NASA TM X- 62,323

NASA TECHNICAL MEMORANDUM

NASA TM X-62,323

BOUNDARY CONDITION PROGRAM FOR AERODYNAMIC LIFTING SURFACE THEORY

Richard T. Medan and K. Susan Ray

Ames Research Center Moffett Field, Calif. 94035 and Computer Sciences Corporation Mt. View, Calif. 94043

November 1973

(NASA-TM-X-62323) BOUNDARY CONDITION N74-16699 PROGRAM FOR AERODYNAMIC LIFTING SURFACE THEORY (NASA) 67 p HC \$5.50 | CSCL 20D Unclas G3/01 29339

TABI	<u>E OE (</u>	CONTENTS	
	 		111
1	INTRO	DUCTION	1
2	USER	S INSTRUCTIONS	2
	2.1	INITIAL SETUP FOR AMES' TSS SYSTEM	2
	2.2	CONVERSATIONAL USE ON AMES' TSS SYSTEM	2
	2.3	AMES' TSS BATCH JOBS	5
	2.4	CONVERSION TO OTHER COMPUTERS	5
3	DOWN	WASH DISTRIBUTIONS	6
	3.1	BCS(1), uniform mode	6
	3.2	BCS(2), pitching mode	6
	3.3	BCS(3), linear, symmetric twist mode	6
	3.4	BCS(4), parabolic, symmetric twist mode	6
	3.5	BCS(5), residual flap downwash mode	6
-	3.6	BCS(6)-BCS(10), symmetric user-supplied modes	7
	3.7	BCAS(1), anti-symmetric uniform mode	7
	3.8	BCAS(2), rolling mode	7
	3.9	BCAS(3), anti-symmetric residual flap mode	7
	3.10	BCAS(4)-BCAS(10), anti-symmetric user-supplied modes	7
4	INPU	IT FOR SUBROUTINE SLOPES	8
5	PROG	RAM DESCRIPTIONS	15
	5.1	MAIN PROGRAM	15
	52	SUBROUTINE BOUND	15

i

~

5.3 SUBROUTINE SLOPES	17
5.4 SUBROUTINE USLOPE	18
INPUT FILES	19
6.1 GEOMETRY FILE	19
6.2 AERODYNAMIC INFLUENCE FILE	19
6.3 IDENTIFICATION FILE	19
BOUNDARY CONDITION FILE	2,1
SAMPLE TERMINAL SESSION	22
REFERENCES	28
APPENDIX 1OUTPUT FROM SAMPLE TERMINAL SESSION	29
APPENDIX 2PROGRAM LISTING	34
	 5.4 SUBROUTINE USLOPE INPUT FILES 6.1 GEOMETRY FILE 6.2 AERODYNAMIC INFLUENCE FILE 6.3 IDENTIFICATION FILE BOUNDARY CONDITION FILE SAMPLE TERMINAL SESSION REFERENCES APPENDIX 1OUTPUT FROM SAMPLE TERMINAL SESSION

. •

.

•

.

.

BOUNDARY CONDITION PROGRAM FOR

AERODYNAMIC LIFTING SURFACE THEORY

Richard T. Medan Ames Research Center and K. Susan Ray Computer Sciences Corporation

ABSTRACT

This document is a description of and users manual for FORTRAN IV computer program which determines USA а boundary conditions for a thin wing lifting surface This program, the geometry program, and program. programs are used together in the several other of lifting, thin wings in steady, subsonic analysis flow according to a kernel function lifting surface The program calculates specific types of theory. conditions completely automatically such as boundary those necessary to determine pitch and roll damping derivatives. The program also accepts descriptions of downwash and twist in the form of tables the camber or and/or coefficients of equations. The program performs interpolations so that tables and/or coefficients can apply at stations selected by the user and not at stations dictated by the control point locations. The program uses information stored on a geometry file and, optionally, on an influence matrix file. The boundary conditions that it calculates are stored on a boundary condition file. An equation solving program will read the influence matrix and boundary condition files and determine the coefficients in the expansion for the lifting pressure distribution.

BOUNDARY CONDITION PROGRAM FOR

AERODYNAMIC LIFTING SURFACE THEORY

Richard T. Medan Ames Research Center and K. Susan Ray Computer Sciences Corporation

1 INTRODUCTION

This document is a description of and users manual for a USA FORTRAN IV computer program which determines boundary conditions for a thin wing lifting surface This program, the geometry program, and program. several other programs are used together in the analysis of lifting, thin wings in steady, subsonic flow according to a kernel function lifting surface The program calculates specific types of theory. boundary conditions completely automatically such as those necessary to determine pitch and roll damping derivatives. The program also accepts descriptions of the camber or downwash and twist in the form of tables and/or coefficients of equations. The program performs interpolations so that tables and/or coefficients can apply at stations selected by the user and not at stations dictated by the control point locations. The program uses information stored on a geometry file and, optionally, on an influence matrix file. The boundary conditions that it calculates are stored on a boundary condition file. An equation solving program will read the influence matrix and boundary condition files and determine the coefficients in the expansion for the lifting pressure distribution.

Questions concerning either this document or the computer program or the associated computer programs should be directed to:

> R. T. Medan Mail Stop 247-1 Ames Research Center Moffett Field, Ca., 94035

2 <u>USER'S INSTRUCTIONS</u>

2.1 INITIAL SETUP FOR AMES' TSS SYSTEM

For either batch or conversational processing the following TSS commands must be given. These commands are required once and only once for each user ID. The first three commands create the identification number file named IDFILE. This file contains four zeroes in binary form.

SHARE MEDAN, FSARTM, INIDFILE CDS MEDAN, IDFILE DELETE MEDAN SHARE MEDAN, FSARTM, LSPROG.VI

2.2 CONVERSATIONAL USE ON AMES' TSS SYSTEM

All integer data should be entered in a 1615 format, all floating point data in 8F10.0 format, and all logical data in 10L1 format. See section 8 for an example of a terminal session.

USER: After logging on enter the following:

AMES USYSLIB JOBLIBS SYSULIB JBLB MEDAN

It isn't necessary to issue DDEFs for anything except the input data since the program issues them using the subroutines AIMFIL, GEMFIL, and BCFIL.

- USER: CALL BC\$
- PROG: ENTER BATCH
- USER: Enter carriage return for conversational mode.
- PROG: ENTER INPUT DEVICE NUMBER
- USER: Hit carriage return for terminal input. Otherwise input starting with (BCS) will be from a dataset on disk as referenced by the input device number. This number must be a

positive integer from 1 through 99 excluding 4, 5, 6, 7, 8, 9, and 11. This dataset must be named in a DDEF statement or else AMES' TSS will expect terminal input. If this method of input is used, then the program will not give conversational prompts for the data starting with (BCS).

5.7

To terminate execution, enter a negative number.

PROG: ENTER ODISK

USER:

For terminal output enter carriage return. For output to a disk file enter a positive non-zero number less than 10. For TSS the output will be found on the file named OUTPUT.BC.NX where X is the numerical value of ODISK. The program issues its own DDEF commands for the output file so no control cards are needed. This output is written on logical unit 4.

PROG: ENTER ID1, ID2

USER: Enter Identification numbers.

ID1--Identification number of the geometry file. If a negative number is entered, then the most recent geometry file will be used. Enter zero to terminate execution.

1D2--identification number of AiM file. Enter a nonzero number only if the control points have been changed by the influence matrix program. If a negative number is entered, then the most recent AIM file will be used. Enter zero if no AiM file has been created or if the control points have not been changed by the influence matrix program.

PROG: ENTER (BCS)/(BCAS)/PRINTA, PRINTB, NSTORE

USER: Enter the array (BCS), carriage return. Enter the array (BCAS), carriage return. Enter PRINTA, PRINTB, NSTORE, Each element of (BCS) and (BCAS) corresponds to a different downwash condition. A true value means that the corresponding boundary condition will be calculated and, if NSTORE is .FALSE., then written on a file for use in the equation solving program. Both arrays are read and acted upon if the wing is symmetric or unsymmetric. In the latter case the boundary condition will be calculated for the entire wing. See section 3 for a description of the types of cases referenced by (BCS) and (BCAS) and for auxilliary input required for each element of (BCS) and (BCAS).

PRINTA is a logical variable which should be set to .TRUE. If all the downwash modes which calculated should also be printed are (regardless of the value of PRINTB). PRINTB is a logical variable which should be set to . .TRUE. if the 5th-10th symmetric and the 3rd-10th unsymmetric modes which are calculated should also be printed. NSTORE is a logical variable which should be set to .TRUE. if the boundary conditions should be calculated but not stored.

PROG: ENTER LL (if there is a flap or flaps)

USER: Enter LL.

LL is the number of times that subroutine FLPDWN will intergrate to find the flap downwash mode or modes. Successive integrations will use more points than previous ones up to a maximum of JJMAX, the of maximum number integration stations available from the geometry file. Only the results for the largest number of integration points will be retained and written on the boundary condition file.

PROG: The program will ask for auxilliary information (if any) required for the various cases referred to by (BCS) and (BCAS). See section 3 for the auxilliary information required. After this is done, the program will loop back to the point in the main

program at which the input device number is requested. The user can run another case at this point or else enter a negative number to terminate execution.

2.3 AMES' TSS BATCH JOBS

The batch mode operates the same as the conversational mode with the following exceptions: (1) A "T" should be put in column 1 of the first card.

(2) The input device number must not be entered since all input in this case is assumed to originate on unit 5.

(3) ODISK must not be entered since the program assumes all output should go onto unit 6.

(4) To terminate execution in the batch mode, enter zero for ID1 (i.e. a blank card at the end of the input deck of the final case).

2.4 CONVERSION TO OTHER COMPUTERS

Remove all calls to GEMFIL, BCFIL, AIMFII, OBEY, and CVRT and use appropriate control cards. These subroutines issue DDEFs and RELEASE commands making control cards unnecessary on TSS. Only the main program needs to be changed. These, hopefully, are the only changes that need to be made since considerable effort was made to program in standard FORTRAN.

3 DOWNWASH DISTRIBUTIONS

In the following explanations of the downwash modes, XSI and ETA are chordwise and streamwise coordinates, respectively, normalized by the effective semi-span (the semispan after yawing). Any input required is prompted for in the conversational mode, if input is from the terminal.

3.1 BCS(1) uniform mode

ALFA(XSI,ETA)=1.

INPUT REQUIRED: NONE

3.2 BCS(2) pitching mode

ALFA(XSI, ETA) = (XSI/BRAT-XSICM)/CBARBR where XSICM=center of mass or other reference position. XSICM is to be given in the coordinate system fixed the wing while XSI is in the wind-centered to system This mode corresponds to a coordinate non-dimensional pitch rate of 1. The solution for this mode gives the wing contribution to the Q derivatives (in the wind stability centered coordinate system). BRAT is the ratio of effective to actual semispan (ref. 1).

INPUT REQUIRED: XSICM

3.3 BCS(3) linear, symmetric twist mode

ALFA(XSI, ETA)=ABS(ETA)/BRAT

INPUT REQUIRED: NONE

3.4 BCS(4) parabolic, symmetric twist mode

ALFA(XSI,ETA)=(ETA/BRAT)**2

INPUT REQUIRED: NONE

3.5 BCS(5) residual flap downwash mode.

If there are 2 flaps, then this mode is for the symmetric deflection of both. Refer to NASA TN D-7251 and to subroutine FLPDWN for further

.

documentation. The flap downwash modes are the only ones affected by the Mach number. The value of BCS(5) and BCAS(3) will be ignored if there is no flap data available from the geometry file.

3.6 BCS(6)-BCS(10)

These are modes for which tables and/or certain types of coefficients will be read by the program. The modes are defined by streamwise distributions (coefficients or tables) at spanwise stations selected by the user. These modes are assumed symmetric only if the wing is symmetric. See subroutine BOUND for further documentation.

INPUT REQUIRED: SEE SECTION 4

3.7 BCAS(1) anti-symmetric uniform mode (zero at center).

INPUT REQUIRED: NONE

3.8 BCAS(2) rolling mode (right tip down)

ALFA(XSI, ETA) = ETA/BRAT

This mode corresponds to a non-dimensional roll rate of 1.0. The solution for this mode gives the wing contribution to the quasi-static, P stability derivatives (in the wind centered coordinate system).

INPUT REQUIRED: NONE

3.9 BCAS(3) anti-symmetric residual flap mode.

If the wing is unsymmetric, there is no need to invoke this mode.

3.10 BCAS(4)-BCAS(10)

For a symmetric planform these modes are the anti-symmetric counterpart of those referred to by BCS(6)-BCS(10). For an unsymmetric wing the treatment of these modes is the same as those corresponding to BCS(6)-BCS(10).

INPUT REQUIRED: SEE SECTION 4

4 INPUT FOR SUBROUTINE SLOPES

All integer data should be entered in a 1615 format and all floating point data in 8F10.0 format.

4.1 The following input items are requested each time SUBROUTINE SLOPES is called, i.e. for each true value of BCS(6)-BCS(10) and BCAS(4)-BCAS(10). See section 8 for examples on the use of subroutine SLOPES.

PROG: ENTER NSPSEC, ITYPES

USER: Enter NSPSEC, ITYPES.

NSPSEC is the number of spanwise sections at which twist and/or camber data will be supplied by the user.

ITYPES is the type of spanwise interpolation.

0 implies straight line interpolation. #0 implies that CODIM2 will be used(ref. 1).

- PROG: ENTER XK (only if ITYPES#0).
- USER: Enter XK.

This is an interpolation control constant used for the spanwise interpolation when ITYPES‡0. A value of 0. will give linear interpolation in the end intervals. A value of 1.0 will give parabolic interpolation in the end intervals. A value in between will give a curve in between.

4.2 The data in this section will be requested a total of NSPSEC times in the order given (i.e. ETA, TWIST; ITYPEC; data required for specific value of ITYPEC; ETA, TWIST; etc. repeated a total of NSPSEC times).

PROG: ENTER ETA, TWIST

USER: Enter ETA, TWIST.

ETA is the spanwise station at which the twist and camber data apply. It may exceed 1 in value in order to control the CODIM2

Interpolation near the ends if CODIM2 is used.

