
few:

. 2 2 .

i) Let U:L°(H) —> L°(f) be any isometry. Let
F(t) be a stationary process. Then the process
G(t) = U(F(t)) is stationary since E(G(s)G(t)) = E(F(s)F(1)) =

f(t-s). Let ¢« be any complex number. Then the process

H(t) = aU(F(t)) is stationary since E(H(s)H(t)) = |alzf(t-s).
ii) Let F(t) and G(t) be stationary processes such
that the smallest closed linear manifolds containing F and

G respectively are orthogonal. Then F(t) + G(t) is a

2For a more complete discussion of this term, see
Section 4. One also may wish to consider the possibility
of mapping a random function into a random sequence. In
his dissertation Adomian presented and discussed the
important example of a randomly sampled random function.
He also sets up conditions under which a stationary random
function is mapped in this manner into a stationary random
sequence,



stationary process since E([F(s)+G(s) J[FOI+G(E) D

= f(t-s) + g(t-s) = u(t-s) where u = f+g. Note that in
general the sum of two stationary processes is not station-
arf. A necessary and sufficient condition that F(t) + G(t)
be stationary is that E(G(s)¥(t)) + E(F(s)G(t)) be a
function of t-s, and we see that this is a fairly strong
restriction. The fact that stationary processes do not
form a linear manifold (in the space of all processes)
causes a certain amount of difficulty in determining what
s.t.'s preserve stationarity.

iii) Let the stationary process F(t) be n times

continuously differentiable and let Cgr+- 1%y be constants.
2 (k)
Then the s.p. G(t) = T ¢ F (t) is stationary and
k=0 ‘
n _ 5. (k+)
E(G(s)G(t)) = z k%5 (-1 f (t-s). We note that

k,j=0
l1imits (in mean square) of stationary processes need not be
stationary, and so it is unusual that linear combinations
of derivatives of stationary processes are stationary. As

s .
a rule, the function G(s) = XO + f F(t)dt is not stationary
0

even though F is, and so integral operators do not in geﬁeral
preserve stationarity. Intuitively the sclution to a
stochastiec differential equation is representable in the

form of applying a stochastic integral operator to the
forcing function of the differential equation; thus we see
this operation will not often yield as a stationary solution.

We now seek to determine conditions under which stochastic



differential equations do possess stationary solutions.



SECTION 2

This section is devoted to the study of analytic ran-
dom functions and their application to stochastic dif-
ferential equations. We recall that if X(t) is a second
order random function, then X(t) can be thought of as a
map X: T —> Lz(ﬁ). Usually T will be the set of real num-
bers or some subset of the reals; more generally, T will be
a. subset of a Euclidean space. There is already a general
theory of analytic maps from finite dimensional Euclidean
spaces into Banach spaces, so we list here only the most

relevant parts of this theory.

Definition: Let B be a real Banach space. Let {cn}z=0

be a sequence of elements of B. Suppose there is a positive
real number r such that the series L chth converges for

all real numbers t satisfying |t| < r. Then the series

Z cntn is called a power series centered at O with coeffi-

cients in B.

Notice that since a power series converges absolutely (by
definition) in the space B and since B is complete, the
series does indeed converge to an element of B for each
appropriate t. The absolute convergence of power series

allows us to rearrange the series however we like, and the



rearranged series will still converge to the same limit.

Thecrem 1. Suppose Z antn and Z bntn are two power series

for |t} < r with coefficients in a Banach space B. LIf

" for all t € (-r,r), then a = bn for each n.

At - T b ot
n n

We will find this theorem on uniqueness of coefficients

especially useful. For a proof, see Dieudonne [3].

Definition. Suppose f is a function from the reals into a

Banach space B. Suppose there are elements {Cn};xo in B

such that f(t) = Z(Cn/n.')tn for |t]| < r. Then f is said

to be analytic at O.

In accordance with this definition, a second order random
function X(t) is analytic at O (in the mean square sense)
when there are second order random variables XO’XI""

such that X(t) = E(Xn/nf)tn for |t| < r. 1If we include the
dependence on £ in our notation, we see that X(t,w) =
E(Xn(u)tn)/n! and so an analytic random function is one

which has this special sort of separation of variables.

We have the following theorem which relates analyti-
city of a random function to the analyticity of its co-

variance function.

Theorem 2. A second order random function X(t) is analytic

and only if its covariance function Ik(s,t) is analytic

b fi—‘-
L

every diagonal point (t,t). If this condition is
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satisfied, then I%(S,t) is analytic at each (s, t).

More simply, a random function is analytic if and only if
its covariance function is analytic. See Loeve [7] for a
proof of Theorem 2.

Returning to more general Banach space considerations,
we have the following very important theorem, again from

Dieudonne.

Theorem 3. Suppose f:R —> B, B a Banach space, is analytic

—_—

t 0. Let f(t) - Z{_/n!)t". Then f is infinitely differen-

/Dy, £ () is

™8

tiable. Moreover, f(k)(t) (C

n+k

O

n

analytic, and f(n)(O) = C

n’

!
Hence we see that the random variables occurring in a power

series expansion of 4 random function are related in a
simple way to the me@n-square derivatives of the random
function. ‘

Let us now turn}our attention to the question of
forming a product o% two elements each from a (perhaps
different) Banach sdace. We are motivated by ordinary
differential equatiins of the form x'(t) + a(t)x(t) = £(t)
but we would like tq replace the functions involved in
the equation by secdfd order stochastic processes. Then
we would have an equltion X'(t)l+ A(t)X(t) = F(t) where

X, A, and F are mapsifrom the réals into the Banach space



il

Lz(ﬂ). There is a natural way of attaching meaning to the
formal product A(t)X(t), we can form the pointwise product
[A(OX() ](w) = A(t, DX(t,w. In general, this expression
no longer defines a function into the space L2(9) since
A(t, WX (t,w may not be square integrable (with respect

to w) for each t. Consequently, some care is needed in
handing these products.

Consider now the general case of forming products in

Banach spaces,

Definition. Let E and F be two (real) Banach spaces. A

map P:E x F ~—> E is called a product on the spaces E and
F if P is bilinear and satisfies the inequality

iP(e,£)]| < llell #f] for every e €E and f €F.

We usually write ef for the product P(e,f). There are many
examples of products, and the one which we will find useful

is the following.

Let E be a Banach space, let F = L(E,E) be the space of
bounded linear operators on E. Note thét F is a Banach
space. Define the product P:E xF —> E by P(x,f) = f(x).
It is elementary to verify that P defines a product in our
sense..

We prove now a few generalizations of well-known

theorems and see how they fit into our more general framework.
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Theorem 4. Suppose P:E xF —> E is a product. Let‘

A= Za €EandB=ZIb ¢F be two absolutely convergent

n
n n
z = X P(an_.,b‘). Then

5-0 ity

series. Define Cn = a

.b.
n=j Jj

Jj=0
ZC, = AB = P(A,B).

4

We can prove this theorem by slightly modifying the proof
for the case E = F = R found in Rudin [2] so we omit the

proof here. However, as an important corollary we have:

Let A:I —> L(E,E) and x:1 —> E be two functions defined
on I, an open interval containing 0. If A and X are both
analytic at O, then the map f:I —> E defined by

f(t) = A(t)(x(t)) is analytic at O.

Proof. Let A(t) = I Antn and x(t) = E:xnt“. let to> 0

be such that both A(to) and X(to) converge absolutely. Then

£(t) = A (x(t)) = (ZA tH(EZx t™) = Zax " -
. n m m,n

o k
z tk T A, .X.. Then by Theorem 4, f(to) converges, and
T k=373
k=0 j=0
so f(t) converges absolutely for |t] < to- Hence f(t)
is analytic.
Keeping this concept of products in mind, we turn now
to the question of differential equations involving functions
from the reals into Banach spaces. Let I be an open interval

containing O and let U be an open set in the Banach space B.

Then a function f:I xU —> B is said to be a time-dependent
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vector field on U. A map a:1 —> U is an integral curve

for f if o« is differentiable and satisfies the equation

a'(t) = f(t,w(t)). £ is said to be Lipschitz at t €I

if there is a constant K > O such that [f(t,x)-£(t,g)] £
Klix-yll for all x,y in U. f is said to be uniformly
Lipschitz on I if.there is a single constant K > O such
that ll£(t,x) - £(t, vl < K|x-y|| for all x,y € U and all

t € I. We let cP(I xU) denote the set of all functions
from I U into B which are p times continuously differen-
tiable. Let B (X,) = {y ¢ B:Hy—XoH < a}. Now we can
state an existence theorem for certain differential
equations in Banach spaces.

