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E UNIVERSITY OF GEORGIA
DEPARTMENT OF MATHEMATICS
GRADUATE STUDIES BUILDING

ATHENS, GEORGIA 30602

January 5, 1973

Office of Grants & Research Contracts
National Aeronautics & Space Administration
600 Independence Avenue
Washington, D. C.

(ATTN: CODE SC)

Dear Sir:

Attached is a final report on work accomplished including reprints of
journal publications and some preprints. As a result of two years of
N.A.S.A. support, I have 10 published journal papers, 6 published abstracts,
1 published technical report (and doctoral dissertation), 2 journal papers
which were submitted but not yet published at the expiration of the grant,
and several journal papers and one dissertation almost completed at the
expiration of the grant - all of which carry (or will carry) acknowledge-
ment of N.A.S.A. research support. (Listing follows.)

We have developed a useful analytic method and a very versatile and powerful
new computer technique for solving stochastic differential equations. We
recently computed some 14,000 terms for a series representing the solution
process of such an equation for our methods and other existing methods of
solution to compare results and errors involved - which show unequivocally
that we have achieved extremely important results because of your support.
I regret this work was not yet in a form to send to you with this letter
and final report although an earlier preliminary discussion was included.
The completed work will become a dissertation in June, 1973, and will then
be published with appropriate acknowledgement to N.A.S.A.

I, of course, regret the termination of N.A.S.A. support'since we clearly
have results which will be of value to N.A.S.A. and to other agencies as
well. Our work will tie in closely with the work of M.M.R. Williams on
kinetics of nuclear reactors, with the work of Klimontovich on plasmas,
to stochastic control, weather prediction, and several other areas. In
view of results achieved and under way, I hope N.A.S.A. will again be
involved with my group in the future. You will also be pleased to know
the U.S.S.R. Academy of Sciences new Merguelian Institute of Applied
Mathematics in Erevan, U.S.S.R., has asked to send postdoctorate researchers
to work with us on the new methods and several professors wish to come to
Georgia to work with us.
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I would like to express my appreciation to N.A.S.A. for its essential

support of this research and for its accomplishments for the U.S. in

space. With best wishes for your continued success.

Sincerely,

.George Adomian
Professor of Mathematics

Copies to:

Office of University Affairs (Code Y)

Mr. J. Albus (Code RET), Data Systems Branch

Mr. Joseph T. Davis, Grants Officer

Dr. Samuel A. Rosenfeld, former Project Officer for Grant (Please Forward)

Dr. Raymond Wilson, former head of Applied Mathematics (Please Forward)
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by

Charles C. Miao and G., Adomian
University of Georgia
Athens, Georgia 30601



ABSTRACT

For f(x) e C[a,b] and (Cpk(x)) an orthogonal

set with weight function w(x) on [a,b] , an upper

bound for Z (Pk I k
)( a k i where ak are generalized

k=O

Fourier coefficients is given for odd n by
b

./iI(J w(x)dx) 2 11f l where l1f I is the sup norm of f
a

on [a,b].

For even n , the bound is

[(n+2)(Q bw(x)dxl(fl 2 - max (y 1) k, k) ak 12] for
a k

O 5 k < n , which is a little cumbersome so the result

for odd n would be more useful.

For the trigonometric case f e C[-l,w] and
n

w(x) = 1 , this result gives L lakl + IbkI " 2 niTi ilfI
k=O

for any n



Given f(x) e C[a,b] and letting [pn) be an

orthogonal set of continuous functions with weight

function w(x) on [a,b] , consider the generalized

Fourier series Z ak k(x) converging uniformly to

f(x).

The normalized Fourier coefficients are given by

b b
ak = (fk, )/(k, , k) = j w(x)f(x)(k(x)dx/f w(x)k 2(x)dx

a a

By Bessel's inequality,

n b b
k (%,Lkak2  w(x)f 2(x)dx : ( w(x)dx)lIfll 2

k=O a a

where f is the sup norm or maximum of f in [a,b]

Denote (pk k) ak by Ak and write

n b 2
SIAk 12 k (S w(x)dx)lfll (

k=O a

Suppose n is odd. We separate the left side into

pairs thus

(n-l)/2 2 b
L IA2 kI2 + IA2 k+lI (f w(x)dxlf II 2

k=O a

We let the sequence (IA2k + IAk+ll(n- 1 )/2 be a
k=O

rearrangement of the sequence [IA2 kI + IA2 k+ll (n - l )/2

k=O0

such tht IAk + IAk+ll (k+) + A(k+l)+l

i.e., each pair is greater or equal to the next pair,



e.g., Ao + A 2' H+ , A + A A + A , etc.

Now using Tchbychev's inequality, we write

(n-l)/2 (n-l)/2
( A'ki + Ak+1)2 n-L + 1) E (IA2k I + (A2k+l1)2

k=O k=O

(n-l)/2
-2( + 1) A 12  + )(A Ik+I

k=O

Since sums are preserved

(n-l)/2 2 (n-l)/2 2 2

( I iA2kl+IA2 k+ll) < (n+1) E A2 k1 + (A2k+1
k=O k=O

or simply,

n n 2
(E Ak1) 2 : (n+l) E Ak  (2)

k=O k=O

Combining (1) and (2)

n b
( Ak 2 (n+l)(w(x)dx) f 2

k=O

hence our result

n b
EI (CPjQ'k ) 'aki JnlI(S w(x)dx) lfl . (3)

k=O a

If n is even we can let An+ 1 = 0 to divide

into pairs as before, or somewhat more generally since

zero can be inserted anywhere in the sequence, let

O j 0 n and let (A')n+l be a rearrangement of
s=O
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(O,Ao,A ,...,A n such that

(i) A2s I + I(As+l I IA'2( s +1 )I + A2(s+1)+I1

(ii) The zero is paired with the Ajo

We now have pairs as before and again using Tchbychev's

inequality, we have

n/2 2
( IAIs I + IA2s+ 1 )
s=O

2 n/2 A 12 + As+11
2  ( )A 22 k=O 2so

Since the sums above are preserved,

n 2 n
( Ak) 2  (n+2)( E lAk 2) - ( + 1)A 2

k=O k=O o

Combining (1) and (4) (for 0 J0  n )

n A2 b 2 )A2
( A k)2 (n+2)(f w(x)dx)Ilfll - ( + 1)A 2
k=0 a o

Finally (for even n )

S( (ak n+;)(f' w(x)dxIf 12 ) - ( + 1)A )(5
k=0 a o

where O j < n

(If A = O the right side becomes [(n+2)(f w(x)dx)]l flj
Jo a

which is not as tight a bound.) Thus the lowest bound
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(not l.u.b.) is

n a

k=O

[(n+2)( bw(x)dxl fl 2 ) - max( n+1) ak 121 (6)
a k

where 0 k n .

Example: Trigonometric series for f(x) e C[-e , ]

a W
f(x) = -+ k cos kx + bk sin kx

k=l

w(x) = 1

2 7T if k = 0

W if k O k

By (1),

a n 2 2 f 12
(2 ) (-) + E a + bk 2

2 k k k

or
or

2
n 2 2 ao 2
Sa k  + bk  - 5 2 Il 1

k=O

a result also apparent from Parseval,'s :formula

i o 2 2f(x)dx + 2 + b2
-I k=1

or
2

n 2 a 02

P ak  + bk - If (x) dx 2
k=O -%
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By (2), we have

n )2
lE ja k l + b k l )2 r 2(n+l) r la k 1 2 + lb k - ( n + l ) a o

2

k=O k=O

Combining, we have

n
, lakj + Ibkl 2/ +i IlfIl

k=O

Cheney I gives the bound iin-1 jjfjI . It's easy

to see 2rn-1 IlfIl < nr-n-J Ilfil for all n 1 .

As an elementary example let f(x) = I in

[-,n] . We get immediately

f(x) = 2(sin x sin 2x sin 3x ... ) For the sum2 + 3
3

E laki + Ibki , the bound stated here is 4r , which
k=O
is quite close to the actual sum, while Cheney's bound

is 1 72

Acknowledgement: This work has been supported by the

National Aeronautics and Space Administration

(NGR 11-003-020).
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A Decomposition for Some Operators

by

Bernard B. Morrel

Let H be a complex Hilbert space and let 1(H)

denote the algebra of all bounded linear operators on H

Then Te / (H) is abnormal (sometimes, completely non-normal)

if there is no non-trivial subspace M C H which reduces

T and such that the restriction of T to M is normal. /

Every T e S(H) may be written uniquely as the direct sum

of a normal operator T with an abnormal operator T1 *

We shall refer to T0  and T1 as the normal and abnormal

parts of T , respectively.

A theorem of von Neumann ([7], p. 96) asserts that every

isometry V on a Hilbert space H is unitarily equivalent

to the direct sum of a unitary operator and a pure isometry

of multiplicity d = dim [(VH)± ] (cf. [3], problem 118).

It develops that the scalar d is a complete set of

unitary invariants for the abnormal part of the isometry V

An operator T is quasinormal if T commutes with TT .

In particular, every isometry is quasinormal. In [1],

Brown obtains both a canonical form and a complete set

of unitary invariants for the abnormal part of a quasinormal

operator. In the isometric case, Brown's results specialize

to those of von Neumann.
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In section 1 of this paper we obtain a decomposition

for operators, which,as is shown in section 3, is a

generalization of Brown's work on quasinormal operators.

We associate with each T e S(H) a (not necessarily

proper) subspace H1(T) of H which is invariant under

T and reduces [T] = T*T - TT . If Ve / (H) is

isometric, for instance, one has H1 (V) = (VH). We

establish that the structure of the abnormal part of T

is completely determined up to unitary equivalence by the

restrictions of T and [T] to H1 (T) . In case

d = dim (H1 (T)) < " , the structure of the abnormal part

of T is determined by two d-by-d matrices.

The results of section 1 are of little interest if

H1 (T) is too large. In section 2 we study conditions

under which H 1 (T) = H . We show that if T is abnormal

and nearly a finite-dimensional operator (in some appropriate

sense), then H 1 (T) = H . This suggests that the results

of section 1 will be of most interest if the operator being

studied is far from being finite-dimensional.

The main result of section 3 is that if T is sub-

normal, then H1 (T) is the closure of the range of [T]

This means, for example, that the structure results given

in section 1 may be easily applied to subnormal operators

whose self-commutator is of finite rank. It also enables

us to deduce the results of Brown and von Neumann mentioned

above from our results in section 1.



In section 4 we give an application of our results to

the study of quasitrangular operators.

The author would like to express his thanks to

P.R. Halmos, T.L. Kriete, III, and to Marvin Rosenblum

for a number of helpful conversations concerning the results

in this paper,

§1. We begin with several lemmas which may be of interest

independent of their application here.

LEMMA 1.1: Let H be a Hilbert space and let A,B e S(H)

Then M = ( ker(ABs - BSA) is the largest subspace of
s=l'

H for which BM CM and ABv = BAv for every v M .e

PROOF: It is clear that M is a subspace of H . Pick

v e M and let w = By Then for all integers s > 1

we have ABSw = ABS+1v = BS+1Av = Bs(BAv) = B (ABv) BsAw

since v e M . Hence BM C M . The relation

M C ker(AB - BA) implies that ABv = BAv for all v e M

Next, let Y be a subspace of H such that By C y

and ABy = BAy for all y s Y . Then BsY C Y for all

s > 1 . If y e Y , then AB2y = AB(By) = BA(By) =

B(ABy) = B2Ay . By induction, BSAy = ABSy for every

y e Y and all s 1 . Hence, Y C ker(AB s - BSA) = M
s=l
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An easy modification of the proof of Lemma 1.1 yields

a proof of the following result:

LEMMA 1.2: Let A,B e B(H) . Then the largest subspace

M c H such that AM CM , BM CM and ABv = BAv for

every v e M is

M= ( ker(ArBs - BsAr )
r=l sFl

Although we shall not use the results in this general-

ity, we note that Lemmas 1.1 and 1.2 both hold in case the

underlying space is a Banach space.

An immediate consequence of Lemma 1.2 and the definition

of reducing subspace is the following:

COROLLARY 1.3: Let T e S(H) . Then the largest subspace

H of H which reduces T and such that TIH is normal

is

IH = i ker((T )rT s - TS(T *)r
r=l s=l

Furthermore, TIHo is abnormal.

Our next lemma is the basis for the subsequent

decomposition theorems.

LEMMA 1.4: Let T e S(H) . Put M = H ,and, for all

k t 1 , define

Mk = ker((T*)rTs - TST*) r)
r=l s=l
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Then

i.) Mk DMk+1 for all k O ,

ii.) TMk CM k  for all k O ,

iii.) TM k CM for all k 1 ,

iv.) T Mk for all k O ,

v.) T C Mk+~ for all k ; O

PROOF: Parts iv.) and v.) of the assertion follow

immediately from parts ii.) and iii.) upon taking orthogonal

complements, and part i.) follows directly from the

definition of the subspaces Mk .

Part ii.) is trivially true if k = O . For r 1 ,

Lemma 1.1 implies that n ker[(T *)rTs - T( T * ) r ] is an
s=l

invariant subspace for T , and hence, so also is Mk  for

every k 1 .

Part iii.) is trivial if k = 1 , so suppose that

k 2 . Let x e Mk and put z = Tx . Then since

x Mk CM 1 , we have (T )r TSz = (T*)r (TT*x) = (T*)r+T sx

But if r + 1 r k , then, since x e Mp for every p < k,

we have (T )r T = Ts (T*r+x = T(T*)rz . Thus

z e Mk- 1 and iii.) holds.

If we let (ekIk O) be the standard orthonormal

basis for .2 and if we let T be the unilateral shift
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on t2 , then it is instructive to note that

Mk = sp(ej Ij > k) for k O .

THEOREM 1.5: Let T e S(H) . Then there exists a (finite

or infinite) sequence [Hj ij O) of pairwise orthogonal

subspaces of H such that

i.) H = H0 9 H1 ( ... S Hk $...

ii.) H reduces T , TIH °  is normal, and T IH

is abnormal.

iii.) T H1 CH .

iv.) T Hk CHkl S Hk for all k a 2

v.) THk CHk $ Hk+l for all k t 1

vi.) Hk ( Hk+l =\/[Hk,THk) for all k 2 1

vii.) dim Hk a dim Hk+1 for all k > 1 .

PROOF: We associate with T the subspaces Mk as was

done in Lemma 1.4. Put Ho = Mk , or, equivalently,
k=l

H = ji ker((T*)rTs- T (T* )r)
r=l s=l

From Corollary 1.3, Ho reduces T , TIH is normal,

and TIHo is abnormal.0
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Next, define Hk = Mk fMk-l for all k 1 . Since

H = M k , we have H 1 H. for every j > O . Noting
k=1

that H. C M for every j ; 1 and that H. C M - MR
j j-1 1 i j-l

whenever i : j-1 , we conclude that Hi ± H. if i < j ,

or equivalently, H. ± H. if i j . By induction,

k 1 2 k
k = Hk l H • ... 0 Hk , k 1

It follows immediately that

H = H 0 H1  ... E Hk  ...

Thus, both i.) and ii.) hold.

