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FOREWORD

This report is a technical summary of the progress made by the

Electrical Engineering Department, Auburn University, toward fulfill-

ment of Contract NAS8-26580 granted to Auburn Research Foundation,

Auburn, Alabama. This contract was awarded November 15, 1970, by

the George C. Marshall Space Flight Center, National Aeronautics and

Space Administration, Huntsville, Alabama.
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SUMMARY

The conventional six-engine reaction control jet relay attitude

control law with deadband is shown to be a good linear approximation

to a weighted time-fuel optimal control law. Techniques for evaluating

the value of the relative weighting between time and fuel for a

particular relay control law is studied along with techniques to

interrelate other parameters for the two control laws.

Vehicle attitude control laws employing control moment gyros

are then investigated. Steering laws obtained from the expression

for the reaction torque of the gyro configuration are compared to a

total optimal attitude control law that is derived from optimal linear

regulator theory. This total optimal attitude control law has com-

putational disadvantages in the solving of the matrix Riccati equation.

Several computational algorithms for solving the matrix Riccati

equation are investigated with respect to accuracy, computational

storage requirements, and computational speed.
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I. INTRODUCTION

Some aspects of optimal attitude control systems are examined in

this study. The conventional six-engine reaction control jet relay

attitude control law with deadband is compared to an optimal weighted

time-fuel attitude control law. The relay attitude control is shown

to be a good linear approximation to the weighted time-fuel optimal

control law, then a procedure is developed to determine the optimal

control law weighting of time and fuel that corresponds to a given

relay attitude control law with deadband. This time-fuel weighting

value is determined by selecting the value that minimizes the mean

square error between the switching curves of the two control laws.

Next, a procedure is developed to determine the six-engine relay atti-

tude control law with deadband that most closely corresponds to a

given optimal weighted time-fuel attitude control law.

Vehicle attitude control laws employing control moment gyros

(CMGs) are then investigated. The reaction torque of the gyro con-

figuration on the vehicle is determined in terms of the gimbal angles,

the gimbal rates, and the vehicle rates. This expression cannot be

solved for the gimbal rates directly, so different procedures for

obtaining the gimbal rates are examined. Basic approaches to obtain-

ing these steering laws given the commanded torque are compared with an

optimal control moment gyro attitude control law that is obtained

1
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from optimal linear regulator theory. This system is reduced to the

linear regulator by frequently linearizing the system as the CMG

gimbal angles travel some prescribed amount from their previous

nominal value. This total optimal CMG attitude control law has some

computational disadvantages in attempting to solve the matrix Riccati

equation on a flight control computer. A sensitivity analysis is

performed on the gain matrix to determine if any gains can be considered

constant. Several computational algorithms for solving the Riccati

equation are investigated with respect to accuracy, computational

storage requirements, and computational speed.



II. RELATION OF A REACTION CONTROL JET CONTROL LAW
TO AN OPTIMAL WEIGHTED TIME-FUEL CONTROL LAW

The attitude control law for the conventional six engine reaction

control jet system has the phase plane portrait shown in Figure II-i.

Although it is suspected that this control law was originally developed

empirically, it will be shown that this law closely approximates one

determined by utilizing optimal control procedures.

The analysis will be simplified by assuming that the system

dynamics can be represented as 1/s 2 . It will also be assumed that the

position, 0, can be obtained by integrating the body rate, *, directly

and that the position and rate signals can be measured. With these

simplifications, the system to be controlled is depicted in Figure 11-2.

The state equations for this single-axis system are

Xl = x2 x (II-1)

X2 = u

For a reaction control jet control system, the elements to be

considered in a performance measure are time, fuel, and final state.

The performance measure will not penalize the final state, but rather

the final state will be constrained to lie within the deadzone limits

(i.e., #1 (tf) L<dB). Thus, the performance measure weighting time and

fuel is

3



F dB

-dB

Figure II-I. Phase-plane portrait of six-engine
reaction control jet attitude control law.

x2  xl

1/s . l1/s

Figure 11-2. Open loop simplified system to be
controlled.



J(u) = J + lu(t) dt (11-2)

where A is the relative weighting of time and fuel, and u(t) is the

control law. Since the final position is constrained to lie within

the deadzone limits, this problem can be solved for *(tf) = 0 and the

results shifted to the limits *(tf) = OdB and *(tf) = -OdB for the

solution to the deadzone problem.

For this problem, the Hamiltonian is

H = x + lul + P1 X2 + P2 u (11-3)

The necessary conditions for optimality are

aH 2 2- 2 (11-4)
apl

H = 2 = a (11-5)

aP2

aH pi = 0 (11-6)
axl

aH 2 = -p (11-7)
ax

lal + <2a lul + 2(II-8)

where the hat above the states, costates, and control indicates the

optimal trajectories and the optimal control history. Pontryagin's

minimum principle, Equation (11-8), reveals that the form of the optimal
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control is

+1 for 02 
< -1

0 for -1 < 02 < 1a = (11-9)

-1 for 02 > 1

singular for 02 = ±1

Integrating Equations (11-6) and (11-7) yields the following solutions

to the costate equations

01 = Cl
(II-lo)

02 = -C 1 t + C2

where C1 and C2 are constants of integration. The solution for 02 in-

dicates two things about the optimal control since 0 is expressed as a

function of the costate trajectory, 02. First, singular control exists

only for the special case with C1=0 and C2=±l. If C1 is any value

other than zero, 2 cannot remain at ±1 for any finite period of time.

For C1=0, 02=C2 indicating the condition that C2=±l for the existence

of singular control. Secondly, for C1#0, #2 changes sign no more than

once (at t=C2 /C1 ) and passes through P2=-l and 02=+1 no more than once,

resulting in two control switchings at most. This indicates that the

form of the optimal control law in its most general form will be

{1,0,-l} or {-1,0,1}. Depending on the initial conditions, the first

elements in these control strategies might be unnecessary. These special

case control strategies are {0,-i, {0,11, {-1}, and (1l.
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Integrating Equation (11-5) with Q=±l yields the solution for *2 as

:2 = ±t + C3  
(II-1i)

where C3 is a constant of integration. Then integrating Equation

(11-4) yields

R1 = ± t2 + C3 t + C4 (11-12)

where C4 is a constant of integration. Solving Equation (II-11) for t

and substituting this result into the expression for 5l given by

Equation (11-12) gives the trajectories in the phase plane for u=+l as

A1 = ±; + C5  (11-13)

where C5 = C4 - C for u = +1

and C5 = C4 + Ci for u = -1

Integrating-]quation (11-5) when 0=0 reveals that £2 is simply a constant

for any such period in the optimal control history. Then, integrating

Equation (11-4) yields

£l = klt + k2 (11-14)

where kl and k2 are the constants of integration. Therefore, when 6=0,

22 remains constant and 21 increases or decreases with time depending on

the value of R2 at the time Q is switched to zero.
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The parabolas defined by Equation (11-13) for C5=0 are the min-

imum time switching curves that will bring the system into the origin of

the phase plane. The remaining step is to determine the switching lines

that define the switch from Q=-l to q=0 and the switch from U=+l to O=0.

Following the procedure employed by Kirk 11], to denotes the time when

the optimal control switches from +1 to 0 and tI denotes the time when

the optimal control switches from 0 to -1. Figure 11-3 shows some

candidate trajectories for a given initial condition. Since to occurs

somewhere on the segment C-K, points D, F, and H are candidate points

on the switching curve that switches Q from +1 to 0. The points E, G,

and I are corresponding candidate switching points for the switch from

0 to -1 since tl must occur on the segment K-0. Equation (II-13) relates

R, and £2 on K-0, so that

fl(t) -- -%4(t), (11-15)

which leads to

:Rlt (l )  1) . (11-16)

Integrating E.quation (11-5) with Q=0, for the switch from !=+l to C=0

occurring at t=to, yields

£2(t) = k3 = R(to) (11-17)

Then, integrating Equation (11-4) gives
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x2

U=-1

H

F - G
u-0

D - -- E

0 i x1

+1

Figure 11-3. Some candidates for the optimal trajectory with initial
conditions x1(0) = x10 and x2 (0) = x20 °
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t (t)dt =  2 (to)dt (II-18)

t 0o o

Therefore, performing the integration of (11-18) yields

=(tl) 1= (to) + k2 (to) t 1 - to] (11-19)

As was earlier determined using Pontryagin's minimum principle, P2=+1

for control switchings. Using this result in Equations (II-10) yields

2 (to) = -C1t o + C2 = -1 (11-20)

P2(tl) = -Clt 1 + C2 = 1 (11-21)

Since k2(t) is a constant for d=O, then 22 (to) = i2 (tl). Since the

Hamiltonian is required to be identically zero along the optimal

trajectory, at t=t o

x + Ia(to) + Cl 2(t ) + P 2 (to ) d(to) = 0 (11-22)

but !i(t )I + P2 (to)d(to) = 0 (11-23)

since P2 (to) = -1. Therefore,

X + C1i 2 (t o ) = 0 (11-24)

Solving Equation (11-24) for C1 gives



C1  X (1I-25)
92(to)

Subtracting Equation (II-21) from Equation (II-20) yields

It1 - to] = -2/C1  , (11-26)

which, using Equation (11-25), becomes

Itl - to] = 21 2 (tn) (11-27)

Equating the expressions for Rl(tl) given by Equations (11-16) and

(11-19) gives

-2(t l ) = - 2 (t 0 ) = il(to) + 9 2 (to)[tl - to] (11-28)

Using Equation (11-27), Equation (11-28) becomes

-~it(t o )  il(to) + 21(t) (11-29)

which can be solved for 1l(to) to give the switching line in the phase

plane as

R(t) X +4 k (t0 ) (11-30)21

In an analogous manner the switching curve for 0=-i to O=0 is determined

to be
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l(to) = +4 2(to )  (II-31)

Figure 11-4 shows several of these optimal switching curves for

various values of X. These results confirm the intuitive feeling that

as X approaches infinity the weighted time-fuel law approaches the

minimum time control law. Figure 11-5 shows some weighted time-

fuel optimal trajectories for three sets of initial conditions with X=l.

