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A RAPID NUMERICAL SOLUTION TO SUBSONIC FLOW OVER PLANAR
AND AXISYMMETRIC PROFILES AT AN ANGLE OF ATTACK OF 0°

By Vincent R. Mascitti
Langley Research Center

SUMMARY

A rapid numerical solution is presented in this paper for the incompressible flow
over thin planar and axisymmetric profiles at an angle of attack of 0°. The method uses
a finite-difference field solution to the governing equation with a Gauss-Seidel successive
overrelaxation scheme. However, the use of a simple Cartesian grid system restricts
this method to slender profiles. Results are presented for a cambered airfoil, airfoil in
wall effect {two-dimensional flowthrough inlet), body of revolution, and flowthrough
nacelle,

A computer program is presented which can be used for any of the previously men-
tioned cases with simple input changes. Results for compressible flow are available with
the use of the appropriate two-dimensional or axisymmetric compressibility corrections.
Computational time for a typical field calculation of 3000 grid points and 200 cycles
through the field is less than 1 minute with less than 50 000 octal storage on the Control
Data Corporation 6600 computing system at the Langley Research Center.

INTRODUCTION

In the past decade the advent of the high-speed digital computer and the development
of numerical techniques such as finite differences has enabled the aeronautical researcher
to attack many problems which were previously not tractable. Especially in low-speed
aerodynamics, a diversity of problems which consider nonlinear effects with inviscid
formulations have been approached.

Solutions to the subsonic and transonic flow over airfoils are presented in refer-
ences 1 and 2. The method of reference 1 is formulated in terms of the velocity potential
and rapid computational times are realized even for the transonic flow case. However,
extensions of the method to rotational or viscous flow is prohibited. The method of ref-
erence 2 was formulated in terms of the stream function, but it was made clear that the
stream function formulation is probably not feasible for transonic flow because of the
difficulty in evaluating the density function, which becomes double valued in the region of



transonic flow. The transonic flow about slender bodies of revolution was solved in ref-
erence 3 with very good accuracy. Once again the velocity potential formulation was
utilized. The solution to the transonic nacelle problem was performed in reference 4 by
using the streamtube curvature approach.

With these methods available for subsonic and transonic flows, it is appropriate to
consider a general solution procedure for subsonic flows which encompasses these pro-
files and is extendable to rotational and viscous flows.

The purpose of this paper is to present a simple and rapid approach to the general-
ized two-dimensional (planar or axisymmetric) flow problem requiring the solution of
elliptic differential equations. The computer program can be used to reproduce classical
incompressible flow solutions, such as the airfoil and body of revolution. But more
important, the technique can be used as a springboard for more complex problems in
two-dimensional subsonic flow. The program is simple enough to insure that the built-in
algorithm for the present governing equation can be replaced with others corresponding to
different equations. For example, the rotational flow problem with nonuniform upstream
velocity can be solved as in reference 5. A simplified Cartesian grid system which
restricts the calculations to slender sections at an angle of attack of 0° is used. Grid
refinement in the axial direction is employed to provide a better definition of rapidly
changing flow properties. A detailed listing of the computer program with operating
instructions is presented.

Illustrations of program applications are presented for cambered airfoil and airfoil
with thickness in wall or ground effect, a parabolic body of revolution, and a camber-line
nacelle. Results are compared with classical conformal mapping or finite-element sin-
gularity solutions. A comparison with experimental data for a NACA series nacelle hav-
ing thickness and camber, at a Mach number of 0.6 and a mass-flow raiio of 0.787 is also
presented to demonstrate the versatility of the method.

SYMBOLS
Cp pressure coefficient
c chord
i,j index for axial and lateral field points (see fig. 1)
K two-dimensional flow index. If = 0, planar; if = 1, axisymmetric
L matrix size



m/mo

mass-flow ratio (the mass flow captured by the profile compared with the
flow captured in free stream)

iteration number
free-stream velocity

velocity components in the z- and r-directions, respectively, nondimension-
alized to free-stream velocity

coordinates {see fig. 1)

angle corresponding to average trailing-edge slope (positive clockwise, see
fig, 1)

overrelaxation factor

" stream function

upstream value of stream function at profile radius

METHOD OF SOLUTION

The governing equation for steady, irrotational, incompressible flow in two dimen-

sions is given in reference 6 as

a_zk_f_(%.,.a_zi:o (1)
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If K =0, the flow is planar. If K= 1, the flow is axisymmetric. The velocity compo-

nents are given by:
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In the present finite-difference field solution, it was assumed that an infinite field can be
represented by a finite field provided that it is sufficiently large compared with the body.
Furthermore, along the boundaries of the finite field, the boundary condition at infinity
was applied; thatis, v=0 and u=1. Therefore

K+1
l‘bbm,mdarj,r =r

The boundary condition on the surface of the profile is satisfied by

Vaourface = Constant
The present method accounts for unequal spacing around a grid point, but for clarity
the following equations and algorithms are presented for equal spacing. The finite-

difference algorithms for unequal spacing can be readily derived and are presented in
appendix A.