Part iii.) follows from Lemma 1.4, since

T H = T*M 1 CM = H11 1 -- 1 1

We shall prove iv.) and v.) simultaneously. Note

first that TH 1 = TM c_ ML2 = H , H2 . Using Lemma 1.4

again, we have T CTM2 = H H . Also,

TH 2 CTM CM = H H2  H . Note that if x1 E H

and x2 e H2 , then

<Tx2,xl> = <x 2 ,T xl> = O

since T x e H1 Hence TH 2 CH 2 E H3 and iv.) and

v.) hold in case k = 2.. Suppose that it has been

shown that TH. C H. H. and that T H. C H. H.
j - j+l 3- j-1 3j

for all j < m Then T*H CT Mm CM 1  =
m+l - m+ 1 - m+l

H1 8 H2 ( ... E Hm+1 . But if y H1 . ( Hm'z1 ]
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then Ty e H1 E ... S H , and so, if x e Hm+ 1 , we

have <y,T *x> = <Ty,x> = O . Thus, T H + Hm H+ 1We also=have m+"- in Hm+

We also have TH C TM+ CM = H ... H
m+1 m+r-- m+2 1 m+2

If x e Hm+ 1 and y e H1  ... B Hm , then

Tye H1 E ... E Hm  and <Tx,y> = <x,T*y> = O , so that

THm+ C H m+l m+2 . By induction, both iv.) and v.)

hold.

Since THk CHk Hk+ for every k a 1 , we have

\/Hk,THk) C Hk 1 Hk+ 1 for every k z 1 . Assume that

v e Hk E Hk+ 1 and that v is orthogonal to \/Hk,THk ,

where k > 1 is fixed. Clearly, v e Hk+ 1 . The fact that

<v,Tx> = O for every x e Hk together with v.) implies

<v,Tx> = O for every x e H1 E ... 0 Hk . Thus, T v is

orthogonal to H1 G ... 0 Hk ; that is, T v e Mk . But

since v,T v e Mk , we have

s *k+l s*k *
Ts (T * )k + l v = T S * k T *v)

= (T*)kTs (T*v)

(T*)k (T*TSv)

= (T *k+l TSv

k+l *
for every s 1 . Hence v e n n ker((T*)rTs -,.T(T )r)

r=l s=l

i.e., v E Mk+ 1 . Then v e [Hk+f1 Mk+1] = (0) and

vi.) holds. Part vii.) follows immediately from vi.)
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It is worth noting that if T is the unilateral

shift, then H° = o(0 , while for k a 1 , Hk is pre-

cisely the one-dimensional subspace spanned by ek-l

If T e B(H) , then we shall use the notation Hk(T) ,

k = 0,1,2,..., to denote the subspaces associated with T

as in Theorem 1.5. Note that in case H = Ho (T) $ H1 (T) ,

Theorem 1.5 is nothing more than the decomposition of T

into a normal and an abnormal part. In case

H = H (T) S H 1 (T) , we shall say that T has a trivial

decomposition.

If T e S(H) is abnormal (so that H (T) = [0) ) and

if we let Pk : H -- > Hk(T) denote the orthogonal projec-

tion of H onto Hk(T) for k s 1 , and if we define

T.j = P.TIH j

for all i,j > 1 , then T is represented by the matrix

of operators [T ij acting on the direct sum of the spaces

Hk , k - 1 Parts iii.), iv.), and v.) of Theorem 1.5

assert that T.. = O if either j > 1 or j < i-l .

Thus T is represented by a matrix of operators whose

non-zero (operator) entries lie on either the main diagonal

or the first subdiagonal of the matrix. To simplify the

notation, let Di = Ti i and let S. = Ti+li for every

i 2 1 . From part vi.) of Theorem 1.5, we have ran Si

dense in Hi+ 1 for i a 1 , or, equivalently, that

ker S. = [o) for i a 1
1
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In the next two theorems we exhibit a canonical form

for operators which have a non-trivial decomposition. The

technique to be used is a modification of the proof of the

fact that every weighted shift is unitarily equivalent to

a weighted shift with non-negative weights (cf. [3], problem

75). Roughly speaking, we wish to show that the matrix of

operators [Tij] described above is unitarily equivalent

to a matrix of operators of the same form with non-negative

operator weights along the first subdiagonal. Some

technical difficulties arise from the fact that the spaces

(Hk1 may be of different dimensions.

For simplicity, we break the reduction to canonical

form into two parts.

THEOREM 1.6: Let T e S(H) be abnormal. Then there exist

a (finite or infinite) sequence of Hilbert spaces

J D J2 ... and corresponding sequences of operators

D! :J. -- > Ji and S : J -> Ji+l with ker(S!)* = (0]
1 1 1 1 1 1

and ker S! = J.i J , such that T is unitarily
1 1 i+1

equivalent to the operator T' defined on J1 J2 ""

by the matrix [T.j) of operators given by Ti = D ,ii Ii 1
T' = S , and T'. = O if i 4 j , j + 1

i+l,i 1 1,J

Further, Hk(T') = Jk for k .r 1

PROOF: We shall assume that all of the subspaces Hk(T) ,

k & 1 , are non-zero. Put J= H(T) and define



W : J ---> H1(T) by W =I on J1 " Put D' = D

Recall that SI : J1 -- > H2 (T) and that cl(ran Sl

H2(T) . Let J2 = (ker Sl1) CJ 1 . Then dim J2

dim[(ker S1 ) ] = dim[cl(ran S I ) ] = dim H2 (T) Pick a

unitary operator W2 : H2 (T) -> J2 (onto J2 ) and

define Si = W 1SWI = W2S 1  Then S : J - J2 Since

ker S = (0 , We have ker(S{)* = ker(S 1 I ) = (0) ,

and since = (ker S) , we have ker S1 = ker S12*

Jl E 2 . Setting D2 = W2 D2 W2 , we see that

D : J2--> J2

Suppose that we have defined Hilbert spaces

J J2 : ... 3  , that we have picked unitary operators

W. mapping H.(T) onto J. , i = 1,2,...,m , and that
1 1 1

we have put D! = Wi DW for i = 1,2,...,m and

S ' = W. S.W. for i = 1,2,...,m-1 . Then define
1 i+l i 1

Jm+l = [ker(SmWm) ] Since cl(ran Sm) = H m+(T) , we

have dim(Jm+) = dim (Hm+I(T)) Pick a unitary operator

W mapping H (T) onto J and define
m+1 m+l m+1

S' = W SW Then, as above, S' maps J into J
m m+1 m m m m m+l

ker(S ) = [0) , and ker S' = J m J m+l Next, putm m m m+1

D+ 1 = W+ D Wm+m+ noting that D' is an operator on

Jm+l

Continuing this process, we obtain a sequence

J 1 J2 D ... of Hilbert spaces and a sequence of unitary
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operators [Wi. with W. mapping Ji onto H.(T) for

all i 5 1 . The associated sequences of operators (D)

and (S~) are as in the statement of the theorem.

Next put J = J1 $ J2 E ... and define W = W1  W2  .

Then W is a unitary operator mapping J onto H , and,

of course, the operator T' = W TW e 8(J) is unitarily

equivalent to T . A straightforward computation with the

representations of T and W as matrices of operators

shows that the matrix of T' relative to the decomposition

J = J1 E J2 8 ... is as desired.

Since T' = W TW , we find that for all r,s > 1 ,

the equation

[(T') *r(T') s - (T')s[(T,)*jr = W*[(T*)rTs - Ts(T*)r)w

holds, so that W maps Mk(T) onto Mk(T ') in a

one-to-one fashion for all k 1 . It follows immediately

that Hk(T') = Jk for all k 1

DEFINITION: Let J 1  J ... be a finite or infinite

sequence of Hilbert spaces and let J = J1 J2 e ... E Jk 

Let E. denote the orthogonal projection of J. onto
1 1

Ji+ C Ji and let vi denote the orthogonal projection of

J onto Ji for all i > O . Let T e 1(J) . Then we say

that T is in standard form if Mk(T) = Jk+l Jk+2

for k > 1 and if there exist operators D'.' e B(J) and

non-negative operators Pi e S(Ji ) with ker P = Ji+1
1 1 1 3 i+
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such that 7iTIJk = O if k > i or k < i-I , wiTIJ i

and i+lTIJi = EiPi for all i > 0

THEOREM 1.7: Let T e B(H) be abnormal. Then T is

unitarily equivalent to an operator in standard form.

PROOF: We may as well replace T by the operator T' of

Theorem 1.6. We also retain the notation of Theorem 1.6.

Define V1 = I on Jl . Next, write Si = U1 ((S) * Sl)

U1P1 , so that P1 is a non-negative operator on J1 and U1

is a partial isometry with initial space (ker S) =

Ja CJl and final space cl(ran S') = J2. Since :'Ui

is onto J2 , it follows that U1 2 J is an

isometry with range J2 . Thus, V2  E1U1 is a unitary

operator on J2 and V2SIV 1 = VIU 1P1 = E 1 U1UI P = E 1  •

Suppose that we have defined unitary operators Vi e S(J i )

such that V(S 1) V = E. P. for 1 : i ! m and
3. 1-1 1-1 -1 i-1

non-negative operators Pi e 8(Ji )  by Pi = (V*(S)*SV )

for 1 < i < m . We consider the polar factorization

S'V = U P of S'V . Arguing as above, U* : --- > J
mm mm mm m m+l m

is an isometry with final space Jm+l , so that

V = EmU is a unitary operator on J Thus we
m+l mm m+1

obtain a (finite or infinite) sequence of unitary

operators Vi e S(Ji )  and a sequence P. e B(Ji)  of

non-negative operators such that ker Pi = Ji GJi+l
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and V. SV = E.P. for all i > O . We definei+1 i i 1i 1

D'.' = V.DV. for all i > O and put

V = V1  V2  ... e Vk S ... . Then V e (J) is unitary,

so that T" = V T'V is unitarily equivalent to T' , and

hence, to T . A straightforward calculation shows that

T"IJk = O if k > i or k < i-I , that viT" (J V DV.

f6r: i > 0 , and that 7Ti+T" J. = V= E.P. for

all i > O

Finally, we note that an argument analogous to that used

in Theorem 1.6 shows that Hi(T") = Jk for all k > O .

We note also that Hk(T") = VWHk(T) and Hk(T) = (VW)*Hk(T")

for all k > O .

To simplify our notation, we shall assume in the future

that if T e B(H) is abnormal and is in standard form, then

H = H1 H2  ... , where H 1  H2  ... . The diagonal

(operator) entries of the matrix representation for T will

be denoted by Dk and the subdiagonal entries by Sk

EkPk for all k > 1 .

Next, suppose that T e S(H) is abnormal and that T

is unitarily equivalent to T(1 ) e :(H(1 ) ) ',and to

T ( 2 ) E S(H ( 2 ) ) , where T(i) is in standard form for

i = 1,2 . Then there exists a unitary operator U such

that T(l) = U*T( 2 )U . Arguing as in Theorem 1.6, we see

that U maps Mk(T(1)) onto Mk(T(2)) for all k .

Viewing T ( 1 ) , T ( 2 ) and U as matrices of operators,
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this means that U is a diagonal matrix with diagonal

(operator) entries Uk , where Uk is a unitary operator

mapping H(k (1)) onto Hk(T(2)) for all k 1 . With

some more work, the details of which we omit, one verifies

the relations

(1) * (2)
Pk =Uk k Uk '

[E(1) ~1): Uk (E2) * (2)
[E k E Ek = Uk(Ek) Ek  Uk

and

[E = Uk+lEk i.._ k+l

for all k : 1 . In effect, these relations assert that

each of the non-zero entries in the matrix representation

of T(1) is unitarily equivalent to the corresponding

entry of T (2) It follows that the representation of

an operator in standard form is essentially unique.

The next theorem deals with the relations that hold

among the entries in the standard form for T . It shows

that the structure of the abnormal part of an operator is

determined by the action of the operator on the subspace

H 1(T)

THEOREM 1.8: Let T e S(H) be abnormal and in standard

form. Put C = [T]H 1 (T) . Then
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i.) [D1 ] = C - S S1 ,

* *
ii.) [Di] = SiiS - S Si for i r 2

iii.) SiDi+ 1 = DiS i for i > 1

Further, the operators D. , i > 2 and the operators
1

P. , E. , i > 1 , may be determined explicitly in terms

of C and D1 *

PROOF: Note first that

ker[T] Z M1 (T) = ( ker(T*Tr-TrT*)
r=l

Hence, cl(ran[T]) c (M (T))' = H (T) . It follows that

H1 (T) reduces [T] , so that C = [T]( H1 (T) is well-

defined. In fact, [T] = C O . If we represent [T]

as a matrix of operators relative to the decomposition

H = H1  H2 O ... E Hk E ...

then we obtain a matrix [Cij of operators with

C1,l = C and Ci j = O if i+j > 2 .

Using the matrix representation for T relative to

this same decomposition for H , we obtain another expression

for [T] . Direct comparison of the entries in these two

representations for [T] yield equations i.) ii.) , and

iii.).

To complete the proof, note first that
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ker S1 = ker(SiS 1) = ker(C-[D 1]) , so that H2

(ker S)1 = cl(ran(C-[D 1])) . Hence, H2 (and thus, E1 l

is determined by C and D1 . Noting that SIS 1 = P1 E1 E 1P

and that EIE 1 e B(H1) is the orthogonal projection of

H1 onto H2 , we have, since H2 = cl(ran Pl) , that

* 2
S 1 S 1 =1 , or,

Pl = (SlSl)2 = (C-[D 1 J)

We note for future reference that S1 S = E1P E1 = Pl H2

From iii.), S1D2 = D1S1 . If X e B(H2) is any

operator satisfying S X = D1S 1 , then S1(D 2 -X) = 0 and,

since ker 1  , D2 = X Note also that S1S1D2 =

** -1 *
SiDIS 1 and hence, D2 = (S S SD 1 . The expression

on the right in the last equation represents a bounded

operator even though SiS 1 will not, in general, have a

bounded inverse. Substitution from above yields

D2 v = (D-[D1 ])- 2D1 (C- [D 1 ]k

for all v e H2

A messy but rather easy use of induction completes the

proof. We omit the details.

The formulasin Theorem: 1.8 are much more manageable.

in.:the special case dim H11 dim Hk for all k a.l . The

operators Ek are unnecessary in this case, so that..

Sk = Pk O for all k 2 1. In this case,one.obtaiis,:
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the formulas

k
Pk = (C - [D i ]i=l

and

-1
Dk+l = Pk DkPk for all k m 1

The formulas in Theorem 1.8 are easy to handle only in

special cases. An important observation, however, is that

the structure of an abnormal operator T is determined by

its action on the subspace H 1 (T) . In case H 1 (T) is

an infinite-dimensional subspace, then, in the absence of

stronger hypotheses on [T] and D1 , nothing has been

gained. If dim H 1 (T) < w , however, Theorem 1.8 asserts

that the structure of (the abnormal part of) T is

determined by two finite-dimensional operators.

§2. It is easily seen that the decomposition for operators

given in Section 1 may be trivial. If T is normal, for

instance, then H = Ho(T) . Even if T is abnormal, the

decomposition will be trivial if ker[T] = (0) , since

H = H1(T) in this case. In this section we shall consider

other conditions which imply that our decomposition is trivial.

