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NOMENCLATURE 

Symbol 

A 

Description 

Defined in Equation (30) 

Acoustic admittance 

Constant in Clausius-Clapeyron Equation, see Equation (16) 

Pre-exponential factor 

Constant, see Equations (55 and 56) 

Specific heat of liquid 

Specific heat of gas 

Diffusion coefficient 

Activation energy 

Standard heat of formation of species i 

J-1 

Constant, see Equation (C.1) 

Heat of vaporization 

Constant in Clausius-Calpeyron Equation, see Equation (16) 

Molecular weight 

Total number of species 

Reaction order 

Pressure 

Heat of combustion 

Gas constant 

Defined in Equation (21) 

Temperature 

Temperature of cold end of liquid fuel 



Description Symbol 

t Time 

Velocity 

Reaction rate 

Distance 

Instantaneous position of liquid surface 

Mass fraction 

Liquid diffusivity 

Ratio of specific heats, see Equation (39) 

Specific heat ratio 

Temperature dependence of pre-exponential factor 

Defined by Equation (35) 

Amplitude of oscillatory pressure 

Dimensionless distance, see Equation (20) 

Defined by Equation (22)  

Thermal conductivity 

Defined by Equation (7) 

Stoichiometric coefficient of species i as reactant 

Stoichiometric coefficient of species i as product 

Density 

Phase angle 

Nondimensional frequency 

Subscripts 

F Fuel 

f Flame surface 

H Homogeneous solution 



Symbol Description 

Imaginary quantity 

Species i 

Liquid 

Particular solution 

Real quantity 

Liquid surface 

Inner side of liquid surface 

Outer side of liquid surface 

Steady state quantities 

First order quantities 

Far from liquid surface 

Superscripts 

* Dimensional quantities 



The major objective of the present study was to investigate 

the combustion characteristics of liquid hydrazine strands under 

both steady state and oscillatory conditions. A theoretical model 

of the combustion system was developed and compared with the 

experimental results. 

The theoretical model of the system assumed one-dimensional 

flow and used global kinetic parameters to characterize 

the hydrazine decomposition flame. The properties of the liquid 

phase were assumed constant; however, a variable property gas phase 

solution was obtained through the use of a modified Howarth 

transformation. Conventional low pressure phase equilibrium was 

used to characterize the liquid surface. The equations resulting 

from the theoretical model were solved using a perturbation analysis 

with the amplitude of the imposed pressure oscillations taken as 

the perturbation parameter. Thus, in zero order, the model corresponds 

to steady strand combustion while the first order model takes into 

account the effects of a small amplitude, sinusoidal pressure 

disturbance. 

The steady experimental results were obtained using a steady 

strand burner. With this apparatus, steady strand burning rates 

were obtained for mean pressures ranging from 0.32 up to 42 atm. 

Liquid temperature disturbations and surface temperatures were 

measured in the range of 1.0 to 20.5 atm. 

For the unsteady measurements, an oscillatory version of the 

steady strand apparatus was developed. With this apparatus, the 



burning rate response of hydrazine to imposed pressure oscillations 

was measured. The apparatus permitted the amplitude of the 

oscillating pressure to be varied independently of the frequency 

at a given mean pressure. Oscillatory burning rates were obtained 

in the mean pressure range of I to 10 atm with frequencies varying 

from 0.40 to 5.2 Hz and pressure amplitudes up to 35% of the mean 

pressure. 

The experimental steady strand burnfng rates were found to 

be dependent on the liquid hydrazine purity. Adding water as an 

impurity to the fuel resulted in a reduction in the burning rate. 

However, for the highest purity fuels tested (98.6 and 99.4%)  the 

burning rate of the two fuels was not appreciably different. 

The diameter of the sample tube was found to have an effect 

upon the experimental burning rate. As tube size increased, the 

burning rate decreased due to the reduction in the effects of surface 

tension for the larger tubes. By plotting the strand burning rate 

as a function of the reciprocal of the tube diameter, linear plots 

were obtained allowing the determination of the fundamental strand 

burning rate (burning rate in an infinite diameter tube) by 

extrapolation. 

For subatmospheric pressures the fundamental burning rate 

varied as the square root of pressure; for pressures greater than 

atmospheric, the fundamental burning rate varied linearly with 

pressure. The theory was matched to these results by assuming a first 

order decomposition reaction for subatmospheric pressures and a 

second order reaction for pressures greater than atmospheric. 



The l i q u i d  temperature experimental r e s u l t s  gave a  good 

p red ic t ion  of t h e  t h e o r e t i c a l  model assuming cons tant  l i q u i d  

-3 2 p r o p e r t i e s  and by us ing  a va lue  of 1.26 x 10 cm / s e c  f o r  t h e  

l i q u i d  thermal d i f f u s i v i t y  of hydrazine. The l i q u i d  su r face  

temperature r e s u l t s  were a l s o  adequately p red ic t ed  by t h e  t h e o r e t f c a l  

model, j u s t i f y i n g  t h e  low p res su re  phase equi l ibr ium assumption. 

The s teady s t r a n d  r e s u l t s  fndica ted  t h a t  t h e  t h e o r e t i c a l  

model was i n  good agreement wi th  a l l  t h e  a v a i l a b l e  d a t a  on hydrazine 

s t r a n d  combustion. Next, t h e  t h e o r e t i c a l  model was compared t o  t h e  

experimental o s c i l l a t o r y  burning r a t e  measurements. It was found 

t h a t  t h e  o s c i l l a t o r y  measurements of both  amplitude and phase angle  

of t h e  l i q u i d  su r face  o s c i l l a t i o n s  were i n  good agreement w i t h \ t h e  

t h e o r e t i c a l  model i f  t h e  decomposition r e a c t i o n  was assumed t o  be 

second order  with an a c t i v a t i o n  energy of about 40 k c a l  (E=15) f o r  

mean p res su res  i n  t h e  range of 1-10 atm. Unlike t h e  s teady s t a t e  

where a c t i v a t i o n  energy had l i t t l e  e f f e c t  upon t h e  p red ic t ed  burning 

r a t e ,  f o r  t h e  o s c i l l a t o r y  case  a c t i v a t i o n  energy had a  pronounced 

e f f e c t  upon both t h e  amplitude and phase angle of the  unsteady burning 

r a t e .  

The t h e o r e t i c a l  r e s u l t s  showed t h a t  f o r  a c t i v a t i o n  ene rg ie s  

c h a r a c t e r i s t i c  of hydrazine (E=lO-15) an inc rease  i n  t h e  response 

of the  combustion process occurred due t o  i n t e r a c t i o n  wi th  t r a n s i e n t  

l i q u i d  phase e f f e c t s .  This  y ie lded  a  band of f requencies  where the  

combustion process exe r t ed  s u f f i c i e n t  amplifying power t o  provide a  

mechanism f o r  d r iv ing  combustion i n s t a b i l i t y .  A s  p re s su re  increased  

t h e  amplifying power of t h e  combustion process  increased  and t h i s  

frequency band moved t o  h igher  f requencies .  



CHAPTER I 

INTRODUCTION 

1.1 General Statement of t h e  Problem 

The problem of combustion i n s t a b i l i t y  has plagued l i q u i d  

socket  engine des igners  f o r  a number of yea r s .  Since t h i s  phenomenon 

severe ly  reduces t h e  e f f i c i e n c y  and t h r u s t  of t h e  engine and i n  

extreme cases may even cause d e s t r u c t i o n  of t h e  rocket ,  t h e r e  i s  

much i n t e r e s t  i n  gaining an understanding of t h e  process.  Br i e f ly ,  

combustion i n s t a b i l i t y  r e s u l t s  from t h e  coupling of t h e  combustion 

processes wi th  t h e  f l u i d  dynamic processes  i n  a combustion chamber. 

As a r e s u l t  of t h i s  coupling, t h e  combustion supp l i e s  o s c i l l a t o r y  

energy t o  s u s t a i n  any o s c i l l a t i o n s  of t h e  f l u i d  dynamic va r i ab le s  

(pressure ,  v e l o c i t y ,  e t c . ) .  I f  s u f f i c i e n t  damping e x i s t s  i n  t h e  

system, t h e  energy w i l l  be d i s s i p a t e d  more r ap id ly  than i t  is supplied 

and t h e  o s c i l l a t i o n s  w i l l  decay. Thus, combustion i n s t a b i l i t y  can 

be prevented by e i t h e r  i nc reas ing  t h e  damping of t h e  system o r  by 

decreasing t h e  coupling of t h e  combustion and f l u i d  dynamic processes.  

The main method of suppressing combustion i n s t a b i l i t y  has 

been t o  use a c o u s t i c  l i n e r s ,  Helmholtz r easona to r s  and o the r  damping 

devices i n  t h e  combustion chamber. However, even wi th  these  damping 

devices one can never  be s u r e  a combustion chamber w i l l  be  s t a b l e  

u n t i l  t e s t  f i r i n g s  a r e  made. The most d e s i r a b l e  approach t o  t h e  

problem i s  t o  ga in  an understanding of  t h e  coupling between the  

combustion and f l u i d  dynamics of t h e  system and then t o  develop 

means of reducing t h i s  e f f e c t .  



There have been basically two approaches to the theoretical 

description of the processes taking place in a combustion chamber. 

One method is the heuristic approach of Crocco [l, 2, 31 or the so- 

called time-lag theory. Crocco postulates the existence of a time- 

lag between the time when an element of fuel is injected into the 

combustion chamber and the time when it is gasified by combustion to 

final products. However, the time-lag can only be deduced from 

experimental rocket firings and no detailed description of the 

coupling between combustion and the gas dynamics is offered. 

The other approach has been due to Priem [4, 5, 61 who 

numerically solves the gas dynamic equations for the combustion 

chamber. Two of the most important parameters of the analysis are 

the thermal energy and gas release rates of the combustion process. 

With Priem's approach, attention is focussed on the nonsteady 

burning rate response of an individual droplet to a fluctuation in 

the surrounding gaseous flow field (either a pressure or a velocity 

fluctuation or both). This burning rate response is then used as the 

source term in the gas dynamic equations. 

The above discussion has indicated the importance of the 

burning rate response of a liquid to fluctuations in its environment. 

Thus the subject of the present investigation is the study of the 

burning rate response of a liquid to fluctuations in ambient 

conditions. For ease of interpretation of the results, only 

pressure fluctuations are considered. In addition, the pressure 

fluctuations are assumed small when compared to the mean pressure. 

The particular fuel chosen for study is hydrazine since the hydrazine 



family of f u e l s  comprise some of the  most important f u e l s  used i n  

cur rent  space rocket  app l i ca t ions .  

I n  t h e  next  s e c t i o n  a review is made of t h e  a v a i l a b l e  

l i t e r a t u r e  on s teady hydrazine combustion. Emphasis i s  placed on 

hydrazine s t r a n d  burning s i n c e  t h i s  experimental  technique i s  used 

i n  t h e  p resen t  s tudy.  I n  t h e  following s e c t i o n ,  t h e  l i t e r a t u r e  on 

l i q u i d  combustion i n s t a b i l i t y ,  i n  p a r t i c u l a r  t h e  unsteady burning 

r a t e  response of a l i q u i d  t o  f l u c t u a t i o n s  i n  i t s  environment, i s  

reviewed. 

1 .2  Previous Related S tud ie s  

1 .2 .1  Steady Hydrazine Combustion 

Numerous s t u d i e s  have been conducted on s teady state l i q u i d  

hydrazine combustion a s  d r o p l e t s  and a l s o  a s  l i q u i d  s t r a n d s .  The 

l i t e r a t u r e  on hydrazine d r o p l e t  combustion has been reviewed i n  

d e t a i l  i n  Reference [ 7 ] .  By considering t h e  bulk of t h e  d a t a  on 

hydrazine d rop le t  combustion, References [ 7-11] , Reference 171 

concludes t h a t  a monopropellant gas phase model is more r e a l i s t i c  

than a b ip rope l l an t  model f o r  hydrazine.  

The work on hydrazine s t r a n d  combustion has been mainly 

concerned wi th  the  e f f e c t  of p re s su re  on hydrazine burning rates. 

With t h e  s t r a n d  burner  technique, l i q u i d  hydrazine i s  placed i n  an 

open-ended t e s t  tube which i s  contained wi th in  a windowed p res su re  

vesse l .  Af t e r  i g n i t i o n ,  t h e  l i q u i d  su r face  moves down t h e  tube a s  

the  f u e l  i s  consumed by t h e  combustion process.  The r a t e  of propagation 

of t h e  l i q u i d  su r face  ( the  s t r a n d  burning r a t e )  i s  then measured a s  

a funct ion  of pressure .  



Adams and Stocks [12] inves t iga t ed  the  burning r a t e  of 

l i q u i d  hydrazine s t r a n d s  i n  a n i t rogen p res su r i zed  v e s s e l  over t h e  

pressure  range of 1-45 a t m .  Tube diameters of 3 and 5 mm were used. 

Burning r a t e s  were measured by timing t h e  movement of t h e  l i q u i d  

su r face ,  between marks placed 3 cm a p a r t  on t h e  tube s u r f a c e ,  with 

a stopwatch. The r e s u l t s  of Adams and Stocks [12] show considerable 

s c a t t e r .  However, they conclude t h a t  f o r  pressures  up t o  about 10 

atm t h e  burning r a t e  of l i q u i d  hydrazine i s  p ropor t iona l  t o  t h e  

square roo t  of pressure .  For h igher  p re s su res  t h e i r  d a t a  i n d i c a t e s  

t h a t  t h e  burning r a t e  i s  independent of pressure .  They a l s o  found 

t h a t  above a c e r t a i n  p res su re  hydrazine f a i l e d  t o  burn as a l i q u i d  

s t r and .  This upper e x t i n c t i o n  p res su re  was found t o  be  a func t ion  

of t h e  tube diameter and a l s o  t h e  concent ra t ion  of t h e  l i q u i d  

hydrazine.  The upper e x t i n c t i o n  pressure  increased  wi th  inc reas ing  

tube diameter and inc reas ing  l i q u i d  f u e l  concentrat ion.  I n  add i t ion ,  

the  upper e x t i n c t i o n  p res su re  increased  by s u b s t i t u t i n g  helium f o r  

the  n i t rogen  p res su r i z ing  gas. 

Gray and Kay [I31 and Gray, e t  a l . ,  [14] extended t h e  work 

of Adams and Stocks 1121 t o  subatmospheric p re s su res .  They found 

t h a t  a lower e x t i n c t i o n  pressure ,  below which t h e  l i q u i d  f a i l e d  

t o  propagate down t h e  tube ,  a l s o  e x i s t s  f o r  hydrazine. 

The burning r a t e  of l i q u i d  hydrazine was found t o  be 

propor t ional  t o  t h e  square  root  of p re s su re  f o r  pressures  a s  low a s  

0.4 atlm [13 and 141 i n  agreement wi th  t h e  r e s u l t s  of Adams and 

Stocks [12] .  The lower e x t i n c t i o n  p res su re  increased with increas ing  

tube diameter and a l s o  increased  wi th  decreasing l i q u i d  p u r i t y .  A s  



the lower e x t i n c t i o n  p res su re  was approached a s l i g h t  bubbling 

of t h e  l i q u i d  near  t h e  l i q u i d  su r face  was observed. 

Antoine [15] s t u d i e d  t h e  burning r a t e  of l i q u i d  hydrazine 

s t r a n d s  i n  t h e  p res su re  range of 1-19 atm. The tube  diameter  and 

l i q u i d  p u r i t y  were found t o  have a s i g n i f i c a n t  e f f e c t  on t h e  burning 

r a t e .  A s  tube diameter decreased and/or l i q u i d  p u r i t y  decreased,  t h e  

burning r a t e  decreased s i g n i f i c a n t l y  a t  a given pressure .  For t h e  

100% concent ra t ion  l i q u i d  hydrazine burning i n  t h e  l a r g e s t  diameter  

tube t e s t e d  (12 .7  mm), t h e  burning r a t e  var ied  l i n e a r l y  wi th  p res su re  

over t h e  p res su re  range t e s t e d .  The e x t i n c t i o n  p res su res  f o r  hydrazine 

were n o t  i n v e s t i g a t e d  by Antoine. 

Thus, t h e  previous s t u d i e s  on l i q u i d  hydrazine s t r a n d  

combustion a l l  i n d i c a t e  t h a t  l i q u i d  phase p u r i t y  and tube  diameter 

have a s i g n i f i c a n t  e f f e c t  on t h e  burning r a t e .  The r e s u l t s  of Adams 

and Stocks 1121, Gray and Kay [13] and Gray, e t  a l . ,  [ I41 i n d i c a t e  

t h a t  t h e  burning r a t e  of hydrazine is propor t ional  t o  t h e  square roo t  

of pressure  i n  the  p res su re  range of 0.4-10.0 atm whereas t h e  r e s u l t s  

of Antoine [15] i n d i c a t e  t h a t  f o r  100% N H t h e  burning r a t e  i s  2 4 

propor t ional  t o  p re s su re  i n  t h e  p res su re  range of 1-10 atm f o r  t h e  

1 2 . 7  mm tube.  

1 .2 .2  Combustion I n s t a b i l i t y  

The l i t e r a t u r e  on l i q u i d  p rope l l an t  combustion i n s t a b i l i t y  

i s  v a s t  ( f o r  example, Reference [I61 c i t e s  778 references) .  Therefore,  

only t h e  most important s t u d i e s  on l i q u i d  burning r a t e  response t o  

imposed ambient o s c i l l a t i o n s  w i l l  be  considered here .  



