https://ntrs.nasa.gov/search.jsp?R=19740008691 2020-03-23T10:53:23+00:00Z

NASA CONTRACTOR REPORT

CR-237

ASA

NASA CR-2375

DEVELOPMENT OF A MERCURY ELECTROMAGNETIC CENTRIFUGAL PUMP FOR THE SNAP-8 REFRACTORY BOILER DEVELOPMENT PROGRAM

by R. A. Fuller and A. W. Schnacke

Prepared by GENERAL ELECTRIC COMPANY Cincinnati, Ohio 45215 for Lewis Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • FEBRUARY 1974

1. Report No. NASA CR-2375	2. Government Accessi	on No.	3. Recipient's Catalog	No.
4. Title and Subtitle DEVELOPMENT OF A MERCURY ELECTROMA		AGNETIC	5. Report Date February 1974	
CENTRIFUGAL PUMP FOR TH	E SNAP-8 REFR	ACTORY	6. Performing Organiz	ation Code
BOILER DEVELOPMENT PROC	GRAM			
7. Author(s)			8. Performing Organiza	ation Report No.
R. A. Fuller and A. W. Schnac	ke		None	
9. Performing Organization Name and Address		1	0. Work Unit No.	
General Electric Company			11 Contract or Creat	Na
P.O. Box 15132			NAG 9 10010	140.
Cincinnati, Ohio 45215		L.	NAS 3-10010	d Period Covered
12. Sponsoring Agency Name and Address			Gentur et an	
National Aeronautics and Space	Administration	Ļ	Contractor R	eport
Washington, D.C. 20546			 Sponsoring Agency 	Code
15. Supplementary Notes			<u> </u>	
Final Report. Project Manager	. Edward R. Fu	rman. Power Svste	ms Division. NA	SA Lewis
Research Center, Cleveland, O	hio	, ,	,	
16 Abstract				
An electromegnetic nump in w	high programs is	dowalanad in manage	my because of th	
An electromagnetic pump, in w	aunant which fi	aeveloped in mercu	he weltere indue	le inter-
action of the magnetic field and	current which if	ows as a result of t	ne voltage induc	
the mercury contained in the pu	mp duct, was de	veloped for the SNA	P-8 refractory	boller
test facility. Pump performance	e results are pr	esented for ten auch	configurations	and two
stator sizes. These test result	s were used to d	esign and fabricate	a pump which n	let the
SNAP-8 criteria of 530 psi deve	SNAP-8 criteria of 530 psi developed pressure at 12,500 lb/hr. The pump operated con-			d con-
tinuously for over 13,000 hours	without failure	or performance deg	radation. Inclu	ded in
this report are descriptions of	the experimental	equipment, measu	rement techniqu	es, all
experimental data, and an analy	sis of the electr	ical losses in the pu	1mp.	
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
Electromagnetic pump		Unclassified - u	inlimited	
Mercury				
Nonwetting				
Multiple stage duct				Cat. o3
19. Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*
Unclassified	Uncl	assified	76	\$3.75

ļ

ì

* For sale by the National Technical Information Service, Springfield, Virginia 22151

TABLE OF CONTENTS

		Page
I	SUMMARY	1
11	INTRODUCTION	2
III	TEST FACILITY	4
IV	PUMP TEST PROGRAM	11
	Conclusion	38
v	ANALYSIS OF MERCURY EM PUMP LOSSES	42
	REFERENCES	49
	APPENDIX A - Original Recorded Data	50
	APPENDIX B - Reduced Data	60

Figure	No.	<u>Page No</u>
1	Photograph of a Model Mercury Electromagnetic Pump	3
2	Isometric Drawing and Schematic of Mercury Pump Test Facility	5
3	Calibration Curve for Mercury Flowmeter	6
4	Schematic Diagram of Mercury Pump Test Facility Power and Instrumentation	10
5	Original EM Pump Duct Configuration	12
6	Performance Curves for Original Pump Configuration	14
7	Configuration of EM Pump with Modification No. 1	15
8	Performance Curves with Modification No. 1	16
9	Configuration of EM Pump with Modification No. 2	18
10	Performance Curves with Modification No. 2	19
11	Configuration of EM Pump with Modification No. 3	20
12	Performance Curves with Modification No. 3	21
13	Configuration of EM Pump with Modification No. 3A	23
14	Performance Curves with Modification No. 3A	24
15	Configuration of EM Pump with Modification No. 4	25
16	Performance Curves with Modification No. 4	26
17	Configuration of EM Pump with Modification No. 5	27
18	Performance Curves with Modification No. 5	28
19	Configuration of EM Pump with Modification No. 6	29
20	Performance Curves with Modification No. 6	30
21	Configuration of EM Pump with Modification No. 7	32
22	Performance Curves with Modification No. 7	33
23	Configuration of EM Pump with Modification No. 8	34
24	Performance Curves with Modification No. 8	35
25	Configuration of EM Pump with Modification No. 9	36
26	Performance Curves with Modification No. 9	37
27	Configuration of EM Pump with Modification No. 10	39
28	Performance Curves with Modification No. 10	40
29	Configuration of Final EM Pump Design	41
30	Pump Vector Diagram	44

LIST OF TABLES

|--|

I	THERMOCOUPLE LIST	8
II	LIST OF PRESSURE GAGE	9

I. SUMMARY

An electromagnetic pump, in which pressure is developed in mercury due to the interaction of the magnetic field and current which flows as a result of the voltage induced in the mercury contained in the pump duct, was developed by General Electric for the SNAP-8 refractory boiler test facility.

Pump performance results are presented for ten duct configurations and two stator sizes. These test results were used to design and fabricate a pump which met the SNAP-8 criteria of 530 psi developed pressure at 12,500 lb/hr. The pump operated continuously for over 13,000 hours without failure or performance degradation.

Included in this report are descriptions of the experimental equipment, measurement techniques, all experimental data, and an analysis of the electrical losses in the pump.

II. INTRODUCTION

Electromagnetic pumps, due to their inherent reliability, are attractive to pump potentially hazardous fluids or in a system that must be kept hermetically sealed. Experience at General Electric has shown that the alkali metals can be pumped reliably at temperatures as high as 2400[°]F. Thousands of hours of pump time have been accumulated at General Electric on electromagnetic pumps without a failure.

For this reason a test program was undertaken to develop an electromagnetic pump for mercury, which, unlike the alkali metals, is a non-wetting fluid, for use in a refractory metal boiler test facility as part of NASA contract NAS 3-10610.

Background Information

The early work in electromagnetic pumps is summarized by Trocki,⁽¹⁾ Barnes and Cage.⁽²⁾ This work was primarily concerned with the pumping of the alkali metals.

The advent of the Systems for Nuclear Auxiliary Power (SNAP) Program revived an interest in the development of an electromagnetic pump for mercury. Some preliminary work and a model (Figure 1) were completed by Collins⁽³⁾ to develop a high head mercury pump. Rhudy⁽⁴⁾ investigated the use of an electromagnetic pump for non-wetting metals and tested several models. These investigators did not develop their investigations enough to be able to design a prototype pump.

The development described herein augments these investigations in the development of a prototype pump.

Figure 1. - Test model mercury electromagnetic pump.

III. TEST FACILITY

The mercury electromagnetic pump test facility, shown isometrically and schematically in Figure 2, consists of the following major components: electromagnetic pump stator with duct, throttle valve, orifice and bypass, surge tank, water cooled heat exchanger, EM flowmeter and dump tank. The instrumentation provided were chromel-alumel thermocouples, bourdon pressure gages, voltmeter, ammeter and wattmeter.

Two electromagnetic pump stators were used to develop the mercury pump. The first stator was a General Electric model 5KY416PB-1, threephase, 60 cycle rated at 460 volts and 222 amperes. The stack accommodated a 6.5-inch-diameter by 12-inch-long duct. The second stator was a General Electric model 5KY416PL-1, three-phase, 60 cycle rated at 550 volts and 270 amperes. This stack accommodated a pump duct 6.5-inchdiameter by 16 inches long.

The throttle valve is a standard "HOKE" 1/2 NPS, Catalog No. 433V8Y, bellows sealed with stellited plug and seat. The orifice diameter of this valve is 5/16 inch diameter. The orifice, by-pass section consists of one of the "HOKE" valves in parallel with an orifice section. The orifice section consists of a .147-inch-diameter bore in a .635-inch-diameter tube. The orifice assembly was calibrated at the Ohio State University hydraulic test facility. The results of this test are shown in Figure 3 which represents a pressure drop of 10 psi at 2260 lb/hr and 300 psi at 12,500 lb/hr. These pressure drops assure the readability of the pressure gages over the anticipated range of test operation.

The surge tank consists of a short section of 2-inch pipe capped at one end and reduced to line pipe size at the other end for connection into the facility. Venting is provided at the top of the surge tank to allow for the removal of entrained gases in the mercury, and to assure that the facility is completely full of mercury.

The EM flowmeter was installed as a means of detecting the conditions at which mercury wetted the stainless steel piping. However, initial testing showed the flowmeter did not provide sufficient output signal and throughout the test program gave no indication of wetting.

The dump tank is fabricated from a section of 8-inch Schedule 40 pipe with end caps, fill, vent and drain lines attached.

The material of construction of all components was Type 316 stainless steel which were acid cleaned prior to installation. All welds were inspected radiographically and the entire facility subjected to helium mass spectrometer testing prior to operation.

The thermocouple locations are tabulated in Table I and their respective locations shown on the schematic (Figure 2). The thermocouples are chromel-alumel with the bare wire tack welded to the pipe to form the junction. Temperatures were read on a calibrated 48 point Leeds and Northrup temperature indicator.

The pressure gages are tabulated in Table II and are also located on the schematic. The gages are Ashcroft Duragages with Type 316 stainless steel bourdon tubes which were cleaned with alcohol to remove residual oil used during manufacture.

The power instrumentation, shown schematically in Figure 4, is comprised of the following:

- General Electric P3 ammeter, 5 amps full scale, accuracy 0.2% of full scale.
- General Electric P3 voltmeter, 600 volts full scale, accuracy 0.2% of full scale.
- Scientific Columbus 3-phase wattmeter and transducer, Model No. 32K605010, accuracy 0.2% full scale.
- Three Weston current transformers, Model No. 327, 25 VA, Freq. 25-500, 2500 volts.

TABLE I

THERMOCOUPLE LIST

TC No.	Location
1	Pump duct temperature - inlet
2	Pump duct temperature - middle
3	Pump duct temperature - discharge
4	Stator winding temperature
5	Stator winding temperature
6	Orifice temperature
7	Hx inlet temperature - hg
8	Hx exit temperature - hg
9	EM flowmeter pipe temperature
10	Flowmeter signal
11	Enclosure ambient temperature
12	Pump duct temperature - inlet
13	Pump duct temperature - middle
14	Pump duct temperature - exit
15	Pump duct temperature - one half the distance between TC-14 and TC-16 on the domed cap
16	Pump duct temperature - exit pipe
17	Pump duct temperature - 180 ⁰ T-14
18	Pump duct temperature - one stator slot to the left of T-14
19	Pump duct temperature - one stator slot to the right of T-14
Note:	1. Thermocouples 1, 2, 3 were all installed in line on duct along one axial stator slot.
	2. Thermocouples 12, 13, 14, 15, 16, 17 were all installed in line

2. Thermocouples 12, 13, 14, 15, 16, 17 were all installed in line on duct along one axial stator slot.

TABLE II PRESSURE GAGE LIST

^P 1	Pump discharge pressure - 0-600 psi + 5 lb subdivisions
^P 2	Orifice inlet pressure - 0-600 psi, 5 lb subdivisions
^Р з	Orifice inlet pressure - 0-300 psi, 5 lb subdivision
^P 4	Orifice inlet pressure - 0-160 psig, 2 lb subdivision
^P 5	Orifice discharge pressure - $0-30$ psig, $1/2$ lb subdivision
^P 6	Pump suction pressure - 0-60 psig, 1 1b subdivision
^P 7	Dump tank pressure, 30-in. vacuum to 60 psig, 1 in. and 1 1b subdivisions

Figure 4. Power Schematic Mercury Electromagnetic Pump.

IV. PUMP TEST PROGRAM

GENERAL OPERATING PROCEDURE

Prior to the testing of a particular pump duct configuration, each pump duct was radiographically inspected to assure weld integrity and each installation was helium mass spectrometer tested to assure maximum weld and component quality. In addition, all components were cleaned to remove residual oils that might have accumulated during manufacture.

At the completion of each mass spectrometer test the loop instrumentation, EM pump stator cooling air and heat exchanger water were activated. The loop, if evacuated, was filled; if not, was evacuated to approximately 10 microns. At all times a liquid nitrogen cold trap was in the line between the facility and the pumps to prevent oil from diffusing into the facility.

The dump tank pressure was then increased with the equalizer valve closed until pressure gage P-5 showed a pressure of 5 to 15 psig. At this time the mercury EM pump power was activated and set a low power to circulate the mercury at a low flow rate to remove entrained argon at the surge tank.

