

## ANALYSIS OF THE DYNAMICS of a NUTATING BODY

by William J. Anderson
Lewis Research Center
Cleveland, Obio 44135
national aeronautics and space administration - washington, d. C. - february 1974


[^0]
# ANALYSIS OF THE DYNAMICS OF A NUTATING BODY <br> by William J. Anderson <br> Lewis Research Center 

SUMMARY

The equations for the displacement, velocity, and acceleration of a point in a nutating body are developed. These are used to derive equations for the inertial moment developed in a nutating body of arbitrary shape. The moment equations were applied to calculate the inertial moment acting on the support bearing system in a nutating plate transmission. For calculation purposes a previously designed nutating plate transmission was used. The inertial moment was found to be 28 times as great as the moment resulting from reaction forces. This indicates that nutating plate drives are severely speed limited.

The equations developed are considered to be potentially useful for calculating squeeze film and distortion effects in thrust bearings and face seals which are subject to high-frequency, low -amplitude nutation.

## INTRODUCTION

The development of mechanical power transmissions that utilize a nutating member (ref. 1) has led to a need for a thorough understanding of the dynamics of a nutating body. Figure 1 (from ref. 2) shows a sketch of the arrangement of the components in a split nutating drive main rotor gearbox. The nutating plates describe a nutation cycle for each revolution of the input shaft. The nature of the nutating motion considered here can be visualized by referring to figure $2(a)$. The $X, Y, Z$ coordinate system is fixed in the nutating body. The $X$ axis describes a cone of angle $2 \alpha$ in space. Points along the $Y$ and Z axes describe lemniscate-like figures. There is no rotation of the body about the $X$ axis. In this respect the nutation considered here differs from that of spinning bodies that rotate about the nutation axis. Pins on the nutating plates (fig. 1) engage teeth on the fixed reaction plates and also on the drive plates. The drive plates advance one tooth for each revolution of the input shaft.

The loads on the nutating plate support bearing, which result from both contact and inertial forces, must be known. In reference 2 a design analysis showed that contact forces on the nutating plate could result in severe nutator support bearing loads and in short bearing life. An approximate analysis of inertia loads assuming simple harmonic motion of the nutating body revealed that these, too, could be very significant, especially at high speeds.

A search of the literature revealed a number of papers dealing with the dynamics of nutating bodies such as references 3 to 6 . All of these, however, are concerned with the force systems that create the nutation and damping techniques for attenuating the nutation. None of them treat the dynamic forces generated by the nutating body.

Therefore, the object of the work reported herein was to develop the displacement, velocity, and acceleration equations for a point in a nutating body and to apply these to the calculation of inertial moments. The resulting equations can also be used in the design of nutating transmissions since they describe the kinematics of nutating motion. They may also be useful in the design and performance prediction of seals since nutating motions may occur in face seals. High-frequency nutating motions, even of very small amplitude, could conceivably play an important role in the dynamics of seals.

## SYMBOLS

M
$\mathbf{r}$ radius, cm (in.)
T thickness, cm (in.)
t
V
time, sec
volume, $\mathrm{cm}^{3}$ (in. ${ }^{3}$ )
$\mathrm{X}, \mathrm{Y}, \mathrm{Z} \quad$ coordinate system fixed in the nutating body
$\mathrm{X}_{0}, \mathrm{Y}_{0}, \mathrm{Z}_{0}$
$\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$
$\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}$
$\alpha$
$\beta$
density, $N \cdot \sec ^{2} / \mathrm{cm}^{4}\left(\mathrm{lb} \cdot \sec ^{2} / \mathrm{in}^{4}\right)$
angle in $X Y_{0} Y$ plane between $X$ and intersection of $X Y_{0} Y$ and $X_{0} Z_{0}$ planes (fig. 2), $\arcsin (\sin \alpha \cos \omega t)$
$\psi$ angle in $\mathrm{XZZ}_{0}$ plane between X and intersection of $\mathrm{XZZ} Z_{0}$ and $X_{0} Y_{0}$ planes (fig. 2), $\arcsin (\sin \alpha \sin \omega t)$
$\omega$ nutation frequency, $\mathrm{rad} / \mathrm{sec}$
Subscripts:
$h$ harmonic
I inertial
i inner
o outer

## ANALYSIS

Consider a body of arbitrary shape subjected to a nutating motion at a constant frequency $\omega$ and nutation angle $\alpha$. Displacements, velocities, and accelerations of a point $P\left(X_{1}, y_{1}, z_{1}\right)$ will be derived relative to a fixed set of inertial coordinates $X_{0}, Y_{0}$, $Z_{0}$. The nutation motion will be described by the body fixed coordinate system $X, Y, Z$, as shown in figure 2. The axis of nutation is the $X_{0}$ axis.

The nature of nutating motion is such that the $Y_{0}$ axis is always in the $X Y$ plane, and the $Z_{0}$ axis is always in the $X Z$ plane.