TWIST is the angle of twist in radians. Positive twist will tend to increase the angle of attack of the wing.

PROG: ENTER ITYPEC

USER: Enter ITYPEC.

ITYPEC denotes the type of chordwise slope definition that the user will use.

4.2.1 |TYPEC=0

In this case there is no camber, just twist.

INPUT REQUIRED: None.

4.2.2 ITYPEC=1

In this case a set of polynomials in CHI defines the slope distribution, which is the derivative of z/chord with respect to CHI. CHI is the local chordwise variable such that $0 \le CHI \le 1$.

INPUT REQUIRED: NPOLS/CHIMAX,SCALE,CHIREF, (NPOLS times)/POLYNOMIAL COEFFICIENTS, (NPOLS times).

NPOLS is the number of polynomials. CHIMAX denotes the upper limit of the polynomial. The default value is 1. SCALE is a scale factor for the polynomial coefficients. The default value is 1. CHIREF is the origin of the polynomial. The degree of each polynomial is limited to 8 or less. This data is prompted for and entered in the following manner:

PROG: ENTER NPOLS

USER: Enter NPOLS.

PROG: ENTER CHIMAX, SCALE, CHIREF/ POLYNOMIAL COEFFICIENTS USER: Enter CHIMAX, SCALE, CHIREF, carriage return. Enter POLYNOMIAL COEFFICIENTS.

CHIMAX, SCALE, CHIREF, and the polynomial coefficients will be requested a total of NPOLS times.

4.2.3 ITYPEC=2

In this case a set of polynomials in CHI defines the camber distribution (z/chord as a function of CHI). This set of polynomials will be differentiated to determine the slope, so the leading coefficient in each polynomial is actually irrelevant.

INPUT REQUIRED: NPOLS/CHIMAX,SCALE,CHIREF, (NPOLS times)/POLYNOMIAL COEFFICIENTS, (NPOLS times).

NPOLS is the number of polynomials. CHIMAX denotes the upper limit of the polynomial. The default value is 1. SCALE is a scale factor for the polynomial coefficients. The default value is 1. CHIREF is the origin of the polynomial. The degree of each polynomial is limited to 8 or less. This data is prompted for and entered in the following manner:

- PROG: ENTER NPOLS
- USER: Enter NPOLS.
- PROG: ENTER CHIMAX, SCALE, CHIREF/ POLYNOMIAL COEFFICIENTS
- USER: Enter CHIMAX, SCALE, CHIREF, carriage return. Enter POLYNOMIAL COEFFICIENTS.

CHIMAX, SCALE, CHIREF, and the polynomial coefficients will be requested a total of NPOLS times.

4.2.4 ITYPEC=3

In this case a table of values defines the slope distribution, the derivative of z/chord with respect to CH1. Subroutine CODIM2 will be used for the interpolation.

INPUT REQUIRED: SCALE, XKC/ table of (CH1, ALFA) pairs.

SCALE is a scale factor for the table entries. The default value is 1. XKC is the end point interpolation control for CODIM2. If XKC=0., then straight lines will be used in the end intervals. If XKC=1., then full parabolic interpolation will be used in the end intervals. A value in between will give a curve in between. CHI is the local chordwise variable such that $0 \le CH \le 1$ (values outside of this range may, however, be entered in the table to control the interpolation near the of end points). ALFA is the derivative z/chord with respect to CHI. A maximum of 40 table entries are allowed not including CHI \geq 99.0, which is the value used to mark the end of the table. This data is prompted for and entered in the following manner:

PROG: ENTER TABLE SCALE FACTOR, A1(OR XKC), AN(OR EPS), AND THE TABLE, (CHI=99.STOPS)

USER: Enter SCALE, XKC, carriage return. Enter the (CHI, ALFA) table.

CHI and ALFA are pairs in the table. Each pair goes on a separate line or card. $CH1 \ge 99.0$ marks the end of the table.

4.2.5 ITYPEC=4

In this case a table of values defines the camber distribution. CODIM2 will be used to determine the camber in the vicinity of the control points. Then numerical differentiation will be used to determine the slopes.

INPUT REQUIRED: SCALE, XKC, EPS/ table of (CHI, z/chord) values.

SCALE is a scale factor for the table entries. The default value is 1. XKC is the end point interpolation control for CODIM2. If XKC=0., then straight lines will be used in the end intervals. If XKC=1., then full parabolic will be used in the end interpolation intervals. A value in between will give a curve in between. EPS is used for numerical differentiation of the camber distribution determined by a table and CODIM2 (controlled deviation interpolation method). The default CHI is the local chordwise value is .005. variable such that $0 \le CHI \le 1$ (values outside of this range may, however, be entered in the table to control the interpolation near the end points). A maximum of 40 table entries are allowed not including CHI>99.0, which is the value used to mark the end of the table. This data is prompted for and entered in the following manner:

- PROG: ENTER TABLE SCALE FACTOR, A1(OR XKC), AN(OR EPS), AND THE TABLE, (CHI=99.STOPS)
- USER: Enter SCALE, XKC, EPS, carriage return. Enter the (CHI, z/c) table.

CHI and z/c are pairs in the table. Each pair goes on a separate line or card. $CH1 \ge 99.0$ marks the end of the table.

4.2.6 ITYPEC=5

In this case a table of values defines the slope distribution. Cubic spline fits will be used to determine values at the chordwise control stations. Two types of spline fits are used. In the first (subroutine SPLIN1) the end point derivatives are not used. In the other (SPLIN2) the end point derivatives are used. The latter program generally gives a better fit.

INPUT REQUIRED: SCALE, A1, A2/table of (CHI, ALFA) values.

SCALE is a scale factor for the table entries. The default value is 1. Al and AN are the derivatives of the slope at the end points of the table. Al and AN should be put in if possible. If both values are actually zero, then input one as 1.E-30. If either is given, then both must be given. If both A1 and A2 are zero then SPLIN1 will be used. Otherwise SPLIN2 will be used. CHI is the local chordwise variable such that O<CHI<1 (values outside of this range may, however, be entered in the table to control the interpolation near the end points). ALFA is the derivative of z/chord with respect to CH1. A maximum of 40 table entries are allowed not including $CHI \geq 99.0$, which is the value used to mark the end of the table. This data is prompted for and entered in the following manner:

PROG: ENTER TABLE SCALE FACTOR, A1(OR XKC), AN(OR EPS), AND THE TABLE(CHI=99.STOPS)

USER: Enter SCALE, A1, AN, carriage return. Enter table of (CHI, ALFA) values.

CHI and ALFA are pairs in the table. Each pair goes on a separate line or card. CHI>99.0 marks the end of the table.

4.2.7 ITYPEC=6

In this case a table of values defines the camber distribution. A cubic spline fit will be determined for the table and then differentiated to obtain the slopes. Two types of spline fits are used. In the first (subroutine SPLIN1) the end point derivatives In the other (SPLIN2) the end are not used. derivatives are point used. The latter program generally gives a better fit.

INPUT REQUIRED: SCALE, A1, A2/table of (CH1, z/chord) values.

SCALE is a scale factor for the table entries. The default value is 1. A1 and AN are the slopes at the end points of the table. A1 and

AN should be put in if possible. If both values are actually zero, then input one as 1.E-30. If either is given, then both must be given. If both A1 and A2 are zero then SPLINI will be used. Otherwise SPLIN2 will be used. CHI is the local chordwise variable such that $0 \leq CH1 \leq 1$ (values outside of this range may, however, be entered in the table to control the interpolation near the end points). A maximum of 40 table entries are allowed not including CH1 \geq 99.0, which is the value used to mark the end of the table. This data is prompted for and entered in the following manner:

- PROG: ENTER TABLE SCALE FACTOR, A1(OR XKC), AN(OR EPS), AND THE TABLE, (CHI=99.STOPS)
- USER: Enter SCALE, A1, AN, carriage return. Enter table of (CHI, ALFA) values.

CHI and ALFA are pairs in the table. Each pair goes on a separate line or card. $CHI \ge 99.0$ marks the end of the table.

4.2.8 ITYPEC>6 or ITYPEC<0

This causes SUBROUTINE USLOPE to be called, which is a program to be supplied by the user in the situation that he wants to define the chordwise slope distribution at some particular spanwise station by a method unavailable in subroutine SLOPES. See section 5.4 for an explanation of the arguments to subroutine USLOPE.

PROGRAM DESCRIPTIONS

5.1 MAIN PROGRAM

5

This program determines boundary conditions for a wing lifting surface program. lt uses thin Information stored on the geometry file and influence matrix file. optionally, The on the boundary conditions that it calculates are stored on boundary condition file. An equation solving а program will read the influence matrix and boundary condition files and determine the coefficients in the expansion for delta-c.p..

This program reads from the geometry file (unit 7), the influence matrix file (unit 11), and the identification number file (unit 20). It writes on the identification number file and the boundary condition file (unit 8). See section 2 and 3 for conversational and batch use.

Arrays ETA, STHETA, TANLEL, TANLER, TANTEL, TANTER, CORDIP, XSILIP, CHIFPI, C2IP should be dimensioned at least as large as JJMAX. Arrays NINDEX and ETACP should be dimensioned at least as large as MM. ALFA should be dimensioned as large as the number of control points being used. CHICP should be dimensioned as large as PP.

5.2 SUBROUTINE BOUND

This subroutine is called by the main program to determine downwash cases.

This subroutine writes on the boundary condition file (unit 8). See section 2 for conversational and batch use.

INPUT VARIABLES:

PP	Number of CH	ICP values (i.e.	the number of
	chordwise con	trol points)	

(CHICP) An array containing chordwise stations at which boundary conditions will be determined.

MMP Number of spanwise control points on wing for symmetric boundary conditions.

MMPA	Number of spanwise control points on wing
	for antisymmetric boundary conditions.
(ETACP)	Spanwise stations at which boundary conditions will be determined.
CBARBR	Ratio of chordwise reference length to effective semispan.
BRAT	The ratio of effective to actual semispan.
(BCS)	An array of downwash condition indicators. See section 3.
(BCAS)	An array of downwash condition indicators. See section 3.
FLAP	Logical variable, whose value is to be .TRUE. if there is a control surface (the program currently does not support wings
PRINTA	with control surfaces, however). Logical variable whose value is .TRUE. If all the downwash modes which are calculated should be printed (regardless of the value
	of PRINTB).
PRINTB	Logical variable whose value is .TRUE. if the 5th-10th symmetric and the 3rd-10th
	unsymmetric modes which are calculated
	should be printed.
NSTORE	Logical variable whose value is .TRUE. if the boundary conditions should be calculated
SYMM	but not stored. Logical variable whose value is .TRUE. if
CONV	the planform is symmetric. Logical variable whose value is .TRUE. in
CONV2	conversational use. Logical variable whose value is .TRUE. for conversational use when input is from the terminal. CONV2 controls conversational
UC1	prompting.
UCO	Unit number for conversational input.
U5	Unit number for conversational prompting.
U6	Unit number for input. Unit number for output.
U8	Unit number for boundary condition file.
JRATIO	(JJMAX+1)/(MM+1), where MM = the number of
O MATTO	spanwise control points on the entire wing.
LL	Number of times that subroutine FLPDWN
	should intergrate to find the flap downwash
	mode or modes. Subroutine FLPDWN has not
	been modified yet to be compatible with the
	boundary condition program, however.

OTHER ARGUMENTS:

(ALFA) Storage space for downwash modes. (ALFACS) Storage space for flap downwash mode.

5.3 SUBROUTINE SLOPES

BOUND to This subroutine is called by subroutine compute user supplied modes.

See sections 2 and 4 for conversational and batch use.

The arrays A, B, C, L, G, E, and H should be dimensioned as large as the number of table entries. Arrays CH1 and ALF should be dimensioned as large as the number of table entries plus 1. The dimension of the arrays TEST and CHIDUM should be as large as PP and 2*PP, respectively. The dimension of ALFA3 must be the maximum of 2*PP and NSMAX. NSMAX is the maximum number of spanwise stations at which data should be given. NSMAX is a dimension for ETA, ALFA2, and ALFA3. NPPMAX is the first dimension for ALFA2 and the maximum allowable value for PP.

INPUT VARIABLES:

U5	Unit number for input.
U6	Unit number for output.
UCO	Unit number for conversational prompting.
CONV2	Logical variable whose value is .TRUE. for
	conversational use and when input is from
	the terminal.
(ETACP)	Spanwise stations at which boundary
	conditions will be determined.
(CHICP)	Chordwise stations at which boundary
	conditions will be determined.
MMU	Number of ETACP values.
PP	Number of CHICP values.
OUTPUT V/	ARIABLES:

(ALFA) Downwash boundary condition at the control points defined by ETACP and CHICP.

5.4 SUBROUTINE USLOPE

This subroutine is one which is to be supplied by the user in the case that he wants to define the chordwise slope distribution at some particular spanwise station by a method unavailable in subroutine SLOPES. This subroutine will be called by subroutine SLOPES whenever ITYPEC<0 or ITYPEC>6. The subroutine should return the actual slope values not including the twist. Subroutine SLOPES will apply the minus sign (because the induced downwash must equal minus the slope) and then add in the twist.

INPUT VARIABLES:

U5 U6 UCO CONV2	Unit number for input. Unit number for output. Unit number for conversational prompting. Logical variable whose value is .TRUE. for conversational use and when input is from
	the terminal. CONV2 controls
	conversational prompting.
N	The number of the spanwise section,
	1 <u><n<< u="">NSPSEC.</n<<></u>
ETA .	The spanwise location of the station at which USLOPE is to calculate the chordwise slope distribution.
PP	Number of (CHICP) values.
(CHICP)	Chordwise stations at which boundary conditions will be determined.
ITYPEC	In Subroutine USLOPE, this variable will be $\langle 0 \text{ or } \rangle 6$ upon entry and can be used as a parameter if desired in subroutine USLOPE.
OUTPUT V	ARIABLE:

(ALFA3) The value of the slope at the PP stations defined by (CHICP).