Performance of any particular pump duct configuration was obtained by setting pump power at several power levels. At each power level data was taken with flow through the orifice and the bypass line, flow through the orifice only, and shutoff. At shutoff only the pump power and pressures were read to keep the duct temperature rise to a minimum.

The above operation was deviated from when, at high pressure drops across the throttle valve and bypass valve, chatter occurred. At this time the valves were throttled until chatter ceased.

PUMP DUCT CONFIGURATIONS

The original pump duct configuration, shown in Figure 5, is a twostage duct. The outside of the duct consists of a section of 6 inch

Figure 5. Original Pump Duct Design.

Schedule 40 pipe with 6-inch caps and 3/4-inch pipe attached at each end. The OD of the assembly is machined to fit the 6.5-inch-diameter of the stack in the stator. The internals of the duct, from suction, to discharge, are:

- A plate welded to the 3/4-inch suction pipe inside the 6-inch cap. The purpose of this plate is to act as an end ring.
- An iron core inside a stainless steel container. The iron core provides a flux path and improves the power factor.
- 3. The center stage plate provides a means for directing the mercury flow from the high pressure, high velocity region at the outer periphery of the 6-inch duct to the low pressure, low velocity region of the core of the duct. The plate consists of 1/4-inch holes drilled radially into the edge of the plate to provide a path for the mercury. The discharge of this pump consists of a flat plate with 6 axial vanes welded at 60° intervals to the discharge cap.

The developed pressure versus flow for this pump configuration is shown in Figure 6. The performance of this duct is obviously erratic and an inspection of the raw data in the appendix shows two possible reasons:

- 1. The pump suction pressure (P6) appears to go negative regardless of loop pressure. This could indicate pump cavitation.
- The pump duct discharge temperature (TC No. 3) shows an unexpectedly high temperature. An examination of the duct drawing indicates that gas may be trapped in the discharge end of the duct.

Since the shutoff pressure of the pump (200 psi at maximum volts) was much less than the desired 530 psi at 12,500 lb/hr mercury flow, it was decided to proceed to the next duct configuration. The facility would be modified to alleviate the problems detected.

MODIFICATION NO. 1

The pump duct was modified by installing axial baffles as shown in Figure 7. The purpose of the axial baffles was to minimize any internal fluid circulation due to secondary field effects.

Venting was also provided in the discharge cap to eliminate possible gas entrapment.

Figure 6 SNAP-8 Centrifugal EM Pump - Original Design -Developed Pressure Versus Flow at Several Voltages.

Figure 7. Pump Duct Modification No. 1.

Figure 8. SNAP-8 Centrifugal EM Pump - Modification #1 -Developed Pressure Versus Flow at Several Voltages.

Concurrently, the facility was modified by removing the pump suction valve, installing a bypass valve around the orifice and the surge tank.

The developed pressure versus flow for this duct is shown in Figure 8. The conclusion is that axial baffles are detrimental to the pump's performance. However, an inspection of the raw data in the appendix shows that the pump duct axial temperature profile is much improved and that the negative suction pressure problem has been solved.

PUMP DUCT MODIFICATION NO. 2

For this test the duct was modified by removing the axial baffles, iron core and center stage from the pump duct as shown in Figure 9. The pump is now single stage with the flat plate and axial vanes located in the discharge cap.

The developed pressure versus flow for this duct at different voltages is shown in Figure 10. Compared to the previous duct performances this duct is a much better performer. It has been postulated that the addition of wetted surface in the pump increases the frictional pressure losses, thus off-setting any possible electrical gains due to the addition of the iron and the minimizing of secondary flows. In addition, the holes in the suction end of the pump internal to the duct as well as the holes in the center stage of the original configuration created significant hydraulic losses. Unfortunately, time did not permit the hydraulic testing of the duct to determine hydraulic losses.

PUMP DUCT MODIFICATION NO. 3

Pump duct modification No. 3 consisted of installing the iron core without the center stage in the pump duct. A spider consisting of 3-1/2-inch-diameter rods was attached at the suction end of the iron core for centering purposes and the end plate was welded to the 6-inch suction cap to promote duct drainability. This configuration is shown in Figure 11.

The performance results for this configuration are shown in Figure 12. However, the welding of the end plate and the spider installation might account for the poor performance.

Figure 9. Pump Duct Modification No. 2.

Figure 11. Pump Duct Modification No. 3.

. –

-

Figure 12. SNAP-8 Centrifugal EM Pump - Modification #3 - Developed Pressure Versus Flow at Several Voltages.

PUMP DUCT MODIFICATION NO. 3A

For this test the spider was removed and a new end plate installed and not welded to the end cap as shown in Figure 13. The results are shown in Figure 14 which indicate that the removal of the spider and the unwelding of the end plate greatly improved performance. However, when compared to modification No. 2 (Figure 10), it is postulated that the additional wetted surface within the pump duct offsets any electrical improvement made by the addition of the iron core. This is probably true only if the pumped fluid is non-wetting.

PUMP DUCT MODIFICATION NO. 4

Pump duct modification No. 4 consisted of installing two diffuser stages (Figure 15) into the 6-inch pipe. The diffusers were made from sections of 3-inch OD x 0.065-inch wall tubing 120° of arc, 1/4-inch wide. The gap at the periphery is 1/4 inch and the diameter of the orifice at the center is 1-1/2 inch.

The performance results for this configuration are shown in Figure 16. The poor results are probably due to the fact that the discharge impeller could not be welded against the vanes in the discharge cap, and the center orifice was too large. For this configuration, the three-phase connections were changed to reverse the electrical rotation of the field. It is interesting to note that the pump is insensitive to phase rotation.

PUMP DUCT MODIFICATION NO. 5

In pump duct modification No. 5 (Figure 17), the discharge impeller plate was replaced by the flat plate and the center stage orifice reduced from 1.5 inch to 1 inch diameter. The suction end plate was not welded to the suction end cap.

The performance data for this duct is shown in Figure 18. These data indicate the best performance yet but not near the necessary 530 psi at 12,500 lb/hr mercury flow.

PUMP DUCT MODIFICATION NO. 6

Pump duct No. 6 (Figure 19) is exactly the same as No. 5 with the exception of the elimination of the suction end plate to make the pump completely drainable.

Figure 13. Pump Duct Modification No. 3A.

SNAP-8 Centrifugal EM Pump - Modification #3A - Developed Pressure Versus Flow at Several Voltages. Figure 14.

Figure 15. Modification No. 4.

Developed Pressure, psi

Figure 17. Pump Duct Modification No. 5.

Figure 18. SNAP-8 Centrifugal EM Pump - Modification #5 - Developed Pressure Versus Flow at Several Voltages.

Figure 19. Pump Duct Modification No.6

A comparison of the performance curve (Figure 20) with that of No. 5 (Figure 18) indicate no loss of performance without the end plate.

PUMP DUCT MODIFICATION NO. 7

At this stage in testing, the decision was made to test a three-stage duct with a large stator. The stator utilized is one scheduled for installation in the Boiler Development Test Facility and is described as follows:

Model No. 5KY416PL1 No. 8332944 Three phase, sixty cycle The pump is rated at 160 gpm of NaK at 1400[°]F, 70 psi at 430 volts and 270 amperes. Power factor is 0.18. Along with the stator the power supply and capacitor banks were utilized to supply adequate power over the full range of interest.

The pump duct configuration is shown in Figure 21 and consists of two impeller type stages as used in modifications No. 5 and 6 and a flat plate welded to the straightening vanes in the discharge cap. The developed head versus flow curve is shown in Figure 22. The results from testing this configuration prove that a 500 psi mercury pump is feasible. However, the second stage of the test duct was deformed during testing.

The second set of data on this curve is to show the effect of the shift of the pump duct within the magnetic field. The duct was shifted 7/8 inch in the axial direction. The results were inconclusive.

PUMP DUCT MODIFICATION NO. 8

Pump duct modification No. 8, shown in Figure 23, is a three-stage pump similar to modification No. 7. The vanes were thickened to prevent deformation and the orifice diameter was changed from 1 inch to 3/4 inch diameter. The performance curve shown in Figure 24, shows an increase in performance when compared to pump modification No. 7.

PUMP MODIFICATION NO. 9

Pump modification No. 9 is similar to No. 7 except that the vanes are thickened and is similar to pump No. 8 except that the orifice diameter was increased to 1 inch diameter. This configuration is shown in figure 25. A comparison of performance curves for modifications 8 and 9 suggests a somewhat poorer performance for pump duct No. 9.

Figure 21. Pump Duct Modification No. 7.

Figure 22. SNAP-8 Centrifugal EM Pump - Modification #7 -Developed Pressure Versus Flow at Several Voltages.

į

Ì

Figure 23. Pump Duct Modification No. 8

Figure 24. SNAP-8 Centrifugal EM Pump - Modification # 8 -Developed Pressure Versus Flow at Several Voltages.

Figure 25. Pump Duct Modification No. 9

Figure 26. SNAP-8 Centrifugal EM Pump - Modification #9 -Developed Pressure Versus Flow at Several Voltages.

PUMP DUCT MODIFICATION NO. 10

Pump duct modification No. 10, shown in Figure 27, is a three-stage impeller type pump. An impeller was installed on the discharge end. The performance curve, shown in Figure 28, indicates that a current path must be provided for the current generated in the mercury. Therefore, a flat head is not desirable. FINAL DUCT DESIGN

The final duct design is shown in Figure 29. The primary difference between this configuration and modification No. 9 is that the vanes have been reduced from 1/4 inch to 3/16 inch thickness.

CONCLUSIONS

Mercury can be pumped by the electromagnetic centrifugal principle. This indicates that problems of sealing and lubrication are eliminated and one of the sources of contamination of the refractory metal boiler being tested is eliminated. Pump performance could be improved with further studies on materials of duct construction which mercury would wet and possibly improving the hydraulic losses within the pump.

t

ł

ĺ

Figure 27. Pump Duct Modification No. 10

Figure 28. SNAP-8 Centrifugal EM Pump - Modification #10 -Developed Pressure Versus Flow at Several Voltages.

Figure 29. - Three stage mercury centrifugal EM pump.

V. ANALYSIS OF MERCURY EM PUMP LOSSES

The mercury EM pump has a very low efficiency (less than 1%). The major losses which can be identified include the following:

- 1. Pump duct wall eddy current loss
- 2. Mercury eddy current loss
- 3. Hydraulic losses
- 4. Pump winding I²R loss
- 5. Pump core loss
- Miscellaneous eddy current loss (largely in end regions of the pump containment vessel and enclosed mercury and stainless steel structure).

The recorded data for a typical test point, taken on the three stage 15-inch stator configuration, will be analyzed to determine an approximate distribution of the measured input power among the above-listed loss components.

1. Pump Design Data (Modification No. 9)

Stator stack ID	6.625 inch
Stator stack OD	16.72 inch
Stack length	15 inch
Slot depth	3.182 inch
Number of poles	2
Number of phases	3
Winding pitch	1.0
No. of slots	24
Winding type	Double layer
No. circuits in parallel	2
No. turns per coil	16
Conductor dimensions	l0 strands (0.0571-india. wire)
Winding connection	delta

Pump	Test Data (Modification No. 9)	
	Three stage pump pressure rise (shut off)	480 psi
	Line voltage (phase voltage)	535 V
	Line current	346 amps
	Phase current	200 amps
	Input power (3 phases)	86 KW
	Pump	<pre>Pump Test Data (Modification No. 9) Three stage pump pressure rise (shut off) Line voltage (phase voltage) Line current Phase current Input power (3 phases)</pre>

Note: Variation of measured electrical parameters with pump flow was found to be negligible.

VECTOR DIAGRAM

Figure 30 shows the pump vector diagram based on the measured data. The diagram applies to one of the two parallel circuits in each phase.

In Reference 5, pp. 226-235, it is shown that for a 2-pole stator with no inner magnetic structure the total flux crossing the non-magnetic space from pole to pole is given by:

$$\rho_{\rm p} = 6.38 \text{ AL} \tag{1}$$

where A is the peak ampere turns per pole for a sinusoidally distributed mmf, and L is the stack length in inches.

It is also shown that for a 2-pole stator the flux density in the non-magnetic space is constant in magnitude and direction (directed along a line joining the pole centers) and of magnitude given by

$$B = \frac{3.19A}{R}$$
(2)

where R is the stator core inner radius.

The vector diagram of Figure 30 was determined by establishing consistency between the useful flux per pole as given by equation (1) above and the pump voltage equation relating the effective (air gap) voltage and the useful flux per pole. This equation is:

$$V = 4.44 \times f \times N \times K_{d} K_{p} \times \rho_{p} \times 10^{-8}$$
 (3)

For the diagram of Figure 30, this equation becomes

$$\rho_{\rm p} = \frac{224}{4.44 \times 60 \times 64 \times 0.96} \times 10^8$$

= 1.37 x 10⁶ lines

VECTOR DIAGRAM

Figure 30 shows the pump vector diagram based on the measured data. The diagram applies to one of the two parallel circuits in each phase.

Figure 30. Pump Vector Diagram.

