srdk i e

@ https://ntrs.nasa.gov/search.jsp?R=19740008428 2020-03-23T12:52:48+00:00Z
P R

132945

&

2

PARAMETER ESTIMATION SUPPLEMENT
to ihe

Mission Analysis Evaluation and Space
Trajectory Operations Program
MAESTRO
NASA-CR-132908) - PARAMETEER ESTIMATION N74-16541
SUFPLEMENT TO THE NISSIOW ANALYSIS
EVALUATION AND SPACE TRAJECTCEY QPERATIORS
PROGRAM (Analytical mechanics Associates,

Unclas
Inc.) 99 ¢ BC $7.00

CSCL 22C _ 63/30 29340
Report No. 73-43
Contract No, NAS 5-11500

August 1973

z
[ %24
=
2
2
L
S
2

Q3AIE03Y

=
-
<
=}
w
=
o
=
[x]
o

Prepared by

AH

Analytical Mechanics Assoclates, Inc
80 West El Camino Real
Mourtain View, California 94040

for

NASA Goddard Space Flight Center
Greenbelt, Maryland



PARAMETER ESTIMATION SUPPLEMENT
to the

Mission Analysig Evaluation and Space
Trajectory Operations Program
MAESTRO

Contract No, NAS 5-11900
August 1973

NASA Goddard Space Flight Center
Contracting Officer
Mr. Robert Flick

Technical Officer
Mzr. Charles R. Newman

Prepared by

Mr; William S, Bjorkman
Mr. Chauncey W, Uphoff
of
Analytical Mechanics Associates, Inc,



TABLE OF CONTENTS

Section Item

Introduction . . . . .. ... .. e e o e s m e . e s s e e e

I PEST Program Description (User's Guide)} . . .. ... ...
Highlights and Capabilities . . . . . « . 4 v o v v v v v 0 s o
Operating Instructions . . . . . ¢« ¢ ¢ ¢ v o 0 v » o s e e s
Input/Output EXamples . . . v v v e v v o v o o v s o o . ..

[y
Lo DO =t

I PEST Program Description (Programmer's Guide) . . . . . .
Program Structure . . . . . . ¢ v v & ¢ o 0 v 4 o 4« & « e o e s
Subroutine Cross-Reference and Common Blocks . ., . . . ..
Subroutine Descriptions . . . . . . . + . . . e bt s e e e
FILTER ... . i v v ot
MODEL . .........
OSCAR . . . 4 i v e v e v s oo a v o s o oo saa
PHOUSE .......
REDATA .. ... b 4 s s & s ow s s m e e s s e e e s
SHIMMY ..... e s s s 4 s a s s om e s e e s s e
SOLVE . .... e e » 0 s s b o s s s s s e s e e s
SORDID . . i i i o i b e e vt s a8 b ¢ s o o v v o eos
SQRUT . .. ¢ v v v v v o v G« e e s e s
TUMULT ... ..
UPDATX . . v v v e v v v s o 2 a o s 0 o4 s s s o s s s

[ I L I
»
[ S

o Theoretical Background . . . « . o v v ¢ v 6 v v v v v o v o &
Definitfion of Symbols . . & ¢ ¢ ¢ 4 v ¢ o v ¢ 0 v 0 v 0 0 v o o
Weighted Least Squares Parameter Estimation . , . ... ..
Square-Root Solution , ., . . . .. P
Implementing the SRWLS Solution . . . . . .. .. oo s v

S LI LI
W o D

Bibliography--cc-naooooooooooo..oocon-
References *# & # + o & & 4 & O & & e O & O & & ¥ F @ O & & 9 »

Appendix A — Derivation of Linear Variational Equations . .

i



1.1
2,1
2,2
2,3
2,4
3.1

1.1
1.2
1.3
1.4
2.1
2.2

LIST OF TABLES

Field Identifier Aid . . . . . . . e
PEST Subroutine Definitions . . . . . . .
COMMON Blocks . . . .« v v v v s ¢ ¢
PEST Common Block Descriptions , ., .
PEST/MAESTRO Subroutines , . . ...

DIMensions . . v« v v o o = s ¢« 0 s 0 s s

LIST OF FIGURES

Input Data Read Logic. . . .

. e # & 8 » @

EstimationInput . « « « « v ¢ v ¢ o o « ¢ «
Output - . - - - » L] L ] L] L - - L] [ - L] - ] -
Input for Simulation and Residual Print .

PEST Program Overview . . « « « + = « »

Parameter Estimation Cross-Reference Map .

iii

24
26
28
78

11
12
18
21
23



INTRODUCTION

This Parameter Estimation Supplement describes the PEST computer pro-
gram and gives instructions for its use in determination of lunar gravitation field

coefficients.

PEST was developed under Contract NAS 5-11900 for use in the RAE-B

lunar orbiting mission as a means of lunar field recovery, The ohservations pro-
cessed by PEST are short-arc osculating orbital elements, These observations

are the end product of an orbit determination process obtained with another program.
PEST's end product is a set of harmonic coefficients, Cnm and Snm , 1o beusedin
long-term prediction of the lunar orbit. PEST employs some novel techniques in its
estimation process, notably a "square-root'" batch estimator and linear variational
equations in the orbital elements (both osculating and mean) for measurement sen-

sitivities.

Section 1 describes the program's capabilities, giving operating instructions
and input/output examples. This section supplements the User's Manual for the
"MAESTRO program (Ref, 1). PEST utilizes MAESTRO routines for its trajectory
propagation, Section 2 describes PEST's program structure and contains desecrip-
tions of those of its subroutines which are not common to MAESTRO. The MAESTRO
subroutines are described in the Programmer's Manual for MAESTRO (Ref. 2).
Section 3 contains some of the theoretical background information for the estimation
process. Appendix A contains a derivation of linear variational equations for the

Method 7 elements.



1. PEST PROGRAM DESCRIPTION (User's Guide)

1.1 Highlights and Capabilities

The parameter estimation (PEST) program is a weighted least squares

batch processor which estimates

a. coefficients of the lunar gravitational field
b. initial orbital elements

¢. solar pressure coefficients.

The measurements used in the estimation are short-arc determinations of the
orbital elements relative to the Moon. PEST can process all or any subset of
the residuals in the elements. The elements can be osculating or averaged

values of either classical form or Gaussian,

Methods 4 or 5: p,e, M, w, 1, §2
Method 7: p, esinw, ecos w, w+f, i, O

Method 8: p, esinw, ecos w, W+M, i,
The measurement data can he

a. read in from magnetic tape
b. read in on cards

¢, simulated by the program itself

Measurement sensitivities can be generated either by the secant method or by inte-
gration of linear vz.triational equations, The sensitivities may bhe '""frozen" at some
iteration of the estimation process, thus saving the computation time needed to re-
compute sensitivities. The estimated state increment may be included with a gain
factor other than unity to combat nonlinearity problems. Selected parameters may
be held fixed during the estimation while they are being '"considered' in the calcu~

Iation of the state increment,



1.2 Operating Instructions

Figure 1.1 illustrates the order in which PEST accepts and expects input
{card) data. The READ statements occur in only two subroutines, INPUTF and
FILTER. INPUTT reads data into INPUT common, reading three (address, value)
pairs per card with a (1X,3(I5,D15.8)) format. A blank or zero in the first ad-

dress field causes a return from INPUTFE,

The first or only card read by FILTER is to identify the parameters to be
estimated and to flag the primary options of this capability. The next card is a
measurement selector. FILTER next expects measurement data. If an end of file
is encountered at this point, the (only) case will be executed. If another case is to
follow the current one, an T10.2 zero must be read when FILTER expects a |
measurement. Control then is returned to the main program and subsequently to

INPUTF bhefore returning to FILTER.

INPUT common data

Blank or 16 zero to exit from INPUTF

IX array card(s) to identify state variables and primary options
Measurement selector card

Considered parameters card

Measured elements and their epochs

*k Blank or F¥10,2 zero to signal "data for next case following"

*% INPUT common data for case 2

*
L - o

*ok Steps 2-7 for case 2, ete,

* optional

*k needed only if more than one case is to be run



PEST Main

ey
y

Call INPUTF to read case
parameters from unit 5.

Exit if index is zero or blank,
Stop if EOF is encountered

#6, #8 Mode =6

A

(1044)

Call FOWARD to execute
lunar lifetimme run propa-
gating trajectory

Call FILTER to read data selecting
state, measurement processing
options, and execute a PEST case,

If EOF is encountered, case is
executed, then run stops

Figure 1.1 Input Data Read Logic




INPUT Comnion Data to Consider

1044 MODE
1030 KOUT
1033 KRW
1049 KSAD
1036 KMETH
4 TFINAL
180 DELT
1068 NINT
1069 NORD
450 TOUT
460 STEP
1035 MODLEM
1094 NMOD
1095 MMOD
1084 KSOLP
50-55
56-76

Géneral
Flag to invoke PEST, Setto 8.
Output flag. Setto -1.

Read-write flag for logical 22, Usually 1.
Shadow flag. Set to 0.

Trajectory Pfopagation

Propagation method flag., May be 4, 5,7, or 8
unless KVAR = 1.

Final time (not used in estimation, where
measurements control stop).

Integration step size {(see KMETH).

Number of intervals used in averaging.

Number of ordinates used in averaging,.

Print table (set it larger than last measu'rément time)

Time interval for simulated measurements or when
KRW is zero.

Field Model

Lunar field model flag (3 for JPL 15, 8;'1 for L1).

Order of zonal harmonic model.

Order of tesseral harmonic model,

Solar pressure flag {must be nonzero if SP is estimated).
Epoch

Input epoch to which all times are referred.

Measurement Weights

Measurement weighting matrix (upper half of
symmetric matrix).



Initial Conditions

1019 KINPT Input coordinate flag (see KAVST),
30-35 ELMI Initial elements (see KAVST).
1098 KAVST Averaging and initial condition flag.

0 neither input elements nor measurements are averaged.
1 average input elements if KMETH is 5 or 8.
2 average measurements but not initial elements,
3 average both initial elements and measursments,
-1 average nothing, but set initial elements to first
measurement,
-2 average measurements, set initial elements to
first measurement.

Sensitivity Calculation

1096 KVAR Sensitivity method flag., 0 for secant, 1 for variational,

1064 NGROPT Number of trials for which sensitivities are to be
recomputed.

1086 KZIP Flag for ignoring implicit term in variational equations.

Specification of State Variables and Options

The IX array is read in by means of one or more records (cards) written
in a 20I3 format. Reading of these records is terminated when the (N+l)st
element of IX is negative or zero, or when five records (100 elements) have been

read, Valid identification numbers are:

Field coefficients IX({1) = 2-271 except MOD(IX{(i},16) =0 or when
IX(1i) lies outside the field specified by
NMOD, MMOD,

Initial conditions IX(i) = 273-278.
Solar pressure IX{i) = 279, 280,

The first nonpositive identifier controls the operational logic:

IX(1) = 0 Generate simulated measurement data.
[X(N+1) = 0 Estimate the state if N is greater than zero,
IX(N+l) =-1 Compute measurement residuals and (if N is greater than 0)

compute/print measurement sensitivities without actually
estimating a new state,



The field identifiers can be obtained with the assistance of Table 1.1, Find the ap-
propriate coefficient in the table and add its row-number (shown on the right) to the
number shown above its column, This sum is the identifier to use in the IX array.
The order in which you specify these numbers is now immaterial — IX will be

sorted appropriately by the program,

Examples:

_0 Simulated data will be generated from time zero to TFINAL by STEP,
_2-1 Residuals and sensgitivity to C 90 will be printed.