Theorem 5. Let I, U, and B be as above. Let XOE U. Let

a € (0,1) be a number such that B, (X5} < U. Let

f:1 xU —> B be continuous, bounded by C, and satisfy a

Lipschitz condition (with constant K) uniformly with

‘respect to I. If b < a/C and b < 1/K, then there is a

unique integral curve a:(~b,b) x Ba(XO) —> U such that

«(0) - X,. If £ €’ (IxD), so is a.

1In particular, we note that if f is continuously differentiable,
it is continuous and satisfies a uniform Lipschitz condition.
For a proof of Theorem 5, see Lang [6].

Let us see how to apply this theorem to stochastic
differential equations. In particular, consider the equation

X'(t) + A(£)X(t) = F(t), X(0) =X where A(t) and F(t)

0,
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are second order random functions and XO is a given second
order random variablé. Solving the above equation for
X'(t), we have X'(t) = F(t) - A(t)X(t), and so the vector
field (on'LZ(G)) associated with this equation is given by
f(t,x) = F(t) - A(t)x. To insure that the formal product
A(t)x is well defined for every t €1 and every X ELz(ﬁ),
we assume that there is a constant K > O such that

ess, sup{A(t,«|< K for all t €I. We will show that for
w e

each t, A(t) can be thought of as a bounded linear operator
on Lz(ﬁ), whereupon the formal product A(t)x will be a
product as defined earlier; in particular, A(t)x € Lz(fD
for every t € I and every x € L2(ﬁ), and so the function
f(t,x) is a well defined vector field on L2(G).

Suppose then that ess sup |A(t,w | < K. Consider the map
w

1 —> LP(®, L2(0) defined by ATD)x) (0 = Alt, Wx(w.
We show first that for a fixed t €I, A(T) € L(LZ(®), L2()).
Thus we must show that if x:ELz({D, then A{)x must be a
square integrable random variable on £ We have

JEx]12 (Wdp(w - gAz(t,w)xz(w)du(w) <
&

ess sup IAz(t,uD| J xz(uﬂdu(uﬂ S_KZHXH2 < =, Thus
Lxd

A(t)x € LZ(ED. For a fixed t, A(t) is clearly linear, and

moreover

o 5 1/2
A - (] Wo0? (wanw)

< &= 12= k|x].

Hence A{t) is a bounded operator and {A(T)|| < K. This
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k

.]. But this

X'(t) + A(OX(t) = T (K/k1)x Xy, 1+ ( ALK,

k=0 j: o3

equals F(t), so by equating coefficients (Theorem 1), we

, ko
have Fk = X + T (CHYA.X

., or
k+1 j=0 4 J k~j
k
X -F - z (¥ )A L
k+1 k §=0 J -j

We are given XO’ so this formula allows us to determine
each Xn by induction. Now we have to show that the power
series for X(t) with these coefficients converges (absolutely)

in some neighborhood of the origin.

We observe that the expression for Xn can be put in a

more convenient form. We claim that

n-1

X =xX.+ I f F,_,
k=0 k'n "k

where X, is the coefficieqt of XO in the original expressicn
for Xn (after Successivelj substituting the previously
calculated Xj's, J < n—l). nd kfn is the coefficient of Fp
in the original expreos.ion for Xn. X, and kfn are defined
inductively by the reiations)

%o~ 1, *n+1 *n J
kfn =0 .for
kfk+l i, kfn+1 .E (J)AJ k n for n > k.
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Notice that the expressions for X5 and kfn are combinations
of the Aj's only; the initial condition XO and the forcing
function F(t) are not involved in these coefficients.

Proof of claim: We use induction on n. The claim
clearly holds for n = 1. Suppose the claim holds for k < n

and examine the case kK = n+l.

n n-j-1

n
X =F - Max =Ff - Ml £ _.F +x .X]=
n+1 n §=0 J i n-j n §=0 3" k-0 k'n-j "k n-j 0

n n-~j-1 n noo
=F ~-X L (HA, . f . F - (A, x__. X, =
n =0 k=0 j kn-3 "k j=0 i’ "n-3 0
) noo n n-j-1 n
- X (A x. )X+ F z = A f
J:O(] I'l"J) 0 i j=0 k=0 (J) J k'n=3 k
LN ,
But - X (JA.x_ . = x , so all that remains is to show
5=0 J i n~j n+1
n n-j-1 n
F - ¥ (Ma, 1 F, = T _f F
n =0 k=0 JJ kn-3j "k k=0k n+l "k

Fix an integer p such that O < p < n. What is the coefficient
of Fp in the left hand side of the above equafion? Notice
that k = p only when j satisfies n-j-1 > p, i.e.,

3 € n-p-1. Thus we get an Fp for j = 0,1,...,n0~-p~1 and k = p.

Hence the complete contribution involving Fp is

n-p-1
n
-F JA, f . But f.= O f >k, i > n-j
pJE{} (J) 5 pTn-j pik or p > so if p > n-j
we have f .= 0. Since p > n-j for j > n-p, we have

p n=)
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n-p-1 n—-p-1 i n
- ©  (hHa, - - ¢ (Ma - (Ma, ¢ . =
jo0 473 pTand PRSI R B L L ST e B
[
noo. n n-j-1 n
= I (Hha, = f . Hence F - T r (Ha, £ . F =
jeo 43 pn-j pintl n S k-0 J 3 kKnjok
n
= T F. and the induction is complete.

kfn+l k

As a conseguence of the above relationships, we have

n-1
o Ry - n, tyr _
X(t) Z(t7/nl)X E(t /nl)[x X, + kfgkfn Fk]
n n n-1
= X Ti(x /nl)t + Z{t /n!) (I f F. )., We will now
0 n n n k=0 k'n "k

place additional restrictions on A(t) so that we can prove
the above power séries converge.

Let A(t) = Z(An/ni)tn, and suppose there is some con-
stant K such that ess sup lAn(uDl < K™ for each n. Then
each An(uﬂ can be thought of as a bounded linear operator
on L%(0), i.e., A€ Lal(®, 12(w). Also ess sup la(s, @ | < K' < =
for some K' and for all s in some neighborhood of 0,'and 50
our original restriction on A(s, «) (allowing us to form
products) is satisfied. We wish to show that A(s) = Z(An/n!)sn
is an analytic map from I into the Banach space L(Lz(fn, LZ(KD).
First we need to calculate the norm of A, considered as an

element of L(Lz(ﬁ), Lz(fD), and we have the following theorenm.
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Theorem 6. Let A:& —> R be a random variable such that

ess sup |[A(w | < =. Then the norm of A considered as an

element of L(Lz(CD, Lz(n)) is ess sup |A(w |.

Proof: Let [All denote the norm of the linear operator

generated by A. Then {|A] - syp |Ax][|. Let x:&—> R
Ixi=1 \
be such that |[xj{ = 1. Then
i 1 a 2
Haxii = (J(Ax)z(uﬂdu(uﬂ)l/gr ( Az(uﬂxz(uﬂdﬁﬂuj)l/zg (ess sup A ()
£ <
J xz(uﬂdu(uﬁ)l/z = ess sup lA(w | [|x]l = ess _sup ACw |.
Ly
Hence [lA]] < ess, sup |A(w |. We show now that ||Al] > ess sup |A(W].

Let € > 0 be given., Let K = ess sup IA(uﬂl and define the

set b = {w:

A(w| > K - ¢}. We may suppose without loss of
1/2

generality that u(D) 5 > 0. Define x(w) = x(wéd

i

where x{w) = 1 for «w &€ D and X(w = O otherwise. Then

Ix! = (] 2 (Wap)? = (§ 67 tau(w)? - e H/2- 1,
L D

1/2 _ .1

7Y [ aZ(wap(w)? >

and |ax| = ([ A% (Wx%(Wdp(w)
a8 D

> (6“'1(1(—6)2;.1(1)))1/2 = K-¢. Hence ||A] > K-¢, and since ¢
is arbitrary, we see that [|Al > K. Thus [A]] = ess_sup lACw |.
QED |

We now see that E(An/nl)tn is a power series in

L (e, L?(®) since T(JA_|i |t"|/nl) =
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T (ess,sup |a (| [t]"/nD <2« [t/ - Kltl ¢ o,

Hence A(t) = Z(Antn/nf) is analytic in L(Lz(ﬁ), LZ(G)).
t
Form the function y(t) = —f A(s)ds where integration takes

place in L(Lz(ﬁ), Lz(ﬁ)), and then consider the bounded
linear operator (for each t) exp y(t). This is an analytic
map, and simple algebra and an inductive proof shows that
its power series has the coefficients X, defined previously.