## Displacement Equations

$$
\begin{align*}
& x_{0}=x_{1} \cos \alpha-y_{1} \sin \varphi \cos \theta+z_{1} \cos \beta \sin \psi  \tag{1a}\\
& y_{0}=y_{1} \cos \varphi+x_{1} \sin \alpha \cos \omega t+z_{1} \sin \psi \sin \beta  \tag{1b}\\
& z_{0}=z_{1} \cos \psi-x_{1} \sin \alpha \sin \omega t+y_{1} \sin \varphi \sin \theta \tag{1c}
\end{align*}
$$

In terms of $\alpha$ and $\omega t$ equations (1) become

$$
\begin{gather*}
x_{0}=x_{1} \cos \alpha-\frac{y_{1} \sin 2 \alpha \cos \omega t}{2\left(1-\sin ^{2} \alpha \cos ^{2} \omega t\right)^{1 / 2}}+\frac{\mathrm{z}_{1} \sin 2 \alpha \sin \omega t}{2\left(1-\sin ^{2} \alpha \sin ^{2} \omega t\right)^{1 / 2}}  \tag{2a}\\
y_{0}=y_{1}\left(1-\sin ^{2} \alpha \cos ^{2} \omega t\right)^{1 / 2}+x_{1} \sin \alpha \cos \omega t+\frac{\mathrm{z}_{1} \sin ^{2} \alpha \sin 2 \omega t}{2\left(1-\sin ^{2} \alpha \sin ^{2} \omega t\right)^{1 / 2}}  \tag{2b}\\
z_{0}=z_{1}\left(1-\sin ^{2} \alpha \sin ^{2} \omega t\right)^{1 / 2}-x_{1} \sin \alpha \sin \omega t+\frac{y_{1} \sin ^{2} \alpha \sin 2 \omega t}{2\left(1-\sin ^{2} \alpha \cos ^{2} \omega t\right)^{1 / 2}} \tag{2c}
\end{gather*}
$$

## Velocity Equations

$$
\begin{equation*}
\dot{x}_{0}=\frac{\omega \sin 2 \alpha \sin \omega t}{2\left(1-\sin ^{2} \alpha \cos ^{2} \omega t\right)^{3 / 2}} y_{1}+\frac{\omega \sin 2 \alpha \cos \omega t}{2\left(1-\sin ^{2} \alpha \sin ^{2} \omega t\right)^{3 / 2}} z_{1} \tag{3a}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\mathrm{y}}_{0}=-(\omega \sin \alpha \sin \omega \mathrm{t}) \mathrm{x}_{1}+\frac{\omega \sin ^{2} \alpha \sin 2 \omega \mathrm{t}}{2\left(1-\sin ^{2} \alpha \cos ^{2} \omega \mathrm{t}\right)} \mathrm{y}_{1}+\frac{\omega \sin ^{2} \alpha\left(\cos 2 \omega \mathrm{t}+\sin ^{2} \alpha \sin ^{4} \omega \mathrm{t}\right)}{\left(1-\sin ^{2} \alpha \sin ^{2} \omega \mathrm{t}\right)} \mathrm{z}_{1} 3 / 2 \mathrm{z} \tag{3b}
\end{equation*}
$$

$$
\begin{equation*}
\dot{z}_{0}=-(\omega \sin \alpha \cos \omega t) x_{1}+\frac{\omega \sin ^{2} \alpha\left(\cos 2 \omega t-\sin ^{2} \alpha \cos ^{4} \omega t\right)}{\left(1-\sin ^{2} \alpha \cos ^{2} \omega t\right)^{3 / 2}} y_{1}-\frac{\omega \sin ^{2} \alpha \sin 2 \omega t}{2\left(1-\sin ^{2} \alpha \sin ^{2} \omega t\right)^{1 / 2}} z_{1} \tag{3c}
\end{equation*}
$$

## Acceleration Equations

$$
\ddot{x}_{0}=\frac{\omega^{2} \sin 2 \alpha\left(\cos \omega t-3 \sin ^{2} \alpha \cos \omega t+2 \sin ^{2} \alpha \cos ^{3} \omega t\right)}{2\left(1-\sin ^{2} \alpha \cos ^{2} \omega t\right)^{5 / 2}} y_{1}+\frac{\omega^{2} \sin 2 \alpha\left(-\sin \omega t+3 \sin ^{2} \alpha \sin \omega t-2 \sin ^{2} \alpha \sin ^{3} \omega t\right)}{2\left(1-\sin ^{2} \alpha \sin ^{2} \omega t\right)^{5 / 2}} z_{1}
$$

$\ddot{y}_{0}=-\left(\omega^{2} \sin \alpha \cos \omega t\right) x_{1}+\frac{\omega^{2} \sin ^{2} \alpha\left(\cos 2 \omega t-\sin ^{2} \alpha \cos ^{4} \omega t\right)}{\left(1-\sin ^{2} \alpha \cos ^{2} \omega t\right)^{3 / 2}} y_{1}$

$$
+\frac{\omega^{2} \sin ^{2} \alpha\left(-2 \sin 2 \omega t+2 \sin ^{2} \alpha \sin ^{3} \omega t \cos \omega t+3 \sin ^{2} \alpha \sin \omega t \cos \omega t-\sin ^{4} \alpha \sin ^{5} \omega t \cos \omega t\right)}{\left(1-\sin ^{2} \alpha \sin ^{2} \omega t\right)^{5 / 2}} \mathrm{z}_{1}
$$