_ 34274 0 Estimate C 29 and either e, O ©,cos wo , depending on KMETH,

Measurement Selector Card

The measurement selector (IM) card is read by means of a 20I3 format,
The first six words are the numbers (1-6) of the elements to be used in processing,
A zero in the field will exclude the corresponding element. (1,2,3,0,5,6 excludes
w+f residuals if Method 7, w+M if Method 8, is used, or (& if Methods 4o0or 5
are used in propagation.) The next number is the number of observations to be pro-
‘cessed, If this is greater than the number of observations to be found on tape, only
the smaller nurmber will be processed, of course.. The next number dictates 1Q, the
weighting matrix treatment, If IQ is 1, Q is I; if IQ is 2, Q is constant;
and if IQ is 3, @ is variable and is read in from the tape with the observation,
" In this latter case, the input weighting matrix is assumed to describe the uncertainty
in the Cartesian state and will be converted appropriately by the program to an ele-
. ment weighting matrix. If Q is to be treated as a constant, it must be read in
(locations 56 through 76) as an element weighting matrix, as it will not be converted

by the program, In either case, @ must be positive definite.

ITMAX, the next indicator on the card, limits the number of iterations allowed
in estimation if convergence is not achieved. The estimator will quit alfer passing

through the data span ITMAX+1 times, The next indicator on the card is IGAIN,



‘8,0
9,0

“10,0

12,0
13,0

14,0

€15.0

11,0

16

C.
6,0 .

Table 1.1

Field Identifier Aid

112

8

6,1

56,2

123

144

53,1

8,2

8,8

9,9

89,9

176 192 208 224 240
10,1 °11,1 °12,1 ®13,1 “14,1
10,2 "11,2 12,2 ®13,2 14,2

10,3 11,3 12,3 13,3 14,3

10,4 511,24 ®12,4 ®13,4 ®14,4
10,5 11,5 %12,5 ®13,5 %14,5

10,6 11,6 12,6 13,6 -14,6

10,10 810, 10

®1,11 ®11,11
12,12 12,12
®13,13 ®13,13

14,14 14,14

T

256

15,1

15,2

15,3

15,4

15,5

15,6

15,15 515,15

10 |
11
12
13

14

15



the reciprocal gain factor on the incremental state to be added to the state between
trials. Thus, if IGAIN =2, only half of the estimated increment will be added.
LTOL, the next number on the card,: controls the tolerance on the iteration as fol -
lows: TOL =1,D-LTOL. The next and last number is an indicator for the
"eonsider" option, If ICON =0, nothing happens in this regard. If ICON # 0,
another card is expected to identify the 'considered" parameters. The "considered"

parameters are identified by the same code as the IX array.

Input of Measured Elements

The current means for input of measured elements is by means of DATAS.

Each record contains 8 words written in an 8T10,2 format, These words are:

YYMMDD Year, month, and day of epoch (710824 is 8/24/71)

HAMMSS Hour, minute, second UMT (183025,5 is 18:30:25.5)
A Semi-major axis (km)

E Eccentricity

F True Anomaly (deg)

Y Argument of pericenter (deg)

I Inclination {deg)

0 Longitude of the ascending nede (deg)

I KMETHis 5 or 8 and KAVST is -2, 2, or 3, the input measurements are.
considered to be osculating and selenographic and will be averaged and converted to
mean of 1950, 0 before being written onto logical 22, If KMETH is 5 or § but KAVST
is -1, 0, or 1, the input measurements {and epochs) will be considered to be al-
ready averaged and converted to mean of 1950.0, so will be simply converted to
KMETH variables before being written onto 22, If KMETH is 4 or T (KAVST

should then be -1, 0, or 1), the input measurements will be considered to be os-
culating and selenographic and will be converted to KMETH variables, mean of 1950,0,
The longitude parémeter for KMETH = 8 is treated as w+{ outside the propagation

routines when computing residuals and sensitivities.



Input Measurements from GTDS

The GTDS measurements are expected on magnetic tape in the form of

YYMMDD Year, month, and day of epoch
HHMMSS Hour, minute, and second of epoch
®x A

Cartesian position components (kmj,
selenocentric, Equator of 1950,0

Cartesian velocity components (km/sec),
selenocentric, Equator of 1950.0

Ne wds Mot
]

Definition of Peripheral Units

The parameter estimation program uses logical units 21, 22, and 23 as se-
quential datasets which must be defined in the JCL of the job setup. Logical 21'is
used for input measurement data from GTDS. (Two words of epoch and six com~
ponents of Cartesian state, EE50 in an 8D23.15 format, requiring a record length
of 188 bytes.) Logical 22 is used for storage of the measured time and elements,
It therefore requires a record length (LRECL) of 60 (8+7+4) or greater and a block-
size of J*xLRECL+4. Logical 23 is used as a scratch dataset for storage of the
weighted sensitivities. It requires a record length of 48+«N+4 or greater, where

N is the pumber of state variables included in the case,

1.3 Input/Output Examples

Figure 1. 2 shows the input which resulted in the output of Figure 1, 3.
The INPUTT data is abbreviated in Figure 1.2, but fully printed in Figure 1. 3.
The important numbers of the INPUTF data are:

10
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FORTRAN STATEMENT
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Figure 1.2
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53 0.15CC000000 02 £4° (41400C0OCCOD 02 €5 C+43000000CD 02
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' 4 0.3456000C0D0 06 460 ~ Ca422000000D 05 450 0+ 10CCODOOCD 08
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1044 MODE is 8 to signal parameter estimation

1030 Qutput key is negative to suppress extra output

1060 Zero signals no print of input common

1035 3 signifies the JPL 15, 8 field is estimated

1094 4 means the field is truncated at n=4

1095 4 meang the field is truncated at m=4

1036 Method 7 propagation is used (Gauss' elements, no averaging)
180 The integration time step is 20 minutes

1098 Initial conditions (time and elements) are taken from the

measurement tape when KAVST=-1

1096 KVAR is 1 to use linear variational equations for measure-
ment sensitivities

1086 KZIP is 1, but has no significance when 1036 is 7

The zero in column 6 of Figure 1.2 causes a return from INPUTF and continuation
to FILTER where the next card is read. This card is to select parameters to be
estimated. For the case shown, these were all of the gravitational coefficients of
a 3,3 field plus four initial elements, The significance of the numbers is indicated
in the printout shown in Figure 1.3, The next card says that residuals in all six
Method 7 elements are to be processed in the estimation. It also says that only the
first 10 sets of elements on the measurement file are to be processed, that no
weighting is to be done (IQ=1), that no more than three iterations are to take place,
that unit gain is to be put on the included state increment, that the convergence
tolerance is 10~8 , and that no parameters are to be ""considered." The floating-
point zero which makes up the last card shown in Figure 1.2 indicates that there

is no card-input measurement data for this case.

Referring now to Figure 1, 3 under the heading "Parameter Estimation," we
see eight columns ofdata. These are the measurements. FEach row contains the date

in the first two columns (YYMMDD , HHMMSS), then three components each of position

16



and velocity (selenocentric, EE50). The data shown here were generated by the
GTDS program and_ placed on unit 21 for processing by PEST. They ref)resénted
osculating sets generated by perturbing certain elements of the JPL 15,8 field
truncated to 4,4. It was the intent of this PEST run to determine which coef-
ficients had been perturbed and by how much., The Method 7 initial conditions
are printed, followed by the residuals in Method 7 elements, The residuals are
‘in kilometers and radians, while time is in days from epoch. The estimated state
increment tells how much change is to be made in the estimated parameters from
the residuals just printed. The penalty function printed out next is ?Q_]"? for
all of the observations. This is the function to be minimized by the (weighted)
least squares procedure. The estimation process takes three trials to converge
because the RMS state increment is greater than 10"8 for the first two trials.
We may notice that the penalty function has reduced from .5796 to .7622x 10_11
after three iterations. The square-root information matrix is printed out in its
triangular form (folded by format after 6 rows). This matrix provides infor-
mation on the observability of the various parameters being estimated, The post-
estimation gravitational coefficient values are printed out finally. These indicate
“that C(2,0), S(2,1), C(3,0), and S(3,1) were perturbed (by comparing with the
initially estimated field).

Although the initial orbital element estimates are not printed, their incre-
ments for the three trials add to zero (essentially), so we can assume that the
residuals were entirely due to the four perturbed c.oefficients. The fact that the
residuals (and penalty function) on the last trial were so near to zero indicates
- that no parameters other than those estimated were perturbed. The measurement
sensitivities for this process were computed only on the first trial, then "frozen"

for the remaining trials without corrupting convergence appreciably.

Figure 1.4 shows input for a two-case run. No output is shown for this

run. The first case is a simulation of measurements. Initial elements are taken
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from locations 30-35 in INPUT common, then converted according to KMETH
.(1036) for propagation. The time step for measurements (location 460) must also
be provided for this case. The first zero in column 8 causes escape from INPUTF.
The zero in column 3 tells FILTER that a simulation is to be performéd. The
floating-point zero is to "end" measurement data input from cards and signal
another case following.. The next I6 zero is read by INPUTF at the beginning

of case 2, causing a return to FILTER. Notice that more INPUT cards could
have been read in before leaving INPUTF. FILTER reads the next card. The

-1 in colwmn 12 tells FILTER not to call WLS, but to compute and print residuals,
The 2, 18, and 49 indicate that sensitivities of the measurements to C(2,0),
C(2,1), and S(2,1) are to be printed. The only necessary quantities on the
measurement selector card for this case are M and IQ. The last zero, which
signals ""no more" measurement data cards is omitted since this is the last case

of the run.
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II. PEST PROGRAM DESCRIPTION (Programmer's Guide)

This section supplements Reference 2 by describing the PEST program
insofar as it differs from MAESTRO.

2.1 Program Structure

Figure 2.1 is an overview of the structure of PEST and a flow chart of the
main program or driver, The input and initialization functions for trajectory
propagation are identical to those of MAESTRO. The primary difference is that
PEST includes a path for MODE = 8, the parameter estimation mode. A lunar
lifetime mode (6) is retained from the MAESTRO capabilities in order to verify
the characteristics of an estimated lunar field, For further elaboration of PEST's

structure, see first the flow chart for FILTER (Section 2. 3) and then that for WLS.

