
Paper Reprinted from
Conference Pre-Print No.139

on
Antennas for Avionics

(NASA-CR-136815) ROLL PLANE ANALYSIS OF N74-16953
ON-AIRCRAFT ANTENNAS (Advisory Group for
Aerospace Research and) 2 p HC $3.25

CSCL 09E Unclas
G3/09 29650

https://ntrs.nasa.gov/search.jsp?R=19740008840 2020-03-23T10:52:40+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42898338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


41-1

ROLL PLANE ANALYSIS OF ON-AIRCRAFT ANTENNAS*

by
W.D. Burnside
R.J. Marhefka
C.L. Yu

The Ohio State University ElectroScience Laboratory
Department of Electrical Engineering

Columbus, Ohio 43212
28 June 1973

ABSTRACT

The roll plane radiation patterns of on-aircraft antennas are analyzed using high frequency solutions.
This is a basic study of aircraft-antenna pattern performance in which the aircraft is modelled in its
most basic form. The fuselage is assumed to be a perfectly conducting elliptic cylinder with the antennas
mounted near the top or bottom. The wings are simulated by arbitrarily many sided flat plates and the
engines by circular cylinders. The patterns in each case are verified by measured results taken on simple
models as well as scale models of actual aircraft.

I. INTRODUCTION

This paper presents a basic theoretical study of roll-plane aircraft-antenna patterns for the UHF and
microwave frequencies in which the antenna is mounted on the fuselage near the top or bottom. Since it is
a study of general-type aircraft, the aircraft is modelled in its most basic form. The fuselage is assumed
to be a perfectly conducting infinitely long elliptic cylinder. The wings and horizontal stabilizers are
modelled by n-sided flat plates which lie in a plane that is parallel to the fuselage axis. The engines
are approximated by circular cylinders.

The need for this type of solution is basically two-fold. First, there may be upwards to 200 antennas
mounted on a single aircraft. If these antennas can be located on the aircraft at the design stage, then
one can expect better performance in that optimum locations and necessary structural changes can be an-
ticipated. Secondly, antenna systems are normally added or changed in the course-of an aircraft's useful
lifetime. Such relocation or addition of antennas has always required a great deal of engineering time
and money.

Some of the first solutions used to compute on-aircraft antenna patterns were the modal solutions for
infinitely long circular (Carter, P.S., 1943) and elliptical (Sinclair, G., 1951) cylinders. The fuselage
was modelled by a cylinder whose cross-section approximated the fuselage cross-section at the antenna
location. Arbitrary antennas were considered, and the antenna could be mounted on or above the fuselage.
Results were quite adequate provided the aircraft structure was not illuminated too strongly. In fact,
these solutions have provided the primary high frequency analysis to date. However, with the desire to
improve system performance, versatility, and coverage the antenna pattern must be shaped for the desired
application in such a way that it may actually illuminate the structure quite strongly. In many cases the
system's performance is dependent on the pattern effects of the secondary contributors.

Another approach that has found great success at solving this type of problem is the Geometrical
Theory of Diffraction (GTD). GTD is basically a high frequency solution (object large in terms of wave-
length) which is divided into two basic problems; these being wedge or tip diffraction and curved surface
diffraction. The only limitation of these solutions is that the source and various scattering centers be
separated by at least a wavelength. In some cases even this requirement can be relaxed. Using this ap-
proach one applies a ray optics technique to determine the fields incident on the various scatterers.
The fields diffracted are found using the GTD solutions in terms of rays which are summed with geometrical
optics terms in the far zone. The scattered energy, which is analyzed in terms of rays, from a given
structure tends to illuminate the other structures causing various higher-order scattered terms. Using
the ray optics approach, one can trace out the various possible combinations of rays that interact between
various scatterers and include only the dominant terms. Thus, one need only be concerned with the dominant
scattering structures and neglect the secondary structures in the theoretical model. This makes the GTD
approach ideal for a general high frequency study of on-aircraft antenna patterns.