4(b)
$\ddot{z}_{0}=\left(\omega^{2} \sin \alpha \sin \omega t\right) x_{1}+\frac{\omega^{2} \sin ^{2} \alpha\left(-2 \sin 2 \omega t+2 \sin ^{2} \alpha \cos ^{3} \omega t \sin \omega t+3 \sin ^{2} \alpha \cos \omega t \sin \omega t-\sin ^{4} \alpha \cos ^{5} \omega t \sin \omega t\right)}{\left(1-\sin ^{2} \alpha \cos ^{2} \omega t\right)^{5 / 2}} y_{1}$ 4 (c)

$$
-\frac{\omega^{2} \sin ^{2} \alpha\left(\cos 2 \omega t+\sin ^{2} \alpha \sin ^{4} \omega t\right)}{\left(1-\sin ^{2} \alpha \sin ^{2} \omega t\right)^{3 / 2}} z_{1}
$$

## Inertial Moments

The convention used to calculate inertial moments developed by an arbitrary nutating body is shown in figure 3. The moment equations then become

$$
\begin{align*}
& M_{x_{0}}=\int_{v}\left(\ddot{z}_{0} y_{0}-\ddot{y}_{0} z_{0}\right) \rho d v  \tag{5a}\\
& M_{y_{0}}=\int_{v}\left(\ddot{x}_{0} z_{0}-\ddot{z}_{0} x_{0}\right) \rho d v  \tag{5b}\\
& M_{z_{0}}=\int_{v}\left(\ddot{y}_{0} x_{0}-\ddot{x}_{0} y_{0}\right) \rho d v \tag{5c}
\end{align*}
$$

## RESULTS AND DISCUSSION

For purposes of calculation, conditions approximating those of the transmission design developed in reference 2 were used. This design (ref. 2) was for an input power 1. 86 megawatts ( 2500 hp ), and a $28: 1$ speed reduction. The nutating plate pitch diameter was 91.5 centimeters ( 36 in .). A point $P_{1}$ was chosen on the pitch diameter of the nutating plate (see fig. 4). Values of $\omega=650$ radians per second and $\alpha=9^{\circ}$ were used for calculating displacements, velocities, and accelerations.

Figure 4 shows the generalized motion of $P_{1}$ projected into both the $X_{0}-Z_{0}$ and $X_{0}-Y_{0}$ planes. The displacements projected into the $X_{0}-Z_{0}$ plane is a lemniscate-like curve (fig. 4(a)). In the $X_{0}-Y_{0}$ plane the displacement describes an arc (fig. $4(\mathrm{~b})$ ). Locations of $P_{1}$ at various values of $\omega t$ are shown in figures 4(a) and (b). In the case of the nutating plate transmission, these displacement curves are necessary for the proper design of the engagement between the nutator and the drive and reaction plates.

Figures 4 (c) and (d) show the velocities of point $P_{1}$ projected into the $X_{0}-Z_{0}$ and $\mathrm{X}_{0} \mathrm{Y}_{0}$ planes, respectively. The velocities $\dot{\mathrm{x}}_{0}, \dot{\mathrm{y}}_{0}$, and $\dot{\mathrm{z}}_{0}$ can be added vectorially to get the absolute velocity of $P_{1}$ at any point in the nutation cycle. This is necessary for the calculation of the relative velocity of engagement between the nutator and the drive and reaction plates. This, in turn, is required for the calculation of elastohydrodynamic film thicknesses, traction forces, temperature rise, power loss, and other operating parameters.

Accelerations of point $\mathrm{P}_{1}$ in the $\mathrm{X}_{0}-\mathrm{Z}_{0}$ and $\mathrm{X}_{0}-\mathrm{Y}_{0}$ planes are shown, respectively, in figures 4 (e) and (f). These must be integrated over the volume of the nutator at a specific value of $\omega t$ using equations (5) to obtain the moments about the inertial axes. These are then added vectorially to get the total inertial moment that must be reacted by the bearing system that supports the nutator.

Equations (2) to (5) can also be used to analyze squeeze film and distortion effects in hydrodynamic thrust bearings and face seals subjected to high-frequency nutations. Small-amplitude, high-frequency nutations develop in face seal runners. The extremely small film thicknesses in face seals coupled with the typically fragile structure of face seal runners lead one to believe that the inertial forces that result from nutating motions may significantly affect the performance of the seal.

## Inertial Moments

Expressions for the inertial moments $\mathrm{M}_{\mathrm{x}_{0}}, \mathrm{M}_{\mathrm{y}_{0}}$, and $\mathrm{M}_{\mathrm{z}_{0}}$ acting about the inertial coordinate axes $X_{0}, Y_{0}$, and $Z_{0}$, respectively, are derived in appendix $A$ for a nutating body of arbitrary shape. Equations (A10) to (A12) are applicable at $\omega t=0$. Equations (A19) to (A21) are applicable at $\omega t=\pi / 2$. Because the inertial moment must obviously be a rotating moment of constant magnitude for a constant frequency of nutation, its components can be calculated at any convenient value of $\omega t$ and summed vectorially.

The equations were derived for two values of $\omega t$ as a check on their correctness. A comparison of equations (A10) to (A12) with equations (A19) to (A21) shows their equivalence. In other words, for a circular disk of uniform thickness

$$
\begin{aligned}
& \left.M_{z_{0}}\right|_{\omega t=0}=\left.M_{y_{0}}\right|_{\omega t=\pi / 2} \\
& \left.M_{y_{0}}\right|_{\omega t=0}=\left.M_{z_{0}}\right|_{\omega t=\pi / 2} \\
& \left.M_{x_{0}}\right|_{\omega t=0}=\left.M_{x_{0}}\right|_{\omega t=\pi / 2}
\end{aligned}
$$

The derivation and calculation of inertial moments for a thick nutating plate are given in appendix $B$. As expected, $\mathrm{M}_{\mathrm{x}_{0}}$, the moment about the rotational axis (in the $\mathrm{X}_{0}-\mathrm{Z}_{0}$ plane) acting at the nutation frequency, is identically zero for a constant $\omega$. At $\omega t=0$ the inertial moment acts about the $Z_{0}$ axis, and at $\omega t=\pi / 2$ it acts about the $Y_{0}$ axis. Its rotational character is apparent from these relations.