2.2 Subroutine Cross-Reference and COMMON Blocks Descriptions

Table 2,1 lists the subroutines which make up the PEST program and defines
their functions or purposes, It does not include those subroutines which are in com-

mon with MAESTRO,

Figure 2.2 is a cross-reference map for the parameter estimation portion

of PEST, For further details, see Figures 3.1 and 3.3 of Reference 2,

Table 2. 2 lists the COMMON blocks referred to by PEST subroutines. Those
COMMON blocks marked by asterisks are found only in PEST —— not in MAESTRO.
" The PEST-only COMMON blocks are described in Table 2,3, The others are de-

scribed in Reference 2,
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MAIN
ACCEL
AVEQNS
AVSTRT
EQNS
FIELDZ2

FILTER
GRAV
MATMPY
MODEL
OSCAR
OUTPUT
PHOUSE
PUTINV
REDATA
RKSEVN
SHIMMY
SOLVE
SORDID
SPNM
SQRUT
TIMEC
TUMULT

UPDATX

WLS

TABLE 2,1°

PEST SUBROUTINE DEFINITIONS

Initiates and drives PEST

Determines spacecraft acceleration

Averages derivatives of the elements over one revolution
Averages osculating elements and variational equations
Determines derivatives of the state for RKSEVN

Evaluates central aspherical disturbing acceleration and
ite gradient

Initiates the parameter estimation process

Evaluates disturbing acceleration from noncentral bodies
Matrix multiplication routine

Controls state and sensitivity propagation

Averages osculating elements

Prints trajectory and sensitivity information

Performs matrix reduction by Householder's algorithm
Ir'werts a packed upper triangular matrix

Initializes and reads measurement file

Seventh-order Runge-Kutta integration routine

Evaluates derivative for linear variational equations
Solves weighted least squares edquation for state increment
Sorts and prints parameters to be estimated

Evaluates Legendre polynomials for FIELD2

Computes triangular square root of P-D symmetric matrix
Controls logic for trajectory propagation

Multiplies by a packed upper triangular matrix

Updates state with the estimated increment

Weighted least squares estimation routine
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FILTER

Figure 2.2 Parameter Estimation Cross-Reference Map
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COMMON

BLANK
AVG
CETBL2
CETBL3
*CNSDR
CNTRL

*COMIC
CONST

*DUMY
*DXCOM
FIELDM

*FIELDX
GRAVTY

*HELMO

*IMCOM
INPUT

INPUTS
INTER
INTVAR

*INTVRX

TABLE 2,2

COMMON BLOCKS

PEST Subroutines Referring to this COMMON

ouTPUT

MAIN, AVEQNS
MAIN

MAIN

FILTER, UPDATX

MAIN, ACCEL, AVEQNS, AVSTRT, EQNS, FIELD2, GRAV,
OUTPUT, RKSEVN, SHIMMY, TIMEC

REDATA, UPDATX

MAIN, AVEQNS, AVSTRT, EQNS, FIELD2, FILTER, GRAV
MODEL, OSCAR, OUTPUT, REDATA, SHIMMY, TIMEC,
WLS \

MAIN, AVEQNS, EQNS, FIELD2, GRAV

MODEL, PHOUSE, REDATA, SOLVE, UPDATX, WLS

MAIN, FIELD2, FILTER, MODEL, SHIMMY, SORDI)
UPDATX

ACCEL, FIELDZ, GRAV, OUTPUT, SHIMMY
ACCEL, AVEQNS, EQNS, FIELD2, GRAY, OUTPUT
FILTER, MODEL, REDATA

FILTER, MODEL, REDATA, UPDATX, WLS

MAIN, ACCEL, AVEQNS, AVSTRT, EQXNS, FIELD2, FILTER,
GRAV, MODEL, OSCAR, OUTPUT, REDATA, RKSEVN,
SHIMMY, SORDID, TIMEC, UPDATX, WLS

MAIN
TIMEC

MAIN, AVEQNS, AVSTRT, EQNS, FIELD2, GRAV, OSCAR,
OUTPUT, RKSEVN, SHIMMY, TIMEC

MAIN, AVEQNS, AVSTRT, EQNS, FILTER, MODEL, OSCAR,
OUTPUT, REDATA, RKSEVN, SHIMMY, TIMEC, WLS
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*[XCOM

PERT

PLNET
SAVE
STATE

*¥YCOM

MAIN, AVSTRT, FIELD2, FILTER, MODEL, OUTPUT,
PHOUSE, REDATA, SHIMMY, SOLVE, SORDID,
UPDATX, WLS

MAIN, ACCEL, AVEQNS, EQNS, FIELD2, GRAV, SHIMMY,
TIMEC

MAIN, ACCEL, GRAV, OUTPUT
MAIN, TIMEC

| MAIN, AVEQNS, AVSTRT, EQNS, FIELD?2, FILTER, MODEL,

OSCAR, OUTPUT, REDATA, SORDID, TIMEC, UPDATX
FILTER, MODEL, REDATA, WLS
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TABLE 2.3

PEST COMMON BLOCK DESCRIPTIONS

Length
Block (DP words) Use and Make~up
COMIC 6 Used to transfer estimated initial elements
ELMI(6) Estimated initial elements
DUMY 27 To communicate elements, transformations, rates
DUM(6) Dummy element vector
BUMROT(3,3) Equatorial fo orbifal transformation
ELMD(12) Storage for elements, sines, and
cosines
DXCOM 5850 Communicates crucial estimation information
DX(100) Estimated state increment 1.
HQY(100) Weighted state residual, H'QZY
QH(5650) Square-root information matrix and
weighted sensitivities
FIELDX 309 transfers variational equation derivatives
DVDX2(3,3) Gradient of the disturbing acceleration
DFDCX(3, 100) Explicit sensitivity of gravitational
disturbing acceleration to estimated
parameters
HEL.MO 12 Transfers estimated elements and secant increments
ELMO(6) Current estimated orbital elements
EODINK(6) Fraction of initial elements used in
computing secant partials
IMCOM 4 Communicates measurement indicators, gain, tolerance
IM(6) Measurement indicators
IGAIN Reciprocal gain for including state increment
LTOL Iteration convergence tolerance {negative Loglo)
INTVRX 1212.5 Communicates measurement sensitivities and rates
H(606) Measurement sensitivity, 2dy/dx
QATES(606) Rates of H for variational equations
N@ Number of variational equations
IXCOM 54 Communicates estimation control indicators
IX(100) Identification array for estimated parameters
N Number of parameters to be estimated
M1 Number of elements observed at one time
M Number of observations (sets of size M1)
NQH Number of elements in the square-root

information matrix N*(N-+1)/2
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YHAT

50

Q Weighting treatment key

ITMAX Maximum iterations allowed

ID Observation counter (1 = ID <M)
IT Iteration counter (1 <IT < ITMAX)

Communicates time, measurement, estimate, and weight
TI Current time
YHAT(6) Estimated elements

TF Next measurement time
Y (6) Measured elements
Q(36) Measurement weighting matrix
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2,3 Subroutine Descriptions

Documentation is included here for those subroutines which are uniquely
required by PEST, PEST requires many of the subroutines of MAESTRO, but
since these are described in detail in Reference 2, only differences between
MAESTRO and PEST versions of the commeon routines will be discussed., Table

2.4 categorizes the subroutines.

TABLE 2.4

PEST/MAESTRO SUBROUTINES

PEST Subroutines Modified MAESTRO Subroutines
FILTER MAIN
MODEL ACCEL
OSCAR AVEQNS
PHOUSE AVSTRT
PUTINV ' EQNS
REDATA FIELD2
SHIMMY GRAV
SOLVE MATMPY
SORDID OUTPUT
SQRUT REKSEVN
TUMULT SPNM
UPDATX TIMEC
WLS

The primary modification to the MAESTRO subroutines is to increase the
size of INTVRX common from 13 to 1213 to permit calculation of 100 sets of

linear variational equations. Other differences are noted below.

MAIN FILTER is called when MODE =8

ACCEL Contains FIELDX common and initializes DVDX2 array for
linear variational equations (LVE) computation
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AVEQNS

AVSTRT

EQNS
FIELD2

GRAV
- MATMPY
OUTPUT
RKSEVN
SPNM
TIMEC

Averages linear variational equations as well as elements
Averages initial LVE as well as initial elements
Calls SHIMMY in computation of LVE

Computes acceleration sensitivities to gravitational. co-
efficients for LVE

Computes gradient of non-central-body acceleration for LVE
Includes a C=ABL call (MATMPT)

Includes extra output for LVE

Has larger internal storage for INTVRX variables

Generates Legendre polynomials a row-at-a-time for FIELD2

Only differences are for larger INTVRX commeon
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Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Called:

SUBROUTINE FILTER

CALL FILTER

FILTER initializes the estimation process and
controls (1) simulated data generation and (2}
nonestimation sensitivity and residual calculations

CNSDR, CONST, FIELDM, HELMO, IMCOM,
INPUT, INTVRX, IXCOM, STATE, YCOM

CALEND, DATE, MODEL, MVTRN, M50LEQ,
ORBIT, OSCAR, REDATA, SORDID, TRMN,

WLS
Input/Output
Symbolic Program Common-
1/0 Name Dimension Block Definition
I PI, PI2 ' 1 CONST(Z, 3) T, 27
1 GM : 12 CONST{5) Planetary gravitational constants
I ZONL 288 FIELDM(1) Lunar field coefficients
0 ELMO 6 HELMO(1) Estimated orbital elements
o H 606 INTVRX(1) Measurement sensitivities
I TFINAL 1 ‘INPUT(4) Final time
I cov 21 ; INPUT(56) Input weighting matrix
i A(197) 2 E INPUT(197) Solar pressure coefficients
I STEP 1 E INPUT(460) ?;itzl;t:jt measurement time
O g KRASH 1 INPUT(1032) Integration stop type key
I KMETH 1 INPUT(1036) Integration method key
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‘ Svmbolie Program Common
I/0 | Name Dimension Block Dimension
O IX 100 I[XCOM(1) Estimated state identifiers
O N 1 IXCOM(101} Number of state components
fob bi t h
o ML 1 IXCOM(102) Number of observables at eac
measurement
0 Y 6 YCOM(9) Propagated elements
o Q 36 YCOM(15) Measurement weighting matrix
O - ICNSDR 20 CNSDR(1) "Considered'" parameter ideni;ifiers
1 DJO 1 INPUT(46) Initial Julian date
7 itivit i
I KVAR 1 INPUT(1096) Key for sensitivity generation
method
1 KAVST 1 INPUT(1098) Key.for averaging elements,
‘ sefting I,C.'s
0 NQ- 1 INTVRX(1213) Number of sensitivity elements
I ™M 6 IMCOM(I) Measurement selector array
I IGAIN 1 IMCOM(7) State increment inclusion number
" — :
I LTOL 1 IMCOM(8) Estimation iteration tolerance
number
Measurement counter
o ID 1 XCOM(107) (set for REDATA)
0 IT 1 IXCOM(108) Iteration counter
0 EJO 1 STATE(26} Ephemeris time epoch
J
0 M 1 IXCOM(103) Number of measurements to be
processed
4] NQH 1 XCOM{104) Number of elements in SRIM
O 1Q 1 IXCOM(105) Weighting type key
0 ITMAX 1 IXCOM(1086) Maximum iterations in WLS
I X 6 STATE(L) Initial estimated Cartesian state
0 TI 1 YCOM(1) Previous measurement time
O TF 1 YCOM(8). Current measurement time-
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Discussion
FILTER performs three basic functions
1, It initializes for WLS, the estimator
2, It contains logic for generating a simulated data file.
3. It contains logic for reading the data file, printing measurements, |
residuals and sensitivities,
The IX array is read in from the input unit, It is this array which determines which

function FILTER will perform;

IX(1)<0, N=0, generate simulated data file
X(1)>0, IX(N+1) 0, call the estimator, WLS
IX(1) >0, IX(N+1)<0, read data file, compute and print
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FILTER FLOW CHART

Read in identifiers, IX
and count them (I}

0" IX(1)
7o

Read measurement array, IM
and count them (M1)

#0 ICON

0

Read "considered" identifiers,
ICNSDR

Call SORf)ID to sort and print
state elements to be estimated

Convert input Cartesian
state to mean (orbit) or
averaged {(OSCAR) elements
and store them in EL.MO
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350}«

Read cards for measurement
input data

DAT

#0
Y

Convert input calendar date to
Julian date, input selenographic
elements to Cartesian EE50

hd

Write calendar date and Cartesian

EES50 state on logical unit 21

500

Y

! Write calendar date

] and Cartesian EE50

state on logical unit
21

Simulated Measurement Loop

Call MODEL to update elements.
Convert time from epoch to calendar
date and elements to Cartesian EE50
state

< TFINAL

> ) D
= TFINAL

Return
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No-Egtimation Propagation L.oop
Call REDATA fo read 21 for
measurement data.

Call MODEL to update elements.
Compute and print residuals,
Print measurement sensitivities,

> TFINAL < TFINAL
TF :

Return ;

Parameter Estimation Loop
Convert weighting matrizx,

Call WL.S to perform the estimation
process. g

Call SORDID to print the resuiting
parameters.