Now, to analyze the original deadzone problem, these results will

be shifted to #(tf) = OdB and 0(tf) = -#dB by a change of variables.

The phase plane portrait that is obtained by this shift is shown in

Figure 11-6. However, since the control law only maintains 0 within

a deadband, then the inner switching curves are meaningless. The

internal X switching curves, B-F and C-G, will be omitted because

another of the switching curves has preceded these curves in performing

its originally intended switching function. The internal minimum time

optimal switching curves, A-B-C and F-G-H, could possibly be used

along with the external switching curves, I-C-D and E-F-J. They are

omitted because any overshoot resulting from applying u=+l along the

internal minimum time switching curves places the system out of the

deadzone. Their omission also more clearly indicates that the optimal

control is 0=0 in the shaded region of Figure 11-6. Since this

contains part of the deadzone region, control effort is unnecessary

because the control objectives have been met. Since the internal

minimum time switching lines, B-C and F-G, are special cases of the
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=X2

X-10

S=.1

)Fl

0=+1

time-optimal
curve

Figure II-4. Optimal weighted time-fuel switching curves for X=.1,1,10.
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kX2

X=+ a-=+1

o+1

A

Figure II-5. Optimal weighted time-fuel trajectories for intial
conditions A,B,C with X=1.
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E

A

OdB

H

Figure 11-6. Shifted weighted time-fuel optimal switching curves to
give the optimal deadzone weighted time-fuel control law.
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region just mentioned and 6=0 on both sides of these curves, they will

be omitted. The resulting optimal attitude control law composed of

switching curves I-C-D and E-F-J in Figure 11-6 is shown in Figure 11-7

along with the presently employed reaction control jet attitude control

law superimposed for comparison.

The control system that gives the presently employed reaction

control jet control law is shown in Figure 11-8. Before determining

an expression for a value of X that gives the optimal weighted time-

fuel control law that corresponds to a particular rate ledge and rate

limit control law, some of the terms shown in Figures 11-7 and

11-8 will be defined. 4R is the limiting value for * in the *

feedback loop in Figure 11-8. Figure 11-7 reveals that the sloping

deadzone curves reach their limiting values for 4=+±R' The maximum

rate of the system in the =0 region is lim' while the minimum rate

in the 0l=0 region for Ii>OR is ledge' 0c is the commanded vehicle

attitude, and OdB is the width of the deadzone about Oc. Finally, Al

is the rate feedback gain.

The rate ledge and rate limit can be related to the states which,

in turn, are related to X in the phase plane. These expressions may

be solved for the value of X that gives a weighted time-fuel curve

which intersects the rate ledge at 0=00 as shown in Figure II-7.

For 10<_R the equations for the switching curves can be determined

using Figure 11-8 to be
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Olimit

ledge
dB

R max

- dB

Figure 11-7. Phase plane of the reaction control jet control law and
the corresponding optimal control law.
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1 m. X2 x

C OdB
-d 1/s 1/s

I R

R

Figure 11-8. Single-axis reaction control jet control system.



19

Al+ = OdB

(II-32)

A + dB

Equation (11-13) defines the corresponding optimal switching curves as

$2 + = dB
(11-33)

_ 2 + -dB

Substituting ±+R for 4 in Equations (11-32) and (11-33), solving these

equations for ;, and equating the expressions for 0 gives the expression

for Al to be

A1 =,V R + OAR (II-34)
2

The rate limit and rate ledge are obtained from Equations (11-32) by

solving for 4 with #=+OR These expressions for the rate limit and

rate ledge control law are

Slim =E 2 (PR + dB) (11-35)

Sledge = (OR- dB) 2 (11-36)

R 4 OdB

The expression for the optimal switching curve corresponding to Equa-

tion (11-36) is given by Equation (11-30). Solving Equation (11-30) for

$2 and including the shift from the origin to -OdB gives

2 2X + O) (II-38)
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Squaring Equation (11-36) and equating the expressions for $2 yields

2(R dB 2 2
- - C + OdB) (II-38)

OR + OdB 
+ 4

Equation (II-38) may be solved for either A or 0 corresponding to the

intersection of the rate ledge and the optimal switching curve. Solving

for 0=0 yields

0 = + 4 (OR - 'R)2 -_dB (11-39)

X OR + OdB

while solving for X gives

-4(OR- 9dB 2 (11-40)

(OR - )dB)2 + (0 + OdB)(OR + dB)

The optimal weighted time-fuel control law that most closely

corresponds to a particular reaction control jet (RCJ) control system

may be determined by minimizing the mean square rate errors between

the two switching curves. The value of X determined minimizes the

mean square error for a given value of 0max , the largest expected

attitude error. The square error, f(k,O), is defined as

fa ) = (optimal - rate ledge) 2 (11-41)

Solving Equation (11-37) gives the expression for Ooptimal as

'optimal - 2\ + dB 1/2 (11-42)
S+ 4
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$ledge is obtained from Equations (11-32) and (11-36) as

- + dB) 2 )1/2 - OdB
R +dB

trate ledge =  (II-43)

(4R  dB) 2 1/2, - R

4R + dB

The value of X that minimizes the mean square error is obtained by

solving

_ 1 fg ,)d] = 0 (11-44)

S max- dB  -dB

The integral in Equation (11-44) must be divided into two regions since

'rate ledge is defined by two different expressions over the interval

from -OdB to - max. Substituting Equations (11-42) and (11-43) into

Equation (11-41) and performing the squaring operation yields

= fl
1
c ,) -R - dB (11-45)

f2a ,) , -Omax < < - 0R

where, f 1  ,4) =_ 2A(4 + AR) + 4(4 + )dB) + 1 /2
X + 4 4 + 4)( R  -4dB)

2(4 + d a)2 (11-46)

OR + 4dB
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and f 2 (, = _) 2A( + Oda) - -( dB - ( + ~An) i1/2+
+ 4- + 4)(OR + dB

2(Og - odB2  
(11-47)

OR + OdB

Using (11-45), Equation (11-44) now becomes

F R 'max
a i O fl(AX,)dO + f 2 Q , ) d  = 0 (11-48)

_ OdB - R

where Equation (11-44) has been multiplied by the constant (Omax - dB) *

Evaluation of equations in the form of Equation (11-44) is aided

with the use of Leibniz rule, which is

b(t) b(t)
a g(t,u)du = ag(t,u) du + g(t,a(t))db(t) -
at at dt

a(t) a(t)

g(t,b(t)) da(t) (II-49)
dt

Applying Leibniz rule, Equation (11-48) becomes

R 0 dO) d + max f2Q,) do = 0 (II-50)

-dB -OR

The partial derivatives required in Equation (11-50) are obtained by

taking the partial derivatives with respect to X of Equations (11-46)

and (11-47). These partial derivatives are
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afl,,) 8(0 + dB) + 8[-O4 + dB)] 3/2

S+ 4)2 R +dB 2 + 3/2

(11-51)

af 2Q ,~ 8( + 4 dB) 8( R - dB)-( + OdB)] 1/2

ah (X + 4) 2  [X (OR + dB)]1/2 (A + 4)3/2

Substituting Equations (11-51) into Equation (11-50) and evaluating

the indicated integrals yields

1 2 3  O (II-52)

1/2 3/2 2 1/2 K 3 )3/2(X+ 4)3/2 ( + 4  ( + 4)32

where K1 8 (2/5) (4R - OdB) 5 / 2  (II-53a)

(wR + OdB )

K2= 4(max - dB)2 (II-53b)

K3 8[(2/3)(p - (max 0)3/2 ( R - dB)5/2]
(OR + OdB) 1/2 (II-53c)

Combining like terms in Equations (II-53a) and (II-53c), then substituting

the result in Equation (11-52) gives

K4  + K2 0 (11-54)
)2 3/2 2S & + 4) 3/2 + 4)

where K4  ( 1 6 /3)(R - dB )(a dB)3/2 - (3 2 /15)(4R - d 5 / 2

(OR +  (dB) 1 / 2

(II-55)



24

Multiplying Equation (11-54) by X Q( + 4)2 and transposing terms so that

only terms involving A are on one side of the equation yields,

x /2 = K (11-56)
S+ 4 K2

Squaring Equation (11-56) and solving for A gives the expression for

the A that minimizes the mean square rate error between the two switching

curves as

= 4K& (11-57)
Kj - K&

As an example, suppose a RCJ control system has OdB = 2, R 4,

and Omax = 10. Figure 11-7 shows the relationship of these terms to

the control law. To find the weighted time-fuel optimal control most

closely corresponding to the RCJ system, the constants K2 and K4 are

first computed using Equations (11-53) and (11-55), respectively.