Experimental s t u d i e s  on nonsteady l i q u i d  combustion a r e  

v i r t u a l l y  non-existent .  The approach used i n  t h e  p a s t  has been t o  

i n f e r  t h e  burning r a t e  response from t h e  pressure-time curves from 

a c t u a l  rocket  engine f i r i n g s .  Of course,  t h i s  approach depends on 

some t h e o r e t i c a l  model of t h e  combustion-gas dynamic problem, and d i r e c t  

experimental v e r i f i c a t i o n  of any unsteady combustion model i s  

impossible wi th  t h i s  technique.  

Numerous unsteady l i q u i d  combustion t h e o r e t i c a l  models have 

been proposed. Two of t h e  e a r l i e s t  models a r e  q u i t e  s i m i l a r .  

Williams [I71 and S t r a h l e  [18,  191 considered l o n g i t u d i n a l  s tanding  

wave f l u c t u a t i o n s  a c t i n g  on the  leading edge of a burning d rop le t .  

Both assumed t h e  c l a s s i c  Burke-Schumann t h i n  d i f f u s i o n  flame e x i s t e d  

i n  the  i n t e r i o r  of t h e  l ead ing  edge boundary l a y e r .  Williams 

considered only a f l a t  p l a t e  whereas S t r a h l e  s tud ied  both t h e  s t agna t ion  

point  and f l a t  p l a t e  flows. 

Both of t h e s e  s t u d i e s  found only r a t h e r  f l a t  response curves 

as  a func t ion  of frequency and, moreover, t h e  peak t h a t  does e x i s t  

occurs a t  such a l a r g e  frequency (1000-10,000 Hz) t h a t  no in f luence  

on i n s t a b i l i t y  i s  expected. However, t h e  f a l l a c y  wi th  these  t rea tments  

can be t raced  t o  t h e  assumption of cons tant  l i q u i d  temperature wi th  

t i m e .  It can be  shown t h a t  t h e  c h a r a c t e r i s t i c  thermal wave time i n  

the  l i q u i d  phase i s  a t  l e a s t  an order  of magnitude g r e a t e r  than t h e  

c h a r a c t e r i s t i c  thermal  wave time i n  t h e  gas phase. [20] Thus, on 

t h i s  b a s i s ,  rhe gas phase i s  more l o g i c a l l y  considered quasi-steady 

compared t o  t h e  l i q u i d  phase, e s p e c i a l l y  at  low f requencies .  I n  

o ther  words, t h e  assumption of cons tant  l i q u i d  temperature cannot be 

t r u e  even a t  low f requencies .  



Heidmann and Wieber [21] assumed t h a t  t h e  gas phase burning 

r a t e  of t h e  f u e l  was equal  t o  t h e  l i q u i d  f u e l  vapor iza t ion  r a t e  a t  

each i n s t a n t  of time. For low f requencies  t h i s  i s  a v a l i d  assumption. 

However, as  i n  t h e  i n v e s t i g a t i o n s  of Williams [17] and S t r a h l e  

[ l a ,  191, t h e  thermal wave t i m e  e f f e c t s  a r e  neglected and t h e  d rop le t  

temperature, a t  any i n s t a n t  of time, i s  considered uniform bu t  

varying wi th  time. 

T ' ien and Sir ignano [22] recognized t h e  importance of t h e  

l i q u i d  thermal wave time. They considered a f u e l  evaporat ing from 

a f l a t  p l a t e  wi th  a r eac t ing  gaseous boundary l aye r  and a long i tud ina l ly  

o s c i l l a t i n g  e x t e r n a l  flow. The gas phase was considered quasi-steady 

compared wi th  t h e  l i q u i d  phase which i s  c o r r e c t  i n  t h e  l i m i t  of 

low frequency o s c i l l a t i o n s .  They found peaks i n  t h e  response 

funct ion  which a r e  d i r e c t l y  r e l a t e d  t o  the  e f f e c t s  of thermal l a g  

i n  t h e  l i q u i d  phase. However, i t  is ques t ionable  t h a t  t h i s  ana lys i s  

i n d i c a t e s  t h e  t r u e  combustion gas dynamic coupling mechanism s i n c e  

the  peaks a r e  not  of s u f f i c i e n t  magnitude t o  provide i n s t a b i l i t y  i n  

an a c t u a l  rocket .  

1.3 , S p e c i f i c  Statement of t h e  Problem 

A s  i nd ica t ed  by t h e  preceding d iscuss ion ,  although a number 

of t h e o r i e s  of t h e  unsteady combustion of l i q u i d  f u e l s  have been 

developed, t h e  d i r e c t  experimental  v e r i f i c a t i o n  of any of them has 

not  been accomplished up t o  t h e  p resen t  t ime. I n  a d d i t i o n ,  a l l  of 

the  t h e o r e t i c a l  models cons ider  a b i p r o p e l l a n t  gas phase combustion 

process.  Some of the  most important f u e l s  used i n  cu r ren t  space 

rocket  app l i ca t ions  a r e  l i q u i d  hydrazine and i t s  d e r i v a t i v e s .  E a r l i e r  



work on t h e  combustion of hydrazine i n d i c a t e s  t h a t  a  monopropellant 

gas phase model i s  more r e a l i s t i c  f o r  t h e  hydrazine f u e l s .  [7] 

However, d iscrepancies  e x i s t  concerning t h e  reported dependence of 

the  s teady burning r a t e  of hydrazine on pressure .  [12-151 

Thus, t h e  s p e c i f i c  ob jec t ives  of t h e  present  s tudy were: 

1. Study t h e  s teady s t r a n d  combustion c h a r a c t e r i s t i c s  of 

hydrazine both t h e o r e t i c a l l y  and experimental ly.  

a .  Experimentally determine the  s teady s t r a n d  burning 

r a t e  as a func t ion  of p re s su re ,  l i q u i d  concentrat ion 

and tube diameter.  

b. Experimentally measure t h e  l i q u i d  temperature 

d i s t r i b u t i o n  and su r face  temperature a s  a  func t ion  

of p re s su re .  

c .  Develop a  t h e o r e t i c a l  model of t h e  system and 

compare d i r e c t l y  wi th  t h e  experimental r e s u l t s .  

2 .  Study t h e  o s c i l l a t o r y  combustion c h a r a c t e r i s t i c s  of 

hydrazine both  t h e o r e t i c a l l y  and experimental ly.  

a.  Experimentally measure t h e  o s c i l l a t o r y  burning r a t e  

(both magnitude and phase angle wi th  r e spec t  t o  

t o  t h e  imposed p res su re  o s c i l l a t i o n s )  of hydrazine 

as  a  func t ion  of mean p res su re  and the  frequency 

and amplitude of the  imposed pressure  o s c i l l a t i o n s .  

b.  Develop a  t h e o r e t i c a l  model of t h e  o s c i l l a t o r y  

system and d i r e c t l y  compare t h e  t h e o r e t i c a l  

p red ic t ions  wi th  t h e  experimental  r e s u l t s .  



CHAPTER I1 

EXPERIMENTAL APPARATUS 

A s  i n d i c a t e d  i n  t h e  In t roduct ion ,  a  major o b j e c t i v e  of t h e  

present  s tudy was t o  experimental ly measure unsteady hydrazine 

burning r a t e s .  However, be fo re  s tudying t h e  unsteady combustion 

c h a r a c t e r i s t i c s  of hydrazine,  t h e  s teady s t a t e  c h a r a c t e r i s t i c s  were 

s tudied  thoroughly. 

I n  t h i s  chapter  t h e  apparatus used t o  ob ta in  t h e  experimental 

da t a  a r e  described.  F i r s t ,  t h e  s teady s t r a n d  combustion apparatus 

i s  discussed followed by a  d e s c r i p t i o n  of t h e  o s c i l l a t o r y  combustion 

apparatus.  Since t h e  b a s i c  conf igura t ions  of t h e  two appara tus  were 

the  same, many of t h e  components used i n  t h e  apparatus,  such as  t h e  

i g n i t o r ,  p re s su re  gages and ins t rumenta t ion ,  were s i m i l a r .  These 

components a r e  described i n  d e t a i l  i n  t h e  s e c t i o n  on t h e  s teady s t r and  

apparatus.  

2.1 Steady Strand Apparatus 

The l i q u i d  s t r a n d  combustion apparatus was used t o  s tudy 

the  s teady s t a t e  combustion c h a r a c t e r i s t i c s  of hydrazine. With t h i s  

technique t h e  burning r a t e  of t h e  f u e l  is determined by measuring 

t h e  cons tant  r a t e  of r eg res s ion  of t h e  l i q u i d  su r face  a s  t h e  f u e l  

i s  consumed by t h e  combustion process.  I n  add i t ion  t o  measuring 

burning r a t e s ,  l i q u i d  temperatures  were measured us ing  a  thermocouple. 

I n  t h e  next  s e c t i o n  t h e  s teady s t r a n d  burner  i s  descr ibed  i n  d e t a i l  

followed by a  d e s c r i p t i o n  of t h e  t e s t  procedure. 



2.1.1 General Description 

A sketch of the steady strand apparatus is shown in Figure 1. 

The pressure vessel used for the tests had an inside diameter of 

6.4 cm wirh an inside length of 28 cm and was rated to a pressure of 

400 atm. The windows of the vessel provided a 2.5 cm diameter 

viewing space. The ignitor coil used to ignite the fuel sample was 

made of spiral wound 24 gage nichrome wire about 30 cm in length. 

The voltage applied to the wire varied from between 55 to 65 volts. 

A Heise pressure gage with a range of 0-750 psia was used to measure 

the total pressure in the test chamber. 

Three sizes of pyrex sample tubes were used--4, 8 and 12 mm 

I.D. each with a wall thickness of 1 mm. The thermocouple was 

located 4 cm from the lower edge of the ignitor coil and 3 cm from 

the bottom of the tube to insure that the combustion wave was steady 

when the temperature measurements were made. 

The optical system consisted of a background light and high 

speed motion picture camera. A PEK Labs. Model No. 911 mercury arc 

lamp was used to provide the back light to the liquid column. The 

shadowgraphs were taken with a Photosonics Model No. 16 mm-lb 16 mm 

camera using Kodak Plus X Reversal film operating at speeds up to 

100 frames per second. The distance measurements from the film 

records were obtained using a Vanguard Motion Analyzer. The Vanguard 

provided a gain of about 25:l which was adequate for accurate 

resolution of the film records. 

The thermocouples used to record the liquid temperatures were 

constructed with 0.0003 inch O.D. platinum-platinum 10% rhodium butt 

welded wire. The procedure used to construct the thermocouples is 
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Figure 1 Sketch of  t h e  Steady Strand Burner Apparatus 



described i n  Reference [23] .  The thermocouples were s t r e t c h e d  

h o r i z o n t a l l y  ( t o  minimize conduction e r r o r s )  through ho les  burned 

i n  t h e  g l a s s  tube and sea l ed  i n  p l ace  wi th  epoxy. I n  order  t o  

maintain t h e  re ference  junc t ion  of the  thermocouple a t  a f i x e d  

temperature, t h e  thermocouple l eads  were c a r r i e d  ou t s ide  of t h e  

t e s t  chamber such t h a t  t h e  r e fe rence  temperature was maintained a t  

room temperature. 

The thermocouple output  was recorded on a CEC Type 5-124 

osc i l lograph having a f l a t  frequency response t o  2000 Hz. The f i l m  

and temperature records  were synchronized by a switch c losu re  which 

de f l ec t ed  a galvanometer on t h e  osc i l lograph and s t a r t e d  a l i g h t  

s t r e a k  on t h e  f i lm .  A 100 Hz timing s i g n a l  was placed on t h e  

osc i l lograph using i t s  i n t e r n a l  t iming genera tor  and a l s o  on t h e  f i l m  

record us ing  a 100 Hz Wollensak pulse  generator .  

Hydrazine (95+% p u r i t y )  obtained from t h e  Eastman Organic 

Chemicals Company was used i n  t h e  bulk of t h e  t e s t i n g .  A gas 

chromatographic a n a l y s i s  performed on a sample of t h i s  f u e l  by Be l l  

Aerospace Company ind ica t ed  t h a t  i t  was composed of 98.5% hydrazine,  

1.3% water  and 0 .1  t r a c e  impur i t i e s .  Some l i m i t e d  t e s t i n g  was a l s o  

done using hydrazine of 99.4% obtained from t h e  Matheson, Coleman 

and Be l l  Corporation. 

2.1.2 Tes t  Procedure 

The genera l  experimental  procedure was similar t o  t h a t  

employed i n  References 124-261. The l i q u i d  f u e l  was placed i n  a 

g l a s s  tube contained wi th in  a windowed chamber. Af ter  p re s su r i z ing  

t h e  chamber w i t h  n i t rogen  t o  t h e  des i r ed  t e s t  pressure ,  t h e  f u e l  



was i g n i t e d  wi th  a h e a t e r  c o i l .  Following i g n i t i o n ,  t h e  l i q u i d  

burned down t h e  tube wi th  a  cons tant  r a t e ,  a f t e r  a s h o r t  development 

period f o r  t h e  combustion wave. A s  t h e  l i q u i d  su r face  propagated 

p a s t  t h e  window i n  t h e  chamber, the  r a t e  of r eg res s ion  of t h e  l i q u i d  

column a s  w e l l  a s  t h e  p o s i t i o n  of t h e  thermocouple i n  t h e  l i q u i d  

phase was determined from motion p i c t u r e  shadowgraphs taken through 

the  windows of t h e  chamber. Thus t h e  t e s t  d a t a  cons is ted  of a  complete 

l i q u i d  phase temperature record a s  w e l l  a s  t h e  burning r a t e  of t h e  

f u e l .  

P r i o r  t o  t e s t i n g  on any given day with t h e  s teady s t r a n d  

combustion appara tus ,  t h e  thermocouple and o p t i c a l  systems were 

c a l i b r a t e d .  The osc i l l og raph  was c a l i b r a t e d  by applying a  known 

vol tage  t o  t h e  i n p u t  of t h e  galvanometer and not ing  t h e  output  

d e f l e c t i o n  of t h e  l i g h t  beam on t h e  t r a c e .  The o p t i c a l  system was 

c a l i b r a t e d  by pos i t i on ing  a  wire  of known diameter (measured wi th  a  

micrometer) a t  t h e  thermocouple loca t ion  i n  the  viewing space of the  

camera and photographing it. 

Af ter  c a l i b r a t i o n ,  t h e  fol lowing s t e p s  were followed during 

a  t y p i c a l  experimental  run. F i r s t  t h e  tube and t e s t  chamber 

windows were cleaned. The tube was then f i l l e d  wi th  f u e l  and 

pos i t ioned  i n  the  t e s t  chamber. The camera was focussed and the  

chamber pressur ized  wi th  n i t rogen  t o  t h e  des i r ed  t e s t  p re s su re .  The 

i g n i t o r  was turned on and then  o f f  fol lowing i g n i t i o n ;  t h e  osc i l lograph 

and camera were turned on. A s  t h e  l i q u i d  su r face  came i n t o  t h e  

viewing space of t h e  camera, t h e  synchronizat ion switch was ac t iva t ed  

t o  synchronize t h e  f i l m  and temperature records.  Following 



completion of t h e  t e s t  a l l  systems were turned o f f ,  and t h e  chamber 

was f lushed with n i t rogen  t o  remove t h e  combustion product gases.  

2 .2  O s c i l l a t o r y  Strand Combustion Apparatus 

I n  order  t o  s tudy t h e  unsteady combustion of hydrazine an 

o s c i l l a t o r y  ve r s ion  of t h e  s teady s t r a n d  apparatus was developed. 

A s  noted previous ly ,  i n  t h e  s teady s t r a n d  combustion case t h e  l i q u i d  

su r face  r eg res ses  a t  a cons tant  r a t e  down t h e  tube. However, under 

unsteady condi t ions  t h e  su r face  r eg res s ion  r a t e  i s  no longer  s teady and, 

i n  p a r t i c u l a r ,  under o s c i l l a t o r y  condit ions t h e  su r face  r eg res s ion  

r a t e  o s c i l l a t e s  about some mean burning r a t e .  The next  fou r  s e c t i o n s  

give a  d e t a i l e d  d e s c r i p t i o n  of the  o s c i l l a t o r y  apparatus and i t s  

opera t ion .  

2 . 2 . 1  General Descr ip t ion  

The experimental  appara tus  was requi red  t o  have t h e  

c a p a b i l i t y  of varying t h e  mean pressure  and t h e  amplitude and 

frequency of the  p res su re  o s c i l l a t i o n s  and measuring t h e  response 

of a  burning l i q u i d  t o  these  parameters.  Figure 2 i s  a  ske tch  of t h e  

o s c i l l a t o r y  combustion appara tus  with t h e  above c a p a b i l i t i e s .  

The major components of t h i s  appara tus  a r e  t h e  g l a s s  tube f i l l e d  wi th  

l i q u i d  f u e l ,  t h e  camera-lens o p t i c a l  system used t o  measure the  

f l u c t u a t i o n s  of t h e  burning l i q u i d  su r face  i n  response t o  t h e  imposed 

pressure  o s c i l l a t i o n s ,  and t h e  r o t a r y  va lve  arrangement used t o  

provide t h e  o s c i l l a t i n g  p res su re  v a r i a t i o n s .  