II. WEDGE DIFFRACTION

The three dimensional wedge diffraction problem is pictured in Fig. 1. A source whose radiated E
field is given by Ei(s) is located at point s'(p', ',z'). It can be an arbitrary electric or magnetic
source causing plane, cylindrical, conical, or spherical wave incidence on the wedge tip. The diffracted
vector field at point s(p, ,z) can be written in terms of a dyadic diffraction coefficient. Kouyoumjian
and Pathak (1970) have given a more rigorous basis for the GTD formulation and have shown that the dif-
fracted fields may be written compactly if they are in terms of a ray-fixed coordinate system. The ray-
-fixed coordinate system is centered at the point of diffraction QE, (or points of diffraction in the
case of plane wave incidence). QE is a unique point or points for a given source and observation point.
The incident ray diffracts as a cone of rays such that 8 = Bo (see Fig. 1).

*The work reported in this paper was supported in part by Grant NGR 36-008-144 between National
Aeronautics and Space Administration, Langley Research Center, and The Ohio State University
Research Foundation.
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For our purpose, it is more convenient to write the diffracted field in terms of the VB function
(Hutchins, D.L., 1967) as

[E (s) V 0 E (QE
(1) B (Q) L A(s) ejk-jks

sin 0

LE (s)] 0 -VB E E(QE)o
where

VB = VB(L,y-,n) T VB(L,y+,n)

The time dependence factor (ej t) is suppressed throughout this paper. The minus sign (VB) applies for
the -field component parallel to the edge and the plus sign (VB) applies for the E-field component per-
pendicular to the edge. The angular relations are expressed by

y = y = 4 T) ' for o < ~,' < nn,

where the minus sign (y-) is associated with the incident field and the plus sign (y+) with the reflected
field. The quantity A(s) is a ray divergence factor given by (Pathak, P.K. etc., 1970)

1 plane, cylindrical (s=p)

J-s and conical wave incidence

A (1+) spherical wave incidence

dnd L is given by

s sin2 o plane wave incidence

L = PP cylindrical wave incidence

s's sin2 o conical-and spherical wave
s+s' incidence, incidence.

III. DIFFRACTION BY ELLIPTIC CYLINDER

The radiation from slots and monopoles mounted on smooth curved surfaces is pertinent to the design of
flush-mounted antennas for aircraft and spacecraft. Recently, Pathak and Kouyoumjian (1972) have extended
the GTD technique for plane wave diffraction by perfectly conducting convex surfaces to treat the radiation
problem. This extension of GTD has been successfully applied to circular and elliptic cylinders, spheres,
and spheroids (Burnside, W.D., 1972).

The GTD solution for the radiation by antennas mounted on convex surfaces employs the reciprocity
theorem. Using this approach a plane wave field is assumed normally incident on a right circular cylinder.The antenna aDerture field is, then, given hv avmnpttir Sn1itinnc fnr exact expressions of the field on
the cylinder surface. Employing the reciprocity theorem, one obtains the radiated field for that same
antenna mounted on the cylinder. The geometrical optics solution is used to describe the radiated field
in the lit region. The Fock approximation is used for the penumbra (transition) region; whereas in the
deep shadow region, the GTD solution is applied. Using the GTD solution, a launch coefficient relates the
antenna aperture field to the boundary layer surface waves which propagate around the surface along
geodesic paths. Energy is continually diffracted by the surface wave in the tangent direction to the
propagation path. This diffracted energy is given by a diffraction coefficient which is dependent on the
surface geometry at the point of diffraction. The surface wave energy decays along the geodesic path in
that energy is continually diffracted. This decay is expressed by an attenuation coefficient which is
dependent on the surface geometry along the geodesic path.