For the example, these constants are calculated to be

K2 = 256

K4 = 93

Substituting these values into Equation (11-57) yields A as

A = .61

This system places more emphasis on conserving fuel since the control

law penalizes fuel consumption 1.7 times as heavily as it does time.
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However, since fuel is limited to the fixed amount the vehicle can

carry, a RCJ system will usually place more emphasis on fuel conservation.

The previous results were obtained from the standpoint of

beginning with the conventional RCJ control system with the parameters

#dB, OR, and Omax given. The optimal weighted time-fuel control system

that most closely corresponds to the RCJ control system is obtained by

solving Equation (11-57) for the X that minimizes the mean square

error between the two rate ledge switching curves. Now the problem

will be approached in the reverse direction. The value of X in the

weighted time-fuel performance measure along with the desired OdB and

#max for the RCJ control system are given. The problem is to find the

RCJ system most closely corresponding to this optimal control system.

An expression for OR can be obtained in a manner analogous to the

technique used to obtain an expression for X. For this case, Equation

(11-44) becomes

a r___ ImSmax f(R' ,)d (11-58)

3OR Omax OdB -OdB
-#dB

where f(OR, 0) is the same expression as that defined for f(X, 4) in

Equation (11-41) with the roles of X and OR as known and unknown vari-

ables interchanged. Applying the same procedure employed to determine

an expression for X results in a sixth order expression in OR. This

expression can be solved with a digital computer using root-solving

algorithms. However, a more appealing approach is presented here.
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The initial step is to obtain a second order expression in OR in

terms of 40 using Equation (11-39). Rearranging Equation (11-39) and

performing the squaring operation on ( R OdB) yields

SR2 + al R + a = 0 (11-59)

where al = -2dB + (00 + OdB)

a0 - OdB2 + X (00 + OdB)OdB
A +4

The quadratic formula is used to determine OR for a given -0 as

R = -al+(af - 4a 0 )1/2 (11-60)
2

Equation (11-60) is used to obtain an initial guess of the value of OR'

This value of OR is obtained by initially guessing the value of 00 to

be midway between OdB and Omax since this would be a reasonable guess

for the value that minimizes the mean square error. Therefore,

40 = 4-dB -max- dB (11-61)
2

for the initial guess of 0.

In the expression for A given by Equation (11-57), only K4 is a

function of OR. For the given value of A , the desired value of K4, K4 d'

is obtained by solving (11-56) to give
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K4d = K 1/2 (11-62)
K + 4

A Taylor series expansion of K4 (#R) is obtained from Equation (11-55) in

order to systematically improve the initial guess at (R. Using only

the linear terms in the Taylor series, Equation (11-55) becomes

K4(R) = K4 (0RO) + K4 N'(RO) 6 OR (11-63)

where 60R = OR ORO

K4(R O ) = (16/3)(max - OdB) 3 / 2 B - (32/15)(C - D) (II-64a)

B = (ORO + OdB) 1 / 2 - +5(OR +  dB)-1/2 (RO - dB)  (II-64b)

(ORO + OdB)

c = 2 . 5 (4RO - OdB)3/2(RO + OdB)1 / 2  (II-64c)

(+RO + dB)

D 5(RO dB -1/2RO -OdBd5/2 (II-64d)

(ORO +dB )

ORO is the present guess for OR and K4(0RO) is given by Equation (II-55).

Solving (11-63) for 6OR used to update OR yields

SO = K4(R) - K4(Ro) K4d - K4(RO) (11-65)

K4 (R) K4'(ORO)
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The improved guess for OR is now given as

OR = ORO + R (11-66)

As an example of applying this procedure, consider the earlier

example where A was computed to be .61 with OdB = 2 and ax = 10.

The initial value of 00 is computed from (11-61) as

00 = -6

Using this value of 0' *R is determined from (11-60) to be

R = 3.74

K4 (R0) is computed from (11-55) as

K (3.74) - 83.5

K4d is determined from (11-62) to be

K4d f 93

Next, solving (11-65) for the update, 60R, gives

6 R = 93 - 83.5 = .252
37.8

The new value of OR is given by (11-66) as

R = 3.74 + .252 = 3.992

Computing the new value of K4 (ORO) gives

K4(3.99) = 92.9
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For this case only one update was required to obtain an accurate value

for R. This value of OR can then be used to determine Al using

Equation (11-34), the rate limit using Equation (11-35), and the rate

ledge using Equation (11-36). These values are computed to be

Al = 1.73

lim = 3.46

Oledge = 1.16

These values along with the given OdB determine the RCJ control system

that most closely corresponds to the given optimal weighted time-fuel

control system. The results obtained in these examples illustrate

the uniqueness of these procedures. That is, if the procedure is

applied to find an optimal weighted time-fuel control system correspond-

ing to a given RCJ system and then the reverse procedure applied to

this optimal time-fuel system, the RCJ system obtained will be the

original one. Figure 11-9 shows the optimal control system and its

corresponding RCJ control system for the two examples given.

In summary, under the assumption of second order dynamics, the

conventional RCJ control system is shown to be a good linear approxima-

tion to an optimal weighted time-fuel control system. Furthermore, for

OdB, Omax, and OR given, an expression is derived that gives the value

of A weighting time and fuel. This A is chosen such that the mean

square error between the switching curves of the RCJ system and the

optimal control system corresponding to this value of X is minimized.
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Also, an iterative procedure is presented to determine OR for the RCJ

control system that corresponds to an optimal weighted time-fuel

control system with X given. This procedure also requires knowledge

of the desired OdB and Omax for the RCJ control system. The procedure

produces unique results in that applying the procedure followed by

its reverse procedure yields the original system.

X
2

5

Sledge = 1

-10 -5 2

RCJ Optimal

lim 3.46 X = .61lim

$ledge = 1.16 -

OdB = 2

@R = 4

Omax = 10

Figure 11-9. Phase Plane for Example System.



III. SOME BASIC IDEAS RELATED TO THE USE OF CONTROL
MOMENT GYROS FOR ATTITUDE CONTROL

A reaction control jet (RCJ) mass expulsion system can provide

control within a band of a desired operating state. Control moment

gyros (CMGs), based on the principle of momentum exchange, can provide

the fine-pointing capability required for many space missions. Morine

and O'Connor describe the CMG and its relative merits in [2].

The principle of momentum exchange is a consequence of Newton's

second law of angular motion which states that the total external

moment, Mext, acting on a system, is proportional to the time rate of

change of angular momentum with respect to inertial space. This can

be written as

Mext = dHsystem (III-1)
dt Inertial Space

Considering the system to be composed of a vehicle and a controller,

Equation (III-1) can be integrated to yield

Mxftd =.  H - (111-2)

Mextdt = Hext = Hcontrol + Hvehicle - Hsystem(0+) (111-2)

Equation (111-2) illustrates that the controller momentum can be used to

balance external torques as well as change the spacecraft attitude by

varying the vehicle angular momentum.

31
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Since electrical energy is used as the prime source of power,

the concept of momentum exchange using CMGs is desirable because it

provides continuous vehicle control and a recoverable energy source.

Cyclic disturbance torques can also be handled on a continuous basis

over a long period of time. However, constant external disturbances

applied to the vehicle will eventually cause the controller to reach its

maximum capacity, and thus saturate the CMG. This saturation will re-

quire the expulsion of propellants to remove some momentum from the

saturated CMG. This propellant expulsion task may be accomplished at

a convenient time during the mission.

The CMG is essentially a gimballed wheel rotating at a constant

speed which provides a constant angular momentum magnitude capable of

variable orientation relative to the spacecraft. Exchange of momentum

between the vehicle and the controller is effected by causing a change

in direction of the constant momentum magnitude of the CMG.

Figure III-1 shows schematically a two degree of freedom CMG.

It consists of a wheel that rotates at a constant speed. This wheel is

held in a housing which is called the inner gimbal. The inner gimbal

is coupled to the outer gimbal through the (1) pivot which is perpendicular

to the wheel spin vector as shown in Figure III-1. The outer gimbal is

held to the base through the (3) pivot which is perpendicular to the

(1) pivot. The (1) and (3) pivots are driven by geared D. C. torque

motors.