The magnitude of the inertial moment acting on the nutating plate used in the transmission design in reference 2 (the plate dimensions are given in appendix B) was calculated to be $7.51 \times 10^{7}$ newton-centimeters $\left(6.66 \times 10^{6} \mathrm{lb}\right.$-in.). This exceeds by a factor of 28 the moment load imposed by the static axial reaction loads from the teeth of both the drive and reaction plates (ref. 2). It is quite obvious from these results that nutating plate drives are unusable at any operating conditions other than very low speeds. Even at very low speeds the magnitude of the reaction load and inertial moments on the nutating plate support bearing is likely to impose a severe bearing life problem.

It is interesting to note from equation ( B 7 ) that, unless the plate thickness $T$ is substantial relative to its radius $r$, the contribution of its thickness (as given by the first term of eq. (B7)) to the inertial moment is insignificant. For the plate dimensions used in the calculations, the first term in equation (B7) increased the inertial moment by approximately 0.3 percent. Therefore, for relatively thin plates, the first term in equation (B7) can be neglected.

## Comparison of Inertial Moments Due to Nutating and Simple Harmonic Motion

Appendix $C$ contains a derivation of the inertial moment developed in a body subject to harmonic oscillation. Equation (C7) gives the maximum inertial moment due to har monic motion, which is developed in a circular plate. It can be compared with equations (B4) and (B7). For a thin plate equation (C8) is compared with the second term in equations (B4) and (B7). Notice that the harmonic and nutating moment equations are identical except that equation (C8) contains the factor $\alpha$ (expressed in radians), while
the nutating body equations contain the factor $\tan \alpha\left(\sin ^{2} \alpha+1\right)$.
A comparison of the magnitude of these terms as a function of $\alpha$ is given in table I, expressed as a percent error if equation (C7) is used, rather than the exact equation. The error is small at small values of $\alpha$, but becomes appreciable as $\alpha$ increases. Thus it appears that the approximate inertial moment equation assuming simple harmonic oscillation can be used with good accuracy at small values of $\alpha$. At larger values of $\alpha$ the exact nutation equations should be used.

An additional value of the displacement, velocity, and acceleration equations (eqs. (2) to (4)) may lie in their use for determining local distortions in nutating bodies. Different points in a nutating body experience varying accelerations at given times. This condition will result in varying stresses and local distortions. These may be significant in a machine element such as a face seal whose performance is a strong function of its geometry during operation.

## CONCLUSIONS

The equations developed for the displacement, velocity, and acceleration of a point in a nutating body can be used for the design of nutating plate transmissions. The equations developed for the calculation of the inertial moment of a nutating body of arbitrary shape, when applied to the plate of a previously designed nutating plate drive, indicate that this device is severely speed limited. The support bearing load due to the inertial moment was calculated to be 28 times as great as the load due to reaction forces.

At small values of the nutation angle, the approximate formula for the inertial moment, which is based on an assumption of simple harmonic oscillation, can be used with good accuracy. At nutation angles of $10^{\circ}$ and greater the error becomes appreciable, and the exact formula for nutating motion should be used.

The equations for displacement, velocity, and acceleration should be useful in assessing squeeze film and local distortion effects in thrust bearings, and particularly face seals, in which nutating motions occur.

## Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, November 8, 1973, 501-24.

## APPENDIX A

DERIVATION OF INERTIAL MOMENTS FOR A BODY OF ARBITRARY SHAPE AT $\omega t=0$ AND $\omega t=\pi / 2$

$$
\begin{align*}
& M_{y_{0}}=\int_{v}\left(\ddot{x}_{0} z_{0}-\ddot{z}_{0} x_{0}\right) \rho d v  \tag{A1}\\
& M_{z_{0}}=\int_{v}\left(\ddot{y}_{0} x_{0}-\ddot{x}_{0} y_{0}\right) \rho d v  \tag{A2}\\
& M_{x_{0}}=\int_{v}\left(\ddot{z}_{0} y_{0}-\ddot{y}_{0} z_{0}\right) \rho d v \tag{A3}
\end{align*}
$$

At $\omega t=0$

$$
\begin{gather*}
\mathrm{x}_{0}=(\cos \alpha) \mathrm{x}_{1}-(\sin \alpha) \mathrm{y}_{1}  \tag{A4}\\
\mathrm{y}_{0}=(\cos \alpha) \mathrm{y}_{1}+(\sin \alpha) \mathrm{x}_{1}  \tag{A5}\\
\mathrm{z}_{0}=\mathrm{z}_{1}  \tag{A6}\\
\ddot{\mathrm{x}}_{0}=\frac{\omega^{2} \sin \alpha}{\cos ^{2} \alpha} \mathrm{y}_{1}  \tag{A7}\\
\ddot{\mathrm{y}}_{0}=-\left(\omega^{2} \sin \alpha\right) \mathrm{x}_{1}+\left(\frac{\omega^{2} \sin ^{2} \alpha}{\cos \alpha}\right) \mathrm{y}_{1}  \tag{A8}\\
\ddot{z}_{0}=-\left(\omega^{2} \sin ^{2} \alpha\right) \mathrm{z}_{1}  \tag{A9}\\
\ddot{\mathrm{x}}_{0} \mathrm{z}_{0}=\frac{\omega^{2} \sin ^{2}}{\cos ^{2} \alpha} \mathrm{y}_{1} \mathrm{z}_{1} \\
\ddot{z}_{0} \mathrm{x}_{0}=-\left(\omega^{2} \sin ^{2} \alpha \cos \alpha\right) \mathrm{x}_{1} \mathrm{z}_{1}+\left(\omega^{2} \sin ^{3} \alpha\right) \mathrm{y}_{1} \mathrm{z}_{1}
\end{gather*}
$$