Hence applying the corollary to Theorem 4, the function

t
Xp exp (—f A(s)ds) is an analytic map from I into Lz(ﬂ).
0

Now cousider the expression:
r1t “t vy
exp (-] A(s)ds) | exp (I A(s)ds) F(y)dy where the indicated
0 0 0

integrations involving the exponentials take place in
L(Lz(ﬂ), Lz(n)) and the remaining integration takes place
in Lz(n). Since F(y) is analytic (in Lz(ﬂ)),

5
exp () A(s)ds) F(y) is analytic (in Lz(ﬁ)) as before, and
O

t
consequently so is its integral J ; we apply once more

t

the operator exp (—f A(s)ds), so the whole expression defines
0]

an analytic function in Lz(fD. Again an inductive proof

shows that the coefficients of this analytic map are

n-1

z kf Fk as previously defined. Hence our power series
k=0 © "

for X(t) converges (absoclutely) in some neighborhood of O,
and analyticity is established. We summarize our results

with the following theorem.
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Theorem 7. Let F(t) and A(t) = Z(A (w)/n!)t" be analytic

second order random functions and let X. be a square

Q
integrable random variable. Suppose there is a constant K

n
such that ess sup |An(u3l < K for every n. Then the

stochastic differential equation X'{(t) + A(t)X(t) =

F(t), X(0) = Xn has a unique analytic solution.

Note that the extension of this theorem to higher
order equations is trivial. If we have the equation
X0y + olBx D () 4ot 6 (DX(1) = F(L) and the

coefficients are analytic and satisfy essgup |a§k)(0)l < K?

for some set {Kj};:é,and every k, then we write the equation
= =
in a vector form

X'(t) = A(t)X(t) + G(t)

where
o 1 0 0
0 o) 1 0 0
A(t) =
0 0 0 .. 1.
—a, (t)-a; (1) .o —an_l(tz
o)
and G(t) =
Fit)

Note that analyticity of the aj(t)'s implies that of
A(t) (as a bounded linear operator on (Lz(ﬁ))n) and G(t)

is obviously analytic. Hence the same techniques of our
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theorem extend to this case and to the state space equations
of stochastic control theory, in particular to the recent
work of Leon H. Sibul (dissertation).1

Turning to the question of stationarity, we are interested
in finding necessary and sufficient conditions that an
analytic random function be stationary. We will assume all
our random functions satisfy < X(t) > = 0. Suppose then
that X{t) = Z(Xn/n!)tn is a real analytic random function
with the (analytic) covariance function I'(s,t). Suppose
also that X(t) is stationary. Then there is some funétion
t:R —> R such that I'(s,t) = f(t-s). Note that f(u) =f{(-u).
Since I'(s,0) = f(-s8), we see that f is analytic (at 0),
so there are real numbers ¢ ~such that f(s)=:2(cn/nf)sn.

Let us see how these constants are related to X(t). We have

I'(s,t) =< X(s)X(t) > =< E(Smxm/m!) E(tnxn/nt > =
m n

o

n N .
Tttt -)) < XX s

i

n=0 j-0 )
® noo |
= Z (1/nl) T hedt?Jd < x . Xx.>. But
n=0 j=0 ATy
[+ © n . . .
£(s-t) = I (c (s-t)"/n!)= Z (1/n>) I 1" e (HsIt"I,
n=0 n=0 j=0 J
Since f(s-t) = I'(s,t), we have these two power series (in

two variables) representing the same function, hence their

coefficients must be equal, thus (-1)"Je =< X5 X

s . . < _ (_1\n
Rewriting this last eguation, we have anm >=(-1) .

1Sibul, L. H., Application of Linear Stochastic
Operator Theory, Pennsylvania State University disser-
tation, 1968,
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On the other hand, suppose we have a zero mean analytic
random function X(t) = Z(Xntn/nf) such that there exist
] . . PPN !

constants {cn} satisfying < X X > = (- 7c .. Then

the above equations show that X(t) is stationary. Thus we

have the following theorem.

Theorem 8. Let X(t) = E(Xntn/n!) be a (zero mean) real

analytic random function. Then X(t) is stationary if and

X _ (_13n
only if there are constants {cn} such that < X X > (-1) Cpem”

It is clear that a set of constants {cn] satisfying
the condition of Theorem 8 cannot be completely arbitirary.

In fact, we must have

1) cgp1= O ii) ¢y 2 O, ;nd iii) ey o < 0.
. ~ 2k+1 _
To see i), note that < X2k+1X0> = (-1) Coxs1” Coprl
and < X0X2k+1 > = (—1)Oc2k+1. Since X(t) is real-valued,
we have 0. This is to be ex-

“Cop+1~ Cok+1’ 18+ Copyl”

pected since f(t) must be an even function. Also

2 _ — i 2k _ 2 _
0 < <Ky ? = <X Xg > = ("L)%cyy = oy and 0 < <Xy .4”
<X X > = (—1)2k+1c hence ii) and iii) are
2k+1 "2k+1 4k+2°

proved. By defining d - Icznl, we can write f£(t) in the

fu -]
form f(t) = T (—l)n(dnAZnﬁ)tzn where dn > 0 for all n, hence
n=0

f(t) is representable by an even, alternating power series.

(Note that d_ = <x2>).
n 1
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Theorem 8 can be reformulated in the following way.

Theorem 9. Let X(t) = EXXntn/n!) be a (zero mean) real

analytic random function. Let A = {XO,XE,...,in,...}

and B = {X Then X(t) is stationary

1,x3,...,x2n+1,...}.
if and only if A is orthogonal to B and

11) <X9141%17 7 <Xy (n-r)+1%2k+1

and 1i1) <Xy Xg> = -<X, X, > for all n > 1.

Proof: Suppose X(t) is stationary. We show that ALB

_ 2n _ -
first. < X, X Con+2k+1” C2(n+k)+1”

2n"2k+1 > = (-1

0. Hence

AlLB. Also,

2(n-k)

Con-2k+2k~ C2n=.<X

1) <X2(n—k)x2k> = (-1) 2nX0>

2({n-k)+1

2) <X Con-2k+1+2k+1"

2 (n-k)+1 X2x+1” = D

2n+1

= ~Coppe = 1) Con+1+1” >

< X2n+lX1

2n-1 _
Con C2n

3) <X,

2n—1X1> = (-1) = ~<X2nXO>,

so the first half of the theorem is proved.

Suppose now the second half of the theorem holds.

Define {cn} by the equations ¢, .= 0 m=0,1,..., and
Com =‘<X2mXO> m=0,1,.... We will show that'<xn_jxj> =
(—1)n_Jcn for 0 < j < n and all n, whereupon Theorem 8

tells us that X(t) is stationary. Suppose first that n

is odd. If j is even, n-j is odd and Xn_je B, hence
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X.>» = 0 since X.£ A. Thus <X . X.> =0 = (—1)n_JC
n=J] 1 J n-3j n

since n = 2m+1 for some m. If j is odd, n-j is even, so

<X

X .¢ A and X.€ B, hence <X. .X.> = 0 = (-1)"Jc_ as before.
n-Jj J n-3 Jj n

Now we show Theorem 8 is satisfied for even n. Let n = 2p.

First consider the case where j is odd, let j = 2q+1.

Then
. _ _ 5 -
“Xp-3¥57 = <Xa(p-q)-1%2q+17 T < F2(p-1-q)+1 X2q+1°
= <Xg(p-1)+1%¥17 T “Xgp X717 T <Xy Xp” =
_ (12 (p-q)-1 13D
= {(=1) c2p (-1) Ch
Now suppose j is even, j = 2q. Then
< X2 =< > o= < X. > =
XH‘JXJ X2(p—c1)X2q X2p o~ “2p
_112(p-q) _ (1 -]
(-1) 02p {(-1) Ch

as was to be shown. Hence X(ti is stationary. QED

We now have developed a technique for finding the power
series coefficients of solutions to stochastic differential
equations and we also have theorems which tell us when a
given analytic stochastic process is stationary, so in
principle we have the machinery to determine conditions
under which a given equation will have stationary solutiohs.

We present some examples to show how this may be done.

Example 1. We know that the derivative of a stationary

random function is stationary. When will the integral of
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a stationary f(analytic) random function be stationary?
This question is equivalent to determining statidnary
solutions to the differential equation X'(t) = F(t),
X{0) = Xolwhere F(t) is the given stationary (analytic)

random function and the random variable XO is yet to be

specified. The seltuion to this equation is
t

= PR = 2 ! . s = 5 n '
X(t) = X, + Job(s)ds Xg + Fot + Fyt7/20 + nf&(xnt /nl)

where X = F 4 for n > 1.
We now apply Theorems 8 and 9 to this random function
to see what additional conditions we need to place on Xo

to guarantee stationarity. Theorem 9 tells us that in

order for X(t) to be stationary, it is necessary that

_ (-1 2 . _

<Xg Xp> = (-1)7 <X >, i.e., we must have <F,  ,X,> =
_ n+1 2 _ (_1y0+l 2

<X2(n+1)xo> = (-1) <X i1” < (-1) <F_>. Hence

our first restriction on X0 is that it must satisfy the

_ n+1 2 ‘
2n+1xp> = (-1) ‘<Fn>. Moreover, Theorem 9

requires that <:X0x2n+1> = 0 for all n, hence our second

relations <«<F

requirement is that *<X0F2n> = 0 for all n. Since F(t)
is staticonary, there are constants {fn} such that
_ (o D~J .
<Fn-ij> (-1) f . Define constants {cn} by the
. B B 2 _ .
relations Conel™ 0, co= <X0 >, and Chea™ fzn. We will

- (-1)PJ
show that <:Xn_JXJ> (-1)" Ye .