Consistency with equation (1) is shown as follows:

$$\rho_p = 6.38 \text{ AL}$$

= 6.38 x 2.7 x 64 x 86 x 0.96 x 15
= 1.37 x 10⁶ lines

A is given by the usual expression for peak fundamental ampere turns per pole,

$$A = 2.7 \times NI \times K_{d}K_{p}$$
(4)

where N is the turns in series per pole and I is the magnetizing component of the current carried by these turns.

The resistance of the portion of the winding correspondence to one of the two parallel circuits per phase can be calculated from the pump design data given above. This resistance is (approximately) 0.18 ohms. From this value the winding I^2R loss can be determined.

Winding
$$I^2R$$
 loss = 0.18 x (100)² x 2 x 3
= (approximately) 11 KW

Note: This includes only a minimal correction for armature winding skin effect, and may therefore be somewhat low.

The product of the effective voltage and the load current gives the sum of the losses occurring in the pump plus the pump output (which is, relatively speaking, negligible).

That is

$$Loss = 224 \times 52.5 \times 2 \times 3 = 70.5 \text{ KW}$$
(5)

This total includes the sum of the pump duct eddy current loss, the liquid metal eddy current loss, and the hydraulic loss. In order to break these losses down further, and also to further check the validity of the vector diagram, the duct wall loss and the liquid metal eddy current loss will be independently calculated.

DUCT WALL EDDY CURRENT LOSS

In Reference 6, it is shown that eddy current loss per unit volume due to a magnetic field of flux density B revolving through a solid piece of stationary metal is given by:

Loss/unit volume =
$$\frac{B^2 r^2 \omega^2 \sin^2 \theta}{\rho_c}$$
 (6)

where r is the radius of the element, ω is the field angular velocity, B is the flux density, ρ_c is the duct wall resistivity and θ is the angle between the field direction and the direction of relative motion between field and metal element. Since the field is produced by a 2 pole 60 cps mmf, $\omega = 3600$ rpm or = 378 radians/sec, B [from equations (2) and (4)], is 13,800 lines/sq.in., and ρ_c is estimated to be 37 x 10⁻⁶ ohm in., then total duct loss is given by the following expression:

Duct Wall Loss =
$$2\int_{0}^{\pi} \frac{B^{2}R^{2}\omega^{2}\sin^{2}\theta Rt L'd\theta}{\rho_{c}}$$

= $\frac{2 B^{2}R^{3}\omega^{2} tL'}{\rho_{c}}\int_{0}^{\pi}\sin^{2}\theta d\theta$ (7)

t is the thickness of the duct wall, and L' has been selected at the value 16 inch to allow for loss generated in the duct wall beyond the end of the stack. From (5) the duct wall loss is 30.5 KW.

LIQUID METAL EDDY CURRENT LOSS

The liquid metal eddy current loss can be calculated in a manner similar to the duct loss, starting from the expression for loss in a volume element. The angular velocity, ω , however, to be used in this calculation, will be the angular velocity of the field relative to the rotating liquid metal mass. It is assumed that the liquid metal rotates as a solid body. It is also assumed that the liquid metal angular velocity can be determined from the pressure rise per stage, calculated as the difference in liquid metal static pressure between the duct center and the duct periphery. This calculation is as follows:

$$\frac{g}{\rho} \frac{dP}{dr} = r \omega^2$$
$$\Delta P = \frac{\rho}{g} \omega^2 \int_0^R r dr$$

For mercury $\rho = 810 \ 1b/ft^3$

The pressure rise per stage, from the measured data, is $\frac{480}{3} = 160$ psi. Thus:

160 x 144 =
$$\frac{810}{32.2}$$
 x ω^2 x $\left(\frac{3.1}{0.2}\right)^2$ x $\frac{1}{2}$

and $\omega = 166 \text{ radians/sec} = 1580 \text{ rpm}$

The field angular velocity relative to the rotating liquid metal is 3600 - 1580 = 2020 rpm = 212 radians/sec. Referring to (6) the liquid metal eddy current loss given by

$$W_{f} = 2 \int_{0}^{\pi} \int_{0}^{R} \frac{B^{2}r^{3} \omega^{2} \sin^{2}\theta L' dr d\theta}{\rho_{f}}$$
$$= \frac{B^{2} \omega^{2} \pi R^{4} L'}{4 \rho_{f}}$$

substituting values for B, ω , R, L' (again 16 in.) and $\rho_{\rm f}$ (44 x 10⁻⁶ ohm in.), then:

$$W_{f} = 21.2 \text{ KW}$$

The hydraulic loss (plus the useful output) can now be calculated as the difference of the (7), and the sum of the liquid metal eddy current loss and the duct wall eddy current loss:

 $W_{II} = 70.5 - (21.2 + 30.5) = 18.8 \text{ KW}$

STATOR CORE LOSS

From the stator core weight, the frequency, and estimated values of flux density in the stator teeth and back iron rising core loss curves versus flux density and frequency, the stator core loss is estimated at approximately 1.5 KW.

SUMMARY OF LOSS BREAKDOWN

A	
Winding I ² R loss	11.0 KW
Stator Core loss	1.5 KW
Duct Wall loss	30.5 KW
Liquid Metal Eddy Current loss	21.2 KW
Hydraulic loss	18.8 KW
	83.0 KW
Total measures loss (from test data)	86 KW
Miscellaneous loss unaccounted for	3 KW

In view of the approximate nature of the calculations this appears to provide a satisfactory estimate of the pump loss distribution. The two losses most subject to reduction by design refinement are the duct wall loss (reducible by using a thinner duct of higher resistivity material) and the hydraulic loss.

REFERENCES

- 1. Trocki, T. R., in "Liquid Metals Handbook," Second Edition, edited by R. N. Lyon, pp. 246-257, Atomic Energy Commission, Department of the Navy, June 1952.
- Barnes, A. H., and Cage, J. F., Jr., in "Liquid Metals Handbook Sodium (NaK) Supplement," edited by C. B. Jackson, pp. 288-303, Atomic Energy Commission, Department of the Navy, July 1955.
- 3. Collins, G. D., General Electric Company, Breeder Reactor Development Operation, San Jose, California. Personal communication.
- 4. Rhudy, R. G., General Electric Company, Medium AC Motor Department, Schenectady, New York. Personal communication.
- 5. Alger, P. L., "The Nature of Polyphase Induction Machines," Wiley, 1951.
- 6. Rhudy, R. G., and Verkamp, J. P., "Electromagnetic Alkali Metal Research Program," NASA CR-380.

APPENDIX A

ORIGINAL RECORDED DATA

T19																									1	1	1	ı	1	1	•	ı	1	1	1			_	1	
1 ₁₈																							_	•	ſ	1	335	414	480	580	1	1	412	390	244	5		212	240	
T17																								C91	220	260	330	412	476	564	ı	425	412	392	245	5	210	217	240	
^T 16																								180	220	260	330	408	470	568	•	420	410	388	243			212	236	
T ₁₅					~																			N 21	217	260	325	410	473	570	,	420	410	390	244			217	236	-
T ₁₄							-																ļ	21	215	255	325	400	457	550	1	410	400	382	338	202	200	007	234	
^T 13																								140	210	250	320	400	463	555	ı	417	405	375	330	202	0.00	707	215	-
T12																						-		7	164	190	235	290	330	395	,	317	320	315	272	e Ve		1	185	-
r ₁₁																								, ;	8	80	80	80	80	80	ı	80	80	80	Q.	8		2	08	
\mathbf{r}_{10}	78			78	•		78	0	2					78	2	79								ı	ı	1	t	1	1	ı	,	ı	1	,	,	1	ı	•	ı	
r9	68			16			78	105	201					,		130							Ċ	2	75	82	100	125	150	170	,	235	385	380	190	291			112	-
T ₈	68			85			59	100	224				-	145		122							t	2	75	85	100	120	145	168	1	210	210	220	170	241	115	2	109	
$_{7}^{T}$	165			157			50	232	3		-		-	400		403							00.		190	225	290	370	430	525	,	370	398	397	340	315		2007	251	
T ₆	165			155			175	230	-					365		400							291		172	210	270	350	405	495	1	351	385	382	345	000	770	707	240	
7.5	100			100			103							132		160							ų	2	82	85	6	100	110	125	1	163	170	175	180			2	172	
T4	100			100			105	511	1					138		170							20	8	87	6	95	105	115	133	1	172	180	185	184		201	2	172	
ч	222			210			278	340	2					692		653																								
T_2	159			162			220	242	1					520		442																								_
1,	153			157			210	232	}					418		425																					_			
P7	40	40	40	40	40	40	40	40	40		40	40	42	42	42	42	42	1	a	42	41		00		26	26	26.5	26.5	26.5	27	27	27	27	27	22	5	5	3	27	
Р ₆	37.5	33.5	39.0	26.5	32.5	31.0	30.5	29.5			0° 6 T	39.5	0	25	40	31.8	21.5		;;	40	39.5				24.0	24.5	24.5	24.5	24.5	24.5	26	22.5	23	23.5	24	24 5			24.8	-
4°°	17.5	18.5	18.3	19	17.5	18	18.5	17.5			C. 61	18.7	23.5	16	19.5	15.5	17	1		19.5	19.5				8°.7	1.2	1.0	0.5	1.0	0	6.0	10	8.5	8.5		5	, r , u		2.1	_
P4	35	23	18	26.5	40	29	81	52	40		32	19.5	55	158	20	102	80		2	20	20		6		20	43	60	79	102	132	6.0	58	46	37	30	5	9 9 7	9	11	
ч. С	46	26	23	31	44	33	23	99	44		3	23	58	158	23	112	2	1	; ;	24	24		2	5	55	46	63	83	105	143	ŝ	62	50	40	55	3 6	36		12	-
P2	34	23	18	26	40	30	20	51	40		ŝ	20	55	158	20	102	80	43	2	20	20		ç	3	2	40	60	75	100	133	0	58	45	35	ę	5	44	3	10	-
P	40	35	45	45	51	55	62	68	60	2 4	200	83	107	175	200	115	101	0	8	132	26		10	5	28	21	20	95	115	150	160	135	105	85	63	5	3 5	; ;	25	
KW	.018			.035				.055					.188			107					0		000	070	650	•065	.100	.133	.175	.225	.225	.235	,183	.137	105			3	.025	
Amps	1.42			1.97				2.52					4.71			3.55					•		20 0	5	200.2	3,15	3.73	4.30	4.85	195	195	220	4.85	4.30	3.75			00.2	1.90	
Volts	115			161		_	_	210					404			301					0		97	001	82	250	300	350	400	450	450	450	400	350	300	020	8	ŝ	150	
	Driginal Pump	Configuration																				Modification	WORTTERTINI	-																

Original Configura

-

														÷													_		
119 19	130	210	326	1 1		420		575		;	133	1 00	001	1	150	156	•	206	107	282	255	1	370	278	•	376		400	
^T 18	130	210	326	1 1		419		575			135		195	3	149	154	I	203	200	978	252	1	364	273	•	370	155 I	400	
T ₁₇	130	209	322	- 435		415		570			143		001	071	150	155	1	205	201	978	255		365	275	,	370	332	400	
$^{\rm T}_{\rm 16}$	130	209	322	435		415		577		:	143	, ,	0.51	071	150	156	I	205	203	- 020	257		365	275	1	370	с <u>с</u> г,	400	
^T 15	127	509	312	- 420		400		550			145		000	071	145	155	•	198	200	1	255		349	272		351	022	385	
^T 14		1 202									45			0	47	56	1	000	503	1 2	1020		247	275	 1	360	235	068	
T13	- 30		302	-		387		535	·		30		22		40	40	•	92	6		800		345	350	,	352		385	_
112	00 -	- <u>-</u>	15			898		165			33		22	- -	40	42		06	85			 } ,	140	50 2	1	040	010	- 167 -	_
1. 1.	- 1	- 20	78 2	- 28 - 3		78		78 3			78 1	, 	202	 0,	78 1	78 1		79 1	1 62		20	· ·	78 3	79 2		19	78 3	78 3	
10			_																					_					-
- - -		51 I	75 -	250		125		177			- 06		2 2	2	- 25	105 -		98	133		201		120 -	179 -	1	- 18	215 -	150	
80 80	- 78	<u>1</u> 60 -	60 1	225		120		168			85	1	67	20	. 69	100	ı	72	122		021	3 1	78	165	1	82	195	1001	_
т ₇	- 119	188 1	291 1	- 10		372		530			150		85		, 6	148	,	95	196	1 5	103		105	260	1	122	320	170	
-9 H	- <u>2</u> -	89.1	67	- 6		40		8			55		53	22	10	47	,	55	95		2 2		55	50		63	61	8	
2	8	1	1 2	ۍ در	 	19 3		36 5			81 1	1	82 1	102	- 50 	- 1 - 68	1	95 1	98 1	1 0		4 D 1	25 2	25 2		30 2	45 3	503	, , ,
			<u>6</u>										~						_		 -	- 	~				-		
т 4		õõ 1	101	- 5		130		155			88	<u>'</u>	ŝ	5	6	5 6 1 6	1	105	101			1	1.00	14	1	150	165	- 2	-
$^{\mathrm{T}}_{3}$	I I		1	1 1		'		1			1	'	'	1			'		•	'	'			1	'	'	'		
ч Ч	11	11	ı			I		1			'	I	ı	1			1	1	'	1	•			'	1	ļ	1	· ·	
т 1	1 1	11	1	• •		'		'			'	•	I	1	ı 	· ·	•	ı	١	•	۱ 	•	. 1	1	1	1	•		
P7	26 25.5	25.5 25.5	25.5	26 26	ł	26	- 26.5	- 26,5	1		24.5	25	24.5	24.5	25 14 E	52°	24.5	24.5	24.5	24.5	25	2	0 Y	22	29	29	29	2 E	3
Р ₆	23.5 23.5	23	22.5	23 23		25	25	25	1		23	23.2	23.2	22.5	23.2	22.0	23.0	23.5	22.0	23.5	23.5	C° 17	C . C . P C	21.5	27.5	28.0	24.5	30	2° TC
ч _с	4 13	9	2	7.5	4 4 4 0 0 0 0	4 .5	υ 4	1 ° 0	9		2.5	1.8	2.7	3.6	0	2 0	0	3.1	5.5	0	ທູດ ຕໍ່ເ	0.0	່		5.0	7.5	13.5	1.5	1
P4	11	30	37	45	5	88	- 113	126	•		6	20	•	15	37	0 42	60	0	33	85	9	5 4 3	60.9	222	40	2	67		1
P3	15 21	27	42	50	3	63	110	131	1		13	24	0	18	41	D a	65	0	37	88	0 !	47	113 1	909	145 1	12	73	175	CT
P2	12 18	25	40	47	8	06	-	- 125	•		10	20	0	15	36	0 46	3 09	0	33	85	0	42	110	2	140	ò	99	175	21
P1	27 40	55	06	100	30 45 65	85 95	115	120	150		24	28	35	38	47	22	20	88	80	86	118	105	125	071	155	180	158	185	CIZ
KW	.028 .050	.078	145	.187	202.						10.	10	10.	•02	•03	.02	038	.039	.060	.058	.060	080	.083	690°	011	.110	.138	.138	•T30
Amps	1.60	2.70	3.75	4.27	70.						1.15	1.15	1.15	1.68	1.68	1.69	2.28	2.30	2.86	2.87	2,88	3.42	3,45	3.48 A 20	4 20	4.20	190	190	190
olts	150 200	250	350	400	150	300	350 400	400 450	450		102	102	102	151	150	150	202	204	252	253	255	300	304	307	350	350	400	400	400
^	니 평									 5																			
	1									- 7	5																		