I n  order  t o  minimize t h e  t o t a l  flow r a t e  of a i r  requi red  t o  

produce a  given p res su re  o s c i l l a t i o n ,  t h e  chamber volume was kept  t o  a  
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Figure 2 Sketch of the Oscillatory Strand Combustion Apparatus 



minimum. The t e s t  chamber used i n  t h e  o s c i l l a t o r y  experiments had 

an i n s i d e  diameter of 2.6 cm wi th  an i n s i d e  length  of 17 cm and 

was l eak  checked t o  a p re s su re  of 15 atm. The windows i n  t h e  

chamber had a 2 .5  cm viewing space. 

A photograph of t h e  t e s t  chamber is shown i n  Figure  3 .  

Also shown i n  t h e  photograph a r e  t h e  camera and l e n s  used t o  

photograph t h e  l i q u i d  su r face .  These items a r e  discussed i n  d e t a i l  

i n  t h e  next  s ec t ion .  

The i g n i t o r  c o i l  used t o  i g n i t e  t h e  f u e l  sample was of 

s i m i l a r  cons t ruc t ion  t o  t h a t  used i n  t h e  s teady s t r a n d  burner .  The 

s t a t i c  pressure  gages sketched i n  Figure 2 were 0-300 p s i a  Heise 

gages. 

I n  c o n t r a s t  t o  t h e  s teady s t r a n d  experiments,  only one 

s i z e  sample tube was used i n  t h e  o s c i l l a t o r y  t e s t s .  The tube s i z e  

used was 8 mm I . D .  with a tube w a l l  th ickness  of about 1 mm. A s  

i n  t h e  s teady s t r a n d  work, t h e  o s c i l l a t o r y  burning r a t e  measurements 

were made a t  a p o s i t i o n  about 4 cm from the  lower edge of t h e  i g n i t o r  

c o i l  and about 3 cm from the  bottom edge t o  i n s u r e  t h a t  end e f f e c t s  

were minimal. The 98.6% p u r i t y  hydrazine obtained from Eastman 

Organic Chemicals Company was used throughout t h e  o s c i l l a t o r y  

t e s t i n g .  

2 . 2 . 2  Photographic System 

Quasi-steady a n a l y s i s  i nd ica t ed  t h a t  t y p i c a l  l i q u i d  su r face  

o s c i l l a t i o n  amplitudes were on the  o rde r  of 0 .01  mm. I n  order  t o  

o p t i c a l l y  reso lve  such sma l l  d i s t a n c e s ,  the  camera-lens system 

sketched on Figure 2  and shown i n  t h e  photograph i n  Figure 3 was used 



Figure 3 Photograph of the Oscillatory Strand Test Chamber 



i n  conjunct ion wi th  a Vanguard motion analyzer .  The camera was a 

35 mm Dumont Type 2582 s t r i p  camera and the  l e n s  had a f o c a l  length  

of 150 mm and was 6 mm i n  diameter.  The camera was modified by 

removing i t s  l e n s  and replac ing  i t  wi th  an 0.02 inch  s l o t .  

Both t h e  l e n s  and camera were mounted on movable bases  s o  

t h a t  the  o v e r a l l  ga in  of t h e  camera-lens system could be ca r i ed .  

Primary ga ins  a s  h igh  a s  5 : l  were obtained wi th  t h i s  system. 

This  ga in  coupled with t h e  ga in  of about 25: l  of t h e  Vanguard Motion 

Analyzer provided o v e r a l l  ga ins  of 125:l  which was adequate f o r  

accura te  r e s o l u t i o n  of t h e  f i l m  records.  

Kodak Plus-X Pan f i l m  was used throughout t h e  t e s t i n g .  The 

camera speed was var ied  depending on t h e  t e s t  condi t ions  from about 

133 t o  400 inches  pe r  minute. Timing marks were placed on t h e  f i lms  

using an Adtrol  t iming pu l se  generator .  

The background l i g h t  was suppl ied  by a mercury a r c  lamp 

i d e n t i c a l  t o  t h e  one used i n  t h e  s teady s t r a n d  work. The background 

l i g h t  was d ispersed  by pass ing  i t  through a ground g l a s s  f i l t e r .  The 

i n t e n s i t y  of t h e  l i g h t  was reduced by removing t h e  focuss ing  mirror  

from the  lamp and a l s o  by passing t h e  l i g h t  through a b lue  f i l t e r .  

2.2.3 Pressure  Supply System 

The o s c i l l a t i n g  p res su re  i n  t h e  t e s t  chamber was e s t a b l i s h e d  

using t h e  r o t a r y  va lve  arrangement shown i n  F igure  2. This  method 

i s  s i m i l a r  t o  the  system described i n  Reference [271 f o r  e s t a b l i s h i n g  

an o s c i l l a t i n g  propane gas flame. With t h i s  technique an o s c i l l a t i n g  

pressure  was s e t  up i n  t h e  t e s t  chamber by an o s c i l l a t i n g  a i r  stream. 

A stream of a i r  was passed through a needle valve and b a l l  va lve  



mounted i n  p a r a l l e l .  The amplitude of t h e  o s c i l l a t o r y  p res su re  was 

var ied  independently of t h e  frequency by varying t h e  r e l a t i v e  amounts 

of a i r  passing through t h e  two va lves .  The frequency of t h e  

o s c i l l a t i n g  p res su re  was va r i ed  by changing t h e  speed of t h e  DC 

motor used t o  r o t a t e  t h e  b a l l  valve.  The mean pressure  i n  t h e  

chamber was v a r i e d  by t h e  s e t t i n g  of t h e  needle va lve  downstream from 

t h e  b a l l  valve.  A photograph of the  r o t a r y  va lve  arrangement and 

DC motor a r e  shown i n  Figure 4 .  The speed of t h e  DC motor was 

reduced about 6 : l  with t h e  pulley-V b e l t  system shown i n  Figure 4. 

Two conf igura t ions  f o r  t h e  r o t a r y  va lve  system were t e s t ed .  

The f i r s t  conf igura t ion  t e s t e d  had t h e  r o t a r y  va lve  system upstream 

of the  t e s t  chamber. However, by p l ac ing  t h e  ro t a ry  va lve  system 

downstream of t h e  test chamber, a s  sketched i n  Figure 2 ,  a  more 

nea r ly  s i n u s o i d a l  pressure  t r a c e  was obtained.  

The p res su re  i n  t h e  chamber was recorded using a  K i s t l e r  

Type 603A p res su re  t ransducer  wi th  t h e  output  displayed on both an 

osc i l l o scope  and an osc i l l og raph  f o r  r e t e n t i o n .  The output  from 

the  t ransducer  was fed through a  K i s t l e r  Model 504 E l e c t r o s t a t i c  

Charge Amplif ier  and then t o  t h e  osc i l loscope .  From t h e  charge 

ampl i f i e r  t h e  s i g n a l  was f e d  through a  CEC Type 1-165 DC ampl i f i e r  

t o  t h e  CEC Type 5-124 osc i l l og raph .  The ga in  of the  p res su re  

recording system wi th  t h e  osc i l l og raph  v a r i e d  from about 0.8 p s i /  

inch up t o  about 3 p s i l i n c h .  

The incoming a i r  s t ream was supplied by a  350 p s i  shop 

o i l - f r e e  compressor. Three-eighths inch  s t a i n l e s s  s t e e l  tubing was 

used f o r  a l l  t h e  p ip ing  i n  t h e  p res su re  supply system. 



Figure 4 Photograph of the Rotary Valve Arrangement 



Any phase s h i f t  between the  imposed p res su re  o s c i l l a t i o n s  

and t h e  r e s u l t i n g  burning r a t e  o s c i l l a t i o n s  were determined from t h e  

f i lms  and t h e  pressure  t r a c e  r e g i s t e r e d  on t h e  osc i l l og raph .  The 

f i l m  and p res su re  records were synchronized by a switch c losu re  

which de f l ec t ed  a galvanometer on t h e  p res su re  record and s t a r t e d  a 

l i g h t  s t r e a k  on t h e  f i lm.  Since t h e  camera had no i n t e r n a l  lamp, the  

l i g h t  s t r e a k  was suppl ied  by an e x t e r n a l  neon lamp. F ibe r  o p t i c s  

were used t o  p ipe  t h e  l i g h t  from t h e  neon lamp through t h e  camera 

housing t o  the  f i lm.  Timing marks were placed on the  pressure  

record using the  i n t e r n a l  t iming genera tor  of  t h e  osc i l l og raph  

and on the  f i l m  records  by an Adrol t iming genera tor .  

2 . 2 . 4  Test Procedure 

The K i s t l e r  pressure  t ransducer  was c a l i b r a t e d  using a dead 

weight t e s t e r  and t h e  c a l i b r a t i o n  was checked each day of t e s t i n g  wi th  

a mercury manometer. The o p t i c a l  system was c a l i b r a t e d  a t  t h e  

beginning of each day of t e s t i n g  and a l s o  a f t e r  each adjustment of 

t h e  ga in  by photographing t h e  r e s u l t i n g  movement of t h e  l i q u i d  

su r face  when adding a known volume of l i q u i d  from a Hamilton Type 

1001-N micro-syringe. For t h e  o p t i c a l  c a l i b r a t i o n ,  a i r  was passed 

through t h e  system a t  about t h e  t o t a l  flow r a t e  used i n  t e s t i n g  s o  

any e f f e c t s  of t h e  a i r  flow could be  taken i n t o  account.  

Af t e r  t h e  d a i l y  c a l i b r a t i o n s ,  t h e  windows and l e n s  were 

throoughly cleaned. The sample tube was f i l l e d  wi th  f u e l  and 

pos i t ioned  i n  t h e  t e s t  chamber. The t e s t  condi t ion  i n  t h e  chamber 

was s e t  by t h e  pressure  supply system. The f u e l  was then i g n i t e d  

with t h e  h e a t e r  c o i l .  Both t h e  camera and osc i l l og raph  were turned 



on; t h e  switch was a c t i v a t e d  which s t a r t e d  t h e  l i g h t  s t r e a k  on the  

f i l m  and de f l ec t ed  the  galvanometer on t h e  p res su re  t r a c e .  Af t e r  

completion of t h e  t e s t ,  t h e  camera and osc i l l og raph  were turned o f f .  

Af ter  f lu sh ing  t h e  combustion product gases from t h e  chamber, t h e  

tube was removed and c leaned,  and t h e  windows and l ens  were cleaned 

i n  p repa ra t ion  f o r  t h e  next  t e s t .  



CHAPTER 111 

THEORETICAL CONSIDERATIONS 

As indicated in the Introduction, this study was concerned 

with the influence of pressure transients on the combustion of a liquld 

monopropellant fuel. The combustion system which the theoretical model 

must describe consists of a fuel evaporating from a liquid surface and 

then subsequently undergoing exothermic chemical decomposition in the 

gas phase. A portion of the heat evolved in the decomposition 

process flows back to the liquid surface providing the energy 

for further evaporation of the liquid; the remainder of the energy 

released is convected downstream by the gas flow. The main thrust 

of this study was to gain an understanding of the coupling between 

an oscillatory pressure wave and the fuel burning rate. 

In this chapter the theoretical model of the monopropellant 

combustion process is described. After reviewing some related solid 

propellant theories, the model and assumptions are discussed, 

followed by the development of the equations describing the system. 

These equations are placed in dimensionless form and a perturbation 

solution sought with the amplitude of the oscillating pressure used 

as the small perturbation parameter. 

3.1 Existing Theories 

Since the process is assumed to be one dimensional, some 

insight into the modelling of the experiment can be gained by studying 

solid propellant combustion instability theories. In particular, 



neglecting condensed phase reactions, solid propellant models are 

applicable to the present problem with modified boundary conditions 

at the two phase interface and slight modifications of the gas phase 

analysis. However, even with the one dimensional assumption the 

equations describing the complete unsteady process are extremely 

complex since they must account for the interaction between the time 

dependent chemical kinetics and gas dynamics. Although the present 

theoretical model is of the one-dimensional experiment, the results 

should lead to a better understanding of liquid response and thus to 

improved droplet response models. 

In contrast to liquid propellant instability studies, solid 

propellant investigators have recognized the importance of the 

condensed phase characteristic thermal wave time for many years. Hart 

and McClure [281 discuss the relevant characteristic times for the 

various time dependent processes associated with unsteady solid 

propellant combustion. Based on this study, the various theoretical 

models [29-311 have all assumed a quasi-steady gas phase and completely 

unsteady condensed phase. An exception to this is the recent study 

of T'ien 1321 who relaxed the quasi-steady gas phase assumption and 

numerically obtained solutions for an unsteady gas phase as well as 

an unsteady liquid phase. 

However, even with the quasi-steady gas phase assumption, 

analytical solutions cannot be obtained unless further simplifying 

assumptions are made. The need for further simplification arises 

because of the highly nonlinear chemical kinetic terms appearing in 

the quasi-steady gas phase equations. The form of these simplifying 



assumptions is where the various theories differ. For example, Krier, 

et al., [29] assume a zero activation energy for the global form of 

the kinetic term whereas Friedly and Petersen 1301 effectively limit 

their solution to infinite activation energies (infinitely thin 

flames) by using the Zel'dovich [33] flame theory. Denison and 

Baum [31] use the results of adiabatic laminar flame theory to 

formulate the nonadiabatic solid combustion problem in analytically 

tractable form. Reference [34] offers a more complete discussion of 

the various solid combustion theories. 

The most rigorous approach to the solid propellant combustion 

problem is that due to T'ien 1321 who models the gaseous reaction 

with global kinetic parameters and numerically integrates the steady 

state gas phase equations. An approach similar to that of T'ien was 

used in the present investigation. The major differences between the 

present analysis and that of T'ien involve phase equilibrium through 

the Clausius-Clapeyron equation and variable gas phase properties 

in the present case as opposed to an Arhenius surface gasification 

rate and constant gas phase properties for T'ien's analysis. In 

addition, T'ien numerically integrated his equations from the surface 

to some fictitious flame length. The present solution method avoids 

the introduction of a flame length by using asymptotic analysis to 

generate starting values for large distances from the surface and 

numerically integrating to the surface. 

3.2 p 

A sketch of the theoretical model is shown on Figure 5. 

The coordinate system chosen is inertial with respect to the origin 
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Figure 5 Sketch of the Theoretical Model 



which is located at the mean position of the burning surface. [35, 361 

Assuming imposed sinusoidal pressure oscillations, the instantaneous 

position of the liquid surface, x varies as shown in Figure 5 to 
s' 

first order in pressure amplitude. The general appearance of the 

steady state temperature, fuel mass fraction and gas phase reaction 

rate profiles are also sketched on Figure 5. 

For generality, the gas phase transient effects have been 

included in the analysis, similar to the approach used by T'ien 

for solid propellants. [ 3 2 ]  The effects of variable properties are 

also included through the introduction of a modified Howarth 

transformation. 

The major assumptions used in the analysis are as follows: 

1. The flow is one-dimensional with a Mach number much 

less than unity and all body forces are negligible. 

2. The flame is premixed and laminar. A one-step, 

irreversible chemical reaction takes place in the gas 

phase and any rime lags associated with the chemical 

reaction itself are negligible. 

3. Radiation heat transfer is negligible. An estimation 

of the radiation contribution indicates that it accounts 

for less than 1% of the total energy required for the 

vaporization of hydrazine under steady state 

conditions (see Appendix A). This is primarily due to 

the fact that hydrazine has a low adiabatic flame 

temperature. 

4. With regard to thermodynamic properties, all gas 

phase diffusion coefficients are equal, all molecular 



weights a r e  equal  and cons tant ,  a l l  gas phase s p e c i f i c  

h e a t s  a r e  equal  and cons tant ,  t h e  gas phase mixture 

thermal conduct iv i ty  v a r i e s  l i n e a r l y  wi th  temperature 

bu t  i s  independent of composition, and t h e  l i q u i d  i s  

composed of a  s i n g l e  chemical substance having constant  

p rope r t i e s .  

5. Since t h e  pressure  l e v e l s  a r e  low, t h e  combustion 

products a r e  taken t o  be in so lub le  i n  t h e  l i q u i d  

phase. Chemical r e a c t i o n  i s  a l s o  neglected i n  t h e  

l i q u i d  phase. 

6 .  Based on t h e  f ind ings  of t h e  s teady s t r a n d  por t ion  of 

t h e  s tudy,  t h e  Lewis number i s  assumed t o  be un i ty .  

7. The gas phase i s  taken t o  be an i d e a l  gas and a t  the  

l i q u i d  su r face  f u e l  mass f r a c t i o n  i s  r e l a t e d  t o  t h e  

su r face  temperature through t h e  Clausius-Clapeyron 

equat ion.  The j u s t i f i c a t i o n  of the  use of t h e  

Clausius-Clapeyron equat ion i s  presented i n  Appendix A. 

8. Since t h e  Mach number i s  much l e s s  than u n i t y ,  the  

i n e r t i a l  and v iscous  terms i n  the  momentum equat ion 

a r e  neglected.  