The second-order finite-difference algorithm for equations (1) and (2) with equal
grid spacing is
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For a given number of grid points L, equation (3) yields L simultaneous linear
equations which can be solved by the inversion of an L x I, matrix. However, the result-
ing influence matrix is strongly diagonal and suggests a solution by iteration,

A possible method is the Gauss-Seidel iteration scheme given by
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With this method the calculation marches {fig. 1) from lower left to upper right and
continually updates values of the stream function as they become available. The method
is convenient to program and requires storage only for L number of points. However,
this method was found to converge slowly and required many marches through the field
to obtain an accurate solution.

The method selected for this paper employs the Gauss-Seidel overrelaxation
scheme given by

R+l R R+l R +1 R «
Vij =¥yt G(“’l 0¥ - 1% ¥ ) ¥ (1=v<2) (6)

Utilizing overrelaxation was found to reduce the number.of marches through the
field by an order of magnitude over the Gauss-Seidel iteration scheme (¢ = 1), as indi-
cated in reference 7 when applied to the Laplace equation.

In the case of a profile where the surface stream function is known a priori (sym-
metric airfoil and closed body of revolution), the previous equations are sufficient to
determine the solution anywhere in the field. For the cases where the stream functicn
ahead of and on the surface is unknown (cambered airfoil, airfoil in ground effect, or
nacelle), an additional equation is required. The equation is obtained from the Kutta con-
dition and it is assumed that the flow leaves the trailing edge alined at the average
trailing-edge slope. TFor the trailing edge,

=tan §
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By using equations (2)

B__Wa_z =tan 6
dy/dr

by using the appropriate algorithms
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Equation (7) applies only to the trailing edge. Since the profile is a streamline

itself, all profile points can be set equal to (z,z/i ) and can be continually
2 trailing edge
updated after each sweep through the field.

The grid system incorporated in the present solution can have only one horizontal
grid line intersecting the profile. (See fig. 1.) As a result of the simplified grid system
employed, this present method is applicable only to slender profiles at an angle of attack
of 0°. Naturally, one would not expect accurate results in the region of a blunt leading
edge.

The pressure distribution on various profiles is presented in the next section and
is compared with classical solutions. The pressure coefficient can be calculated by the
following relations:

cp=1-(u2+v2)

where
= -1 %Y
rK ar
v=1u E
dz surface

A listing of the computer program used to calculate the field stream function and
surface pressures on slender profiles is presented in appendix B. Computational time
for obtaining results with this program has been estimated at 1 minute per case for
3000 field points and 200 field sweeps on the Control Data series 6600 computer system
at the Langley Research Center.

RESULTS AND DISCUSSION

The present method has been used to compute the flow field and pressure distribu-
tion on various profiles. The input field size was enlarged until surface pressures did
not vary. Comparisons of results are made with classical or currently used techniques.
All cases computed by the present method have required less than 1 minute computational
time on the CDC 6600 computer. Computer storage is less than 50 000 octal for all
cases. The detailed inputs are presented in appendix B for all cases which were run.



Airfoil With Thickness and Camber

Figure 2 shows the computational grid for the NACA M6 airfoil which has
12-percent-chord thickness and 5.4-percent-chord camber. There are 2091 grid points
in the field, the field extends 1 chord length upstream and downstream, and 2 chord
lengths laterally.

Figure 3 shows the pressure distribution on the upper and lower surfaces. The
solid line represents the solution obtained by using exact potential theory. (See ref, 8.)
The symbols show the results obtained by using the present method. In general, agree-
ment is better on the upper surface where there are more grid points near the surface.
(See fig. 2.) Agreement is poor near the blunt leading edge where the simplified grid
system provides a coarse grid.

Symmetric Airfoil in Wall Effect

Figure 4 shows the computational grid for a symmetric airfoil whose geometry is
given by the following relationships;

. 1/3
r= 0.025E - {1 - 2z)3] (0 £z £0.5)

r= 0.0ZSE - (22 - 1)?] 0.5z =1)

The airfoil has a thickness of 5-percent chord. The wall is placed at 30-percent chord
in the lateral direction, There are 2193 grid points in the field.

Figure 5 shows the pressure distribution on the upper and lower surfaces. The
solid lines represent the solution using a distribution of surface singularities (ref. 9).
The symbols represent the results obtained by using the present method. The agreement
is very good for this thinner airfoil except at the blunt leading edge where the grid spac-
ing is too coarse to provide accurate results.

Parabolic Body of Revolution

Figure 6 shows the computational grid for a parabolic body of revolution with
10-percent-chord thickness. The lateral field extends 1.2 chord lengths with 1071 grid
points,

Figure 7 shows the pressure distribution on the body surface. The solid line repre-
sents the solution obtained by using a distribution of surface singularities. (See ref. 9.)
The symbols represent results obtained by using the present method. Once again, the
agreement is very good in regions where there are grid points close to the surface.



Camber-Line Nacelle

Figure 8 shows the computational grid for a camber-line nacelie which has
2.135-percent-chord camber and a 13.671-percent-chord capture radius. The lateral
field extends 9 capture radii laterally.