B

Return
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SUBROUTINE MODEL

Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

CALL MODEL

MODEL computes the estimated measurement
(orbital elements) and secant partials of the
measurement with respect to state at a specified

time,

CONST, DXCOM, FIELDM, HELMO, IMCOM,
INPUT, INTVRX, IXCOM, STATE, YCOM

FOWARD, ORBIT, TRMN

Input/Output
Symbolic Program Common

I/0 Name Dimension Block Definition

I GM 12 CONST(5) Gravitational constant array (GM)

O QH 5650 DXCOM(201) Measurement sensitivities to state

1/0 7 ONL 16,18 FIELDM(1) Luna.r jfleld harmonic
coefficients

I/0 ELMO 6 HELMO(1) Estimated elements

I EODINK 6 HELMO(7) Imtx?l element increments for
partials

I/0 H 606 INTVRXE(1) Measurement sensitivities to state

1 NQ 1 INTVRX(1213) Sensitivity computation key

O TFINAL 1 INPUT(4) Integration stop time

1/0 A123(198) 1 INPUT(198) Solar. r_adlatlon pressure
coefficients

1 KMETH 1 INPUT(1036) Integration method type

I KVAR 1 INPUT(1096) iz;s;thty computation type

1 IX N IXCOM(1) State component identifier
array

I N 1 IXCOM(101) Number of state components
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MCDEL calls FOWARD to propagate the estimated orbital elements, ELMO, from TI
to TF, Secant partials of the estimated measurement, YHAT = ELMO, are computed

in H and in QH beginning with QH(NQH+1), The reason for double storage is that the

Symbolic Program Common
1/0 Name Dimension Block Definition
re-root matrix

1 NQH 1 TXCOM(104) - Number of square mal
elements

0 X 6 STATE(1) Cartesian state of spacecraft

I X(36) 1 STATE(36) Solar pressure coefficient

0 T 1 STATE(10) Time

0 ELM 6 STATE(14) Orbital elements of

, spacecraft

I TI 1 YCOM(1) Entry time
n H t

o YHAT 6 YCOM(2) Estimated measuremen
(elements)

I TF 1 YCOMI(B) Exit or measurement time

I M 6 IMCOM(1) Measurement identifiers

Discussion

QH array is destroyed by the estimation process in subroutine PHOUSE, while H is

used to store initial conditions for integration between measurements.

OYHAT(T)

and is computed from

SYHAT,(T)
PELMO;(0)

for initial condition states, ELMOj(O) '

That is

for gravitational or solar pressure coefficients, Cj

YHAT(TF, §+4) - YHAT(TF, §) _ YHAT(TF, §+A) - ELMO(TF)

H(TF) =

A
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where S is the estimated state and A is a small change in é Rather than
carrying along YHAT(T,§+A) from measurement to measurement, YHAT(TI, §+A)

is reconstructed from H to initiate integration over the next interval,
YHAT(TI,S+A) = ELMO(TI) + H{TD) * A
If KVAR is nonzero, linear variational equations replace secant partials as
the means for computing measurement sensitivities. These sensitivities reside in
H (INTVRX) upon return from FOWARD.
The QH array (‘DXCOM) is upper-loaded from H according to the measure-

ment identification array, IM. H is viewed as a 6xN array, while QH is viewed

as an M1x86 array, although both are programmed as single-dimensioned arrays.
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=1 ~KVAR

MODEL TFlow Chart

Cﬁlitial Flements

ELIMO
C
Save
ELMI = ELMO
ELM = ELMO

Call ORBIT to compute
initial Cartesian state

h

Call FOWARD(2) to
advance EL#M to final

fime
t
Save

"ELMO = ELM

YHAT = EIM

s NQ=0

Update pf
estimated elements

<

ﬁC RETURN )

(Initial element)
DINK=EODINK

(Gravity Coefi,)
1, Save the coeff.
2. DINK=, 1*coeff,

3. Coeff. Coeff+DINK
‘E_

Y
Lol -

Computation of  Secant Partials
{ DO Logp L=1,N
i 2
! (273, 278) (279, 280)
f i X(L) +

(Solar Pressure)

1. Save the coeff.

2. DINK=, 1*coeff,
|3. Coeff.=coeff+DINK

ELM=ELMI+H*DINK
T =TI

T
Call ORBIT to compute
initial Cartesian state

Y

Call FOWARD(2) to
advance ELM to final
time

Compute H
H = (ELM-ELMO)/DINK

Y

Restore gravity or

Update of perturbed
(secant) elements

solar pressure coeff,

to saved value

>{ Load H— QH|

N D
A RETURN




Calling Sequence:

Purpose:

SUBROUTINE OSCAR

Common Blocks Required:

Subroutines Called:

CALL OSCAR(KIN, TI, EI, TO, EO)

OSCAR converts osculating input (elements
or Cartesian state) to averaged elements.

CONST, INPUT, INTVAR, INTVRX, STATE

INTEG, MVTRN, M50LEQ, ORBIT, PLANET

Input/Cutput
Symbolic Program Common
1/0 Name Dimension Block Definition
Input type key
1 KIN 1 Call LIST (8: Cartesian; other: elements)
I TI 1 Call LIST Osculating reference time
from epoch
1 EI 6 Call LIST Input osculating elements
o TO 1 Call LIST Output reference time from
epoch
O EO 6 Call LIST Averaged elements output
I RAD, P12 1 CONST(1) Angular constants
I GM 12 CONST(5) Gravitational constants
I DJO 1 INPUT(46) Julian date at epoch
I KMETH 1 INPUT(1036) E;;]ectory propagation method
1 <X 6 STATE(L) Input osculating Cartesian
state
/0 X, H 1 INTVAR(1) Integration time and step
1/0 J Z 6 INTVRX(1) Intermediate osculating elements
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Discussion

OSCAR is very similar to AVSTRT, but may be called at times other than epoch

to average osculatihg gets other than the estimate. It is used to average "measured"
osculating sets for use with averaged propagation methods in estimation, The os-
culating elements are integrated forward over one mean orbital period (found by
iteration), The integral is then divided by that period to render the averaged ele-

ments, which are taken to be referred to the center of the integration interval,
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OSCAR

Save certain parameters,
Reset.

<2

Selenographic elements come in.

Convert them to Cartesian EES0)

Convert Cartesian state to

{20 | appropriate elements

Y

| Initialize for averaging,
Save integration variables,

Changed initial conditions,
so call INTEG(-1)

100 —¢

Call INTEG to take one R-K step.

No

eleme

Comipute period of average orbit,
compare it with the current time

Time is greater than T+TOL.

W

No

P> 7-TOL?

Yes
2

A

Compute step size to make T=T7
using Newton-Raphson formula.
Re-initialize at previous time,
continue

IT - r{<TOL?

Yes

Divide elements by T to average,
Set output time to T/2.
Restore saved parameters,

iy

h 4
(f RETURN )
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SUBROUTINE PHOUSE

Calling Sequence:' CALL PHOUSE -

Purposef PHOUSE reduces a partly-upper-triangular
matrix to purely-upper-triangular, using
Householder's Reduction Algorithm,

Common Blocks Required: - DXCOM, IXCOM

Subroutines Calle d': | , None

Input / Qutput

Symbolic Program Common .
1/0 Name Dimension Block Definition
1 N 1 IXCOM(101) Columns of input and output
matrix )
T MI . 1 X COM(102) Rows in excess of N
I NQH 1 - IXCOM(104) N * (N+1)/2, non-zero
elements of N x N
1/0 QH, WT NQH+N*M1 DXCOM(1) Square-root information matrix
- (packed upper-triangular)
Limitatidns:. QH is singly-dimensioned as follows
QH:(WH, Wigs Wogs Wigs Wogr see W hll’ h21, hml’ h12’ hzz, -
hrﬁ,n’ 0 s ) NQH-th
element
{(NQH+N*M1)-th
element

The input QH array is replaced by the output array, M1 must not exceed 6 and NQH+

N*M1 must not exceed 105 unless program dimensions are changed,

Method
PHOUSE is a special—purposé implementation of Householder's Reduction Algorithm (1, 2)

for reducing a matrix to upper-triangular form. It is used in the weighted least squares
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-1
process to accumulate the information matrix, HTQ H, in upper-triangular square-

-1
root form. In this discussion, we can let @ = =1 without loss of generality.

Let us agsume that at some point in a WLS process we have an upper-triangular SRIM
(square-root information matrix), W, which is N.x N. That is, W contains N x (N+1)/2
potentially non-zero elements above the diagonal and zeros below. W also contains all

of the information from k-1 measurements.

T k1l T
W1 Wi & Y H By 1)
i=1

In the equatlon,Hi is the sensitivity of measurement o state at the i~th measurement.

We now consider what happens to W when we add another measurement, whose

gsensitivity matrix is Hk The new SRIM, Wk’ must obey
T T T
= +
Wk Wk Wk—l Wk-l Hk Hk (2)
which could be written
T _ T T
Wi W T [Wk-l Hk] W1 (3)
Hy
(nxn)(nxn) nx{n+m} {n+m)xn

We may look at the reduction problem then as the problem of finding an orthogonal

maitrix, R, such that

wk] - R(W, @
0

because

T T
W
Wk k| = | Wit rir | Wk-1 5)

0 0 Hk H_k

is identical to equation (3) for orthogonal R. Let us now simplify the notation by

dropping the subscripts and renaming so that equation (4) becomes (6).

W = RA (6)
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Householder's choice of R is the product of a sequence of reflection matrices (which

are symmetric and orthogonal),

r = rRWgOD D) (7)

(Introduction of new indices is unavoidable)
R(k) is defined by

k)

rR® =1 - Bkw(k)w(k)T ‘ ' - (8)

where I is the (n+m) identity, W (k) is a column vector to be developed, and
= 2/ (% | ' |
By W | . (9)
The derivation of W(k) and R(k)is inductive. If A of equation (6) is partitioned by

columns, a,, as in equation (10)

A ={al az....an] : (10)

we note from equation (2) that the first element of W must be & a. We define

'a1=|a1 ‘ sign a,(1). ‘ (11)

(1) (k)

1y | o
If we choose R( ) to zero the subdiagonal elements of W', where W" ' is defined

by equation (12},

wl = g®gED gy o g® gD ‘ (12)

we may solve for W(k) {which turns out to be the k~th column of W(k)).

\T
Mgy = o e (13)

L.
R™7a; =2 B4 W 17 %%

In equation (13), e, is the first unit basis vector. The unit basis vector e, has 1

1
as its i~th component and zeroes elsewhere. We may solve (13) for W(l),
a t oaye.
11

but we do not know how to compute the denominator of (14). The length of W(k) in

equation (8) is arbitrary, however, due to the definition of 8, , so we can simply

T D

define - its length to be such that B 13 = 1, Then we have equation (15).
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W(l) a a, +a e (15)

1 1 |
Having now solved for W( ), we could form W( ) from equation (12) by making the
1
agsociation, W(O) = A. The first column of W( ) is zero, except for the first element,

We could now repeat the process, equation (12),' by looking for
(2)

which is equal to - a .
R(z) which would zero the subdiagonal elements of the second column of W

(1)

without

disturbing the first column. We can préserve the first column of W' under the

2
transformation, R(z), by setting the first element of W( ) to zero, T_hen we have

R w® - wD. g w® @ Ty® O
—_—e— {16)

0

The construction of W(z) is otherwise identical to that of W(l). Proceeding inductively,

we can arrive at the following set of equations.