9 .  The complete unsteady gas phase equat ions a r e  used 

but  t h e  wavelength of any pe r iod ic  pressure  d is turbance  

is assumed t o  be  long compared t o  t h e  d i s t ance  from 

the  o u t e r  edge of t h e  r e a c t i o n  zone t o  t h e  l i q u i d  

su r face .  Est imation i n d i c a t e s  t h a t  t h i s  assumption 

is  v a l i d  f o r  f requencies  up t o  about 50,000 Hz (see 



Appendix A ) .  Assumptions 8 and 9 i n d i c a t e  t h a t  

p re s su re  i s  only a func t ion  of time. 

Thus, t h e  t h e o r e t i c a l  model inc ludes  t h e  e f f e c t s  of time 

dependent h e a t  and mass t r a n s f e r  i n  both t h e  l i q u i d  and gas phases. 

Variable property e f f e c t s  a r e  a l s o  included i n  t h e  gas phase and 

g loba l  k i n e t i c  parameters a r e  used t o  cha rac te r i ze  t h e  hydrazine 

decomposition flame. 

3 . 3  Governing Equations 

3.3.1 Dimensional Equations 

With t h e  above assumptions, t h e  equat ions of o v e r a l l  

con t inu i ty ,  spec ie s  conservat ion and energy i n  the  gas phase and 

o v e r a l l  con t inu i ty  and energy i n  the  l i q u i d  phase were obtained from 

the  genera l  equat ions  given by Williams [37 ] .  

The equat ions a r e  a s  fol lows:  

Gas Phase, x *( t*)  < X* < 
S 

Conservation of Mass 

ap" + 
ap*v* - 

a t *  ax* 

Conservation of Species 

Conservation of Energy 



Since the gas is ideal 

P* = ~ * R T * / M  ( 4 )  

In Equations (2 and 3) the following definitions have been 

used: 

Here w$ is the rate of reaction of the fuel with a pre-exponential 

6 
factor of B*T* and an activation energy of E*, q* is the heat of 

combustion and Ji is related to the stoichiometric coefficients. 

Liquid Phase, < X* < X *(t*) 
S 

Conservation of Mass 

v* = a. constant 

Conservation of Energy 

Since only oscillatory solutions are required, the initial 

conditions are irrelevant. The boundary conditions applicable to 

the present problem can be summarized as follows. At the cold end of 

the liquid propellant, the temperature must be constant with respect to 

both x* and t*. 



X* -f -m 

T* + T k  (a constant) (10) 

At the liquid surface, x*(tx), six conditions must be satisfied. 
S 

The first two are obvious and are mentioned only for completeness. 

That is, the temperature and pressure must be continuous across the 

surf ace. 

Conservation of mass applied across the moving surface reduces to: 

p*(v* - L*) = pa(,* - L*) R a  s s (13) 

and conservation of energy at the surface yields: 

Since the products of combustion are assumed to be insoluble in the 

liquid phase, the gradient of the fuel mass fraction is related to 

the fuel mass fraction itself at the liquid surface as follows: 

The Clausius-Clapeyron equation relates the fuel mass fraction at the 

surface to the surface temperature 



where L* is the heat of vaporization of the fuel and a* is a constant 

with the dimensions of pressure. The remaining boundary conditions 

relate the variation of fuel mass fraction and temperature far from 

the liquid surface. Far from the surface, the gas phase chemical 

reaction must go to completion since eventually all the fuel will 

react. Thus 

for all time. In addition, the temperature must become independent 

of x* since the only energy source, the chemical reaction, has gone 

to completion and heat conduction will smooth out any temperature 

variations with respect to distance. However, the temperature will 

still vary with time since the pressure is a function of time. 

Therefore: 

X* -t m 

T*(x*, t*) -+ Tz(t*) 

where Tz(t*) is a known function. 

3.3.2 Nondimensional Equations 

Equations (1-18) are placed in dimensionless form by 

introducing the following variables. 



The subscript signifies a zero order (steady state) quantity 

evaluated at infinity. 

Treatment of variable gas phase properties is accomplished 

by the Howarth Transformation appropriate to the present coordinate 

system by defining 

and by defining a modified mass flux as 

The Shvab-Zeldovich variable 8, is also introduced as a 

new dependent variable. 

Substituting Equations (19-22) into Equations (1-4) then 

yields: 

Gas Phase, 0 < n < 



In deriving Equations (24 and 25) use has been made of the 

fact that JF = -1. The dimensionless reaction rate is defined as 

A n-1 -E 
w = - T  P ( 0 - ~ ) ~  exp 

qn 

where E is the dimensionless activation energy, 

q is the dimensionless heat of combustion 

and A is related to the pre-exponential factor and zero order mass 

flux 

Also, noting that 

and through the use of the ideal gas equation of state, it follows 

that 

The dimensionless liquid phase continuity and energy 

equations are 

Liquid Phase, -m < 11 < 0 



The dimensionless parameter 6 is a constant defined as 1 

The nondimensional boundary conditions are as follows. At 

the cold end of the fuel, 

At the liquid surface, the conservation of mass yields 

The conservation of energy across the surface becomes 

where fi is the ratio of liquid to gas specific heats 

and L is the nondimensional heat of vaporization 

The insolubility condition requires that 



The Clausius-Clapeyron equation after nondimensionalization is 

-=1 
0(0) = exp [-I + T(0) 

T (0) 

where 

The dimensionless conditions far from the surface reduce to 

where T(t) is a specified function. 

3 . 3 . 3  Perturbation Analysis 

To solve the system of partial differential equations, 

Equations (23-25 and 3 4 ) ,  with the given boundary conditions, it is 

assumed that all amplitudes of oscillation are small. This assumption 

allows the use of a perturbation analysis. For oscillatory solutions, 

the dependent variables can be expressed as a function of a perturbation 

parameter E, where E is assumed to be small 

P(t) = 1 + ce iWt 

T(n,t). = To(n) + €Tl(n)e iwt 

0(n,t) = eo(n) + Eel(n)eiwt 

r(t) = r + Er e iwt 
0 1 

iwt xs(t) = 0  EX^^^ 



In  these  equat ions E r ep resen t s  t h e  normalized amplitude of the  imposed 

p res su re  o s c i l l a t i o n s .  S u b s t i t u t i n g  Equation (45) i n t o  Equations 

(23-25, and 34) and t h e  boundary condi t ions ,  t h e  r e s u l t i n g  equat ions  

i W t  
a r e  separa ted  i n  terms of l i k e  powers of E e  . 

3.4 Zero Order (Steady S t a t e )  Problem 

3.4.1 Equations 

For the  zero order  problem, t h e  gas phase can be  solved 

independently of t h e  l i q u i d  phase. The problem reduces t o  t h e  

following: 

Gas Phase, O <  q < m 

d 2 ~ o  dTo 
+ ql-n ATo 

1+6-n n -E 
dll 

(1-To) exp = 0 (46) 
dl12 0 

with t h e  boundary condi t ions  

and a t  n = 0. 

-L 
T (0) = 1 - aq exp I- 
0 

0 

l I T (0) 

I n  Equations (46-49) use has been made of t h e  conservat ion of mass 

requirement t h a t  

r = constant  = p Vmo = 1 
0 mg 

(50) 



and also that 

from Equations (24) and ( 4 5 ) .  

In Equation ( 4 6 ) ,  the quantity A is unknown since it is 

related to the burning rate p* v* which is unknown. The three 
mo -'o 

boundary conditions permit a unique value of A to be determined. 

The liquid phase solution is required for the complete 

specification of the first order problem. To zero order in E ,  the 

equation and boundary conditions are: 

Liquid Phase, -m<r)<O 

The solution of Equation ( 5 2 )  subject to the boundary conditions 

of Equation (53) is 

3.4 .2  Solution Method 

. The zero order problem is given by Equations (46-49)  

Equation ( 4 6 )  is highly nonlinear and must be solved numerically. 

Since the domain of interest is half-infinite, one obviously can not 

integrate to infinity numerically. One approach to this problem is 

to integrate from q = 0 to some finite n ,  the outer flame edge, 

where T is within some small percentage of its true value at 
0 



i n f i n i t y ,  i . e . ,  u n i t y .  This  was t h e  approach used i n  Reference 

[32] .  A more r igorous  approach i s  t o  consider  t h e  asymptotic 

form of Equation (46) f o r  l a r g e  n .  The form of the  s o l u t i o n  f o r  T 
0 

f o r  l a r g e  q depends on t h e  r e a c t i o n  order  n ,  and f u r t h e r  cons idera t ions  

a r e  l i m i t e d  t o  f i r s t  and second order  r eac t ions .  It i s  shown i n  

Appendix B t h a t  with n = 2 ,  by balancing convection and r e a c t i o n ,  

To(q) must be of the  form 

A -1 
To = 1 - [- exp (-E)q - C]  

4  
(55) 

f o r  l a r g e  n where C is an unknown cons tant .  For n = 1, T (11) must be 
0 

of t h e  form 

1 - J 1 + 4 ~  exp (-E) 
To 

= 1 - C e x p  1 2 n I 

f o r  l a r g e  n where again C i s  an unknown cons tant .  

With t h e  asymptotic form of T f o r  l a r g e  17, Equation (46) 
0 

can be solved numerically without  spec i fy ing  an a r b i t r a r y  ou te r  flame 

edge. Equation (55) o r  Equation (56) i s  used t o  genera te  s t a r t i n g  

va lues  f o r  the  numerical s o l u t i o n  f o r  some l a r g e ,  but  f i n i t e ,  q with  

an assumed va lue  of C.  With these  s t a r t i n g  va lues ,  Equation (46) i s  

i n t e g r a t e d  numerically t o  q = 0 with an assumed A. A t  q  = 0 the  

boundary condi t ions ,  Equations (48-491, must be s a t i s f i e d  and thus  

A and C a r e  determined uniquely. However, s i n c e  Equation (46) i s  

nonl inear ,  a  double i t e r a t i o n  technique must be  used and Equation 

(46) so lved  a t  each s t e p  of t h e  i t e r a t i o n  i n  A and C u n t i l  Equations 

(48-49) a r e  s a t i s f i e d .  With t h i s  s o l u t i o n  technique, t h e  ou te r  boundary 

condi t ion ,  Equation (47) ,  is only s a t i s f i e d  a t  t h e  t r u e  mathematical 

i n f i n i t y  . 



3.5 F i r s t  Order Problem 

3 .5 .1  Equations 

To f i r s t  order  i n  E t h e  equat ion and boundary condi t ions  

f o r  the  l i q u i d  phase a r e :  

The s o l u t i o n  of t h e  f i r s t  o rder  system i s  

The f i r s t  order  gas phase equat ions  reduce t o  t h e  fo l lowing.  

Gas Phase, 0 < q < m 

r1 = cons tant  

I n  Equation (62) wo i s  def ined  by t h e  fol lowing expression:  

A 1+6-n 
W = y T o  o ( I - T ~ ) ~  exp [$I 

4  0 



Using Equation (59) t h e  conservat ion of energy boundary 

condit ion t o  f i r s t  o rder  i n  E becomes 

The Clausius-Clapeyron equat ion reduces t o  

and t h e  i n s o l u b i l i t y  condi t ion  requiLres t h a t  

The ou te r  boundary condi t ions  from Equation ( 4 4 )  a r e  

q-', 

+ TI(" + a cons tant  (67) 

The cons tant  i n  Equation (67) can be determined by so lv ing  Equation 

(61) f o r  l a r g e  17. It i s  e a s i l y  v e r i f i e d  t h a t  a s  q + m, 

which is t h e  form f o r  i s e n t r o p i c  flow. 



3.5.2 Solu t ion  Method 

The f i r s t  o f e r  problem involves t h e  s o l u t i o n  of two l i n e a r  

second order  ord inary  d i f f e r e n t i a l  equat ions ,  Equations (61 and 6 2 ) ,  

involv ing  an unknown cons tant ,  rl. Five boundary cond i t ions ,  Equations 

(64-67) a r e  imposed on the  s o l u t i o n  pe rmi t t i ng  a unique va lue  of r 1 

t o  be determined. 

The s o l u t i o n  method t o  the  f i r s t  o rder  problem is discussed 

i n  d e t a i l  i n  Appendix C.  B r i e f l y ,  t h e  method c o n s i s t s  of e x p l o i t i n g  

the  l i n e a r i t y  of t h e  system t o  sepa ra t e  t h e  problem i n t o  t h e  numerical 

s o l u t i o n  of f i v e  second order  ord inary  d i f f e r e n t i a l  equat ions .  

A s  i n  t h e  case of t h e  zero  order  problem, the  equat ions  a r e  i n t e g r a t e d  

t o  11 = O us ing  asymptotic a n a l y s i s  t o  genera te  s t a r t i n g  va lues  f o r  

the  numerical r o u t i n e  a t  l a r g e  11. 

For t h e  f i r s t  o rder  problem t h e  cons tant ,  rl, is r e l a t e d  t o  

the unsteady burning r a t e  i n  response t o  t h e  imposed p res su re  

o s c i l l a t i o n s  of amplitude c. However, r i s  n o t  measured d i r e c t l y  1' 

i n  t h e  experimental  po r t ion  of t h i s  s tudy.  The amplitude and phase 

angle of t h e  l i q u i d  su r face  o s c i l l a t i o n s ,  x* a r e  measured s l  ' 
experimental ly.  However, x and rl a r e  uniquely r e l a t e d  as  developed 

s 1 

i n  t h e  fol lowing.  

From t h e  conservat ion of mass a t  t h e  l i q u i d  s u r f a c e ,  

Equation ( 3 7 ) ,  and Equation (45) i t  fol lows t h a t  

Since p i s  a given thermodynamic proper ty ,  x i s  d i r e c t l y  r e l a t e d  R s l  

t o  r Moreover, x i s  a complex number wi th  bo th  amplitude and 1 ' s l  



phase parameters.  Both of t hese  parameters can be d i r e c t l y  compared 

with t h e  measured amplitude of t h e  l i q u i d  su r face  o s c i l l a t i o n s  and 

the  phase angle of these  o s c i l l a t i o n s  with r e spec t  t o  the  pressure  

o s c i l l a t i o n s .  



CHAPTER I V  

RESULTS AND DISCUSSION 

I n  t h i s  chapter  t h e  r e s u l t s  of t h i s  i n v e s t i g a t i o n  a r e  

described and discussed.  I n  t h e  f i r s t  p a r t  of the  chapter  the  

f ind ings  of t h e  s teady s t r a n d  experimental  s tudy a r e  presented and 

compared with t h e  t h e o r e t i c a l  p red ic t ions .  The l a t t e r  p a r t  of t h e  

chapter  dea l s  w i th  t h e  experimental  and t h e o r e t i c a l  r e s u l t s  of t h e  

o s c i l l a t o r y  combustion case.  

The t h e o r e t i c a l  model i s  described i n  d e t a i l  i n  Chapter 111. 

Since t h e  experimental  s tudy was conducted wi th  l i q u i d  hydrazine 

a s  t h e  f u e l ,  t h e  p r o p e r t i e s  used i n  t h e  t h e o r e t i c a l  model a r e  

those app l i cab le  t o  hydrazine.  These p r o p e r t i e s  a r e  l i s t e d  i n  

Table 1. The s p e c i f i c  c o r r e l a t i o n s  and sources of d a t a  f o r  these  

p r o p e r t i e s  a r e  given i n  Appendix D. 

4 . 1  Steady Strand Combustion 

This  s e c t i o n  dea l s  w i th  the  s teady s t r and  r e s u l t s .  A s  

discussed i n  Chapter 11, t h e  s teady s t r a n d  experimental d a t a  

cons i s t ed  of a  complete l i q u i d  temperature record displayed on an 

osc i l l og raph ,  a  f i l m  record of t h e  l i q u i d  su r face  motion and t h e  

p o s i t i o n  of t h e  thermocouple r e l a t i v e  t o  t h e  l i q u i d  su r face  a s  a  

func t ion  of time. From t h i s  da t a  both s teady s t r a n d  burning r a t e s  

and l i q u i d  phase temperature d i s t r i b u t i o n s  were obtained.  



Table 1 

Properties Used i n  the Theoretical Model 

Property Value 



4 .1 .1  Burning b t e s  

A s  discussed i n  t h e  In t roduc t ion  previous i n v e s t i g a t o r s  

found t h a t  t h e  p u r i t y  of t h e  l i q u i d  f u e l  had a s i g n i f i c a n t  e f f e c t  

upon hydrazine s t r a n d  burning r a t e s .  112-151 I n  o rde r  t o  c l a r i f y  

t h i s  p o i n t ,  a number of t e s t s  were conducted wi th  hydrazine of 

varying l i q u i d  p u r i t i e s .  These r e s u l t s  a r e  summarized i n  Figure 6.  

The burning  r a t e s  presented i n  Figure 6 were obtained using 

a 12 mm I . D .  tube. While t h e  d i f f e rences  between the  99.6 and 98.4% 

p u r i t y  hydrazine were small ,  adding d i s t i l l e d  water  t o  t h e  hydrazine 

a s  an impuri ty (95.6, 92.6% p u r i t y )  r e s u l t e d  i n  a s i g n i f i c a n t  

reduct ion i n  t h e  burning r a t e  i n  agreement wi th  previous i n v e s t i g a t o r s .  

112-151 However, Antoine [15] found t h a t  hydrazine exh ib i t ed  abrupt  

i nc reases  i n  i t s  burning r a t e  f o r  a small  change i n  pressure .  The 

p resen t  measurements d i d  not  d e t e c t  any such discontinuous behavior.  