INPUT FILES

6

The following disk files are read by the program. The AMES' TSS version of the program issues its own DDEF commands for the files, so none need be given. For other systems appropriate control cards will have to be supplied for units 8, 9, 11, and 12.

6.1 GEOMETRY FILE

This file is a variable record length file and is read from unit 7.

The first record contains identification and title information including number of control points and integration points.

The next record contains the chordwise control points, the array of indices from which the spanwise control points are derived, the tangents of the wing edge sweep angles at the integration stations, etc. For a complete description of this file see ref. 2.

On the AMES' TSS system this file has the name GEOM.XI where I is the numerical value of ID1.

6.2 Aerodynamic Influence File (AIM file)

This file is a variable record length file and is read from unit 11. A detailed description is given in ref. 3.

The first record contains identification and title information plus information about the size of the matrix and location of spanwise and chordwise control points.

The second and subsequent records contain the influence matrix itself. This file is generated by the influence matrix program.

On the AMES' TSS system this file has the name AIM.XI.XJ where I is the numerical value of ID1 and J is the numerical value of ID2.

6.3 Identification File

This file is read from unit 9 and rewritten on unit 9 and contains identification numbers in binary form. The third number on this file (IN3) is incremented by I and then the file is rewritten using the incremented value of IN3. IN3 is the identification number for the boundary condition file.

On the AMES' TSS system this file has the name IDFILE.

7

Boundary Condition File (BC file)

This file is a variable record length file written on unit 8. A detailed description of this file is given in ref. 2.

The first record contains identification and title information plus information identifying the type and number of symmetric and antisymmetric cases.

The next NSYM records are right-hand sides (i.e. the (BCS) downwash modes calculated by the program) for symmetric cases. NSYM equals the number of symmetric cases. The next NASYM records are the right-hand sides (i.e. the (BCAS) downwash modes calculated by the program) for antisymmetric cases. NASYM equals the number of antisymmetric cases. In the case of an unsymmetric wing there will be NSYM + NASYM right-hand sides.

On the AMES' TSS system this file has the name BC.XI.XK where I is the numerical value of IDI and K is the numerical value of ID3, which is determined from IDFILE at the time the program is run and is found in the program output.

8

SAMPLE TERMINAL SESSION

Given below is a sample terminal session illustrating the conversational use of the boundary condition program on the Ames' 360/67 TSS computer system. This session might also be useful for the batch user to study. The program used a previously created geometry file to obtain the information needed to calculate the boundary conditions and determined boundary conditions for 4 symmetric cases and 2 antisymmetric cases.

The symmetric cases consisted of (1) uniform downwash, (2) pitching about the origin, (3) and (4) user-supplied modes. The data supplied for each user-supplied mode was identical except that lipear spanwise interpolation was requested in the first user-supplied while case, COD1M2 · spanwise interpolation was requested in the second. The data in each of the two user-supplied cases consisted of twist and camber distributions at 4 spanwise stations: eta = 0.0, 0.2, 0.6, and 1.0. The twist in degrees was determined by the following equation: twist = -10 + eta

Values derived from the above equation had to be converted to radians.

The camber distribution at eta = 0.0 was that of an NACA, 5-digit, 230 mean line, whose equation is z/c = 2.6595*(.114714984*CHI-.6075*CHI**2+CHI**3) for $0 \le CH1 \le .15$ z/c = 2.6595*(1.-.00830377*CHI) for $.15 \le CH1 \le 1$. This section was defined to the program in terms of these polynomials.

The camber distribution at the remaining spanwise stations were all parabolic arcs given by the equation

z/c = .1 * CH! * (1, -CH!)

This camber distribution was defined to the program in different forms at each of of the remaining 3 stations. At eta = 0.2 the polynomial representation was used. At eta = 0.6 and eta = 1.0 a table of 11 values derived from the above equation was used to define the section. At eta = 0.6 COD1M2 interpolation and differentiation was used while at eta = 1.0 a spline fit to the curve (SUBROUTINE

SPLIN1) was used and differentiated.

The antisymmetric cases consisted of the rolling mode and a single user-supplied mode. The user-supplied mode was simply a case of twist only with linear spanwise interpolation between the two stations eta = 0. and eta = 1. The twist in radians was simply equal to eta so that this mode was identical to the rolling mode with a minus sign.

The actual terminal session is reproduced below with additional comments added in parenthesis. The output from this session was directed to a disk file named OUTPUT.BC.NI. The DDEF (control card) was created automatically by the program and the file name was computed using the value of ODISK. The contents of this file were printed and are given in appendix 1.

LOGON userid,password,terminal id AMES USYSLIB JOBLIBS SYSULIB JBLB MEDAN CALL BC\$ (The boundary condition program is now in control.)

ENTER BATCH

F

Ð.

ENTER IMPUT DEVICE NUMBER

ENTER ODISK

4

OUTPUT (is) ON FILE ... OUTPUT.BC.N1... ENTER ID1, ID2

(Now the program opens the geometry file whose name is GEOM.X4 and reads this file.)

(If an appropriate input device number were entered and an appropriate DDEF command given, then the remaining prompts would have been suppressed and the program would read data from some previously created data file.)

ENTER (BCS)/(BCAS)/PRINTA, PRINTB, NSTORE TIEFETTEE

FTFTFFFFF

TTF

(Now the program prints some heading and other basic information and then enters subroutine BOUND.)

```
ENTER C.M. POS./BREF
0.
(Now BOUND calls subroutine SLOPES.)
ENTER NSPECS, ITYPES
  .4 0
ENTER ETA, TWIST
          0.
0.
ENTER ITYPEC
    2
ENTER NPOLS
    2
ENTER CHIMAX, SCALE, CHIREF/
POLYNOMIAL COEFFICIENTS.
0.15
           2.6595 0.
          .114714984 -.6075
                                1.
0.
ENTER CHIMAX, SCALE, CHIREF/
POLYNOMIAL COEFFICIENTS
0
          2.6595
0.
          -.00830377
(The above data constitute the equations for the NACA
230 mean line. Now the second spanwise station will
be considered.)
ENTER ETA, TWIST
0.2
          -.0349066
ENTER ITYPEC
    2
ENTER NPOLS
    1
ENTER CHIMAX, SCALE, CHIREF/
POLYNOMIAL COEFFICIENTS
0
          .1
0.
          1.0
                     -1.0
ENTER ETA, TWIST
0.6
           -.1047198
ENTER ITYPEC
    4
ENTER TABLE SCALE FACTOR, A1(OR XKC),
AN(OR EPS), AND THE TABLE. (CH1=99.STOPS)
0.
          1.0
0.
          0.
0.1
           .009
0.2
           .016
0.3
           .021
0.4
           .024
0.5
           .025
0.6
           .024
0.7
           .021
```

.016 0.8 .009 0.9 0. 1. 99. (The above is a table of the parabolic arc.) ENTER ETA, TWIST -.174533 1. ENTER ITYPEC 6 ENTER TABLE SCALE FACTOR, A1(OR XKC), / AN(OR EPS), AND THE TABLE. (CHI=99.STOPS) 0. 0. 0.1 .009 0.2 .016 0.3 .021 .024 0.4 0.5 .025 0.6 .024 0.7 .021 0.8 .016 0.9 .009 1. 0. 99. (Now control leaves SLOPE returning to BOUND and then calls SLOPE again for the second user-supplied mode.) ENTER NSPSECS, ITYPES 4 1 ENTER XK į 1. ENTER ETA, TWIST 0. 0. ENTER ITYPEC 2 ENTER NPOLS 2 ENTER CHIMAX, SCALE, CHIREF/ POLYNOMIAL COEFFICIENTS 0.15 2.6595 0. 0. .114714984 -.6075 1. ENTER CHIMAX, SCALE, CHIREF/ POLYNOMIAL COEFFICIENTS 0 2.6595 0. -.00830377 ENTER ETA, TWIST 0.2 -.0349066 ENTER ITYPEC 2

> . 25

Ϊ.

ENTER NPOLS 1 ENTER CHIMAX, SCALE, CHIREF/ POLYNOMIAL COEFFICIENTS .1 0 1.0 -1.0 Ο. ENTER ETA, TWIST -.1047198 0.6 ENTER ITYPEC 4 ENTER TABLE SCALE FACTOR, AI(OR XKC), AN(OR EPS), AND THE TABLE. (CH1=99.STOPS) 1.0 Ο. 0. 0. .009 0.1 .016 0.2 .021 0.3 0.4 .024 0.5 .025 .024 0.5 .021 0.7 .016 0.8 .009 0.9 0. 1. 99. ENTER ETA, TWIST 1. -.174533 ENTER ITYPEC 6 ENTER TABLE SCALE FACTOR, A1(OR XKC), AN(OR EPS), AND THE TABLE. (CHI=99.STOPS) 0. 0. .009 0.1 .016 0.2 0.3 .021 .024 0.4 0.5 .025 .024 0.6 .021 0.7 .016 8.0 .009 0.9 0. 1. 99. (Now control leaves SLOPE returning to BOUND and then calls SLOPE again for the user-supplied antisymmetric mode.) ENTER NSPSECS, ITYPES

2 ENTER ETA, TWIST O. O. ENTER ITYPEC O ENTER ETA, TWIST I. I. ENTER ITYPEC

0

-1

(Now control returns to BOUND and then to the main program.) ENTER INPUT DEVICE NUMBER

TERMINATED: STOP 777 (The operating system is now in control.) PRINT OUTPUT.BC.N2,PRTSP=EDIT,STATION=RMT05 PRINT BSN=????, ??? LINES LOGOFF

9 REFERENCES

- Tulinius, J.; Clever, W.; Niemann, A.; Dunn, K.; and Gaither, B.: Theoretical Prediction of Airplane Stability Derivatives at Subcritical Speeds. Rept. No. NA-72-803, North American Rockwell Corp., 1972.
- 2. Medan, R. T.: Geometry Program for Aerodynamic Lifting Surface Theory. NASA Rept. No. TMX-62,309.
- 3. Medan, R. T. and Ray, K. S.: Aerodynamic Influence Matrix Program for Aerodynamic Lifting Surface Theory. NASA Rept. No. TMX-62,324.

APPENDIX-I

OUTPUT FROM SAMPLE TERMINAL SESSION

DETERMINATION OF THIN LIFTING SURFACE BOUNDARY CONDITIONS

and the second second

```
TITLE
         # RECTANGULAR WING AR = 2
                                           11-13-73
ID1
               4
         IDS
               Q.
        . . . . .
103
               7
          ≒
              1,00000
BRAT
          =
              1,00000
CBARBR
         5
                             الحافيات المتحافية المحافظية فحادثهما المواطب المراجع
```

CHORDWISE CONTROL POINT LOCATIONS

0.4	00000		
0	146447		
0.	500000		
<u></u>	853553		
	000000		

```
SPANWISE CONTROL POINT LOCATIONS

0,965926

0,866025
```

```
0.707107
0.500000
0.258819
-0.000000
```

PCS

ттревттере

BCAS

FTFTFFFFFF PRINTA, PRINTB, MSTOPE TTF

UNIFORM DOWNWASH	1 	· · · · · · · · · · · · · · · · · · ·	n An F	
1,0.0.0.0.0.0	1,0000000	1,000,000,0	1,0000000	1,0000000
1.0000000	1 20000000	1.0000000	····1,0000000	1,0000000
1.000000		1.0000000	1.000000.	t,0000000
1,000000	1 0000000	* 1 0000000	0000000	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
1.0000000	1,0000000	1,0000000	1,0000000	- 1,0000000
1.0000000	1.0000000	1.0000000	1,0000000	1,0000000

Sector State of the sector of the sector

PITCHING MODE C.M. POS'/BREF = 0.000000

	*atgi∉ gAr				
	0,000000	0,1464466	0.5000000	0 8535533	1 000000
	0,0000000	0,1464466	0,500000	0.8535533	1.00000000
	0,000000	0,1464466	0,5000000	0.8535533	1.0000000
	0.000000	0.1454466	0,5000000	0.8535533	1.0000000
	0,000000	0,1464466	0,5000000	0 8535533	1.0000000
t t	0.0000000	0.1464466	0,5000000	0 8535533	1,0000000

USER-SUPPLIED SYMMETRIC MODE

<u>-0,2329614</u>	2400104	<u>0,1685513</u>	<u>=0.</u> 0980664	.0,0743155
# 0 . 2238179	-0,2223796	-0,1511248	-0,0805781	.0.1567508
-0,2092727	=0,1943331	+0,1234033	-0.0527584	-0,0288094
-0,1833289	_0_1579772		m0,0105554	0.0087901
-0.1444004	-0,1158831	-0,0451724	0,0255383	0.0540544
-0,3050843	-0,0029844	0.0220839	0,0220839	0.0220839

USER-SUPPLIED SYMMETRIC MODE

m .	0,2340505	.0.2399799	-0,1685526		_0,0745003
	0,2269311	+0,2222926	-0,1511289	=0.0805547	-0.0572790
(0,2120129	.0.1942565	-0,1234068	-0,0527377	-0.0292743
e	0,1850461	<u> </u>	_0_0872711	.0.0165292	0.0084959
- (0.1379284	-0,1161122	=0 _* 0451886	0,0256270	0.0553199
,	0,3050843	+0,0029844	0,0220839	0,0220839	0.0220839

×.