0oy , K
o Yo W] e[l o)
12 - .
N B = _'_'_'_"'_". 1 : --
k ak(ak +w£]?) (18)
W(k) ) 0 ;(:k) i<k ‘
i ﬂfk+ Wi 3 1= k (19)
Wfk) : i = k+1, ntm
ik
Y 19 ) 0 H i<k
i 1 s i =k
' ’ (20)

A wloT ng) : 1 = k+l, n+m

k
Wi( ) in equations (20) and(21) is the i-th column of W(k).

ngﬂ) = Wi(k) - Y;k) W(k) ; 1= ktl,ntm (21)

Congratulations to you if you have followed the development to this point, It was not

easy to write or type it, eithe:r.
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In coding this routine, some advantage has been taken of the fact that the initial

matrix is partly upper triangular at entry. That is, Wk—l

triangular to begin with, so the dimension of Wi(k) in equation (19) needs only

of equation (4) is upper-

to be m+1 and the inner product of equation (20) needs to sum only m multiplications.

These advantages can be significant if n is large.
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1. Kaminski, P.G., "Square Root Filtering and Smoothing for Discrete
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2. Householder, A,S,, The Theory of Matrices in Numerical Analysis,
Blaisdell Press, 1964, Chapter 5.
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SUBROUTINE PUTINV

Calling Sequence: CALL PUTINV (B,C,N)
Purpose:A PUTINV inverts a packed upper triangular
matrix.
Common Blocks Required;.‘ None
Subroutines Called; None
Input/Ouiput
Symbolie Program
1/0 Name Dimension Communication Definition
1 B | N(N+1)/2 | Call List Input matrix (P.U,T.)
. Output matrix (inverse of
+1) /2 1
O C N(N+1)/ Call List B, P.U.T.)
1 N I Call List Rows or columns of upper

triangular matrix

Note: B and C are single-dimensioned arrays containing the potentially non-zero
elements of an upper triangular matrix,

B =(B 15 Pyos Byos Bragy o v v v e n e .
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Method

The input matrix, B, and its inverse,, C, are treated as upper triangular arrays,

fo
b

11

o

b b

12 13

b22 b.‘23

o bB 3
etc.

cta.

etfe.

ete.

same for C.

They must chey CB = 'I, which is equivalent to the following set of .'equations.

CB=1

b 1

11
b

°11

1

Co2 Pag =

1 b

Cyqbgg = 1

cll b

022 b

b

3
12 © %12 Pag

b

13 ¥ 12 P23

b

+
23~ %23 33

ete.

=0

*+ e gPgg =

=0

0

Solutidn
¢y "y
=1
Cyy =1/byy
C1p = % ©11P15
Cgq = 1/bgg
C13 = ~933(C1q Pig T O1oP54)
Ca3 = "33 (Cyp Pog)
ete.
-1
pc ~ P
k-1
ik —ckk( Z %i 1k)
i

B and C are treated as single - dimensioned arrays, so the programming requires -

calculation of the appropriate single indices which correspond to the double indices

used in the development.
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Calling Sequence:

Purpose:

SUBROUTINE REDATA

Common Blocks Required:

Subroutines Called:

CALL REDATA

REDATA reads the data file and loads
measurements into commeon, It-also
initializes certain variables at the be-
ginning of the case and at the beginning
of each iteration,

COMIC, CONST, DXCOM, HELMO, IMCOM,
INPUT, INTVRX, IXCOM, STATE, YCOM

DATE, MATMPT, MATMPY, ORBIT,
OSCAR, TRMN

Input/OCutput
Symbolic Program Common

1/0 Name Dimension Block Definition
i/0 ELMI 6 COMIC(1) Estimated initial elements

o QH 5650 DXCOM(201) Initial sensitivity matrix for |

WIS
1/0 ELMO 6 HELMO(1) Initial elements for integrator
o EODINK 8 HELMO(T) f Initial elem.ent increments for
secant partials
i Initial sensitivity matrix for
0 H 06 !
6 INTVRX(1) | MODEL
I N 1 IXCOM(101) | Number of states
I M1 1 IXCOM(102) 3 Number of observables at each
¢ measurement
O M 1 IXCOM(104) z Number of measurements
' Number of elements in SRIM
I NQH '
QH 1 IXCOM(105) N(N-)/2

I IQ 1 IXCOM(106) Weighting flags

I 1D) 1 IXCOM(108) Measurement counter |

I 1T 1 IXCOM(109) Iteration counter

0 TI 1 YCOM(1) };\;I;F: recenf measurement
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Symbolic Program Common
1/0 Name Dimension Block Definition
0O YHAT "6 YCOM(2) Estimated measurement vector
I GM 12 CONST(5) Gravitational constants
I DJO 1 INPUT(46) Julian date at epoch (UMT)
I KMETH 1 | INPUT(1036) E;’;jectory propagation method
1 KAVST 1 i INPUT(1098) *:t‘;ﬁfiniei;dicamr’
O EJO 1 STATE(36) Ephemeris date at epoch
1/0 X 6 STATE(1) Cartesian state
1/0 TF T 1 YCOM(8) Measurement time
0 Y 6 YCOM(9) Measurement vector
0 Q 36 YCOM(15) Measurement weighting matrix
I IM 6 IMCOM(1) Measurement identifiers

Discussion

Subroutine REDATA performs two functions: (1) loading the measurement from the

data file and (2) initialization of certain program variables. The data file (logical 22)

is read once on each entry with an unformatted binary read, expecting a time and six

elements on each record, When an end-of-file is encountered, M, the number to signal

"'no more data — estimate the state now" is sent to WLS. The initialization functions are: .

1. Load the estimated initial element vector with elements developed
from inputs at the beginning of the case.

2, Load the integrator's initial element vector, ELMO, and the estimated
initial measurement vector, YHAT, with the estimated initial elements
at the beginning of each iteration or pass through the data.

3. Rewind the logical unit on which the data reside at the beginning of
each iteration.
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4, At the beginning of each iteration, set the measurement sensitivity
matrix (H and part of @H) to zero — or to one in the case of the
sensitivity of an initial element measurement to an initial element
state. The secant increment is also set when an initial element
is to be estimated. The increment is 1/100,000 of the element's
initial value,

Initialization Logic (see flow chart)

Input measurement data is assumed to reside on unit 21 in the form of calendar date
plus Cartesian state (EE50). The state may be regarded as osculating or averaged.

It will be converted to processing form depending upon the propagatibn method, KMETH,
and the averaging key, KAVST. The time from epoch and the converted state (elements
of the KMETH type) are written onto logical unit 22, If KMETH is 4 or 7, the
measurements need be converted only once, but if KMETH is 5 or 8 {averaging),

the measurements will be re-averaged at each iteration with the current estimated

lunar gravitational field.

The weighting matrix, Q, used in weighted least squares estimation under the IQ=3
option can be converted from Cartesian EE50 variables to method KMETH variables
by REDATA, It is expected that COVIN will be read in from logical 21 if IQ =3, and
that COVIN will be the upper (or lower) half of a covariance matrix in the Cartesian

state. This is loaded into a filled-out, symmetrical @ and converted to elements by

T
% = (5%) 2% (%)

The required partial derivatives are computed by the secant method, QE is written

onto logical 22 for potential use by subroutines WLS and SQRUT,

The number of measurements written onto 22 will be the smaller of M

(input maximum number) and the number found on logical 21.
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REDATA Flow Chart (I)

1D >1

TFirst trial Initinlize estimated
inftialize initial elements
from input
Set ELMO = ELMI Load initial elements
YHAT = ELMI from (updated) estimate
1
Rewind data unit
Set TF = TO
Initialize H
and EODINK

Set TI = TF : Load measurement

Read next time and from data file
measurement
(TF, Y)

et ID = M Set flag to indicate

end of data
1 RETURN)
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REDATA FLOW CHART (1I)
(Initialization Logic)

REWIND 21
REWIND 22

5

f NOAVG T

—t.
H -
N

¥
[TVRED-IVREDH |

~M IVRED
- d
\\1 o

Read 21 for measured date
and state

A

I
Y

Convert date to time from epoch
and state to KMETH type elements

\{

3 0
?}

Load and convert weighting matrix

Q

8

\f

Y

Write time, elements @ on

l
|

I

logical unit 22

;@«1

Read initial
~ elements,
ELMO, from 22

Y

Set initial elements for
estimator, ELMI=ELMO
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Calling Sequence:

Purpose:

SUBROUTINE SHIMMY

Common Blocks Required:

Subroutines required:

Input / Output

CALL SHIMMY (EM, D, ELMR, R)

SHIMMY calculates the rates in the linear
variational equations for the variables p,
ecos (u), € sin (¢, w + 1§, 1,

CONST, CNTRL, FIELDM, FIELDX, INPUT, INTVAR,

INTVRX, IXCOM, PERT.

MATMPY, ROTATE,

/0 | Symbolic | Program Common Definition
Name Dimension Block
‘ ‘ Transformation matrix from
1 D 3,3 Calling M50 to pogition vector
Operand coordinates,
. : Partials of F w.r.t.
I DFDCX | 3,100 FIELDX (10) harmonic coefficients
I DVDX2 - 3,3 FIELDX (1) Gradient matrix
I ELMR 12 Calling Orhbital .elements with sines -
o Operand and cosines
Calling Matrix which relates the
1 EM 6,3 disturbing acceleration to
Operand the orbital element rates
1 - GM 12 CONST (b) Gravitational constants
Number of coefficients to be.
1 ,
1 NB ]XCOM (101) studied
o QATES | 600 INTVRX (601) The‘ rz‘ttes of the %mear
: variational equations
I R 1 Calling Operand Distance to 8/C
Disturbing acceleration of
I RCART 3 PERT (1) $/C in mean of 50

55




Input / Output (continued)

Disturbing acceleration of
S/C in orbital
coordinates

1 RSW 3 PERT (4)

Transfom%_i:ion matrix from
1 SELNEQ 3,3 FIELDM (289) SELNEQ®R=Q~ to inertial
selenographic coordinates.

Linear variational
INTVRX
I Z 600 1) ) equation variables

Theory: The equations for the time rates of the orbital elements are
represented by:

E = T(E,C, 7 (E), +),
where * (E) represents an implicit dependence upon the position/ velocity vector.

These equations may be differentiated to yield equations which represent the

effects of small variations in the gravity coefficients upon the subsequent history
of the orbital elements;

ie. > /\. 4 JE _Jfor\ (oF ar | &, [oF
aC (E>_ dt  dC |\WE/ \op/ oE ac ac}t ,

where the norm=1 brackets () represent explicit differentiation. The equations

of motion can be written in matrix form as follows:

: R :

E| _|N M(E) |8 {_ D(E) QW |vv| -

oxt] = lext|” [6}(3] w | (6] +[ME]) g sx3| a1 T T
3x1

where D(E) is the transformation matrix from the inertial frame to the radial, cir-
cumferential, orbit normal orbital coordinate system, Q(t) is the rotation from seleno-
graphic to inertial coordinates, and TV is the gradient of the selenocentric potential
function. The vector N contains the unperturbed (Keplerian) part of the rate of the
true anomaly. The 6x6 matrix in curly brackets is evaluated in two parts made up

of the explicit partial derivative matrix,
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(32)- PIEIE ]
= - 2 [ )] (& ) D%

The last three columns of gl‘%. contain zeros hecause it is assumed that no
Nl

velocity-dependent forces are acting. Therefore, the last three rows of SE

L .nd the product (éj. ) (E ) , .Where

Qo
S

are not required and set to zero., The 3 X 3 matrix d B is the Jacobian matrix
of the disturbing potential with respect to the body-fixed cartesian coordinates.

Finally, the matrix (8 E gives the explicit partials of the planetary equations

acC
with respect to the gravity coefficients.

Description: The equations discussed above' are of the form Z = AZ + B,

SHIMMY calculates the matrices A and B, and then uses the input value of Z to
calculate the new value of (QATES). The matrices Z and QATES are dimen-

sioned 6 X 100, and represent the quantities dE/3C and JdE/ d C respectively,
where each column of the matrices corresponds to a different harmonic coefficient

of the field, The input quantity NB determines how many coefficients are to be

studied, with 2 maximum of one hundred.