Figure 9 shows the pressure distribution on the nacelle surface. The circular
Symbols are the results obtained by using the streamtube curvature method (ref. 4).
The present method, given by the square symbols, shows very good agreement.,

NACA 1-89-100 Nacelle

Figure 10 shows the computational grid and geometry of the NACA 1-89-100 nacelle.
(See ref. 10.) Experimental data for this nacelle was obtained at 3 Mach number of 0.85.
A translating center body was used in the tests to obtain results for different mass-flow
ratios.

The three-dimensional "Gothert" compressibility correction is incorporated in the
present method. Because of the simplified grid system the center-body geometry could
not be represented. However, results can still be obtained for different mass-flow ratios
by deleting the Kutta condition. The Kutta condition or flow direction condition at the
trailing edge sets the value of the surface stream function. If the mass flow is known,
then the surface stream function is known by

‘Psurface m

1|i/(;. My

(See fig. 1.) Since the correct internal geometry is not used, the internal pressure dis-
tribution will be invalid. However, the pressure distribution on the outer surface should
be correct as long as the proper mass-flow ratio is used.

Figure 11 shows the pressure distribution on the nacelle outer surface at a Mach
number of 0.6 and a mass-flow ratio of 0.787. The circular symbols are the experimen-
tal data. The square symbols are the values obtained by the present method. The agree-
ment is very good except in the region of the trailing edge, where the proper flow direction
because of the presence of the center body is not represented. The example illustrates

the versatility of the present method to solve problems which are difficult to handle with
classical methods.



CONCLUDING REMARKS

A rapid numerical solution has been presented for the incompressible flow over
thin planar and axisymmetric profiles at an angle of attack of 0°. The method uses a
finite-difference field solution to the incompressible equation with a Gauss-Seidel succes-
sive overrelaxation scheme. In spite of a simplified grid system and a small number of
surface points, results were in very good agreement with classical solutions for a variety
of cases, The field-point formulation using the stream function is convenient for extend-
ing the present capability to subsonic nonpotential inviseid and viscid flows.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., October 24, 1973,



APPENDIX A

FINITE-DIFFERENCE ALGORITHMS FOR DERIVATIVES
WITH UNEQUAL SPACING

For second-order central difference approximations to derivatives of a function
across an interval:

® Z
o - >
i-1 ah i h i+l
Sketch (a)
the function is of the form
W=ag+agz+ azzz
dy = a1 + 2392
dz 1 2
2
u - 2a
2 2
dz
hecause
¥i-1= % (z = 0)
Yy = ¥_q + 230 + ag0®n? (z = ah)
Wip1 = ¥-1 * (1 + odhay + (1 + a)?n2a, (2 = (1 + a)h)

where ah and h are relative point spacings. (See sketch (a).) As a result,

a2:
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Thérefore

APPENDIX A — Concluded
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APPENDIX B

COMPUTER PROGRAM FOR CALCULATING THE PRESSURE
DISTRIBUTION AROUND SLENDER PROFILES

The calculation procedure described in the main body of the paper for obtaining
pressure distribution around slender profiles has been programed for high-speed digital
computation. The purpose of this appendix is to provide a description of the necessary
input and available output as well as a FORTRAN 1V (ref. 11) listing of the source pro-
gram, Input listings for the profiles studied in the main body of the paper are presented.
The output listing for the cambered airfoil is presented as an example.

Description of Program

The program reads the profile coordinates and field geometry. The grid is gen-
erated and initially labeled as uniform flow. The program marches through the field
updating the value of stream function at each point according to the differential equation.
At the trailing edge the Kutta condition is used instead of the differential equation. When
the field sweep is completed, all profile points are given the same value of stream func-
tion as the trailing edge, and a new sweep is started. The program proceeds for
200 sweeps through the field, at which time the surface pressure coefficients are com-
puted with the latest values of stream function. The results are then printed. Computa-
tional time for the case of 3000 field points and 200 sweeps through the field is 1 min-

ute. The required storage is 50 000 octal on the CDC 6600 computing system at the
Langley Research Center,

Program Listing

The FORTRAN IV listing of the source program used on the Control Data series
6600 computer system at the Langley Research Center is as follows:

DIMENSION XOL{313aYOLT(311+YOLR(3INI+Z{101)1+RIARLY+PST(10128]10
1SLOPET (31 +SLOPER(I1) 4DFLZ(101) +UTAR (41}
REAL MACH,MASS ]
NAMELTIST/NUM/XOL y YOL Ta YOLR RBOL o NX o+ SCALEZ « SCALER s JTE+NELZSeNC, AN
1 +MACHIMASS
SO0 READ{S+NUM)
IF(FOF.5) 200,99
99 WRITE{&,NUM)
P1=3,141592653589793
RBOL=RROL#SART (1 ,~MACH*®2)
DO 1 I=1sNX
YOLT(I)=YOLT{II¥SART (1 .=MACHH#2)
1 YOLB(T)=YOLB({FV*SGRT (] .=-MACH®®2}
SCALEZ=SCALEZ+.1E-0R
SCALER=SCALER+.1F=0R
C GENERATION OF COMPUTATIONAL GRID
AlL=1,

12



APPENDIX B — Continued

RB=RROL #AL
IF{JTELEQ.VIDFLR=.060
IF{JTE,FR, 1160 TOo 17
DELR=RAOL/ (JTE=-1}

17 CONTINUE
TI=24NX=1+1FIX((2#SCALEZ~1,)/NELZS)
ILF=(II-NX)/2+1
ITE=TLE«NX-1
JUSTFIX( (1«+SCALER) #RR/DFLR) +1
IF(JUTELEQ, 1Y JU=IF 1 X(SCALFR/DFLRY +1
R{1y=0.