Case 1. Let n be odd, n = 2k+1. We must show

<X X.> =0 for all appropriate j. For j = 0 <X .X.>
n-j%3 pprop J J ’ n XJ

i

- <F = <F,,X.> =0. For j>1, <X .X>

n-1%0" 2x X0
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= <F = (-1 = (-1)"37 1 = O since

n—-j—le~-1> n 2k-1

the fn's with odd subscripts must be zero.

Case 2. Let n be even, n = 2k. For J =0, <X .X.> =

SXpXo” T SF3Xg> = <Fy Xo> = SFok-1)41%0" *

ek ov2 o ok,

K-1_ 2k-1
2(ke1) DT (1)

It

Cop = (—l)ncn as required. For j > 1, <X _ .X.>

= (~1)™ I3 (-1)%K-3-1 =

Fn—j—lpj—l> n-2° 2k-2

- (-1l -1)2de, -

2k-j
(-1) ok

f

2(k-1) Co(k-1)+2 ~

(-l)n-Jc 25 required. Hence we see that necessary and
n

sufficient conditions for X(t) to be stationary are that

X > = (—1)n+1<Fi>, and <F

SFO> =0, <F, 1%,

X.> = 0.
n

2n0

These last two conditions may be combined by requiring that

SXFLE) > = <Xy T /1) > = B(tT/nl) <xF > =

0O 0

2n , 2n+1 'y =
HE/ @) <KoFa > + BT/ @0 ) <xgFy 0> -

2

- 2t2™ o1y (-1)“+1<:Fn:> = -2(t2™1 ans1) 1) &

n 2
x (-1) <Fn>’

i.e., we require that the correlation function of F(t)

and XO be given by

SFOXe> =~ =DM 2m ) <F?s.
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Example 2. We present here an example of a differential
equation in which the coetficient function as well as the

forcing function is random. Consider the equation

X'(t) - Ae”x(t) - aBe™- 1)
X(0) = B
where A is an essentially bounded r.v. Writing the equation

in the form X'(t) + A(t)X(t) = F(t), we calculate that

A = —ae™ - 2™ nl die., A= 0™ Also
we have F(t) = AB(etA— 1)y = I An+1Btn/nf so we have
n=1
Fo® O and F = A"MB for n > 1. We have a solution
n n-1
- 1 = T : =
X(t) an t /n! where Xn XnXO + k:b kin Fk
n-1 n-1

-xB+ T .t K1) - B+ 3T ¢ aKhy - g

n k=1 k' n n k=1k n i

where we define Cn to be the expression in the brackets.

Remember that both X and fn are polynomials in the

k
and since the variables A
k+1

variables A are

k

), we conclude that Cn is a

S W
polynomials in A (4, = (-A)

polynomial in the r.v. A. Now if X(t) is to be stationary,

we must have <X0X2> = -<X%>, and this condition becomes
2.2

<A"B™> = 0 and hence we know that any polynomial in A is

orthogonal to any polynomial in B. Thus we have <XnXm> =

= <BC _BC > = <Bzcncm> = 0 for n+m > 1 and consequently

Theorem 8 is satisfied. Thus the solution is stationary
if and only if <A2B2> = 0. Note that we did not actually

have to calculate the solution to make this conclusion.
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Example 3. Consider the equation X'"(t) + BX(t) = O,
X(0) = X5, X'(0) = Xy, where B is a random variable which
is positive a.s. This equation is a stochastic analog of

the harmonic oscillator equation. Suppose X(t)==Z(Xn/nf)tn,

then X" (t) = Z(X_ ./n!)t", so 0 = X"(t) + BX(t) =

n+2

< I(X,p,/n)t% + B (X /n)th - L(X_,,+BX )/n)t", i.e.,

X 49~ -an for all n. It is easy to see that the coefficients

. . _ (_my 0 . (_myh
X, are given by the relations X, = (-B) X0 and X, .1 (-B) Xq-

The closed form expression with these coefficients is

X(t) = Xy cos /Bt +(Xl/f8)sin /B t.

To see when this random function will be stationary,
let us assume that the random variables B, XO, and X, are

all independent and ‘<XO> = <:X1> = 0. We apply Theorem 9,

so define A = {xo,xz,x4,...} and C = [Xl,XS,XS,...}. Now

: _ _ayhy (D -
A and C are orthogonal 51nce_<1X2nX2p+1> < (-B) XO( B) X,>

= < (_B)n+p> <X0><Xl> = 0. We check the last three

conditions of the theorem:

. _ _ryn-k _mk _

< (-B)“X0x0> = <X, X5

. - _nyn-k _m K _
i1) <X pye1¥ok+1” = <(-B)" "X;(-B)7X;> =

n —
< (=B) XX3” = <Xon41%1”
... . _ _ 2 _ _wy D 2., _
111) <X, X = << B)“x0> = < (-B)><x> =

(-1)%< ™ <x(2)> .



29

e v,

n~-1X2> _ (_l)n-1<:Bn— .

Also <X < (-B)" 1

X.>
2n-1%1
But these expressions must be negatives of one another,

n-1 2 2

and so <B™> . <B > < X§>/< X0>. Let ¢ = <X§>/<X0>,

n-1

then <B"> = ¢<B >, i.e., <B™ = ¢" for every n. The

characteristic function for B is <exp itB> =

T i< B®/n! = T(ite)™/n! - exp itc, so B = c a.s.

since characteristic functions are unique. Thus if we
assume B, XO, and Xl’ are independent and <:XO> = <CX1>==O,
the solution is stationary if and only if

B 2 2
B{w = <x1>/<x0> a.s..

These three examples serve to indicate a fairly
wide range of questions which the techniques of this section
can answer. The first example provides us with a criterion
which we will use in section 3 to characterize the general
form of stationary solutions to the equation. Example 2
shows that we may characterize conditions for the existence
of stationary solutions without having to find the solution
itself. Example 3 says that a more general canonical form
of simple stationary processes (i.e. adding randomness in

the time functions of A cos t + B sin t) is not needed.
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SECTION 3

In this section we use some of the tools of random
harmenic analysis to develop further conditions guaranteeing
stationarity of solutions to certain stochastic differential
equations. We make extensive use of the harmonic decom-
position theorems concerning stationary processes to find
sufficiént conditions to be placed on the initial values
of the equations. We then calculate the correlation
function of the resulting solutions. Moreover, we show
that under fairly general conditions we can get asymptotic
stationarity independent of the initial values. We begin
with the notion of an orthogonal random measure.

Let B denote the family of Borel subsets of the real
line and let & denote the subfamily of bouinded Borel
subsets. Then a function £:4 x & —> C is called an

orthogonal random measure if

i) 5(a) € L2(® for each A € &
ii) E(E(A)) = O for each A € &
iii) E(E(AYE(B)) =0 if A~ B =@, A,B € &
iv) the relation M(A) = E(|€(A)|2) defines a measure
on &,

The measure M is called the absolute measure associated with

& If f:R —> C is a complex valued measurable function

- b
such that | If(A)lsz(k) < =, we can define the integral
a ‘
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b
f f(A)E(A)) in a natural way (see Rozanov [8]).
a .
' We say that a second order r.f. n(t) is separable

if the smallest closed linear manifold in LZ(ﬁ) containing

the r.v.'s {n(t)}tER is separable, i.e., it contains a

countable dense subset. We remark that a continuous r.f.
n(t) is necessarily separable, for let ¥ be a basis for

L2 (&) and let {tn}zzl denote the set of rational numbers.