$$
\begin{align*}
& \ddot{x}_{0} z_{0}-\ddot{z}_{0} x_{0}=\omega^{2} \sin \alpha\left[\left(\frac{1-\sin ^{2} \alpha \cos ^{2} \alpha}{\cos ^{2} \alpha}\right) y_{1} z_{1}+(\sin \alpha \cos \alpha) x_{1} z_{1}\right] \\
& \mathrm{M}_{\mathrm{y}_{0}}=\int_{\mathrm{v}} \omega^{2} \sin \alpha\left[\left(\frac{1-\sin ^{2} \alpha \cos ^{2} \alpha}{\cos ^{2} \alpha}\right) \mathrm{y}_{1} \mathrm{z}_{1}+(\sin \alpha \cos \alpha) \mathrm{x}_{1} \mathrm{z}_{1}\right] \rho \mathrm{dv}  \tag{A10}\\
& \ddot{y}_{0} \mathrm{x}_{0}=-\left(\omega^{2} \sin \alpha \cos \alpha\right) \mathrm{x}_{1}^{2}+2\left(\omega^{2} \sin ^{2} \alpha\right) \mathrm{x}_{1} \mathrm{y}_{1}-\omega^{2} \frac{\sin ^{3} \alpha}{\cos \alpha} \mathrm{y}_{1}^{2} \\
& y_{0} \ddot{x}_{0}=\omega^{2} \frac{\sin \alpha}{\cos \alpha} y_{1}^{2}+\omega^{2} \frac{\sin ^{2} \alpha}{\cos ^{2} \alpha} x_{1} y_{1} \\
& \ddot{\mathrm{y}}_{0} \mathrm{x}_{0}-\mathrm{y}_{0} \ddot{\mathrm{x}}_{0}=-\left[\omega^{2} \tan \alpha\left(1+\sin ^{2} \alpha\right) \mathrm{y}_{1}^{2}+\omega^{2} \tan ^{2} \alpha\left(1-2 \cos ^{2} \alpha\right) \mathrm{x}_{1} \mathrm{y}_{1}+\omega^{2}(\sin \alpha \cos \alpha) \mathrm{x}_{1}^{2}\right] \\
& \mathrm{M}_{\mathrm{z}_{0}}=-\int_{\mathrm{v}} \omega^{2}\left[(\sin \alpha \cos \alpha) \mathrm{x}_{1}^{2}+\tan \alpha\left(\sin ^{2} \alpha+1\right) \mathrm{y}_{1}^{2}+\tan ^{2} \alpha\left(1-2 \cos ^{2} \alpha\right) \mathrm{x}_{1} \mathrm{y}_{1}\right] \rho \mathrm{dv}  \tag{A11}\\
& \ddot{z}_{0} \mathrm{y}_{0}=-\left(\omega^{2} \sin ^{2} \alpha \cos \alpha\right) \mathrm{y}_{1} \mathrm{z}_{1}-\left(\omega^{2} \sin ^{3} \alpha\right) \mathrm{x}_{1} \mathrm{z}_{1} \\
& \ddot{y}_{0} z_{0}=-\left(\omega^{2} \sin \alpha\right) x_{1} z_{1}+\left(\frac{\omega^{2} \sin ^{2} \alpha}{\cos \alpha}\right) y_{1} z_{1} \\
& \mathrm{M}_{\mathrm{x}_{0}}=\int_{\mathrm{v}} \omega^{2} \sin \alpha\left\{\left(\cos ^{2} \alpha\right) \mathrm{x}_{1} \mathrm{z}_{1}-\left[\tan \alpha\left(\cos ^{2} \alpha+1\right)\right] \mathrm{y}_{1} \mathrm{z}_{1}\right\} \rho \mathrm{dv} \tag{A12}
\end{align*}
$$

At $\omega t=\pi / 2$

$$
\begin{gather*}
\mathrm{x}_{0}=\mathrm{x}_{1} \cos \alpha+\mathrm{z}_{1} \sin \alpha  \tag{A13}\\
\mathrm{y}_{0}=\mathrm{y}_{1}  \tag{A14}\\
\mathrm{z}_{0}=\mathrm{z}_{1} \cos \alpha-\mathrm{x}_{1} \sin \alpha \tag{A15}
\end{gather*}
$$

$$
\begin{gather*}
\ddot{x}_{0}=-\left(\frac{\omega^{2} \sin \alpha}{\cos ^{2} \alpha}\right) \mathrm{z}_{1}  \tag{A16}\\
\ddot{\mathrm{y}}_{0}=-\left(\omega^{2} \sin ^{2} \alpha\right) \mathrm{y}_{1}  \tag{A17}\\
\mathrm{z}_{0}=\left(\omega^{2} \sin \alpha\right) \mathrm{x}_{1}+\left(\frac{\omega^{2} \sin ^{2} \alpha}{\cos \alpha}\right) \mathrm{z}_{1} \tag{A18}
\end{gather*}
$$