The GTD solutions for infinitesimal slot and monopole antennas mounted on an elliptic cylinder as
shown in Fig. 2 are given, neglecting torsional effects, by

A. Monopole case

Lit Region

(2) E = - sin em Om F(source)

Transition Region

a) Lit side

(3) E = n sin m) eJkg* -/3 d} * F(tangent)

b) Shadow side

(4)=n ° ^ejk [e(/ dx] F(tangent)
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Deep Shadow

(5) E = n E Fj (tangent)

B. Slot case

Lit Region

(6) (el sin - e2 cos 8) ('n' + t'')] F(source)

Transition region

a) Lit side

(7) E = 3ejkg*( ( 2  ) /3 d) sin(a s

j / k2u'ik " k /3 1/3
/2 e2p ) )/3 cos(as + ) F(tangent)

L ekg k) /g at source

b) Shadow side

(8) E  -jk 2 d sin(ak a)'( s +

b /2 0 e-jk <g*J k / dV - /3sourcecos(a )j F(tangent)

Deep Shadow Region

(9) E = [n E sin(s-8) + bj E cos(as-B) F (tangent)

where mL m()dz
h dpo 1 h h I Y()d
E = - m=O Lm e

The functions g*( ) and '*( ) are the complex conjugates of the Fock function (Pathak, P.K., etc., 1972)

for the hard and soft boundary conditions, respectively. The unit vectors n and b are, respectively,

the normal and binormal to the geodesic curve at the diffraction (or tangent) point, and F ) is simply

a phase factor to refer the phase to the origin of the coordinate system. The term4 is the

spread factor, which is related to the spread of the geodesic paths. In this case, d/d is unity.

The longitudinal and transverse radii of curvature are given, respectively, by pg and pt. Note that the

superscripts h and s indicate the hard and soft boundary conditions. The launch coefficients are given by

Lm = [e T2 Dm ( 1) Ai(-- at the source

L [J T2 Dm 2 3 Ai(-qm at the source

where Dm is defined in Table I. The subscript m refers to the mth mode of the boundary layer surface wave.

Thus, Ym is the propagation constant for the mth mode surface wave such that Ym = am + jk where am is
defined in Table I. The incremental arc length along the geodesic path is expressed by dz. The sum-

mation over "j" in the shadow region indicates that several terms can contribute in that region.

One must first find an efficient solution for the geodesic paths on the elliptic cylinder surface in

order to analyze this problem successfully using GTD. A preferred coordinate system for the elliptic

cylinder is illustrated in Fig. 3 and defined by

x = d cosh u cos v = af cos v

(10) y = d sinh u sin v = bf sin v

z = z

where 2d is the distance between the foci of the ellipse. Note that for u = uf, where uf = tanh-] (bf/af)

[a constant], the above equations define an elliptical surface for 0 < v < 2,. Thus, the elliptical

surface shape is expressed by uf, its size by d, and any point on the-surface is defined by v.
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Using the calculus of variations, the geodesic paths on an elliptical surface are given by

Z _C a a sin2v + b cos2v dv

Note that vi and vf are, respectively, the initial and final values of v along a given geodesic path. If
one defines the geodesic starting direction by the angle (as) as shown in Fig. 2, then C = -cos as. The
advantage of this geodesic solution lies in the fact that the integral can be quickly evaluated using
numerical techniques. The important parameters of this problem are listed below:

z -cos a v a sin 2 v + b cos2 v dv (geodesic equation)
Isin a s v 2

i1 2a sin2v + b 2 cos 2 v dv (arc length)
sin as I if1

e f = f (curvalinear coordinates)

a sin 2 v + b cos2ve =f

e=2 J

= sin as el - cos ase 2  (unit tangent vector)

Sb cos vx + a sin v v
n (unit normal vector)

a 2 sin2v + b 2 cos2 v

b = tx n = + cos as el + sin as e2  (unit binormal vector)

(a sin2v + b2 cos2 )3/2
(af f cosv)(longitudinal radius of

Pg = a b sin a curvature)

Using the above rclations, one can employ qs. (2-9) to deteriffe thie total radiated fields.

The principal plane radiation patterns (which correspond to roll plane patterns in the aircraft case)
are shown in Fig. 4 for a circumferential slot, axial slot, and monopole mounted on a two wavelength
radius circular cylinder. These patterns compare very favorably with the modal solutions (Sinclair, G.,
1951) as shown in the same figures. The principal plane radiation patterns are shown in Fig. 5 for the
same antennas mounted on an elliptic cylinder.