LEMMA 2.1: Let T S( (H) and suppose that M is a subspace

of H such that TM CM and M C ker[T] . Then TIM is

hyponormal. If TIM is normal, then M reduces T
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PROOF: Write

T= B

with respect to the decomposition H = M B M . Then

[A ]-BB A *B-BC

[T]

B A-CB [C]+BB

The fact that M C ker[T] implies that M reduces [T]

Let X = [T]IMI. Then [T] has the representation

[T] = O $ X relative to H = M E M . Equating corresponding

entries in the two representations for [T] yields

[A] = BB* > 0 , so that A = TIM is hyponormal. If A is

normal, then BB = O . Thus B = O and M reduces T

THEOREM 2.2: Let T e B(H) have compact real part. Then

H = H (T) $ H(T)
0 1

PROOF: We may as well assume that T is abnormal. Assume

that H / H1(T) and let A = TI(H 1 (T)) . From Lemma 2.1,

A is hyponormal. Since Re T is compact, so also is

Re A.

Putnam has shown ([5], p. 43) that if T is hyponormal

and abnormal, then the measure of the spectrum of Re T is

positive. Since a compact self-adjoint operator has

countable spectrum, it follows that a hyponormal operator
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with compact real part is normal. In particular, A is

normal. By Lemma 2.1 again, [H1 (T)]' reduces T and

TI(H 1 (T)) is normal, a contradiction, since T was

assumed to be abnormal.

It is interesting to note what happens in case H

is a finite-dimensional Hilbert space. Since every operator

on a finite-dimensional space is compact, if follows from

Theorem 2.2 that our decomposition is always trivial for

finite-dimensional operators. Hence, non-trivial examples

of our decomposition, much like non-unitary isometries, are

purely infinite-dimensional phenomena.

As a consequence of Theorem 2.2 we obtain a simpler

expression for the normal subspace of an operator having

compact real part.

COROLLARY 2.3: If T e B(H) has compact real part, then

H1 (T) = n ker(T*T -T r T * )

r=l

PROOF: H1 (T) = H EH 1(T)

= M1 (T)

= ( ker(T*Tr-T rT*)
r=l
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§3. Since our decomposition is trivial for operators on

a finite-dimensional Hilbert space, we shall assume hereinafter

that the underlying Hilbert space H is infinite-dimensional.

Note that the easiest way to guarantee that the decomposition

of an abnormal operator T is non-trivial is to assume that

dim H1(T) < w . This ensures that H # H1 (T) , of course,

but it also means that Hk(T) 4 [0] for all k z 1 , since,

from Theorems 1.5 and 1.6, we have

dim(H1 (T) ( ... ) Hk(T)) < k dim H1 (T) <

The condition dim H1 (T) < w is difficult to verify in

many cases. In this section we will show that this condition

is easy to verify in case T is subnormal.

We recall that Te /S(H) is subnormal if there exists

a Hilbert space K Z H and a normal operator N e /(K)

such that NH cH and T = NIH , in which case N is

called a normal extension df T . We say that N is a

minimal normal extension of T is the smallest subspace

of K which contains H and reduces N is K itself.

Halmos has shown that every subnormal operator has a

minimal normal extension and that this extension is unique

up to unitary equivalence. For proofs of these facts and

an excellent discussion of subnormal operators, see [3],

Chapter 16.
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LEMMA 3.1: Let Te B(H) be subnormal. Then

1.) ker[Tr] C ker((T*)rTs - Ts(T )r ) for r,s > 0

ii.) ker[Tr] = ker((T )rTs - TS(T*)r) for all r > O
s=l

iii.) ker[Tr] = H (T)
r=l

PROOF: Let N e B(K) , K D H , be the minimal normal

extension of T . Since NH C H and T = NIH , we may

write

with respect to the decomposition K = H 8 H . Thenk Tk X k
Nk

for all k 2 1 , where X 1 = X and Xn+1 = TXn + XY n

TnX 1 + XnY for all n 1 . Computing both (N*)rNs

and NS(N* ) r and equating corresponding entries yields

(1) (T*)rTs - TS(T*) r = XsXr

and

(2) (T* )rXs = X1 (Y*)r

for all r,s > O . Putting r = s in (1) gives
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r * *
ker[T] = ker(X X ) = ker X for all r ; 1 , Thus,

rr r

ker((T*)rT s - T(T* ) r ) = ker(X X ker X ker[Tr]sr r

and i.) holds.

From i.), -- ker((T )r T - T(T * ) r ) contains
s=l

ker[Tr] for r > 1 , and since the reverse containment is

trivial, the two sets are equal. Part iii.) is an immediate

consequence of part ii.) and Lemma 1.3.

Recall that if T e S(H) , then

k r*
Mk(T) = Q s ker((T )r TS-TS(T* r)

if T is subnormal, then, applying Lemma 3.1, we obtain

k

Mk(T) = ( ker[Tr]
r=l

In particular, if T e S(H) is subnormal, then

H1 (T) = (M1 (T))' = cl(ran[T]) This shows that if T is

subnormal and abnormal and if H - cl(ran[T]) (in parti-

cular, if [T] has finite rank), then our decomposition

for T will be non-trivial.

It follows from Theorem 1.5 and the remarks above that
k

if T is subnormal, then Mk(T) = n ker[Tr] is invariant
r=l

under T . Actually, a stronger statement is at hand.

Taking adjoints in equation (2) in the proof of Lemma 3.1

and putting r = 1 , we get XT = YXs for all s > O
5 5
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Thus, ker[Tr] = ker Xr  is invariant under T for all

r > 1 In case r := 1 this observation is due to

Stampfli ([6]).

If T is subnormal and abnormal and if H 4 cl(ran[T]),

or equivalently, if ker[T] / [O , then it follows from

Theorem 1.8 that the structure of T is determined (up to

unitary equivalence) by [T] and T*IH1(T) . In the special

case in which [T] is of finite rank, the structure of the

abnormal part of T is determined by two matrices. In

case T is abnormal and [T] is of rank one, there are

two constants which are a complete set of unitary invariants

for T

PROPOSITION 3.2: Let T e (H) be subnormal with one-

dimensional self-commutator. Let U denote the unilateral

shift on 42 . Then there exist scalars sl , dl(s 1 > 0)

such that T is unitarily equivalent to the direct sum of

a normal operator and slU + dl .

PROOF: We may as well assume that T is abnormal. We

have dim(H1 (T)) = dim(cl(ran[T])) := 1 . It follows from

Theorem 1.5 that dim(Hk(T)) s 1 for all k > 1 . Since

H is the direct sum of the spaces Hk(T) , k > 1 , and

since H is infinite-dimensional, we must have

dim(Hk(T)) = 1 for k > 1 . From Theorem 1.8, T is

unitarily equivalent.to a matrix with scalars di on

the main diagonal, pos
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subdiagonal, and zeros in the other entries. Further,

* ~e*
since skdk+ = dks and since sk > O , k 1 , we

have dk = dl for all k z 1 . From Theorem 1.8 again,

we have 0 = [dk] = skSk_1 - Sksk= Sk-_ 1 sk
k] = k-1-k-l k I

for all k 2 . We then have sk = s for all k 2 1

and we conc:lude that T is unitarily equivalent to

slU + dl 1

A careful examination of the proof of Proposition 3.2

shows that the result holds if we assume only that

T e S(H) satisfies dim(H 1 (T)) = 1 . Since one may

conclude from this that T is subnormal, the apparent

generalization is really an artificial one. Finally, we

note that Proposition 3.2 has been obtained independently

by K. Clancey ([2]).

Recall that Te / (H) is quasinormal if T commftes

with T*T , or, equivalently, if T*[T] = O = [T]T . Thus,

if T is quasinormal, then T x = O for every x e cl(ran[T])

The following lemma was first proved by A. Brown in [1].

LEMMA 3.3: If T e S(H) is quasinormal, then T is

subnormal.

PROOF: Write x e H as x = x 1 +x 2 , where xl e cl(ran[T])

and x2 e ker[T] Then
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<[T]x,x> = <[T]x,x 1 > + <[T]x,x2>

= <x,[T]x 1> + <x,[T]x 2 >

= <xl, [T]x 2 > + <x 2,[T]x 2>

= <x2 ,T *Tx 2> - <x 2 ,TT *x 2 >

= Tx2112 o 

Thus, T is hyponormal. Note that cl(ran[T]2 ) =

cl(ran[T]) , so that T*[T]i = 0 = [T]iT . A direct

computation shows that the operator X defined on

HSH by

T [T]

X =T T
is normal. Hence, T is subnormal.

THEOREM 3.4: (A. Brown, [11) Let T e S(H) be quasinormal.

Put R = cl(ran[T]2) and C = [T] IR Then T is unitarily

equivalent to the direct sum of a normal operator with the

operator defined on R @ R @ ... by the matrix of operators

(T . with T = C 2 for i T 1 , T = O ifi,j w+,, i  i,3

i / j+l

PROOF: We may as well assume that T is both abnormal

and in standard form. Since T is subnormal, we have

H1 = R , and since T [T] = 0 , we have T IH1 = , or,
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in the notation of section 1, D = 0 Since SiDi+ 1

DiS i and ker S. = (0O for all i 2 1 , we have D. = 0

for all i ! 1

We next observe that since D. = O0 for i 1 , the
1

inclusion ker S. C ker T holds for all i z 1 . But T
1

is both abnormal and hyponormal, and hence, ker T = (01

Thus ker S. = (0) for all i > 1 , and, since
1

Hi+ = cl(SiH) , we have dim H. = dim H1 for all i ' 2

We have shown that T is a matrix of operators on R E R D

whose only non-zero entries are the non-negative operators

S. = P., i ; 1 , which appear on the first subdiagonal.
1 1

From part iiL) of Theorem 1.8, we have O = [Di] =

2 2
Si - S2  for all i > 1 , and hence, S = S for

i-1 i i

all i > 2 . From part i.)of Theorem 1.8, O = [D] =

2 1
C-S. Hence S i = C 2 for all i 1.

1

If V e B(H) is isometric, then V V = I and V

is quasinormal. Recall that if V is isometric and if P

denotes the orthogonal projection on (VH)" , then

VV = I-P , so that [V] = I - (I-P) = P This implies

that H1 (V) = cl(ran[V]) = (VH) ±

COROLLARY 3.5: (von Neumann, [71) Every isometry V e /(H)

is unitarily equivalent to the direct sum of a unitary

operator with a unilateral shift of multiplicity dim(VH) ±
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PROOF: A normal isometry is unitary, since V V = I = VV

Noting that [V] IH1 (V) is the identity operator on (VH)l

and applying Theorem 3.4, we see that V is unitarily

equivalent to the direct sum of a unitary operator and a

matrix of operators on R S R E ... with identity operators

on the first subdiagonal and zeros elsewhere, i.e., a

unilateral shift of miiltiplicity dim R = dim(VH) .

We note that if T is quasinormal, then a complete set

of unitary invariants for [T] is a complete set of unitary

invariants for the abnormal part of T . In case V is an

isometry, the fact that [V] = I on H1 (V) = ran[V] = (VH)l

means that the scalar dim(ran[V]) = dim(VH)± is a complete

set of unitary invariants for the abnormal part of V

§4. We conclude with a simple application of our decomposition

theorems to the study of quasitriangular operators. Recall

that T e S(H) is triangular if there exists an increasing

sequence [Ek1 of projections of finite rank such that

[Ek) -> I strongly as k -> - and such that

TEk - EkTEk = O for all k . We say that T is quasi-

triangular if there exists an increasing sequence (Ek1

of projections of finite rank such that [Ek1 -> I

strongly as k -> w and IITEk-EkTEko -- > O as

k -> w . It is clear that every triangular operator is

quasitriangular. We note that the study of quasitriangular
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operators was initiated by Halmos ([4]:). We shall use the

facts, first proved in [4], that every normal operator is

quasitriangular and that the direct sum of two quasi-

triangular operators is quasitriangular.

PROPOSITION 4.1: Let T e S(H) be abnormal with

dim(H 1 (T)) < = . Then T is a triangular operator.

PROOF: Let Ek  denote the orthogonal projection of H

onto [Mk(T)] 1  for all k > 1 . From Theorem 1.5, the

sequence (Ek) is an increasing sequence of projections of

finite rank, and since TMk(T) CMk(T) for all k k 1 , we

also have T Ek - EkT Ek = O for all k > 1 . The abnor-

mality of T implies that ( Mk(T) = (0) , or,

equivalently, that Ek tends strongly to I as k tends

to infinity.

The preceding proposition, together with Lemma 1.3

and Halmos' results, yield the following:

COROLLARY 4.2: Let Te / (H) satisfy dim(H 1 (T)) < m

Then T is quasitriangular.

COROLLARY 4.3: Suppose that T E. (H) is subnormal and

that its self-commutator has finite rank. Then T is

quasitriangular.

The answer to the following question is apparently

unknown.

QUESTION: If T is subnormal and has compact self-

commutator, is T quasitriangular?
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PROPAGATION IN RANDOM MEDIA
G. Adomian, University of Georgia

Abstract The problem of wave motion in a stochastic medium is
treated as an application of stochastic operator theory to the
case of partial differential equations and wave equations.
Stochastic Green's functions are found for the two point cor-
relation of the solution process for a scalar wave equation
with randomly time-varying index of refraction without mono-
chromaticity assumptions. The results are connected to the
theory of partial coherence and can be used to calculate spec-
tral spreading in a "hot" medium.
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Consider the scalar wave equation

2 a 1 -
V y(r,t,w) --2 + a(r,t,w)]y(r,t,w) = x(r,t,w)

at c
-- R3where t T represents time, r E R , wc 0 on a probability

space (, l ,). The quantities x and a, and consequently y,
are all stochastic processes (s.p.) dependent on space position
and time, i.e., random fields. The deterministic operator L is
given by the ordinary d'Alembertian V2 - (1/c2)32/at 2 and the

random part of the stochastic operator by 9 = ( 2/t2 )a.

-l
Letting L- x = F we write the above as

-1 2 2y(r,t,w) = F(r,t,w) + L (3 /at )a(r,t,w)y(r,t,w)
where L-1 is the inverse of the operator V2 - (1/c2 )( /at 2 ).

Denoting the Green's function for L- I by G(t,T), the last term

is rewritten as fG(t,T)(a2/at2)a(T)y(T)dT, i.e., the random

operator R is -(a2/at2)a(t).

After integrating twice by parts we can write

y(t) = F(t) + f[a 2 G(t,T)/T 2 Ja(T)y(T)dT
if quantities G(t,T) - a(T)y(T) and [aG(t,T)/aT]a(T)y(T)

vanish as t + + - which we suppose does happen either because of
the initial conditions (G and G' zero) or because a is a reducible-
to-stationary stochastic process.

We write r(t,T) = E (-1) K +l(t,T) with K = K as before,
m=O

K(t,T) a 2G(t,T) a(T)

. K2 (t,T) = K(t,T 1 )K(T 1 ,T)dT 1

f a2G(t,T l) a G(

S 2 a(T1 ) 2 a(T)dT1aT1  aT

This work has been supported by the National Aeronautics and
Space Administration (NGR11-003-020).