Then for each n, there is a countable subset of ¥

[>=3

(call it H = ‘{hnm}:;l) such that n(t ) = I E(n(t )h_Oh .

m=1
Let H = {an}z=1 be an orthonormal basis for the smallest
) ™
closed linear manifold containing LJHn. We claim that
© n=1
for every t, n{t) = Z E(n(t)E;)an. This equation obviously
n=1

holds if t is rational, so we suppose that t is irrational
and € > 0. Since 7 is continuous, there is a t, such that

An(t) - n(tk)“ < ¢/3. There is an N such that if n > N,

n .
then Hn(tk) -z E(n(tk)gg)amH < €¢/3. Hence, for n > N

m=1
In
i n(t) -mflE(n(t)am)amH < {in(t) - n(tk)ll +
‘ n __ E on . n .
ity - T Btz Dl + “mflE(”(tk)am)am'mflE("(t)am)"‘m” <
. n —_— — '
< €/3 + €/3 + i[mfl[E(n{tk)a“‘) - E(n(t)am)]am,] <

<2e/3 + [In(t) - nO)f < e

Hence the curve 7(t) is contained in a separable manifold

and so n(t) is separable.
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Rozanov proves that every separable stationary process

(with measurable correlation function) is representable in

the form
* 2mita
n(t) = [ e“" g (an)
-0
where £ is an orthogonal random measure. (£ is called
the spectral random measure associated with 7). This is one

of the most powerful results in random harmonic analysis
and we will make extensive use of this theorem throughout
the rest of the paper. Relevant discussions of these
integrals and decompositions are presented in Rozanov's
text [8] and in Irzhina's paper [5].

In particular, we are especially interested in the

equation

F(t)

(1) X'(t) + aX(t)
X(0) = Xo

where a is an essentially bounded r.v., XO E.Lz(fﬂ, and

F(t) is a stationary continuous r.f. We will also suppose

that a and F(t) are independent. As is well known, the

solution to the above equation can be. expressed as

t .
X(t) = X eta . oTta f ev? F(y)dy.
0

0

We write F(y) = [ e2"1Y*g(dx) where £ is the spectral

- D

random measure associated with the process F(y). Assume

for the moment that the following calculations are valid and

-0

t t Gl .
calculate | e’?F(y)dy = [ &¥*[ ezﬂlykﬁ(dk)dy =
¢ 0
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. -

Thus

X(t) = X ey e_taj (et(2nik+a)—IV2wik+a)E(dx)

0

= xoe'ta+ [ (2™ ™ Py aninea) £(a))

(2)

i

e [xy- [ (E(aw2rina)] + (2T /905 3+a) £¢AN)

= K(t,a,Xg,F) + Y(t)

where K and Y are the respective‘Summands from above.
We show now that the random function Y{(t) is a stationary

Process.

ECY(s)T(D)) = E(J(e2™ 5 /2mix+a) £(a)

[(®™ /203 yra) £(dp)) =

EC[ (2T X/ (aps34a) Brigra)) (AN EER))

Il

jfEG/(Zﬂil+a)(2wip+a5)ezﬂi(sA_F“)E(g(dl)Efdp))

It

z)eznix(s-t)

[E(1L/ |2mix+a | G(dn)

where G is the absolute spectral measure of F. As we
see E(Y(s)Y(t)) is a function of t-s only, hence Y is

stationary and its correlation function is

£f(r) = jE(l/[2wiA+a|2)§2"1A70(dx).
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If F(t) is a real process and a is a real valued r.v.,
the above equations reduce to the representation'

X{t) = K{(t) + Y(t) where

oo

Y(t) = | Gicos2ﬂAt+2ﬂAsin2nAt/a24-4n2A2)u(dA) +
o

+ (a sin 2MAt - 2Thcos 2t /aZ+ 4m2A%)v (AN)
o

w0 @

where F(t) = | cos 2mat u(da) + f sin 2wt v(d)) is the
0 ' o

spectral representation of F.1 Also then E(Y(s)Y(t)) =

j E(1/4w2A2+a2)cos2ﬂk(s-t)G(dA) and Y(t) is again stationary
0

with correlation function f(T)==j E(1/4ﬂ212+a2)cos2ﬂATG(dA).
QO
We get
k(1) = e P [x - a ful@n)/a®+an®)?) + J@arv(@an/ a+an®s?)

and so if a(w) > > O for almost all w, we see that

%ig K(t,«) = 0 a.e. and then X(t) is asymptotically stationary

(independent of the initial conditions). See also Adomian's
discussionh of a similar problem in his dissertation.

We now need to investigate carefully the various
integrations involved in thelabove calculations. 1In particular,
the problem may be phrased as follows: let I and J be

2

intervals, f:R"x & —> C measurable on the product space

R xR x¢&, & a random orthogonal measure; 1) can we define

lsee Doob [4] also.
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the integral ff(x,y,uﬂﬁ(dx) in a consistent way?, 2) if
J
50, when can we say that the interated integrals

JI f{x, y,u)é(dx)dy and Jf f(x,y,wdyé(dx) are equal? Let
JI

us answer the first question. Let g:R x # —> C be a function
with the property that there exists a mutually disjoint

sequence of bounded Borel sets {Ak}£=l and a sequence

€ Lz(fD, such that g(x, w = E C(Ak,x)gk(uD
k=1

where C(Akx) is the characteristic function of the set

gy de-1 Bk

A, . Moreover we will require that the families {gk] and

{g(Ak)} be independent. Then define fg(x,usg(dx) =

n
z gk(uDE(Ak,uﬂ. We get

k=1
B(| g, we@n) |5 = 5C T g7 6 a;) TED) =
k=1 J
n
= ¥ E(g.g, )ECE(A)E)) = ZVE(lg |2)M(A )
(3) j.k=1 9d k j k kel k!’ k

- [EClg@o) |Pmax) = Jilg &) ||2Max),
whére M is the absolute spectral measure associated with £.
Now consider the set o of all functions g(x, ) = ZE(Ak,x)gk(09
where {gk] is independent of the family {g(A)}AEG’ d = all
bounded Borel sets. < is clearly a linear space, and if g €./
1/2

Je(x)&(dx) is defined. Define |g| = (IHg(x)H M(dx))

then H-HJ is a norm on . Complete o with respect to this
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norm and denote the completed space S. If g€8 and
“g‘gn”J—%> 0, define Ig(x)E(dx) as the. limit in the mean

of the random variables jgn(x)g(dx). Note that equation (3)
guarantees that this limit exists. Just as in the case

of ordinary stochastic integrals with respect to orthogonal
random measures, we have that g(x) is integrable whenever

ﬂfg(x)“zM(dx) < » and g is the limit of elements of . Note

that if g,h €8S, then E([g(x)&(dx) |h(y)&(dy)) =

= fcov(g(x),h(x))M(dx),since the corresponding relation
holds for elements of . Note also that if g(x) is continuous
in mean square and independent of {E(A)IAEE,then g is |
integrable if and only if f”g(x)“zM(dx) < e,

Consider now the question of interchanging the order
of iterated integrals. Suppose we have a function
f:sz f. —> C which is measurable, f(x,y,-) € 1?(5) for
each pair (x,y), and the natural map from R2 into L?(ED_'
induced by f is continuous. Suppose also that the family

¥ : . '
{f(x’?)}(x,y)ERz of r.v.'s is independent of {g(A)}A(Ea.‘
Let T and J be intervals. Then g{(x) = ff(x,y)g(dy) exists
1

if and only if I“f(x,y)”zM(dy) < ®, We want to integrate

; t
g(x) over the interval J, and |g(x)] = (_['E(lf(x,y)I‘?)M(dy))l/2
1

so let us require that f satisfy the condition

(4) (] EC)E Gy 15mcdy ) 2ax < .
} J I :

Then the integral fj f(x,y)t{(dyl)dx exists. Now we want to
JI
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insure that JI f(x,y)dx£{(dy) exists, so we need to Kknow

I1J
that | (E(|f(x,y) |2 1/?

J
preserved under this integration, so all we need to check is

dx < =, Note that independence is

that | E(lh(y)IZ)M(dy) < « where h(y) = [ £{(x,y)dx. But
I J

E(In() %) = E [[ £(s, )T, 70ds dt = [[ E(£(s,y)FTE,7))ds dt,
| BN 8 33

SO0 we require that f satisfy

(5) [J] B(t(s,y)TTE,y))ds dt M(dy) < =.
1JJ

Now if f satisfies (4) and (5), both the iterated integrals
exist. Consider now a subclass of function integrable with
respect to £&. We say that g € U if g € &/ and there is a sub-
set H = H{(g) C Lz(ﬁ) whose finite linear combinations #re

dense in Lz(ﬁ) (call such a set linearly dense) with the

property that E(g(x)£(A)h) = E(g(x))E(£(A)R) for x € A,
A€d, h€H(g). We sometimes write this relation as
E(g(x)£(dx)h) = E(g(x))E(&(dx)h). If g is a simple function,

then

E(fg(x) £(d0)R) = B(T g £ (AT - T E(g IE(E A OF) =

J E(g(x))M, (dx)

. for h €H(g) where M, is the measure defined by Mh(A)==E(£(A)E).

h
Hence if g €U, we have E(I g(x)£(dx)h) =_I E(g(x))Mh(dx) for
h €H(g).