Modificati #1 Modification #2

19				80		ŝ		•	"		•	01	6		9	с п			_		0		•		<u>د</u>			ო	~			_							~	_
Ei 	30	<u>'</u>	1	26	'	46			1	•	ŝ	16	18		53	26	'	'	'	'	61	1	62	۱ 	28	1	1	42	4	'		16.	1	19	19	230	'	245	28	1
1 ₁₈	302	ı	ı	263	ı	455		8	113	1	130	162	189	1	236	262	1	1	'	'	605	1	615	ı	585	ı	1	425	417	1		161	ı	195	195	229	1	245	285	•
T ₁₇	302	ı	•	262	ı	455		80	112	1	130	160	188	ı	235	260	1	ı	·	ı	615	1	625	ı	585	ı	ı	430	418	ı		161	ı	195	198	227	ı	249	285	ı
T16	302	ı	ı	258	ı	450		80	110	ı	129	160	186	ı	235	260	ı	,	ı	1	612	ı	625	1	585	ı	ı	430	418	ı		160	,	192	198	225	1	243	280	1
^T 15	295	1	•	245	,	410		80	110	•	125	160	185	ı	236	260	ı	•	1	ı	610	ı	625	1	585	ı	ı	433	397	ı		160	1	190	199	225	1	243	282	1
T_{14}	298	t	1	242	1	435		80	110	1	128	161	187	1	237	260	,	1	1	1	610	ı	630	ı	590	I	ī	440	418	ı		161	•	191	200	223	ı	245	280	ı
113 13	278	1	4	242	1	435		8	110	•	127	155	180	1	225	250	,	1	1	1	575	ŀ	585	ł	550	1	1	400	397	ı		152	1	190	188	218	,	233	272	ī
r_{12}	278	1	1	238	,	420		78	112	1	131	160	189	1	235	260	•	ł	490	,	600	,	620	1	580	ı	,	430	418	1		175	1	200	210	232	,	263	292	ī
T ₁₁	78	•	1	78	•	78		83	83	I	83	82	83	ı	85	85	ı	ł	88	1	88	1	85	•	85	1	1	87	88	1	_	06	·	85	06	83	•	85	06	ı
T10	1	•	1	ı	1	'		ı	1	ı	ı	1	1	1	1	ı	ı	•	1	ı	•	•	ı	1	•	'	,	ı	,	1		1	,	ı 	1	•	1	'	ı	ı
ь ₀	188	1	,	146	1	140		78	68	ł	68	82	70	1	107	85	ı	1	105	ı	100	,	107	ı	100	'	•	168	100	ı		100	,	75	115	82	I	140	100	ı
T_8	171	I	I	136	ı	95		61	67	ı	62	Ľ	67	ł	102	75	ı	ı	105	'	110	ı	105	I.	100	1	ı	156	6	ı		6	ı	72	108	80	•	129	93	ı
$^{\mathrm{T}}_{7}$	266	I	1	200	ı	145		62	105	1	85	150	160	ł	228	226	ı	1	400	,	530	ı	595	I	575	ı	ı	460	400	ı		152	ı	95	190	200	1	232	250	1
T ₆	235	1	1	150	1	278	u	87	102	I	109	142	155	1	223	225	1	ı	350	•	480	,	585	ı	575	ı	•	505	408	ı		152	1	153	185	193	1	230	240	•
T ₅	153	1	ı	105	ı	120		8	88	ı	68	16	63	ı	109	110	I	1	130	1	140	1	155	,	160	ł	1	170	170	1	_	111	ı	111	115	115	ı	118	120	1
T.4.	158	1	1	102	ı	126		80	88	•	96	56	66	ı	112	119	I	1	140	1	172	1	200	ı	220	1	I	225	220	I		112	ı	111	115	117	1	120	122	1
T3	1	I	ı	ı	I	I		1	1	1	I	1	I	,	ı	1	1	ı	ı	1	1	1	ı	ı	I	I	•	1	1	ı		1	1	ı	ı	ı	I	1	1	1
T2	I	,	ı	1	I	ı		1	ı	1	ı	,	'	'	'	1	1	,	1	1	,	١	ı	1	1	ł	ı	1	1	'		I	1	ł	ı	1	1	1	۱ 	ı
T	1	'	I	I	1	٢		1	1	1	1	•	'	1	1	1	1	ı	1	1	1	1	r	•	1	ı	I	I	ı	1		1	1	I	ı	1	1	1	•	1
²	33	32	32	32	32	33		26.5	26.5	26.5	26.5	27	27	27	27	27	27	1	28	38	33	33	33	33	33	33	33	33	33	33		27	27	27	27	27	27	27	27	27
ч _{.0}	27.5	8	30	27.5	8	30		25	25	25	25	25	25.5	25.5	25.5	25.5	25	'	26.5	26	30	33	31	31.5	31.5	31.5	33	32	31.5	8		24.5	25	25	24.5	25.5	25.2	24 .C	25.0	25.0
P5	17.5	ŝ	11.5	18	9	11.5		4.5	4.8	. 4.5	4.8	5.2	4.5	ŝ	5.7	4.5	5.2	9	5	4.5	11	9.5	1	9.5	11	9.5	11	7	9.8	10.5		5,5	2.1	4.6	5.5	3.5	4.8	6.2	3.0	5.0
с. 4	1	ı	ı	I	ı	ı		ŝ	9	6	ŝ	6	13	ŝ	11	20	ŝ	ŝ	20	55	11	51	12	44	11	37	11	19	30	11		14	28	ŝ	20	42	m	27	61	e
Ъ3	85	205	15	06	210	15		8	10	12	80	13	17	80	15	24	6	5	24	60	15	57	15	48	15	41	15	24	33	15		18	32	00	25	47	00	32	12	80
5 5	80	200	10	6	205	12		•	10	9	•	10	15	•	12	20	0	•	20	55	10	20	12	43	12	36	10	20	30	10		15	27		20	42	•	26	60	•
۹.L	190	220	250	200	225	250		10	15	15	16	20	20	22	25	27	8	72	29	60	72	99	65	52	55	45	49	36	40	40		35	37	40	49	22	57	99	73	78
KW				,185	,175	.170		0	.014	.014	.013	.030	,030	.030	.050	.050	.051	235	.050	.230	.228	.175	.178	.135	,133	.100	.099	.072	.070	.071		.028	028	028	046	046	640	074	.074	.076
Amps				212	212	210		0	1,34	1.35	1,35	2.01	2.01	2.03	2,66	2.66	2.69	•	2.62	210*	205*	4.8	4.85	4.27	4.25	3.73	3.70	3.17	3.13	3.15		2.02	2.02	03	2.60	2.60	2.64	3.23	3.25	3,30
Volts				443	445	445		0	100	10	100	150	150	151	202	202	205	435	200	433	438	400	404	350	347	300	296	249	242	245	•••	155	152	153	200	000	202	250	253	259
	Modification	#2						M dification	#3																						Wedd ft cotton	#3-A								

52

_

				_	_				_				_							-	_		_		_					_			-					_	_	
T19	919	360	ı	369	437	(412	497	•	469	558	•		162	175	١	197	220	۱	240	283	۱	285	335	ı	335	400			ı	ı	310	345	340	340	338	338	ı	335	ı
^T 18	305	357	ı	367	433	ı	412	493	ı	468	553	ı		162	175	I	198	220	,	241	283	1	288	335	1	335	400			ı	,	310	348	345	345	340	340	ı	338	1
T17	309	352	ı	369	433	ı	412	492	ı	468	553	ı		162	175	ı	195	220	1	240	283	1	288	335	ı	335	400	•	1	1	1	310	345	345	345	340	338	,	335	-
T_{16}	309	352	ı	365	430	1	410	489	ı	468	550	ł		160	172	1	192	215	1	238	278	ı	282	330	ı	330	395			,	ı	305	345	345	340	338	338	,	335	
$^{\rm T}_{15}$	305	352	1	365	429	,	410	488	,	463	550	1		162	172	1	195	215	,	240	275	,	285	330	ł	336	395		,	1	1	305	345	345	340	340	338	•	335	ı
T ₁₄	305	352	1	370	430	1	412	488	,	468	550	•		163	175	ı	198	217	1	242	285	1	288	332	1	336	393		1	-		305	345	345	342	340	338	•	335	ı
113 13	295	342	ı	350	413	1	392	470	,	445	530	4		135	150	1	160	181	1	193	225	1	229	265	1	265	312		ł	ı	,	240	265	262	262	262	260	1	260	•
112	345	372	1	407	450	•	465	515	,	520	575	1		191	200	•	228	245	,	285	315	,	352	385	,	428	465		,			320	395	390	388	385	382	• }	378	 I
111	59	87	ı	88	68	1	88	85	,	68	96	1		90	06	ı	06	06	1	96	90	ł	16	16	1	16	06		I	1	,	80	80	80	80	80	80	,	81	•
110 T10	1	'	1	1	,	,	1	1	1	ı	1	4		ı	1	ı	1	1	•	1	1	,	ı	ı	•	1	1		1	1	ı	1	1	1	ı	ı	ı	,	 !	
-6 L	175	120	١	215	149	1	240	160	,	272	180	,	_	103	80	,	121	93	1	146	109	1	179	132	ı	210	158			,	,	110	120	120	118	115	115	,	112	
8	165	115	ı	195	139	١	215	150	I	240	172	ı		66	78	ı	112	88	1	135	103	1	165	122	1	189	148		I		ı	105	112	110	111	110	110	· }	108	•
77	290	320	•	355	400	1	400	430	1	448	505	•		155	157	'	185	192	1	226	249	•	270	300	1	319	360		1	1	ı	272	330	330	328	325	325	1	320	ı
9	290	300	۱ 	357	325	1	400	400	1	450	465	'		152	155	1	180	185	'	221	232	ı	268	279	1	370	335		1	'	1	250	320	320	320	320	320	1	312	•
	138	145	1	140	146	'	160	166	1	180	190	'		109	110	1	112	115	'	120	123	ł	135	138	1	151	160		I	1	1	88	130	155	170	180	185	1	192	•
4 4	140	148	ı	158	165	ı	189	195	1	215	230	t		115	115	1	119	121	1	130	136	1	152	155	1	178	190	-	1	1	'	100	155	180	190	195	200	1	202	ı
е Н	1	ı	1	1	'	1	ı	ı	'	1	1	1		1	'	1	I	ı	ı	'	'	1	1	ľ	ı	ı	'		1	1	'	1	1	1	1	1	I	ı	1	-
12	'	1	1	•	ı	I	ı	ı	I	1	ı	ı		ľ	ı	I	1	'	'	1	1	1) 	1	'	'	1		ا 	1	1	1	1	1	'	T.	ı	ı	ı	
	، م	•	'	1	1	1	1	1	1	1	۱ ۵	1		1		F	۱ ۵	-	ı Ω	ו ני	1	1	ו 0	1		ı	۱ ص	ا 	ו 	1	۱ 	1	1	'	1	1	1	1		ı
۲ ^Р	26.	5 27	5 27	5 27	5 27	5 27	5 27.	5 27.	5 27.	27.	27.	27.		5 26	26	26	26.	26.	26	5 26.	26.	1	26.	5 26	1	5 27	27.	20	20	26	26	25.	5 26	26	26	26.	26	26.	56	17
9 9	23	25.	25.	23.5	25.	22	23.	25	25.5	23	25	22.5		24	25	22	54	25	25	23.5	22	1	22.	25.6	'	22.5	25	36	5	25	25	23	23.5	23	24	25	24 .5	24	24.5	2. 47
. ^Ъ	80	1	5.2	0°0		2.0	й —	•	• 		2.5	9		5.		4.	0.2	0.5	4.5	~	0	1	8	1.5	'	2	0.5	۲ ۳	0.0	-	٦	1.0			-		-			
P4		8	.,	44	36		5	1	•	90	130			ñ	40	(J)	26	90 		35	<u></u>	'	45	113	1	90	145		. 4	60	85	86	85	83	82	81	8	8	88	8
ч С	41	86	80	48	102	80	57	120	10	65	138	1		22	43	∞	29	64	~	39	88	1	50	119	'	63	150	27	5	808	06	06	88	86	86	85	8	83	8	ŝ
2 ^P	38	80	0	45	66	•	50	115	•	60	135	•		18	40	•	55	99	•	35	85	ı	45	115	1	60	146	35	45	65	85	85	85	85	85	25	82	8	56	10
۹ <u>ـ</u>	25	95	100	105	115	122	122	134	138	142	150	155		49	55	62	65	26	82	6	103	ı	115	135	150	145	170	ų,	29	78	105	102	102	100	100	66	98	61	96	6 6
ΚW	100	.105	.107	.135	.140	.145	.173	.175	.180	.220	.220	.220		•035	.035	.035	,055	.055	.055	.08	.082	ł	.110	.112	.112	.145	.150	660	047	069	.095	.083	.082	.080	.078	.075	,075	.074	•074	÷.0.
Amps	3.78	3.82	3,86	4.30	4.35	4.40	4.77	4.80	4.85	200*	200*	200*		2.69	2.69	2.70	3,39	3.40	3.43	4.05	4 0 8	ı	4.68	4.70	4.70	210	212	0 57	916	3.76	4.35	4.10	4.08	4.03	4,00	3.97	3.96	3,93	3,92	3.92
Volts	300	305	310	349	355	363	395	398	410	440	440	443		200	200	200	250	250	254	299	302	r	350	353	353	402	410	006	250	300	350	300	304	300	298	295	294	292	291	697
	Modification #3-A												Modification	#4	~~																									