K3 (t,T) =fK(t,rl)K2 (2 ,T)drI, etc.

r(t,T) = K(t,T) - K2 (t,T) + K3 (t,t)

= K(t,T) - fK(t,T1)K(T1 ,t)dTl + ffK(t, 1 )KCT 1,T 2)

(2 (t) - f 21 2 a (T1 ) (T)d 1  +

aKT a 1  aT

D 2G1tT) a2 
G(a () dTdT2 ...G(

Sa2 2 a(T)a)dld

1 2

Thus we can determine the s.g.f. (stochastic Green's function)
either for the spectral density s.m. (statistical measure) if it
exists, or immediately the more general two point correlation

(and mutual coherence functions) thus Ry(tl,t 2 )

ffGH(tlt 2 ,alC 2)Rx(al, 2)dld 2 where GH is found from h(t,T),

the random Green's function.

The first term of GH (which we do not write out) shows the

results for waves propagating in a deterministic medium. The
other terms of GH involving statistics of r show the effects

of spectral spreading due to the stochastic medium. These are
the terms lost by a monochromatic assumption. The calculation
for a specific case presents considerable difficulty but can be
made knowing the statistics (i.e., s.m.) of a (such as correla-
tion if a is gaussian).

In the general nonstationary case, we make the time domain
iterative treatment, and if we assume gaussian behavior for .the
index of refraction, we observe the odd terms vanish in the
series (terms involving produdts of odd numbers of a's) and the
even terms are negative. Thus in forming products y(tl)y(t 2)

for correlations, the contribution of the spectral spreading or
non-monochromatic terms of GH (i.e., the last three of the
four term expression) are all positive.

Our procedure involves no assumption of statistical independence
of the solution s.p. or wave function and the stochastic index
of refraction and makes no closure approximations.

The first application of this work was the processing of a
signal by a "stochastic filter" which randomly sampled the signal
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at intervals of time governed by a probability law. Work on

optimization of stochastic systems and numerous other applica-

tions is immediately suggested.
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STATIONARITY CONDITIONS FOR

-STOCHASTIC DIFFERENTIAL EQUATIONS

This is a preliminary study of possible necessary and

sufficient conditions to insure stationarity in the solution

process for a stochastic differential equation. It indirectly

sheds some light on ergodicity properties and shows that the

spectral density is generally inadequate as a statistical

measure of the solution. Further work is proceeding on a

more general theory which gives necessary and sufficient

conditions in a form useful for applications.
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SECTION 1

The following definitions and notation will be used

consistently throughout this thesis.

(,,s,) will be a fixed (but otherwise arbitrary)

probability space with points w E C,, a a-algebra 9 of

subsets (probabilizable events), and a complete measure

. such that g(r) = 1.

A random variable (r.v) x = x(w) will be a finite

real-valued (or complex valued) measurable function defined

on t, i.e., we require that (0 :x(w) < X3 E 9 for all real

numbers X. If x(w) is complex-valued, we require that

x(w) = u(w) + iv(c) where u and v are real-valued r.v.'s.

Given a r.v. x(w), E(x) or <x> denotes the integral

j x(w) dA(w) if this integral is defined.

Given a parameter set T (which we usually take to be

the real numbers), a stochastic process (s.p.) or random

function (r.f.) on T is a real or complex-valued function

X:T x , -> R(C) such that for each fixed t ET the function

xt(Lc) = X(t,w) is a r.v. Very often in our notation we

will suppress the variable w and write X(t) for the r.f.

Notice that a s.p. has two convenient interpretations.

First of all, a s.p. is a family of r.v.'s indexed by T,

i.e., X = [xt (w):-> R)tET. On the other hand, if we

emphasize the variable t and let T = R, then a s.p. X is a
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collection of real-valued functions of a real variable

(indexed by 0). These functions are called the sample

paths (realizations, trajectories) of the process. The

measurability of X with respect to the variable w says

nothing about measurability with respect to the t, and in

general the sample paths may be very badly behaved. 
How-

ever, we will consider only measurable processes, i.e.,

functions X(t,c~) which are measurable with respect to

the a-algebra Pxg where d is the family of Lebesgue

measurable subsets of the real line. Then all the sample

paths will be measurable.

We let L 2() denote the Hilbert space of all square

integrable r.v.'s on fi making the usual identification of

r.v.'s which are equal almost everywhere with respect to

the measure 4.

We say that a r.f. X(t,a') is second order if each

r.v. xt, t (T, is a member of L2 (,). Thus X is second

order if and only if j lX(t,) 12 d(x) < - for all t ET.

Note that a second order r.f. X induces a map into a

space of r.v.'s Y:T -> L2(.) defined by (Y(t))(W) =X(t, c).

The covariance function associated with the r.f. X is de-

fined by I x(s,t) = E(X(s)X(t)).

Once again let T = R and let X(t,w) be a second order

s.p. Let Y be defined as in the preceeding paragraph..

We say that X is continuous in the mean square sense at tO

if l.i.m. X(t) = X(t). This is equivalent to saying that
t-t 0

the function Y(t) is continuous at to relative to the
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standard topology on the reals and the norm topology on

L2 (C). Similarly, we say that X(t) is differentiable in

mean square at tO if there is a r.v. (second order) r

such that l.i.m. X(t)- X(tp) = r. Thus X is differentiable
t-tC t- to

in mean square at tO if and only if Y(t) is differentiable

at tO' and moreover r = (t). This same analogy carries

over to integration (Riemann, Riemann-Stieltjes, Lebesgue-

type) in mean square of X and the corresponding integration

of Y. Hence the study of the mean square analytic properties

of a (second-order) s.p. X is equivalent to the study of the

corresponding properties of a function Y:R -> L2 (t).

Throughout this thesis we will deal with the concept

of wide-sense stationarity. Moreover, without loss of

generality we consider only zero-mean processes, and con-

sequently we take as the defining characteristic of a

stationary process X the existence of a correlation function

f such that r x(s,t) = f(t-s). We define the spectral

density function of the process by p(u) = j'e 2ituf(t)dt. 1

1We use this definition of correlation function in
accordance with Adomian [1]. Often in the literature the
correlation function is defined g(s-t) = E(X(s)X(t)) which
is the complex conjugate of our definition. We let

Q(u) = Se2wituf(t)dt be the spectral density function of

the process whereas some authors may have 0(u)= je-21ituf(t)dt

as the spectral density function. This of course will be
the complex conjugate of our spectral density function.
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Usually we consider only real processes, however if some

result takes on a much cleaner form in the complex case

we will note it.

The physical interpretation of stationarity is well

known (see Yaglom [11]). The following geometrical

interpretation may provide some insight however. Note that

a second-order process with the real line as the parameter

set is a map X:R -> L 2(M) from the reals into a particular

Hilbert space. Hence the relationship E(X(s)X(t)) = f(t-s)

is merely a restriction on the behavior of the inner pro-

ducts of points in L2( M) which lie on the curve associated

with X. In particular, IIX(t)ji2 = E(X(t)XT )) = f(t-t) = f(O)

for all t, and so the curve X must lie on a sphere of radius

f(O) centered at the origin. For stationary X,

E(X(s+T)X(t+T)) = E(X(s)X(t)) for all s, t, and T, and so

if we think of the inner product as determining an angle

between say the vectors X(s) and X(t), then this angle is

invariant under translations of the parameter set, e.g.

the angle between X(s) and X(t) is the same as the one

between X(O) and X(t-s). A circle in R2 centered at the

origin is an example of such a curve if the standard para-

meterization is taken: thus, consider the curve

x(t) = el cos t + e 2 sin t where el and e2 are the standard

basis vectors for R2 . In general, we can replace the unit

vectors by arbitrary orthogonal vectors in L2(,) of equal

norm, call two such (distinct) vectors A and B. Then the

process defined by X(t) = A cos t + B sin t is really just
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a circle in L2(C), and a simple calculation shows it is

stationary. One of the most powerful results in the

general theory of stationary processes is that every

(continuous) stationary process is the limit of sums of

processes of this special type.

One is naturally interested in determining what sort

of transformations of stochastic processes preserve station-

arity. For the moment, we interpret the term "stochastic

transformation" in the loosest sense, namely we call any

rule which associates one or more processes with another

process a stochastic transformation (s.t.)2. In this

sense there are many s.t.'s which carry stationary pro-

cesses into stationary processes, and we list here just a

few:

i) Let U:L2(2) -> L2(C) be any isometry. Let

F(t) be a stationary process. Then the process

G(t) = U(F(t)) is stationary since E(G(s)G(t)) = E(F(s)F(7)=

f(t-s). Let a be any complex number. Then the process

H(t) = U(F(t)) is stationary since E(H(s)H(t)) = JlU2 f(t-s).

ii) Let F(t) and G(t) be stationary processes such

that the smallest closed linear manifolds containing F and

G respectively are orthogonal. Then F(t) + G(t) is a

2 For a more complete discussion of this term, see

Section 4. One also may wish to consider the possibility
of mapping a random function into a random sequence. In
his dissertation Adomian presented and discussed the

important example of a randomly sampled random function.
He also sets up conditions under which a stationary random

function is mapped in this manner into a stationary random

sequence.
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stationary process since E([F(s)+G(s)][F(t)+G(t)])

= f(t-s) + g(t-s) = u(t-s) where u = f+g. Note that in

general the sum of two stationary processes is not station-

ary. A necessary and sufficient condition that F(t) + G(t)

be stationary is that E(G(s)F(t)) + E(F(s)GT(t) be a

function of t-s, and we see that this is a fairly strong

restriction. The fact that stationary processes do not

form a linear manifold (in the space of all processes)

causes a certain amount of difficulty in determining what

s.t.'s preserve stationarity.

iii) Let the stationary process F(t) be n times

continuously differentiable and let cO,... cn be constants.

n (k)
Then the s.p. G(t) E c F ( t) is stationary and

k=O

n .
E(G(s)G(t) = ckcj (- 1 )j f(k+)(t-s). We note that

k,j=O

limits (in mean square) of stationary processes need not be

stationary, and so it is unusual that linear combinations

of derivatives of stationary processes are stationary. As
S

a rule, the function G(s) = X0 + S F(t)dt is not stationary

even though F is, and so integral operators do not in general

preserve stationarity. Intuitively the solution to a

stochastic differential equation is representable in the

form of applying a stochastic integral operator to the

forcing function of the differential equation; thus we see

this operation will not often yield as a stationary solution.

We now seek to determine conditions under which stochastic



differential equations do possess stationary solutions.
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SECTION 2

This section is devoted to the study of analytic ran-

dom functions and their application to stochastic dif-

ferential equations. We recall that if X(t) is a second

order random function, then X(t) can be thought of as a

map X:T -> L2(). Usually T will be the set of real num-

bers or some subset of the reals; more generally, T will be

a.subset of a Euclidean space. There is already a general

theory of analytic maps from finite dimensional Euclidean

spaces into Banach spaces, so we list here only the most

relevant parts of this theory.

Definition: Let B be a real Banach space. Let Cnn=On n=O

be a sequence of elements of B. Suppose there is a positive

real number r such that the series Z Icnltn converges for

all real numbers t satisfying Itj < r. Then the series

Sc tn is called a power series centered at 0 with coeffi-

cients in B.

Notice that since a power series converges absolutely (by

definition) in the space B and since B is complete, the

series does indeed converge to an element of B for each

appropriate t. The absolute convergence of power series

allows us to rearrange the series however we like, and the
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rearranged series will still converge to the same limit.

Theorem 1. Suppose a t n and Z b tn are two power seriesn - n

for Iti < r with coefficients in a Banach space B. If

SA t'n = b t n for all t E (-r,r), then a = b for each n.n n - - n n

We will find this theorem on uniqueness of coefficients

especially useful. For a proof, see Dieudonne [3].

Definition. Suppose f is a function from the reals into a

Banach space B. Suppose there are elements (Cn } in Bn n=0
such that f(t) = Z(Cn/n!)tn for Itl < r. Then f is said

to be analytic at O.

In accordance with this definition, a second order random

function X(t) is analytic at O (in the mean square sense)

when there are second order random variables XO,X 1 ,...

such that X(t) = Z(Xn/n!)tn for Itl < r. If we include the

dependence on r in our notation, we see that X(t, ) =

Z(X n()tn)/n! and so an analytic random function is one

which has this special sort of separation of variables.

We have the following theorem which relates analyti-

city of a random function to the analyticity of its co-

variance function.

Theorem 2. A second order random function X(t) is analytic

if and only if its covariance function x(s,t) is analytic

at every diagonal point (t,t). If this condition is
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satisfied, then F (s,t) is analytic at each (s,t).

More simply, a random function is analytic if and only if

its covariance function is analytic. See Loeve [7] for a

proof of Theorem 2.

Returning to more general Banach space considerations,

we have the following very important theorem, again from

Dieudonne.

Theorem 3. Suppose f:R -> B, B a Banach space, is analytic

at 0. Let f(t) = Z(Cn/n!)tn. Then f is infinitely differen-

tiable. Moreover, f(k)(t) = E (C /n!), f (k)(t) is
n=O

analytic, and f (n)( 0 ) = C

Hence we see that th random variables occurring in a power

series expansion of random function are related in a

simple way to the megn-square derivatives of the random

function.

Let us now turn our attention to the question of

forming a product of1 two elements each from a (perhaps

different) Banach sf ace. We are motivated by ordinary

differential equatins of the form x'(t) + a(t)x(t) = f(t)

but we would like t replace the functions involved in

the equation by seco d order stochastic processes. Then

we would have an equ .tion X'(t) + A(t)X(t) = F(t) where

X, A, and F are maps from the roals into the Banach space



L2(). There is a natural way of attaching meaning to the

formal product A(t)X(t), we can form the pointwise product

[A(t)X(t)](w) = A(t, )X(t,w). In general, this expression

no longer defines a function into the space L2(M) since

A(t,w X(t,w) may not be square integrable (with respect

to w) for each t. Consequently, some care is needed in

handing these products.

Consider now the general case of forming products in

Banach spaces.

Definition. Let E and F be two (real) Banach spaces. A

map P:E x F -- > E is called a product on the spaces E and

F if P is bilinear and satisfies the inequality

!P(e,f)l < jleil f0 for every e EE and f EF.

We usually write ef for the product P(e,f). There are many

examples of products, and the one which we will find useful

is the following.

Let E be a Banach space, let F = L(E,E) be the space of

bounded linear operators on E. Note that F is a Banach

space. Define the product P:E xF -- > E by P(x,f) = f(x).

It is elementary to verify that P defines a product in our

sense.

We prove now a few generalizations of well-known

theorems and see how they fit into our more general framework.
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Theorem 4. Suppose P:E xF -> E is a product. Let

A = Ea n  E and B = Cb - F be two absolutely convergent

n n

series. Define C a .b. P(a ,b). Thenn j=O n- 3 J O n-j

CC = AB = P(A,B).