Return now to the consideration of our function f. We

require now that the range of the function g:R —>  defined
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by [g(x)](y,w = f(x,y,«) be contained in U. Then there
is a linearly dense subset H C Lz(ﬁ) such that if h €H
then

E([[ £(x,y)dxg(ay)n) = [ (E(] £(x,y)dx))m (dy) -
1J | I g

;j E(f (x,y))dxM, (dy) = §§ E(£(x,y))M (dy)dx =
J

it

| E(] £(x,y)e(dy)ax = E([[| £(x,y)&(dy)dxh) .
A | Ji

Since H is linearly dense and the above relation holds
for all h €H, we conclude that

(6) JJ 1, yre@yrdx = [ £(x,y)dx £(dy)
1J JI '

under these conditions.
To summarize these results, we have the following

theorem:

-

Theorem 10. Suppose f£f:R xR x 8 —> C is measurable and

independent from the orthogonal random measure\&. Let M

be the absolute measure associated with §. Let f(x,y,-)

be square integrable and continuous when considered as a

mapping from R xR into Lz(ﬂ). Suppose there is a linearly

dense subset H of Lz(ﬂ) such that E(f(x,y)£&(dy)h) =

E(f(x,y))E(&¢{dy)h) for h €H. If for the intervals I and J

we have

/2

(4) I B,y DMy 2ax < »
I

J



39

(5) and JJ B (x,)T(E, y)ds dt M(dy) < =
133

then J§ f(x,y)€ay)dx = [{ £(x,y)dx & (dy).
' IJ JI

In our calculations involving the differential equation

(1), the function f is defined by

£(x,y,d) - o2Tixy cax _ 2mixy a(wx

Suppose that K = es%ﬂsup Ia(uDI and a is real valued. Then
relation (4) becomes
t 5}

t =)
I B,y Pyt 2ax - [ (f EZ**)nedy))
0 - ‘ 0 -

1/2

o t
(f My 2] E(e?®*)ax.
- O

2ax) < eZKx so

[= =]
But ([ M(dy)) 2 - iF(0)|] < «, and E(e
t - A .
I E(ezax)dx < ® for t finlte. Hence (4) holds. Consider
0

now relation (5).

|E(f(x,y)TTTT§))| < E(lezﬂisyease—znltyeatl) <

< eK(s+t)

o { t
hence |[ [ [ E(£(s,y)T(T,y))ds dt M(dy) | <
- O 0

t t
< HF(O)H2 f f eK(u+v)dudv < = for t < ». BSince a is
C O

independent of F, f is independent of £ (being a Borel
measurable function). Hence the only additional requirement

we place on a and F is that there exist a linearly dense

set H for which

dx =



40

E(e”g(dy)F) = E(¥M)E(glay)d),

for then we have

| E(L(x,y) £(dy)T) = E(e2™M*Ve¥2¢(ay)h) =
- 2TV R (Y% ¢ (dy)R) = o2 XV E(eY2)E(£(dy) )=
- E(e®™*VeY2)E(£(dy)h) = E(£(x,y))E(£(dy)T).

Note that if a is not random, then all these conditions are

trivially satisfied.

So now we can decompose the solution X(t) = K(t) + Y(t)
into the sum of a stationary Y(t) and (in general) non-
stationary K(t). Thus if we set K(t) = O and solve for X,,
we obtain a sufficient condition for stationarity. 1In

particular, if
(7) Xo = J (1/2mid+a) £(dN)

then X(t) is stationary. Note that a new difficulty arises
in this expression. Namely, if a = O (in general, if
plwa(w = 0} > 0) and O is in the point spectrum of F, then
(7) is not defined. This does not contradict our exchange
of integrations however, but it does say that we cannot
split up the integral in equation (2).

The condition in (7) may actually be a necessary
condition for stationarity. c}or example, consider the

equation X'(t) + X(t) = £, £ EL2(§D. F(t) = £, so £(8)=f

if 0€S and £(S) = O otherwise. Hence the condition is
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XO = JQ1/2mix+1)&£(d)) = £ and the resulting solution is

x(t) = [(e2™ X /201)+1)¢(dX) = £. Note that F(t) is

analytic, so solving by power series we get X(t)==f-k(Xorf)e-t,
i.e., Xn='(—1)n(xo— f), n > 1. Calculating the covariance
function of this process, we see that a sufficient condition
that X(t) be stationary is that <f2> = <tX> ='<xg>. We

show now that this is necessary. For if X(t) is stationary,

3 2 2 _
<X0X2> = —<X1>. But <XOX2> = <X0> <fx0> and <X1>
<X2> - 2<EX.> + <fZ>. Also O = <X.X.> = <X2> - <fX.>, i.e.
o 0 : o*1 0 o -85
<Xg> = <fX0> and so we have
0 = <X X,> + <Xp> - 2<xg> 3<EX S + <E2>
= 2<X2> - K> + <E>, ie., <ID> = <K

Hence <x§> - <tX > - <£2> is a necessary and sufficient

condition that X(t) be stationary. But then <(x0-f)2> =

= <Xg> - 2<fX0> + <f2> = 0 and so f = XO. Thus the condition

Xg™ f(l/ZniA+1)£(dA) is actually necessary. (Note that
we have incidentally proved that if a.and b are r.v.'s,
then a + be ! is stationary if and only if b = O).

Of course the céndition on X, expressed by (7) is not
always necessary for stationarity. Consider the following
interesting example. Let X'{(t) = F(t} and suppose that
F(t) is real valued and analytic and O is not in the épectrum

of F(t). Then the sufficient condition we get on Xo is
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X, = -fo(l/ZﬁA)v(dk)

where F(t) = [ cos 2Zmtau(d)) + [ sin 2¢tx v(d)). Note
' 0 ' 0o

that E(X F(£)) = =[ (sin 2mt)d/2m0)M(d)) in this case.
0

1f we calculate the coefficients in the power series

expansion for F(t), we get

Fyo= (<DMJ @m)u@n)
0

F -1% em) v .
O

on+1l

Hence in general we have <Fﬁ> = I (2ﬂk)2nM(dl)- Thus
o !

applying the result of example 1, we have that a necessary

and sufficient condition for X{(t) to be stationary is that

<F()X5> = (=120 s ane1) ) <Fﬁ> -

- -1 ™28/ (ane1) 1) [ @m0 2 MCAN)

- -z [-DM @m0/ 2ol r2momian)
= - [(sin 2at)/2Za0)MdN).

Thus we see that if Xo is any initial condition for which
X(t) is stationary, then the projection of the r.v. Xo onto
the smallest closed linear manifold in Lz(n) containing

the process F(t) (call it J) is the r.v. —I (v(dx)/2nr).
9]

Hence in the case of analyticity, a necessary and sufficient

condition that X(t) be stationary is that
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Xg= ¥ - fo(v(dk)/znl)

where Y is any r.v. orthogonal to 4.

In this section we have restricted ourselves to the
case of an equation with a constant (r.v.) coefficient.
This restriction was made purely to facilitate the various
computations made in the interchange of order of integrations.
Examining the more general case (time-varying coefficients)
the author has been unable torextract a likely candidate
for the stationary part of the general solution. Neverthe-
less, the idea of using random harmonic analysis especially
in conjunction with the analytic method of section 2 appears
valid, and progress in this direction seems likely in thé

future.
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SECTION 4

In section 2 we presented a general method of determin-
ing when stochastic differential eguations with random
(analytic) coefficient processes, random (analytic) forcing
function, and random initial conditions have stationary
solutions. 1In section 3 we presented a method of applying
random harmonic analysis'to a simpler first order equation
and we also presented an extension of integration techniques
allowing us to use these more powerful tools. In this
section ﬁe wish to relate our work te that done by others
and to also make a few remarks cogcerning the abstract
notion of stochastic transformations. We also indicate some
future work.

First let us relate our results to Adomian's [1]
results concerning stochastic Green's functions transforming
a given statistical measure of an input process to the
corresponding measure of the output pfocess. Suppose we

have a stationary r.f. F(t) with spectral representation
27i y
F(t) = [ 2™ gan).
We have defined the correlation function

£(t) = < F()FGrED) > [ e 2™ty

where M is the absolute measure associated with £. Now if
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M is absolutely continuous with respect to Lebesgue measure

on the line, we call the Radon-Nikodym derivative

m(x) = dM/dx

the spectral density of the process F, i.e., we have

f(t)

I}

[ e 2t (oan

and m(x) = [ 2™t (t)at

Now in the equation discussed in section 3

X"(t) + aX(t) = F(t), X(0) = X5

with the r.v. coefficient a, we call F(t) the input process
and X(t) the output process. Moreover, applying the results
of section 2 we know that we can have a stationary F(t)

resulting in a stationary X(t). Now let
F(t) = [ &M hg(ay)

and X{(t) = j ezﬂitlv(dl)

be the spectral representations of F and X respectively.
Suppose also that F has the correlation function f and
spectral density function m. We calculated in section 2

the correlation function x for X given by

x(t) = [ EQ/|2riaal®)e 2™ g (oan.