ROLLING MODE				
0_9659258	0'9659258	0 9659258	0 9659258	0,9659258
0,8660254	018660254	028660254	0 8660254	0,8660254
0,7071068	0,7071068	0,7071068	0,7071068	0,7071068
0,5000000	0 5000000	0'5000000	05000000	0,5000000
0,2588190	02588190	0,2588190	0'2588190	0,2588190
anna ann 1964 a' gunar mar i sgingar (san anna ar si sina an a		ny dia kaominina mpikambana mpikambana amin'ny fisiana amin'ny departemanta amin'ny departemanta amin'ny fisia		
USER-SUPPLIED ANTI	L-SYMMETRIC MODE			<u></u>
=0,9659258	_0,9659258	"0 " 9659258	* 0 * 9659258	+0,965925
-0,8660254	_0_8660254	_0_8660254	-0,8660254	-0.866025
+0,7071068	=0 ₌ 7071068	-0,7071068	-0.7071068	=0,707106
+0,5000000	+0,5000000	-0,5000000	-0.5000000	-0,500000
-0,2588190	-0,2588190	-0,2588190	-0,2588190	-0.258819

MODES STORED AND FILE CLOSED

APPENDIX-II

COMPUTER PROGRAM LISTING

34

C		•	t 🖕	*		•	
THIS PROG	RAM DETERMIN	ES BOUNDAP	RY CONDIT	IONS FOR	<u>THIN WING</u>	LIFTING	a shekarata (se
CSURFACE P	ROGRAM, IT	USES INFOR	RMATION S	TORED ON '	HE GEOMETR	Y FILE	
C AND, OPTI	UNALLY, UN T	HE INFLUED	NCE MATRI	X FILE, 1	HE BOUNDAR	Y	
CCONDITION	S THAT IT LA	LCULATES /	ARE STORE	D ON A BOL	INDARY COND	ITION FILE.	
C AN EQUATI	UN SULVING P	RUGRAM WIL	L READ TI	HE INFLUE	CE MATRIX	AND	
CBOUNDARY	CONDITION FI	LES AND DE	TERMINE	THE COEFF:	CIENTS IN		
C. THE EXPAN	FOIL FUR DEL			······································		a ann an ann an 1990 ann a Tha ann an 1990	P308.41.4-
	ECISION ETA,			- 04 (1-			
INTEGER L		R,UO,UO,U) 044	11,020,00	ISK, U7			
INTEGER 1	TILP PATCH IO	STM C1 CONV- T				······································	
LOGICAL C	иматродіцерци Сторе меторе	2190494515 2190497515		TET NU A' HE	N 1 B	* *	
LOGICAL S REAL MACH	I LAMDAC	ALLARA DI	r (**) (**)	1. 4. a. 1			
DIMENSION	<u>, , , , , , , , , , , , , , , , , , , </u>	CHICREDAN	NTNDEV	471 CT.00		1. The second se Second second seco Second second sec	
DIMENSION	ETA(383).ST	40466660J; Hetarzazi.	- "TANEREZI TANEREZI	ミノフォロースレビ! 月える、ギネNil ドロ	.4/] : .* /2825	· · · ·	
DIMENSION	I TANTEL (383)	TANTERAZE	32).COPDI		1 19/2921		
DIMENSION	CHIFPI(383)	(c)[P(383)	BCS(+0)	BCAS(+0)	<u> </u>	·····	
DTMENSTON	L XDUM2(2), XD	UM6(6) NDL	1M9(9) NDI	JM2(2)			
DIMENSION	ALFAr2001.	ALFACSIONI	11				
EQUIVALEN	CE (XDUM2,XD	UM6, NDUM9,	NDUM21	· · · · · ·		na na manakana ing kanakana ing kanakananan na manakananan s	
DATA UCI,	UC0, U5, U5R, U	6,U8,Ü11,L	120/5,6, 3	5, 5, 6, 8	11.9/.07	17/	
DATA CONV	21 FALSE /						
Carlo de Lagrada y		t and a la					
$C_{\bullet\bullet\bullet\bullet}$ UCI = U	INIT NUMBER F	OR CONVERS	SATIONAL :	INPUT'			
CUCI = U CUCO = U	INTT. NUMBER F	OR CONVERS	<u>SATIONAL (</u>	DUTPUT		an ang ang ang ang ang ang ang ang ang a	
C	INTI NUMBER F	OR INPUT (3F THE FIG	RST. CARD' /	ND		
C	HE UNIT NUMA	ER FOR INF	PUT UNDER	CONVERSA	IONAL USE.		
C USR = L	INTI NUMBER F	OR INPUT (EXCEPT FO	<u>DR THE FI</u> F	ST CARD)		
C	INDER BATCH C	ONTROL		····			
C	ME UNIT NUMB	ER FUR REG	SULAR OUT	PUT UNDER	EITHER		
C	NTT NUMPED F	ERSATIONAL	CONTROL			- MN	
CU8 = L	NII NUMBER P	OP BUUNDAH	(Y CONDIT)	ION FILE.			
CU7≡ U	NIJ NUMBER F	UK READING	S THE GEO	METRY FILE			
CU11 = U CU20 = U	NIT NUMBER F	OP INE.TIE	TO TTON	UENCE MA	RIX FILE		
9,88446₩₩₩ ₩ M	INTI NAUCTA LI	UN IVENIIP	LUAILUN I	NAWDER LT	, C		
CTHE FOLLO	WÍNG TS NECE	SSADY END	TSS				
	TANK AN MENEY	YVARI FUR	199		an ann an Anna		
e * .							

	US=5
C	na an an an ann an ann an ann an an an a
	WRITE(UCO,6004)
	,, OR BATCH USE,
C .	
C	THE FOLLOWING ALLOWS THE USER TO CHOOSE CONVERSATIONAL
	READ(U5,5000) BATCH
	CONVE.NOT.BATCH
<u> </u>	
	CONTINUE
• • • • • • • • • •	IF(BATCH) GO TO 40
	WRITE(UCO, 6001)
	READ(UCI, 5001) U5
	IF (US EQ. 0) US = UCI
-	CQNV2=U5,EQ,UCI
Ĉ	HE FT A TE FOR TERMINATING EXCOLUTION FORMERS AND AND AND
k∰∰ M	US.LI.O. IS FOR TERMINATING EXECUTION CONVERSATIONALLY.
L#	IF(U5.LT.0) STOP 777
.	. IF (CONV2), THEN ALL THE INPUT WILL BE FROM THE TERMINAL.
30	CONTINUE
-	WRITE(UC0,6005)
<u> </u>	
	BOTSK IS EDU THE THEOR TOO HEDOLO, OF THE DOORD H
C	**AATAN TA LAN INE VWESI ISS AFKSIAN AF IRF AKARKYW
C	.ODISK IS FOR THE AMEST TSS VERSION OF THE PROGRAM. .ODISK MUST BE AN INTEGER FROM A TO 9.
C S	ODISK MUST BE AN INTEGER FROM A TO 9. IF ODISK = 0, OUPUT WILL BE ON UNIT 6. IF ODISK IS BETWEEN A AND 1A
C S	ODISK MUST BE AN INTEGER FROM A TO 9. IF ODISK = 0, OUPUT WILL BE ON UNIT 6. IF ODISK IS BETWEEN A AND 1A
2 * * * 2 * * * 2 * * * 2 * * *	ODISK MUST BE AN INTEGER FROM O TO 9. IF ODISK = 0, OUPUT WILL BE ON UNIT 6, IF ODISK IS BETWEEN O AND 10 THEN OUPUT WILL BE ON UNIT 4 AND ON A FILE NAMED OUTPUT.BC.NX WHERE X = VALUE OF ODISK. THE AMESI PROGRAMS OBEY AND CVRT ARE
	ODISK MUST BE AN INTEGER FROM O TO 9. IF ODISK = 0, OUPUT WILL BE ON UNIT 6, IF ODISK IS BETWEEN O AND 10 THEN OUPUT MILL BE ON UNIT 4 AND ON A FILE NAMED OUTPUT.BC.NX WHERE X = VALUE OF ODISK. THE AMESI PROGRAMS OBEY AND CVRT ARE USED TO GENERATE AND GIVE THE NEEDED DDEF AND RELEASE CUMMANDS TO
	ODISK MUST BE AN INTEGER FROM 0 TO 9. IF ODISK = 0, OVPUT WILL BE ON UNIT 6, IF ODISK IS BETWEEN 0 AND 10 THEN OUPUT WILL BE ON UNIT 4 AND ON A FILE NAMED OUTPUT.BC.NX
	ODISK MUST BE AN INTEGER FROM 0 TO 9. IIF ODISK = 0, OUPUT WILL BE ON UNIT 6, IF ODISK IS BETWEEN 0 AND 10 THEN OUPUT WILL BE ON UNIT 4 AND ON A FILE NAMED OUTPUT.BC.NX WHERE X = VALUE OF ODISK. THE AMESI PROGRAMS OBEY AND CVRT ARE USED TO CENERATE AND GIVE THE NEEDED DDEF AND RELEASE CUMMANDS TO TSS OPERATING SYSTEM.
	ODISK MUST BE AN INTEGER FROM O TO 9. IF ODISK = 0, OUPUT WILL BE ON UNIT 6, IF ODISK IS BETWEEN O AND 10 THEN OUPUT MILL BE ON UNIT 4 AND ON A FILE NAMED OUTPUT.BC.NX WHERE X = VALUE OF ODISK. THE AMESI PROGRAMS OBEY AND CVRT ARE USED TO GENERATE AND GIVE THE NEEDED DDEF AND RELEASE CUMMANDS TO
	ODISK MUST BE AN INTEGER FROM O TO 9. IF ODISK = 0, OUPUT WILL BE ON UNIT 6, IF ODISK IS BETWEEN O AND 10 THEN OUPUT MILL BE ON UNIT 4 AND ON A FILE NAMED OUTPUT.BC.NX WHERE X = VALUE OF ODISK USED TO CENERATE AND GIVE THE NEEDED DDEF AND RELEASE COMMANDS TO TSS OPERATING SYSTEM READ (UCI,5001) ODISK U6 = 6
	ODISK MUST BE AN INTEGER FROM 0 TO 9. IF ODISK = 0, OUPUT WILL BE ON UNIT 6, IF ODISK IS BETWEEN 0 AND 10 THEN OUPUT MILL BE ON UNIT 4 AND ON A FILE NAMED OUTPUT.BC.NX WHERE X = VALUE OF ODISK USED TO GENERATE AND GIVE THE NEEDED DDEF AND RELEASE CUMMANDS TO TSS OPERATING SYSTEM. READ (UCI,5001) ODISK U6 = 6 IF (ODISK E0. 0) GO TO 50
	ODISK MUST BE AN INTEGER FROM O TO 9. IF ODISK = 0, OUPUT WILL BE ON UNIT 6, IF ODISK IS BETWEEN O AND 10 THEN OUPUT WILL BE ON UNIT 4 AND ON A FILE NAMED OUTPUT.BC.NX WHERE X = VALUE OF ODISK THE AMESI PROGRAMS OBEY AND CVRT ARF USED TO GENERATE AND GIVE THE NEEDED DDEF AND RELEASE CUMMANDS TO TSS OPERATING SYSTEM. PEAD (UCI,5001) ODISK U6 = 6 IF (ODISK ED. 0) GO TO 50 UD = 4
	ODISK MUST BE AN INTEGER FROM 0 TO 9. .IF ODISK = 0, OUPUT WILL BE ON UNIT 6, IF ODISK IS BETWEEN 0 AND 10 .THEN OUPUT WILL BE ON UNIT 4 AND ON A FILE NAMED OUTPUT.BC.NX .WHERE X = VALUE OF ODISK. THE AMESI PROGRAMS OBEY AND CVRT ARF .USED TO GENERATE AND GIVE THE NEEDED DDEF AND RELEASE CUMMANDS TO .TSS OPERATING SYSTEM. READ (UCI,5001) ODISK U6 = 6 IF (ODISK _ED. 0) GO TO 50 U0 = 4 ODISK = MOD(MAYO(1.ODISK).10)
	ODISK MUST BE AN INTEGER FROM O TO 9. IF ODISK = 0, OUPUT WILL BE ON UNIT 6, IF ODISK IS BETWEEN O AND 10 THEN OUPUT WILL BE ON UNIT 4 AND ON A FILE NAMED OUTPUT.BC.NX WHERE X = VALUE OF ODISK THE AMESI PROGRAMS OBEY AND CVRT ARF USED TO GENERATE AND GIVE THE NEEDED DDEF AND RELEASE CUMMANDS TO TSS OPERATING SYSTEM. PEAD (UCI,5001) ODISK U6 = 6 IF (ODISK ED. 0) GO TO 50 UD = 4

CALL CVRT(ODISK.1. 1 44H(IDDEF FT04F001, OUTPUT_BC_NI, 11,6X) . .2ALEA, 8, 8H(8A4) 1 CALL UBEY(32.ALEA) . REWIND UN . GO. TO 50 PONTIMUE . . 40 05=052 . . IF (CONV) WRITE(UCO,6000) IF(CONV)READ(UCI, 5001)~IDD1, IDD2 IF(BATCH)READ(US,5001).IDD1.IDD2 · IF(IDD1, LT, 0)STOP C JELLIN THE POP-10 VERSION IDD1 AND IDD2 ARE USED TO DETERMINE THE C. IN ANY CASE. THE VALUES READ IN WILL. IF DREATER THAN ZERO. C..... BE CHECKED AGAINST THE VALUES ON THE GEOMETRY AND INFLUENCE C.... MATRIX FILES AND A STOPPOR PAUSE WILL BE EXECUTED IF THERE C....IS NO AGREEMENT. C....FOR AMESI TSS VERSION, ISSUES DDEF COMMANDS TO OPERATING SYSTEM. C. CALL GEMFIL(IDD1) - READ (U7.) ID1, PP, MM, NDUM2, UNSYM, NDUM2, MREF, JJMAX, NFLAPS. ATITLE NTITE -W, 1997 - D. C S = NUMBERSOF, CHORDWISE CONTROL POINTS NUMBER OF SPANKISE CONTROL POINTS' C..... UNSYN = NON-ZERO FOR UNSYMMETRICAL WING MREF = REFERENCE-INTEGER FOR DETERMINING THE SPANWISE C.... CONTROL POINTS FROM (NINDEX) AND (ETA), THESE CONTROL POINTS WILL BE STORED IN (ETACP). C....JJMAX = THE NUMBER OF SPANWISE INTEGRATION POINTS. THE SPANWISE CONTROL POINTS ARE A SUBSET OF THE C SPANWISE INTEGRATION POINTS C....NFLAPS = NUMBER OF CONTROL SURFACES (0,1, OR 2).

5e . .