Comments		nypauss upen						Rundes anon	Drucce class	DADARS CIOSED	Shutoff	BPO	BPC	S/0	BPO	- COL			BDC	0/0	5/0 BDD		240	BPO	BDC	2/2			s/0	BPC	s/0	s/0
T19	000	200		202	010	0		1 83	101	2		102	228		1 12	000					149			365						-	1	- <u>-</u>
1 ₁₈	325	2		000						3		002	226		50	000		8	620		149	2	,	366					,			
117	020	4		020	0 0					3		503	28	,	55	95				}	1090		,	175					-	,	,	
1 ₁₆						, 2		60 1	08	• 8		in in	20	•	45 2	83		88	545	,	39	, , ,		55 3		,			,	,	,	
T ₁₅	335		395		878	, 		60 1	6			- 66]	20		47 2	82 2		060	545		40 3		1	355 3	,	-					,	
14 14	335		325	345	848	-		162	6	3		3	223	,	200 2	85 2	_	295	34.3		345			342						,	,	
T13	260		262	220	285			159	178			0.61	218		241	272		282	328		328		-	340 :	1					,	1	 1
112	375		375	388	390	}		135	150			201	182	1	205	225	,	235	265	,	275			290	 1				 I	,	,	
11	85		88	3	6	5		16	6	;	- 2	76	16	ı	92	92	,	92	92	•	93	,	,	95	,	ı	,			1	•	'
110		1	,	'	'			1	1		1	•	•	I	,	,	1	,	1	•	1	1	•	1	,				,	•	•	1
- 6	112	1	112	118	118			110	89			2	5	,	165	128	,	195	155	1	230		ı	245	1	,	,	1	;	,	1	ı
80	108	t	108	011	110			102	85		001	144	201	,	149	119	1	177	142	1	210	ı	1	220	1	,	1		,	ı	1	1
- 1	320	1	320	322	332		-	153	165	1			201	1	237	262	,	275	320	1	328	,	1	345	,	1	1	4	1	1	ı	,
9	312	I	31.5	325	325	1	_	148	157	1	1 05	3	190	1	240	245	,	275	300	,	320	1		330	,	1	,	1		1	,	
5	198	,	203	218	222			107	110	ı	115		611		122	130	,	137	145	1	160	1	1	180	,	1	1		Ļ	1	1	 1
4	210	,	214	228	232			102	115	'	061		122	•	130	140	1	143	160	1	185	1	,	210	,	1	1			1	ı	•
ę	'	,	ı	I	1	-		ı	ı	ı	1		1	ı	1	ı	,	1	,	ı	ı	ı	,	ı	1	ī	ı	()	ı	ı	1
2	1	1	ı	ı	,			,	1	1	1		,	ı	ı	,	ı	I	ı	,	ı	,	ı	1	1	ı	1	1		ı	ı	1
	,	1	,	'	ı			ı	ı	1	1		1	,	ı	,	ı	1	ı	,	,	,	1	1	1	1	1	,	1	ı	ı	,
4	27	27	27	27.5	28			25	25	25	25	2	9	22	25	25	•	25	25.5	25.5	25.5	25.5	26	25.5	25.5	25.5	27	26	ì	27	27.5	1
9,	25.5	24.5	24.0	24.0	26.5			23	24	24	22.5		23.0	c. 52	22	23.5	,	21	24	,	22	24	25	20.5	24	25	26	2.6		26	25.5	1
5	1.5	1.5	1.5	3.7	3.7			4.5	0.5	3.2	ų		5	n. 1	on.	0.5	1	8,5	0	4.5	11.5	•	4.5	12.5	•	4.5	5.3	-	• •	°. °	1.5	
4	78	28	77	85	2			25	2	4	39		5.	n	2	135	ı	68	1	1	8	1	ı	68	ı	1	9	67	; '	Ð	138	•
3	82	83	82	88	88			28	67	*	43	2	3	0	21	138	'	73	187	1	68	225	80	95	240	œ	10	72		x	142	
2	8	18	80	85	87			25	65	0	40		<u> </u>	5	22	135	1	69	185	1	85	225	•	92	240	0	e	65	3	5	149	ı
-	95	95	2	103	103			66	8	35	96			2	132	157	8	170	210	240	210	255	295	220	265	310	15	68	3 8	6	160	270
2	.073	073	.073	.078	.080			2	ş	8	90,	8	8	5	.088	66	8	.120	.120	.120	.155	.155	.155	.165	.165	.165	0	039		.039	.088	.170
Ampa	3,90	3,90	3,88	4.00	4.03			2.76	2.77	2.77	3.44	2 44			4.08	4.10	4.10	4.70	4.75	4.75	210*	210*	210*	210*	210	210*	0	2.75		2.10	4 10	215
Volts	289	289	287	298	300			202	201	202	250	250	0.40	202	80	200	300	350	352	352	400	400	400	429	429	429	0	200		202	300	420
1						104146100100	MOULICATION	£																			everse Field	Rotation			~	

54	
----	--

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	115 110 157 165 85 89 - 91 150 178 182 182 180 185 185 185 185		- 122 115 190 201 100 104 - 91 182 218 223 220 299 297 203 200 201		130 122 240 237 149 165 - 92 205 241 250 247 245 255 250 251	140 130 245 262 119 128 - 92 225 272 285 282 283 293 290 290		143 137 275 275 177 195 - 92 235 282 295 290 288 305 298 300	.60 145 300 320 142 155 - 92 265 328 343 345 360 352 352		5 160 320 328 210 230 - 93 275 328 345 340 339 360 349 349 349			80 330 345 220 245 - 95 290 340 342 355 375 366 365							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	115 110 157 165 85 89 - 91 150 178 182 182 180 185 185		- 120 110 100 122 133 - 91 153 193 200 199 197 203 200 - 122 115 190 201 100 104 - 91 182 218 223 220 290 299 296 296		130 122 240 237 149 165 - 92 205 241 250 247 245 255 250	140 130 245 262 119 128 - 92 225 272 285 283 295 290		143 137 275 275 177 195 - 92 235 282 295 290 288 305 298	.60 145 300 320 142 155 - 92 265 328 343 345 345 360 352		5 160 320 328 210 230 - 93 275 328 345 340 339 360 349			80 330 345 220 245 - 95 290 340 342 355 355 375 366							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	115 110 157 165 85 89 - 91 150 178 182 182 180 185		- 122 115 190 201 100 104 - 91 182 218 223 220 297 203		130 122 240 237 149 165 - 92 205 241 250 247 245 255	140 130 245 262 119 128 - 92 225 272 285 282 283 295		143 137 275 275 177 195 - 92 235 282 295 290 288 305	.60 145 300 320 142 155 - 92 265 328 343 345 345 360		5 160 320 328 210 230 - 93 275 328 345 340 339 360			80 330 345 220 245 - 95 290 340 342 355 355 375							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	115 110 157 165 85 89 - 91 150 178 182 182 180		- 122 115 190 201 100 104 - 91 182 218 223 220 199 197		130 122 240 237 149 165 - 92 205 241 250 247 245	140 130 245 262 119 128 - 92 225 272 285 282 283		143 137 275 275 177 195 - 92 235 282 295 290 288	.60 145 300 320 142 155 - 92 265 328 343 345 345		5 160 320 328 210 230 - 93 275 328 345 340 339			80 330 345 220 245 - 95 290 340 342 355 355			1 1 1 1 1 1 1 1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	115 110 157 165 85 89 - 91 150 178 182 182		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		130 122 240 237 149 165 - 92 205 241 250 247	140 130 245 262 119 128 - 92 225 272 285 282		143 137 275 275 177 195 - 92 235 282 295 290	.60 145 300 320 142 155 - 92 265 328 343 345		5 160 320 328 210 230 - 93 275 328 345 340		1	80 330 345 220 245 - 95 290 340 342 355			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	115 110 157 165 85 89 - 91 150 178 182		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		130 122 240 237 149 165 - 92 205 241 250	140 130 245 262 119 128 - 92 225 272 285	1 1 1 1 1 1	143 137 275 275 177 195 - 92 235 282 295	.60 145 300 320 142 155 - 92 265 328 343		5 160 320 328 210 230 - 93 275 328 345		1	80 330 345 220 245 - 95 290 340 342			1 1 1 1 1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	115 110 157 165 85 89 - 91 150 178		- 122 115 190 201 100 104 - 91 182 218		130 122 240 237 149 165 - 92 205 241	140 130 245 262 119 128 - 92 225 272		143 137 275 275 177 195 - 92 235 282	50 145 300 320 142 155 - 92 265 328		5 160 320 328 210 230 - 93 275 328		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80 330 345 220 245 - 95 290 340			1 1 1 1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	115 110 157 165 85 89 - 91 150		- 122 115 190 201 100 104 - 91 182		130 122 240 237 149 165 - 92 205	140 130 245 262 119 128 - 92 225	1	143 137 275 275 177 195 - 92 235	50 145 300 320 142 155 - 92 265		5 160 320 328 210 230 - 93 275			80 330 345 220 245 - 95 290			1 1 1 1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	115 110 157 165 85 89 - 91				130 122 240 237 149 165 - 92	140 130 245 262 119 128 - 92		143 137 275 275 177 195 - 92	50 145 300 320 142 155 - 92		5 160 320 328 210 230 - 93			80 330 345 220 245 - 95	1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·	i 1 1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	115 110 157 165 85 89 -		- 122 115 190 201 100 104 -		130 122 240 237 149 165 -	140 130 245 262 119 128 -		143 137 275 275 177 195 -	60 145 300 320 142 155 -		5 160 320 328 210 230 -		1 1 1	80 330 345 220 245 -			1		1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	115 110 157 165 85 89		- 122 115 190 201 100 104		130 122 240 237 149 165	140 130 245 262 119 128	1 1 1 1 1	143 137 275 275 177 195	60 145 300 320 142 155		5 160 320 328 210 230) 1 1	80 330 345 220 245	1		1	, , ,	1 1 1	- - - -	
$\begin{bmatrix} \mathbf{P}_7 & \mathbf{T}_1 & \mathbf{T}_2 & \mathbf{T}_3 & \mathbf{T}_4 & \mathbf{T}_5 & \mathbf{T}_6 & \mathbf{T}_7 & \mathbf{T}_8 \\ 25 & - & - & - & 102 & 107 & 148 & 153 & 102 \\ \end{bmatrix}$	115 110 157 165 85		- 122 115 190 201 100	1	130 122 240 237 149	140 130 245 262 119	1 1 1 1 1	143 137 275 275 177	60 145 300 320 142	- - - -	5 160 320 328 210		1	80 330 345 220	1 1 1	,	1 1 1	1 1 1	1	- - -)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	115 110 157 165		- 122 115 190 201	1	130 122 240 237	140 130 245 262	1 1 1 1	143 137 275 275	60 145 300 320		5 160 320 328	•	1	80 330 345	1	1	•	י י	•	' 	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	115 110 157		- 122 115 190	1	130 122 240	140 130 245	1 1 	143 137 275	60 145 300		5 160 320	1	1	80 330	1	,	1	,	1	•	ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	115 110	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 122 115	1	130 122	140 130	, ,	143 137	60 145	1	5 160	1	1	80	,			_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	115	1 1	- 122	,	130	140	,	43	.60		5					ī	ı	1	1	ł	ı
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1			1			_	_	٦		18	,	,	210	,	1	J	J	ı	ı	1
25	ı				1	ı	ı	I	ı	ı	ı	1	1	1	I	1	1	•	ı	1	1
⁷ 7 ¹ 1		•		1	1	1	1	1	1	ı	1	'	1	ı	ı	1	١	1	1	1	,
25 25	1	1		1	'	I	•	1	1	1	,	1	1	1	1	1	1	I	ı	1	•
	25	0 K	25	25	25	25	,	25	25.5	25.5	25.5	25.5	26	25.5	25.5	25.5	27	27	27	27.5	1
53 °	24	24	23.5	23.5	22	23.5	ı	21	24	,	22	24	25	20.5	24	25	26	26	26	25.5	ī
5 4 5	0.5	3.2 B	0	3.5	6	0.5	1	8.5	0	4.5	11.5	0	4.5	12.5	0	4.5	5.3	-	5,5	1.5	1
25 4	64	4 02	95	5	54	135	1	68	ı	ı	83	ı	1	68	ı	1	9	67	9	138	1
1.08 L	67	x 4	100	æ	57	138	1	73	187	,	68	225	æ	95	240	80	10	72	œ	142	,
25 25	65	040	95	0	55	135	'	69	185	I	85	225	0	92	240	0	9	65	0	149	ı
-1 66	80	6 9	115	135	132	157	180	170	210	240	210	255	295	220	265	310	15	82	95	160	270
КW • 04	8.0	4	8	.061	.088	060.	060*	.120	.120	.120	.155	.155	.155	.165	,165	.165	•	039	•039	.088	.170
Amps 2.76	2.77	11.2	3.44	3.45	4.08	4.10	4.10	4.70	4.75	4.75	210	210	210	210	210	210	0	2,75	2.76	4.10	215*
Volts 202	201	202	250	252	300	300	300	350	352	352	400	400	400	429	429	429	0	200	202	300	420