DO 7 J=2edd

2 RUD=R(J=1)+DELH
IMID=(NX=11/2+1
M) 38 Ir=2+IMID
I=TLF=1R+1
NELZ(Iy=X0L(TRY=XOL{IR-1)

30 CONTINUE
IMF=TLF=(NX=1)/2=]

D0 31 I=1.IMF
DELZ (1¥=DELZS

31 CONTINUE
IMR=T1TF+ (NX=1)/7
ILTM=IMR=-1
DO 32 T=ITETLIM
18=1TE=-ILE-(I-TTF}

AELZ(D =xXoL(Ir+ Ly -xXNL(IAY

312 CONTINUFE
DO 33 T=tMAWI¥
DELZ(TY=NELZS

33 CONTINUF
K=T1TE=1
DO 35 T=TLE.K

35 DELZ{D=XNL{I=ILF+21=-X0L (1-TLF+1}
Z41)=0.

00 34 I=2.11
34 ZATy=Z(T-11+DFLL(]I =1} )
C NUMBERTNG OF ACUNDARY STREAM FUNCTTON
DO 3% I=teIT1
PST(T+2)1=500,
3 PST{T+1}¥=0.
DO & J=2e ) ’
PST {1+ 0)=PSI (12 R (PRI N /NELR) #aNT
DO &4 I=PsT1
4 PST(TIe¥=PST(T=14.0)
C FIELD MARCHTNG LOOPS
K=17-1
L=JJ=-1
ICOUNT=G
10 ICOUNT=TCOUNT ]
N0 5 J=7sL
NG A T=2.K
A:]'
IF(tJeFNLITE V1 WANN {TaGFLTILE 1V ANDL{TLLTLITFE  }IGH TN A
IF(tJFNLJTE) LANNL {TLERL,TITFYIRO TN 11
GO TO 17

11 IF{MASS,.GT.10.060O Tn 15
PSTI(T+ JV=PST{Y s JTE ) #MASS
GO TO A

C KUTTA CONDTTION CALCULATION

15 C= (YOLT(NX=1)=YOLH{NX=1Y1 /(2,2 (XD (NX)=XOL (NX=1Y))
R=DELZ(T+1}/DELZTTY
PST(Tadd=( () +HIREL ¢RYEOST (T4 N=PSTITI+2 4 ) =CaRINFLI{TIH{] ety

1P APST(TaJe 1) =PST [+ )=1Y ) /{2, H¥DFLRYI /(RS2 +AYY
TE(EJENLITEY JANNL (TLFRLTTEYIGA TO A



APPENDIX B — Continued

12 TFtEJuEQe (JTE 1Y w AND (T RF L TLF) JAND L i TLLELTTFIVRO TO A

IF (e F e (JTE=1Y Y AN (T oK G TLEY JAND T LE,TTF Yy
TA=1 . ~YDIR{I-TLE*] V/DELR

R=NELZ(T) /DEL7 (I=1)

PSTLTd)=PST(FaJ) +an=y R )
GIPSTUTI+ =1 R {2,/ ({1 *+0) SNFLRANELRI 2A% (NC=11/ ({1 +AVENFLRASR (Y )y s
IPST(Tede 1P HI2, /(AR (1asBY#NELRPE#NELR) = (NC~1) A TAG (Vv ALENFLR#R LY by +
ZREPSI(T=19J) +PSTUT+ 1NV 8 (2 /(AL +RYSNFLZIT=V P #NFLZ{T=1) 101/
T2, /7(RenNELZ(t=1)2NFLZ(T-1))142./(A%#NFLR
JHDELRY = (1, =812 (NC=1) / {A4NELR*R{ 111 )
4=~PST T4 41

GO TO A

R A=],=¥NLT(I-TLE+*] Y /DFLR
R=NELZ (TY/DFEEZ(I=1)
PST{T+J1=PSTI{Tsd) +aN*(
HIPST(I+ =112 (2 /(A#NELR®NFLR# (), +8) b+ {MC=1) /(R { N EARDFLR
19 (L #8Y 3 aPSTIAT e 1V H (2, /INDFLRONFLR (], +8) b =0 (=13 /{R {1} EDE|F
SH{1.+A1) )
PHAPST(T=1 0 ) aPST{Tala NI R(2, /(A% 4RYHDFLZIT=VI#NFLZ (I =101/
T2,/ (BENELZ(I=1)#DFLZIT=1) )42, A {ARNELESNELRI =¢a=la )3 {MNE=1])
IZR{NHANDELR)Y ¥
4=PST (IS
& CONTINUF
5 CONMTINUE
3 5 [=1ILF+ITE
9 PST{I+JTFI=PST{ITEITE)