From equations (A1), (A13), (A15), (A16), and (A18)
$M_{y_{0}}=-\int_{v} \omega^{2}\left[(\sin \alpha \cos \alpha) \mathrm{x}_{1}^{2}+\tan \alpha\left(\sin ^{2} \alpha+1\right) \mathrm{z}_{1}^{2}-\tan ^{2} \alpha\left(1-2 \cos ^{2} \alpha\right) \mathrm{x}_{1} \mathrm{z}_{1}\right] \rho \mathrm{dv}(\mathrm{A} 19)$

From equations (A2), (A13), (A14), (A16), and (A17)

$$
\begin{equation*}
\mathrm{M}_{\mathrm{z}_{0}}=\int_{\mathrm{v}} \omega^{2} \sin \alpha\left[(\sin \alpha \cos \alpha) \mathrm{x}_{1} \mathrm{y}_{1}-\left(\frac{1-\sin ^{2} \alpha \cos ^{2} \alpha}{\cos ^{2} \alpha}\right) \mathrm{y}_{1} \mathrm{z}_{1}\right] \rho \mathrm{dv} \tag{A20}
\end{equation*}
$$

From equations (A3), (A14), (A15), (A17), and (A18)

$$
\begin{equation*}
\mathrm{M}_{\mathrm{x}_{0}}=\int_{\mathrm{v}} \omega^{2} \sin \alpha\left\{\left(\cos ^{2} \alpha\right) \mathrm{x}_{1} \mathrm{z}_{1}+\left[\tan \alpha\left(\cos ^{2} \alpha+1\right)\right] \mathrm{y}_{1} \mathrm{z}_{1}\right\} \rho \mathrm{dv} \tag{A21}
\end{equation*}
$$

## APPENDIX B

## DERIVATION AND CALCULATION OF INERTIAL MOMENTS

FOR A THICK NUTATING PLATE

From figure 5

$$
\begin{gathered}
x_{1}=x_{1} \\
y_{1}=r \sin \xi \\
z_{1}=r \cos \xi \\
d v=r d r d \xi d x_{1}
\end{gathered}
$$

From equation (A10) and at $\omega t=0$,

$$
\left.\begin{array}{rl}
\mathrm{M}_{\mathrm{y}_{0}}=\omega^{2} \rho \sin \alpha[ & \left.\frac{1-\sin ^{2} \alpha \cos ^{2} \alpha}{\cos ^{2} \alpha}\right] \int_{0}^{2 \pi} \int_{\mathrm{r}_{\mathrm{i}}}^{\mathrm{r}}{ }_{\mathrm{o}} \int_{-\mathrm{T} / 2}^{\mathrm{T} / 2} \mathrm{r}^{3} \sin \xi \cos \xi \mathrm{dx} \\
\mathrm{dr}  \tag{B1}\\
\mathrm{~d} \xi \\
& +\omega^{2} \rho \sin ^{2} \alpha \cos \alpha \int_{0}^{2 \pi} \int_{\mathrm{r}_{\mathrm{i}}}^{\mathrm{r}} \int_{-\mathrm{T} / 2}^{\mathrm{T} / 2} \mathrm{x}_{1} \mathrm{r}^{2} \cos \xi \mathrm{dx}
\end{array} \mathrm{dr} \mathrm{~d} \xi\right] .
$$

Both integrals vanish so that

$$
\begin{equation*}
\mathrm{M}_{\mathrm{y}_{0}}=0 \tag{B2}
\end{equation*}
$$

From equation (A11) and at $\omega t=0$
$M_{z_{0}}=-\omega^{2} \rho \sin \alpha \cos \alpha \int_{0}^{2 \pi} \int_{r_{i}}^{r_{o}} \int_{-T / 2}^{T / 2} x_{1}^{2} r d x_{1} d r d \xi$

$$
\begin{align*}
& -\omega^{2} \rho \tan \alpha\left(\sin ^{2} \alpha+1\right) \int_{0}^{2 \pi} \int_{\mathrm{r}_{\mathrm{i}}}^{\mathrm{r}} \int_{-\mathrm{T} / 2}^{\mathrm{T} / 2} \mathrm{r}^{3} \sin ^{2} \xi \mathrm{dx} 1 \mathrm{dr} \mathrm{~d} \xi \\
& -\omega^{2} \rho \tan ^{2} \alpha\left(1-2 \cos ^{2} \alpha\right) \int_{0}^{2 \pi} \int_{\mathrm{r}_{\mathrm{i}}}^{\mathrm{r}} \int_{-\mathrm{T} / 2}^{\mathrm{T} / 2} \mathrm{x}_{1} \mathrm{r}^{2} \sin \xi \mathrm{dx} \mathrm{x}_{1} \mathrm{dr} \mathrm{~d} \xi \tag{B3}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{M}_{\mathrm{z}_{0}}=-\pi \omega^{2}{ }_{\rho} \mathrm{T} \sin \alpha \cos \alpha\left[\frac{\mathrm{~T}^{2}\left(\mathrm{r}_{\mathrm{o}}^{2}-\mathrm{r}_{\mathrm{i}}^{2}\right)}{12}\right]-\pi \omega^{2} \rho \mathrm{~T} \tan \alpha\left(\sin ^{2} \alpha+1\right)\left[\frac{\mathrm{r}_{\mathrm{o}}^{4}-\mathrm{r}_{\mathrm{i}}^{4}}{4}\right] \tag{B4}
\end{equation*}
$$