$^{\mathrm{T}}_{\mathrm{19}}$	98 101	130	200 265	282 355	375 435	82 112	125	169	203	261		350	485	578 621
1 18	100	138 180	200 260	288 350	375 430	82 110	122	165	201	255		376	540	582 605
T ₁₇	88 95	120 160	182 230	260 305	332 375	82 110	120	141	154	204		402	540	i i
T16	95 100	130	200 262	285 410	378 495	82 112	130	176	219	280		415	527	645
T ₁₅	98 101	135 188	208 272	295 365	392 438	82 102	120	150	182	231		285	356	416 431
T ₁₄	98 100	135 188	210 272	298 365	395 450	82 110	134	174	200	265		367	463	550
T ₁₃	90 97	120 157	175 223	245 300	322 365	82 114	129	162	187	260		188	285	486 508
1_{12}^{T}	75 81	80 110	115 147	157 190	210 235	82 110	128	172	210	270		397	512	597 624
1^{T}	77 78	78 79	78 78	80 80	80 80	86 81	80	95	06	06		82	82	83.8
T_{10}			1 1 1		1 1 1				1 1 1	1 1 1		1 +	1 1	1 1 1
ц. в	72 68	92 85	131 118	188 152	221 162							4.1	¥ 1	
۲ ⁸	70 65	87 82	122 110	162 142	201 152	60 85	6	105	125	151		143	185	185 209
T7	95 97	120 168	183 242	265 328	370 410	82 113	119	169	195	250		343	472	592
T ₆	90 95	111 160	165 219	248 300	365 375	86 107	115	165	190	245	105	305	445	527 53 4
15	83 85	85 92	100	119	141 150	86 99	98	98	92	105	102	63	114	130 143
\mathbf{T}_4	83.82	88 100	107	135 149	1 67 180	86 88 88	86	86	92	105	102	06	112	130
\mathbf{T}_{3}			1 4 1								1	т. i	I I	
12 12		1.1.1			1 1 1		111		1 1 1		1	1.1	11	
ц,	1 1 3					1111	1 1 1				I	+ 1	+ 1	1 1 1
P7	25 25.2 25.2	25.2 25.2 25.2	29.8 29.8 30	30 30	00 00 00 00 00 00	44.0 45 44.5 45	44.5 44.3 44.3	45 45 45	45 45 45	45 45	45 45.5 46 56 56	56 56 53	53 . 8 54	54.5 54.5 54.8 55
^в	24 24 24	22.5 24 24	25.5 28 28	24 28	27 29	26.6 26 26 26.5	26.5 26.5 26.5	26 27 27	26 27 27	25 27 27	25 27.5 38 38 38	39 37 34 34	35 35	36 36 38
P.	4 2,8 3,6	4 0.5	11.5 5.0 9	15.5 0 9.5	11.5 5.5 9.5	6.2 6.3 6.3	7.3 4.5 6.5	8.5	10 1 7.2	11 5 7.5	12 4 7.9 15 18	13.5 11 11 11	% 6	3 11 0 17.3
P	20 20	28 73 4	58 148 8	s/0 s/0	S/0 S/0	7.5 7.5 12 21 6.5	20 42 7	28 70 7	36 95 7.5	48 124 7.5	1 1 20 1 20		1.1	13
ч ⁶	13 24 5	32 76 5	62 150 15	90 225 15	55 258 38	12 15 15 10	23 47 11	32 75 11	40 100 12	52 130 12	63 165 12 185 23	220 250 225 225 225	250 210	300 210 23
\mathbf{P}_2	20 I0	30 71 0	55 149 10	90 225 10	50 255	0 3 7 0 0 5 3 7 0 0	20 43 10	29 70 10	36 95 10	50 126 10	60 165 10 185 20	220 250 200 210	250 210	290 210 310 2C
Pl	30 S5	70 86 105	135 166 190	207 245 280	260 290	30 31 32 33	46 55 65	65 85 105	89 115 145	115 150 188	140 188 240 205 260	245 310 230 225	270 275	310 310 350 28
KW	010	.040 .043	060 260	.155	.178 .177	0 .006 .008	.017 .018 .018	.023 .022	.031 .031	.045 .051	070 .070 .070 .071	.090 .120 -	1.1	
Amps	1.21	2.55 2.58 2.58	3.77 3.90 3.88	210 212 212	220	0.8 8 0 8 8 0 0 8 8 0 0 0 8 8 0 0	1.26 1.26 1.26	1.68 1.68 1.68	2.03 2.03 2.03	2.45 2.45 2.45	2.85 2.85 2.85 2.85 2.85 2.85	3.25 3.72 3.3 3.27	3.65	4.06 4.06 4.28 0
lolts	100	200 204 205	300 310 310	405 400 400	437 437	0 0 001 001 001	153 153 153	205 205 205	250 250 250	300 302 302	350 350 350 350	400 460 400	450 450	500 529 0
L	1													

Modification #6

ļ

56

Modification #7

—																			·		
T19	11		132	171	252	265	341	395		562		464	1	1		,				1	4
T ₁₈	72		138	187	279	288	360	440		565		516	74	104		175		294		434	570
r ₁₇	Out						1.1		1.)			• •	74	107		184		304		448	592
T ₁₆	73		145	201	300	312	387	457		609		565	74	106		179		298		444	587
T15	73		116	167	215	233	280	328		432		394	73	93		149		225		321	408
T14	73		137	192	282	295	353	420		561		519	75	104		177		288		417	543
T ₁₃	72		145	197	298	305	379	446		598		547	75	104		176		394	••••	439	574
1	72		47	86	863	306	338	143		588		542	76	90		78		8		47	18
1.1	68		69		69	20	20	70		11		75	76	75 1		76 1		76 3		75 4	76 5
\mathbf{T}_{10}				1.1		111		1 1	11	1.1	1.1	11		11			1.1.1				1 1 1
г ₀	,						1 1	1.1	1.1		1.1	1 1	1 1	с 1			111		н I I		1 1 1
т ₈	65		06	82	107	116	143	164		182		173	62	64		79		120		158	182
T_7	68		143	178	275	274	350	406		535		473	73	66		164		277		423	532
т ₆	70		128	158	239	262	333	368		481		407	74	95		158		256		391	479
т.	67		67	69	74	81	87	66		120		102	11	73		75		85		104	124
T_4	70		70	74	78	86	92	107		133		113	73	75		79		90		113	139
\mathbf{T}_{3}	Т	4 1 1	• • •		111		1 1	11	11		1.1			÷ 1		111			111		
ч 1	•				1 1 1		• •	1 1	11	1.1	11		11	ı ı		111	111	111	111		
۴,	ļ '	1 1 1	• • •	111	111	1 1 1	1 1	1 I	1 1		1 1	11	1 1			111	111	1 1 1			
P7	51.5	53 53	51.8 53 53	52 52	52 52 52	52	53 53	53 53	53.5 53.5	53 . 5 54	54.5 54	54 54.5	55	55 55	55 55 55	55 55 55	55.5 55.5 55.5	55.5 55.5 55.5	56 56 56	56 56 56,5 56,5	57 57 58 58
ъ,	34	34 34 34	15 34 33,5	32.5 33 33	32 39 37	37 38	37 36	35 38	38 37	34 40	40 35	36 42	42.5	42.5	42.5 42.5 42	41.5 42.5 42.5	42.5 42.5 41	40 42.5 43	42.5 42.5 40	39 42.5 43 38	38 44 44 38.5
۳°	13.7	14.4 13 13.8	13.8 12 15	15.5 10.5 14	14 12 17	13	20	22	12	25 13	11 22	26 13	17 17 F	16.2	17.2 15 18	19.5 16 17.4	17.6 13 20.5	22 13 18	18.4 14 23	25 14 29	30 14 32
44	13	31	14 51 27	37 73 15	17 109 49	65 145	- 17	94	-	131 -	138	127 -	17	34	18 57 32	40 85 18	18 26 55	68 - 18	19 - 85	05 18	47
P.	18	23 35 18	18 54 31	41 82 18	16 112 62	66 147	187 81	95 225	208	127 205	210 140	132 205	17	34 17	18 57 32	40 85 18	18 126 1 55	68 166 18	19 217 86	105 212 214 118	134 215 214 147
P2	15	20 31 15	15 51 27	37 78 15	15 110 60	64 145	185 78	92 220	200 105	125 200	210 140	125 205	17	34 17	18 57 32	40 85 18	18 126 55	68 166 18	19 217 86	105 212 214 118	134 215 214 214 147
٩,	23	37 41 45	75 64 55	78 92 105	140 120 105	132 155	190 163	200 245	295 240	285 350	385 308	290 370	17	35 40	75 60 50	72 90 113	164 130 105	136 170 230	290 232 180	220 283 338 260	295 375 420 325
KN						1 1	i i		L I			1.1	000	.008 .008	.017 .017 .017	.030 .030	.047 .047 .047	.068 .068 .068	.093 .093 .093	.120 .120 .154	.188 .188 .214 .214
Amps		0.82 0.82 0.82	1.25	1.66 1.66 1.66	2.05 2.05 2.06	2.47 2.47 2.47	2.88	3.30 3.30	3.68 3.68	4.09	4.32	4.10	0	0.80	1.23 1.23 1.23	1.64 1.64 1.64	2.09 2.09 2.09	2.46 2.46 2.46	2.85 2.85 2.85	3.27 3.27 3.67 3.67	4.06 4.06 4.31 4.31
olts	0	0000	150	200	250 250 250	30 0 0	350	100	150	200	534 533	500	0 0	888	150	00000	250	300	350 350 350	400 450 450	500 535 535
_ ^									~ ~ ~												
	Modification #7A												Modification #8								