IF(TCOUNT EQ.2QUNYG0O Tn 20

GO TO 1p
20 CONTINUE

TT=NX=1
No 14 ¥=2.17
SLOPETAT = (YOLTET+ 1 =vOLT{TI=1 /1 XOL (T4} =XOL (T}

14 SLOPER(TI==1.*{YOLR(T+ 1) ~YOLR(T=11 1 A {X0OL(T+1)=-xnL{T=11)

SLOPET(1}=YOLT{2)/XOL (2}

SLOPER(1Y==1.#YOLR(2) /XNL (2}
SLOPETINXY==1,#YOLT (NX=1) / (XOL {NXY =XOL (NX=1))

SLOPER INX) =YOLR (NA=11} £/ (XALINXY =X (NX=1))

UO=PST {1+ /(P HRI21 28 (NC=1) #NFLR)

IL=TLFE

IT=1TE

IFtITE.EQ DI TL=ILF+1

IFIJTEFO. IV IT=1ITE =]

C CALCULATION OF VELOCITY COMPONENTS AND PRESSHRE COECFICTENT

DO 13 I=ItsIT

A=), ,=YOLTIT=ILE*) V/DELR

UZT=1./((REJTEI +YOLT(T=ILE+]1} 22 (NC=11 SARDELR¥ {1,481

1R (=] JRASH PSS (L4 JTE+2) 4+ (] o+ AV #028PST(ToJTE#1 =il 47, 4p) "
2PST{I.JTEY} /UD

URT=UZT#SLOPET(I«ILE+1 )

UZT=(UZT-14)/ (1e=MACH#42Y 4],

URT=URT/SNRT (1. ~MACH®#2)

CPT=1.-(UZTeRp+URTH#ag)

TF (MACH GTo D1 CPT= ({1, +MACHEE2UCPT/G, } #8083 ,6=1,) 7 (. THMACHRS2)
IF(JTE.EQ,1IGH TO tn

AZ) ,=YOLB(TI=ILE+]) ) /DFLR
UZR=1,/((RUJTE)=YOLB(T-TLE+1}) 2% (NC=1} SARDELR® (], 480018
181, *2.°ﬂ)“951lI!JTF’-‘1.+ﬁ,*“?*DGI(IvJTE “1)+a8a29PSTITJTE=2) } UQ
URB=UZR#SLOPER(I=ILE+]

UZB={UZR=1.)/ (1l e=MACHB#2} 41,

URB=URB/SQRT{1,~MACH#®22)

CPR=1.,~(UZBR#*3+URRR®2)

IF (MACH.GT»e1)CPR=( (1, +MACHB SR 40RO /5 ) 843 ,65=]1,) s (. TEMACH®#2)

18 K=1=1LF+1
WRITE(£4400)X0LIKY sCPT+CPR

400 FORMAT (2X4HXOL=E]2,4 ¢ 2X4HCPT=E12,442X4HCPO=E]12,4)

13 CONTINMUE
GO TO S00

200 SToP

14

END



APPENDIX B — Continued
Input

A single case consists of the pressure distribution around a given profile. It is
hecessary to input the profile and field geometry, planar or axisymmetric code number,
value of overrelaxation factor, Mach number, and mass-flow ratio. For the loading rou-
tine used in the program, any column exce;it the first may be used on the input cards., A
decimal format is used for the input quantities. A description of the required inputs and
FORTRAN variables used by the source program are as follows:

FORTRAN

variable Description
SNUM arbitrary name required by the loading routine to define the input data block
XL, array name for axial profile coordinates
YOLT array name for upper surface coordinates
YOLB array name for lower surface coordinates
RBOL capture radius in percent of chord
NX number of surface points input

SCALEZ  axial extent of field in percent of chord
SCALER  lateral extent of field in percent of capture radius
JTE jth value of approach grid line

DELZS standard axial increment for far field. Multiple of largest surface axial
increment. Must be compatible with SCALE?Z

NC code number for planar or axisymmetric
NC = 1 planar
NC = 2 axisymmetric

AN overrelaxation factor
1=AN<2
MACH free-stream Mach number (use for axisymmetric only)

15 -



APPENDIX B — Continued

FORTRAN Description
variable

MASS mass-flow ratio

$ denotes end of case (column 2)

The system loading subroutine in the program (namelist) is very flexible in that the
order of the input cards is unimportant and successive cases can be run by repeating the
identification and $NUM cards followed by only the changed parameters and a $card.
Experience has shown that 1.85 to 1.95 is a suitable value for the overrelaxation fac-
tor AN. The input listing for each of the profiles is given,