We can prove this theorem by slightly modifying the proof

for the case E = F = R found in Rudin [9] so we omit the

proof here. However, as an important corollary we have:

Let A:I --> L(E,E) and x:I --> E be two functions defined

on I, an open interval containing O. If A and X are both

analytic at O, then the map f:I -> E defined by

f(t) = A(t)(x(t)) is analytic at O.

n n

be such that both A(tO ) and X(t ) converge absolutely. Then

f(t) = A(t)(x(t)) = (EA tn)(I X t m ) = Z A x tn+m
n m m,n

k k
Et E Ak-jXj. Then by Theorem 4, f(to) converges, and

k=O j=

so f(t) converges absolutely for Itl < t O. Hence f(t)

is analytic.

Keeping this concept of products in mind, we turn now

to the question of differential equations involving functions

from the reals into Banach spaces. Let I be an open interval

containing O and let U be an open set in the Banach space B.

Then a function f:I xU --> B is said to be a time-dependent
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vector field on U. A map a:I -> U is an integral curve

for f if u is differentiable and satisfies the equation

&'(t) = f(t,c(t)). f is said to be Lipschitz at t E I

if there is a constant K > 0 such that 11f(t,x) - f(t,g)l

Kl x-y/j for all x,y in U. f is said to be uniformly

Lipschitz on I if there is a single constant K > 0 such

that !Hf(t,x) - f(t,y)i! < Kjlx-yfl for all x,y E U and all

t I. We let CP(I xU) denote the set of all functions

from I xU into B which are p times continuously differen-

tiable. Let Ba ( X O ) = (y E B:fly-XO0 l < a). Now we can

state an existence theorem for certain differential

equations in Banach spaces.

Theorem 5. Let I, U, and B be as above. Let X0 E U. Let

a E (0,1) be a number such that B2 a(X ) C U. Let

f:I xU -- > B be continuous, bounded by C, and satisfy a

Lipschitz condition (with constant K) uniformly with

respect to I. If b < a/C and b < 1/K, then there is a

unique integral curve a:(-b,b) x Ba(X O ) -> U such that

(O) = X. If f E CP (I xU), so is a.

In particular, we note that if f is continuously differentiable,

it is continuous and satisfies a uniform Lipschitz condition.

For a proof of Theorem 5, see Lang [6].

Let us see how to apply this theorem to stochastic

differential equations. In particular, consider the equation

X'(t) + A(t)X(t) = F(t), X(O) = X0, where A(t) and F(t)
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are second order random functions and XO is a given second

order random variable. Solving the above equation for

X'(t), we have X'(t) = F(t) - A(t)X(t), and so the vector

field (on L2(,)) associated with this equation is given by

f(t,x) = F(t) - A(t)x. To insure that the formal product

A(t)x is well defined for every t EI and every x CL2(),

we assume that there is a constant K > O such that

ess §uplA(t,u j< K for all t EI. We will show that for

each t, A(t) can be thought of as a bounded linear operator

on L 2(), whereupon the formal product A(t)x will be a

product as defined earlier; in particular, A(t)x E L2 (f

for every t E I and every x E L 2(), and so the function

f(t,x) is a well defined vector field on L2 ().

Suppose then that ess sup IA(t, )l < K. Consider the map

2 2A:I -> L(L (), L ()) defined by (OFt)x)(w) = A(t,w)x(wu.

We show first that for a fixed t EI, A(t) EL(L2(C), L2(,)).

Thus we must show that if x EL (C,), then A(ttx must be a

square integrable random variable on . We have

J'[A x] 2 (A )dt() = .A 2 (t, )x 2 (w)dg(w) <

ess sup JA2 (t, ") I x 2 (dg(w) < K211x 2 < . Thus

ATTSx E L2(Ct). For a fixed t, A(t) is clearly linear, and

moreover

/2 /2
il-Ttxll= (A(t)x)2()d(w) 1/2< (K2 !x1 2 ) 1 / 2 = KIxI.

Hence AT is a bounded operator and IIA(It) < K. This
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kk k
X'(t) + A(t)X(t) = (t /k:)[Xk+l+ . ( )A Xk-j]. But this

k=-O J=

equals F(t), so by equating coefficients (Theorem 1), we

k k
have Fk Xk+ 1 + r (k)A.X , or

kj jk-jj=0

k k
X k+ 1 = Fk - O( )A.X .
k+l k j > j k-j

j=0

We are given XO, so this formula allows us to determine

each Xn by induction. Now we have to show that the power

series for X(t) with these coefficients converges (absolutely)

in some neighborhood of the origin.

We observe that the expression for Xn can be put in a

more convenient form. We claim that

n-I
X = xX + E f Fk,
n nO kn kk=O

where xn is the coefficient of X0 in the original expression

for Xn (after successiveli substituting the previously

calculated Xj's, j < n-1) and f is the coefficient of Fk

in the original exprecion or X . xn and kf are definedn n kn

inductively by the relationS,

n

x = 1, x ()A
O ijn+ j n-j

kfn = O for < k
k n

n

kf = 1, f (n)A f for n > k.
k k+l k n+1 = j k n-
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Notice that the expressions for x and f are combinations
n kn

of the A.'s only; the initial condition XO and the forcing

function F(t) are not involved in these coefficients.

Proof of claim: We use induction on n. The claim

clearly holds for n = 1. Suppose the claim holds for k < n

and examine the case k = n+l.

n n n-j-1

X = F n (J)A.X .= F - kfn_ Fk + XnjX] =

n+ n j=o j n-j n j=O k=O

n n-j-1 n
= F - 1 ) ()A k f n- F - (n)Aj X-j X =

j =0 k=O j=0

n n -j-1
L( (n)A.x .)X + F - (i) A. fn- Fk'

jO j j n-j nj=O k=O j Aj k n-j k
j=0 -j= k=0

n
But - (n)A.xn-j = n+ so all that remains is to show

j=0

n n-j-1 n
F -r (n f F f F

n =O k=O )Aj kfn-j Fk k O n+l Fk.

Fix an integer p such that O < p < n. What is the coefficient

of Fp in the left hand side of the above equation? Notice

that k = p only when j satisfies n-j-1 > p, i.e.,

j < n-p-l. Thus we get an Fp for j = O,l,...,n-p-l and k=p.

Hence the complete contribution involving F is

n-p-1
-F Z (n)A. f .. But f = 0 for p > k, so if p > n-j

pj j p n-3 p kj=0

we have f = O. Since p > n-j for j > n-p, we havep n-j
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n-p-1 ti-p-1 n
- ( )A. f .=- A.f f - (n)A. f

.jO J p n- 3 - p n- j

n n n-j -1
= -(1)A. f Hence F - (n)A f  F
j p n-j p n+ n j k= n- k

S f n+ F and the induction is complete.
k-=O

As a consequence of the above relationships, we have

n-i
X(t) = L(tn/n.)X n = n(tn/n:)[x nX + k f n F k ] =

n k=0

n-1
= X Z(x n/n')t1 + ,(tn/n:) ( fn F ). We will now

n n k=0

place additional restrictions on A(t) so that we can prove

the above power series converge.

Let A(t) = I(An/n')t n , and suppose there is some con-

stant K such that ess sup IAn( )L  < K" for each n. Then

each An(w) can be thought of as a bounded linear operator

2 2 2
on L (C), i.e., A E L(L2 (), L ()). Also ess up IA(s, 0 < K' <

for some K' and for all s in some neighborhood of 0, and so

our original restriction on A(s, w) (allowing us to form

products) is satisfied. We wish to show that A(s) = Z(An/n!)sn

is an analytic map from I into the Banach space L(L 2(), L2(~)).

First we need to calculate the norm of An considered as an

element of L(L2 (c), L2 (C)), and we have the following theorem.
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Theorem 6. Let A:n,--> R be a random variable such that

ess sup IA( ) < m. Then the norm of A considered as an

element of L(L2(,), L2(,)) is ess sup IA(w)I.

Proof: Let iIAiI denote the norm of the linear operator

generated by A. Then JAII = s p HAxH. Let x:n -> R

be such that Ilxjj = 1. Then

Ax (Ax) 2  1/2 2( x2 (Odp(J)1/2< (ess sup A2

x2(L)d (w) 1 / 2 = ess sup IA(& I ixll = ess sup IA(e) ).

tence jAi < ess sup IA(w)I. We show now that JIAIl > ess sup IA(w)I.

Let E > O be given. Let K = ess sup IA(w)l and define the

set D = C( :LA(w) > K - E). We may suppose without loss of

generality that p(D) = 6 > O. Define x(ca = X()6 - 1/2

where X(w) = 1 for ow E D and X(w) = O otherwise. Then

xli = (j x2 ( /w)d2( )1/2= ( -6ldg(w)) 1 /2 = ((D)6-1)1/2= 1,
D

and IAxlj = (S A2 (C)x2 (w)dg(w))1 /2 = (61 S A2 ( )dp(w)) )/2 >
D

> (6-1(K- c)2(D))1 / 2 = K-E. Hence IAI > K-E, and since E

is arbitrary, we see that IAI > K. Thus IIAII = ess sup IA(w)I.

QED

We now see that (A n/n!)t n is a power series in

L(L2(C), L2(0)) since l(llA n i Itnl/n ' ) =
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* (ess sup A (11 (w) tIn n) < Y (Kn tn/n:) = eK t < .

Hence A(t) = (A ntn/n:) is analytic in L(L 2(), L2 ()).
t

Form the function y(t) = - A(s)ds where integration takes
0

place in L(L 2 (n), L 2 ( fl)), and then consider the bounded

linear operator (for each t) exp y(t). This is an analytic

map, and simple algebra and an inductive proof shows that

its power series has the coefficients xn defined previously.

Hence applying the corollary to Theorem 4, the function

X0 exp (- A(s)ds) is an analytic map from I into L2 (2).
O

Now consider the expression:

t t
exp (- A(s)ds) exp (A(s)ds) F(y)dy where the indicated

O 0 O

integrations involving the exponentials take place in

L(L2(0), L2( )) and the remaining integration takes place

in L2(,). Since F(y) is analytic (in L2()),

exp (JA(s)ds) F(y) is analytic (in L2(6)) as before, and
0 t

consequently so is its integral J ; we apply once more

t 0O

the operator exp (-S A(s)ds), so the whole expression defines
O

an analytic function in L2(0). Again an inductive proof

shows that the coefficients of this analytic map are

n-1
E kfn Fk as previously defined. Hence our power series

k=O

for X(t) converges (absolutely) in some neighborhood of O,

and analyticity is established. We summarize our results

with the following theorem.
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Theorem 7. Let F(t) and A(t) = L(An(w)/n.')tn be analytic

second order random functions and let XO be a square

integrable random variable. Suppose there is a constant K

such that ess sup A n()i < Kn for every n. Then the

stochastic differential equation X'(t) + A(t)X(t) =

F(t), X(O) = XO has a unique analytic solution.

Note that the extension of this theorem to higher

order equations is trivial. If we have the equation

X(n)(t) + )X(n-1)(t) +**-+ o(t)X(t) = F(t) and the
n-1

coefficients are analytic and satisfy esssup Ia ( k)(O)< Kk

for some set [K n- and every k, then we write the equation
/j j=O

in a vector form

X'(t) = A(t)X(t) + G(t)

where

0 1 0 . . 0

0 0 1 0 . . 0

A(t) =

0 0 O . . . 1

-aO(t)-Ul(t) ... -(n-1 (t

and G(t) = .

Note that analyticity of the a.(t)'s implies that of

A(t) (as a bounded linear operator on (L 2()) n ) and G(t)

is obviously analytic. Hence the same techniques of our
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theorem extend to this case and to the state space equations

of stochastic control theory, in particular to the recent

work of Leon H. Sibul (dissertation).1

Turning to the question of stationarity, we are interested

in finding necessary and sufficient conditions that an

analytic random function be stationary. We will assume all

our random functions satisfy < X(t) > = O. Suppose then

that X(t) = ,(X n/n)tn is a real analytic random function

with the (analytic) covariance function P(s,t). Suppose

also that X(t) is stationary. Then there is some function

f:R -- > R such that r(s,t) = f(t-s). Note that f(u) = f(-u).

Since r(s,O) = f(-s), we see that f is analytic (at O),

so there are real numbers c n such that f(s)= (c /n!)sn

Let us see how these constants are related to X(t). We have

F(s,t)=< X(s)X(t) >=< z(smXm/m!) (tnX n/n! > =
m n

m 
n

C E (stn-3/j:(n-j) ) < .x .> =n-

n=O j=O
Co n
= (1/n) (n.)sJ tn-j  < X . X.>. But

n=O j=0 n-3 3
m n

f(s-t) =E (c (s-t)n/n.) = E (1/n.) Z (-1) n-cn (n)s t n -j .

n= 0  n=O j=0o

Since f(s-t) = F(s,t), we have these two power series (in

two variables) representing the same function, hence their

coefficients must be equal, thus (-1)n-cn =< X-j X.>.

Rewriting this last equation, we have < X X >= (-1)nc+ mnm n+m

Sibul, L. H., Application of Linear Stochastic
Operator Theory, Pennsylvania State University disser-
tation, 1968.
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On the other hand, suppose we have a zero mean analytic

random function X(t) = J(Xn t/n') such that there exist

constants [c n satisfying < X Xm > = (-1)n+ m . Then

the above equations show that X(t) is stationary. Thus we

have the following theorem.

Theorem 8. Let X(t) = t(X tn/n:) be a (zero mean) real

analytic random function. Then X(t) is stationary if and

only if there are constants (cn I such that < XnXm > = (-1)n+m

It is clear that a set of constants (cn satisfying

the condition of Theorem 8 cannot be completely arbitrary.

In fact, we must have

i) c2 k+l
= O, ii) c4 k > O, and iii) c 4k+2 < O.

2k+l
To see i), note that < X2 k+1XO> = (-1) c2k+l= -c2 k+l

and < XOX2k+l > = (-1)Oc2k+l. Since X(t) is real-valued,

we have -c 2 k+l= c2 k+l, i.e., c2 k+l= O. This is to be ex-

pected since f(t) must be an even function. Also

S< <X > = <X kX > = (-1) 2 k  = c and O < <X 2  >
O 2k 2kX2k 4k 4k - 2k+1

<X 2 k+l X2 k+l> = (-1)
2 k + c4k+2, hence ii) and iii) are

proved. By defining dn= Ic2nI, we can write f(t) in the

form f(t) = E (-l)n(d /(n')t 2 n where d > O for all n, hence
n=O

f(t) is representable by an even, alternating power series.

(Note that d = <X 2 >).
n n
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Theorem 8 can be reformulated in the following way.

Theorem 9. Let X(t) = (X ntn/n') be a (zero mean) real

analytic random function. Let A = fXO,X2,... ,X 2 n,. ]

and B = (XX3, ... ,X2n+1,... . Then X(t) is stationary

if and only if A is orthogonal to B and

i) <X2nXO> = <X2(n-k)X2 k >  k=0,...,n

ii) < X2n+lX1 > = < X2 (n-k)+l X2k+l >  k =0,...,n

and iii) <X X > = -<X 2  X > for all n > 1.