Modifi

^T 19	81	138		288 298 297 297	491
T ₁₈	80	142		400	215
T17	82	145		421	233
T16	83	145		425	537
T15	83	115		343 202	385
T14	83	133		410	497
r ₁₃	81	145		4 0.40	223
1_{12}	82	148		425	230
11.	87	87		98 98	81
\mathbf{T}_{10}					
ь ⁶					
т ₈	62	8		248	177
T ₇	67	150		415	200
۴,	86	143	ş	428	477
ч°°	80	76		30	110
۲. 4	83	81		130	134
T ₃					
\mathbf{T}_2					1 I F F - 1
r,					
P7	52.3 52.3 52.3	52.3 52.3 52.3 52.3 52.3 52.3	52.8 52.8 52.8 52.8 52.8 8 52.8 8 52.8 8 52.8 8 52.8 8 52.8 8 52.8 8 55.8 8 8 55.8 8 55.8 8 55.8 8 55.8 8 55.8 8 55.8 8 8 55.8 8 8 8	553 553 554 554 554 554 554 554 554 554	55.2 55.2 55.2
ч ₉	40 39.8 40	40 40 39 39.5 40	40 40 40 40 5 5 5	35 0 4 4 0 3 3 4 4 0 3 4 3 3 5 4 4 0 3 3 3 4 4 0 3 3 3 4 4 0 3 3 4 4 0 3 5 4 4 0 3 5 4 4 0 3 5 4 4 0 3 5 4 4 0 3 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	41 42 42 41 42 41
в. 5	14.5 15 13.5 14.5	14.5 12.5 15.5 15.5 16.5 13 14.7	14.8 14.8 18 19 13 15 15	30 0 28 22 1 2 7 27 27 28 30 0 28 30 1 2 2 2 2 2 3 1 2 3 1 2 2 3 1 3 1	13 13 13 13
9 4	15 21 33 33 15	15 30 33 33 33 33 33 33 33 33 33 33 33 33	15 52 65 164 15 15 -	88 	
م ۳	15 34 15	15 58 30 39 15 15	15 52 52 65 15 15 15 225	88 105 275 123 142 155	215 215 215 215 215
P2	15 34 15	15 30 33 15 15 15	15 120 52 52 65 164 15 15 15 225	88 105 275 275 320 123 123 142 142 155	215 215 215 215 215
• ¹	40 33 30 IS	75 63 45 73 90 115	165 135 135 135 135 225 225 295 240	185 230 235 345 345 315 345 345 345 345 345 345 345 345 345 34	305 365 425 470 495
	800.	.018 .018 .018 .018 .031	.048 .048 .048 .068 .068 .068	.094 .123 .123 .154 .154 .190 .190	.123 .154 .154 .189 .215
Amps	0.80	1.25 1.25 1.25 1.65 1.65	2.05 2.05 2.05 2.47 2.47 2.46 2.46 2.46 2.46 2.87	2.87 3.29 3.29 3.68 4.08 4.31 4.31	4.33 4.33
L	J				

Modification #9

· · · ·		_							-																		
119	11						137						237						323				393				
T ₁₈	77						138						241					-	330				398				
T17	73					-	142						249						344				422				
T16	74						140						244		_		·		340				414				
1 ₁₅	11						109						202						279				344				
T14	72	-	·		_		129			_			238						335				415				-
1 ₁₃	74						142						249						343				418				-
T ₁₂	74						143					•	252			-		_	349				424				_
۔ ایک	87						87						86						87		-		87				
¹ 10	1	1	1	1	1	ı	ł	ı	1	ı	ı	ı	ı	1	,	1	ı	+		•	ı	ı	ł	ı	ı	ı	ı
-6 -6	'	1	ı	ı	ı	ı	i	ŧ	I	ı	t	ı	ı	ı	ı	1	ı	,	ı	ı	4	1	1	ı	,	ı	ı
ъ.	60						87			-			152						202				240				
- ¹	64						142						275						346				415				
9	83						127						288						368				425				
т ₅	78						83				-		93						110				127				
н ⁴	75						82						66						114				138				
н	<u>'</u>	1	•	'	'	1	1	1	ı	1	ı	1	1	1	1	1	ı	ı	•	1		I	1	ı	1	1	1
4	۱ 	•	ı	1	'	1	•	I	1	1	,	1	'	1	1	I	1	1	1	'	•	ı	1	ł	1	•	
F.	1	1	1	1	1	1	•	1	1	1	•	1	1	1	'	1	+	1	1	•	1	1	1	1	1	1	
P7	3 52.6	22.8	52.8	5 52.8	53.0	53.0	53.0	53.0	53.2	53.2	53.5	53.5	53.5	53.8	53.8	54.0	54.3	54.5	54.3	54.5	55	55.2	55.2	55.5	55.8	56.2	56.2
<u>م</u> ه	40.	40	40.5	40.5	40.5	40.5	40.0	39	40.5	40.5	41.0	41.0	39.5	39	40.5	41.0	42.0	41.5	38.5	38	41.5	42.0	38.0	38.0	43.0	43.0	38.0
°5	15	15.5	14	15	15	13	16	17	12	16	16	11	19.5	20	13	15	17	13	22.5	24	13	14	26	28	15	15	30
44	15	21	33	15	15	54	28	38	82	16	16	116	20	62	153	16	17	1	80	97	ı	1	112	128	1	ı	144
P3	15	12	33	15	15	54	28	38	82	16	16	116	50	62	153	16	17	195	80	97	212	215	112	128	217	218	144
P2	15	21	33	12	15	54	28	38	82	16	16	116	50	62	153	16	17	195	8	67	215	215	112	128	217	218	144
P1	15	8	35	40	70	57	45	70	87	107	150	123	95	125	163	200	260	210	165	205	269	320	235	280	373	415	320
KW	0	.007	.007	.007	.017	.017	.017	,031	.031	.031	.048	.048	.048	.069	.069	.069	.094	.093	.094	.121	.121	.154	.154	.188	.188	.218	.215
Amps	•	0.82	0.82	0.82	1.23	1.23	1,23	1.64	1.64	1.64	2.03	2.03	2,03	2.45	2.45	2.45	2.84	2.84	2.85	3.27	3.26	3.66	3.66	4.04	4.04	4.35	4.33
olts	•	100	100	100	150	150	150	200	200	200	250	250	250	300	300	300	350	350	350	400	400	450	450	500	500	540	538
ĬŇ	1																										

APPENDIX B

REDUCED DATA

ORIGINAL PUMP DUCT DESIGN

			Power	Flow	ΔΡ	Efficiency
VOLTS	AMPS	KW	Factor	#/Hr.	Psi	%
115	56.8	3.6	.3183	2,900	16.5	0.233
115	56.8	3.6	•3183	1,450	10.0	0.097
115	56.8	3.6	.3183	0	20.2	-
164	78.8	7.0	.3128	1,850	19.5	0.080
164	78.8	7.0	.3128	3,300	27.0	0.153
164	78.8	7.0	.3128	2,400	30.5	0.130
164	78.8	7.0	.3128	0	37.0	-
210	100.8	11.0	.3000	4,100	44.0	0.174
210	100.8	11.0	.3000	3,200	34.5	0.118
210	100.8	11.0	.3000	2,250	29.0	0.075
210	100.8	11.0	• 3000	0	57.8	-
404	188.4	37.6	.2852	3,950	85.0	0.066
404	188.4	37.6	.2852	8,400	162.5	0.256
404	188.4	37.6	.2852	0	174.0	-
301	142.0	21.4	.2891	6,600	93.0	0.246
301	142.0	21.4	.2891	5,600	77.0	0.180
301	142.0	21.4	.2891	3,200	52.5	0.078
301	142.0	21.4	.2891	0	106.0	-

			Power	Flow	∆ P Doj	Efficiency
VULIS	Artr 5	KW	Factor	#/nr•	rsı	/6
160	82.0	5.6	.2465	2,325	27.7	0.077
200	102.0	9.0	.2547	3,260	29.2	0.071
250	126.0	13.0	•2383	4,220	44.8	0.097
300	149.2	20.0	•2580	5,150	63.0	0.108
350	172.0	26.6	.2551	6,000	88.5	0.134
400	194.0	35.0	•2604	6,900	108.0	0.146
450	195.0	45.0	.2961	7.900	143.0	0.168
450	195.0	45.0	.2961	0	148.0	-
450	220.0	47.0	.2741	18,000	119.0	0.305
400	194.0	36.6	.2723	15,500	90.5	0.256
350	172.0	27.4	.2628	14,000	71.5	0.244
300	150.0	21.0	.2694	11,500	49.0	0.180
250	127.2	14.6	.2651	10,500	39.5	0.190
200	102.4	9.0	.2537	9,000	28.3	0.189
150	76.0	5.0	.2533	6,000	13.9	0.111
150	64.0	5.6	.3674	6,700	17.0	0.136
200	86.0	10.0	•3357	8,700	29.0	0.169
250	108.0	15.6	.3336	11,500	44.0	0.217
300	129.2	22.0	.3277	13,000	62.0	0.245
350	150.0	29.0	.3189	14,500	77.0	0.257
400	170.8	37.4	.3161	14,900	86.5	0.230
450	192.8	46.4	.3088	17,300	110.0	0.274
150	64.0	5.6	.3674	0	19.5	-
200	102.4	10.0	.2537	0	34.5	-
250	108.0	15.6	.3336	0	54.5	-
300	129.2	22.0	.3277	0	74.5	-
350	150.0	29.0	.3189	6,600	87.0	0.132
350	150.0	29.0	.3189	0	89.0	-
400	170.8	37.4	•3161	7,200	105.0	0.135
400	170.8	37.4	.3161	0	108.5	-
450	192.8	46.4	• 3088	7,900	132.5	0.142
450	192.8	46.4	.3088	0	138.0	-

PUMP DUCT MODIFICATION NO. 1

VOLTS	AMP S	KW	Power Factor	Flow #/Hr.	∆ P Psi	Efficiency %
102	46.0	2.0	.1581	6,000	15.5	0.311
102	46.0	2.0	.1581	3,100	20.2	0.210
102	46.0	2.0	.1581	0	29.0	-
151	67.2	4.0	.2271	8,800	29.3	0.431
150	67.2	4.0	.2291	4,100	37.5	0.257
150	67.4	4.0	.2284	0	49.0	-
200	92.0	7.2	•2259	11,500	51.1	0.546
202	91.2	7.6	.2381	5,250	59.0	0.273
204	92.0	7.8	.2399	0	82.0	-
252	114.4	12.0	.2403	13,800	70.9	0.546
253	114.8	11.6	.2306	6,300	86.5	0.314
255	115.2	12.0	.2358	0	112.0	-
300	136.8	16.0	.2251	16,000	95.5	0.639
304	137.6	16.6	.2291	7,200	113.0	0.328
307	138.4	17.0	.2310	0	142.0	-
353	168.0	22.0	.2142	18,000	132.4	0.725
350	168.0	22.0	.2160	8,500	145.5	0.566
350	168.0	22.0	.2160	0	172.0	-
400	190.0	27.6	.2097	21,000	149.5	0.761
400	190.0	27.6	.2097	9,200	187.5	0.407
400	190.0	27,6	.2097	0	209.0	-
450	212.0	37.0	.2239	23,000	167.5	0.696
450	212.0	37.0	.2239	9,900	210.0	0.562
450	212.0	37.0	.2239	0	234.5	-
443	212.0	37.0	.2275	23,500	180.0	0.765
445	212.0	35.0	.2142	10,000	214.0	0.611
445	210.0	34.0	.2100	0	234.5	-

PUMP DUCT MODIFICATION NO. 2

	<u></u>		Power	Flow	Λ P	Efficiency
VOLTS	AMPS	KW	Factor	#/Hr.	Psi	%
100	53.6	2.8	.3016	4,200	4.7	0.047
100	54.0	2.8	.3016	1,430	5.0	0.017
100	54.0	2.6	.3016	-	5.7	-
150	80.4	6.0	.2872	4,800	9.3	0.050
150	80.4	6.0	.2872	2,000	10.0	0.022
151	81.2	6.0	.2813	0	11.5	-
202	106.4	10.0	.2686	6,000	13.8	0.065
202	106.4	10.0	.2686	3,200	17.0	0.036
205	107.6	10.2	.2670	0	19.3	-
435		47.0		0	60.5	
200	104.8	10.0	.2754	2,350	18.5	0.029
433	210.0	46.0	.2921	5,100	50.0	0.037
438	205.0	45.6	.2932	0	54.0	-
400	192.0	35.0	.2631	4,550	45.5	0.040
404	194.0	35.6	.2622	0	49.0	-
350	170.8	27.0	.2607	4,150	37.5	0.058
347	170.0	26.6	.2603	0	39.0	-
300	149.2	20.0	.2580	3,700	30.5	0.038
296	148.0	19.8	.2610	0	23.0	-
249	126.8	14.4	.2633	7,000	20.0	0.044
242	125.2	14.0	.2668	3,200	25.2	0.031
245	126.0	14.2	.2656	0	24.5	-

PUMP DUCT MODIFICATION NO. 3

- -

	AMPS	KW	Power	Flow #/Hr	∆ P Pei	Efficiency %
V0115				<i>" 111 •</i>	131	70
155	80.8	5.6	.2582	7,900	23.1	0.218
152	80.8	5.6	.2582	3,650	28,5	0.124
153	81.2	5.6	.2602	0	29.0	-
200	104.0	9.2	.2554	10,000	38.7	0.281
200	104.0	9.2	•2554	4,450	42.3	0.136
202	105.6	9.8	•2652	0	46.0	-
250	129.2	14.8	•2646	11,500	53.8	0.280
253	130.0	14.8	. 2598	5,750	64.0	0.166
259	132.0	15.2	.2567	0	67.0	-
300	151.2	20.0	. 2546	13,000	70.0	0.323
305	152.8	20.1	. 2490	6,350	88.2	0.186
310	154.4	21.4	. 2581	0	89.0	-
349	172.0	27.0	.2597	15,500	89.5	0.344
355	174.0	28.0	.2617	6,900	106.5	0.176
363	176.0	29.0	•2621	0	111.0	-
395	190.8	34.6	.2651	16,600	107.0	0.343
398	192.0	35.0	.2644	7,400	123.0	0.174
410	194.0	36.0	.2613	0	127.0	-
440	200.0	44.0	.2887	18,500	130.7	0.368
440	200.0	44.0	.2887	8,000	142.7	0.236
443	200.0	44.0	.2867	0	144.0	-