Input for NACA M-6 Airfoil

BNLIM
XL = 0.0 Ju125E=01, f1.25E~-014 J5F=014 Q-TSE'ﬁlt f).”'-_*-l)o_-
Q. 15F+00, 0.2F+00s  G,3F+00. 0.aF+00s o;§E+Qq. NoRE+00s
0.7E+003  0.BE+003  D.BS5F+00s  0,0F+004  D,925F 400+  (0,08F 00, )
0.97SE+00, 0.9A875F+00s N TF+0Lls T T Ta To Ta Ta To Ta (s T
YnLT = 0.0¢ 0,167E=01s 0.7R16=01s  0,4036=01s 0,494F-01, Q.S7IF=01.
T T RAPE 0 . 0.756F<NTa T 0.BA3E=014 C04ROSF=01. 0, 7PRE-01.
© O 0.603F=01.  0.468F-01s  0,306F-01, 06.23F-01. O0,TH5F=01. -
0.172E-f1, (. A8F=07y DabtaF=020 D.P2F=12% Ou.fs Ta Ts Ta Ta T+ Ia
Te + 4 . . L
YoLR = o.;. Io.}-rss-ol. 0.,22E=01% N.27 =01  04303F=01s  0£LAPEE-01, R B
0.347F-01y 0,367E-01, 9,370F=01, 0.39F-01¢ 0,396F-01.
T TU.3R2E-01. 0.34AF-00. TAIPEAE-O T UEISEESRIT aa TR0l T -
B.163E=01e  J.108E=01s  0,59F=D2s  0,P9E=02+s 0.0 Te Ta To To To 1o
Iy To T4 T,
RROL = 0.PE+Ql4 -
Nx = 2‘! _
SCALEZ = g.1£+4014 o L
SCALER” =7 §.1Ev0le -
JTE = 21l
DELZS = 0.1E+004
Ne = 1+
AN = 0.185E+0).
MACH = 0.0 o _ e
MaASS’ = TH.PEL0PG o
FEND
Input for Airfoil in Wall Effect
SMUM ‘
Xot = 0.0 0.125F-01s  0.PSF-014 0.5F=01s  0.75E~01s  9,1F+00

Qo 15F+000  0.2F400s  0,3F400s 0. 4F¢N0 DsSE+00e_ D, 6F+0Rs
0.7E+00% QL RE+D0s  0,85F+00+ 0.9E+00«  0,975E+00 N.,05F+00,
0+G7RE«0N, (eSRTSF+0D DelE+01s Ta Ta Te I Te Io_ Yo T E» YW

YoLT = 040s  0,10455057815034F=N1s  0.1306186A112415E-01 .

0.161781R4ORTLNIF=01r 0,182730733451704F =0T+ 0195824459155 1F=01s
0.2173343043359RF =01 0.230571R14A0PQPF=0, D, 284R4RA6P325404F -1,
(0.24933154761199F=01s  0.P5F=01a 0.24RF=D1s 0sP34F=-N1a  0.196F=0]s
0.16425E-01s  0,122F-01v  0,9A4ART7499Q000QE~02, e
0.677500000000M2F =02+ 0.35656249999999F =02, __U.YRZASISAPLGGGRF =P,
e o B0 T4 Te Fe Ty e Te Ia e 1o I
YaLRrR = Q0+ 0,1045505PRIGOIGE=014 0el30613MA112415F~00, _ . . . _
04161781R406T401E=00s  0,1R200733451704E~-014 _ 0+19FRAPLARI]IS5] 1E-0]
0.7173343963359RF~01s  0,230571814A029PF~0) 0. 244R4R66232%G4F =01,
0.74933154761193F =01y 0,25F-01s 0.26RE=01s 0,234F=01y 0.104F =01,

Gelha25F~01s  0,122F=031ls  0,9646R749909099E=92,

16



APPENDIX B —- Continued

e 0.A77%0000000002E202s 0, 356562640999909F 0%y 0, 1A2AS156249998F 102
o I : e

) 0.04 1+ Ty Tv T4 Fa 1o T To Ts_ —_ i
_ ReaL T D.3E+0%4 _ -
NX = 2l L e e —- - e
SCALEZ = 0.1000000001E+01s, e - e
SCALER = 0.A0Q00000001F+01. . ) e
JTE I A N _ .
DELZS = 0.1E+00% o e e
NE = T ———
AN = 0.195F+01. o .
MaCH = 0.0+ T T
MASS = 0.PE+024 - ,
L REND e e e e S —-
0906 0.808 d.d00 T _ o
010 L0180 L0173 _ o
L0133 .013  L02% R o _
. L016 L0016 95D — oo .
L0182 L018  L07S [
e ..#020 s07a el0D -
L0722 L0722 L1150 .
W023 4027 .200 _ o
0P8 LpPa 300 _ - I
L0P5 L0728 L400 ol _ e
L0255 <025 .500 , e -
e _eU25 W08 L6000 —
LN23 L0270 L7000 _
020 L0700 LBO0 e -
2016 W01A  WR5D -
L0172 L0172 <900
L0010 «01 ﬁ « 975
e w007 eQ07 W50 e e
LI04 004 LTS
002 L007 .988 _ .
g.000 04000 1.000
Input for Parabolic Body of Revolution
ENLM
.%ok = 0 04 GL129E-01s o.?sF 01s  0.5F-01s 7BE-Cle  O0,1E+00.