CMGs offer several advantages over other momentum exchange

devices such as reaction wheels. Since the CMG operates at a constant



OUTER GIMBAL 1 INNER GIMBAL
"C(j)" SPACE "A (j) SPACE

3B(j)' 3C(j)

WHEEL "W(J 1 " SPACE

(3) PIVOT
1C(j ) , 11A(j) BASE "Bj)" SPACE

Figure III-i. The "j" control moment gyro schematic.
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speed for which the efficiency can be optimized, its efficiency is

greatly improved for most operating momentum values. Larger maximum

moment control can be obtained will relatively small turning rates of

the large constant momentum. Another CMG advantage is better bandwidth

over the reaction wheel which has a limited bandwidth due to the physi-

cal characteristics of the wheel. A final advantage of the CMG is that

it has a more linear approach to saturation than do reaction wheels.

These advantages coupled with the fact that the CMG provides continuous

control and a recoverable energy source makes the CMG an attractive

device for long duration fine-pointing attitude control missions.

A. CMG Equations of Motion

For any control system using CMGs, it is first necessary to know

the relationship between the reaction torque of the CMG configuration

and the gimbal angles and gimbal rates of the gyros. Throughout this

analysis, the CMG configuration assumed will be the conventional SIXPAC

configuration as shown in Figure 111-2.

The relationship between the gyro gimbal angles and the reaction

torque will be obtained by first arriving at an expression for the

angular momentum of the configuration, and then applying Equation (III-1)

to determine the torque.

The initial step in determining an expression for the angular

momentum is to define three gyro spaces 12]. Referring again to Figure

III-1, the "A(j)" space or inner gimbal is described by the coordinate

system 11A(J)l 12A(), and 13A(j) . The "A(j) space coordinate system
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ASSEMBLY

OUTER ACTUATOR
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Figure 111-2. The conventional CMG SIXPAC configuration
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is defined such that the 12A(j) vector.is along the spin reference

axis, the 1A() vector is along the (1) or inner pivot, and the 13A(j)

vector completes the orthogonal coordinate system. The "C "
(j)

space or outer gimbal space is described by the coordinate system

11C(j), 12C(j), and 13C(j) which is defined such that the 11A(j) and

11C(j) vectors are coincident, the 13C(j) vector lies along the (3)

or outer pivot, and the 12C(j) vector completes the orthogonal coordi-

nate system. The base of the CMG or "Bj)" space is described by

the I1B(j), 1 2B(j)' and 13B(j) coordinate system. With these spaces

defined, the zero position of the CMG is defined when the vectors

1 1A(j) , 
12A(j)' and 13A(j) are coincident with the vectors 11C(j)'

12C(j)' and 13C(j) and coincident with the vectors 11B(j), 12B(j)'

and 13B(j)'

The (1) pivot angle 61(j) is defined positively when the inner

gimbal is rotated in a positive direction about the 11A(j) vector with

respect to the outer gimbal as shown in Figure 111-3. Similarly, the

(3) pivot angle 6 3(j) is positive when the outer gimbal is rotated in

a positive direction about the 1 3C(j) vector with respect to the base

as shown in Figure 111-4.

Using the definitions of the coordinate systems and gimbal angles,

the transformation matrices from "A (j)" to "B (j)" space, "A(j) to

"C(j)" space, and "C(j)" to "B(j)" space can be obtained. These

transformation matrices are



37

2A(j)

2C(j)

1 C(j)

i(j)

1 3A(j)

Figure III-3. Definition of the (1) pivot angle 61(j)"

2C(j)

2B )

B(j) (j)

Figure III-4. Definition of the (3) pivot angle 63(j).
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IC(j) 1 0 0 HiA(j)

H2C(j) 0 C1(j) 1-S6(j) H2A(j)

H3 (j) 6 1(j) C 1 (j H3A(j

(III-3)

H1B (j) 3C63(j) 3(j) 0 HIC(j)

H2B(j) = S63(j) C63(j) 0 H2C(j)

H 3 B(j 0 0 1 H3 C(.)

(111-4)

HIB(j) C63 (j) -S6 3 (j)C61(j) S63 (j)S41 (j) 1A(j)

H2B(j) SS3 (j C6 -C6 S61 H2A(j
2B(j 3(j) 3 (j) 1 (j). 3(j) 1() 2A(j)

H3B (j) 0 S1 (j) C61 (j) H3 A(j

(III-5)

where S6i(j) = sin6i(j) i = 1,3; j = 1,2,3

and C6i(j) = cos6i(j) i = 1,3; J = 1,2,3

This designation for sines and cosines of angles will be employed

throughout this analysis.

Referring to Figure III-2, the transformation matrices from the

base coordinate system of each of the CMGs to the vehicle coordinate

system are determined for the (1) CMG to be
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1xv 0 1 0 1 1B (1)

1yv  0 0 1 1 2B(1)

Iv 1 0 0 3B ( (1-6)

and for the (2) CMG to be

1x 1 0 0 1 1B(2)xv 1B(2 )

1y = 0 1 0 1 2B(2)

Izv 0 0 1 1 3B(2) (111-7)

and for the (3) CMG to be

1xv 0 0 1 1 1B(3)

lyv 1 0 0 12B(3)

izv 0 1 0 13B(3) (111-8)

Equations (111-6), (111-7), and (111-8) can be used to determine the

resultant momentum vector of the CMG cluster in vehicle coordinates as

HxV H2B(1) + HIB( 2 ) + H3B(3)

Hyv H3B(l) +  2B(2) + HB( 3 )

zv HlB() + H3B( 2 ) + H2 B(3) (111-9)
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Now, since the vector 12A(j) in "A(j " space is defined to be along the

spin reference axis, the transformation from "A(j)" space to "B(j)

space can be used to obtain the resultant momentum vector of the CMG

configuration in terms of the momentum magnitude of each CMG. Assuming

the momentum for each CMG to be H0 , the momentum vector for the jth

CMG can be written in "A()" space as

1A(j)

(j) = HO = H2A(j) (III-10)0 H3A(j)

Substituting Equation (III-10) into Equation (III-5) gives the momentum

vector of the jth CMG in "B(j)" space as

-S63(j)C 6
1 (j) H1B(j)

(j) = C3(j)C61(j) HO = H2B(j )  (III-11)

S61(j) H3B(j)

Substituting the expressions for the CMG momentums in "B(j)" space from

Equation (III-11) into Equation (111-9) yields the expression for the

momentum of the CMG cluster in vehicle coordinates as

Hv C63(1)C61(1) -S63 (2)C61 (2 ) + S61 (3 )

yv )S61 (1 ) + C63(2)C61(2) -S63(3) C1(3) HO (111-12)

Hzv -S6 3 (l)C61(1) + S61 (2 ) + C63(3)C61(3)., S6 C J 6 C
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Equation (III-1) can be expressed in vehicle coordinates so that the

torque applied to the vehicle becomes

T =dH + 0 x H = H + x H (111-13)

dtJ vehicle space

where H is as defined in Equation (111-12) and 0 is the total angular

velocity of the spacecraft

[x li

Q = 1 (111-14)

iz lk

_-4.
H indicates the time derivative of H with respect to vehicle space.

Substituting the expressions for i given by Equation (III-12) and per-

forming the indicated differentiation and cross-product operations yield

T DS + EO (111-15)

where -S6 3 (1 )C61 (1 ) -C6 3 ( 1 )S 1 (1 ) -C63 (2)C61 (2)

D = 0 C61 (1) -S6 3 ( 2 )C61 (2 )

-C63 ()Cd 1(1) $a3(1)C 1(1) 0

S63(2) S1(2) 0 CS1 (3 )

-C63(2)S'1(2) -CS3 (3)C 1(3) S63(3)S& 1(3)

C&1(2) -S63(3)C 1(3) -C63(3)S1~ (3)

(III-16)
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S= -z 0 Hx (111-17)

Hy -Hx o

and 63(1)

61(1)

*i3(2)
= 3(2) (III-18)

l (2)

3 (3)

61(3)

B. Some Basic Approaches to CMG Steering Laws.

Basic CMG steering laws are concerned with commanding gimbal rates

that will cause the moment exerted on the vehicle by the CMGs to re-

produce the commanded torque as nearly as possible. The general form

of vehicle attitude control using CMGs is shown in Figure 111-5. The

analysis will consider the CMGs to be free of any gimbal stops. The

steering laws considered in this section assume that a vehicle control

law to generate the commanded torque is available. Simulation results

are presented in Chapter V for the steering laws presented in this

section.