The matrix B represents the quantity (%E}E) , discussed above, which may be
written as S —

() IPIRI[%])
where M is a 6 X 3 matrix which represents the relationship between the per-
turbing acceleration and the rates of the orbital elements. The matrix is calculated

in EQNS, and stored in EM. The transformation matrices [D:I & [Q] are

discussed in the theory section and are stored in the 3 x 3 matrices D and SELNEQ
res_g__(—zctively. Both of these arrays are calculated outside of SHIMMY. The matrix

—g—y%- ig caleulated in FIELD2 and stored in DFDCX., For further discussion
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of thig matrix and the order in which the elements are stored, please see

subroutine FIELD2,

The matrix A represents the quantity ¥/ 3E, and may be expressed as

(LF )‘f (B—E;) 22 | Both of these quantities represent the product of
ok ar]ak

several matrices, as indicated in the theory section above. In addition to the
matrices already used for the calculation of B, the quantities discussed below
must be available for the calculation of A. The matrix D2VDX2, calculated in
FIELD2, contains the pradient of the force field and is used in the calculation of
GF/37). The vector RSW represents the disturbing acceleration on the S/C

in orbital coordinates, angd the vector RCART represents the same disturbing

b, & 36
acceleration in inertial coordinates. The matrix 2E , le ob, 1, %, 4, ?’
ap, h, k, u, i,

2k
is ealeulated column by column internally through successive matrix multiplica-
tions and stored in DFDEX. The matrix and vector multiplications are done in
subroutine MATMPY and ROTATE. Once these calculations are completed,

the vector Z is inserted into the equation and the vector QATES is output.
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SHIMMY FLOW CHART

Calculate 8F/0FE
column by column

Calculate aF/a-{'

Calculate Q:.I"
Ok

-
DFDEX = @+§§ﬂ
8Lk 8r JE

Rotate DFDCX to
inertial frame

¥
RATES = (DFDEX) (2} *+
rotated DFDC X
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SUBROUTINE SOLVE

Calling Sequence: CALL SOLVE

Purpose:‘ SOLVE solves the equation WTWX =Y for -
X, given the vector, ¥, and the upper-tri-
angular matrix, W,

Common Blocks Required: DXCOM, IXCOM

Subroutines Called:A None

Input / Output

Symbolic .Program Common
1/0 Name Dimension Block Definition
1 QI NQ@QH, max 105 DXCOM(1) Square-root information matrix, W
I HQY N, max 10 DXCOM(106) Weighted residual vector, Y
O DX N, max 10 DXCOM{116) Incremental state vector, X
1 N 1 IXCOM(101) Number of states

Note: The square-root information matrix, QH, is the singly-dimensioned representa-

tion of a doubly-dimensioned packed upper—triangular matrix, W.

QH = (Wys Wigs Wyyr W

Method

13’

W23’ol0’

W
nn

, tunuged words)

The weighted least squares estimation equation can be stated in the form

WiwX = ¥

where W is the upper-triangular square-root information matrix, X is the estimated

state increment to be solved for and Y is the weighted residual vector., An upper

triangular matrix is a square matrix which has only zeroes below its main diagonal,

One obvious solution to the stated problem would be to form WTW, invert it, and

multiply Y by it to obtain X. This subroutine uses another method, capitalizing on

the fact that W is upper-triangular. We first solve the problem
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WTB=Y

for the dummy vector, B, by forward substitution. We then solve
WX = B
by backward substitution to obtain X.

TForward substitution:

WTB =X Solution
iy T by = /%1

1 29Ps = Yo by = (7, =Wy b}/ W,y

j-1

j .
ZW..b. =y, | b, = (v, - Zw..b.)/w..
i=1 i} 1 J ] ) j= 1) 1 J)
Backward Substitution:
WX = B Solution
w x =b x =hb/w
nn n n n n nn
+ = = -
W1:1—1,11—1){1:1—1 wnnl,nxn bn—l Xn—l (bn-l n-1,n n
n n
Zw - xX = (b - Z w.,.X )/‘W
i=j i1 ] J ] i=j+1 )

Since the zeroes of W do not enter the solution, the potentially non-zero elements

of W are stored in a singly-dimensioned array. The coding synthesizes the

doubly—dirnensiohed indices to effect the above procedure as shown.
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SUBROUTINE SORDID

Calling Sequence:

Purpose:

Common Blocks Required:

CALL SORDID
SORDID sorts the parameter identification
array, IX, for FIELD2's required order

and prints it out.

FIELDM, INPUT, IXCOM, STATE

Subroutines Called: None
Input/Cutput
Symbolic Program Common
I/0 Name Dimension Block Definition
I ZONL 16 FIELDM(1) Zonal harmonic coefficients
1 TSRL 16,17 FIELDM(17) i‘;;‘éti”:iﬁ;l harmonic
I NMOD 1 FIELDM(298) Maximum modeled N
I MMOD 1 FIELDM(299) Maximum modeled M
I KMETH 1 INPUT(1036) E;‘;jeqtory propagation method
1/0 IX 100 IXCOM(1) Parameter identification array
I N 1 IXCOM(101) Nonzero elements of IX
S 1 [ owvrasy | Srmmees
S R

62




Discussion

The TX array specifies the parameters to be estimated according to the code:

J 1 - 272 Gravitational parameters
IX(Iy = 273 ~» 278 Initial elements

279, 280 Solar pressure coefficients

The code for the gravitational parameters, Cnm and Snm’ is that TX(I) shall be
the element number of the ZONL, TSRL array shown in the following figure. SORDID
checks that the input values for IX are valid. That is, IX numbers must lic between
1 and 280 and must not indicate coefficients outside the prescribed model (NMOD,
MMOD). Furthermore, subroutine FIELD2 expects a particular order for the selected
coefficients in order to efficiently evaluate sensitivities when the option for linear
variational equations is selected. That order ié (((C(N, M), 3(N, M)), M=1, MMOD),

N=1, NMOD), where coefficients may be omitted, but must not be out of order. SOR-
DID therefore puts tﬁe IX array into the order expected by FIELD2 even if the user -
failed to do so himself, Following the sorting procedure, SORDID prints out the IX |
number and (for gravitational parameters) the location number in the input array as '
well as the values residing in the location when SORDID was called. SORDID is called

before and after parameter estimation, so parameter values at these times are printed.
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¥9

48
2,1
2,2

Cs.n

“1,3

C.
6,5 .

112

123

144

8,8

9,9

160 176 192 208 224 240
9,1 "10,1 ®11,1 12,1 13,1 “14,1
‘9.0 510,2 ®11,2 "12,2 13,2 P14,2

5.3 510,3 S11,3 S12,3 ®13,3 ®14,3

9,4 °10,4 °11,4 “12,4 13,4 "14,4
9,5 S10.5 11,5 %12,5 ®13,5 ®14,5

9,6 10,6 "11,6 12,6 "13,6 14,06

9,9

10,10 ®10, 10
11,11 ®11,11
12,12 ®12,12
13,13 ®13,13

14,14 514,14

15,15 515,15

15,6

[w>]

10

11

13

14
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SORDID FLOW CHART

Sort IX into ascending numerical order

y

Check for IX lying outside the

available model

M

Sort gravitational part of IX into
FIELD2's order

r

2

Y

Compute location of input array
corresponding to IX(I)

b

Print IX(I), name, value and
input location number

RETURN
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SUBROUTINE SQRUT

Calling Sequence: CALL SQRUT (A, SA, N)

Purpose:- SQRUT computes a square root of a positive
semi-definite symmetric matrix,

Common Blocks Required: None

Subroutines Called: None

Input / Qutput

Symbolie Program Common
1/0 Name Dimension Block Definition
I | A (N, N) Call List Input matrix, covariance type
O SA N*(N+1) /2 Call List Square root, packed upper-
triangular
I N 1 ‘Call List Matrix dimension
]

Method
Given a matrix , A, we seek an upper-triangular matrix, 8, such that

STS=A

A recursive algorithim for computing S is

, / i-1 2
5 == - . =
ii V B4 E : Sij H i=l,n
=1
0 H i<i
S.l = 1 3 1
n 1- ..
-— a - Z 3 s . =i41
k=1

The output matrix, SA, is "packed" as a singly-dimensioned array.

,-..o,S )

SA = ( 814s 8195 8500 Sygr By3 n
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Calling Sequence-:.

SUBROUTINE TUMULT

CALL TUMULT (A, B, ¢, NR, NC, IT)

Purpose-:- TUMULT multiplies a packed upper-triangular
matrix (or its transpose) times a reclangular
matrix,

Common Blocks Required:‘ None

Subroutines Calledu:l None

Input / Output

Symbolic Program Common -

1/0 Name Dimension Block Definition

1 A NR*(NR+1)/2| Call List Packed upper—~triangular matrix

1 B NR * NC Call List Rectanguwlar matrix or vector

o C NR * NC Call List Product matrix

I NR 1 Call List Rows of B

I NC 1 Call List Columns of B

. _J0: C= AB

I IT 1 Call List Transpose flag, IT = 1: Cc=ATp!

Discussion

This subroutine uses the fact that A is upper-triangular to avoid unnecessary multiplications

. by zeroes in the product AB or ATB. A is packed as a singly-dimensioned array.

A ={(a
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Calling Sequence:

Purpose:

Common Blocks Required:

SUBROUTINE UPDATX

CALL UPDATX

UPDATX adds the estimated state increment
to the appropriate program arrays (estimated

state),

CNSDR, COMIC, DXCOM, FIELDM, IMCOM,

INPUT, IXCOM, STATE

Subroutines Called: None
Input/Output
Symbolic Program Common
1/0 Name Dimension RBlock Definition
1/0 ELMI 6 COMIC(1) Estimated initial elements
1/0 DX N DXCOM(116) Incremental state
{upper-loaded)
1/0 x 288 FIELDM(1) Lun?.'r gramtatmnal field
coefficients
I ICNSDR 20 CNSDR(1) 'Cons?c‘l.ered parameter
identifiers
1/0 A 1000 INPUT(1) Input array
I IX N IXCOM(1) State component identifiers
. (upper-loaded)
I N 1 IXCOM(101) Number of incremental states
I IGAIN . 1 IMCOM({T) Reciprocal gain factor
1/0 S(36) 1 STATE(36) Solar pressure coefficient
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Discussion

Each incremental state component in DX is identified by the corresponding element
of IX. The program arrays are incremented by DX with a unit gain as follows,

according to IX.

If IX(I) is DX{I) is DX is added to
1<IX(1) =271 a gravitational coef- X [IX(I)] in FIELDM
ficient .
273 <IX(1)=278 an initial orbital element ELMI [IX(1)-272] in COMIC
279 a solar pressure coef- X(36) in STATE
- ficient
280 a solar pressure coef- A(198) in INPUT
ficient

A provision is made for adding the state increment to the estimate with an assigned

gain (limit), If IGAIN is input as a number greater than unity,

DX = DX/IGAIN
Another provision permits exclusion of any incrementing of selected parameters,
That is, if any I¥(I) is found in the ICNSDR array of "considered" parameters, then
the state increment DX(I) corresponding to IX(I) will be set zero, This treatment
has the effect of changing the weighting matrix without changing certain parameters‘

during the estimation process.