÷.

```
C .... (TITLE) = ARRAY OF ALPHANUMERIC TITLING INFORMATION.
  C....NTITLE = THE NUMBER OF WORDS IN THE TITLE.
        LOG1=I01 NE.IDD1 AND. IDD1 GT 0
        IF(CONV_AND_LOG1)PAUSE ! ID NUMBER CONFLICT FOR GEOM FILE !
      IF (BATCH, AND, LOGI) CALL STOP2(U6, 1 ID NUMBER CONFLICT FOR
       1GFOM FILE (JFLOAT(ID1))
        READ(U7 ) (CHICP(I), T=(, PP), (NINDEX(I), I=1, MM), (TANLEL(I), I=1,
    1JJMAX), (TANLERII), IF1, JJMAX), (TANTEL(I), I=1, JJMAX),
       2(TANTER(I), I=1, JJMAX), (ETA(I), I=1, JJMAX),
       3(STHETA(I), I=1, JJMAX), (XSILIP(I), I=1, JJMAX),
   4(CORDIP(1), I=1, JJMAX), BRAT, CBARBR
  C
  C..... (CHICP) = ARRAY OF CHORDWISE CONTROL POINTS SUCH THAT
 0.0 .LE. CHICP(I) .LE. 1.000.
  C ..... (NINDEX) = INTEGER ARRAY FROM WHICH THE SPANWISE CONTROL
                   POINTS ARE DERIVED FROM THE SPANWISE
  C . . . . .
  C.....POINTS_
  C ..... (TANLEL), (TANLER), (TANTEL), AND (TANTER) ARE THE
                  TANGENTS OF THE WING EDGE SWEEP ANGLES AT THE
  C . . . . .
  INTEGRATION STATIONS.
              = THE SPANWISE INTEGRATION STATIONS NON-DIMENSIONAL+
  C....(ETA)
20
                   IZED BY THE EFFECTIVE SEMI-SPAN, B2 ((ETA) IS
   Cassa
                DOUBLE PRECISION).
   C. . . . . . .
  C.....(STHETA) = (SURT(1.+ETA**2)) (DOUBLE PRECISION).
  C ..... (XSILIP) = LEADING EDGE LOCATIONS AT THE INTEGRATION STATIONS
                NORMALIZED BY B2.
  C .... (CORDIP) = STREAMWISE CHORD LENGTHS AT THE INTEGRATION STA
                  TIONS NORMALIZED BY 82.
   C . . . . .
  C....BRAT = LATERAL REFERENCE LENGTH (USUALLY THE TRUE SEMI-
                   SPANJ/B2. USUALLY BRAT WOULD BE 1.0 IF THE WING HAS
   C . . . . .
                   NOT REEN YAWED.
   C . . . . .
               = LONGITUDINAL REFERENCE LENGTH (USUALLY THE MEAN
  C....CBARBR
                   GEOMETRIC CHORD)/LATERAL REFERENCE LENGTH.
   Conses
   C
       IF (NELAPS, NE. 0) READ (U7 ) XOUM, LAMDAC, XOUM2, ETA1, ETA2,
       AXDAM6, (UHILLI)'I='''AAWAX)'' (C51b(I)'I='''AAWAX)
   C
  C....THE INFLUENCE MATRIX FILE WILL NOT BE READ IF IDD2.LT.O.
```

2		
•	FOR AMEST TSS VERSION, ISSUES DDEF COMMANDS,	
₩ \$-8-6-8-1 M 1-	ni Ann Murin Aun a Ann ann ann ann ann ann ann ann ann	
· •	CALL AIMFIL(IDD1, IDD2)	
	READ (U11) ID1, ID2, NOUM, TITLE, NTITL, PR, NOUM, MM, MREF,	
	NDUM9, MACH, EPS, XDUM, (CHICP(1), I=1, PP), (NINDEX(1), I=1, MM)	
	INFURMATION FROM THE INFLUENCE MATRIX FILE OVERLAYS INFOR-	
	NATION FROM THE GEOMETRY FILE	
	LOGI = IDD1, NE. 0. AND, IDD1, NE. ID1	
	LOGI=LOGI OR. (IDD2.NE.O ,AND, IDD2.NE.ID2)	
ر ا مساحد و بر موبو برور	IF (CONV AND LOGI) PAUSE ! ID NUMBER CONFLICT FOR INFLUENCE	
4	I PATRIX FILE !	
	IF (BATCH, AND, LOG1) CALL STOP2 (U6, FID NUMBER CONFLICT FOR	
	INFLUENCE MATRIX FILE (,FLOAT(ID2))	
	CONTINUE	
•		
	IF(CONV2) WHITE(UCO, 6007)	
	READ(U5, 5000) RCS	
	READ(U5,5000) BCAS	
	READ(US, SOCO) PRINTA, PRINTB, NSTORE	
-	PRINTB=PRINTB_OR_PRINTA	
C.	EACH ELEMENT DE BCS AND BCAS CORRESPONDS ID & DIFFERENT DOWNWASH	
16.8-3.8.18.1 1	CONDITION. & TRUE VALUE MEANS THAT THE CORRESPONDING BOUNDARY	
	CONDITION WILL BE CALCULATED OR READ FROM CARDS AND, IF	
	NSTORE IS FALSE, THEN WRITTEN ON & FILE FOR USE IN THE	
···	EQUATION SOLVING PROGRAM, BOTH ARRAYS ARE READ AND ACTED UPON IF	
	THE WING IS SYMMETRIC OR UNSYMMETRIC. IN THE LATTER CASE THE	
	BOUNDARY CONDITION WILL BE CALCULATED FOR THE ENTIRE WING	
	THE CASES CORRESPONDING TO EACH OF THE ELEMENTS ARE AS FOLLOWS	
BCS	(1) UNTFORM NODE	
C RCS	(>) PITCHING MODE	
•	ALFA(XSI/ETA)=(XSI/BRAT-XSICM)/CHARBR	
• • • • • •	WHERE XSICM=CENTER OF MASS OR OTHER REFERENCE POSITION.	

r	XSICH IS TO BE GIVEN IN THE COORDINATE SYSTEM FIXED
č	TO THE WING WHILE XSI IS IN THE WIND-CENTERED
ŕ	COORDINATE SYSTEM
Ç	THIS NODE CORRESPONDS TO A NON-DIMENSIONAL PITCH RATE UP 1.
C	THE SOLUTION FOR THIS MONE GIVES THE WING CUNIKIBULIUN TO THE
	O STABILITY DERIVATIVES (IN THE WIND CENTERED COORDINATE.
	SYSTEM).
C C BCS(3)	LINEAR, SYMMETRIC TWIST MODE
	ALFA(XSI, ETA) = ABS(ETA) / BRAT
	PARABOLIC, SYMMETRIC TWIST MODE
C BCS(4)	ALFA(XSI)ETA)=(ETA/BRAT)**2
C	RESIDUAL FLAP DOWNWASH MODE. IF THERE ARE 2 FLAPS, THEN
	THIS MODE IS FOR THE SYMMETRIC DEFLECTION OF BOTH.
C	REFER TO NASA TN D-7251 AND TO SUBROUTINE FLPOWN FOR
C	FURTHER DOCUMENTATION. THE FLAP DOWNWASH MODES ARE THE ONLY
	FORTHER DUCUMENTATION THE FLAT DURANAVE FOULS AND AND THE STATES
C	ONLY ONES AFFECTED BY THE MACH NUMBER.
C	THE VALUE OF BCS(5) AND BCAS(3) WILL BE IGNORED IF THERE
<u></u>	IS NO FLAP DATA AVAILABLE FROM THE GEOMETRY FILE
C 8CS(6)-	THESE ARE MODES FOR WHICH TABLES AND/OR CERTAIN TYPES
C 865(10)	OF COEFFICIENTS WILL BE READ BY THE PROGRAM.
<u>C</u>	THE MODES ARE DEFINED BY STREAMWISE DISTRIBUTIONS
- 5 ċ	(COEFFICIENTS OR TABLES) AT SPANWISE STATIONS SELECTED
Ċ	BY THE USER. THESE MODES ARE ASSUMED SYMMETRIC ONLY
Č	IF THE WING IS SYMMETRIC. SEE SUBROUTINE BOUND FOR
C	FURTHER DOCUMENTATION,
Ĉ	
ř	
C BCAS(1)	ANTI-SYMMETRIC UNIFORM MODE (ZERO AT CENTER),
C BCAS(2)	ROLLING MUDE (RIGHT TIP DOWN)
C	ALFALXSI, ETA) ETA/BRAT
C	THIS MODE CORRESPONDS TO A NON-DIMENSIONAL ROLL RATE
c	OF LA THE SOLUTION FOR THIS MODE GIVES THE MING CONM
ĉ	TREPUTION TO THE QUASI-STATIC, P STABILITY DERIVE
ده المعموم بالمسلم مترثير. ر الا	ATIVES FIN THE WIND CENTERED COURDINALE SYSTEM).
C BCAS(3)	ANTT-SYMMETRIC RESIDUAL FLAP MODE. IF THE WING IS
	- GRANNERSTAL THREE TRAINERSTATE TO INVERT THES MEDE
- 8C+S(2)+	FOR A SYMMETRIC PLANFORM THESE MODES ARE THE ANTI-SYMMETRIC
C BCAS(10)	COHATEPPIART OF THOSE REFERRED TO BY BUS(0)TOUS(14).
	FOR AN UNSYMMETRIC WING THE TREATMENT OF THESE MODES IS
C	n fere πo e ferenciamente a ferenza internativa e en e

	HE SAME AS THOSE CORRESPONDING TO BCS(6)-BCS(10).
C PRINTA	TRUE, MEANS THAT ALL THE DOWNWASH MODES WHICH
6.5.5.5.4.5.7.4.57.4.57.4.5 P	ARE CALCULATED WILL BE PRINTED (REGARDLESS DE THE VALUE DE
-	PRTNTD1_
	TRUE MEANS THAT THE STHATOTH SYMMETRIC AND THE
	3RD-10TH UNSYMMETRIC MODES WHICH ARE CALCULATED WILL
_ ` ` '	
NSTOPF	TRUE MEANS THAT THE BOUNDARY CONDITIONS WILL BE
C	CALCULATED BUT NOT STORED.
ŕ	
BCS(S)=	BCS(5) .AND, NFLAPS.GT.0
BCAS(3)	=BCAS(3), AND, NELAPS, GT, O
FLAP=8C	S(5),0R,BCAS(3)
IF(CONV	2 AND FLAP) WRITE(UCO, 6021)
IFCELAP) READ (US, 5001) LL
C	
STORE=_	NOTINSTORE
	ر معالی معد در ماند و با این وجوین در این میزود و می معدومی و مربو میدومی و مربو میدود. می و در این این این می معالی
SYMM=UN	ISYM,EQ,O
MMP=MM	
MMPA=MM	
	1) MMP=(MM+1)/2
	1) MMPA=MM/2
C	ELOCATIONS OF SPANWISE CONTROL STATIONS,
CRARK (ELALE)	LUCHTIONG OF OF REFILE CONTROL FREEDER
DO BE A	HEINME
TADEY .	NINDEX(M)*JRATIO
	A) #ETA(INDEX)
85 CONTINU	
TEINST	DRE) GO 10 90
C. DETERM	INING IDENTIFICATION NUMBER OF THIS RUN
CALL OF	SEY (22, 24HDDEF FT09F001, , IDFILE)
REWIND	
	20) 10A, 108, 103, 100

•

```
ID3=ID3+1
         REWIND U20
         WRITE(U2c) IDA, IOB, ID3, IDD
         FND FILF U20
  C....FOR AMEST TSS VERSION ONLY
       CALL OBEY (16, 16HRELEASE FT09F001 )
  Ĉ
  C....NSYN = NUMBER OF SYMMETRICAL CASES
  C .... NASYM = NUMBER OF ANTI-SYMMETRICAL CASES.
        NSYMEO
        NASYMEC
        00 87 I=1.10
        IF(BCS(I))NSYMENSYM+1
        IF(BCAS(I))NASYMENASYM+1
  87
        CONTINUE
  C . . . .
  C..... WRITING THE INTRODUCTORY RECORD OF THE BOUNDARY CONDITION FILE.
  <u>C</u>
  C
  C.....FOR AMEST TSS VERSION ONLY. RCFIL ISSUES DDEF COMMANDS TO THE
  C.... OPERATING SYSTEM.
50
        CALL BOFIL (101, 103)
        WRITE(U8) JD1, ID3, TITLE, UNSYM, NSYM, NASYM, BCS, BCAS, PP, CWTYPE,
       1MM, MMP, MMPA, MREF, SWTYPE, (CHICP(P), P=1, PP), (NINDEX(I), I=1, MMP),
       P(ETACP(H), M#1, MMP)
  90 CONTINUE
  C
  C
        WRITE(U6,6003)
        WRITE(U6,6008) (TITLE(N),N=1,NTJTL)
        IF(103.FG.0) WRITE(U6,6009) 101,102
        IF(103, NF. 0), WRITE(46,6020) 101, 102, 103
        WRITE(U6,6010) BRAT, CBARBR
        IF(FLAP) WRITE(U6,6022) LL
    WRITE(U6,6011)
WRITE(U6,6012) (CHICP(P),P=1,PP)
        WRITE(U6,6013)
   WRITE(U6,6012) (ETACp(I), I=1, MMp)
```

```
WRITE(16,6014)
      WRITE(U6,6015) BCS /
      WRITE(U6,6015) BCAS
      WRITE(U6,6017)
      WRITE(U6,6615) PRINTA, PRINTB, NSTORE.
      WRITE(06,6023)
               BOUND (PP, CHICP, MMP, MMPA, ETACP, CBARBR, BRAT.
      CALL
     18C5. BCAS, FLAP, PRINTA, PRINTB, STORE, SYMM, CONV. CONV2.
     2001, 000, 05, 06, 08,
     3XSILIP, CORDIP, NINDEX, TANLEL, TANLER, TANTEL, TANTER.
     4ETA, STHEIA, LANDAC, ETAI, ETA2, CHIEPI, CZIP, ....
     SJJMAX, JRATID, ALFA, LL, ALFACS)
      IF (U6.FG. UCO) GO TO 120
      120
     CONTINUE
      60 TO 20
 Ĉ.
                                       C.....INPUT FURNATS
 C
 5000
     FORMAT/SOL1)
= 5001 FORMAT(1615 )
 5002 FORMAT(8F10.0)
 С.
 C....OUTPUT FORMATS
 0
 6000 FORMAT( ENTER 101, 102)
 6001 FORMAT(///// ENTER INPUT DEVICE NUMBER! )
 6003 FORMATCIH1/
     110DETERMINATION OF THIN LIFTING SURFACE BOUNDARY CONDITIONS 1/
     6004 FORMATCI ENTER BATCHI )
 .6005 FORMAT(1 ENTER UDISKI)
 6006 FORMATCI OUTPUT ON FILE ... OUTPUT BC.NI, 11, 3H ......
 6007 FORMAT( | FNTER (BCS)/(BCAS)/PRINTA, PRINTB, NSTORE! )
 0
 C....THE FOLLOWING FORMAT DEPENDS ON THE INTEGER WORD LENGTH IN
 C....CHARACTERS. CHANGE AS REQUIRED FOR THE COMPUTER BEING USED.
 6008 FORMAT(//12H TITLE = . 2044)
```

```
6009 FORMAT(4H ID1, 6X, 1H= , 15/
       1 4H ID2, 6X, 1H= , I51
  6010 FORMAT(5H 8HAT, 5X, 1H=, F11.5/
       17H CBARBP, 3X, 1HE, F11.5)
  6011 FORMATE/35H CHORDWISE CONTROL POINT LOCATIONS A
  6012 FORMAT(F23.6)
  6013 FORMAT(1354 SPANWISE CONTROL POINT LOCATIONS )
  6014 FORMAT(/AH BCS)
  6015 FORMAT(1X, 10(L1, 1X))
  6016 FURMAT(75H BCAS)
  6017 FORMATC/24H PRINTA, PRINTB, NSTORE )
  6020 FORMATC4H 101, 6X, 1H=, 15/4H 102, 6X, 1H=, 15/
       14H 103, 6X, 1H=, 15)
  6021 FORMAT(1 ENTER LLIZ)
  6022 FORMAT(3H LL, 7X, 1H=, 15)
  6023 FORMAT(////)
        END
        SURROUTINE CODIM2(YI, XI, NI, T, ANS, NA, XK)
  C
                   A CONTROLLED DEVIATION ITERPOLATION METHOD
  C****
  C
h h
        DIMENSION XI(NI), YT(NI), T(NA), ANS(NA)
  C
  C.
        NENT
        SIGN
                 = 1.0
        IF (XI(NI)_LT_XI(1)) SIGN = _1.0
        00 910 IE=1, NA
        X=T(IE)
    100 IF(N=2)110,120,200
    110 Y # YT(N)
        000 01 00
    120 Y = (YI(2)_YI(1))/(XI(2)_XI(1)) + (Y_XI(1)) + YI(1)
        60 TO 900
    200 J = 1
   210 IF (SIGN*(XI(J) + X)) 230,220,250
    550 A =A1(1)
        GO TO 900 .
```