IV. NEAR FIELD SCATTERING BY A FINITE PLATE

The near field scattering by a finite flat plate is a relatively new topic at higher frequencies
where the plate is large in terms of the wavelength. The solution presented here is a practical
application of the three-dimensional wedge diffraction theory given earlier. The source is defined by
its location and far-field pattern. The far-field pattern of the source is appropriate in that the plate
is located at least 2D2/x away from the source where D is the maximum dimension of the source. The finite
flat plate is simply specified by location of its n corners.

It is known that for a given scatter direction there is only one point along an infinitely long
straight edge at which the diffracted field can emanate for a near zone source. Thus, this point must be
found for each of the n edges that describe the flat plate. There are many ways of finding this dif-
fraction point, one of which is described here. Since it is known that 8 = ' (see Fig. 1), it is
obvious that 0

(11) e I=e *d

where em, I, and d are, respectively, the mth edge unit vector, incident direction unit vector, and dif-
fraction direction unit vector. Since the scatter direction is known (es,p ), the value of em : d =.cm
is easily computed for each edge. One need only search along the edge to find the point where em I = cm.

Once the diffraction point is located, one must find the diffracted field value from the mth edge.
The far field pattern of the source can be written as
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4 e-jks' -jks'
(12) Es(e,f) =[eF(e,4) + ;G(e,,)] ---- = R(e,) e

where s' is the range from the source to the field point. Using the geometry illustrated in Fig. 1 and
applying the results presented earlier one finds that

" VB 1 R1 1 -j[k(s'-y)-kp]

I B

(13) Rd = L LRI]e

where

R= R(eiv i) 0RI = R(ei 1i) "

k p = ks' sin 2 0p 0

y = xdp sines coss + Ydp sines sings + Zdp coses

VB = VB(k p,4-',2) + VB(kpp,0+0',2)

4o = Ix Bo

The coordinates (xdp, Ydp' zdp) define the point of diffraction.

Once these terms are determined the total diffracted field in ray form from a general mth edge is

given by

(14) Rm (es,s) = R + RI

where D = d x e Using the superposition principle the total singly diffracted field in ray form by the
n edges of the flat plate is given using Eq. (14) by

jd n d
(15) R = n R) = Rmss)m=l

The first step in calculating the reflected field is to find the location of the image source, which
is uniquely determined once the plane of the flat plate is defined relative to the source location. In
fact, the image is located along a line which is orthogonal to the plate and positioned an equal distance
on the opposite side of the plate.

With the image position known, one needs to determine if the reflected field contributes to the total
scattered field using the geometrical optics approach. If the reflected field is a contributor, the ray
from the image source in the scatter direction (es, s) must pass through the finite plate limits. Thus,
one must find the location of the intersection point of this ray and the plane containing the flat plate.
This can easily be accomplished using vector analysis. One can, then, predict within certain limits
whether this intersection point falls within the bounds of the finite flat plate.

If reflections do occur, the reflected field from the image source can be written in ray form as

jk[xi sines cosos + yi sines sinos + zi coses ]
(16) Rr(,) = [erFr(es,~)+rGs (esGs)] * e e 1

where er and ;r are related to the image source coordinate system with the image location defined by
(xi,Yi,zi). The functions [Fr(es,os) and Gr(e ,s)] are found by employing the boundary conditions on
the perfectly conducting flat plate. The totaT scattered field from the flat plate is, then, given by

(17) R (es,) s R (esdgs ) + R(6 ss( )

In order to illustrate the versatility of this solution, it is used to approximate the scattering
effect of a disc. This is done by computing the pattern of a monopole mounted on plates with increasingly
many sides. In Fig. 6 the calculated results for plates with 4, and 6 sides are illustrated and compared
with the measured result for the circular disk (Lopez, A.R., 1966). Note that as the number of sides
is increased the closer the computed and measured results agree. Note also the agreement between meas-
ured and calculated patterns of a x/4 dipole mounted above a square plate as illustrated in Fig. 7.