No flow chart is deemed necessary for this routine,
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SUBROUTINE WLS

Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Called:

CALL WLS

WLS is the driver for a weighted least
squares eslimation process,

CONST, DXCOM, IMCOM, INPUT, INTVRX,

IXCOM, YCOM

MODEL, PHOUSE, PUTINV, REDATA, SOLVE,
SQRUT, TUMULT, UPDATX

H

T

Input/Output
Symbolic Program Common
I/0 Name Dimension Block Definition
O QH 5650 DXCOM(201) Square root information matrix
8] HQY 100 DXCOM(101) Weighted residuzal vector
O DX 160 DXCOM(1) Estimated state increment
/O KVAR 1 INPUT(1096) lS{g;Sﬂ:wtty computation type
I | KMETH 1 INPUT(1036) i Integration method key
I NGROPT 1 INPUT(1064) ! Gradient treatment key"
I N 1 IXCOM({101) i Number of state components
1 M1 1 IXCOM(102) i Number of observations at
' each measurement
I M 1 IXCOM(103) Number of measurements
o NQH 1 IXCOM(104) Number of elements in packed
SRIM
1, ighti
I 1Q 1 IXCOM(105) Weighting type flag 5" o velghting
3. variable
I ITMAX 1 IXCOM(1086) Maximum number of iterations
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i ! Symbolic Program Common
I/0 ¢ Name Dimension Block Definition
i
0o ID 1 1 IXCOM(107) | Measurement number counter
Q IT 1 IXCOM(108) Iteration counter
I YHAT 6 YCOM(2) Estimated measurement counter
teration convergence tolerance
I IGAIN,LTOL | 1 TMCOM(7, 8) I g
numbers
I IM 6 IMCOM(1) Measurement selector array
I Y 6 YCOM(9) Measurement vector
I Q 36 YCOM(15) Measurement weighting vector

Discussion

WLS contains the gross logic for a weighted least squares estimation procedure,
using a square-root information matrix formulation. The usual form for the WLS
estimator is

m

(ZHQH)dx ZHQ

=1

where ?i is the measurement residual vector (Y-YHAT) at the i-th measurement,
Q;l ig the measurement welghtlng matrix, I—I is the measurement sensitivity to
changes in the state and dX is the estimated stat;e increment to be determined. In
the square-root formulation the information matrix (bracketed term) is not formed
per se, Instead, a square-root information matrix, W, is accumulated, where W

obeys

71




See the description of W's computation in subroutine PHOUSE. At each measurement,
Qzl/z Hi ig formed, This product is loaded into the QH array, beginning at location
NQH+1 for use by PHOUSE in forming W. The weighted residual vector, HQY is
accumulated as indicated by the following equation.

may = § @M yT Q%)

i=1

When HQY and W have been accumulated for M measurements, subroutine SOLVE is
called to solve

T D _
(W W) dX = HQY

A
for dX which then is used by UPDATX to increment the estimated state.

WLS performs ITMAX iterations unless convergence, defined by

N
IGAIN
o ol
2 DX, LTOL
i=1 10

oceurs first, During iterations after the first, the sensitivities {and, therefore,
the square-root information matrix) may be held constant at their values on the
NGROPT-th iteration. The weighted sensitivities, Q_%H , are written on logical
23 as they are computed, then read back from 23 as they are needed., Of course,
provision is made to avoid redundant computation of sensitivities by setting KVAR

and NQ to zero.

When less than 6 elements are used for estimation of state, the residual vector is
upper-packed with the necessary M1 components and the weighting matrix is upper-

left-packed as specified by the IM array.
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WLS Flow Chart

IT=0 (IT =trial no.)

20

INITIALIZE
ID=0 p<—-— (ID = data point no.)
IT=IT+1
QH=0
HQY =10
> 20
l ID=ID+1 Bring in ID-th
CALL REDATA measurement, Y
ID=1 D ID>2M
A { CALL MODEL j=~———Bring in estimated
Y=ETMI- —3 measurement, ¥
COMPUTE Rf]\E SIDUAL
DY=Y-Y

R=2and ID=1

Q=1, @=1 jr\x Q=2, @=Constant

I
Q is variable

L
e

CALL SQRUT . Replace weighting matrix by
CALL PUTINV its square-roof inverse

%f

CALL TUMULI(SG, DY, DY) |, Weight residuals, DY,
CALL TUMULT(SQ, QH, QH) and partials, QH

o

T
HQY = X(QH) DY +—— Accumulate weighted
residuals in HQY

w

[ CALL PHOUSE |e———

Accumulate square-root
information matrix

ID<M, meore data to come i)
™~

§—
"CALL SOLVE }+—-— Compute estimated

_state increment

l CALL UPDATX J+—i " Increment the estimated state

RETURN )

[DX]>TOLA, try again »{(_ RETURN )




3.1

stated.

denote

THEORETICAL BACKGROUND

Definition of Symbols

Capital letters will denote arrays {(vectors or matrices) unless otherwise

Scalars will be denoted by lower case.

a particular element of an array. For example, W = w,j 12

X, [xi]

Y, {¥;3
H, {hy)
Q, {qij]
n

k

m

t

E. {e;]
45 {Js}
C,fe_ 1
S {Sym!?
d

X

Y

Y

W, {w;)
()

A subscripted scalar will usually
i
State vector (gravitational coefficients, initial orbital elements,
solar pressrure coefficients)
Measurement vector (orbital elements)
Sengitivity matrix (of measurement to state)
Measurement weighting matrix (error covariance matrix)
Number of state elements to be solved for
Number of observables in one measurement (usually 6)
Number of measurements processed
Time
Orbital elements (measurement or a function of state and time)
Zonal harmonic coefficients
Tesseral harmonic coefficients in cosine of longitude
Tesseral harmonic coefficients in sine of longitude
An operator implying a variation of its operand
Estimated state
Estimated measurement, Y(}:{, t)
Measurement residual, Y - ‘}

Square root information matrix, upper triangular

Superior numbers in parentheses refer to Bibliography
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3.2 Weighted Least Squares Parameter Estimation

The fundamental weighted least squares estimation procedure will be derived

with ho attempt at rigor.

Assume that variations, dX, in the state relate to deviations, dY, in the

measurement by the linear relationship (3.1).

dy = HdX (3.1)
Presuming to have recorded the measurement vector, Y, and to have computed the
measurement as a function of the state, Y(X), one may compute the measurement
residual, i’
Y-v-v% =Y -Y (3.2)
If we were to hypothesize a change, d}A(, being made in the estimated state, we
would expect that, under the linear assumpfion (3.1), the residual would become
| Y =Y - (Y + HdX). (3.3)
We seek that d}z which minimizes the quadratic function, %TQ_lg', where @ is a
symmetric, positive-definite weighting matrix. One ready derivation of the
appropriate df( is found by differentiation of the guadratic function with respect to
d:;{ and equation of the result with zero,

e (3.4)
followéd by solution of the resulting equation for d)ti.
x = @ m ey - v (3. 5)
The matrix, HTQ_IH, is called the "information matrix. " It must span the state
space if it is to possess a unique inverse, although "pseudo-inverses' can always
be computed to render solutions to (3. 5). Iteration on (3.5) is performed by adding
d}E to ):I and re-computing H and S} with the sum hefore re-applying (3.5). For

certain problems, convergence can be obtained without re-computing H during the

iteration.
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3.3 Square-Root Solution

Certain advantages are to be obtained by using the "'square root" form of (3. 5).
The square root information matrix (SRIM) is defined here as the upper triangular
matrix, W, such that (3.6) holds.
W'w = HQ H (3-6)
An upper triangular matrix is a square matrix characterized by having only zerces
helow its main diagonal. Conversely, a lower triangular matrix such as WT has
only zeroes above its main diagonal. The factorization of the information matrix

(1)

can be accomplished by Cholesky decomposition. In special cases, it can also

be achieved by forming the square root information mairix rather than the information
matrix itself, so that the information matrix need never be factored. The solution

of (3. 5) is obtained very efficiently, given W, by the method of Banachiewicz.
Beginning with (3. 5) in the form of (3.7),

Wiw) dX = H @ 'Y

= D (3.7
we first solve for the dummy vector, B, of (3. 8) by forward substitution.
W'B = D (3.8)
We then solve (3. 9) for d)A{ by backward substitution.
WdX = B (3, 9)

Denoting an element in the i~th row and j-th column of W by wij’ the forward

substitution procedure is (3.10).

bl = dl/w11 : {3.10. 1}
b, = (dz'wlzbl)/wzz (3.10, 2)
Fadd y |
b, = d, - w..b. )/w_. 3.10,
J ( ] ,g: 1] 1) 3 ( h
The backward substitution procedure for n state variables is (3.11).

dxn = bn/wnn (3.11,1}

dx11—1 - (bn—l h Wn—l,x1dxrl)/"T'frl-1,n-1 (3.11.2)

dx, = (b, -~ > w. dx)/w,, 3.11. ]
J (J ;;%, 1 1) 1 ( »
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This forward/backward substitution just deseribed has the nice property that
it provides d)z satisfying (3.7) without explicitly inverting either the information
matrix or its square root, thus saving the storage reguired for the SRIM and its
inverse. If both the SRIM and its inverse are required for another reason or if
storage is no problem, the substitution method is not quite as advantageous as
simple inversion. If it is required, the inverse of the triangular SRIM is very simply

() For sequential information filtering,

obtained by another substitution procedure.
it is advantageous to retain the SRIM as opposed to replacing it in storage by its

inverse.
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3.4 Implementing the SRWLS Sclution

If successive measurement errors are assumed to be uncorrelated, the
right-hand side of (3.7} can be accumulated as a simple vector sum and the SRIM
can be accumulated by Householder reduction. (1.2) If we are trying to esi:,imate
n components of state and if we measure km quantities k-at-a-time, the dimensions

of the component arrays of (3.7) are as shown in the following table.

Table 3.1 Dimensions

Array Dimension
d}z n
Y km
G km x km
H kmxn
w nxn

If successive measurements are uncorrelated by the assumed weighting matrix, then

Q'l 0 0 ......
1 -1
0 0 ......
Q! - 2 4
0 0 Q3 ..... (3. 12)
y -1
0 0 Q 1

where Q;l is a k x k matrix which weights components of the i-th measurement against
each other and against Qj_l, j#1. The Q;l are themselves positive definite and
symmetric, possibly diagonal and possibly equal to each other. We can partition the
residual into m k-vectors and H into m (k x n) matrices. If the residual vector for

the i-th measurement is 3?1 and if Hi is the k x n sengitivity matrix for the i~th

measurement, the right-hand side of (3.7) is the simple vector sum (3.13).

T -1~ m T -1~
HQ Y =2 H QY. (3.13)
oy ,
The information matrix can also be accumulated as a sum.
T_ -1 moo T -1 ,
H'Q H = ZHiQi H, (3.19
A=
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The implemented square root method eliminates about half of the multiplications
implied in (3.14) by accumulating the SRIM rather than the information matrix. If
Wi~ 1 is the upper triangular SRIM after i-1 measurements have been included, the
SRIM after the i-th measurement must obey (3.15).

T T T -1
. = + .
Wi Wi Wi-lwid Hi Qi Hi (3-13)
Equation(3.15) can be written in partitioned form as follows. -
T -1
[W’.r D:l W, W, HI.FQ. /2 W,
i i i-1 i’ i-1
= “1/2 (3.16)
0 Qi Hi
The computation of Wi consists, then, of finding 2 means for converting
Wi Wi
Y e @
Qi Hi 0
. . -1/2:
where Wi-l and Wi are n x h upper triangular matrices, where Qi Hi and 0 are
k x n matrices and where Wi satisfies {3.15). The process which has been implemented
is called the Houscholder reduction algorithm. Since Q;l/z nd Q l/ZH. must

be formed for the HRA, the vector sum in(3.13) can he programmed as in equation (3.18).
o -1 2 -1/2
HQ Y Z(Q / )(Q /Y) (3.18)

The SRIM is initialized to zero to characterlze the lack of a priori information.
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Application to Lunar Iield Determination

The particular application of coicern here is, of course, in determination

of the harmonic coefficients of the lunar gravitational field. In this application,

the state vector, X, consists of those coefficients we choose to solve for plus,

optionally, the initial orbital elements (or Cartesian state) and one or more

coefficients of the solar radiation pressure model. The state vector might have

the following appearance.