Since the D matrix is not a square matrix, it does not have an

inverse and Equation (III-15) cannot be solved for exactly. The

problem is to take any three-dimensional torque vector command Tc and

develop a six-dimensional gimbal rate vector command c for the CMG
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torque motors. As pointed out by Ross in 13], one obvious solution

to Equation (111-15) is

c = D T - EQ) (III-19)

where DQ represents a matrix which satisfies the following equation

DD = I (111-20)

where I is the identity matrix. There are an infinite number of D@

matrices which satisfy this relationship. For example, partitioning

the D matrix so that it can be expressed as

D = ID1  D2] (III-21)

suggests that a possible solution to Equation (111-20) is

D@= 1 (111-22)

This solution is valid for those orientations where the D1 and D2 matrices

are nonsingular.

The above concept can be extended to the case where the solution

to Equation (111-15) is

= D(Tc - E). (III-23)

where D- I is the pseudoinverse of D. D- I can be chosen to be the pseudo-

inverse that gives the solution for the commanded gimbal rates with
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Figure III-5. Vehicle attitude c'ontrol with control moment gyros.
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the minimum norm if the solution is not unique 14]. This can be

thought of as the 6 vector that has the minimum length of all possible

solutions. This technique does not depend on any matrices being

non-singular.

It is desirable to design a control scheme that would minimize

the amount of control effort required to achieve a given quality of

control. One approach [5] is to find the law which minimizes a per-

formance index such as

#2 +2

J 6i(j)qi + (Tck- Tk) 2  (III-24)
i=1,3 k=x,y,z
j=1,2,3

The qi's relatively weight the control effort desired from the inner

and outer torque motors with respect to the quality of control. In

order to obtain an algebraic control law in terms of system parameters,

the performance index is presented in terms of summations. This

evaluates the system on a point-by-point basis in time which indicates

that this law actually places a stronger constraint on the system

than the integral performance measure which evaluates the system per-

formance on an average basis. Expressing Equation (111-24) in vector

form gives

S= T + ( T) (Tc - T) (111-25)

Substituting Equation (111-15) into (111-25) yields
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S+ (T D T - E (T - D - ER)

fT + T + IT *T + + T DT
6Q + T- T D6 - T TcED + D D&

-TT T + T T -*T T + *T TE+ 6 D E~ ~ E T + 0 E D& + 0 E EQ
c

(111-26)

In order to minimize J, the partial derivative 3J/T must be equated

to the zero vector. Simplifying this expression yields

J Q -D(T c - E2) D 2 = (111-27)
CJ

Solving Equation (111-27) for 6 gives

S= [Q + D]-1 DT ( - E) (111-28)

Q is the positive definite weighting matrix determining the relative

control effort of the inner and outer gimbal torque motors. Defining

Q-- as KSL the steering law gain, and referring to Equation (111-24),

it is observed that increasing KSL will increase the quality of control

at the expense of higher gimbal rates. Figure 111-6 shows a scheme

to realize this CMG control law with DT referred to as the "Transpose

Steering Law" 13].

The above steering laws have not considered the problem of gimbal

stops or antiparallel orientations. While the laws can be modified to

protect against these conditions, this is not considered in this
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investigation. The basic steering laws developed in this chapter

from the CMG equations of motion are compared to a total optimal CMG

control law (presented in Chapter IV) in Chapter V.

FD

Te 1 -6 D KSL sti lc

Figure III-6. A scheme to implement the transpose steering law.



IV. A TOTAL OPTIMAL CMG ATTITUDE CONTROL LAW

The steering laws presented in Chapter III assumed that a controller

provided a commanded torque as input to the CMG steering law. In this

chapter a control law is developed that commands the CMG gimbal rates

based on the input of the attitude error angles and the error rates.

The variables of the non-linear, multi-input, multi-output CMG system

are treated in a special way so that the tools of linear system theory

can be applied to this problem. The feedback control policy is determined

using the state variable approach and optimal control theory. The

development of this control policy utilizes Kalman's work showing that

the optimal control for a non-linear system can be given by the solution

of the optimization problem for a set of system equations linearized

about the current operating point [6].

The system presented in this chapter is a special case of the one

developed by Skelton in [7] using the concepts described above. The

system presented here differs in that the gyros are considered to be

free of gimbal stops and the problem of antiparallel orientations is not

considered. The result of applying this approach is a closed loop law

that generates the six gimbal rate commands as a linear combination of

the vehicle rates and vehicle attitudes. The gains multiplying these

variables are updated as a function of the changes in the gimbal angles.

The states of the system are chosen to be the attitude errors,

vehicle rate errors, and gimbal angles so that

48
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xl 01
X2  e2 = (IV-1)

X 5  2,. = S (IV-2)

x6 0

and x7 61(1

x8 61(2)

x9  61(3) = 6 (IV-3)

X1 0  63(1)

X11 63(2)

x12  63(3)

The gimbal rates are chosen as the control vector so that

U1  1(1)

u2 61(2)

U3  = 6(3) = (IV-4)

U4 63(1)

u5 d3(2)

u6 63(3)
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For the SIXPAC CMG system, the equation for the vehicle can be written as

S= J [D + E - x J + T ex] (IV-5)ex

where Tex = the external torque applied to the vehicle

J = the inertia dyadic of the vehicle

and D, E, 1, and are as described in Chapter III.

When the primary external torque is due to gravity gradient, it

is shown in [8] that this torque can be expressed as

Tex = Tn(t) + G(t) (IV-6)

where Tn(t) is a time dependent gravity gradient torque evaluated at a

nominal attitude and the elements of the G matrix are the first order

partial derivatives of the torque with respect to 8 and evaluated at

the nominal 8.

The components of the body rates can be related to the Euler

angle rates by manipulating the transformation from inertial space to

vehicle space. If the Euler sequence of rotations is 1, 2, 3, then the

vehicle reference frame (v) may be related to the inertial reference

frame (I) as

4- 3 2 1 -
v ez = [3] [(2] [1] z (IV-7)

where [1 0 0

1= 0 cos 1e sin 1 (IV-8a)

0 -sine1 cose 1J
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cos82 0 -sine2

2 =0 1 0 (IV-8b)

sin82  0 cose 2

cos83  sine 3  0

3 -sine 3  cos 83 0 (IV-8c)

0 0 1

Therefore, using Equations (IV- 8)in Equation (IV-7), the elements of

e are determined to be

811 = cos8 2 cos8 3

812 = cosa1sine 3 + sin01 sin02cos8 3

813 = sine 1 sin3 - cos 1 sin 2 cos 3

621 = -cos82sin83

22 = cosa Cos83 - sinl1sine2sine3 (IV-9)

823 = sin91COS83 + cos61sine2sine3

831 = sine2

832 = -sin 1lcos 2

833 = coslcos82
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It should be noted that the 1e, 20, 3e, and 0 matrices are unitary

matrices which means that their inverse is equal to their transpose.

This property is used below to get an expression for the vehicle

angular velocity. The angular velocity of the vehicle can be ex-

pressed in terms of the Euler rates as

= 1 1Z + 62v2 + 03v3

- 1Jz' v2 0 V3] 1 (IV-10)

03

where v' is an intermediate coordinate system. Equation (IV-7) can

alternately be expressed as

Vi e11 612 613

v2 F 1zL 21 + z2 22 + z3 23 (IV-11)

The intermediate coordinate system v, is

" 1 1 T*
v = [ ]z = [ 6]6 v (IV-12)

Then solving for v in terms of v" in Equation (IV-12) yields

+ 1T 4
v = 6[ 6 ]v, (IV-13)

Using Equations (IV-8a) and (IV-9) and performing the indicated matrix

multiplications in Equation (IV-13) yields
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v1 11 sinO3  13cosa 1 - 012sinO1

v2 v= 1 21 + v2  cos 3  + v 23cosa 1 - a22sin01
3 1 31 0 63 3 cos1 - 3 2sin 1

(IV-14)

Finally, the vehicle coordinate system can also be expressed as

v1 1 0 0

v2  '1 0 + v2  1 + v3 0 (IV-15)

v3 0 0 1

Therefore, from Equations (IV-10), (IV-11), (IV-14), and (IV-15) the

expression for the vehicle rates becomes

1 os 2cos2cos 3  sin3 0 1

2  = -cos8 2 sin83  cos8 3  0 62 (IV-16)

0 sin 2  0 1 3

Solving Equation (IV-16) for the Euler angle rates yields

01 cos0 3 /cosa 2  -sin63 /cos6 2  0 01

2 = sin83  cosa 3  0 R2 (IV-17)

03 [-tan8 2cos6 3  tanO2 sin9 3  1 3-

Equations (IV-5) and (IV-17) describe the dynamics of the system to

be controlled. These equations are expressed in terms of the state

variables defined in Equations (IV-1) through (IV-4) as



54

[2 = W(x2 ,x 3 ) 5 (IV-18)

x3 %6

where W is as given in Equation (IV-17) with 62 and 63 replaced by

x2 and x3 respectively, and

x4 x4 x4 x4 xl
J-1 

4

= J D(6)u + E x5 x5 x J x5 + T(t) + G x2
L-x6 x6 x6 L6J x3

(IV-19)

and x 7  ul

x8  u2

x9 = u3  
(IV-20)

xlo I  U I

x11  u5

.12 _u6

Equations (IV-18) through (IV-20) are of the general form

x = f(x,u,t) (IV-21)

Expanding Equation (IV-21) about the nominal operating point,

x and unom, into the Taylor Series for x yieldsnom nom
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x =f(x ,u ,t) + -x (x ) + (u u )
nom nom nom + nom

x-xnom om
+ + .4

u=BUom u7unomU=Unom U=Unom

+ g(x- x u- u nom, t) (IV-22)
nom nom

where g contains the higher order terms.