	230 0	J = J+1
		IF(J=V)210,210,250
	250 1	IF(J+2)120,155,260
	155	7 🖬 3
	5	JJ = 1
	C	GO TO 285
`	560 1	IF(J=N)280,265,270
	265 (3 🗢 N=1
		JJ.= 2
		SO TO 285
		Y= (YI(N)=YI(N=1))/(XI(N)=XI(N=1))* (X=XI(N=1))+YI(N=1)
		GO TO 900
		JJ = 3
		IF (N=3)290,290,295
		d a traditional de la companya de la
		K = J-1
	l	
		$A_1 = X = X_1(M)$
		$A_2 = X - X I (K)$
		A3. = X = X = X = 1
ب ب ا		AL = (X - XI(K))/(XI(J) - XI(K))
<u>л</u>		S = AL + YI(J) + (j + 0 - AL) + YI(K)
		C1 = A3 + A2 / C(XT(M) = XT(K)) + (XT(M) = XT(J))
		C2# A1+A3/((XI(K)-XI(M))+(XI(K)-XI(J)))
		C3 = A2 + A1 / ((XI(J) - XI(M)) + (XI(J) - XI(K)))
	F	P1 = C1 + YI(M) + C2 + YI(K) + C3 + YI(J)
		IF (N=3)305,305,310
		P2 = P1
	,	<u>GO TO 315</u>
		A4 . = X X I (L)
	÷ .	$c^{4} = A^{4} + A^{3} / ((x) (K) - x) (J) + (x) (K) - x (L))$
	(C5= A2*A4/((XI(J)=XI(K))*(XI(J)=XI(L)))
Pa 19 -	(C6= 43+42/((XI(L)=XI(K))+(XI(L)=XI(J)))
		$P2 = C4 \times YT(K) + C5 \times YT(J) + C6 \times YT(L)$
		GO TO (320,330,350), JJ
		P2 = P1
	*	AL = (x - xI(1))/(xI(2) - xI(1))
		S = AL*YI(2) + (1.0 - AL) * YI(1)
		lagia a − μ. μπαταμαρική μαριαμή τη τη παταμή μαριαμή τη βαρία. Γεγολογία

```
P1 = S + Xk \neq (P2 = S)
        60 TO 356
    330 P1 = P2
        AL = (X=X](N=1))/(XI(N)=XI(N=1))
        S = AL + YI(N) + (1 + 0 + AL) + YI(N + 1)
        P2 = S + \chi K \times (P1 - S)
    350 \text{ F1} = ABS(P1=S)
        E2 = ARS(P2=5)
        IF(E1+E2)400,400,410
    400 Y # S
        00 TO 000
    410 PT = (E1*AL)/(E1*AL+(1+0+AL)*E2)
        Y == 6T*P2+(1.0=6T)*P1
    900 ANS(1E)=Y
    910 CONTINUE
        RETURN
        ENn.
        SUBROUTINE BOUND (PP, CHICP, MMP, MMPA, ETACP, CBARBR, BRAT,
    HRCS, BCAS, FLAP, PRINTA, PRINTB, STORE, SYMM, CONV, CONV,
       2001, 900, 85, 86, 88,
       3XSILIF, CORDIF, NINDEX, TANLEL, TANLER, TANTEL, TANTER,
       BETA, STHETA, LAMDAC, ETAI, ETA2, CHIFPI, COIP,
۲-
۲-
       SJJMAX, JRATTO, ALEA, LL, ALEACSY
        DOURLE PRECISION ETA. STHETA
       INTEGER P. PP. UCI. UCO. US. U6. U8
       LOCICAL BCS, BCAS, PRINTA, PRINTB, STORF, CONV. CONV2
       LUGICAL FLAP, SYMM, FLPCAL
        DIMENSION CHICP(PP), ETACP(MMP), NINDEX(MMP), BCS(10), BCAS(10)
       DIMENSION ALFA(PP, MMP), ALFACS(LL, PP, MMP)
        DIMENSION XSILTP/JJMAX), CORDIP/JJMAX), TANLEL/JJMAX),
       TANLER(JJMAX), TANTEL(JJMAX), TANTER(JJMAX), ETA(JJMAX),
       2STHFTA(JJMAX), CHIFPI(JJMAX), C2TP(JJMAX)
       FLPCALE, TRUE
       CONTINUE
  1.0
        MMUMMMP
      IF ( BCS( 1)) GO TO 100
  22
      IF ( HCS( 2)) GO TO 200
       IF ( 805( 3)) GO TO 300
  23
  24 IF ( 8CS( 4)) GO TO 400
```

25	IF (BCS(5)) GO TO 500	
26	IF (BCS(6))	
	NC=7	
27	IF (, BCS(7)) GO TO 600	
	NC=8	
28	NC=8. IF (_BCS(.8)) GO TO 600	
	NC=9	
29	IF (BCS(9)) GD TO 600	
30	JF (BCS(10)) GO TO 600	
	MMUEMMPA	
	IF (BCAS(1)) GO TO 700	
32	IF (RCAS(2)) GO TO 800	
33	IF (BCAS(3)) 60 TO 900	
	NCHU NA	
34	IF (BCAS(4)) GO TO 1000	
35	NC=5 IF (RCAS(5)) G0 T0 1000	
	AC LONGROU DID BUR (0.000 NC=A	
	IF (8CAS(6)) GD TO 1000	·
•	NC=7	
1	JF (BCAS(7)) GU TO 1000	
	TF (BCAS(A)) GO TO 1000	
	NC#9.	
	TF (BLASE 9)) GO TO 1000	
	bC=10	
	IF (BCAS(10)) GU TO 1000	
	IFC NOT STORES RETURN	
	END FILE UA	
	- WRITE(U6,6013)	
	RETURN	
ſ		
<u> </u>		
C	START DETERMINING DOWNWASH CASES.	
C		
- F		
100	CONTINUE	

,	· 📻	
	С.,	UNIFORM DOWNWASH
	5- 8 8 8 9 1	DQ 110 M=1, MMP
••		00 110 P=1,PP
		ALFA(P,M)=1.
	110	CONTINUE
		IF(PRINTA) WRITE(U6,6000)
		ASSIGN 22 TO NSTAT
		.GO TO 2000
	200	CONTINUE
	C	
		,PITCHING MODE
		IF (CDNV2) WRITE(UCO,6001)
		READ(US, 5000) XSICM
		DO 210 M=1.MMP
		J _z JRATIO _* NINDEX(M)
		00 210 P=1,PP
	- ·	xSI#xSILIP(J) + CHICP(P)*CORDIP(J)
	34.0	ALFA(P, H)=(XSI/BRAT_XSICH)/CBARBE
	210	CONTINUE TEADDI (TA) ADITEANA ADDA VETON
		IF (PRINTA) #RITE (U6,6002) XSICM
		GQ TQ 2000
	300	CONTINUE
	500 . C	
		LINEAR, SYMMETRIC TWIST MODE
		00 310 P =1.PP
		00 310 N=1, MMP
		ALFA(P, M) = ABS(ETACP(M))/BRAT
	310	CONTINUE
	+	IF(PRINTA) ARITE (U6,6003)
		ASSIGN 24 TO NSTAT
		60 10 2000
	400	CONTINUE
	С	·
	C	PARABOLIC, SYMMETRIC THIST MODE
		DD 410 M=1.4MMP
		$\Delta_{LF} = (ETACP(M)/BRAT) * * 2$
		00 410 P±1_PP

	-
	ALFA(P,M)=ALF
410	CONTINUE
	IFPRINTA) HRITE(U6,6004)
	ASSIGN 25 TO NOTAT
	00.10 2000
500	CONTINUE
C	
	CONTROL SURFACE DOWNWASH MODE
	FLPCAL = FALSE
÷ .	IF (PRINTB, AND, SYMM) WRITE (U6, 6005)
	IF (PRINTB, AND, .NOT, SYMM) WRITE (U6, 6006)
	ASSIGN 26 TO NSTAT
	0105 01 00
600	CONTINUE
	n and a second s
C	USER_SUPPLIED MODES
	BCS(NC)= FALSE
	CALL SLOPES (US, U6, UCO, CONV2, ETACP, CHICP, MMP,
	1PP, ALFA)
	IF (PRINTB, AND, SYMM, BRITE (U6, 6007)
	IF (PRINTB.AND. NOT. SYMM) WRITE (U6.6008)
•	ASSIGN 26 TO NETAT
	00 TO 2010
	CONTINUE
C	
	UNIFORM ANTI_SYMMETRIC MODE
*****	DO 710 N=1, MMPA
	ALFEO.
	IF (ETACP(M) GT 1 E-S) ALF=1
	IF(ETACP(M), LT. =1, E=5) ALF==1
	DO 710 P=1.PP
	ALFA(P,M)=ALF
710	CONTINUE
	IF(PRINTA) WRITE(U6,6009)
	ASSIGN 32 TO NETAT
	GO TO 2000
800	CONTINUE
C	
· · · · · ·	POLLING MORE
	s u∰ namen, π' talken dikk symmetrikanska van antendering feranken kannaken stranske kannaken kanna fermen i som
	· ·
	n er er er er er en

.

. .

```
00 810 M=1.MMP4
      00 810 P=1.PP
      ALFACP, MISETACP(MI/BRAT
810
      CONTINUE
      IF(PRINTA) WRITE(U6,6010)
      ASSIGN 33 TO NOTAT
      GO TO 2000
900
      CONTINUE
0
C....ANTISYMMETRIC CONTROL SURFACE DOWNWASH MODE!
      IF (FLPCAL) CALL FLPDWN( .... )
0
      IF(PRINTE) WRITE(U6,6011)
      ASSIGN 34 TO NOTAT
      0105 01 00
1000 CONTINUE
C
C.... USER SUPPLIED MODES
      BCAS(NC) = FALSE
      FALL SLOPES(US, U6, UCO, CONV2, ETAPP, CHICP, MMPA,
     1PP, ALFAJ
     IF (PRINTB. AND SYMMY WRITE (U6, 6012)
    > (F(PRINTB.AND. .NOT.SYMM) WRITE(U6,6008)
      ASSIGN 34 TO NOTAT
      GO TO 2010
C
C.....PRINTING AND STORING MODES
Ĉ.
2000 TEC.NOT PRINTAL GO TO 2040
      0505 OT 00
2010 IF(_NOT_PRINTS) GO TO 2040
2020 NO 2030 M=1.MHU
2030 WRITE(U6,5001) (ALFA(P,M),P=1,PP)
2040 IF(STORE) WRITE(U8) ((ALFA(P,M),P=1,PP),M=1,MMU)
     00 TO NETAT, (22,23,24,25,26,32,33,34)
C
C....CONTROL SHOULD NEVER GET TO HERE
0
C..... INPUT FORMATS
5000 FORMAT/8F10.0 )
```