The 98.6% p u r i t y  hydrazine was used i n  the  remainder of t h e  t e s t i n g  

due t o  i t s  g r e a t e r  a v a i l a b i l i t y .  

Experimental s t eady  s t r a n d  burning r a t e  measurements were 

terminated a t  the  upper e x t i n c t i o n  p res su re .  Above t h i s  pressure ,  

the  f u e l  f a i l e d  t o  s u s t a i n  combustion fol lowing i g n i t i o n .  The 

upper e x t i n c t i o n  p res su re  increased  s l i g h t l y  a s  t h e  p u r i t y  of t h e  

f u e l  increased .  The upper e x t i n c t i o n  p res su re  a l s o  increased  a s  

t h e  diameter of t h e  sample tube increased .  

Gray and Kay [13] a l s o  found lower e x t i n c t i o n  p res su res  

f o r  hydrazine.  The lower e x t i n c t i o n  p res su re  was not  i nves t iga t ed  

i n  t h e  p resen t  s tudy.  It was observed, however, t h a t  s l i g h t  bubbling 

of t h e  l i q u i d  occurred a t  t h e  lower p res su res  t e s t e d .  Gray, e t  a l . ,  



PRESSURE (atm) 
Figure 6 Steady Strand Burning Rates as a Function of Pressure 

for Various Liquid Purities 



[14] i n d i c a t e  t h a t  bubbling of t h e  l i q u i d  is an i n d i c a t i o n  t h a t  

the  lower e x t i n c t i o n  p res su re  i s  being approached. 

It is we l l  known t h a t  s teady s t r a n d  burning r a t e s  a r e  

dependent upon sample tube diameter due t o  su r face  tens ion  e f f e c t s  

providing more l i q u i d  su r face  a r e a  f o r  the  combustion process.  

This e f f e c t  is shown i n  Figure 7 a t  var ious  pressures .  By p l o t t i n g  

t h e  da ta  a s  a  func t ion  of r e c i p r o c a l  tube diameter,  l i n e a r  f i t s  

were obtained, allowing a determinat ion of t h e  c o r r e c t  fundamental 

burning r a t e  (burning r a t e  i n  an i n f i n i t e  diameter tube)  by 

ex t r apo la t ion .  

Figure 8 i s  a p l o t  of t h e  fundamental burning r a t e  as  a  

func t ion  of pressure .  Also shown on t h e  p l o t  a r e  t h e  t h e o r e t i c a l  

p red ic t ions  f o r  var ious  r e a c t i o n  orders  and dimensionless a c t i v a t i o n  

ene rg ie s .  I n  order  t o  o b t a i n  t h e  t h e o r e t i c a l  curves shown on 

Figure 8 t h e  theory was matched t o  the  experimental  r e s u l t s  a t  

atmospheric p re s su re  assuming a f i r s t  o rde r  r e a c t i o n  and a t  6 .7  

atm assuming a second order  r eac t ion .  This  matching was requi red  

s ince  t h e  gas phase g loba l  k i n e t i c  cons tants  a r e  not  known f o r  

l i q u i d  hydrazine s t r and  combustion. Table 2 l ists t h e  c o r r e l a t i o n  

condit ions and r e s u l t i n g  dimensional pre-exponential f a c t o r s  used 

i n  Figure 8. These pre-exponential f a c t o r s  were used i n  t h e  

remainder of t h i s  s tudy,  except as  noted l a t e r .  

The r e s u l t s  shown i n  Figure 8 i n d i c a t e  t h a t  t h e  gas phase 

r eac t ion  f o r  hydrazine s t r a n d  combustion is f i r s t  o rde r  a t  low 

pressures  switching t o  second order  a t  high pressures .  These 

r e s u l t s  a r e  i n  agreement wi th  t h e  e a r l i e r  work of both  Gray [13, 14,] 
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Table 2 

Correlation Conditions and Parameters Used in the Theoretical Model 

n = l  Correlation Condition n = 2  Correlation Condition 

P* = 1.0 atm; v& 0.021 cmfsec 
0 

P* = 6.7 atm; v& = 0.084 cm/sec 
0 



and Antoine [15]. Gray found that for subatmospheric pressures the 

hydrazine strand burning rate was proportional to the square root 

of pressure, which is indicative of a first order reaction; Antoine 

found that for pure hydrazine the strand burning rate was proportional 

to pressure for pressures in the range 1-19 atm, which is indicative 

of a second order reaction. However, the results are not in agreement 

with those of Adams and Stocks [12] who found that the burning rate 

was proportional to the square root of pressure up to about 10 atm. 

As is evident in Figure 8 the gas phase activation energy 

has little effect upon the theoretical strand burning rate. This 

result is in agreement with earlier droplet decomposition flame 

studies which also found that activation energy had little effect 

on steady burning rates. [ 7 1  

4.1.2 Liquid Temperatures 

As discussed in Chapter 11, liquid temperatures of burning 

strands of hydrazine were obtained by stretching a thermocouple 

horizontally across the tube and recording its output as the liquid 

surface propagated down the tube due to combustion. In this manner 

not only liquid temperature distributions but also liquid surface 

temperatures were obtained. 

Figure 9 compares theoretical and experimental liquid 

temperatures at two pressures, 20.4 atm and 1.0 atm, as a function 

of distance from the liquid surface. The temperature readings at 

positive distances result from a liquid film formed around the 

thermocouple as it leaves the surface (due to surface tension) and 

should be disregarded. [38]  
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As is evident from Figure 9, the theoretical and experimental 

results agree quite well. The results at other pressures were similar 

to those shown in Figure 9, justifying the use of constant liquid 

phase properties. The value of the liquid thermal diffusivity used 

-3 2 to compute the theoretical curves was 1.26 x 10 cm /sec, which is 

a reasonable value for a liquid such as hydrazine. 

The experimental values of the liquid surface temperatures 

were obtained in two ways. With the first method the surface 

temperature was taken as the temperature recorded by the thermocouple 

at the instant of time when the thermocouple was just tangent 

to the liquid surface (as obtained from the film record). With the 

second method the liquid surface temperature was taken as the 

temperature where the sharp "knee" appeared in the thermocouple 

output as shown on Figure 9. The two methods yielded surface 

temperatures differing by less than 1%. 

The liquid surface temperature results are shown in Figure 10 

as a function of pressure. Two theoretical curves are also shown on 

Figure 10. The present unity Lewis number theoretical analysis 

agrees well with the data, justifying the assumption of conventional 

phase equilibrium at the surface. An infinite activation energy 

analysis is also seen to yield essentially the same results. The 

theoretical development using the infinite acitvation energy 

assumption is presented in Appendix E. 

4.1.3 Additional Theoretical Results 

Solution of the steady gas phase problem gives not only 

the nondimensional eigenvalue, A, and the liquid surface temperature 
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but also the complete gas phase temperature and reaction rate profiles 

at a given pressure (for an assumed reaction order and activation 

energy). In this section the theoretical gas phase temperature and 

reaction rate profiles are described. 

Figures 11-13 show the gas phase temperature and reaction 

rate profiles for a second order reaction with nondimensional 

activation energies of 1, 10 and 30, respectively. The nondimensional 

reaction rate, w is defined as 
FO' 

As the activation energy increases, Figures 11-13 indicate 

that the region where gas phase reaction effects are important 

becomes narrower and the reaction rate profiles become more sharply 
2; 

spiked. In addition the temperature reaches its limiting value 

closer to the liquid surface for a higher activation energy. 

The qualitative aspects of the first order profiles are 

similar to those of a second order reaction. First order profiles 

are shown in Figures 14-15 for nondimensional activation energies of 

1 and 10, respectively. 

The effect of pressure on the nondimensional profiles for 

both a first and second order reaction was slight. Increasing 

pressure tended to cause the reaction rate profile to peak slightly 

closer to the surface with the result that the temperature more 

rapidly approached its limiting value. 



L - 
1.0- - 2.0 

- - 
-1.6 

n = 2  - 
E = l  -1.2 
A = 10.991 - 
P 1 atm - .8 

- 
- .4 

- - 
0 I I I I I I 

0 
I 

2.0 
II 

4.0 6.0 8.8 10.0 
0 

DISTANCE - "I 
Figure 11 Steady State Gas Phase Temperature and Reaction Rate 

Distributions for n = 2 ,  E = 1 



DISTANCE - 5 
Figure 12 Steady State Gas Phase Temperature and Reaction Rate 

Distributions for n = 2, E = 10 



DISTANCE - 32 
Figure 13 Steady State Gas Phase Temperature and Reaction Rate 

Distributions for n = 2 ,  E = 30 



1.25 
- 

n = I  - 1.00 
E = I  - 

A =9.719 
- 75 
- 

P:= I atm - 
-50 

- 
- -25 

- - 
I I I I I 

0 2.0 4.0 6.0 8.0 10.0 
0 

DISTANCE - 
Figure 14 Steady State Gas Phase Temperature and Reaction Rate 

Distributions for n = 1, E = 1 



DISTANCE - 72 
Figure 15 Steady State Gas Phase Temperature and Reaction Rate 

Distributions for n = 1, E = 10 



4.2 O s c i l l a t o r y  Combustion 

The r e s u l t s  described i n  t h e  previous sec t ion  of t h i s  chapter  

i n d i c a t e  t h a t  t h e  s teady combustion po r t ion  of t h e  t h e o r e t i c a l  model 

i s  i n  good agreement wi th  a v a i l a b l e  experimental measurements of 

t h e  burning r a t e s ,  l i q u i d  temperature d i s t r i b u t i o n s  and su r face  

temperatures of hydrazine s t r a n d s .  I n  t h i s  s e c t i o n  experimental  

o s c i l l a t o r y  s t r a n d  burning r a t e s  a r e  compared with t h e  t h e o r e t i c a l  

model. 

4.2.1 Data Reduction 

The da ta  from t h e  o s c i l l a t o r y  ve r s ion  of the  s t r a n d  combustion 

apparatus cons is ted  of an osc i l lograph record of t h e  p res su re  i n  

t h e  t e s t  chamber and a f i l m  record of t h e  l i q u i d  su r face  motion, 

both a s  a  funct ion  of t ime. Typical  experimental  da t a  from the  

o s c i l l a t o r y  combustion apparatus a r e  shown i n  Figure 16. 

I n  Figure 16 t h e  pressure  record taken from t h e  osc i l lograph 

t r a c e  and t h e  l i q u i d  su r face  motion d a t a  taken from t h e  f i l m  record 

a r e  drawn t o  t h e  same time s c a l e .  These r e s u l t s  allow t h e  determinat ion 

of t h e  amplitude and a l s o  t h e  phase angle of the  su r face  o s c i l l a t i o n s .  

A s  shown i n  Figure 16 t h e  phase angle of the  su r face  

o s c i l l a t i o n  with respec t  t o  t h e  pressure  o s c i l l a t i o n s  was determined 

by measuring the  d i s t ance  between the  peaks of t h e  two curves. 

The amplitude of t h e  o s c i l l a t i o n s  was measured a s  h a l f  t h e  d i s t ance  

between t h e  maximum and minimum i n  t h e  su r face  o s c i l l a t i o n s  f o r  one 

cycle.  Some r e p e a t a b i l i t y  t e s t s  were conducted; t h e  maximum 

d i f f e r e n c e  between two s e t s  of d a t a  taken a t  t h e  same t e s t  condi t ion  

was l e s s  than 25%. For those  condi t ions  where more than one s e t  of 
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da ta  was taken,  t h e  experimental  po in t s  shown i n  t h e  fol lowing 

f i g u r e s  a r e  t h e  average of t h e  sepa ra t e  t e s t s .  

4.2 .2  E f f e c t  of P res su re  Amplitude 

The t h e o r e t i c a l  model described i n  Chapter 111 assumed t h a t  

the amplitude of t h e  p res su re  o s c i l l a t i o n s  was small  enough s o  t h a t  

only l i n e a r  e f f e c t s  needed t o  be  considered i n  t h e  p e r t u r b a t i o n  

ana lys i s .  I n  order  t o  check experimental ly where t h i s  assumption 

breaks down, a  s e r i e s  of t e s t s  were conducted with cons tant  mean 

p res su re  and frequency of t h e  imposed p res su re  o s c i l l a t i o n s  bu t  

varying p res su re  amplitude. For these  t e s t s  t h e  mean p res su re  was 

he ld  cons tant  at 1.54 atm and t h e  frequency was f i x e d  a t  1.32 Hz. 

I n  F igure  17 t h e  amplitude of t h e  l i q u i d  su r face  o s c i l l a t i o n s  

divided by t h e  normalized p res su re  amplitude, E ,  i s  p l o t t e d  a s  a  

funct ion  of p re s su re  amplitude. The l i n e a r  a n a l y s i s  assumes t h a t  the  

da ta  p l o t t e d  i n  t h i s  manner should be cons tant .  It i s  evident  from 

Figure 1 7  t h a t  t h e  d a t a  begin t o  dev ia t e  s i g n i f i c a n t l y  from t h i s  

cons tant  r e l a t i o n  f o r  p re s su re  amplitudes above about 0 . 2 5 .  

I n  F igure  18  t h e  mean burning r a t e s  f o r  the  same t e s t s  a s  

shown i n  Figure 17 a r e  p l o t t e d  a s  a  func t ion  of normalized pressure  

amplitude. Again t h e  l i n e a r  theory assumes t h a t  t h e  mean burning r a t e  

i s  t h e  same f o r  a l l  p re s su re  amplitudes. A s  before ,  s i g n i f i c a n t  

devia t ions  from l i n e a r i t y  appear t o  a r i s e  f o r  pressure  amplitudes 

above about 0 .25 .  

Thus, both  s e t s  of experimental  r e s u l t s  i n d i c a t e  t h a t  

n o n l i n e a r i t i e s  i n  t h e  combustion system a r e  important f o r  p re s su re  

amplitudes above about 0 . 2 5 .  To i n s u r e  the  v a l i d i t y  of t h e  l i n e a r  
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theory a l l  a d d i t i o n a l  experimental  d a t a  was taken wi th  pressure  

amplitudes l e s s  than 0.15. 

4 .2 .3  High P res su re  Resu l t s  

The main t h r u s t  of t h e  p resen t  work was t o  determine t h e  

e f f e c t  of frequency upon t h e  o s c i l l a t o r y  burning r a t e  of hydrazine. 

Two s e t s  of d a t a  were taken with v a r i a b l e  frequency; t h e  f i r s t  

s e t  was taken a t  a  mean pressure  of 9.77 atm and t h e  second s e t  a t  

a  mean p res su re  of 1.18 atm. This s e c t i o n  descr ibes  the  r e s u l t s  

a t  9 .77 atm while  the  next  s e c t i o n  descr ibes  t h e  r e s u l t s  a t  1.18 

atm. 

One of t h e  important parameters obtained from t h e  t h e o r e t i c a l  

model i s  r t h e  nondimensional mass burning r a t e .  However, x* 1' sl '  

the  dimensional amplitude and phase angle of t h e  l i q u i d  su r face  

o s c i l l a t i o n s  a r e  t h e  q u a n t i t i e s  t h a t  a r e  measured experimental ly.  

A s  described i n  Sec t ion  3.5.2, r and x a r e  r e l a t e d  by Equation (69). 
s 1 

Figure 19 is a p l o t  of t h e  su r face  o s c i l l a t i o n  amplitude 

a s  a  func t ion  of frequency a t  a  mean p res su re  of 9.77 atm. I n  

add i t ion  t o  the  curves obtained from t h e  t h e o r e t i c a l  model, the  

curve obtained from a t o t a l l y  quasi-steady a n a l y s i s  (neglec t ing  

both l i q u i d  and gas phase t r a n s i e n t  e f f e c t s )  i s  a l s o  shown on Figure 

19. The t o t a l l y  quasi-steady a n a l y s i s  i s  developed i n  Appendix E .  

The t r a n s i e n t  a n a l y s i s  i n d i c a t e s  a  l a r g e r  amplitude of 

su r face  o s c i l l a t i o n  than t h e  t o t a l l y  quasi-steady a n a l y s i s  f o r  the  

range of f requencies  shown on Figure 19. However, a t  lower frequencies  

the  two models approach one another  a s  they must. Note t h a t  the  gas 

phase a c t i v a t i o n  energy has a  pronounced e f f e c t  upon t h e  predic ted  
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t r a n s i e n t  r e s u l t s .  The r e s u l t s  f o r  a  dimensionless a c t i v a t i o n  

energy of 30 do n o t  d i f f e r  appreciably from t h e  r e s u l t s  f o r  E = 15 

i n  t h i s  frequency range and these  two curves a r e  shown a s  one, l a b e l l e d  

E = 15. A s  shown i n  Figure 19, t h e  t h e o r e t i c a l  curve wi th  a  

dimensionless a c t i v a t i o n  energy of 15 i s  i n  reasonably good agreement 

with t h e  experimental  r e s u l t s .  

Figure 20 i s  a  p l o t  of t h e  phase angle of t h e  su r face  

o s c i l l a t i o n  as  a  funct ion  of frequency at a  mean pressure  of 9.77 

atm. A t  low f requencies ,  both t h e  t r a n s i e n t  and the  quasi-steady 

analyses i n d i c a t e  a  90" phase angle.  A t  t h i s  condi t ion  the  burning 

r a t e  and pressure  o s c i l l a t i o n s  a r e  i n  phase. A s  seen from Equation 

( 6 9 ) ,  f o r  t h e  burning r a t e  i n  phase wi th  t h e  p res su re ,  t h e  s u r f a c e  

o s c i l l a t i o n  must be 90" out  of phase. Of course, t h e  quasi-steady 

model does not  p r e d i c t  any dev ia t ion  from the  90' out  of phase 

condit ion as  frequency inc reases .  