Even though the above results show good agreement one must realize the inherent approximations in
this solution. It is based on edge diffraction with just singly diffracted edge rays being considered.
Thus, it has been assumed that the plate is large in terms of the wavelength such that double diffraction
is normally negligible. However, neglecting double diffraction may cause some error especially when the
pattern is computed in the plane of the flat plate. Secondly, a diffraction term from each of the corners
should be included, but it is not available in practical form at present. Nevertheless, the latter has
little effect on the overall pattern except when a diffraction point (or points) approaches a corner.
In these two cases our solution can be somewhat in error although only small angular regions are involved.
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V. ROLL PLANE ANALYSIS

The basic aircraft to be analyzed in this study is composed of flat plates and cylinders. It
is assumed that the source is mounted on the fuselage and restricted to the regions near the top or
bottom of the aircraft. Arbitrary antennas can be considered simply by integrating these solutions for
infinitesimal antennas over the equivalent aperture currents.

The lower frequency limit of these solutions is dictated by the ray optics format which requires that
the various scattering centers be no closer than approximately a wavelength with the overall aircraft
being large in terms of the wavelength. The upper frequency limit is dictated by the accuracy to which
the model represents the actual aircraft considered.

The two-dimensional problem is considered initially in order to develop the necessary techniques to
attack the much more difficult three-dimensional roll plane problem (Marhefka, R.J., 1971). The
geometry of the two-dimensional problem is illustrated in Fig. 8 with and without the engines included.
The fuselage and engines are assumed circular in cross-section and mounted symmetrically about the finite
wing. Since wedge diffraction is applied to handle the finite length wing, the radiated field must be
described in terms of rays. However, one of the nicer features of the GTD approach is that other
solutions such as modal solutions can be cast into a ray form and then applied to a diffraction problem.
Consequently, it was found that the modal solution (Sinclair, G., 1951) for an arbitrary antenna mounted
on an infinite circular cylinder was satisfactory for treating the antenna mounted on the circular
fuselage. In fact, this solution has been applied in past years as the sole solution for high frequency
on-aircraft antenna analyses.

The radiation patterns for an axial slot are shown in Fig. 8a on a model without engines. The slot
used for the measured patterns is simply an open-ended X-band waveguide. These solutions compare very
favorably with measured results taken on a simulated two-dimensional aircraft model. The radiation
patterns for the same configuration with the engines added are illustrated in Fig. 8b. Again very good
agreement is obtained between our calculated and measured results. These results indicate that the
scattering from the engines has little effect on the overall pattern except near - 900 and 0 m 2700.
The same conclusion is true for the monopole and circumferential slot which were analyzed and measured
although not shown here.

Since the roll plane cuts orthogonally across the fuselage, one should expect the fuselage cross-
section to have a strong effect on the roll plane pattern. On the other hand, an aircraft fuselage is
normally long and slender, such that its finite length effects are generally secondary. Consequently,
the infinite elliptic cylinder representation of the fuselage for roll plane calculations appears to be
a reasonable approximation in most cases. Since the antenna can be arbitrarily positioned on the fuselage
with respect to the wings, one must consider the width of the wing as well as its length in order to obtain
a practical analytic model. In order to accomplish this, the near field flat plate scattering solution is
adapted to this new model such as illustrated in Fig. 9. Note that each wing can be located arbitrarily
with any number of edges provided only that the wings are flat and horizontal.

Our model, now, consists of an infinitely long elliptic cylinder fuselage to which finite flat wings
are attached. The various configurations analyzed are shown in Fig. 10 looking from the front of the
aircraft with the antenna mounted in each case above the wings for the models illustrated. Using these
models, one should be able to analyze a wide variety of aircraft shapes. This is verified by a comparison
of results taken on actual aircraft scale models and presented later.