Defining

y = x - Xnom
(IV-23)

and v=u-unom
nom

the general form of the linearized equations is

y = Ay + By (IV-24)

where A.. - and B = a
13 ax ij au

x=x x=x
nom - .nom

4.4.

u=unom U=Unom

4.

The steady state gimbal rate, unom, is obtained as the equilibrium

solution of Equation (IV-5), (i.e. 2 = = 0), as

Unom = D(Tn + G) (IV-25)

where D- I is the pseudoinverse of the nonsquare D matrix and Equation

(IV-6) has been substituted into Equation (IV-5). uno m is considered

a constant in Equation (IV-25) since the time constants of the gravity

gradient torques are large compared to the time constants of the
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stabilized control system.

It is desirable to keep the average attitude and rate errors

small as well as prevent excessive peak errors in attitude and rate.

Therefore, the performance measure for the optimal system penalizes

position and rate terms to avoid excessively large control efforts.

Since gimbal stops are not considered here, there is no reason to

penalize the gimbal angles. The performance measure is

ee ( e;( j j + +d (IV-26)

where ae = 6 - command nom

and e = -nom

Since tom = 0, Equation (IV-26) can be written in terms of the defined

state variables as

P(u) 0 io Qy + v Rvdt (IV-27)

where L3x3 03x3 03x33 3x3 3x3

Q = 03x3 3x 3  
0 3x3

03x3 03x3 03x3
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and r 0 0 0 0 0

0 r2  0 0 0 0

R = 0 0 r3  0 0 0

0 0 0 r4  0 0

0 0 0 0 r5  0

0 0 0 0 0 r

The term ijr represents the vehicle kinetic energy and minimiz-

ing the integral of the vehicle kinetic energy conserves vehicle energy

expenditure. L and R elements are generally chosen smaller than

J because of this aspect of energy conservation.

Kalman shows in [6] that a system described by Equation (IV-24)

minimizes a functional of the form of Equation (IV-27) (where Q is any

positive semi-definite matrix and R is any positive definite matrix)

subject to the constraints

y(0) = yO

y (m) = unspecified

+ -IT1 T
when v = -RBKy (IV-28)

where K is the symmetric, positive definite gain matrix that is the

solution to the matrix Riccati equation

K=-KA - ATK - Q + KBR-1BTK (IV-29)
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Figure IV-1. An implementation of the sub-optimal control system.
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Equations (IV-28) and (IV-29) give the optimal solution if the system

given by Equation (IV-24) is completely controllable. If the system

is not completely controllable, the solution is optimal only when

the uncontrollable states are not penalized.

The solution to the linear regulator problem is the solution to

the non-linear plant if the linearized model is updated frequently.

The linearized model must be updated as a function of time, gimbal

angles, and vehicle attitude commands. The gimbal angles will be the

fastest to change and usually can provide the criterion for updating

the linearized model. Equations (IV-28) and (IV-29) give a sub-

optimal solution as a result of the frequent updating of the linearized

model, but if the updating period is long compared to the system time

constants, then this solution approaches the optimal. An implementation

of this sub-optimal control system is shown in Figure IV-1.

A. Sensitivity Analysis of the Riccati Equation

A difficulty in implementing the optimal control system given by

Equations (IV-28) and (IV-29) centers about finding the steady state

solution to the matrix Riccati equation given by Equation (IV-29).

Problems encountered are excessive computation time for the desired

accuracy of the Riccati equation solution. Two approaches are consider-

ed to decrease the degree of these difficulties. First a sensitivity

analysis of the gains with respect to the gimbal angles is performed

to determine if some gains may be considered constant. Those constant
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gains would not have to be computed at each linearization update, thus

saving on computation time. In Section B different solution techniques

are evaluated with respect to computation time and accuracy to determine

which solution method is most acceptable with respect to these requirements.

As is pointed out by Skelton in [7], it is sufficient to solve the

sixth order Riccati equation when the gimbal angles are not penalized.

The reduced sixth order system is

: = ] + u (IV-30)
x4- 6  0 A2 x4-6 B

where W is given in Equation (IV-17)

0 -h 3  h

-1
A2  J h 3  0 -h

-h2 hI  0

-1 2
B 1  J D+-x=x

nom

and J is the inertia dyadic of the vehicle. Since the gimbal angles are

not penalized in the performance measure, only the sixth order case

will be considered here.

Rewriting Equation (IV-29) in the steady state and showing explicit

dependence on a parameter a yields

A (a)K(a) + K(a) - K(a)S(ca)K(a) + Q = 0 (IV-31)
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where S(a) = B(a)RlB T(a)

Taking the partial of Equation (IV-31) with respect to a gives

aA T K aK aA aK as aK
----K +A + A+ K--- SK- K -L K - KS - 0
Da a a ac aa a aa

(IV-32)

Combining like terms simplifies Equation (IV-32) to

dK
(A - SK) + (A - SK)T dfi= -Kn - nTK + K6K (IV-33)dc da

where n = dA/da

6 = dS/da

and with all matrices evaluated at a = a 0 . The form of Equation (IV-33)

is

FG + GTF + H = 0 (IV-34)

where F = dK/da

G = A - SK

and H = Kn + nTK - K6K

Kleinman presents an algorithm in [9] that is used to iteratively solve

equations of the same form as Equation (IV-34) numerically. The

steady state Riccati solution for several initial gimbal angle configura-

tions (K(ao)) is computed here; then Equation (IV-34) is iteratively

solved for dK/da using Kleinman's algorithm. The percentage variation

in K for a Aa change in a gimbal angle is approximated as
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SK = dK Aa (IV-35)

K
where SK is the sensitivity of K with respect to parameter a

a is a gimbal angle, a = 61, 62, ...66

and Aa is the incremental change in the gimbal angle a.

Performing these operations for gimbal angle orientations that are

combinations of 0* and 30* gimbal angles is sufficient to indicate

that no gains are insensitive enough to gimbal angle variations to

consider them constant.

The diagonal elements of the steady-state solution to the Riccati

equation are generally much less sensitive to gimbal angle variations

than are the off-diagonal terms. Table IV-1 gives the range of the

values of the off-diagonal terms of the gain matrix for the various

gimbal angle configurations that are considered. For these same cases,

Table IV-2 gives the range of the sensitivities of these off-diagonal

terms to 50 incremental changes in the 61 gimbal angle. Results are

presented only for the 61 gimbal angle sensitivity because these re-

sults are typical of those obtained for the sensitivities of these

elements to the other five gimbal angles. Since Table IV-2 indicates

the extreme sensitivity of the off-diagonal terms to gimbal angle

variations, only the diagonal terms can possibly be insensitive enough

to gimbal angle variations to be considered constant.

The range of the values of the Riccati gain matrix diagonal

terms are given in Table IV-3 for the different gimbal angle configura-

tions analyzed. Table IV-4 describes the range of the maximum
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Table IV-i. Range of Riccati Gain Matrix Off-Diagonal
Elements For Several Combinations of 0*
and 300 Gimbal Angles.

Gain Matrix Element Range of Matrix Element Values
Max Min

K12  1.75 x 10 -4.32 x 104

K13 5.27 x 103  -4.30 x 104

K14  2.51 x 105 1.55 x 105

K15  6.09 x 10 -1.51 x 105

K16  1.91 x 104 -1.49 x 105

K23  4.34 x 104 -8.03 x 104

K24  6.14 x 104 -1.49 x 105

K25 1.60 x 106 1.28 x 106

K26  1.55 x 105 -2.86 x 105

K34  1.83 x 104 -1.49 x 105

K35  1.56 x 105 -2.85 x 105

K36 1.84 x 106 1.27 x 106

K45  2.52 x 105 -6.08 x 105

K46  7.84 x 104 -6.06 x 105

K56 6.67 x 105 -1.20 x 106
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Table IV-2. Range of Sensitivity of Riccati Gain Matrix Off-
Diagonal Elements to Variations in 6 Gimbal Angle
For Several Combinations of 0* and 36o Gimbal Angles.
50 Variation in 61 is Used.