Proof: Suppose X(t) is stationary. We show that AJLB
first. < X2nk=0>ence 2 n

first. < X2nX2k+1 > = (-1) C2n+2k+l= C2(n+k)+l = O. Hence

AiLB. Also,

2(n-k)1) <X 2 (k) > = (-1) 2n-2k+2k C2 = <X 2  >
2(n-k)2n-2k+2k 2n nO

2) < X2 (nk)+l X2 k+l> =(-l) 2 (n - k)+l2) <X X (-1C2n2k++2k+l =

2n+l
= -C 2 n+2 = (-1) c2n+l+ = <X 2n+lX1 >

2n-1
3) <X2n 1 > = (-1) C2  = -C2 = -<X X >2 2n =-C2n 2nXO '

so the first half of the theorem is proved.

Suppose now the second half of the theorem holds.

Define (c n ] by the equations c2m+l = 0 m=0,1,..., and

C2 m = <X X > m =0,1,.... We will show that < X .n-jXj .> =

= (-1)n- j cn for 0 < j < n and all n, whereupon Theorem 8

tells us that X(t) is stationary. Suppose first that n

is odd. If j is even, n-j is odd and X .e B, hence
n- 3
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<X .X. > = O since X.I A. Thus <X .X.> = O = (-l)n-jc
n-j j j n-j j n

since n = 2m+l for some m. If j is odd, n-j is even, so

X .E A and X. B, hence <X .X. > = O = (-1)n-Jc as before.
n-J j n-jj n

Now we show Theorem 8 is satisfied for even n. Let n = 2 p.

First consider the case where j is odd, let j = 2q+l.

Then

<X .x > = <X X > = <X X >
n-j j 2(p-q)-l 2q+l 2(p-l-q)+l 2q+l

= < X2(p-1l)+1X1 > = <X2p-1X > = -<X2pXO 0

S(_ 1 )2(p-q)-cp = (-1)n-Jc .

Now suppose j is even, j = 2q. Then

<X .xJ> = <X 2  X> = <X X >cn-j j 2(p-q) 2q 2pX C 2p

(-1)2(P-q)c2p= ()n-Jcn

as was to be shown. Hence X(t) is stationary. QED

We now have developed a technique for finding the power

series coefficients of solutions to stochastic differential

equations and we also have theorems which tell us when a

given analytic stochastic process is stationary, so in

principle we have the machinery to determine conditions

under which a given equation will have stationary solutions.

We present some examples to show how this may be done.

Example 1. We know that the derivative of a stationary

random function is stationary. When will the integral of
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a stationary (analytic) random function be stationary?

This question is equivalent to determining stationary

solutions to the differential equation X'(t) = F(t),

X(O) = X0 where F(t) is the given stationary (analytic)

random function and the random variable X0 is yet to be

specified. The soltuion to this equation is
t

X(t) = X O + J F(s)ds = XO + FOt + F t2/2 +- (Xntn/n:)
O n=O

where X = F for n > 1.
n n-i -

We now apply Theorems 8 and 9 to this random function

to see what additional conditions we need to place on X0

to guarantee stationarity. Theorem 9 tells us that in

order for X(t) to be stationary, it is necessary that

<X= (-1)n <X 2 >, i.e., we must have <F 2n+lX> =
2n 0 n 2n+l 0

= <X (n+l)X > = (-1)n+l<X2 > = (-1)n+l<F 2>. Hence2(n+l) 0 n+1 n

our first restriction on X0 is that it must satisfy the

2n+n nrelations <F 2 n+lXO> (l) <F2 n>.  Moreover, Theorem 9

requires that <XOX2 n+l> = O for all n, hence our second

requirement is that <XOF2 n> = O for all n. Since F(t)

is stationary, there are constants (fn such that

<F .F.> = (-1)n-jf n  Define constants (cn ] by then-j 3  b

relations c2n+l= O, c = <Xo >, and c +2 -f We will

show that <X .X.> = (-1)n-Jcn-j j n

Case 1. Let n be odd, n = 2k+1l. We must show

<X .X.> = 0 for all appropriate j. For j = 0, <X .X.> =
n-j j n-j 3

= <FnX> = <F X > = O. For j > 1, < Xn.> jX =
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<Fn-j-Fj-> = (-1)n-j-nf 2  1)n-j-2k-1 0 since

the f 's with odd subscripts must be zero.

Case 2. Let n be even, n = 2k. For j = O, <X .X.> =

< Xn> = < Fn-lXO> = <F2k-I > = 2(k- l )+l X O
(-1)k <F > = (-) (k- (-l)k-l= (- ) 2k- (k

k 2(k-) 2(k-)

(-1)2k2k (-1) c n as required. For j > 1, <X _j.> =

= <Fnj Fj > = (_)n-j-lf = (-1)2k-j-1
2kn-j-1 -1 n-2 2k-2

(1f) 2 k f 2 (k-1) = (-1) 2 kc 2 (k-l)+2 = (-l) 2 kjc 2 k=

= (-1)n-3cn as required. Hence we see that necessary and

sufficient conditions for X(t) to be stationary are that

<F(t)> = O, <F 2 n+XO> = (-) n + l <F 2 >, and <F2nXO> = 0.

These last two conditions may be combined by requiring that

<XOF(t)> = < XO 0(Fntn/n:)> = r(tn/n:)<X Fn> =

r(t2n/( 2 n)) <XOF2 n> + V(t2n+ /(2n+1)) )< XF2n+> =

= (tn+ /(2n+l)) ()n + l <F 2 > = -(t2n+/(2n+l):) x

n
S(-l)n< F2 >,

i.e., we require that the correlation function of F(t)

and XO be given by

<F(t)XO> = - ((-l)nt2n+i n+l)) <F2
n



27

Example 2. We present here an example of a differential

equation in which the coefficient function as well as the

forcing function is random. Consider the equation

X'(t) - Ae- XtA(t) = AB(e tA - 1)

X(O) = B

where A is an essentially bounded r.v. Writing the equation

in the form X'(t) + A(t)X(t) = F(t), we calculate that

A(t) =-Ae - t A =  (-A) t /n: i.e., A = (-A) . Also

we have F(t) = AB(e t A - 1) = E An+ Btn/n: so we have
n=l

F = O and F A n+B for n > 1. We have a solution
O n -

n-i
X(t) = Xn tn/n: where X= x X + E f F =

k=O
n-1 n-1n-l k+l n-l k+l

x B + F kfn(A B) = B(x n+ E f A )= BC
n k=l n k n nk=1 k=1

where we define C to be the expression in the brackets.

Remember that both xn and kfn are polynomials in the
n re poyoiablsi

variables AO,...,AnI-l and since the variables Ak are

polynomials in A (Ak= (-A) k+), we conclude that Cn is a

polynomial in the r.v. A. Now if X(t) is to be stationary,

2 2

we must have <XOX2> = -<X >, and this condition becomes

<A2 B 2> = O and hence we know that any polynomial in A is

orthogonal to any polynomial in B. Thus we have <X X > =
n m

= <BC BC > = <B2C C > = O for n+m > 1 and consequentlynm nm

Theorem 8 is satisfied. Thus the solution is stationary

if and only if <A2B2> = O. Note that we did not actually

have to calculate the solution to make this conclusion.
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Example 3. Consider the equation X"(t) + BX(t) = 0,

X(O) = XO' X'(O) = X1, where B is a random variable which

is positive a.s. This equation is a stochastic analog of

the harmonic oscillator equation. Suppose X(t)= L(Xn/n!)tn

then X"(t) = (Xn+2/n')tn, so 0 = X"(t) + BX(t) =

= (Xn+2/n)tn + B T(Xn/n)tn =,((Xn+2+BX n)/n')tn, i.e.,

X = -Bx for all n. It is easy to see that the coefficientsn+2 n

X n are given by the relations X2 n= (-B)"XO and X2 n+l= (-B)nX1

The closed form expression with these coefficients is

X(t) = XO cos /B t + ( 1l//B)sin/B t.

To see when this random function will be stationary,

let us assume that the random variables B, XO, and X1 are

all independent and < X> = < X1> = O. We apply Theorem 9,

so define A = EXO, X2 ,X4 ,... ) and C = (X1,X3,X5,... . Now

A and C are orthogonal since <X2nX2p+X > = < (-B)nXO(-B)P >

< (-B)n+P> < X> <X 1> = 0. We check the last three

conditions of the theorem:

i) <X 2 (n-k)X2 k> = < (-B)n-kXO(-B)kXO

< (-B)nXoXo> = < X2nXO>

ii) <X2(n-k)+lX2k+l
> = < (-B)n-kX1(-B)kX 1

< (-B)nX1 X1> = <X 2 n+lX 1>

iii) <X2nX> = < (-B)nX > = < (-B) ><X2 > =
2n 00 0<

(-1) n < Bn> < X 2 >
0
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Also < X2  lX> = < (-B)n-1 2 > = (-1) n - 1 < B-l> <X>.

But these expressions must be negatives of one another,

and so < Bn> < Bn-l>< X>/X >. Let c = <X 2 >/<X 2>

then <B > = c < Bn- >, i.e., <Bn> = c n for every n. The

characteristic function for B is <exp itB> =

intn< Bn>/n -= (itc)n/n: = exp itc, so B = c a.s.

since characteristic functions are unique. Thus if we

assume B, XO , and Xl, are independent and < XO> = < X1> =0,

the solution is stationary if and only if

B(w) = <X >/< X> a.s..

These three examples serve to indicate a fairly

wide range of questions which the techniques of this section

can answer. The first example provides us with a criterion

which we will use in section 3 to characterize the general

form of stationary solutions to the equation. Example 2

shows that we may characterize conditions for the existence

of stationary solutions without having to find the solution

itself. Example 3 says that a more general canonical form

of simple stationary processes (i.e. adding randomness in

the time functions of A cos t + B sin t) is not needed.
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SECTION 3

In this section we use some of the tools of random

harmonic analysis to develop further conditions guaranteeing

stationarity of solutions to certain stochastic differential

equations. We make extensive use of the harmonic decom-

position theorems concerning stationary processes to find

sufficient conditions to be placed on the initial values

of the equations. We then calculate the correlation

function of the resulting solutions. Moreover, we show

that under fairly general conditions we can get asymptotic

stationarity independent of the initial values. We begin

with the notion of an orthogonal random measure.

Let 1 denote the family of Borel subsets of the real

line and let a denote the subfamily of bounded Borel

subsets. Then a function :a7 x r,--> C is called an

orthogonal random measure if

i) -(A) E L2 ( l ) for each A E 7

ii) E(4(A)) = O for each A E a

iii) E( (A)T~T) = O if A r B = 0, A,B E a

iv) the relation M(A) = E(J((A) 12) defines a measure

on a.

The measure M is called the absolute measure associated with

. If f:R -> C is a complex valued measurable function

such that J If() dM(X) < -, we can define the integral
a
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b
' f(X)C(dX) in a natural way (see Rozanov [8]).
a

We say that a second order r.f. (t) is separable

if the smallest closed linear manifold in L2(f) containing

the r.v. 's (7(t)tER is separable, i.e., it contains a

countable dense subset. We remark that a continuous r.f.

n(t) is necessarily separable, for let K be a basis for

L ( ) and let t n= 1 denote the set of rational numbers.
n n=1

Then for each n, there is a countable subset of 3

(call it H h ' such that 7(t ) = E((t )h)h)h .
n nm m=1 n =1 n nm nm

m= 1

Let H = (a n be an orthonormal basis for the smallest
n n=1 0

closed linear manifold containing i H . We claim that
n=l n

for every t, 1(t) = C E(q(t)an)a n . This equation obviously
n=l

holds if t is rational, so we suppose that t is irrational

and E > O. Since 7r is continuous, there is a tk such that

i;n(t) - 71(tk)W < E/3. There is an N such that if n > N,

n
then iln(tk) - E((t )a )am 1 < E/3. Hence, for n > N

m=l
n

177(t) - Z E(7(t)m)amh < H 71(t - (tk)l +
m=l

n n n
+ i(tk) - IE(q(t)am + [ L E(77(tk)im)a m - Z E((t)i)am1 <

m=l m=1 m=l1

n
< E/3 + E/3 + i [E( (tk)am) - m((t)m ]ai <

m=l

< 2 E/3 + 7i((tk) - <(t)l < E.

Hence the curve n(t) is contained in a separable manifold

and so n(t) is separable.
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Rozanov proves that every separable stationary process

(with measurable correlation function) is representable in

the form

7(t) = f e 2 it i(dX )

where ( is an orthogonal random measure. (4 is called

the spectral random measure associated with ?). This is one

of the most powerful results in random harmonic analysis

and we will make extensive use of this theorem throughout

the rest of the paper. Relevant discussions of these

integrals and decompositions are presented in Rozanov's

text [8] and in Irzhina's paper [5].

In particular, we are especially interested in the

equation

(1) X'(t) + aX(t) = F(t)

X(O) = XO

where a is an essentially bounded r.v., XO E L 2(), and

F(t) is a stationary continuous r.f. We will also suppose

that a and F(t) are independent. As is well known, the

solution to the above equation can be.expressed as

X(t) = Xe ta+ e - ta eya F(y)dy.

We write F(y) = S e2IiyX4 (d) where 4 is the spectral

random measure associated with the process F(y). Assume

for the moment that the following calculations are valid and

t t =
calculate S eYaF(y)dy = y eYa e2 7TiyX4(dX)dy =

O O -
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= jt eY(2ikX+a)dy (dX) = ((et(21ik+a)-l)/2ik+a)(dX).

-mO mc

Thus

X(t) = Xe-ta+ e-ta O et(2 ikX+a)-Y27ik+a) (dX)

= XOe-ta+ ((e2iit -e-ta/ 2 rik+a) (dX)

(2)

= eta [XO -  ((dkY2ik+a)] + f (e2nitX/2ik+a) (dX)

= K(t,a,XO,F) + Y(t)

where K and Y are the respective summands from above.

We show now that the random function Y(t) is a stationary

process.

E(Y(s)YT~T) = E(J(e 2isk/2TiX+a)((dX)

S(e2 1itA/2fi+a)g(dA)) =

= E((e 2ff i (s> -tM )/(22ii>+ a) ) (dX)--id))

SSE(I/(2ixk+a)(2niA+a))eni -t)E((d )

SSE(1/ 12fiX+a 12)e2Ti(s-t)G(dX)

where G is the absolute spectral measure of F. As we

see E(Y(s)YTt)) is a function of t-s only, hence Y is

stationary and its correlation function is

f(r) = fE(1/ 12i+al2)e2 iXTG(dX).
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If F(t) is a real process and a is a real valued r.v.,

the above equations reduce to the representation

X(t) = K(t) + Y(t) where

Y(t) = j' (acos21Xt+2Xsin2TXt/a 2 + 42 X 2)u(dX) +

+ ' (a sin 2 Tt - 2wXcos 27Xt /a2+ 42 x2)v(dX)
0

where F(t) = J cos 2wXt u(dX) + I sin27Xt v(dX) is the
O O

spectral representation of F. 1 Also then E(Y(s)Y(t))

coE(1/42 2+a 2)cos 2wX(s-t)G(dX) and Y(t) is again stationary
O

with correlation function f(T) = E(1/42 X 2+a2)cos 2WXTG(dX).
O

We get

K(t) = e - t a [X O - a I(u (dX)/a2+42 x2) + 4(2aX v (dX)/ a2+4 X2)

and so if a(w) > x > 0 for almost all w, we see that

lim K(t,w) = O a.e. and then X(t) is asymptotically stationary
t -O

(independent of the initial conditions). See also Adomian's

discussion of a similar problem in his dissertation.