Α.,

	·		
5001	FORMAT(/(1X,8F15.7))		
Ē			
r	DUTPUT FORMATS		
6000	FORMAT (////IBH UNIFORM DOW	NHASH /1	
6001	FORMAT (22H ENTER C.M. POS.	/RREF /)	
6002	FORMAT (//// 4H PITCHING MO	DE //	
	1 15H C.M. POS /BREF		
6003		METRIC TWIST //	
6004	FORMAT (////25H PARABOLIC,	SYMMETRIC TWIST /1	
6005	FORMAT(////21H SYMMETRIC F	LAP MODE /1	
6006	FORMAT(7/7/23H UNSYMMETRIC	FLAP MODE /1	
6007	FORMAT //// 30H USER-SUPPLI	ED SYMMETRIC MODE /)	
6008		ED UNSYMMETRIC MODE /1	
6009	FORMAT (////29H ANTT-SYMMET		
6010	FORMAT (////14H ROLLING MOD)E /)	a second a s
6011		RIC FLAP MODE 1	
6012		ED ANTI-SYMMETRIC MODE /1	and the second secon
6013	FORMAT(////30H MODES STORE	D AND FILE CLOSED ////1	
	EMO	······································	· · · · · · · · · · · · · · · · · · ·
	SUBROUTINE STRATZ(XIN, FIN,	NIN, XOUT, FOUT, NOUT, NRITES	
C.(X) C.(X) C	UT LOCATIONS USING LINEAR IN IN,FIN) TABLE.	TERPOLATION FROM THE	
~ č X1	N MUST EITHER BE IN ASCENDIN	IG OR DESCENDING ORDER	
č XQ	UT MAY BE IN ANY NUMERICAL D	PARD'	
C N _T	N MAY BE 1. IN WHICH CASE TH	E VALUE FIN(1) IS ASSIGNED TO (FOUT).	1 TOTAL OF A CONTRACTOR
c'	· · · · · · · · · · · · · · · · · · ·		
Č			
	REAL LINIT	· · · · · · · · · · · · · · · · · · ·	
	DIMENSION XIN(NIN),FIN(NIN		
	LINIT(X; X1; X2; F1; F2)=F1+(F	2-F1)/(X2-X1)*(X-X1)	
C			
C			
Ē.,		· · · · · · · · · · · · · · · · · · ·	
•	IF (NIN_FQ.1) GO TO 600		
	$ST \cap N = 1^{N \cap N}$		
	IFIXINI) GT XINIP) SIGNEL		
	an san an a		
	ere en en Marie en Barriel de La compañse de la Contra de La Contra de La Contra de La Contra da Contra da Cont La contra de la cont	•	
· ·····	na na sana ang kana kana kana kana kana kana ka		

		NUPR=NIN+1		
		DO 500 NO=1, NOUT		
		IF(SIGN+XOUT(NO), GT_SIGN+XIN(2)) CO TO 100		
		FOUT(NO) = LINIT(XOUT(NO), XIN(1), XIN(2), FIN(1), FIN(2))		
		GO TO 500		
1(0.0	IF (SIGN * XOUT (NO), LT, SIGN * XIN (NUPR)) GO TO 200		
		FOUT(NO) = LINIT(XOUT(ND), XIN(NUPR), XIN(NIN), FIN(NUPR), FIN(NIN))		
		60 TO 500		
20	0.0	CONTINUE		
		DO 300 NI=3, NUPR	,	
		IF(SIGN+XOUT(NO) GE,SIGN+XIN(NI)) GO TO 300		
		FOUT(NO) = LINIT(XOUT(NO), XIN(NI=1), XIN(NI),		
		$1FIN(NI=1) \cdot FIN(NI))$		
		GO TO 500		
30	•	CONTINUE		
. <u></u>	<u>.u</u>			
L.		UDTTEANDTE AN VEN		
		WRITE(NRITE,1) XIN		
1		FORMATCINI, ITABLE NOT IN ASCENDING OR DESCENDING ORDER INI		
		1, 1 SUB, STRAT2/(1X,1PF20,5))		
•		STOP 13		
<u> </u>				
50	0	CONTINUE		
		RETURN		
_6.0		DO 610 NOF1, NOUT	1.44 44 - 14	
61	0.			·· ·
		RETURN		
		END		
		SUBROUTINE SLOPES (US, U6, UCO, CONV2, ETACP, CHICP, MMU,		
		1PP, ALFA)		
		INTEGER US, UG, UCO, PP, P		
	1	LOGICAL CONV2,LOG1,TEST		
		REAL L		
		DIMENSION ETACP(MMU) CHICP(PP) ALFA(PP,MMU)		
		DIMENSION ETA(20), ALFA2(15,20), ALFA3(30), CHI(41).		
		1ALF(41), A(40), B(40), C(40), L(40), G(40),		
		2E(40), H(40)		
		DIMENSION TEST(15), CHIDUM(30)		
ċ				
č.		THE DIMENSION OF THE ABOVE TWO ARRAYS SHOULD BE AS LARGE		
	an a	THE REAL PROPERTY AND		

	C AS PP AND 2+PP, RESPECTIVELEY	
	C. C. HON, EMERY ANDREQUET	
	C THE DIMENSION OF ALFAS MUST BE THE MAXIMUM OF 2. PP AND	
	CNSMAX.	
	C, NSMAX IS THE MAXIMUM NUMBER OF SPANWISE STATIONS AT C, WHICH DATA SHOULD BE GIVEN	
	CNSMAX IS A DIMENSION FOR ETA, ALFA2, AND ALFA3. Data NSMAX /20/	
	CNTBHAX.1 IS THE MAXIMUM NUMBER OF CHORDWISE LOCATIONS CAT WHICH THE CAMBER OR SLOPE DATA SHOULD BE GIVEN. CNTBMAX IS THE DIMENSION OF CHI AND ALF.	
	CNTBMAX-1 IS THE DIMENSION OF A, B, C, L, G, CE, AND H. SINCE A IS ALSO USED FOR A CAMBER OR SLOPE CPOLYNOMIAL, THE DIMENSION OF A MUST BE AT LEAST B	
	DATA NTBHAX /41/ C	
_	CEPS IS USED FOR NUMERICAL DIFFERENTIATION	
	COF THE CAMBER DISTRIBUTION DETERMINED BY A TABLE AND CCODIM2 (CONTROLLED DEVIATION INTERPOLATION METHOD). DATA EPSDEF /5.E-3/	
	C, NPPMAX IS THE FIRST DIMENSION OF ALFA2 AND THE MAXIMUM CALLOWABLE VALUE FOR PP.	· .
	DATA NPPMAX /15/ C	
	IF(PP,GT,NPPMAX) CALL STOP2(U6, PP TOO LARGE IN SUB, SLOPES 1FLOAT(PP))	1,
	C	
	C,NSPSEC IS THE NUMBER OF SPANWISE SECTIONS C,ITYPES DENOTES THE TYPE OF SPANWISE INTERPOLATION.	
	C O IMPLIES STRAIGHT LINE INTERPOLATION. C NOT O IMPLIES THAT CODIM2 WILL BE USED	

NA.

	IF (NSPSEC. GT. NSMAX) CALL STOP2(U6)	
	11 TOO MANY SPANWISE SECTIONS IN SUR. SLOPES.	FLOAT (NSPSEC))
	READIUS, 50001 NSPSEC, ITYPES	
	IF(ITYPES.E0.0) GO TO 20	
	IF(CONV2)WRITE(UCO,6001)	
	READ(U5,5001) XK	
	CONTINUE	
C		
	DO 500 NEL NSPSEC	
	IF'(CONV2)WRITE(UCD,6006)	
	READ(US, 5001) ETA(N), TWIST	
C		
C	LETA IS THE SPANWISE VARIABLE. IT MAY EXCEED 1. IN	VALUE
C + + +	IN ORDER TO CONTROL THE CODIMA INTERPOLATION NEAR	THE ENDS.
	TWIST IS THE ANGLE OF TWIST.	
	IF(CONV2) WRITE(UCO,6002)	
	READ(US, 5000) ITYPEC	
		• • • • • • • • • • • • • • • • • • •
C	, ITYPEC DENOTES THE TYPE OF CHORDWISE SLOPE DEFINIT	T O (4
	THAT THE USER WANTS TO USE.	
<u></u>		SINPE
C		
C		
<u> </u>		
C	THE FURNISH A FULL AND A AND A MAINING DESTANCE THE ST	0PF
E	こうしん しょうかがん りかんかい しんじょうみじぎまいか ようちまねん ビオトキームモービルモウ	FOR THE
<u>C + + +</u>		anne in the second states and the
C		
C	The second second second second light of Horo To	
<u> </u>	ARTEDUANC T C CLUDED AN T. P VEATNETY OF THE C	ONTROL
C	DATATA THE THAN AND TOTAL ATTEMPTINE ATTACK WITH	RE USED
Cere		
<u> </u>	P	OPE
C		D TO
<u>C</u>	DETERMINE VALUES AT THE CHORDWISE CONTROL STA	TIONS.
C	6 TMPLITES THAT & TABLE OF VALUES DEFINES THE CA	MBER
Č	DISTRIBUTION & CUBIC SPLINE WILL BE DETERMI	NED FOR
<u>C</u>		HE

C IF(ITYPEC.EQ.0) GO TO 100 IF(ITYPEC.LT.0) GO TO 450 IF(ITYPEC.LT.3) GO TO 200 IF(ITYPEC.LT.7) GO TO 300 GO TO 450 100 CONTINUE DO 110 P=1.PP 110 ALFA2(P,N)=TWIST GO TO 500 200 CONTINUE C C C C C IF(CONV2) WRITE(UC0.6003)	
IF(ITYPEC.LT.0) GO TO 450 IF(ITYPEC.LT.3) GO TO 200 IF(ITYPEC.LT.7) GO TO 300 GO TO 450 100 CONTINUE DO 110 P=1,PP 110 ALFA2(P,N)=TWIST GO TO 500 200 CONTINUE C C C IF(CONV2) WRITE(UCO,6003)	
IF (ITYPEC.LT.3) GO TO 200 IF (ITYPEC.LT.7) GO TO 300 GO TO 450 100 CONTINUE DO 110 P=1,PP 110 ALFA2(P,N)=TWIST GO TO 500 200 CONTINUE C C C C C IF (CONV2) WRITE (UCO, 6003)	
IF (ITYPEC_LT.7) GO TO 300 GO TO 450 100 CONTINUE DO 110 P=1.PP 110 ALFA2(P,N)=TWIST GO TO 500 200 CONTINUE C C C C C IF (CONV2) WRITE(UCO, 6003)	
100 CONTINUE DO 110 P=1,PP 110 ALFA2(P,N)=TWIST GO TO 500 200 CONTINUE C C C C C C C C IF(CONV2) WRITE(UCO,6003)	
DO 110 P=1,PP 110 ALFA2(P,N)=TWIST GO TO 500 200 CONTINUE C C C C CEVALUATING CHORDWISE SLOPES FROM POLYNOMIALS' C IF(CONV2) WRITE(UCO, 6003)	
110 ALFA2(P,N)=TWIST GO TO 500 200 CONTINUE C C C CEVALUATING CHORDWISE SLOPES FROM POLYNOMIALS' C IF(CONV2) WRITE(UCO,6003)	
GO TO 500 200 CONTINUE C C C CEVALUATING CHORDWISE SLOPES FROM POLYNOMIALS'. C IF(CONV2) WRITE(UCO, 6003)	
200 CONTINUE C C C CEVALUATING CHORDWISE SLOPES FROM POLYNOMIALS' C IF(CONV2) WRITE(UCO,6003)	
C C C CEVALUATING CHORDWISE SLOPES FROM POLYNOMIALS' C IF(CONV2) WRITE(UCO,6003)	
C CEVALUATING CHORDWISE SLOPES FROM POLYNOMIALS, C IF(CONV2) WRITE(UCO,6003)	
C CEVALUATING CHORDWISE SLOPES FROM POLYNOMIALS' C IF(CONV2) WRITE(UCO,6003)	
C IF(CONV2) WRITE(UCO,6003)	
C IF(CONV2) WRITE(UCO,6003)	
IF(CONV2) WRITE(UCO, 6003)	
READ(U5+5000) NPOLS	
CHIMINEO	
$\frac{DO 210 P=1, PP}{210 TEST(P)=, TRUE}$	
DO 280 NPF1, NPOLS	
IF(CONV2) WRITE(UCO,6004)	
C	
C CHIMAX DENOTES THE UPPER LIMIT OF THE POLYNOMIAL	THE
CARANA DEFAULT VALUE IS 1.	106
CSCALE IS A SCALE FACTOR FOR THE POLYNOMIAL	
C COEFFICIENTS, DEFAULT VALUE IS 1'	
CCHIREF IS THE ORIGIN OF THE POLYNOMIAL	
READ(US, 5001) CHIMAX, SCALE, CHIREF	······
IF (CHIMAX, E0.0.) CHIMAX=1.	
READ(U5,5001) (A(1),1=1,8)	
C.	
C, THE NUMBER OF COEFFICIENTS IS LIMITED TO 8'	
C. THE FOLLOWING DETERMINES THE ACTUAL NUMBER'	
NTERMS=8	
00 215 I=1,8	
IF (A (NTERMS) . NE. 0.) GO TO 220	

```
NTERMS=NTERMS=1
  215 CONTINUE
        CALL STOP2(U6, 1. A. CAMBER, OR SLOPE POLYNOMIAL, IN SUB. SLOPES
       1 HAS ALL O COFFFICIENT ETA= ++FTA(N))
       IF(SCALE.EQ.0.)GO TO 226
  220
        DO 225 I=1.NTERMS
      A(I)=A(I)*SCALE
  225
  556
        CONTINUE
  С.
  C.... THE FOLLOWING EVALUATES THE SLOPE FOR ALL CONTROL POINTS
  C.... WHICH LIE WITHIN THE RANGE OF THE POLYNOMIAL.
        DO 275 P=1.PP
 - - -
        IFICHICPIP).LT.CHIMINY GO TO 275
        IF(CHICP(P),GT_CHIMAX) GO TO 275
        IF(ITYPEC.EU.2) GO TO 240
        A(FAZ(P,N)=A(1) - TWTST
        IF (NTERMS_E0.1) 60 TO 270
        X=CHICP(P)_CHIREF
        00 230 1=2.NTERMS
•
        ALEAP(P,N) = ALEAP(P,N) + X + A(I)
  230 X=X*(CHICP(P)-CHIREF)
        GO TO 270
ហ
        AIFA2(P,N)=A(2) = THTST
∽n 240
        IF (NTERMS LT 3) GO TO 270
        X=CHICP(P)_CHIREF
        DO 245 I=3.NTERMS
        ALFA2(P,N)=ALFA2(P,N) + FLOAT(I=1)*X*A(I)
        X=X*(CHICP(P)=CHIRFF)
       CONTINUE
  245
       TEST(P)= FALSE
  270
        CONTINUE
  275
        CHIMIN=CHIMAY
        CONTINUE
  085
        LOGIE FALSE.
        DD 285 P=1.PP
       LOG1=LOG1_OR_TEST(P)
   285
        IF(LOG1) CALL STOPP(US,
       11 & CHARDWISE PALY. DID NOT COVER ENTIRE CHARD. ETA= 1,
       2ETA(N))
```