Gain Matrix Range of Sensitivity of Matrix Element Values
Element I (Absolute Value)

Max Min

K12  7.77 x 105 4.42 x 10- 3

K13  2.43 x 106 3.05 x 10-1

K14  9.81 7.74 x 10-4

K15  2.79 x 104 2.11 x 10-2

K16  7.36 x 10 2.73 x 10-1

K23  4.33 x 10 7.83 x 10

K24  2.39 x 10 3  1.23 x 10 - 2

K25 1.53 2.09 x 10-6

K26  1.35 x 10 1.54 x 10 - 2

K34  9.55 x 103 1.12 x 10 - 1

K35  8.41 x 10 5.89 x 10

K36  2.74 1.01 x 10- 3

K45  4.04 x 105 3.23 x 10- 3

K46  1.22 x 108 4.37 x 10-2

K56 5.79 x 10 1.68 x 10- 3
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Table IV-3. Range of Riccati Gain Matrix Diagonal Elements For
Several Combinations of 00 and 30* Gimbal Angles.

Gain Matrix Range of Matrix Element Values
Element Max Min

K 11 3.83 x 105 3.54 x 105

K22 2.39 x 106 2.30 x 106

K 33 2.43 x 106 2.28 x 10 6

K44 8.89 x 105 5.10 x 105

K55 5.78 x 106 4.41 x 106

K66 6.84 x 106 4.38 x 106

Table IV-4. Range of Maximum Value of Sensitivities (for 5* Gimbal
Angle Increments) of Gain Matrix Diagonal Elements to
the Six Gimbal Angles.

Gain Matrix Range of Sensitivity of Matrix Element Values
Element (Absolute Value)

Max Min

K 1 1.30 2.93 x 10-2

-1
K22 2.93 1.79 x 10- 1

K33 1.47 1.93 x 10-

-1K44 4.66 3.94 x 10-

K55 5.86 1.25

K66 4.81 1.27
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sensitivities of these gain elements with respect to variations in

the six gimbal angles. Table IV-4 illustrates that the diagonal terms

are much less sensitive to the gimbal angles than the off-diagonal

terms; however, it also indicates that no elements of the Riccati gain

matrix are insensitive enough to the gimbal angles to be considered

constant. As a consequence, all elements of the gain matrix must be

computed at each linearization update and no computational time can

be saved by considering some elements to be constant.

These results were obtained by using the same system as Skelton

in [7]. Therefore, the procedure employed in this section should be

employed for the system under consideration. If an element of the

gain matrix is determined to be insensitive to given parameter varia-

tions within a specified degree, then that element may be considered

constant thus reducing required computational time.

B. Numerical Solution Techniques for the Riccati Equation

A conventional Runge-Kutta integration scheme is used in [7] to

solve Equation IV-29 for K in the steady state. Some other numerical

techniques are considered here and compared to determine if another

algorithm might give the Riccati gain matrix with less computational

time and accuracy comparable to a Runge-Kutta method.

Two other integration algorithms, Euler and Modified Euler, are

evaluated along with the Runge-Kutta scheme. These should have smaller

computational times at a cost to the accuracy of the steady state solution.
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Russell presents a mathematical technique in [11] that accelerates

the convergance of a transient computer solution to steady state con-

ditions thus substantially reducing execution time. This procedure is

applicable when

(1) the boundary conditions and internal constraints are

either constant or cyclic

(2) the steady state results are independent of the initial

conditions, and

(3) only the steady state solution is desired.

There are two accelerations techniques -- exponential extrapolation

and constant proportionality adjustment. Exponential extrapolation

involves fitting an exponential curve through three points in the

transient solution and predicting the steady state value. The general

form of the fitting curve is given as

Y(t) = CI + C2 e-C3t (IV-36)

Assuming the values of the three points along the transient solution

to be Y'1 Y2, and Y3, then the steady state value for Y(t) in Equation

(IV-36) is given as

2

Y 3 Y2Y(t = 1) = (IV-37)
Y + Y - 2Y2

The solution adjustment is obtained from Equation (IV-37) as

YY - Y 2

AY = 1 3 2 - (IV-38)
Y1 + Y3 - 2Y 2
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The constant proportionality adjustment is

AY = SKIPY2 1 (IV-39)

where SKIP is a constant multiplication factor input by the user.

This method is usually less accurate than exponential extrapolation,

but it usually requires less computation time as well as requiring

less storage space.

Since the possibility of solution instability is enhanced with

the accelerated integration techniques, the sign of the adjustment to

the gain values can be checked. If the sign changes, then the in-

cremental adjustment is modified by a constant reduction factor to

prevent instability or at least to retard it. If the sign change is

indicative of a simple overshoot rather than instability, the modifica-

tion to the incremental adjustment should speed up the solution computa-

tionally.

In [9] and [12] Kleinman presents an iterative algebraic technique

to solve for the linear regulator Riccati gain matrix. If Vk, k = 0,

1, ... is the unique positive definite solution of the linear algebraic

equation

Ak Vk Vk + Q + Lk R (IV-40)

where recursively,

L k= RBTVk_ k = 1, 2, ... (IV-41)

Ak = A - BLk (IV-42)
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and where L0 is chosen such that the matrix A = A - BL0 has eigenvalues

with negative real parts, then

K < + < ... k = 0, 1 (IV-43)

and limk . Vk = K (IV-44)

where K is the steady state solution to Equation (IV-29). Kleinman

presents the computational algorithms to implement this procedure in [9].

A program for the Linear Quadratic Loss (LQL) problem [13] uses

Potter's algebraic method [14] to obtain the steady state solution to

the Riccati equation. Potter's method involves finding the eigenvectors

(or pseudo eigenvectors) corresponding to eigenvalues with negative

real parts of the 2n x 2n Hamiltonian matrix,

H = -T (IV-45)
Q -A

Spectral factorization of the Hamiltonian matrix is used to obtain these

eigenvalues. The stable eigenvectors are then used to form a 2n x n

matrix whose columns are the real eigenvectors. If the eigenvectors

are in complex conjugate pairs, two vectors made up of the real and

imaginary parts of one of the complex eigenvectors are used instead

of the complex entries. If this 2n x n matrix so formed is

D] (IV-46)
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then the steady state solution to the Riccati equation is determined

to be

K = ED-1 (IV-47)

Using the same system parameters as in [7], solutions to the

Riccati equation are obtained using the previous algorithms. Since

the algorithms would be programmed on a particular flight control com-

puter, the actual computation times for these procedures would be

meaningless. Therefore, the tabular results presented in the remainder

of this chapter are normalized. The minimum value of the parameter for

all cases considered is assigned the value zero while the maximum

value is assigned the value 100. All intermediate values are assigned

a value between 0 and 100 in the following linear fashion,

n Pi - Pmin 100 (IV-48)
X PPnin

where Pn is the normalized parameter value,

Pi is the actual parameter value,

Pmin is the minimum parameter value,

and pmax is the maximum parameter value.

Since the steady state solution to the Riccati equation is desired,

the derivatives of each of the gains at the computed solution point

gives a measure of the solution accuracy. For the results included in

the remainder of this chapter, the accuracy comparison values are

obtained by summing the absolute values of all the elements of the
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gain derivative matrix. These values are then normalized according

to Equation (IV-48).

Euler, Modified Euler, and Runge-Kutta integration procedures

are examined in this analysis. Additionally, these solution techniques

are examined with exponential acceleration and proportional accelera-

tion, both with and without the instability retardation routine.

Finally, the Kleinman and Potter algebraic routines are compared to

the integration routines. Since a conventional Runge-Kutta integra-

tion algorithm is used in [ 7], this case is included in several of the

following tables for the purpose of comparison.

The integration routines are very sensitive to the integration

time increment. Table IV-5 illustrates the expected decrease in com-

putational time for an increase in the integration time increment for

the conventional Runge-Kutta integration solution.

For those cases including instability suppression, the value of

the constant factor to modify the solution adjustment is chosen to be

.1. This value represents a good choice, but not necessarily a best

choice. Solutions to the Riccati equation are obtained using other

values, but there is no general trend. In some instances .1 gives the

better result with respect to computational time and accuracy, while

in other instances .025 and .25 give better results for the three

values. Table IV-6 compares the three integration methods to each

other with and without instability suppression. The instability

suppression has a more noticeable effect on the Euler and Modified
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Table IV-5. Computational Time and Accuracy for the
Runge-Kutta Integration as a Function of
the Integration Time Increment (At).

At Normalized Normalized Computational
Accuracy Time

-.0001 * *

-.005 * *

-.01 * *

-.05 2.79 36.17

-.1 1.59 17.86

-.5 .14 3.19

* indicates that the total computational time was larger
than that allowed for this analysis.

Table IV-6. Comparison of Integration Solution
Methods For At = -.5.

Solution Method Normalized Normalized Normalized
Accuracy Computational Weights of

Time Time & Accuracy

Runge-Kutta .14 3.19 3.33

Runge-Kutta
(Instability Suppression) .14 3.23 3.37

Modified Euler .07 2.91 2.98

Modified Euler
(Instability Suppression) .17 2.23 2.40

Euler 0 .08 .08

Euler
(Instability Suppression) .10 7.77 7.87
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Euler routines. If computational time and accuracy are weighted

equally as in Table IV-6, then the Euler algorithm accomplishes the

desired results most efficiently.