Let us first find the effective source location for the reflected field. Recall that in our flat
plate result the source was imaged and the reflected field added to the total solution provided the image
ray passed through the finite flat plate (wing) limits. So one must initially determine the effective
source position and then the reflected field. With the source mounted on an infinitely long elliptic
cylinder, the surface rays from the source propagate around the cylinder along geodesic paths, from which
energy is continually diffracted tangentially. Now let us assume that the source does not illuminate the
right wing directly (as illustrated in Fig. 9a) and proceed to determine the unique geodesic path that
diffracts energy from a known tangent point which is then reflected off the wing in the desired radiation
(or scatter) direction.

The effective source position for reflections from the right wing in terms of the radiation direction
(es, s) is given by

xe = af cos ve

(18) Ye = bf sin ve

ze = cot es fe Ja sin 2v + b cos 2v dv + zso

-1
where ve = tan (bf/af cot ps). These coordinates can, then, be used in the flat plate problem as the
effective source location. Note that as the desired radiation direction is varied the effective source
location changes. In addition, if the source directly illuminates the wing for a given reflection term
then the effective source location is simply the actual source location (uf,vso,zso). A result similar
to Eq. (18) can be found for the reflections from the left wing. Finally, the actual source field value
used to compute the reflected term is determined from the GTD solutions of Section III.

Using a similar technique the effective source locations for the diffracted field components may be
found. Our flat plate solution uses a search technique to find the diffraction point by computing the
diffraction angles at selected test points along a given edge. Once a test point (xdYd,zd) is specified
along the edge one can find the effective source location (x ,ye,z ) using the geometry illustrated in
Fig. 9b. Again it is assumed that the source does not direc ly il uminate the test point. One finds that
the effective source is given by
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2 x + a2 a2 22 22 2 b2
a fxd fydfd bfXd - afbf

e (afyd + bfxd)

ab d - b2xd afyd  f xd afbf
(19) y = _ _ _ ___e (a 22 + b2 x 2

(afYd+ bfxd)

bfXeZdI v +afZso(Yd-Ye)Iv

e bfX Iv + af(yd -Y)Iv

where

Iv e  a2 sin 2v + b2 cos 2v dv,

v  so

I = a sin 2 Ve + b2 cos2Ve and ve = tan-x1 (e f)

Given the effective source location for the chosen test point, the search technique is applied to find the
actual diffraction point along a given edge. Note that once the actual diffraction point is determined,

the effective source of the diffracted field is specified by Eq. (19), and the source field value is,

again, computed using the GTD solutions.

The total field is found by summing the directly radiated field with the scattered fields from the

wings using the superposition principle. Several different configurations have been studied using this

solution and compared with measured results. The patterns illustrated in Fig. 11 are based on a circular
fuselage with the wings mounted in the central location. The roll plane pattern for x/4 monopole is

shown in Fig. lla, with the antenna mounted directly above the wings. The pattern is shown in Fig. llb

for an axial slot mounted on the fuselage over the back limit of the wing. In Fig. llc the pattern is
shown for a circumferential slot mounted over the wings but rotated 450 from the straight up direction as
considered in Fig. lla. The patterns for a x/4 monopole mounted on a circular fuselage wing above and

below the central location are illustrated in Fig. 12. In Fig. 13 the roll plane patterns are illustrated

for each of the three basic antennas mounted on an elliptic fuselage with the wings centrally attached.
The patterns illustrated in Fig. 14 are for an axial slot mounted on an elliptic fuselage with the wings

above and below the central position. Good agreement is obtained between the calculated and measured
results in each case. The slight deviations are attributed primarily to the assumptions made in solving

for the flat plate scattered field.

VI. CONCLUSIONS

The solutions that have been presented here provide a high-speed analytic tool for determining the

type and location of antennas based on their roll plane performance. These programs typically compute a

pattern in 30 seconds or less on a CDC 6600 digital computer. A 16 mm film has been developed which
illustrates the advantages of a numerical solution for computing patterns for antennas on aircraft and
is available upon request.

An additional feature of these solutions, which can be very important in certain critical cases,
is that one can trace out the dominant pattern terms as they are scattered by the various parts of the

aircraft structure. In this way one can quickly ascertain which structural scatterers are distorting

the pattern in a critical region. This gives one the option of taking corrective action by changing the

structure or by properly placing absorber. So these solutions not only provide fast pattern computations,
but they also provide the antenna designer with a means of analytically considering several alternatives
to improve the antenna's performance.