A s  i n  t h e  case of t h e  amplitude of t h e  su r face  o s c i l l a t i o n ,  

the a c t i v a t i o n  energy has a  s i g n i f i c a n t  e f f e c t  upon t h e  p red ic t ed  

phase angle.  Again a  nondimensional a c t i v a t i o n  energy of 15 agrees 

with t h e  da ta  reasonably we l l  a s  shown i n  Figure 20. Note t h a t  t h e  

phase angles  a t  these  condi t ions  a r e  g r e a t e r  than 90' i n d i c a t i n g  t h a t  

the  burning r a t e  o s c i l l a t i o n  was leading  t h e  p res su re  o s c i l l a t i o n .  

Since the  s teady s t a t e  r e s u l t s ,  a s  shown i n  Figure 8 ,  

i n d i c a t e  t h a t  t h e  gas phase r e a c t i o n  a t  9 .77  atm i s  second order ,  

no t h e o r e t i c a l  p red ic t ions  were made assuming a f i r s t  o rde r  

r eac t ion  a t  t h i s  mean pressure .  A second s e t  of d a t a  was taken a t  1.18 

atm where, from Figure 8, t h e  gas phase r e a c t i o n  appears t o  be f i r s t  

o rder .  These r e s u l t s  a r e  described i n  t h e  next  s ec t ion .  
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4.2.4 Low Pressure  Resul t s  

I n  order  t o  i n v e s t i g a t e  the  e f f e c t  of mean p res su re  on the  

o s c i l l a t o r y  burning r a t e  of hydrazine,  a  second s e r i e s  of da t a  were 

taken a t  a  mean pressure  of 1.18 atm. A t  t h i s  mean p res su re  the  

s teady r e s u l t s ,  as  shown i n  Figure 8, i n d i c a t e  t h a t  t h e  gas phase 

r eac t ion  i s  probably f i r s t  o rde r .  

I n  Figure 21  t h e  amplitude of t h e  l i q u i d  su r face  o s c i l l a t i o n  

i s  p l o t t e d  a s  a  funct ion  of frequency. The t h e o r e t i c a l  curves 

obtained from t h e  t r a n s i e n t  model assume a f i r s t  order  r eac t ion .  

A t  t hese  condi t ions ,  t h e  t h e o r e t i c a l  curve f o r  E = 1, p r e d i c t s  a  

smal le r  su r face  o s c i l l a t i o n  amplitude than t h e  t o t a l l y  quasi-steady 

ana lys i s .  However, both t h e o r e t i c a l  curves approach the  quasi-steady 

r e s u l t s  f o r  low frequency. 

The r e s u l t s  shown i n  Figure 21 suggest  t h a t  a  h igher  a c t i v a t i o n  

energy than E = 10 i s  requi red  t o  agree with t h e  experimental da ta .  

However, t h e  opposi te  conclusion i s  reached i f  t h e  phase angle i s  

considered a s  shown i n  F igure  22. The phase angle r e s u l t s  suggest 

t h a t  a  low a c t i v a t i o n  energy, between 1 and 10 ,  would b e s t  agree 

with t h e  experimental  da ta .  Thus, t h e  f i r s t  o rder  r e a c t i o n  

t h e o r e t i c a l  r e s u l t s  a r e  not  i n  good agreement wi th  t h e  experimental 

da t a  a t  a  mean pressure  of 1.18 atm. 

I f  t h e  r eac t ion  i s  assumed t o  be second order  a t  1.18 atm, 

t h e  t h e o r e t i c a l  s teady s t r a n d  burning r a t e  i s  s i g n i f i c a n t l y  l e s s  

than t h e  experimental  r e s u l t  a s  seen from Figure 8. To a d j u s t  t h e  

s teady burning r a t e ,  t h e  r e s u l t s  shown i n  Figure 8 were 

r e c o r r e l a t e d  by matching theory t o  the experimental  r e s u l t s  a t  1.0 
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Figure 22 Theoretical (n = 1) and Experimental Phase Angle of the 
Liquid Surface Oscillations as a Function of Frequency at 
a Mean Pressure of 1.18 atm 
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atm f o r  a  second order  gas phase r eac t ion  r a t h e r  than a t  6.7 atm. 

The parameters obtained from t h i s  match a r e  l i s t e d  i n  Table 3 .  

I n  Figure 23, t h e  amplitude of t h e  l i q u i d  su r face  o s c i l l a t i o n  

is p l o t t e d  a s  a  func t ion  of frequency. A second order  gas phase 

r eac t ion  wi th  an a c t i v a t i o n  energy of between 10 and 15 agrees we l l  

with t h e  experimental  da ta .  The same conclusion i s  reached when 

considering phase angles  as  shown i n  Figure 24. Thus, a s  w i th  t h e  

high p res su re  r e s u l t s ,  t h e  t h e o r e t i c a l  model assuming a second order  

r e a c t i o n  wi th  a  nondimensional a c t i v a t i o n  energy of about 15 i s  i n  

good agreement with t h e  experimental  da ta .  The corresponding 

dimensional a c t i v a t i o n  energy of about 40 k c a l  i s  a l s o  i n  good 

agreement wi th  t h e  apparent a c t i v a t i o n  energy of 36 k c a l  repor ted  by 

McHale, e t  a l . ,  [49] from a k i n e t i c  s tudy on hydrazine decomposition. 

4.2.5 Addi t ional  Impl ica t ions  of the  Theore t i ca l  Model 

The preceding d iscuss ion  has ind ica t ed  t h a t  t h e  t h e o r e t i c a l  

model is i n  good agreement with a l l  a v a i l a b l e  experimental  r e s u l t s  

on t h e  o s c i l l a t o r y  burning of hydrazine. Af ter  gaining t h i s  

confidence i n  the  model, t h e  model was used t o  p r e d i c t  t h e  e f f e c t s  

of va r ious  parameters of i n t e r e s t  t o  engine des igners  on the  

o s c i l l a t o r y  behavior  of hydrazine. This  s e c t i o n  descr ibes  these  

r e u l t s  i n  d e t a i l .  

4 .2 .5 .1  Ef fec t  of Mean Pressure 

One of t h e  prime q u a n t i t i e s  of i n t e r e s t  i n  t h e  unsteady 

combustion case i s  t h e  dimensionless o s c i l l a t o r y  mass burning r a t e  

pe r tu rba t ion ,  rl,  due t o  an o s c i l l a t o r y  p res su re  pe r tu rba t ion  of 



Table 3 

Additional Correlation Condition and Parameters 
Used in the Theoretical Model 

n = 2  Correlation Condition 

P: = 1.0 atm vf = 0.021 cm/sec 
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Figure 24 Theoretical (n = 2) and Experimental Phase Angle of the 
Liquid Surface Oscillations as a Function of Frequency at 
a Mean Pressure of 1.18 atm 
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amplitude E.  The next  n ine  f i g u r e s  i n d i c a t e  t h e  e f f e c t  of mean 

pressure  on t h e  behavior of r f o r  va r ious  a c t i v a t i o n  energ ies  and 
1 

a second o rde r  r eac t ion .  

Figures 25-27 show t h e  amplitude and phase angle (with 

respec t  t o  t h e  p res su re  o s c i l l a t i o n )  of r f o r  a dimensionless 
1 

a c t i v a t i o n  energy of 1 and mean pressures  of 1, 10 and 100 atm, 

r e spec t ive ly ,  a s  a func t ion  of t h e  dimensionless frequency of t h e  

pressure  o s c i l l a t i o n .  A t  low f requencies  t h e  burning r a t e  o s c i l l a t i o n  

i s  i n  phase wi th  t h e  p res su re  o s c i l l a t i o n ,  and t h e  e n t i r e  process ,  

both l i q u i d  and gas phase, is quasi-steady. As t h e  frequency 

approaches t h e  c h a r a c t e r i s t i c s  frequency of t h e  l i q u i d  phase thermal 

wave both t h e  phase (with r e spec t  t o  t h e  p res su re  o s c i l l a t i o n )  and 

the amplitude of r begin t o  dev ia t e  from t h e i r  quasi-steady va lue .  
1 

The nondimensional c h a r a c t e r i s t i c  frequency of t h e  l i q u i d  phase 

-4 
thermal wave increased  from about 10 a t  1 atm t o  about a t  100 

atm. 

A s  t h e  frequency inc reases  beyond t h e  c h a r a c t e r i s t i c  

l i q u i d  thermal wave frequency, gas phase t r a n s i e n t  e f f e c t s  become 

important.  On Figures 25-27 two t h e o r e t i c a l  curves a r e  shown. The 

s o l i d  curve neg lec t s  a l l  t r a n s i e n t  gas phase e f f e c t s  bu t  inc ludes  

the  e f f e c t s  of a t r a n s i e n t  l i q u i d  phase. The dashed curve inc ludes  

the  e f f e c t s  of both t r a n s i e n t  gas and l i q u i d  phases. As  i nd ica t ed  

i n  Figures 25-27 gas phase t r a n s i e n t  e f f e c t s  only become important 

f o r  nondimensional f requencies  on the  order  of 0.10. The quasi-steady 

gas phase a n a l y s i s  was obta ined  by t ak ing  the  formal l i m i t  w + 0 i n  t h e  

gas phase a s  described i n  Appendix C.  
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For E = 1, Figures 25-27 i n d i c a t e  t h a t  as  t h e  pressure  

inc reases  t h e  peak i n  t h e  r response curve due t o  l i q u i d  thermal 
1 

effectsbecomesmore pronounced. A t  low pressures  t h e  phase l ag  i s  

negat ive  f o r  a l l  f requencies  of o s c i l l a t i o n .  A s  the  pressure  

inc reases ,  however, t h e  phase l a g  i s  a t  f i r s t  p o s i t i v e  and then 

goes negat ive  a s  w i nc reases .  This e f f e c t  was found t o  be due t o  

t h e  shape of t h e  hydrazine vapor pressure  curve. Theore t i ca l ly ,  

the  l i q u i d  su r face  temperature o s c i l l a t i o n  amplitude i s  r e l a t i v e l y  

small.  Thus, a t  low p res su res  a f i n i t e  change i n  t h e  pressure  

causes a r e l a t i v e l y  smal l  change i n  the  f u e l  mass f r a c t i o n  a t  t h e  

su r face .  A t  h igh  p res su res ,  t h e  same change i n  p res su re  causes a 

s i g n i f i c a n t  change i n  t h e  su r face  f u e l  mass f r a c t i o n .  

S imi lar  t r e n d s  were found f o r  t h e  case  of E = 10 a s  shown 

i n  Figures 28-30. However, i n  t h i s  case the  peak i n  t h e  r response 1 

curve becomes very pronounced a s  pressure  inc reases .  

For t h e  case E = 30 somewhat d i f f e r e n t  behavior was found. 

A s  i l l u s t r a t e d  i n  Figures 31-33 the  peak i n  the  rl response curve 

becomes l e s s  pronounced a s  pressure  inc reases .  However, as  before,  

the  phase angle tends t o  p o s i t i v e  va lues  a s  t h e  p res su re  inc reases  

f o r  a given frequency. 

4.2.5.2 Ef fec t  of Conditioning Temperature 

Another parameter which could be of importance with regard 

t o  o s c i l l a t o r y  combustion response i s  t h e  f u e l  condi t ioning  temperature 

T*_. - The e f f e c t  of i nc reas ing  TXm from 298 t o  350 K was inves t iga t ed  

a t  a mean p res su re  of 1 atm f o r  a second o rde r  r e a c t i o n  wi th  a 

nondimensional a c t i v a t i o n  energy of 10. The r e s u l t s  of  these  
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ca lcu la t ions  a r e  shown i n  Figure 34 .  Figure 34 was obtained by f i x i n g  

a l l  dimensional q u a n t i t i e s  but  i nc reas ing  t h e  f u e l  condi t ioning  

temperature by 52 K. Of course,  i n  order  t o  s a t i s f y  o v e r a l l  

conservat ion of energy t h e  flame temperature had t o  be increased  a  

corresponding amount. Increas ing  t h e  flame temperature decreased 

the  va lues  of some of t h e  nondimensional parameters of t h e  problem, 

inc luding  t h e  nondimensional a c t i v a t i o n  energy. 

By comparing Figure 34 with  Figure 28 i t  i s  seen t h a t  t h e  

e f f e c t  of i nc reas ing  T-- is t o  decrease somewhar the  f i r s t  peak i n  t h e  

r response curve. However, t h e  n e t  o v e r a l l  e f f e c t  i s  r a t h e r  small .  1 

4 . 2 . 5 . 3  Acoustic Admittance 

The major parameter of i n t e r e s t  t o  the  des igners  i n  

determining t h e  s t a b i l i t y  c h a r a c t e r i s t i c s  of a  combustion chamber is 

the  r e a l  p a r t  of t h e  a c o u s t i c  admittance of t h e  burning f u e l .  This  

quan t i ty  can be obtained from t h e  present  a n a l y s i s  a s  described i n  

Appendix G. 

The acous t i c  admittance v a r i e s  with t h e  d i s t ance  from t h e  

l i q u i d  sur face ,  bu t  approaches a  constant  va lue  f o r  very l a r g e  

d i s t ances .  A s  developed i n  Appendix G ,  t h e  value shown he re  i s  t h e  

value at t h e  t r u e  mathematical i n f i n i t y .  

Phys ica l ly ,  t h e  r e a l  p a r t  of the  a c o u s t i c  admittance 

r ep resen t s  t h a t  p a r t  of t h e  gas phase v e l o c i t y  f l u c t u a t i o n  which i s  

i n  phase wi th  t h e  p res su re  f l u c t u a t i o n .  Figures 35-37 show t h e  

r e a l  p a r t  of t h e  a c o u s t i c  admittance p l o t t e d  a s  a  funct ion  of frequency 

f o r  var ious  pressures  f o r  a  second order  r eac t ion  and nondimensional 

a c t i v a t i o n  energ ies  of 1, 10 and 3 0 ,  r e spec t ive ly .  



Figure 34 Burning Rate Oscillation Amplitude and Phase Angle as a 
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Figure 36 Real Part of the Acoustic Admittance as a Function of 
Frequency for n = 2, E = 10 and Various Pressures 
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A s  shown i n  Figure 35, t h e  r e a l  p a r t  of t h e  a c o u s t i c  admittance 

i s  zero f o r  low f requencies  where t h e  combustion process i s  quasi- 

s teady.  I n  t h i s  l i m i t  t h e  mass burning r a t e  f o r  a second order  

r eac t ion  i s  l i n e a r l y  p ropor t iona l  t o  pressure .  However, from t h e  

p e r f e c t  gas r e l a t i o n ,  t h e  gas phase dens i ty  i s  a l s o  l i n e a r l y  

propor t ional  t o  p re s su re ;  t h e r e f o r e ,  t h e  gas phase v e l o c i t y  i s  

independent of pressure .  Thus, t h e  gas phase v e l o c i t y  f l u c t u a t i o n  

due t o  a p re s su re  f l u c t u a t i o n  i g  zero a t  low f requencies .  

As t h e  frequency i n c r e a s e s ,  l i q u i d  phase thermal wave 

e f f e c t s  become important  causing t h e  r e a l  p a r t  of t h e  acous t i c  

admittance t o  dev ia t e  from i t s  quasi-steady value.  The curves shown 

i n  Figure 35 reach a maximum near  t h e  c h a r a c t e r i s t i c  frequency of 

t h e  l i q u i d  phase thermal wave then become negat ive  a s  gas phase 

t r a n s i e n t  e f f e c t s  become important .  The curves reach a minimum 

then become p o s i t i v e  again f o r  very high f requencies .  

Reference 1161 i n d i c a t e s  t h a t  f o r  i n s t a b i l i t y  t o  occur t h e  

r e a l  p a r t  of t h e  a c o u s t i c  admittance should be on t h e  o rde r  of one. 

A s  shown i n  Figure 35 t h e  r e a l  p a r t  of t h e  a c o u s t i c  admittance f o r  

E = 1 only becomes of t h e  o rde r  one a t  very l a r g e  frequencies  f o r  

t h e  pressures  shown. Liquid phase thermal  wave e f f e c t s  a r e  not  of 

s u f f i c i e n t  magnitude t o  cause i n s t a b i l i t y  f o r  E = 1. 

Figure 36 shows a s i m i l a r  p l o t  f o r  E = 10. This  f i g u r e  

i n d i c a t e s  t h a t  a s  p re s su re  inc reases  a frequency range i s  reached 

where the  r e a l  p a r t  of t h e  a c o u s t i c  admittance is one o r  g r e a t e r .  

Also, with inc reas ing  p res su re ,  t h e  peaks i n  t h e  curves due t o  

l i q u i d  thermal wave e f f e c t s  move t o  h igher  f requencies .  



Somewhat different behavior is  evident from Figure 37. 