Hence we immediately recognize that the spectral density of
X must be given by

n()) = E(1/|2wik+a12)m(k).
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Now the Green's function transforming the spectral density
of an input into the spectral density of the output is a

(perhaps generalized) function H{t,u) such that
n{t) = f H(t,u)m(u)du

whereupon we see that H is given by
(1) H(t,u) = 6(t-u)E(L/|2miu+a|%)

Note that this form of the Green's function is the same as

Adomian's [1] if the r.v. a is a constant, for then we get
2
H(t,u) = 6(t-u) [Y(u) |

where Y(u) = 1/(27iu+a).
Similarly, the stochastic Green's function G(t,u) trans-

forming the correlation function f into x bj the relation
x(t) = [ G(t,u)f(u)du

can be expressed in terms of H by the relation

6(t,w) = [ 2™ y(y 1)dodr
and so applying (1) we get

a(t,u) = J 2T VEG /|20 r4a|D)ar,
In both cases we see that these Green's functions are ex-
pressed in terms of the statistics of the coefficient in
the stochastic differential operator.

Lét us make a few remarks concerning the idea of a

stochastic transformation (s.t.), a concept due to Adomian

{1]. If-X(t,dD, t €T, wWEN is a s.p., a stochastic trans-
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formation or stochastic operator T on X carries X into
another process Z = T[X], and T in general depends on t
and ' € &' (where Q' may not be identical to §). Thus
T includes all deterministic tranéformations as a special
case and we usually deal with integral operetors, differential
operatofs, partial differential operators, etc.
We wish now to indicate a general framework in which
these ideas can be precisely expressed. In general there
is a natural desire to distinguish between an operation of

the form

(2) X(t,w = [ H(t,w)Y(u, wdu

~where the kernel H(t,u) is a complex valued function and X

and Y are r.f.'s and an operation_of the form

3> X(t,w = [ H(t,u, DY, Ddu

where the kernel H also depends on the stochastic variable

@ The transformation expressed by (2) in which-the process

Y is mapped into the process X is often called a deterministic
transformation whereas (3) expresses an operation which
includes (2) and conforms more closely with our intuitive
~notion of a stochastic transformation. Indeed (3) is the
general form of a stochastic integral operator. Similarly

an equation of the form

(4) X(t,w = a¥(t,w + bZ(t, )

where a and b are complex constants and X,Y, and Z are r.f.'s

is rightfully considered a deterministic mapping of the
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pair (Y,Z) into the process X. On the other hand, an

equation
(5) X(t,w = A(t, DY(t, & + B(t, WZ(t,d

mapping the pair (Y,Z) into X is a "truly stochastic”
operation. Also we need to consider maps of the form

Y —> X defined by
(6) X(t,w = Y({£(t), )

where f: T —> T indicates a re-parameterization of the
time variable. One wants to think of‘(6) as expressing

a deterministic relationship whereas
(7) X(t,w = Y(£(1),p{w))

where £f:T —> T and @ —> § would again be 'truly
stochastic'". Bharucha-Reid's [2] "random transformation"

refers to a map
(8) T:8 xR —>R

with the property that the function T(-,x) is a r.v. for
each x € R and such a random transformation may induce a

stochastic transformation defined by
(9) X(t,w = T(wY(t, W)

carrying Y inte X. One would call such a transformation
deterministic if the function T did not depend on the

first coordinate of its argument. The examples of trans-
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formations in the introduction to this thesis indicate more
different forms that a s.t. can take.

We propose to examine a function'space approach of
representing a r.f. as a measure on a fixed collection of
functions; then a change of measures on this function space
will be identified aé a stochastic transformation. In
particular, let X(t) be a real—valued S.p. with parameter
set T = (a,b). Following the construction outlined in
Skorokhod [10], we let & be thé space of all functions
x:(a,b) —> R. If A is a Borel set in R and t4€ (a,b),
we let Cto(A) = {x € &x(t;) € A}. A set which is the

intersection of a finite number of sets of the form Ct (A)
o .

is a cylindrical set. We let F be the minimal o-algebra

of subsets of ® generated by all dylindrical sets. Now the

measure p determined on F by the relations

k .
(10) u(~ cp (A)) = P{x(t,,w €Ay, i =1,...,k]
n=1 n
for all k, tl,...,tk in (a,b) and all Borel sets Al,...,Ak

is called the measure in the function space corresponding

to the process X(t). Kolmogorov's theorem guarantees us

that (10) defines a unique measure on F.

Conversely, suppose that we have a measure y defined on
F such that u(® = 1. Then we have a probability space
(8,7,P) where 8§ = &, 7 = F, and P = u and so we can,db@?ne a

L] l .
process X{(t), t € (a,b) by the relation

{ .
X(k, @ = X(t,%x) = x(t)
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We remark that X(t,:) is measurable, for let A be a Borel
set. Then {wX(t,w € A} = {x:x(t) € A} and this is a
eylindrical set and so X(t,-) is measurable, i.e.,

X(t) is a s.p. Note also that the function space measure
corresponding to X is just u.

Hence every process on (a,b) is associated with a
measure on ¢ and conversely. Now let M be the set of #11
measures Y on & such that u(®) = 1. Then any function
f:D —> M where D C M could be called a stochastic trans-
formation. More generally,‘a function £f:D —> M where
D € M® can be a stochastic transformation.

The above interpretation of a stochastic précess as
a measure oh an appropriate function space does not in
itself obviate any computational difficulties associated
with the’analysis of s.p.'s. However, we can now use the
full power of general measure theory to gain new insight,
For instance, the author is currently attempting to
prove theorems answering the following questions: Let F
bé a stochastic transformation and let X(t) be a stationary
(in some sense) process. Suppose that Y = F(x) is stationary
(in the same sense). Let y ahd vV be the measures associated
with X and Y respectively. Let Mx be the manifold in
Lz(n) generated by X. Let Z = Z(t) be the process obtained
by prcjecting Y onto Mx and let n be the measure associated
with Z. Is v << p? Is 9 << w? If v = vy + 1y is the
Lebesgue decomposition of vV with respect to y, does

N = vl? If not, is 1 << vy or ul << 71? Theorems along
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these lines would give information concerning stochastic
t;ansformations which carry stationary processes into
stationary processes; Also we naturally ask what effect

on a measure associated with a s.p. is induced by a
stochastic differential operator on the process. Also using
our intérpretation of s.t.'s in this way, perhaps we can ‘
discover measure-theoretic properties of "deterministic"
transformations (equations (2), (4), (6)) that Fistinguish
them from ”truly'stochastic" transformations ((3), (5), (7))
and thus allow us to give a more useful and precise inter=-

pretation of these notions.
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PR(SPOSED RESEARCH ON NUMERICAL METHODS
. FOR STOCHASTIC DIFFERENTIAL EQUATIONS
- Introduction

Stochastic differential equations involving stochastic
processes in the initial conditions, forcing functions, and
even in the coefficients of the differential operator have
been extensively studied, (see, e.g., ref. 11), the latter
particularly by Adomian (see ref., 2,3,4,5). As is the case
with deterministic differential equations, numerical methods
often become necessary for the solution of specific problems
so0 it is of interest to develop nuﬁerical mefhods which
insure correct statistic to firét or second order. As an
initial example we will consider the first ordgr* stochastic
differential equation

y'(€) + E(tr) y(t) = ¢(t) ' C (L)

where E(t) and Y (t) are uncorrelated stochastic processes.
This equation has been investigated by Adomian and Tikhonov
(see ref. 2 in chapter 4) and by Astrdm and others more
recently. In Adomian's work theoretical expressions were
derived for the covariance of the solution process y(t).
We now consider methods to calculate y(t) and Covy(t,t')
numerically. Two methods have been developed and computer
programs have bgen written to implement the various algofithms.

The first method uses guadrature to evaluate the appropriate

*We emphasize that the method is not for the solution of
first order eguations but is to be extencded to partial differ-
ential equations and nonlinear stochastic equations. The
preliminary work is for checking against known results.



integral of the stochastic Green's function, (ref. 4,5); The
second method simulates realizations of Z(t) and Y(t) from
which the corresponding realization of y{(t) is then computed.

In this manner an ensemble of realizations of y(t) is calculated
and statistically evaluated to approximate y(t) and Covy(t,t').
The development of both methods has been for Gaussian

£(t) and ¥{(t). There has been no indication that either method
would not be useful if the stochastic processes are not taken

to be Gaussian.