0,15E+00. 0.2F+08, L2400 . qr+no. 0.GE+Q0,

0.7TE+004  O.BE+n0+  C. RRF+00.V 0. °P+00::‘0 GP5F 00

0.97SF+00 0.9ﬂ75F+@0.' 0,1F+01e Te Ta

‘[.“ '[o Ts I I-c

i

W I+ Ta

YOLT = 0.0 0,7abRTSE-02s 0.,4PR75F-024 0.96F-021  0.13R75¢- 0ls 0., 18F=01+

0.PS5F=01¢ 0.326-01y 0.4PF-01. _0.47999993999990E-01,

0,GF=01+

S 0.4RF=01« Qo 419935000990Q0F - ~0lsy 0,319996G899G99G0F -0l
T ’ 4.18F-01+ 0.,13R74099999990F =01, (,94499995050994F N7

H.258F-NL.

0.48749990959997F ~0Py 0. PGHRTHITIAGAGIF =D2e  DaDy Ta Ts 1o Ta To To
I+ T4 T+ To . I ——
YoLa = 0.0+ 0.176E=01y  0.22F-01s 0.273¢-01. 0.3C3F-01. 1. 3PaF =01,

T H.34TFE=014 Ge36PFE=Cle  0,379F~01+ 0,39F=01y 0.394E-0ls

0.382FE-01+ 0. I4RE-OLy  N.223F-01r 0. 2301+ .]TTF 0].

0.143E‘01, 0. 10RE~-D1, O.GQF—G?- (| o 79F = 02. Delle Te_

Tr To T4 T

)

te 1 1s o

RpOL = 0.0

NX = 21, i P
SCALEZ = 0.1000000001E+0te

SCALER = D.1200000001E+00.

JTE = 1

DELZS . = 0.1F«094

NG = 2

AN = 0,.195E+01 . . N I e
MACH = 0.0

MASS = (.0

FFND

17



APPENDIX B — Continued

0,000 0.0006 0.000

18

2002 L018 L0113
e . +005_ L022 L0255 e
T .009 1027 4050
0164 1038 .07S
LO1R L0372 100 _ .
025 W03% L1150 - _
2032 L0386 <200 .
S 042 2038 L300 S
048,039 L400 _ .
(050 039,500
048 L03R L60D .
2042 L0385 L7009 ) -
L0332 .02”R L.R0D
S 2075 023 L850 _ —_ —_
LR «01R » 900
<016 JO0la 975 ) o
009 W01T 4950 . . - e
005 008 975 ) T
002 2007 L9RA B i
0.000 0.000 1,000
36 51 71 7
1 éiooo o
2 iloon
Input for Camber-Line Nacelle
SNLM
xoL = 0.00 0.125E-01« 0.25F=014 0,5F=0l+ G.75F-01s D,1F+00
0.15F+00. 0.2F+00s C.IF+004 D,4E+000 N.SE+00s 0 ,AE+00s
0.7F+004  0.BE+0Ns  (GL,BSF400,  0,9F+N0e  (,925F+00s  0.85F+0N,
0eQTEF+00s 0,9R75F+00+ QL1F+0te 15 Ta [ T+ Vu To» T'V Te Ia Te
YoLT = 040 B.3TFE=02.  0,813E-NP. 0, A07RE=-01.  0.1285F~01s 0,1607F=01s
T T 0.164E-01,  0L1794E-01s  0.1994F <01+ 0.101F=01s 0,5135F-0)4
0.2101F=n1+ G,19%94F=01s Q,1796F=01¢ 0.164F=01s 0,1a07F=014
0.1255F =04 0,1078F =01, 0,213F=02w Da3ITE=U7 DuQe Te Te To Ta T _
To T4 14 Ty I
YoLn = Q09 =0.37F-02y ~0.RI3F=07y =0, 1078F-N11a =0 1255F=N14 =0,L407F=014
T0:164E=01. -0,1794F=01y =0.1004F—01, -0,2101¥-00. -0, 2135F-0%.
“0.2101E=014 ~0,1994E-01s =0,1794FE=01s =0,164F =01l ~0,1407F=014
=0.1255E=014 -0.)0TAF=N1v =0 R13F=0P¢ =0.37E-02+ BHafa Lo Is Ta [+ Ty
Te To T4 T4 T
RROL = 0.Y3ATIE+00
NX = 21,
_SCALEZ = G.1E+014 L _ . S
SCALE® =7 a,9E+014
JTE = G,
DEL?ZS = 6,5F-014
NE = Py
AN = 0.1ASFE+01.
_ MaCH = 0.0 e o -
MASS = 0.PE+0?4
. SEND .
Input for NACA 1-89-100 Nacelle
SNUM - .- e T e — e e e
xaL = 0.0+ 0 NZ8E-01, 0,35E<FTy 0.56=0T+ 0. IE+00, 0. 18E+00v 0265005
N 0.2°€+00, ~0,3E+00y_ 0,35E+G0, 0.4E+00y  U.45E+00y  U.BE*0G,
0.55E+00,  0.6E+00s 0.85E400 0.7E+00s 0,73E+00% U, BF*00, T
—mimm Q4 BSES G0, 0.9E+00s “0.95E400s D.9TGF+00 0.5875E+00, UL.IF+0T, T
YOLY = 0.0, 0,413€-02y 0,604E-02, 0,863E-02, 0.1229E-01, 0.1488E=0Ts
- 0.1675E-0Ty 0,1A0BE-01, 0,1885E-01, 0.1904E-01, 0:1904E<6Y, —
_0+1306E-01y  0.1904F-0Ts 0,1904E-01s 0.1904E-01s 01904601, T