For E = 30, the real part of the acoustic admittance i s  of the 

order one or greater only for low pressures except for very high 

frequencies. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

5 .1  Summary 

The p resen t  s tudy was concerned wi th  t h e  s t r a n d  combustion 

of hydrazine under both s teady and o s c i l l a t o r y  condi t ions .  The 

s p e c i f i c  o b j e c t i v e s  of t h e  s tudy were a s  fol lows:  

1. I n v e s t i g a t e  t h e  s teady s t r a n d  combustion c h a r a c t e r i s t i c s  

of hydrazine experimental ly t o  determine s teady s t r a n d  

burning r a t e s  a s  funct ions  of pressure ,  l i q u i d  

concent ra t ion  and tube diameter .  Also i n v e s t i g a t e  t h e  

l i q u i d  temperature d i s t r i b u t i o n s  and l i q u i d  su r face  

temperatures a s  a  func t ion  of pressure  during s teady 

s t r a n d  combustion. 

2 .  Study the  o s c i l l a t o r y  combustion c h a r a c t e r i s t i c s  of 

hydrazine by experimental ly determining t h e  o s c i l l a t o r y  

burning r a t e  a s  a  func t ion  of mean pressure ,  and t h e  

frequency and amplitude of t h e  imposed pressure  

o s c i l l a t i o n s .  

3 .  Develop a t h e o r e t i c a l  model of t h e  s t r a n d  combustion 

system capable of p red ic t ing  t h e  observed experimental  

r e s u l t s  under both s teady and o s c i l l a t o r y  condit ions.  

For the  experimental program a s teady s t r a n d  combustor 

was used i n  t h e  i n i t i a l  phases of t h e  inves t iga t ion .  With t h i s  

apparatus s teady s t r a n d  burning r a t e s  were measured over 

the  pressure  range of 0 . 3 2 - 4 2  atm and l i q u i d  temperatures were 



obtained i n  t h e  range of 1.0-20.5 atm. Liquid concent ra t ions  of 

from 92.6-99.4% N2H4 were s tud ied  i n  tube  s i z e s  of 4 ,  8 and 12 mm. 

A modified ve r s ion  of t h e  s teady s t r a n d  apparatus was 

cons t ruc ted  t o  provide a  means of s tudying t h e  o s c i l l a t o r y  combustion 

of hydrazine. With t h i s  appara tus  o s c i l l a t o r y  burning r a t e s  were 

obtained i n  t h e  mean pressure  range of 1-10 atm with f requencies  

vary ing  from 0.4-5.2 Hz and pressure  amplitudes up t o  35 % of the  

mean pressure .  

A t h e o r e t i c a l  model of the  system was developed. The major 

assumptions i n  t h e  t h e o r e t i c a l  a n a l y s i s  were t h a t  t h e  system was one 

dimensional,  a  one-step, i r r e v e r s i b l e  r e a c t i o n  occurred i n  t h e  gas 

phase and conventional low p res su re  phase equi l ibr ium was adequate 

t o  descr ibe  t h e  s t a t e  of t h e  l i q u i d  su r face .  While t h e  l i q u i d  

phase was assumed t o  have cons tant  phys ica l  p r o p e r t i e s ,  a  v a r i a b l e  

property gas phase s o l u t i o n  was obtained through t h e  use of a  

modified Howarth t ransformation.  The r e s u l t i n g  equat ions  desc r ib ing  

t h e  combustion system were so lved  through t h e  use of a  pe r tu rba t ion  

ana lys i s  with t h e  amplitude of t h e  imposed p res su re  o s c i l l a t i o n s  

taken a s  t h e  smal l  pe r tu rba t ion  parameter.  

The zero order  model described t h e  s teady s t r a n d  combustion 

sysrem. The p red ic t ions  of t h i s  model were compared t o  t h e  

experimental s teady s t r a n d  r e s u l t s .  The e x c e l l e n t  agreement between 

theory and experiment j u s t i f i e d  t h e  ex tens ion  of t h i s  theory t o  

inc lude  unsteady e f f e c t s .  



5.2 Conclusions 

5.2.1 Steady Strand Combustion 

The major conclusions of t h e  s teady s t r a n d  por t ion  of t h e  

s tudy a r e  a s  fol lows:  

1. Addition of  water  t o  t h e  l i q u i d  hydrazine reduces t h e  

burning r a t e .  However, l i q u i d  p u r i t i e s  of 98.6 and 

99 .4% y ie lded  e s s e n t i a l l y  t h e  same burning r a t e s .  

2 .  The e f f e c t  of tube diameter s c a l e s  as  t h e  r e c i p r o c a l  

of t h e  tube diameter .  By p l o t t i n g  s teady s t r a n d  

burning r a t e s  a s  a  funct ion  of t h e  r e c i p r o c a l  of t h e  

tube diameter,  l i n e a r  p l o t s  were obtained allowing 

t h e  determinat ion of t h e  fundamental s t r a n d  burning 

r a t e .  

3 .  The experimental  r e s u l t s  i nd ica t ed  t h a t  t h e  s t r a n d  

burning r a t e  has  a  pressure  dependence of 112 f o r  

subatmospheric pressures  and a pressure  dependence of 1 

f o r  pressures  above atmospheric. This f i n d i n g  i s  i n  

agreement wi th  t h e  r e s u l t s  of previous i n v e s t i g a t i o n s .  

[13-151 The t h e o r e t i c a l  model was matched t o  these  

r e s u l t s  by assuming a f i r s t  o rder  decomposition r e a c t i o n  

f o r  subatmospheric pressures  and a second order  

decomposition r e a c t i o n  f o r  pressures  g r e a t e r  than 

atmospheric. 

4 .  The gas phase a c t i v a t i o n  energy has  very l i t t l e  

e f f e c t  upon t h e  t h e o r e t i c a l l y  predic ted  s teady s t r a n d  

burning r a t e  f o r  both a  f i r s t  and second order  r eac t ion .  



5. The t h e o r e t i c a l  model, assuming constant  l i q u i d  phase 

p r o p e r t i e s ,  agrees we l l  with t h e  experimental  l i q u i d  

temperature d i s t r i b u t i o n s .  

6 .  The t h e o r e t i c a l  model i s  a l s o  i n  e x c e l l e n t  agreement 

wi th  t h e  experimental ly determined l i q u i d  su r face  

temperatures j u s t i f y i n g  t h e  low p res su re  phase 

equi l ibr ium assumption. 

5.2.2 Osc i l l a to ry  Strand Combustion 

The major conclusions of t h e  o s c i l l a t o r y  s t r a n d  p o r t i o n  of 

t h i s  i n v e s t i g a t i o n  a r e  a s  fol lows:  

1. A s  opposed t o  s teady combustion, f o r  o s c i l l a t o r y  

combustion t h e  gas phase a c t i v a t i o n  energy has  a 

s i g n i f i c a n t  i n f luence  upon t h e  p red ic t ed  t h e o r e t i c a l  

o s c i l l a t o r y  burning r a t e .  The t h e o r e t i c a l  r e s u l t s  

concerning both t h e  amplitude and the  phase angle 

of t h e  l i q u i d  su r face  o s c i l l a t i o n s  a r e  i n  good 

agreement wi th  t h e  experimental r e s u l t s  when a second 

order  r e a c t i o n  wi th  an a c t i v a t i o n  energy of about 

40 kca l  (E = 15) is assumed. 

2. Based upon the  t h e o r e t i c a l  acous t i c  admittance, t h e  model 

p r e d i c t s  t h a t  f o r  a c t i v a t i o n  energ ies  i n  t h e  range of 

25-40 k c a l  (E = 10-151, t h e  hydrazine combustion system 

e x h i b i t s  a range of frequencies  where i n s t a b i l i t y  

could occur.  A s  p re s su re  inc reases ,  t h e  i n s t a b i l i t y  

range moves t o  h igher  frequencies  and t h e  system becomes 

l e s s  s t a b l e .  
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APPENDIX A 

CHECK OF THE ASSUMPTIONS OF THE ANALYSIS 



A. 1 Est imation of Radiat ion E f f e c t s  During Strand Burning 

An es t ima t ion  of t h e  e f f e c t  of r a d i a t i o n  can be made by 

comparing t h e  energy reaching t h e  l i q u i d  su r face  due t o  r a d i a t i o n  t o  

the  t o t a l  amount of energy reaching t h e  l i q u i d  su r face .  I n  t h e  s teady 

s t a t e  t h e  t o t a l  amount of energy reaching t h e  l i q u i d  su r face  i s  equal  

t o  t h e  product  of t h e  l i q u i d  dens i ty ,  t h e  f u e l  burning r a t e  and t h e  

hea t  requi red  t o  r a i s e  t h e  temperature of t h e  l i q u i d  t o  t h e  su r face  

temperature and vaporize the  f u e l  a t  t h e  su r face  temperature. 

To ge t  a  rough es t imat ion  of t h e  amount of hea t  reaching the  

l i q u i d  su r face  due t o  r a d i a t i o n ,  t h e  combustion system was taken t o  be 

an i n f i n i t e  cy l inde r  of the  decomposition flame products  a t  t h e  

a d i a b a t i c  flame temperature of the  f u e l .  The wa l l s  of t h e  cy l inde r  

were assumed t o  be  t r anspa ren t .  The shape f a c t o r  and mean beam 

length  were taken from Hot t e l  and Sarofim [ 4 0 ] .  

The f u e l  decomposition products were taken t o  be those 

suggested by Audrieth and Ogg [ 3 9 ] ;  namely 

The only e m i t t e r  i s  t h e  system i n  NH with a  mole f r a c t i o n  of 0.5. 3  

Using t h e  corresponding p a r t i a l  pressure  and t h e  mean beam length ,  t h e  

emiss iv i ty  was taken from Hot t e l  and Sarofim [ 4 0 ] .  The hea t  due t o  

r a d i a t i o n  reaching t h e  l i q u i d  su r face  was then t h e  product of t h e  

shape f a c t o r ,  t h e  gas emiss iv i ty ,  t h e  Stefan-Boltzmann cons tant  and 

t h e  a d i a b a t i c  flame temperature r a i sed  t o  t h e  fou r th  power. 

By comparing t h e  r a d i a t i o n  hea t  t r a n s f e r  t o  t h e  t o t a l  hea t  

t r a n s f e r  i n  t h e  above manner, i t  was found t h a t  the  r a d i a t i o n  e f f e c t  

was always l e s s  than 1% of t h e  t o t a l .  This r e s u l t  i s  



not  s u r p r i s i n g  s i n c e  hydrazine has a low a d i a b a t i c  flame 

temperature. 

A .  2 Phase Equilibrium Assumption 

The equi l ibr ium assumption a t  t h e  l i q u i d  su r face  can be 

j u s t i f i e d  i f  t h e  r a t e  a t  which molecules from t h e  gas phase s t r i k e  

the  l i q u i d  s u r f a c e  is much g r e a t e r  than t h e  f u e l  burning r a t e .  The 

number of molecules s t r i k i n g  the  l i q u i d  su r face  per  u n i t  time was 

est imated us ing  k i n e t i c  theory.  

The r a t e  a t  which molecules from t h e  gas phase s t r i k e  t h e  

l i q u i d  su r face  was est imated using t h e  fol lowing equat ion derived 

from k i n e t i c  theory [41]  

where @ i s  t h e  r a t e  a t  which molecules s t r i k e  t h e  su r face  pe r  u n i t  

a r ea ,  P i s  the pressure ,  M i s  t h e  molecular weight and T i s  the  

su r face  temperature. 

Using t h e  experimental ly determined s u r f a c e  temperature a s  

a func t ion  of p re s su re  i n  Equation ( A . 2 ) ,  0 was compared t o  t h e  

experimental  burning r a t e  a t  var ious  pressures .  It was found t h a t  @ 

was always between two and t h r e e  orders  of magnitude g r e a t e r  than 

the  burning r a t e  a t  any given pressure .  Thus t h e  assumption of 

phase equi l ibr ium a t  t h e  su r face  is j u s t i f i e d .  

A .  3 Constant T o t a l  Pressure  Assumption 

The cons tant  t o t a l  pressure  assumption i s  r e a l l y  two 

assumptions, namely t h a t  the  Mach number of  t h e  flow i s  much l e s s  

than u n i t y  and t h a t  t h e  wavelength of any pe r iod ic  p res su re  d is turbance  



i s  long compared t o  t h e  d i s t ance  from t h e  o u t e r  edge of t h e  r eac t ion  

zone t o  t h e  l i q u i d  su r face .  The Mach number was est imated t o  be i n  

the  range of 0.001-0.002 and i s  much l e s s  than  uni ty .  This s e c t i o n  

of Appendix A, t he re fo re ,  d e a l s  wi th  e s t ima t ing  t h e  frequency where 

the  long wavelength assumption breaks down. 

To e s t ima te  t h i s  frequency assume t h a t  t h e  temperature 

p r o f i l e  i s  l i n e a r  between t h e  su r face  temperature and the  flame 

temperature. Then t h e  t o t a l  hea t  t r a n s f e r  t o  t h e  l i q u i d  su r face  can 

be expressed as 

T* - T* 
q* 6 = I),* I*) dx* = A* = p* v* LX x* - x* 

f s  
R R 

A l l  q u a n t i t i e s  i n  Equation (A.3) a r e  known e i t h e r  a s  thermodynamic 

p r o p e r t i e s  o r  a s  experimental ly measured parameters except t h e  d i s t ance  

from t h e  ou te r  edge of t h e  r e a c t i o n  zone t o  the  su r face ,  (x* - x*). 
f s 

The parameter,  (x; - xg),  was computed from Equation (A.3) 

as  a func t ion  of pressure .  It was found t h a t  (xg - x:) i s  g r e a t e r  

than 0.10 of t h e  wavelength of  any pe r iod ic  pressure  d is turbance  

f o r  f requencies  above about 50,000 Hz. 



APPENDIX B 

FORM OF THE ZERO ORDER ENERGY EQUATION FOR LARGE 7l 



The only equat ion which must be  i n t e g r a t e d  f o r  t h e  zero 

order  problem i s  Equation (46) which is r e w r i t t e n  here .  

d2To dT 0 
1-n I+&-n -E 

2 dn + Aq To (l-To)" exp = 0 (B.1) 
dn o 

To f i n d  t h e  form of Equation (B.1) f o r  l a r g e  11 l e t  

where 5 is a smal l  parameter. Combining Equation (B.1) and Equation 

(B. 2) y i e l d s  

d2T (1) dT (1) 

5 0 0 - 5" Aql-" 
exp (-E)To ( l ) n  = - 5  d, (B.3) 

dn2 

The s o l u t i o n  of Equation (B.3) depends on t h e  o rde r  of t h e  

r eac t ion ,  n .  For n = 1, t h e  s o l u t i o n  of Equation (B.3) i s  

s t r a i g h t £  orward. 

The growing exponent ia l  p a r t  o f t h e  s o l u t i o n  t o  Equation 

(B.3) i s  r e j e c t e d  s i n c e  T must approach zero f o r  l a r g e  n from 
0 

Equation (47).  C i n  Equation (B.4) is an unknown cons tant .  
1 

Combining Equation (B.2) and Equation (B.4) r e s u l t s  i n  

For n = 1, where 

and i s  an unknown cons tant .  



For n = 2, Equation (B.3) can be solved by stretching the 

coordinate such that 

where a is a constant determined by proper matching. 

Substituting Equation (B.7) into Equation (~.3) yields 

A proper match of the terms in Equation (B.8) is only obtained by 

balancing convection and reaction; the diffusion term is of higher 

order. Then a = -1 and the resulting.equation is 

solving Equation (B.9) 

To = (A exp(-E)u - c1)-l 
9 

where C is an unknown constant. 1 

From Equation (B.2) and Equation (B.7) 

for n = 2, where 

c = cl/s 

and is an unknown constant. 

(B. 10) 

(B. 11) 



APPENDIX C 

SOLUTION METHOD FOR THE FIRST ORDER PROBLEM 



The f i r s t  order  problem is given by Equations (60-66) and 

Equation (68). The problem can be s impl i f i ed  somewhat by not ing  t h a t  

t h e  s o l u t i o n  of Equation (61) can be  represented  by 

8 = Kl exp [ 1 
- + B1,(q) 

2 

where K i s  t h e  unknown cons tant  i n  t h e  homogeneous s o l u t i o n  and 0 1 1P 

rep resen t s  t h e  p a r t i c u l a r  s o l u t i o n .  I n  a r r i v i n g  a t  Equation (C.1) t h e  

growing exponent ia l  p a r t  of t h e  homogeneous s o l u t i o n  was r e j e c t e d  

s ince ,  phys ica l ly ,  n e i t h e r  t h e  temperature nor  the  f u e l  mass f r a c t i o n  

f l u c t u a t i o n s  can grow exponent ia l ly  wi th  increas ing  q .  I n  genera l  

BIP must be determined numerical ly.  However, f o r  l a r g e  ll, us ing  

Equation (47)  i n  Equation (61) ,  

Equation (C.2) a l s o  fol lows from Equation (68).  

Using Equation (C.1) i n  Equation (62) t h e  f i r s t  o rder  

problem reduces t o  the  fol lowing equat ion 

where 

dT 0 

0 b = -  
dll 



The boundary conditions can also be reduced to the following: 

(C. 10) 

where 

The outer boundary condition remains as specified by Equatidn (67) 

or Equation (68). 

The equations representing the quasi-steady gas phase 

problem can be obtained by setting w 0 in Equations (61 and 62). 