We now need to investigate carefully the various

integrations involved in the above calculations. In particular,

the problem may be phrased as follows: let I and J be

intervals, f:R2x %-> C measurable on the product space

R xR x ~, a random orthogonal measure; 1) can we define

1 See Doob [4] also.
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the integral jf(x,y,w)4(dx) in a consistent way?, 2) if
J

so, when can we say that the interated integrals

jS f(x,y,w)((dx)dy and jfJ f(x,y,w)dyg(dx) are equal? Let
IJ JI

us answer the first question. Let g:R x F--> C be a function

with the property that there exists a mutually disjoint

n

sequence of bounded Borel sets (AkI= 1 and a sequence

g ]n 2  n

gk=' gk L (), such that g(x,w) = Z C(Ak,x)gk()k=l

where C(Akx) is the characteristic function of the set

Ak . Moreover we will require that the families (gkI and

(4(A k )  be independent. Then define jg(x,u )(dx) =

n
Sgk ( w) (Ak, ). We get

k=l
n

E(Ifg(x, w)(dx) 12) = E( n gjgk ( (Aj) -- k ) ) =
j,k=l

n n 2

(3) = E E(gj gk)E(g(A )- 7k)) = E(g k 2)M(A k )
(3) k=l k=l

= fE(Ig(x)1 2 )M(dx) = fllg(x)ll2M(dx),

where M is the absolute spectral measure associated with (.

Now consider the set d of all functions g-(x, w) = EC(Ak,x)gk())

where (gk is independent of the family £[(A) AE6' 7 = all

bounded Borel sets. . is clearly a linear space, and if g Ed

fg(x)g(dx) is defined. Define Igll Op= (Slg(x)112 M(dx)) 1 / 2

then jJ. li is a norm on d. Complete n with respect to this
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norm and denote the completed space S. If g ES and

I1g-gnj--> O, define fg(x)((dx) as the. limit in the mean

of the random variables fgn(x)(dx). Note that equation (3)

guarantees that this limit exists. Just as in the case

of ordinary stochastic integrals with respect to orthogonal

random measures, we have that g(x) is integrable whenever

fIg(x)12M(dx) < m and g is the limit of elements of J. Note

that if g,h ES, then E(jg(x)((dx) jh(y)((dy)) =

= Scov(g(x),h(x))M(dx) since the corresponding relation

holds for elements of J. Note also that if g(x) is continuous

in mean square and independent of (A)AAE&, then g is

integrable if and only if j llg(x)1 2M(dx) < C.

Consider now the question of interchanging the order

of iterated integrals. Suppose we have a function

f:R 2 x r,-> C which is measurable, f(x,y,.) E L2 (f) for

2 2each pair (x,y), and the natural map from R into L (f

induced by f is continuous. Suppose also that the family

[f(x,y) (x,y)ER2 of r.v.'s is independent of (4(A)) A E'

Let I and J be intervals. Then g(x) = ff(x,y)k(dy) exists
I

if and only if fllf(x,y)i12 M(dy) < m. We want to integrate

g(x) over the interval J, and Ig(x)I = (fE(f(x,y)1 2 )M(dy)) 1 / 2

I

so let us require that f satisfy the condition

(4) f(f E(If(x,y) 12)M(dy)) 1 /2dx < .
J I

Then the integral ff f(x,y)4(dy)dx exists. Now we want to
JI
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insure that Jf f(x,y)dx4(dy) exists, so we need to know
IJ

that j' (E(if(x,y) 2 )) 1 /2dx < _. Note that independence is
J

preserved under this integration, so all we need to check is

that j E(lh(y) 2 )M(dy) < m where h(y) = J f(x,y)dx. But
I J

E(lh(y) I2) = E j' f(s,y)f(t,y)ds dt = j' E(f(s,y)f(t,y))ds dt,
JJ JJ

so we require that f satisfy

(5) IfS E(f(s,y)f(t,y))ds dt M(dy) < m
IJJ

Now if f satisfies (4) and (5), both the iterated integrals

exist. Consider now a subclass of function integrable with

respect to 4. We say that g E U if g Ed and there is a sub-

set H = H(g) C L 2(,) whose finite linear combinations are

dense in L 2(C) (call such a set linearly dense) with the

property that E(g(x)((A)h) = E(g(x))E(((A)h) for x E A,

A E a, h EH(g). We sometimes write this relation as

E(g(x)((dx)h) = E(g(x))E(g(dx)h). If g is a simple function,

then

E(Jg(x) (dx)h) = E(Z gkg(Ak)h) = Z E(gk)E((Ak)h) =

= 5 E(g(x))Mh(dx)

for h EH(g) where Mh is the measure defined by Mh(A)= E((A)h).

Hence if g EU, we have E(S g(x)4(dx)h) = . E(g(x))Mh(dx) for

h EH(g).

Return now to the consideration of our function f. We

require now that the range of the function g:R -> P defined
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by [g(x)](y,w) = f(x,y,w) be contained in U. Then there

is a linearly dense subset H C L2(0) such that if h EH

then

E(SS f(x,y)dxi(dy)h) = Y (E( f(x,y)dx))Mh(dy) =
IJ I J

= f E(f(x,y))dxMh(dy) = f E(f(x,y))Mh(dy)dx =
IJ JI

= S E(Y f(x,y)((dy)h)dx = E(YY f(x,y)g(dy)dx) .
J I JI

Since H is linearly dense and the above relation holds

for all h EH, we conclude that

(6) Y5 f(x,y)4(dy)dx = YY f(x,y)dx 4(dy)
IJ JI

under these conditions.

To summarize these results, we have the following

theorem:

Theorem 10. Suppose f:R xR x9 -> C is measurable and

independent from the orthogonal random measure (. Let M

be the absolute measure associated with 4. Let f(x,y,-)

be square integrable and continuous when considered as a

mapping from R xR into L2 ( ). Suppose there is a linearly

dense subset H of L2(C) such that E(f(x,y)4(dy)h) =

E(f(x,y))E(4(dy)h) for h EH. If for the intervals I and J

we have

(4) Y (Y E(lf(x,y) 12)M(dy))1/2dx < m

J I
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(5) and {,f E(f(x,y)f(t,y)ds dt M(dy) < m
IJJ

then If f(x,y)(dy)dx = fi f(x,y)dx ( (dy).
IJ JI

In our calculations involving the differential equation

(1), the function f is defined by

f(x,y,2) =e 2 ixy ax e2rixy ea(&w)x

Suppose that K = ess Wsup Ia(.,) and a is real valued. Then

relation (4) becomes

S(f COE(If(x,y) 12 )M(dy)) 1 /2dx = j (f E(e2ax)M(dy)) 1 / 2 dx
O -C 0 -co

to t

(C M(dy))l/2 f E(e 2 ax)dx.
-00 0

But (S M(dy))1/ 2 = [IF(O)II < -, and E(e 2 ax) < e2 K x so

t 2ax
E(eax)dx < for t finite. Hence (4) holds. Consider

0

now relation (5).

IE(f(x,y)f(t,y)) < E(le 2 isYease -2 itYeatI) <

< eK(s+t)

hence If f E(f(s (t,y))ds dt M(dy)I <

< IF(O)112  tIt eK(u+v)dudv < - for t < m. Since a is
00

independent of F, f is independent of ( (being a Borel

measurable function). Hence the only additional requirement

we place on a and F is that there exist a linearly dense

set H for which
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E(eYa (dy)T) = E(eYa)E(g(dy)E),

for then we have

E(f(x,y)4(dy)E) = E(e 2"ixyeyag(dy)h) =

= e2ixyE(eyag(dy)E) = e2nixYE(eYa)E(k(dy)h) =

= E(e21iXYeYa)E(4(dy)h) = E(f(x,y))E(((dy)E).

Note that if a is not random, then all these conditions are

trivially satisfied.

So now we can decompose the solution X(t) = K(t) + Y(t)

into the sum of a stationary Y(t) and (in general) non-

stationary K(t). Thus if we set K(t) = 0 and solve for XO,

we obtain a sufficient condition for stationarity. In

particular, if

(7) X0 = J (l/2iX+a)4(dX)

then X(t) is stationary. Note that a new difficulty arises

in this expression. Namely, if a = O (in general, if

[Laa(w) = 0) > 0) and 0 is in the point spectrum of F, then

(7) is not defined. This does not contradict our exchange

of integrations however, but it does say that we cannot

split up the integral in equation (2).

The condition in (7) may actually be a necessary

condition for stationarity. For example, consider the

equation X'(t) + X(t) = f, f EL 2 (O). F(t) = f, so t(S)=f

if 0 ES and 4(S) = 0 otherwise. Hence the condition is
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XO = S(1/21ik+l)(d) = f and the resulting solution is

X(t) = S(e2itX/2iiX+l)(dX) = f. Note that F(t) is

analytic, so solving by power series we get X(t) =f+ (Xo-f)et,

i.e., Xn= (-1)n(X0 - f), n > 1. Calculating the covariance

function of this process, we see that a sufficient condition

that X(t) be stationary is that <f2 > = <fXO> = <X2>. We

show now that this is necessary. For if X(t) is stationary,

<XOX2> = -<X2>. But <XX2> = <X2> - <fX> and <X2>=

<X> 2<fX> + <f 2 >. Also = <XOX1> = <X> - <fX>, i.e.,

<X2 > = <fXo> and so we have

0 = <XOX2 > + <X2> = 2<X> - 3<fXo> + <f 2 >

2<X2> -<X > + <f 2>, i.e., <f2> = <X2>.

Hence <X2> = <fXO> = <f 2 > is a necessary and sufficient

condition that X(t) be stationary. But then <(X 0 -f) > =

=<X> - 2<fX> + <f2> = 0 and so f = XO.  Thus the condition

XO= S(l/2ik+l)6(dX) is actually necessary. (Note that

we have incidentally proved that if a and b are r.v.'s,

then a + be-t is stationary if and only if b = 0).

Of course the condition on X0 expressed by (7) is not

always necessary for stationarity. Consider the following

interesting example. Let X'(t) = F(t) and suppose that

F(t) is real valued and analytic and 0 is not in the spectrum

of F(t). Then the sufficient condition we get on X0 is
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O

X0 =- (/2 iX)v(dX)
0

where F(t) = cos 2T1tXu(dX) + I sin 2itX v(dX). Note

0 0

that E(XOF(t)) = -Y (sin 2tX/2kTX)M(dX) in this case.

If we calculate the coefficients in the power series.

expansion for F(t), we get

F2n= (-1)n (2>)2nu(dX)
0

F2 n+l = (-i' (2ik)2n+lv(dX)
0

Hence in general we have <F 2> = (2kX) 2nM(dX). Thus

applying the result of example 1, we have that a necessary

and sufficient condition for X(t) to be stationary is that

n 2n+l 2
<F(t)Xo> = -((-l)nt2n+/(2n+l)') <F2 >

= r-((-l)nt2n+l/(2n+l))S(2k) 2 nM(dX)

= -E J-l)n((2 tX) 2 n+l/(2n+l) 2IX)M(dX)

= -S(sin 2ntX/2fk)M(dX).

Thus we see that if X0 is any initial condition for which

X(t) is stationary, then the projection of the r.v. X0 onto

the smallest closed linear manifold in L2(Ct) containing

the process F(t) (call it 7) is the r.v. -f (v(dX)/2wl).
0

Hence in the case of analyticity, a necessary and sufficient

condition that X(t) be stationary is that
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XO= Y-~ (v(dX)/2 T)

where Y is any r.v. orthogonal to 3.

In this section we have restricted ourselves to the

case of an equation with a constant (r.v.) coefficient.

This restriction was made purely to facilitate the various

computations made in the interchange of order of integrations.

Examining the more general case (time-varying coefficients)

the author has been unable to extract a likely candidate

for the stationary part of the general solution. Neverthe-

less, the idea of using random harmonic analysis especially

in conjunction with the analytic method of section 2 appears

valid, and progress in this direction seems likely in the

future.
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SECTION 4

In section 2 we presented a general method of determin-

ing when stochastic differential equations with random

(analytic) coefficient processes, random (analytic) forcing

function, and random initial conditions have stationary

solutions. In section 3 we presented a method of applying

random harmonic analysis to a simpler first order equation

and we also presented an extension of integration techniques

allowing us to use these more powerful tools. In this

section we wish to relate our work to that done by others

and to also make a few remarks concerning the abstract

notion of stochastic transformations. We also indicate some

future work.

First let us relate our results to Adomian's [1]

results concerning stochastic Green's functions transforming

a given statistical measure of an input process to the

corresponding measure of the output process. Suppose we

have a stationary r.f. F(t) with spectral representation

F(t) = e 1itX (dX).

We have defined the correlation function

f(t) = < F(s)F(s+t) > e-2itkM(dX)

where M is the absolute measure associated with 4. Now if
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M is absolutely continuous with respect to Lebesgue measure

on the line, we call the Radon-Nikodym derivative

m(x) = dM/dX

the spectral density of the process F, i.e., we have

f(t) = Je-2fitm(X)dk

and m(X) = e 2nitf(t)dt

Now in the equation discussed in section 3

X'(t) + aX(t) = F(t), X(O) = XO

with the r.v. coefficient a, we call F(t) the input process

and X(t) the output process. Moreover, applying the results

of section 2 we know that we can have a stationary F(t)

resulting in a stationary X(t). Now let

F(t) = e2 W itX(dX)

and X(t) = e2 itu(dX)

be the spectral representations of F and X respectively.

Suppose also that F has the correlation function f and

spectral density function m. We calculated in section 2

the correlation function x for X given by

x(t) = f E(1/ 12ni+a 12 )e-2nit>m()dX.

Hence we immediately recognize that the spectral density of

X must be given by

n(X) = E(1/12ii+a12 )m(X).
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Now the Green's function transforming the spectral density

of an input into the spectral density of the output is a

(perhaps generalized) function H(t,u) such that

n(t) = J H(t,u)m(u)du

whereupon we see that H is given by

(1) H(t,u) = 6(t-u)E(1/12fiu+a12 )

Note that this form of the Green's function is the same as

Adomian's [1] if the r.v. a is a constant, for then we get

H(t,u) = 6(t-u) IY(u)12

where Y(u) = 1/(27iu+a).

Similarly, the stochastic Green's function G(t,u) trans-

forming the correlation function f into x by the relation

x(t) = f G(t,u)f(u)du

can be expressed in terms of H by the relation

G(t,u) = Sf e2i(7Tu-t)H(a, )dadT

and so applying (1) we get

G(t,u) = e2it(u-t)E(1/12ir+a 2)d.

In both cases we see that these Green's functions are ex-

pressed in terms of the statistics of the coefficient in

the stochastic differential operator.

Let us make a few remarks concerning the idea of a

stochastic transformation (s.t.), a concept due to Adomian

[1]. If X(t,~), t ET, 0WE , is a s.p., a stochastic trans-
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formation or stochastic operator T on X carries X into

another process Z = T[X], and T in general depends on t

and w' E ' (where O' may not be identical to fl). Thus

T includes all deterministic transformations as a special

case and we usually deal with integral operators, differential

operators, partial differential operators, etc.