From equation (A12) at $\omega t=0$
$M_{x_{0}}=\omega^{2} \rho \sin \alpha \cos ^{2} \alpha \int_{0}^{2 \pi} \int_{\mathrm{r}_{\mathrm{i}}}^{\mathrm{r}} \int_{-\mathrm{T} / 2}^{\mathrm{T} / 2} \mathrm{x}_{1} \mathrm{r}^{2} \cos \xi \mathrm{~d} \mathrm{x}_{1} \mathrm{dr} \mathrm{d} \xi$

$$
\begin{equation*}
-\omega^{2} \rho \tan \alpha\left(\cos ^{2} \alpha+1\right) \int_{0}^{2 \pi} \int_{\mathrm{r}_{\mathrm{i}}}^{\mathrm{r}_{\mathrm{o}}} \int_{-\mathrm{T} / 2}^{\mathrm{T} / 2} \mathrm{r}^{3} \sin \xi \cos \xi \mathrm{dx} 1 \mathrm{dr} \mathrm{~d} \xi \tag{B5}
\end{equation*}
$$

Both integrals vanish, so that

$$
\begin{equation*}
\mathrm{M}_{\mathrm{x}_{0}}=0 \tag{B6}
\end{equation*}
$$

as expected if $\omega$ is constant. From equations (A19) to (A21), it can be shown that, at $\omega \mathrm{t}=\pi / 2$,

$$
\begin{align*}
\mathrm{M}_{\mathrm{y}_{0}}=-\pi \omega^{2} \rho \mathrm{~T} \sin \alpha \cos \alpha\left[\frac{\mathrm{~T}^{2}\left(\mathrm{r}_{\mathrm{o}}^{2}-\mathrm{r}_{\mathrm{i}}^{2}\right)}{12}\right] & -\pi \omega^{2} \rho \mathrm{~T} \tan \alpha\left(\sin ^{2} \alpha+1\right)\left[\frac{\mathrm{r}_{\mathrm{o}}^{4}-\mathrm{r}_{\mathrm{i}}^{4}}{4}\right]  \tag{B7}\\
\mathrm{M}_{\mathrm{z}_{0}} & =0  \tag{B8}\\
\mathrm{M}_{\mathrm{x}_{0}} & =0 \tag{B9}
\end{align*}
$$

As expected

$$
\begin{aligned}
& \left.M_{z_{0}}\right|_{\omega t=0}=\left.M_{y_{0}}\right|_{\omega t=\pi / 2} \\
& \left.M_{y_{0}}\right|_{\omega t=0}=\left.M_{z_{0}}\right|_{\omega t=\pi / 2} \\
& \left.M_{x_{0}}\right|_{\omega t=0}=\left.M_{x_{0}}\right|_{\omega t=\pi / 2} \equiv 0
\end{aligned}
$$

At any value of $\omega$ t the inertial moment $M_{I}$ will be

$$
\begin{equation*}
M_{I}=\sqrt{M_{y_{0}}^{2}+M_{z_{0}}^{2}} \tag{B10}
\end{equation*}
$$

From these results it is clear that the inertial moment generated by the nutating plate acts about the axis that is in the $\mathrm{Y}_{0} \mathrm{Z}_{0}$ plane and rotates with the nutation frequency $\omega$.

For the specific plate used in the transmission design in reference 2: $r_{0}=45.7$ centimeter ( 18 in. ), $\mathrm{r}_{\mathrm{i}}=20.3$ centimeter ( 8 in .), $\mathrm{T}=4.65$ centimeter ( 1.83 in .), $\omega=587$ radians per second, $\alpha=10^{\circ}$, and $\rho=7.9 \times 10^{-5} \mathrm{~N} \cdot \mathrm{sec}^{2} / \mathrm{cm}^{4}\left(7.34 \times 10^{-4} \mathrm{lb} \cdot \mathrm{sec}^{2} / \mathrm{in} .{ }^{4}\right)$.

With these values the inertial moment $M_{I}$ becomes (from eqs. (B2), (B4), and (B10)) $7.51 \times 10^{7}$ newton centimeters $\left(6.66 \times 10^{6} \mathrm{lb} \cdot \mathrm{in}\right.$.).

## APPENDIX C

INERTIAL MOMENT FOR A HARMONICALLY OSCILLATING PLATE

From figure 5, if the plate executes an oscillation of amplitude $2 \alpha$ at frequency $\omega$ about the $\mathrm{Z}_{0}$ or Z axis

$$
\begin{gather*}
\eta=\alpha \cos \omega t  \tag{C1}\\
\dot{\eta}=-\alpha \omega \sin \omega t  \tag{C2}\\
\ddot{\eta}=-\alpha \omega^{2} \cos \omega t \tag{C3}
\end{gather*}
$$

The inertial moment due to harmonic motion will then be

$$
\begin{equation*}
\mathrm{M}_{\mathrm{h}}=\mathrm{I}_{\mathrm{ZZ}} \ddot{\eta} \tag{C4}
\end{equation*}
$$