Each of the solutions developed have been verified by experimental results taken on a structure which
approximates our analytic model. However, these results do not verify the general validity of our analytic
model in representing an actual aircraft. There are no roll plane patterns published in the literature
to our knowledge that would be suitable for our comparison. We appreciate the efforts of NASA personnel
who measured the patterns of a x/4 monopole mounted on an accurately scaled model of a KC-135 (Boeing 707);
as well as, the effort of NADC personnel who measured two patterns on a scale model of a F-4 aircraft.
The results are illustrated in Figs. 15 and 16 and the agreement in each case is very encouraging.
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radius circular cylinder.
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Fig. 4b. Principal plane pattern of an axial slot mounted on a 2x
radius circular cylinder.
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Fig. 4c. Principal plane pattern of a circumferential slot mounted
on a 2x radius circular cylinder.
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Fig. 5a. Principal plane pattern of a monopole mounted on an elliptic
cylinder with a = 4x and bf = 2).
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Fig. 5b. Principal plane pattern of an axial slot mounted on an
eliptic cylinder with af = 4x and bf = 2.
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Fig. 5c. Principal plane pattern of a circumferential slot mounted
on an elliptic cylinder with af = 4x and bf = 2x.
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Fig. 6. Radiation pattern of a stub on a circular ground plane.
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Fig. 7. E0 radiation pattern for a small dipole mounted above a
rectangular plate for eas = 900 and 00 < s < 3600 at
f = 10.43 GHz.
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Fig. 8a. E radiation pattern for an Fig. 8b. E0 radiation pattern for an
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finite length wing at f = 11.45 GHz. and finite length wing at f = 11.45 GHz.
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Fig. 9a. Reflection problem in x-y plane.
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Fig. 9b. Diffraction problem in y-z plane.
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Fig. 10. Fuselage and wing geometry for theoretical aircraft model
looking from the front.
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Fig. lla. Roll plane pattern of monopole (E ) at f = 11.45 GHz.
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Fig. 1lb. Roll plane pattern of axial slot (E ) at f = 11.45 GHz.
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Fig. 11c. Roll plane pattern of a circumferential slot mounted
over the wings but rotated 450 from the straight up
direction of Fig. lla.
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Fig. 12a. Roll plane pattern of a x/4 monopole mounted on circular
fuselage with wings attached at 450 above the central
position.
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Fig. 12b. Roll plane pattern of a x/4 monopole mounted on circular
fuselage with wings attached at 450 below the central
position, with same geometry as Fig. 12a otherwise.
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Fig. 13a. Roll plane pattern of a monopole mounted on an elliptic
fuselage with centrally located wings at f = 8 GHz.
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Fig. 13b. Roll plane pattern of an axial slot mounted on an elliptic
fuselage with centrally located wings at f = 8 GHz.
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Fig. 13c. Roll plane pattern of a circumferential slot mounted on an
elliptic fuselage with centrally located wings at
f = 8 GHz.
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Fig. 14a. Roll plane pattern of an axial slot mounted on an elliptic
fuselage with the wing attached above the central
location at f = 8 GHz.
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Fig. 14b. Roll plane pattern of an axial slot mounted on an elliptic
fuselage with the wings attached below the central
location at f = 8 GHz.
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Fig. 15a. A x/4 monopole mounted on the fuselage of a KC-135
forward of the wings.
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*Fig. 15b. A x/4 monopole mounted on the fuselage of a KC-135 over
the wings.
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Fig. 16a. Roll plane pattern of a x/4 monopole mounted 11" from the
nose on the bottom of an 1/8 scale model of an F-4
aircraft at f = 8.0 GHz.
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Fig. 16b. Roll pattern of a circumferential slot mounted 35-1/4"
from the nose on the top of an 1/8 scale model of an F-4
aircraft at f = 8.0 GHz.