We wish now to indicate a general framework in which

these ideas can be precisely expressed. In general there

is a natural desire to distinguish between an operation of

the form

(2) X(t,w) = J H(t,u)Y(u, wdu

where the kernel H(t,u) is a complex valued function and X

and Y are r.f.'s and an operation of the form

(3) X(t, ) = f H(t,u, )Y(u, )du

where the kernel H also depends on the stochastic variable

ca The transformation expressed by (2) in which the process

Y is mapped into the process X is often called a deterministic

transformation whereas (3) expresses an operation which

includes (2) and conforms more closely with our intuitive

notion of a stochastic transformation. Indeed (3) is the

general form of a stochastic integral operator. Similarly

an equation of the form

(4) X(t,w) = aY(t,w) + bZ(t,ca

where a and b are complex constants and X,Y, and Z are r.f.'s

is rightfully considered a deterministic mapping of the
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pair (Y,Z) into the process X. On the other hand, an

equation

(5) X(t, w) = A(t, aY(t, w) +.B(t, JZ(t, a

mapping the pair (Y,Z) into X is a "truly stochastic"

operation. Also we need to consider maps of the form

Y -> X defined by

(6) X(t,w) = Y(f(t), )

where f:T -> T indicates a re-parameterization of the

time variable. One wants to think of (6) as expressing

a deterministic relationship whereas

(7) X(t,o) = Y(f(t),(oW))

where f:T -> T and p:f -- > f would again be "truly

stochastic". Bharucha-Reid's [2] "random transformation"

refers to a map

(8) T: R -- > R

with the property that the function T(-,x) is a r.v. for

each x E R and such a random transformation may induce a

stochastic transformation defined by

(9) X(t,u) = T(c4Y(t, a)

carrying Y into X. One would call such a transformation

deterministic if the function T did not depend on the

first coordinate of its argument. The examples of trans-
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formations in the introduction to this thesis indicate more

different forms that a s.t. can take.

We propose to examine a function space approach of

representing a r.f. as a measure on a fixed collection of

functions; then a change of measures on this function space

will be identified as a stochastic transformation. In

particular, let X(t) be a real-valued s.p. with parameter

set T = (a,b). Following the construction outlined in

Skorokhod [10], we let D be the space of all functions

x:(a,b) -> R. If A is a Borel set in R and toE (a,b),

we let C (A) = [x E :x(t ) E A). A set which is the

intersection of a finite number of sets of the form Ct (A)

is a cylindrical set. We let F be the minimal a-algebra

of subsets of P generated by all cylindrical sets. Now the

measure J determined on F by the relations

k
(10) M( r C (A )) = P(X(ti,W) E Ai, i = 1,...,k)

n=l n

for all k, tl, .. t k in (a,b) and all Borel sets A1,...,A k

is called the measure in the function 'space corresponding

to the process X(t). Kolmogorov's theorem guarantees us

that (10) defines a unique measure on F.

Conversely, suppose that we have a measure A defined on

F such that g(4) = 1. Then we have a probability space

(, ,P) where f = (, 7 = F, and P = . and so we can 4~k4ne a

process X(t), t E (a,b) by the relation

X(, = X(t,x) = x(t)
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We remark that X(t,*) is measurable, for let A be a Borel

set. Then taxX(t,w) E A) = (x:x(t) E Al and this is a

cylindrical set and so X(t,-) is measurable, i.e.,

X(t) is a s.p. Note also that the function space measure

corresponding to X is just A.

Hence every process on (a,b) is associated with a

measure on P and conversely. Now let M be the set of all

measures 1i on 4 such that A(4) = 1. Then any function

f:D --> M where D C M could be called a stochastic trans-

formation. More generally, a function f:D -> M where

D C Mn can be a stochastic transformation.

The above interpretation of a stochastic process as

a measure on an appropriate function space does not in

itself obviate any computational difficulties associated

with the analysis of s.p.'s. However, we can now use the

full power of general measure theory to gain new insight.

For instance, the author is currently attempting to

prove theorems answering the following questions: Let F

be a stochastic transformation and let X(t) be a stationary

(in some sense) process. Suppose that Y = F(x) is stationary

(in the same sense). Let p and v be the measures associated

with X and Y respectively. Let M be the manifold in

L2 () generated by X. Let Z = Z(t) be the process obtained

by projecting Y onto Mx and let n be the measure associated

with Z. Is V << A? Is n < < A? If v = vO + V1 is the

Lebesgue decomposition of V with respect to A, does

S= 1? If not, is 7 << V1 or V1 << n? Theorems along
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these lines would give information concerning stochastic

transformations which carry stationary processes into

stationary processes. Also we naturally ask what effect

on a measure associated with a s.p. is induced by a

stochastic differential operator on the process. Also using

our interpretation of s.t.'s in this way, perhaps we can

discover measure-theoretic properties of "deterministic"

transformations (equations (2), (4), (6)) that distinguish

them from "truly stochastic" transformations ((3), (5), (7))

and thus allow us to give a more useful and precise inter-

pretation of these notions.
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PROPOSED RESEARCH ON NUMERICAL METHODS

FOR STOCHASTIC DIFFERENTIAL EQUATIONS

Introduction

Stochastic differential equations involving stochastic

processes in the initial conditions, forcing functions, and

even in the coefficients of the differential operator have

been extensively studied, (see, e.g., ref. 11), the latter

particularly by Adomian (see ref., 2,3,4,5). As is the case

with deterministic differential equations, numerical methods

often become necessary for the solution of specific problems

so it is of interest to develop numerical methods which

insure correct statistic to first or second order. As an

initial example we will consider the first order* stochastic

differential equation

Y' (t) + (t) y(t) = f(t)

where C(t) and 4(t) are uncorrelated stochastic processes.

This equation has been investigated by Adomian and Tikhonov

(see ref. 2 in chapter 4) and by Astr6m and others more

recently. In Adomian's work theoretical expressions were

derived for the covariance of the solution process y(t).

We now consider methods to calculate y(t) and Cov (t,t')

numerically. Two methods have been developed and computer

programs have been written to implement the various algorithms.

The first method uses quadrature to evaluate the appropriate

We emphasize that the method is not for the solution of
first order equations but is to be extended to partial differ-
ential equations and nonlinear stochastic equations. The
preliminary work is for checking against known results.
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integral of the stochastic Green's function, (ref. 4,5). The

second method simulates realizations of ((t) and f(t) from

which the corresponding realization of y(t) is then computed.

In this manner an ensemble of realizations of y(t) is calculated

and statistically evaluated to approximate y(t) and Cov (t,t').

The development of both methods has been for Gaussian

((t) and f(t). There has been no indication that either method

would not be useful if the stochastic processes are not taken

to be Gaussian.

The Quadrature Method

The solution to equation (1) can be written

t t t
ytt f S e v)dv _ t (vdv

y(t) eu v (u)du + yo ea (2)

a

where yo is the initial condition random variable given by

Y(t 0 ) = y(a). The first moment, y(t), is found by taking the

expected value of (2) resulting in

t S (v)dv (v)dv
E{y(t)} f E{e u }{E{f(u)}du + E{y 0 }E{ea

a

where it is assumed that yo and (t) are independent and that

E(t) and f(t) are independent. With the same assumptions

the product y(t) y(t') can be calculated and correlation

functions E{y(t) y(t')} can be written
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t t t'
t t (x)dx v (x)dx

E{y(t) y(t') = E{e }E{i(u) (v)}dudv (4

t' t (x)dx -ftv (x)dx
+E{yO) E{ea v }E{p(v) }dv

t t'

+t - (x)dx -f (x)dx
+E{yO} E{eu a }E{((u)}du

2 a ((x)dx a (x)dx

+E{y E{ca a

For a Gaussian random variable z,

Ee-Z}= e-mz + 1/2 02  (5)

2where m is the mean of z and a is the variance of z.
z z

Defining the function

.(t, t', u,v) = m + 1/2 a2 (6)
z z

where z -f (x)dx + J (x)dx equation, (3) can be expressed

E{y(t)} = c2 (t,O,u,O)E{*(u)}du + Y0 e2 (t,0,a,0) (7)

and (4) can be written
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t t

E{y(t) y(t')} =a t e2(t't'u'v) E{(u) f(v)}dudv (8)

ti

+YO {  e2(tt',a,v) E{(v))dv + e2(t,t',u,a)E{V(u)}du}

a a

-2 e (t,t',a,a)+Y e

The covariances can be computed from (7) and (8)

Cov (t,t') = E{y(t) y(t')} -E{y(t)} E{y(t')} (9)

Inspection of (7) and (8) show that double and single

integration must be performed if these equations are to be

evaluated. Moreover, a vector of values, {y(tl), y(t2), . .

Y(tn)} must be evaluated to numerically represent y(t) and a

matrix of values must be evaluated, Covy (ti, t.) to represent

Cov (t,t'). The amount of calculation required to evaluate

this matrix and vector in any given case, made it necessary to

give special attention to one and two dimensional quadrature.

Gaussian quadrature, while more powerful in many respects,

lacks one feature of Newton-Cotes quadrature that degrades

its sophistication. With Newton-Cotes quadrature, but not

with Gaussian quadrature, the integrand may be computed at

new points while retaining the old values and then all values

may be used to re-evaluate the integral. Moreover, this can
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be accomplished without large core requirements for the com-

puter. The only limiting factor on the particular Newton-Cotes

formula (closed type) that may be used is the word size of

the computer being used.

[1] gives the 2-point through the 11-point Newton-Cotes

formula (closed type). A program was written for the FORMAC

preprocessor for the PL1 language that will derive this type

formula. This program has been used to compute the 12-point

through the 32-point formula. Higher formula have not

been derived because formula higher than the 29-point formula

have weights that can not be expressed exactly on any machine

available. The 3-point rule (Simpson's rule) through the 29-

point formula have been written into a 3 subrcutina program

that permits the user to choose any formula desired, 3-point

through 29-point. Successive refinements of the interval of

integration permit a predetermined accuracy to be selected. It

must be noted that there is no mathematical guarantee that the

selected accuracy will be achieved. Experience has shown that

the convergence criterion employed is reliable for a large class

of functions to either achieve the accuracy requested or to

note failure. The subroutine package, named INTGL, will

evaluate integrals of the form

I = f(x) dx (10)

and

I = [3(y) f f(x,y)dx]dy (11)
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INTGL was modified to use particular properties of (8) and (9)

to decrease computation further.

Program SDEQUAD was written to evaluate an approximating

vector to y(t) and an approximating matrix to Covy (t,t').

Quadrature is achieved by the modified INTGL package. The

user of SDEQUAD must provide the interval of integration,

initial mean and 2nd moment of y, the mean and covariance

functions of 5 and and the function 2.

Advantages of this method include accuracy of the results

and computation time requirements as compared to the simulation

method. It is anticipated that this method can be applied

to stochastic differential equations of higher degree provided

that the stochastic Green's function can be calculated for

the appropriate statistical measure to be evaluated, (see

ref. 2-5). Additional programming is necessary to accomplish

this, however, and quadrature may become overly time consuming

for given integrals.

Three areas present themselves for further investigation.

First, SDEQUAD may be used as a tool'in its present form for

analysis of specific cases of equation (1). The function z,

may be evaluated for C that are not Gaussian. Second, a

modification of SDEQUAD should be developed for a suitable

class of 2 degree stochastic differential equations. According

to references 2 and 5, stochastic Sturm-Liouville systems are

subject to this approach. Consequently, a large class of

problems of applied mathematics, engineering and sciences

can be analyzed by stochastic methods. Third, partial differential
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equations may also be approached by transformation into an

integral equation. Equations of this type include meteoro-

logical models involving a system of partial differential

equations from the mechanics of continua (ref. 8). This system,

subject to stochastic analysis, should yield significant

improvement in weather prediction.

The Simulation Method

Equation (1) can also be written

y'(t) = f(t) - C(t) y(t) (12)

and this is the form in which Adomian does his iteration.

Deterministic equations that are represented in this form may

be solved numerically by Runge-Kutta methods '[l]. By letting

w represent a realization event in the probability space and

writing

y'(t) = (t) - V(t) yW(t) (13)

the realization y (t)can be solved numerically provided that

the realizations C (t) and (t) are known. The first task

in developing a simulation of (2) was to simulate realization

of a stochastic process X in terms of its statistical measures.

In general, this depends upon the evaluation of the conditional

distribution of

x(t i ) x(tI) = 1,' X(t 2) x 2 , ... , X(ti- 1 ) = xi_1 (14)
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If X1 = X(t i ) i = 1, 2, ... , n and fX(Xl,X 2...,X ) is the

joint distribution density function of {Xl, X 2 , ... ,X i1 then

the conditional distribution density function can be written

fx(XiX1 = xl ,  X2 = x 2  .. Xi-= xi-) = (15)

e... f(xl, x 2 ,  ... , xi- Xi f  ... , Xn)dXi+l ,  .. , dXn

.. f( , 2' i-1 X , ... , Xn )dX , ... dXn

If X(t) is a Gaussian stochastic process, then

n n
E E. w.ij (Xi-ai)(Xj-a)

e i = 1 j = 1

f(X, ... , Xn ) = (16)
n 1/2

(2H) (IMI)

where M is a n x. n matrix such that

(M)ij = Cov (ti, tj)

-1
w.. = (M-1 )i j

and ai = X(t i )

Let M. denote the upper left i x i partition of M
1

-1
Let R. denote the right-hand column of M ; R. is the column

vector whose elements are rI , r2, ... ri_, r..
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-1
Let P. = r. so that P. = /r..

1 1 1 1

Equation (13) can now be written

(17)
-1/2f (X. = xl X- = xi) = (2PI )2/21 1' " " i-1 i-1 (21 exp {-(X1-bl) 2/2P i

where b. = a. -P. E r.(x. - a.)where b a
j 1

The value bi is the conditional expectation of Xi and Pi is

the conditional variance of X.. The iteration to simulate a
1

relationship of X(t) is defined by x. = P.p.i + b. where

f{Il 2' "... Un } are independently chosen values of a Gaussian

random variable with zero mean and unit variance. The iteration

is started by P1 = [M]Il and b = a . An ensemble of realiza-

tion of X generated in this manner approximate X in that the

means and covariances of the realizations approximate X(ti)

and Cov (t.,t.), 1 < i, j < n.

With the ability to generate realizations of a stochastic

process, our ability to solve stochastic differential equations

is limited only by our ability to solve deterministic differ-

ential equations. Linear equations of higher degree as well

as non-linear equations are subject to the simulation approach.

The class of stochastic differential equations that can be

solved by this method is larger than the class that can be

solved by the quadrature method. Two disadvantages of simulation

in general also apply to stochastic simulation. Accuracy is

limited. It is difficult to achieve more than 2 digits accuracy

Simulation is also by nature time consuming. In many cases,
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however, either method will yield results or the accuracy that

can be reasonably achieved by a simulation is acceptable.

Three areas for further investigation were mentioned with

respect to the quadrature method. The same may be said with

respect to simulation.
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