The Quadrature Method

The solution to equation (1) can be written

t t :
rt _?E E{v)dv _'£ E{viav ("2)
e y(u)du + Yq e”

where Yo is the initial condition random variable given by
y(to) = y(a). The first moment, y(t), is found by taking the

expected value of (2} resulting in

t Ay -f*
o u v)dv 2 &(v)dv :
E{y(t)} = E{e HE{y (u) }du + E{yO}E{e } -(3)

a

where it is assumed that Yo and £(t) are independent and that
£(t) and Y(t) are independent. With the same assumptions
the product y(t) y(t') can be calculated and correlation

functions E{y(t) y(t')} can be written



t !
t' t Tﬁ £ (x)dx 7£ £ (x)dx
E{y(t) y(t") = J[ E{e : TE{p (u) Yww)idudv (4]
a a

t t!
-I E(x)dg 7£ E(x)dx

tl
+E{y0}f E{e®

a

IE{{(v) tav

t t!

t 7£ £(x)dx 4 E(x)dx
+E{y0}‘lﬁ E{e : a FE{¢ (u) }du

!

ot
2 "é £ (x)dx 7& £ (x)dx
+E{y0} E{c’ }

For a Gaussian random variable z,

Efe %} = ¢ Mz + 1/2 Ug ' ' {5
where o, is the mean of z and Ui is the variance of z.
Defining the function
' 2
2(t, t', u,v) = m, + 1/2 o - {6)
t t! .
 where z ij, E({x)dx + ~/ﬁ E(x)dx Equation,(B) can be expressed
u v
t .
a

and (4) can be written



t! t .
E{y(t) y(t")} =‘[. ‘jﬁ eﬁ(t’t"u'V)E{w(u) P (v) }dudv (8)
a d :
t! ‘ t
+§0'{Jf eﬁ(t,t',a,v) E{¢(v) }av +-[- eﬁ(t’t ’u'a)E{w(u)}du}
a a

- 1
+Yg eQ(t,t (a,a)l

The covariances can be computed from (7) and (8)
Covy(t,t') = E{y(t) y(t")} -E{y(t)} Ely(t")} (9)

Inspection of (7) and (8) show that doublg and single

integration must be performed if these eguations are to be

evaluated. Moreover, a vector of values, {y(tl); y(tz), e e ey
?TE;T} must be evaluated to numerically represent y(t) and a
matrix df values must be evaluated, Covy(ti, tj) to represent
Covy(t,t'). The amount of calculation required to evaluate
this matrix and vector in any given case; made it necessary to
éive special attention to one and two diﬁensional quadrature.
Gaussian quadrature, while more powerful in many respects,
lacks one feature of Newton-Cotes quadrature that degrades

its sophistication. With Newton-Cotes guadrature, but not
with Gaussian guadrature, the integrand may be computed at

new points while retaining the o0ld values and then all valﬁes

may be used to re-evaluate the integral. Moreover, this can

-



be accomplished without large core requirements for the com-
puter, The bnly limiting factor on the particular Newton-Cotes
formula (closed type) that may be used is the word size of

the computer being used.

[1] gives the 2-point through the ll-point Newton-Cotes
formula (closed type). A program was written for the FORMAC
preprocessor for the PL1l language that will derive this type
formula. This program has been used to compute the lZ-point
through the 32—boint formula. Higher formula have not
been derived because formula.higher than the 2¢-point formula
have weights that can not be expressed exactly on any machine
available. The 3-point rule (Simpson's rule) through the 29-
point formula have been written into a 3 subrcutine program
that permits the user to choose any formula desired, 3-point
through 29-point. Successive refinements of the“interval of
integration permit a predetermined accuracy to be selected. It
must be noted that there is no mathematical guarantee that the

selected accuracy will be achieved. Experience has shown that

the convergence criterion employed is reliable for a large class

of functions to either achieve the accuracy requested or to
note failure. The subroutine package, named INTGL, will

evaluate integrals of the form

b
I =JF f(x) dx
a

b ‘ Qz(y) .
I= J. [24(y) _[ ) fix,y)dx]ldy
a & .

L&)

and

(10)

(11)



INTGL was modified to use particular properties of (8) and (9)
to decrease Computation further.

Program SDEQUAD was written to evaluate an approximating
vector to y(t) and an approximating matrix to Covy(t,t').
Quadrature is achieved by the modified INTGL package. The
user of SDEQUAD must provide the interval of integration,
initial mean and 2nd moment of y, the mean and covariance
functions of £ and y and the function Z.

Advantageé of this method include accuracy of the results
and computation time requirements as compared to the simulation
method. It is anticipated that this method can be applied
to stochastic differential equations of higher degree provided
that the stochastic Green's function can be calculated for
the appropriate statistical measure to be evaluated, (see
ref. 2-5). Additional programming is necessary £o accomplish
this, however, and guadrature may become overly time consuming
for given integralé.

Thrée areas present themselves for further investigation.
First, SDEQUAD may be used as a tool 'in its present form for
analysis of specific cases of equation (1). The function Z,
may be evaluated for £ that are not Gaussian., Second, a
modification of SDEQUAD should be developed for a suitable
class of 2 degree stochastic differential equations. Acéording
to references 2 .and 5, stochastic Sturﬁ-Liouville systems are
subject to this approach. Consequently, a large class of
problems of appliea mathegatics, engineering and sciences

can be analyzed by stochastic methods. Third, partial differential



equations may also be approached by transformation into an
integral equation. Equations of this type include meteoro-
logical models involving a system of partial differential
equations from the mechanics of continua (ref. 8). This systém,
subject to stochastic analysis, should yield significant

improvement in weather prediction.

The Simulation Method

Equation (1) can also be written
y'(t) = ¢(t) - £(t) y(t) (12)

and this is the form in which-Adomién does his iteration.

Deterministic equations that are represented in this form may
be solved numerically by Runge-Kutta methods '[1]. By letting
w represent a realization event iﬁ the probability space and

writing
yolt) = ¥ () - £ (&) y_(¢) o (13)

the realization yw&)can be solved ngmerically provided that
~the realizations Ew(t) and wm(t) are known. The first task

in developing a simulation of (2) was to simulate realization
of a stochastic process y in terms of its sfatistical measures.
In general, this depends ‘upon the evaluation of the conditional

distribution of

X () [x0tg) = x00 x(ty) = %5, «o0p  x(t,

1—1) - ¥ (14)



If %) = x(ty), i =1, 2, ..oy noand £ 00,X;,.. . X;) 15 the

joint distribution density function of'{Xl, Xz, ...,Xi} then

the conditional distribution density functiom can be written

X, = X

fX(Xi|X1 =Ky 2 gt trea

~[...;/‘ f(xl, Xor eser X5 g7 Xi’ ceny Xn)dxi+l' sy an

&6 - ’ .
U/'..;[' E(xy Kyr  eees Xg_ye Xysoeees XA, e, dX

If x(t) is a Gaussian stochastic process, then

oo
0o

172 L VigBmey) (Emay)
E(X, ..., X )=

n 1/2

(2m? (M|

where M is a n x n matrix such that

M).. = Cov_{t., t.
M) 4 4 MOTES
-1
wig = 7Dy
and a; = x(t;)

Let M; denote the upper left i x i partition of M

Let Ri denote the right-hand column of Mll; Ri is the column

vector whose elements are Y., Y., ees T: 21, L.
1 2 1-1 i

(15)

(16)



-l_ ) _
Let P,” = r, so that P —_l/ri.

Equation (13} can now be written

- 1/2
fx(Xilx = x

3 = (2HP1)

where b,
i

il
o

1
vl

e

H
%

[
o]

The value bi is the conditional expectation of X. and Pi is
the conditional variance of X - The iteration to simulate a
relationship of x(t) is defined by X, = Pi”i + bi where

'{ul,uz, ey un} are independently chosen values of a Gaussian

random variable with zero mean and unit variance. The iteration

is started by Pl = [M]ll and bl = al. An ensemble of realiza-
~ tion of x generated in this manner approximafe ¥ in that the
means and covariances of the realizations approximate x(ti)

and Cov (t.,t.), 1 < i, j < n.
x 3 - -

With the ability to generate realizations of a stochastic
process, our ability to solve stochastic differential equations
is limited only by our ability to solve deterministic differ-
ential eﬁuations. Linear equations of.higher degree as well
as non-linear equations are subject to the simulation approach.
The class of stochastic differential equations that can be

solved by this method is larger than the class that can be

(17)

exp'{—(xl—bl)z/zpi}

solved by the qguadrature method. Two disadvantages of simulation

in general alsc apply to stochastic simulation. Accuracy is

limited. It is difficult to achieve more than 2 digits accuracy

Simulation is also by nature time consuming. In many cases,
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however, either method will yield results or the accuracy that
- can be reasonably achieved by a simulation is acceptable.
Three areas for further investigation were mentioned with

respect to the guadrature method. The same may be said with

respect to simulation.
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