(example) X = 3.19)

The measurement vector, Y, consists of elements of the lunayr orbit.

iy

e sin ¢,
y = |®°¥¢ (3. 20)
M + ¢ '

i

LQ

These elements are to be mean elements of the lunar orbit at specified times, referred

to the Earth's mean equator and equinox of 1950. 0 and having been obtained from

short-arc determinations using range and Dbppler data. Sensitivities of Y to X are

obtained by the Secant Method or, optionally, by integration of variational equations.

Propagation of the estimated elements will be carried out by:

1.
2.

choosing an initial estimate, X, of the state

choosing initial elements, probably as the first measurement which would

not then be processed as a measurement,

. integrating the averaged equations of motion across the time span of data.
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Appendix A
Derivation of Linear .Variational Equations for
the
Method 7 Elementsg

This appendix contains the expressions for the partial derivative matrices
needed in the calculation of the rates for the linear variational equations for
the method 7 elements. The method by which these equations are averaged

is given at the end of the development.

The equations of motion { the planetary equations in Gauss's form) are

E = F(E, C, t) = E{E, r(E), C, t) 1
1
= N(E) + M(E) |,
Wl
or - B ‘ 0 -1 R
E:' .. = +
h 0 gt
K 0
1
i @ M(E) |V
di .
1t 0 ’
O 0
sttt L‘ - - -
e}#' -~
q= ; 6x1 6x1 6x3 3x1
0 v (1+k cos u+ h sinu)
q(-cos u) q[(l +£) sinu+£ h] -qk-r-. sinucoti
p p p
: r T T
sinu 1+=)cosu+ = k g — hsinucoti
1 q[( P) P p
ro. .
0 0 -q — sinucoti
p -
T
0 0o = Ccosu
4 P
T sinu
__0 0 49 p sini

A1



We wish to deseribe the effects of small variations in the parameters C
on the subsequent motion of the elements. Taking the variation of (1) with

respect to the C's gives

3 E_ d dE _ Vfar), aF  3r| 3E aE)
3C —dt ac¢ “’{(aE)+ 57 3% { 3¢ \ac (2)

where the normal brackets () represent explicit differentiation and the

G-vector ;}represents the cartesian position and velocity. The first

column of the 6 x 6 matrix (g g)is given by

(a F\ _ _OM[R],6 3N
dp ODp|% dp ’
o JF dF ' . .
and similarly for SE— and B—E— . The expressions for these first three
columns of the matrix aEF) are given in tables Al, A2, and A3.

The disturbing acceleration vector, R' 8' W', is dependent upon the angular

elements u, i, and {2 as well as the time, viz:

R'
s[= [p] [a] [vv]
w! 3x3 3x3 3x1
where D is the transformation matrix from inertial coordinates to radial,
circumferential,orbit normal coordinates. The matrix D and its derivatives
with respect to u, i, and Q are given in table A7. The matrix Q represents
the transformation from central planet body-fixed coordinates to the inertial
integration frame, W represents the disturbing acceleration due to the
central planet non-sphericityand V is the familiar spherical harmonic representa-

tion of the disturbing potential:

n

oo n
B m . . .
vV = Z Z “atl Pn ( SIHB)(Cnmcos maA + Snm sin m:\) {3)

n=1 m=0
where r, B, and A are the body-fixed radius, latitude, and longitude of the
spacecraft, R is the central planct's mean equatorial radius, and P:l are the

associated Legendre polynomials., The gradient indicates differentiation with
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regpect to central-planet-fixed coordinates.

Because the matrix D is 2 function of i, (2, and u, the expllicit derivatives in

oD
equation (2) must contain terms involving oD ) g? , and YR These

au

expressions are given in tables A4, A5, and A6 respectively.

Lot . .
The disturbing acceleration itself, V'V, is treated as a function of the cartesian
position vector and is differentiated in the usual way, viz:
vV 3VV AT 20V T

QayYy _ (oYY S| = ]

3T [a ?} [ar X @
where_ra'h represents the cartesian position vector in a frame fixed in the

e

ceutral planet. r'is just the cartesian vector equivalent of the central body-
fixed radius, r, latitude, B, and longitude A of the disturbing function given
in equation (3). It is assumed that there are no velocity-dependent forces and

the second term of (2) is

(%%): [M][D] {QJﬁ Q" + Isea T Jop

where J ard is the Jacobian of the third body disturbing potential and J op is
the gradient of the solar pressure disturbing force. Other disturbing forces

should be treated in the same way.

The remaining term in the curly brackets is the matrix representing the trans-

formation from orbital elements to the cartesian position vector. Since

- _ D T T , p
r 0l,and r = 14hsinu+kcosu ,
0 -
53
the first column of a—E- is
T | 9T
bioont ————
2L - 22 | + DT %p
0 3

and similarly for the other elements. The total matrix is given by

A-3



%

o
=

- T - ] - ! | I
r/ ! = sinu —cosu r
T op ' "o boT 0 Px o 2D g 2R
, :
b o| + P 0 P 0 ' L T
1 1 1
T l i e = — o - - = '_._..l _____ _I..._..._
| | ' ‘ '
| I i ' !
o 0 . 0 L0 0o
0 1 0 1 0 1 0 I 0 !
o 0 , 0 L0 o !
T
where X = D t DT -~— (hcosu -k sinu)
u 0 0
0 0

The remaining term in equation (2) is the explicit derivative of the "plant'" with
respect to the parameters to be estimated. This differentiation is aecomplished
for the spherical harmonic coefficients by evaluation of the disturbing function
with the desired coefficient set to unity and the other coefficients set to zero.
This is possible because the harmonic coefficients enter the equations linearly.
For efficiency purposes, this procedure is carried out internally in the sub-
routine (FIELD2) that calculates the disturbing acceleration due to the central
planet non-sphericity. The mechanics of this operation are explained in the

FIELDZ2 subroutine description of Reference 2,

Averaging the Linear Variational Equations

In order to average the variational equations we must change variables in the
formulation because the short-periodic parts of the derivatives of the fast
variable with respect to h and k are not small. To change from u to = in the
formulation of the linear variational equations, we simply calculate the two

additional terms of the matrix M and their derivatives.

In the first and second columns of the fourth row of M write

=42 | - 1o e (Z
M41 \C [e (kcosu+hsinu) - 2441-¢ (p)]

oo




and
M = _*J% [Z—‘)— (k ginu - h cos u (1+§)]

in place of the zeros given earlier when the function F4 was u instead of =.

The derivative matrices are modified similarly and we add to the tables Al

through A6 the following terms.

AM 1 '
(——) = — [@-(kcosumsinu) -2 1—e2(£):|
M), WED e P

(:*M) = L [Q;(ksinu—hcosu)(1+£ )]
42 ' | P

AP Q\FI') e

h

AaM) _pld, , Q r
(3h)41 _V/#_[dh(- . )(kcosu+hsmu)+e sinu +2(p{}-:ﬁ==;2

2 d T
-2%1-¢ dh(p)]

[— (%)(k sinu-hcosu){l +£—) - —?- cos u (1+1§)

© IO

{k sin u - h cos u) %1 I%):1

aMy -2 g—(g)(kcosu+hsinu)+9-cosu
f1 dk e e

r2(5) = _o2vi-e & 5)]
P\Jl—ez dk " p

aM P [d.Q i - b oG LIy 4 Qg r
(ak) = i [dk(e)(ksmu hcosu)(1+p) + " smu(1+p)-
42 '
+§(ksinu-hcosu) Edl;(i)]

amy _ B [e Ckemwm -2 4.
(?'u)41 % [e(hcosu k sinu) - 2¥1-¢ du(p)]
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where
@__ 1 ____(Q) - __C_l.(@)' h _d_(.@)-:_.g_(g) kK
e 4f1-e2 +1 dh'e de ‘e’ \1_-e62 dk'e de e J] - g2
SR S S
de ‘e ‘J‘IIZH e
Also 4 T r 2
-a-l-l-{ ) = -—-sinu (=)
2
d  r - r
dk(p) = C(.)Su(p-)
&y - k si -hcosu 22
W) = (ksihu-heosw(=)
and
I

£ f(p) so -(%)(i) = 0,

Now, with the above modifications, we have written the linear variational equations

~ for a system whose fast variable is Z =w+ M instead of u =w-+f but the right

—

9=
hand side is still in terms of u. The solution to these equations will involve SE

rather than g—% and we must convert by writing

AU _ AE au _ aE Vup

3C  aC ~ AE AC T nr2

: A,
whenever -éE is needed,.

The only remaining modification is to change the term 4 f,up/ r2 to \[ 1/ a3 in

accordance with the equations for the fast parts of the variables u and = respectively.

The fourth equation now reads

3
Lo ofu=en’ M (RSW) 4
B = S ;1 4 ]. 4)
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and, if we say thatn = Y#/a" |

N an Ap an ah an ak 3 3

A _ 2 ab L 2020 oD 22 3 2 Z:M RSW)

2l ap aC ah aC ak aC 2 C { 4j { j}.
: =1

The first three terms average to

TR o_ 28 3P , Ak ah . af ak
AC Ap 3C ah aC 3k aC

and this large part of the variation of the fast variable can be added after the

averaging integration with the help of

2F_ .3 _n aX_ % aF _ _ 3kn
’Adﬁ 2 (1"8 ) ] BH (l-e ) ’ a_E (l_e )

The variational equations then, are averaged in a way that is exactly analogous to
the averaging of the method 8 variables. After the numerical averaging of the
perturbation terms, the derivative of the average mean motion is added to the

" rate of the fourth variable and the averaging of the mean motion is taken outside

the numerical averaging algorithm.
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OF _ OM
du du
0
g sinu
qcosu
0
0
3 r
where -aT (;
9 I
du (p

Table A4

Su Q VY
‘ . o
2 ksinu~hcosu =) . 0
ap ( | ) (3)
T 2 T o
q[(ksmu—hcosu)(;) s1nu+(é+ =) _qk cot i __b__ r sin u
r S ou \p
cosu+h(ksinu—hcosu(—)]
r2 T r
: k si -hecosu - -{1+ - hecoti — { — si
Q[( sinu-he )(p) coslé { p) qbooti gz (‘p smu)
r .
+k(ksinu-hcosu - ]
( | ) ()
6 coti —— I'--sinu
q F) D
0 9 L cos u
- )
q du o
0 1 o (r i
9 ‘sini du p e
sinu) = {ksinu--hcosu)('z).2 sinu+ = cosu
P P
T2 r
cosu) = (ksinu-~hecosu}{—) cosu- —sginu
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Table A5

8D r—o—
S e (V7]
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Table A6
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Table A7

cu co - ¢i sosu ou S0 + c¢igo su
D = -su co - ci s0 cu -su 80 +cico cu
si g0 -gi co
#i s0 su -38i cO0 su
oD i so ico
— = si ou -5i ¢0 cu
d i s
ci so -ci co
-c11.80 - ¢i ¢0 su cuco -c¢iso su
@D  |suso - cicocu -su co - ci so cu
afl . .
sico si =0
-suco - cisocu -sus0o + cicocu
3D . . ‘
_311_ = -cuco + ¢l so su -CUu 80 ~ ¢l ¢ su
0 0

su si

cu si

su ci
cu ci

-si

cu si

-su si

si=sini, ci =cosi, so =gsin{;, co=cos} , su=ginu, cu=cosu .

O N _ ZQ/Z_ ~k sinu +h cosu
u p r
4

all other elements are zero,
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