GO TO 500

C	
C	a an a the state of the
C	EVALUATING THE CHORDWISE SLOPES FROM TABLES.
300	CONTINUE
	IF(CONV2)_WRITE(UCO,60.05)
	READ(US, 5001) SCALF, A1, AN
••	XKCEA1
. C	
C	SCALE IS A SCALE FACTOR FOR THE TABLE ENTRIES,
'C	A 1 AND AN ARE THE SLOPES AT THE END POINTS OF THE TABLE
. <u>C</u>	A1 AND AN SHOULD BE PUT IN IF POSSIBLE. ESPECTALLY TE
- C	• THE TABLE IS ONE GIVING THE CAMBER. IF BOTH VALUES ARE
C	ACTUALLY ZERO, THEN INPUT ONE AS 1 PL30. THE FITHER TS
	GIVEN. THEN BOTH MUST BE GIVEN
	ARC 19 THE END POINT INTERPOLATION CONTROL FOR BODIMS
C	FIF XKC±0., THEN STRAIGHT LINES WILL RE USED IN THE END
	TNTERVALS. TE XKC#1 THEN FULL PARABOLTC
C	INTERPOLATION WILL BE USED IN THE END INTERVALS. A
C	"VALUE IN BETWEEN WILL GIVE A CURVE IN BETWEEN.
	IFISCALE.ED.O.I SCALE=1
	NTAB=0
310	CONTINUE
	READ(U5,5001) CHI(NTAB), ALF(NTAB)
	IPPNTABLE NTRMAXY CALL STOPDING
	1 TOO MANY TABLE ENTRIES IN SUB. SLOPES. ETA# ', ETA(N))
	IF (CHI(NTAB).LT.98.) GO TO 310
	NTAB=NTAB=1
	IF(ITYPEC, EQ' 3) GO TO 315
	IF(ITYPEC.EQ.4) GC TO 350
	GO TO 400 was seen as
315	CONTINUE
C	
C	THE TABLE IS ONE OF SLOPES AND CODIM2 WILL BE USED.
	CALL CODIM2(ALF, CHI, NTAB, CHICP, ALFA3, PP, XKC)
	00 320 P=1,PP
	ALFA2(P,N)=ALFA3(P)+TWIST
320	CONTINUE
	e de la companya de l

.

.

```
GC TO 500
350
     CONTINUE
С.
C.... THE TABLE IS ONE OF CAMBER AND CODIMP AND NUMERICAL DIF.
C....FERENTIATION WILL BE USED.
      1=+1
0
      EPSDEF IS THE DEFAULT VALUE FOR EPS (SEE DATA STATEMENTS)
C
C
                        . . . .
      FP5 # EPSDEF
      IF (AN .NE.O.) EPSHAN
      DO 355 P=1.PP.
      J≡J+2
      CHIDUM(J)=CHICP(P)=EPS
      CHIDUM(J+1)=CHICP(P)+EPS
355- CONTINUE
      CALL CODIM2(ALF, CHI, NTAB, CHIDUM, ALFA3, 2*PP, XKC)
      J≝⇔<u>†</u> . .
      00 360 P=1.PP
      J=J+2
360
      ALFA2(P,N)=(ALFA3(J+1)=ALFA3(J))/(2.*EPS) = TWIST
      GO TO 500
      CONTINUE
400
1
C.... & CUBIC SPLINE FIT WILL RE USED TO DETERMINE THE CAMBER
C.... OR SLOPE DISTRIBUTION. SPLINT IS CALLED
C.....WHEN THE END POINT DERIVATIVES ARE NOT SIVEN. IT SETS
C.... THE SECOND DERIVATIVE TO ZERO AT THE END POINTS. IF THE
C....END PUINT DERIVATIVES ARE KNOWN TO A HIGH DEGREE OF
C.... ACCURACY, (.1 PERCENT?) THEN SPLIN2 SHOULD BE USED AS IT
C..... NORKS MUCH BETTER
     IFCALEG.O. AND. AN.EQ.O.T
    ICALL SPLINI (NTAB, CWI, ALF, A, B, C, L, G, E, H)
     IF(A1.NE.O. OR AN NE.O.)
    1CALL SPLINZ(NTAB, CHI, ALF, A, B, C, L, G, E, H, A], AN)
£ .
C.... IN THE ABOVE A, B, C ARE THE LOCAL SPLINE COEFFICIENTS
C.... AND L.G.E. AND H ARE WORKING SPACE
     00 430 P=1,PP
```

$M_{1=J-1}$ $Dx=CHICP(P)=CHI(J)$ $IF(DX*LT*0*) = G = TO = 4_{1}5$ $IONTINUE$ $M_{1=NTAB}$ M_{1	T	
IF (DX.LT.0.) GG TO 415 CONTINUE 11=NTAB 1=	T	
IF (DX.LT.0.) GG TO 415 INTINUE II=NTAB II=NT	T	
INTINUE 1=NTAB 1=NTA	T	
NI=MAX0(1;N1) DY=CHICP(P)=CHI(N1) FFIIYPEC_EQ.6) GO TO 420 ALFA2(P,N)=ALF(N1)+DX*(A(N1)+DX*(B(N1)+DX*C(N1)))= O TO 430 HLFA2(P,N)=A(N1)+2.*B(N1)+DX+3.*C(N1)+DX**2 = TWIS N EVALUATING THE ABOVE SPLINE CURVES IT WAS ASSUM	T	
DY=CHICP(P)+CHI(N1) FrITYPEC_EQ.6) GO TO 420 ALFA2(P,N)=ALF(N1)+DX*(A(N1)+DX*(B(N1)+DX*C(N1)))+ NO TO 430 FLFA2(P,N)=A(N1)+2,*B(N1)*DX+3,*C(N1)*DX**2 = TWIS IN EVALUATING THE ABOVE SPLINE CURVES IT WAS ASSUM	T	
DY=CHICP(P)+CHI(N1) FrITYPEC_EQ.6) GO TO 420 ALFA2(P,N)=ALF(N1)+DX*(A(N1)+DX*(B(N1)+DX*C(N1)))+ NO TO 430 FLFA2(P,N)=A(N1)+2,*B(N1)*DX+3,*C(N1)*DX**2 = TWIS IN EVALUATING THE ABOVE SPLINE CURVES IT WAS ASSUM	T	
FIITYPEC.EQ.6) GO TO 420 ALFA2(P,N)=ALF(N1)+DX*(A(N1)+DX*(B(N1)+DX*C(N1)))= TO 430 HLFA2(P,N)=A(N1)+2.*B(N1)*DX+3.*C(N1)*DX**2 = TWIS N EVALUATING THE ABOVE SPLINE CURVES IT WAS ASSUM	T	
NLFA2(P,N)=ALF(N1)+DX*(A(N1)+DX*(B(N1)+DX*C(N1)))= D TO 430 NLFA2(P,N)=A(N1)+2,*B(N1)+DX+3,*C(N1)+DX**2 = TWIS N EVALUATING THE ABOVE SPLINE CURVES IT WAS ASSUM	T	
N EVALUATING THE ABOVE SPLINE CURVES IT WAS ASSUM	T	<u>.</u> .
N EVALUATING THE ABOVE SPLINE CURVES IT WAS ASSUM		
N EVALUATING THE ABOVE SPLINE CURVES IT WAS ASSUM		
N EVALUATING THE ABOVE SPLINE CURVES IT WAS ASSUM		
10 CONTROL POINTS LIED OUTSIDE OF THE TABLE	EN THAT	
·····································		
ONTINUE	ا الم الم الم الم الم الم الم الم الم ال	
VALUATING THE SLOPES USING A USEP-SUPPLIED		
	And a figure the large same a second se	
ALL USLOPERUS.US.UCO.CONVO.N.FTARNI.PP.CHTCO		
TYPEC, ALFASY		
10 460 P=1,PP		
	· · · · · · · · · · · · · · · ·	
	an a	
	GG TO 500 CONTINUE EVALUATING THE SLOPES USING A USER-SUPPLIED SUBROUTINE CALL USLOPE(U5,U6,UCO,CONV2,N.ETA(N),PP,CHICP, ITYPEC,ALFA3) DO 460 P=1,PP ALFA2(P,N)=ALFA3(P)+TWIST CONTINUE CONTINUE	CONTINUE EVALUATING THE SLOPES USING A USER-SUPPLIED SUBROUTINE CALL USLOPE(U5,U6,UCO,CONV2,N.ETA(N),PP,CHICP, ITYPEC,ALFA3) DO 460 P=1,PP ALFA2(P,N)=ALFA3(P)+TWIST CONTINUE CONTINUE

C	00 1000 P=1.PP
	DO 600 N=1.NSPSEC
С	an a
	THE MINUS SIGN BELOW OCCURS BECAUSE THE INDUCED DOWNWASH
- C	EQUALS MINUS THE GIVEN SLOPE.
	$A_{L}FA_{3}(N) = -A_{L}FA_{2}(P,N)$
600	CONTINUE
	IFCITYPES, EQ. 01 CALL STRATZ(ETA, ALFA3, NSPSEC, ETACP,
	IALF, MMU, UCO)
	IF (ITYPES, NE. ON CALL CODIME (ALFA3, ETA, NSPSEC, ETACP,
•	IALF, MMU, XK)
	DO 620 M=1, MMU
	ALFA(P,M) = ALF(M)
620	CONTINUE
	CONTINUE
	RETURM
C	
C	
C	FORMATS
<u> </u>	an a
5000	
5001	
6000	지 나는 것 같은 나는 것 같은 것 같
6001	
	- FORMAT(1 ENTER ITYPEC//)
⊑000⊒ ∆∆∆	FORMAT(+ ENTER NPOLSIZ)
- 00v	4 FORMAT(1 ENTER CHIMAX, SCALE, CHIREF/1/1 POLYNOMIAL COEFFICIENTS 1/)
6445	FORMATCH ENTER TABLE SCALE FACTOR, ALCOR XKC), 1/
4004	1' AN(OR EPS), AND THE TABLE. (CHI=99.STOPS) //) FORMAT(1 ENTER ETA, THISTI/)
0000	END
	SUBROUTINE SPLIN1(N, X, E, A, B, C, L, G, E, H)
	REAL L
	DIMENSION X(N)
	DIMENSION F(N)
	DIMENSION A(N)
	DIMENSION B(N)
	DIMENSION C(N)

		DIMENSION L(N)
		DIMENSION G(N)
	~	DIMENSION E(N)
		DIMENSION H(N)
		C(N)=0
		$B(1) \neq 0$,
		色(別)=0。
		L(I)=X(I+1)=X(I)
		G(I)=(F(I+1)-F(I))/L(I)
	1.0	CONTINUE
		E(1)=0,
		DO 20 I=2, M
		D=2.*(U(J)+L(I))-L(J)*E(J)
		E(I)=L(I)/D
		H(I) = (3 + (G(I) - G(J)) - L(J) + H(J)) / D
	50	CUNTINUE
		E(M)=0'
61		00 30 J=2, M
		B(I)=H(I)=E(I)+B(I+1)
	<u>, 9 c</u>	CONTINUE
		<u>A(I)=G(I)+L(I)+(2.+8(I)+B(I+1))/3.</u> C(I)=(B(I+1)+B(I))/(3.+L(I))
	<i>/</i> / •	CONTINUE
	69 E)	
	· · · · · · · · · · · · · · · · · · ·	RETURN
		ENO
		SUBROUTINE SPLINZIN, X, F, A, B, C, L, G, E, H, A1, AN)
*** ** *****		REAL L
		DIMENSION X(N)
		DIMENSION F(N)
		NIMENSION A(N)
		DIMENSION B(N)
		DIMENSION C(N)

```
DIMENSION L(N)
   NIMENSION G(N)
   DIMENSION E(N)
   NIMENSION H(N)
   M=N=1
   00 10 I=1.M
   L(T) = X(T+1) = X(T)
   G(I) = (F(I+i) = F(I))/L(I)
10 CONTINUE
   0=1,5*1(1)+2,*L(2)
   E(2)=L(2)/0
   H(2) = (3, *G(2) - 4, 5*G(1) + 1, 5*A1)/D
   ₩₽₩₽1
   00 20 I=3.M
   J=1-1
   D=2**(f(1)+f(1))=f(1)*f(1)
   E(I)=L(I)/D
   ₩(I)=(3,*(G(I)=G(J))=L(J)*H(J))/D
20 CONTINUE
   D=2.*U(M) + 1.5*U(M+1)=U(M)*E(M)
   P(H+1)=(4,5*c(H+1)=3,*c(M)+1,5*AN+L(M)*H(M))/D
   丁雲档
   00 30 J=2,M
   P(I)=H(I)=E(I)+B(I+1)
   T=I=1
30 CONTINUE
   B(1)=3[*(G(1)=A1)/(2[*((1)) = 15*B(2)
   HENE1
   F(")=3.*(AN-G(M))/(2.*L(M))- .5*B(M)
   00 40 I=1,M
   A(1)=G(1)+L(1)+(2,+8(1)+A(1+1))/3,
   C(1) = (B(1+1) - B(1))/(3, *L(1))
46 CONTINUE
   A(N) = AN
   c(N) = 0.
   RETURN
   END
   SUAROUTINE STOP2(N, MESAGE, VAL)
DIMENSION MESAGE(20)
```

WRITE(N,1) MESAGE,VAL STOP 13 1 FORMAT(///! ***** 1,2044,1.*****!/! VAL=1,1PE15.7) END

•

.