APPENDIX B — Concluded

04E = gl., 0,1894£-01y  0,1756E=01s 0,1577E-01, E:iéi?ﬁ;i;‘”’”

0,191 _
0.,717E=07, JTSF-nPo___ D lll?ilj:wgu?_)_k__ﬂ Oy B L
YOLR 0,04 =04 16?2657'2674F 03y ~0,B5E=03y =0a163E~02e ~0epIF-02y
T Ty, BORE 05 ~0.046FE =07y —0+6A8E-02y —0,715F~02s -0.75E=02y =0, 7SE-024
. L0, 76F =02, ~047GF=02s =0,75E=02s =-0,70FE=02y =0.75E-02, S0 TSE-02, B
) T -0.75FE-0P, -0.74AE-07, =0,531F- oa.'-o 152F=02s —0.46FE-03y “0, N 7E-03s
9.0, e
0.154 OQF\-OOoW? e o
25,
Da.1Fsily —
AL T0.9F+01,
E By
DEL7ZS = 0.1F+00, T i
NC = Be . . — . I
AN = 0.185E+01,
MACH = 0.6F+00s S
MASS = 0.7RTE«Q0Dy —— e R .
SEND

Output

The cutput listing consists of the upper and lower surface pressure coefficient.

sample output listing is presented for the cambered airfoil case.

XOL= 0. cPT= =2.ART&F=-01 PRz =G, 4951F=i:}
X0l=  1,2500F-02 C©PT= =G,2217F-01 PRz -9,49A3F-0)
X0L=s  2,.5000E-07 PT= =6,55RGF =02 C(PR= =2,7R40F=-01
C X0L= 5.0000F=02 cPT= -2,72256-01 cPu= =3,1979€-01
X0L=  T7,.5000F=02 CPT= =3,19275F=01 CPA= =3 {IRPAF=(]
X0L= 1.0000F~0) RT= =4,0671E=01 (0P3= -2,3054F-")
XOL=  1,5000E<01 CPT= =5,2227E=-01 0PR= =2,30072F=1]
X0L=  Z2.,0000F=01 CPT= =0,4801F~01 CPRz= -2,022RFE~1
X0L= 3,000C0E-01 ¢PT= —-5,.8010F=-01 CPR= =1.5511FE=i1
_X0L= _4,00006=01. CPT= -4,R87%F€=-01_ Coa= =1,5948€-491
X0L= S5.8600F~01 PF= =3,53%4F-0] CPR= ~]1,7272F-01

X0L= 6,0000E=01 CPT= =2,1705E-01 CPR= -1.,R157E-¢1

X0L= T.0000E=-01 £PT= -1,3615F-0]1 CPAR= -1,R)44F-0]

X0L= B.0000E~01 CPT= =7,0207F-03 (CPR= «1,524GF=01

X0L= B.50¢00F-01 ¢PT= &4 17ROF=0? CPRz -0,9A/00F=77
_A0L=. 9,00Q0FE=-01 (PF2  0,4420F-02 CPR= -A 4675E-02
XOL=  9.2500F=01 rPT= 1,136A2F=-01 CPR= =-3,103E-02

XOL=  9,5000F-01 rPT= 1,3B21F-01 CPR= =] ,PH43FE=(]

XxOL= 9,7500F=01 CPT= 1,8229E~-01 C€OA= A,3IG5K1F-i2

xOL= 9,B7S0F=01 CoTf= 2,1151F=0]1 rPAE= 1.0A25F-01

XxOL= 1,0000F+00 PT= 2,6196F-01 CPR= 1,5993F=21

A
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Figure 1.- Field description.
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Figure 2.- Computational grid for NACA M6 airfoil.




Exact solution (Ref, 8)
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Figure 3.- Pressure distribution on NACA M6 airfoil.
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Figure 4.- Computational grid for airfoil in wall effect.
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Figure 5.- Pressure distribution on airfoil in wall effect.
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Figure 6.- Computational grid for parabolic body of revolution.
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Figure 7.- Pressure distribution on parabolic body of revolution,
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Figure 8.- Computational grid for camber-line nacelle.




-4 - O Streamtube curvature method o

[0 Present method
a m

et
Outer surface

3‘5&6 O
S Do‘j & Uoh dj@d@

] a

Inner surface
6 %% - f
P

pCg f EPDQJD%

1.0,

Figure 9.- Pressure distribution on camber-line nacelle.
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Figure 10.- Computational grid for NACA 1-89-100 nacelle.




-1.25 QO Experiment (ref, 10)
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Figure 11.- Pressure distribution on outer surface of NACA 1-89-100 nacelle.
M = 0.6; m/mo = 0.787.

NASA-Langley, 1972 L-8904
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