The exponential acceleration of integration solutions is discarded

for this system because the transient solution is not approximated by

an exponential very well. As a result, the solution either goes un-

stable or requires a prohibitive amount of computation time if the

instability suppression is included.

The linearly accelerated integration algorithms are sensitive to

the value of the constant of proportionality used to accelerate the

soltuion. If this constant is chosen too large, this procedure will

also result in unstable solutions or prohibitive computation times if

instability suppression is used. Table IV-7 provides a comparison of

some solutions to Equation (IV-29) obtained by Euler integration and

linearly accelerated Euler integration. The linearly accelerated

routine produces slightly better results than the simple Euler integra-

tion routine. For a particular system, a value for the constant pro-

portion adjustment can be obtained empirically. This must be done to

minimize the possibility of unstable solutions.

For all solution techniques considered, Table IV-8 presents those

algorithms requiring the least computational time, Table IV-9 presents

those techniques giving the most accurate solutions, and Table IV-10

presents the best solution methods for an equal weighting of time and

accuracy. The Euler integration routine with a step-size of -.5 gives

the best results of the algorithms employed to solve the Riccati
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Table IV-7. Comparison of Euler Integration and
Linearly Accelerated Euler Integration
Solutions to the Riccati Equation.

Algorithm At Normalized Normalized Equal Weighting
Accuracy Computational of Time and Accuracy

Time

Euler -.1 1.01 3.54 4.55

Euler -.05 2.98 8.22 11.19

Euler -.01 29.65 34.58 64.23

Acc Euler -.1 .08 3.05 3.14

Acc Euler -.05 1.93 2.51 4.43

Acc Euler -.01 32.04 12.41 44.44

Table IV-8. The Solution Methods Requiring the Least Computational Time.

Algorithm At Normalized Computational Time

Potter's Algebraic * 0

Euler -.5 .08

Euler (Linear Acceleration) -.1 1.65

Modified Euler -.5 2.23

Euler (Linear Acceleration) -.05 2.51

Runge-Kutta -.5 3.19
(for comparison)

* An Algebraic Technique
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Table IV-9. The Solution Methods Resulting in the Best Accuracy.

Algorithm At Normalized Accuracy

Euler -.5 0

Modified Euler -.5 .07

Euler (Linear Acceleration) -.1 .08

Euler (Instability Suppression) -.5 .10

Runge-Kutta -.5 .14

Kleinman Iterative * .17

* Algebraic Algorithm

Table IV-10. The Solution Methods Providing the Best
Tradeoff Between Time and Accuracy.

Algorithm At Normalized Weighting of
Accuracy and Comp Time

Euler -.5 .08

Potter's Method * .95

Euler (Linear Acceleration) -.1 2.22

Modified Euler -.5 2.40

Euler (Linear Acceleration) -.05 3.28

* Algebraic Algorithm
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equation. Table IV-11 compares the two algebraic techniques with the

Euler integration solution because the integration solutions have the

property that the numerical solution goes unstable if the step-size is

chosen to be too large. In contrast, larger step-sizes give better

accuracy and computational time trade-offs. This is not true for the

algebraic techniques so that, depending on the application, it may be

desirable to use the less efficient algebraic algorithms.
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Table IV-11. Algebraic Techniques Compared With
the Euler Algorithm With At = -.5
and the Runge-Kutta Algorithm With
At = -.5.

Algorithm Normalized Normalized Normalized Accuracy
Accuracy Computational and Time Weighting

Time

Runge Kutta .14 3.19 3.33

Euler 0 .08 .08

Potter's Method .95 0 .95

Kleinman Iterative .17 15.76 15.94



V. SIMULATION RESULTS

Simulation results are presented in this chapter to compare the

basic CMG steering laws presented in Chapter III with the total

optimal CMG control law presented in Chapter IV. The system parameters

used in these simulations are those used in [7].

It is stated in Chapter III that the three basic steering laws

presented there require a controller that provides a commanded torque

as an input to these steering laws. Since these basic steering laws

are compared to the total optimal control law, the torque commanded

by the controller will be determined from optimal control considerations.

These conditions should provide a fair comparison of the system

responses.

The control law that gives the commanded torque for the basic

steering laws is developed in a manner analogous to that used to

develop the total optimal control law in Chapter IV. Equation (IV-27)

again describes the performance measure, but the terms in the per-

formance measure refer to different variables. The sixth order state

vector is composed of the vehicle attitude errors and attitude rate

errors while the control vector is the torque command vector. The R

matrix is chosen as the identity matrix while the Q matrix relatively

weights the elements of the state vector as well as relatively weighting

the state vector with control effort expenditure. Linearizing the

78
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state equations about the commanded vehicle attitude and the nominal

vehicle rates puts this problem in the form of the linear regulator

problem as in Chapter IV. The resulting optimal control torque is

linear negative feedback of the position and rate errors. If a par-

ticular response is desired, the closed-loop system matrix may be

examined and varied by varying the state feedback to obtain the desired

closed-loop eigenvalues since the optimal law is known to be constant

negative feedback of the states. This approach will result in the

desired response without being concerned with the problem of determin-

ing the weighting matrices to give this response.

The partitioned inverse steering law described by Equation (111-19)

and the pseudoinverse steering law described by Equation (111-23) are

both open-loop steering laws. (Algorithms for computing the pseudo-

inverse are given in [15]). As a result, these steering strategies do

not consider the CMG cross-coupling effects. Consequently, the system

using these steering laws goes unstable as shown in Figure V-1. This

response is typical for both of these open-loop steering laws.

These steering laws are modified by negatively feeding back the

actual torque on the vehicle to force the basic steering law to create

a torque that more closely follows the commanded torque. This negative

feedback may be implemented by using the measured gimbal angles and

gimbal rates to compute the actual torque using

T = D6 + EQ (V-l)
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Figure V-i. Basic open-loop steering law response for an initial error in one axis only.
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since D and E are both functions of the gimbal angles only. Implement-

ing this negative feedback has the advantage of decreasing any detri-

mental cross-coupling effects as may be observed in Figures V-2 and

V-3. Figures V-2 through V-5 present the responses of the different

systems to initial position and rate errors in one axis only. The

cross-coupling effects for the control laws may be compared to one

another by examining the axes that had no initial errors in them.

Figure V-6 compares the responses of the four systems to an

initial position and rate error in one axis only. The other axes are

not included in Figures V-6 through V-11 because Figures V-2 through

V-5 have illustrated how small the cross-coupling effects are. The

pseudoinverse steering law and the optimal steering law give almost

the same response. This response is underdamped, but faster than the

partitioned inverse steering law and the total optimal CMG control law.

The partitioned inverse steering law gives an overdamped response that

is faster than the total optimal control law but slower than the other

two steering laws. This partitioned inverse steering law gives the

best response for the weighting matrices chosen in these cases. The

response of the total optimal CMG control law is similar to the

partitioned inverse steering law, but it is slower in achieving the

desired control. Figures V-7 through V-11 compare the responses of

the four systems to one another for initial errors in two axes and

three axes. Examination of these cases reveals that the same comments

apply to them that applied to Figure V-6.
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Figure V-3. Attitude vs. Time for an initial error in one axis using the pseudoinverse steering lw.
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Figure V-4. Attitude vs. Time for an initial error in one axis uising the optimal steering law.
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Figure V-5. Attitude vs. Time for an initial error in one axis using the total
optimal CMG attitude control law.
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Figure V-6. Comparison of the four CMG control laws for an initial error in one axis.
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Figure V-7. Comparison of the four CMG control laws for an initial error in two axes.
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Figure V-8. Comparison of the four CMG control laws for an initial error in two axes.
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Figure V-9. Comparison of the four CMG control laws for an initial error in three axes.
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Figure V-10. Comparison of the four CMG control laws for an initial error in three axes.
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Figure V-ll. Comparison of the four CMG control laws for an initial error in three axes.
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These results are not presented to imply that one of these

systems is better than the other in an absolute sense. The responses

of these systems may be varied by changing the relative weightings of

some of the parameters. The partitioned inverse steering law and the

pseudoinverse steering law will have different responses only if the

relative weighting of vehicle position and rate errors against control

effort is changed in the development of the vehicle control law.

The optimal steering law response may be varied by changing the relative

weighting between the gimbal rates and the torque error in the develop-

ment of the optimal steering law. It may also be varied by changing

the vehicle control law as for the other steering laws. The response

of the total optimal CMG control law may be changed by changing the

relative weighting of position and rate errors of the vehicle against

the commanded gimbal rates. Keeping in mind this possibility of varying

these responses, the main point to be made by these simulation results

is that the basic steering laws with an optimal vehicle control law

can control the vehicle as well as the total optimal CMG attitude

control law. Furthermore, these basic steering laws are implemented

without the computational problems associated with the total optimal

control law. It is suggested that future investigations compare and

analyze these systems in more detail.
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