The maximum moment occurs at $\omega t=0$ and $\pi$ where

$$
\begin{gather*}
\mathrm{M}_{\mathrm{h}_{\max }}=\mp \mathrm{I}_{\mathrm{ZZ}} \alpha \omega^{2}  \tag{C5}\\
\mathrm{I}_{\mathrm{ZZ}}=\frac{\pi \rho \mathrm{T}}{4}\left(\mathrm{r}_{o}^{4}-\mathrm{r}_{\dot{i}}^{4}\right)+\frac{\pi \rho \mathrm{T}}{12}\left[\mathrm{~T}^{2}\left(\mathrm{r}_{\mathrm{o}}^{2}-\mathrm{r}_{\mathrm{i}}^{2}\right)\right]  \tag{C6}\\
\mathrm{M}_{\mathrm{h}_{\max }}=\mp \frac{\pi \rho \mathrm{T} \alpha \omega^{2}}{4}\left[\left(\mathrm{r}_{o}^{4}-\mathrm{r}_{\mathrm{i}}^{4}\right)+\frac{\mathrm{T}^{2}}{3}\left(\mathrm{r}_{\mathrm{o}}^{2}-\mathrm{r}_{\dot{i}}^{2}\right)\right] \tag{C7}
\end{gather*}
$$

where $\alpha$ is given in radians.
For a thin plate

$$
\begin{equation*}
M_{h_{\max }}=\mp \frac{\pi \rho T \alpha \omega^{2}}{4}\left(\mathrm{r}_{\mathrm{o}}^{4}-\mathrm{r}_{\mathrm{i}}^{4}\right) \tag{C8}
\end{equation*}
$$

Again, for the specific plate used in the transmission design in reference 2 (dimensions and operating conditions given in appendix $B), M_{h_{\max }}=7.21 \times 10^{7}$ newton-
centimeters ( $6.39 \times 10^{6} \mathrm{lb} \cdot$ in. ).

1. Maroth, A. M. ; and Riedel, Uwe: The Nutation Drive: A High-Ratio Power Transmission. Mech. Eng., vol. 95, no. 2, Feb. 1973, pp. 30-34.
2. Loewenthal, Stuart H. ; and Townsend, Dennis P.: Design Analysis for a Nutating Plate Drive. Presented at ASME-AGMA Mechanism Conference and International Symposium on Gearing and Transmissions, San Francisco, Calif., Oct. 8-12, 1972.
3. Abbott, P. W.; and Rife, D. O.: Analysis of the Response of a Gyroscope Equipped with a Nutation Damper to Translational Accelerations. Proceedings of the Institute of Environmental Sciences $13^{\text {th }}$ Annual Technical Meeting, Vol. 1, Inst. Environmental Sci., 1967, pp. 39-48.
4. Fowler, J. L. : Dynamic Response of an Asymmetrical Spinning Space Station. IEEE Trans. on Aerospace, vol. AS-3, Suppl., June 1965, pp. 270-277.
5. Crawley, J.; and Maunder, L. : Dynamics of a Gyroscope Having Oblique Gimbal Axes. J. Mech. Eng. Sci., vol. 8, no. 3, Sept. 1966, pp. 294-299.
6. Gretcher, C. K. : Nutation Damping and Vibration Isolation in a Flexibly Coupled Dual-Spin Spacecraft. J. Spacecraft Rockets, vol. 8, no. 8, Aug. 1971, pp. 817-823.

TABLE I. - COMPARISON OF INERTIAL MOMENTS IN
THIN NUTATING PLATE USING EXACT NUTATING
MOTION ANALYSIS AND SIMPLE HARMONIC
OSCILLATION

| Nutation angle, <br> $\alpha$, <br> $d e g$ | Percent error using harmonic oscillation, |
| :---: | :---: |
| $\frac{\mathrm{M}_{\mathrm{I}}-\mathrm{M}_{\mathrm{h}} \max }{} 100$ |  |
| 1 | $\mathrm{M}_{\mathrm{I}}$ |
| 5 | 0.1 |
| 10 | 1 |
| 15 | 3.9 |
| 20 | 8.4 |
| 30 | 14 |



Figure 1. - Sketch showing physical size and arrangement of split nutating drive main rotor gearbox (ref. 2).

(c) Planar relationships among axes in $X Y Z$ and $X_{0} Y_{0} Z_{0}$ coordinate systems.
figure 2. - Coordinate systems.


Figure 3. - Convention used to calculate inertial moments.


(a) Displacement in $X_{0}-Z_{0}$ plane.

(c) Velocity in $X_{0}-Z_{0}$ plane.

(e) Acceleration in $X_{0}-Z_{0}$ plane.

(b) Displacement in $X_{0}-\gamma_{0}$ plane.

$1 \times 10^{3}\left\{_{-\dot{y}_{0}}\right.$

(d) Velocity in $X_{0}-Y_{0}$ plane.

(f) Acceleration in $X_{0}-Y_{0}$ plane.

Figure 4. - Generalized motion of a point $P_{1}$ on nutating body. $P_{1}$ coordinates, $(0,45.7,0)$ cm (or $(0,18,0)$ in. $) ; w=650$ radians per second;
$a=9$.


Figure 5. - Coordinate systems and symbols used to calculate nutating plate inertial moments. Plate position shown is at $\omega t=0$.


[^0]:    * For sale by the National Technical Information Service, Springfield, Virginia 22151