These equations can be summarized as follows: 

(C. 18) 



s i n c e  

and 

where 

The boundary condi t ions  remain t h e  same except 

( C . 2 0 )  

(C.  21) 

( C . 2 2 )  

Since t h e  equat ions  f o r  the  complete unsteady and quasi-steady 

problems a r e  s i m i l a r  except f o r  the  va lues  of t h e  c o e f f i c i e n t s ,  t h e  

genera l  s o l u t i o n  method as  discussed i n  t h e  fol lowing is  app l i cab le  

t o  e i t h e r  case.  

The f i r s t  order  problem reduces t o  t h e  s o l u t i o n  of one 

l i n e a r ,  second o rde r ,  ord inary  d i f f e r e n t i a l  equat ion ,  Equation ( C . 3 ) ,  

with  two unknown cons tants  rl  and K1. The fou r  boundary condi t ions  

permit unique va lues  of t h e  unknown cons tants  t o  be  found a s  w e l l  

as  t h e  des i r ed  s o l u t i o n  out  of the  family of  s o l u t i o n s  of t h e  

second order ,  ord inary  d i f f e r e n t i a l  equat ion.  

Explo i t ing  t h e  l i n e a r i t y  of Equation ( C . 3 ) ,  l e t  

(C. 2 4 )  



Then Equation (C.3) can be separa ted  i n t o  t h r e e  equat ions  

(C. 25) 

The boundary condi t ions ,  Equations ((2.8-C.10 and 67) can a l s o  be 

separa ted  a s  fol lows:  

(C. 28) 

(C. 29) 

(C. 30) 

(C. 31) 

(C.32) 



and as n + 

(C.37) 

(C. 38) 

(C.39) 

where C, C* and are constants. 

The three differential equations, Equations (C.25-C.271, 

each have a particular and a homogeneous solution. However, since 

the homogeneous equations are identical, the homogeneous solutions 

are identical. Breaking the equations into homogeneous and particular 

parts, let 

T; = T* + K*T 
1P 1H (C. 41) 

where K, K* and are unspecified constants. The differential 

equations, Equations (C.25-C-27) become 



A 

The constants K, K* and K are chosen such that one of the boundary 

conditions at n=O, Equations ((2.8-C.lO) is satisfied. The remaining 

two boundary conditions at rl = 0 are used to determine rl and K1. 

At this point one must choose which boundary condition to 
A 

use to determine K, K* and 7 .  The solution of the system of equations, 

Equations (C.43-46) should be unique and thus independent of the choice 

of boundary condition. It was verified that the choice has no 

effect on the final computed results by using all three boundary 

conditions, Equations (C.8-C.10), in turn and computing, numerically, 

the solution. Equation (C.9) is chosen as the boundary condition 

to be used here for illustration purposes. 

Separating Equations (C.31-C.33) using Equations (C.40-C.42) 

yields 

Summarizing thus far, the solution method consists of 
A 

solving Equations (C. 43-C.46) numerically for TIH(n), TIP (n), T:p (rl) 



- 
and Tlp(n). Equations (C.47-C-49) a r e  then used t o  determine K ,  K* 

A 

and k .  Next, Equations (C.40-C.42) a r e  used t o  f i n d  T1(ll), Tf(ll) ,  

and Tl(n). F i n a l l y ,  Equations (C.28-C.30) and Equations (C. 34-C. 36) 

a re  recombined t o  produce two equat ions  involv ing  two unknown 

cons tants ,  rl and K These equat ions a r e :  
1' 

Equations (C.50-C.51) permit unique va lues  of r  and K t o  be I 1 

determined. 

The f i r s t  order  problem i s  reduced t o  t h e  s o l u t i o n  of f i v e  

second order ,  ord inary  d i f f e r e n t i a l  equat ions ,  Equations (C.43-C.46) 

and the  s o l u t i o n  of Equation (61) f o r  Blp(n). A s  with the  zero order  

problem, t h e s e  equat ions  were solved by i n t e g r a t i n g  t o  t h e  l i q u i d  

su r face  from some l a r g e ,  but  f i n i t e ,  n.  Asymptotic a n a l y s i s  was 

used t o  determine t h e  a n a l y t i c a l  form of t h e  s o l u t i o n s  f o r  l a r g e  n.  

These a n a l y t i c a l  equat ions  were then used t o  genera te  s t a r t i n g  va lues  

f o r  t h e  numerical s o l u t i o n .  The asymptotic a n a l y s i s  i s  discussed 

i n  the  following. 

The form of  Blp(0) f o r  l a r g e  n has  a l ready been discussed.  

For t h e  complete unsteady gas phase problem, t h e  form is given by 

Equation (C.2). For the  quasi-steady gas phase problem t h e  form of 



olP for all n is given by 

Olp = 0 (C.52) 
A - 

For TIH, Tlp, TPp and T the form of the solutions depends 1P 

on the reaction order, n. For n = 1 and 6 = 0, it can be shown that 

for large q 

d + - (=) iw - Aexp (-E) 9 Y 1P 
(C.54) 

1 - f + 4 i w  c + -Aexp (-E) exp [ 

Substituting Equations (12.53-C.56) into Equations (C.43-C.46) it is 

found that for large q 

- 1 -  J1+4p, 
TIP = exp [ 2 

2 Aexp (-E) + iw 

For n = 2 and 6 = 0, it can shown that for large rl 

p + -  iw 



and thus 

In deriving Equations (C.57-C.60) and Equations (C.65-C.68) 

growing exponentials were disregarded in order to satisfy Equations 

(C.37-C.39). The constants in the homogeneous solutions were 

normalized to unity since they were already considered in the constants 
. . 
K1, K* and E. 

Summarizing, Equation (61) is first solved to find 9 ( 0 )  using 1P 

Equation (C.2) to generate starting values for large q. If the gas 

phase is assumed to be quasi-steady then 0 is set equal to zero for 1P 

all q. Next, Equations (C.43-C.46) are solved using the appropriate 

starting values, Equations (C.57-C.60) for n = 1 or Equations 

tC.65-C.68) for n = 2. Equations (C.47-C.49) are then used to find 
A A 

K, K* and i?. Next T T*, and ? are found using Equations (C.40-C.42) 1' 1 1 

It should be mentioned at this point that the first and second 
A 

derivatives of T T* and can be found from equations similar to 1' 1 



Equations (C.40-C.42). rl and K1 are then determined from Equations 

(C.50-C.51). Finally, Equation (C.24) is used to find T1. 



APPENDIX D 

PHYSICAL PROPERTIES 



The re fe rences  f o r  t h e  phys ica l  p r o p e r t i e s  requi red  i n  

the  c a l c u l a t i o n s  a r e  shown on Table 4 .  The c o r r e l a t i o n s  used t o  

compute the  p r o p e r t i e s  a r e  d iscussed  i n  the  following. 

The s p e c i f i c  hea t  of the  f u e l  i n  both the  gas and l i q u i d  

phases were assumed cons tant .  The gas phase s p e c i f i c  hea t  was 

evaluated a t  a  temperature of 900°K. 

The gas phase thermal conduct iv i ty  A* was evaluated a t  mo 

the a d i a b a t i c  flame temperature. For t h i s  c a l c u l a t i o n  t h e  gas 

phase mixture was assumed t o  be  made up of 50% N H 25% NH3, 12.5% N2 
2 4' 

and 12.5% H on a  molar b a s i s  2 

The l i q u i d  phase thermal conduct iv i ty  was assumed cons tant .  

I t  was evaluated from t h e  l i q u i d  thermal d i f f u s i v i t y  which was 

found t o  give t h e  b e s t  f i t  of t h e  zero order  theory t o  t h e  experimental  

r e s u l t s  on l i q u i d  phase temperature d i s t r i b u t i o n s .  This  va lue  of 

2 
l i q u i d  thermal d i f f u s i v i t y  was found t o  be 1.26 x cm / sec  

as  discussed i n  Sec t ion  4.1.1. 

The a d i a b a t i c  flame temperature, T* was ca l cu la t ed  allowing 
-0' 

f o r  a l l  r e l evan t  d i s s o c i a t i o n  r eac t ions .  The thermochemical 

p r o p e r t i e s  requi red  f o r  t h i s  c a l c u l a t i o n  were taken from t h e  JANAF 

Tables.  [ 4 6 1  

The hea t  of vapor i za t ion  of the  fuel. was evaluated from t h e  

o v e r a l l  conservat ion of energy r e l a t i o n .  By spec i fy ing  t h e  temperature 

a t  t h e  cold end of t h e  l i q u i d ,  t h e  f i n a l  gas phase temperature, t h e  

hea t  c a p a c i t i e s  of t h e  gas and l i q u i d ,  and t h e  hea t  of combustion, 

the  o v e r a l l  conservat ion of energy i n  t h e  s teady s t a t e  could only be  

s a t i s f i e d  by proper  s e l e c t i o n  of t h e  hea t  of vapor iza t ion .  The value 

used i s  shown i n  Table 1. 



Table 4 

References for Physical Properties 

References 

Property N2H4 Combustion Products 

a 
Computed, Method of Reference 1441 



The constants i n  the Clausius-Clapeyron equation were 

determined from a l e a s t  squares f i t  t o  the ex i s t ing  data on vapor 

pressures as a function of l iquid temperature for  hydrazine. 

[ 4 5 ,  47-48] The values found are l i s t e d  i n  Table 1. 



APPENDIX E 

SURFACE MASS FRACTION USING THE INFINITE 
ACTIVATION ENERGY ASSUMPTION 



If an infinite gas phase activation energy is assumed rather 

than a unity Lewis number, the zero order equation relating surface 

fuel mass fraction to surface temperature, Equation (16), is 

different. In this Appendix, the theoretical development of an 

equation analogous to Equation (16) is presented for an infinite 

activation energy flame. 

The theoretical development follows closely that given in 

Reference [38]. Faeth 1381 used a molar basis for his analysis 

and assumed that both the specific heat and thermal conductivity of 

the gas phase were linear functions of temperature. In the 

analysis presented here, a mass basis is used and the specific heat 

is assumed constant but thermal conductivity is a function of 

temperature. 

Since the reaction is confined to a flame surface, the 

steady state energy and species conservation equations can be written 

as 

dT* pXv*[C (T* - T*) + L*] = A* - 
P s dx* 

d Y ~  p*v*[YF - 11 = p*D - 
dx* 

With the assumption of infinite activation energy, the outer 

boundary condition can rigorously be applied at the outer edge of the 

flame zone, x;, since the flame is infinitely thin. 

Thus, the boundary conditions are 



The q u a n t i t y  X*/p*D i s  only a weak func t ion  of composition 

and i s  assumed cons tant .  [38]  

Dividing Equation (E.1) by Equation (E.2) t o  e l imina te  s p a t i a l  

d e r i v a t i v e s  and i n t e g r a t i n g ,  using t h e  boundary condi t ions ,  Equation 

(E .3 )  y i e l d s  

Equation ( ~ . 4 )  then replaces  Equation (16) i f  an i n f i n i t e  a c t i v a t i o n  

energy is assumed. 



APPENDIX F 

DEVELOPMENT OF THE TOTALLY QUASI-STEADY ANALYSIS 



The t o t a l l y  quasi-s teady a n a l y s i s  neg lec t s  both t r a n s i e n t  

l i q u i d  and gas phase e f f e c t s .  The a n a l y s i s  was done by using t h e  

experimental  d a t a  on t h e  fundamental s t r a n d  burning r a t e  of hydrazine 

a s  a func t ion  of pressure  shown i n  Figure 8 and f i t t i n g  i t  t o  t h e  

fol lowing empi r i ca l  equat ion f o r  pressures  g r e a t e r  than atmospheric. 

dx; 
v* = u* + u* p* = - 

& 0 1 0 dt* 

where U* and u* a r e  cons tants .  
0 1 

Assume the  p res su re ,  P*, v a r i e s  s i n u s o i d a l l y  with time such 
0 

t h a t  

p* = P* + PEl cos w*t* 
0 00 

(F.2) 

where P* and P t l  a r e  a l s o  cons tants .  S u b s t i t u t i n g  Equation (F.2) i n t o  
00 

. (F. l )  and i n t e g r a t i n g  y i e l d s  

u* P* 
,* = (u* + u* P* ) t *  + 

1 00 
s i n  w*t* (F.3) 

S 0 w* 

Equation (F.3) i s  t h e  t o t a l l y  quasi-steady t h e o r e t i c a l  p red ic t ion  of 

l i q u i d  s u r f a c e  movement. The f i r s t  term on t h e  r i g h t  hand s i d e  of 

Equation (F.3) r ep resen t s  t h e  s teady r eg res s ion  of the  l i q u i d  su r face  

f o r  cons tant  pressure .  The second term rep resen t s  t h e  o s c i l l a t o r y  

motion of t h e  l i q u i d  su r face  under o s c i l l a t o r y  pressure  condit ions.  

Note t h a t  t h e  amplitude of t h e  o s c i l l a t i n g  component of t h e  l i q u i d  

su r face  motion is  an inve r se  func t ion  of frequency, and t h a t  the  

phase angle of t h e  su r face  o s c i l l a t i o n  wi th  r e spec t  t o  t h e  pressure  

o s c i l l a t i o n  i s  cons tant  and equal  t o  90° .  



APPENDIX G 

DEVELOPMENT O F  THE ACOUSTIC ADMITTANCE EXPRESSION 



I n  order  t o  determine the  a c o u s t i c  admittance of t h e  combustion 

system, t h e  gas phase v e l o c i t y  pe r tu rba t ion  due t o  a  pressure  

pe r tu rba t ion  of amplitude E must be known. The s o l u t i o n  of t h e  

equat ions developed from t h e  present  t h e o r e t i c a l  model do not  e x p l i c i t l y  

y i e l d  the  gas phase v e l o c i t y  pe r tu rba t ion .  However, t h i s  parameter 

can be found from o the r  output  parameters of t h e  theory as developed 

i n  t h e  fol lowing.  

Rewriting Equation (21) h e r e  f o r  convenience 

but  

and theref  ore  

Per turb ing  Equation (G.3) us ing  Equation (45) and rear ranging  

y i e l d s  t o  zero order  i n  E 

and t o  f i r s t  o rder  i n  E 

where t o  f i r s t  order 

and 



The a c o u s t i c  admittance i s  defined a s  

Using Equations (G.4 and G.5) t h e  r e a l  p a r t  of t h e  acous t i c  admittance, 

which i s  t h e  q u a n t i t y  of i n t e r e s t  a s  discussed i n  Sec t ion  4.2.5.3, i s  

The r e a l  p a r t  of t h e  a c o u s t i c  admittance discussed i n  

Sect ion 4.2.5.3 was determined from Equation (G.9) evaluated a t  n 

equal  t o  i n f i n i t y .  The parameters i n  Equation (G.9) were taken from 

the  numerical s o l u t i o n  of t h e  f i r s t  o rde r  problem except f o r  l a r g e  

r( where t h e  asymptotic r ep resen ta t ions  of t h e  parameters were used. 



APPENDIX H 

EXPERIMENTAL DATA 



Table 5 

Hydrazine Steady Strand Burning Rates 

Pressure 
(atm) 

Liquid Purity Tube Inside Diameter Burning Rate x 10  
2 

(%) (mu) (cm/sec) 

99.4 12.0 1 . 6 1  
99.4 12 .0  2 . 0 1  
99.4 12.0 2.42 
99.4 12 .0  8.74 
99.4 12.0 1 6 . 1  
99.4 12.0 26.2 
99.4 12.0 44.5 
98.6 12.0 1 .55  
98.6 12.0 1.60 
98.6 12 .0  2.40 
98.6 12.0 4.25 
98.6 12.0 5.00 
98.6 12.0 6 .50  
98.6 12.0 8 .61  
98.6 12 .0  16 .72  
98.6 12.0 25.8 
98.6 12 .0  35.5 
98.6 12.0 48.2 
98.6 8.0 1.72 
98.6 8.0 2.55 
98.6 8.0 5 .15  
98.6 8.0 8 . 8 1  
98 .6  8.0 17.3 
98.6 8.0 25.9 
98.6 4.0 2.20 
98.6 4.0 3.25 
98.6 4.0 5.95 
98.6 4 .0  9.80 
98.6 4.0 1 7 . 5  
98.6 4 .0  26.0 
95.6 12 .0  1 . 4 1  
95.6 12.0 1.89 
95.6 12.0 3.65 
95.6 12.0 6.30 
95.6 1 2 . 0  12.5 
92.6 12 .0  1.25 
92.6 12 .0  1 .70  
92.6 12 .0  3.30 
92.6 1 2 . 0  6.10 
92.6 12.0 10 .6  



Table 6 

Hydrazine Liquid Surface Temperatures 

Pressure  Surface Temperature 
(atm) (K) 

Table 7 

Hydrazine Liquid Surface O s c i l l a t i o n  Amplitude and Mean Burning 
Rate a t  a Mean Pressure  of 1.54 atm and a Frequency of 1.32 Hz 

f o r  Various Pressure  Amplitudes 



Table 8 

Hydrazine Liquid Surface O s c i l l a t i o n  Amplitude and Phase Angle a t  a 
Mean Pressure  of 9.77 atm f o r  Various Frequencies 

Table 9 

Hydrazine Liquid Surface O s c i l l a t i o n  Amplitude and Phase Angle a t  a 
Mean Pressure  of 1.18 atm f o r  Various Frequencies 