PUMP DUCT MODIFICATION NO. 3A

			Power	Flow	ΔΡ	Efficiency
VOLTS	AMPS	KW	Factor	#/Hr.	Psi	%
200	107.6	7.0	1878	10,500	37.0	0.354
200	107.6	7.0	.1878	4,400	47.0	0.198
200	108.0	7.0	.1871	0	51.0	-
250	135.6	11.0	.1873	12,000	52.3	0.382
250	136.0	11.0	.1868	5,700	69.0	0,239
254	137.2	11.0	.1823	0	71.0	-
299	162.0	16.0	. 1907	15,000	76.5	0.479
302	163.2	16.4	.1921	6,300	96.0	0.247
350	187.2	22.0	.1939	17,000	99.9	0.516
353	188.0	22.4	. 1949	7,600	127.0	0.288
353	188.0	22.4	.1949	0	139.0	-
402	210.0	29.0	.1983	19,000	129.5	0.848
410	212.0	30.0	.1993	8,600	163.0	0.313
200	102.8	6.4	.1797	4,000	35.0	0.146
250	126.4	9.4	.2975	4,700	51.0	0.171
300	150.4	13.8	.1766	5,500	70.5	0.188
350	174.0	19.0	.1801	6,500	97.5	0.223

PUMP DUCT MODIFICATION NO. 4

VOLTS	AMPS	KW	Power Factor	Flow #/Hr.	∆ P Psi	Efficiency %
	· · · · · · · · · · · · · · · · · · ·					
202	110.4	8.0	.2071	13,000	49.7	0.540
201	110.8	8.0	.2074	5,500	67.7	0.466
202	110.8	8.0	.2064	0	80.0	-
250	137.6	12.0	.2014	14,500	78.5	0.634
250	137.6	12.0	.2014	6,800	103.5	0.392
252	138.0	12.2	•2026	0	120.0	-
300	163.2	17.6	.2075	17,500	111.5	0.742
300	164.0	18.0	•2112	8,400	145.0	0.453
300	164.0	18.0	.2112	0	165.0	-
350	188.0	24.0	.2106	21.500	151.0	0.905
352 .	190.0	24.0	.2072	9,600	199.5	0.534
352	190.0	24.0	.2072	0	225.0	-
400	210.0	31.0	.2131	23,000	188.0	0.933
400	210.0	31.0	.2131	10,500	244.5	0.544
400	210.0	31.0	.2131	0	280.0	-
429	210.0	33.0	.2115	26,000	197.0	1.038
429	210.0	33.0	.2115	10,900	254.5	0.562
429	210.0	33.0	.2115	0	295.0	-
-	-	-	-	-	-	-
200	110.0	7.8	.2047	5,800	67.5	0.311
202	110.4	7.8	.2020	0	80.0	-
300	164.0	17.6	.2065	8,200	149.0	0.423
420	215.0	34.0	.2124	0	255.0	-

			Power	Flow	ΔΡ	Efficiency
VOLTS	AMPS	KW	Factor	#/Hr	Psi	%
100	48.4	2.0	.2386	4,650	13.6	0.212
100	48.4	2.0	.2386	3,100	19.8	0.206
100	48.4	2.0	•2386	0	24.0	-
200	102.0	8.0	.2264	11,500	57.5	0.553
204	103.2	8.6	•2360	6,100	79.0	0.375
205	104.0	8.8	•2383	0	94.0	_
300	150.8	18.0	.2297	18,000	116.5	0.779
310	156.0	19.0	.2268	8,400	154.0	0.681
310	155.2	19.0	.2280	0	174.0	-
405	210.0	31.0	.2104	22,600	185.0	0.902
400	212.0	30.6	.2083	10,500	238.0	0.546
400	212.0	30.6	.2083	0	264.0	-
437	220.0	35.6	.2138	30,000	242.0	1.364
437	220.0	35.4	.2138	12,000	278.0	0.630
437	220.0	35.4	.2138	0	314.0	

PUMP DUCT MODIFICATION NO. 6
VOLTS	AMPS	KŴ	Power Factor	Flow #/Hr	∆ P Psi	Efficiency %
100	64.0	2.4	.2165	6,800	13.6	0.258
100	64.0	3.2	.2887	3,100	19.8	0.128
100	64.0	3.2	.2887	0	22.0	-
153	100.8	6.8	.2546	9,000	29.2	0.258
153	100.8	7.2	.2546	4,300	41.0	0.164
153	100.8	7.2	.2546	0	49.0	-
205	134.4	9.2	.1928	11,100	47.5	0.383
205	134.4	8.8	.1844	5,750	71.5	0.312
205	134.4	8.8	.1844	0	89.0	
250	162.4	12.4	.1763	14,200	70.2	0.538
250	162.4	12.4	.1763	6,800	105.2	0.386
250	162.4	12.4	.1763	0	129.0	-
300	196.0	18.0	.1767	16,000	95.5	0.586
300	196.0	20.4	.2003	7,600	136.0	0.339
302	198.4	20.4	.1966	0	172.0	-
350	224.0	28.0	.2062	19,000	119.5	0.542
350	228.0	28.0	.2026	8,900	175.9	0.374
350	228.0	28.0	.2026	0	226.0	-
350	228.0	28.4	.2055	9,100	181.3	0.387
350	228.0	28.4	.2055	0	232.7	-
400	260.0	36.0	.1998	10,100	222.8	0.418
460	297.6	48.0	.2024	10,900	290.3	0.441
400	264.0			9,600	210.3	
400	261.6			9,800	205.3	
450	292.0			10,900	252.5	
450	293.6			10,000	258.5	
500	324.8			11,900	299.3	
500	324.8			9,800	291.3	
529	342.4			12,200	341.3	

PUMP DUCT MODIFICATION NO. 7

i.

VOLTS	AMPS	ĸw	Power Factor	Flow #/Hr	∆ P Psi	Efficiency %
100	65.6	<u></u>		6,300	13,3	
100	65.6			3,000	17.8	
100	65.6			0	22.0	
150	100.0			0	52.0	
150	100.0			5,100	42.8	-
150	100.0			9,700	30.8	
200	132.8			12,500	53.3	
200	132.8			5,800	72.3	
200	132.8			0	82.0	
250	164.0			0	117.0	
250	164.8			7,500	98.8	
250	164.8			13,000	78.8	
300	197.6			16,500	104.8	
300	197.6			8,000	132.8	
300	197.6			0	-	
350	230.4			9,200	167.8	
350	231.2			18,900	133.8	
400	264.0			21,500	168.8	
400	264.0			10,100	225.8	
450	294.4			9,800	273.8	
450	294.4			24,000	205.8	
500	327.2			26,500	250.8	
500	325.6			9,600	327.8	
534	345.6			9,800	364.8	
533	344.0			26,500	262.8	
500	328.0			26,900	254.8	
500	324.0			9,800	347.8	

PUMP DUCT MODIFICATION NO. 7A

_ ____

VOLTS	AMPS	KW	Power Factor	Flow #/Hr	∆ P Psi	Efficiency %
100	64 0	3.0	2887	5 600	13 5	0.158
100	64.0	2.2	• 2007	5,000	10 2	0 169
100	64.0	3.2	.2007	4,200	19.5	0.109
100	64.0	3.2	.2887	0	23.0	-
150	98.4	6.8	.2784	0	58.0	-
150	98.4	6.8	.2784	5,400	45.0	0.239
150	98.4	6.8	•2784	9,000	32.0	0.283
200	131.2	12.0	.2640	12,000	52.5	0.351
200	131.2	12.0	.2640	5,900	74.0	0.364
200	131.2	12.0	.2640	0	96.0	_
250	167.2	18.8	.2597	0	147.0	_
250	167.2	18.8	.2597	7,600	117.0	0.316
250	167.2	18.8	.2597	15,000	84.5	0.451
300	196.8	27.2	.2652	17,500	114.0	0.491
300	196.8	27.2	.2652	8,800	149.0	0.322
300	196.8	27.2	. 2652	0	213.0	-
350	228.0	37.2	.2691	0	273.0	
350	228.0	37.2	.2691	10,100	218.0	0.396
350	228.0	37.2	.2691	21,000	160.0	0.604
400	261.6	48.0	.2648	24,000	195.0	0.652
400	261.6	48.0	.2648	9,800	269.0	0.367
450	293.6	61.6	.2692	9,900	323.0	0.347
450	293.6	61.6	.2692	26,000	231.0	0.652
500	324.8	75.2	.2674	27,500	265.0	0.648
500	324.8	75.2	.2674	10,000	360.0	0.320
537	344.8	85.6	.2669	10,000	406.0	0.322
535	344.8	85.6	.2669	28,500	293.0	0.653

PUMP DUCT MODIFICATION NO. 9

		U1.1	Power	Flow #/um	∆ P Bai	Efficiency
VOL15	AHES	KW		17 / TL	FS1	/0
100	64.0	3.2	.2887	5,200	14.5	0.151
100	64.0	3.2	.2887	3,000	21.0	0.126
100	64.0	3.2	.2887	-	25.0	-
150	100.0	7.2	.2771	-	60.0	-
150	100.0	7.2	.2771	4,900	50.0	0.217
150	100.0	7.2	.2771	8,500	29.0	0.219
200	132.0	12.4	.2712	9,000	56.0	0.260
200	132.0	12.4	.2712	6,100	76.5	0.241
200	132.0	12.4	.2712	_	99.8	-
250	164.0	19.2	.2704	-	149.7	-
250	164.0	19.2	.2704	7,200	119.7	0.287
250	164.0	19.2	.2704	12,300	86.5	0.354
300	197.6	27.2	.2649	14,500	115.5	0.395
300	197.6	27.2	.2649	11,500	151.5	0.328
300	197.6	27.2	.2649	-	209.5	-
350	229.6	37.6	.2701	-	279,5	-
350	229.6	37.6	.2701	10,900	229.5	0.426
350	229.6	37.6	.2701	17,200	162.5	0.476
400	263.2	49.2	.2698	21,000	205.5	0.509
400	263.2	49.2	.2698	11,500	279.5	0.382
450	294.4	61.6	.2685	12,500	343.5	0.446
450	294.4	61.6	.2685	20,400	244.5	0.518
500	326.4	76.0	.2689	22,000	294.5	0.546
500	326.4	76.0	. 2689	13,000	399.5	0.438
533	344.8	85.6	.2689	14,300	434.5	0.465
533	345.6	85.6	. 2689	26,000	340.5	0.686
400	262.4	49.2	.2706	10,500	291.5	0.400
450	293.6	61.6	.2692	10,500	351.5	0.384
500	324.8	75.6	.2688	10,500	411.5	0.366
535	346.8	86.0	.2691	10,500	456.5	0.357
535	346.8	86.0	.2691	-	480.0	-

	۵MDS		Power	Flow #/Hr	∆ P Pei	Efficiency
40113		KW	Factor	///111	151	///
100	65.6	2.8	.2464	6,300	14.5	0.218
100	65.6	2.8	.2464	3,100	21.0	0.156
100	65.6	2.8	.2464	0	25.0	-
150	98.4	6.8	.2660	0	55.0	-
150	98.4	6.8	.2660	4,600	45.0	0.204
1 5 0	98.4	6.8	.2660	8,700	30.0	0.257
200	131.2	12.4	.2728	12,000	54.0	0.350
200	131.2	12.4	.2728	5,900	76.0	0.242
200	131.2	12.4	.2728	0	92.0	-
250	162.4	19.2	.2730	0	135.0	-
250	162.4	19.2	.2730	7,200	113.0	0.283
250	162.4	19.2	.2730	14,500	76.5	0.386
300	196.0	27.6	.2710	17,000	106.0	0.437
350	196.0	27.6	.2710	8,200	151.0	0.300
300	196.0	27.6	.2710	0	185.0	-
350	227.2	37.6	•2730	0	245.0	-
350	227.2	37.2	.2701	9,500	198.0	0.338
350	228.0	37.6	.2720	20,000	143.5	0.511
400	261.6	48.4	.2670	23,000	197.0	0.626
400	260.8	48.4	.2679	10,000	257.0	0.355
450	292.8	61.6	. 2699	10,000	307.0	0.333
450	292.8	61.6	.2699	24,000	210.0	0.547
500	323.2	75.2	.2687	26,000	253.0	0.585
500	323.2	75.2	. 2687	10,000	358.0	0.318
540	348.0	87.2	. 2679	10,000	400.0	0.306
538	346.4	86.0	.2664	28,500	291.0	0.645