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DESIGN PROCEDURE FOR SATISFYING TIME DOMAIN BOUNDS

FOR NONMINIMUM~PHASE SYSTEMS

Abstr&ctmvThis paper presents two design techniques
applicable to nonminimum-phase systems. Both are de-
signed to handle plants with one right-half-plane zero
which may vary and any other variation of the plant
parameters within known limits, The specifications
that must be designed to are given as a set of step
response bounds in the time domain. A completed de-
sign will yield responses that stay within the time
domain bounds at all times and utilize the entire
region of allowed variation. |

The first method is an analytic one which finds an
equivalent set of minimum-phase step response bounds.
Once these are found, current design techniques may be
used to complete the design. This method ¢an be ex-
tended easily to design for multiple right-half-plane
zeros, but the actual design will be very complicated
for this problem. When there is variation of the
right-half~plane zero, this method requiées many de-
signs before the best one is found. For these reasons,

this method is not very useful.
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The second method makes a direct transfer of the
time domain bounds to the frequency domain. From these
new boundaries and other resulting specifications, a
worst case zero is found that will yield a design that
is satisfactory és the zero varies. This method is
thoroughly derived and explained for a plant with one
right-half-plane zero and the plant does not depend on
the position of the zero in any other way. These de-
sign techniques are the first contributions to thé non-

minimum-phase problem.
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CHAPTER I

INTRODUCTION

1.1 Problem Statement

The purpose of this paper is to present two methods
of design which are applicable to nonminimum-phase prob-
lems. Both methods are thoroughly derived for one right-
half-plane zero and the extensions are indicated in the
first method to handle multiple right-half-plane zeros.
One method of design is analytical whereas the other is
best suited to digital computer implementation. Both
methods do permit insight into the means of design. The
program utilized in the computer implementation of the
second example is in the appendix.

The problem specifications are givenlin general as
a set of time domain boundaries within which the final
step response must remain at all times. There may be
ignorance in the right-half-plane zero(s) and in any
other parameters the plant méy contain. The only thing
known about the parameters are the limits that they are
permitted to vary within. The rate of parameter varia-
tion is assumed to be slower than the éystem response
time so time dependence of the parameters may be neg-
lected. A successful design will yield satisfactory step

responses for all possibie sets of plant parameters.



The step response boundaries are unigue because
they restrict the initial undershoot that must occur in
a2 nonminimum-phase system. The optimum design will per-
mit step responses that utilize the eﬁtire allowed re-
gion of variation, both negative and positive. In this
way the compensation is not more than it needs to be in
complexity and bandwidth,

The feedback structure used in the design is a two
degree of freedom structure shown in figure 1.1. A two
degree of freedom structure is used because both sensi-
tivity and minimum bandwidth must be designed fof. The
feedback structure is required to meet the sensitivity
constraints, i.e., the plant variation cannot result in
more variation in the step response then allowed by the
step response boundaries. The prefilter F will adjust
the bandwidth to the minimum allowed so as to make the

system as immune to noise as possible,

R(s) +

F(8) {E G(s) P(8) c{(s)

L(s) = G(8)P(s)
C(s F(s)L(s)
T(s) = i‘H"s = TS'-FLIT(ET

Figure 1.1 Closed Loop Structure




1.2 History of the Problem

Right-half-plane zeros occur in many circumstances.
Some examples are where there are multiple channels over
which information can be passed, lattice networks, trans-
mission lines, piping-flow delays, transportation lags,
semiconductor diffusion [l], heat exchangers, mercury
thermometers [2], and in aircraft control [3]. The pre-
sence of a right-half-plane zero greatly affects the
stability conditions of a design. The loop transmission
cannot be allowed to decrease too quickly or the addi-
tional phase lag will be so great as to cause condition-
al or complete instability. In a stable nonminimum-
phase system, there is an upper limit to the crossover
frequency [4]. A nonminimum-phase system is one that
has a zerc in the right half of the s-plane. Nonminimum-
phase systems are slow in response because they initial-
ly go in the wrong direction [5]. A magnitude plot will
completely determine the transfer function‘of a minimum-
phase system, but both magnitude and phase plots are re-
guired for a nonminimum-phase system.

These considerations make the design for a non-
minimum-phase plant a unique one, and from the areas
where the problem arises it is an important one. In-
spite of this, there is no desigﬂ technique available

for the solution of this problem.



1.3 Method of Approach

There is a design procedure presented in a paper
written by Horowitz and Sidi which can formulate a de-
sign for a plant with parameter variations from a set
of minimum~-phase time domain bounds [6]. The first method
presented here sclves for the set of minimum-phase bounds
equivalent to the given set of nonminimum~phase bounds.
That is, a design meeting the minimum-phase bounds will
also meet the nonminimum-phase ones. The minimum-phase
bounds are found by solving the differential equation
relating them to the nonminimum-phase bounds. Because the
goal of this method is to yield an equivalent set of
minimum-phase time domain specifications, this method is
called the "time domain method." The remainder of the
design is completed by the above procedure.

The second method approximates the transfer function
by a third order function and finds a set of boundaries’
on the allowed variation of the magnitude of the transfer
function in the frequency domain. This is done by taking
the composite of the Bode plots of many transfer func-
tions which have satisfactory step responses. It was
found that a design for the smallest right-half-plane
zero and the lowest set of sPecificatidns found Above
will be satisfactory as the right-half-plane zero
varies. Since the design is carried out for a fixed po-

sition of the zero, a magnitude plot will be sufficient
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to describe the transfer function. Thus, once the trans-
formation to the fregquency domain is carried out, the
Horowitz and Sidi design technigue can be used to com-

plete the design.



CHAPTER II

TIME DOMAIN METHOD

2.1 Motivation of Method

Horowitz and Sidi have written a paper [6] which
presents a design method utilizing a set of minimum-
phase step response botindaries. One design approach for
a set of nonminimum-phase time domain boundaries is to
start by finding an equivalent set of minimum~phase
tolerances and applying the Horowitz and Sidi method to
these tolerances to complete the design. This transfor-
mation can be made by solving the differential equation
relating the nonminimum=-phase (nmp) transfer function
and its minimum-phase (mp) component. This method will
be known as "the time domain method" because its goal is
to yield an equivalent set of mp time domain specifica-
tions and is not concerned with the techniques used to

complete the design once the equivalent bounds are found.

2.2 Technique
If there is only one right-half-plane (RHP) zero,

the transfer function may be written as
T(s) =T, (s) (1 - 2)
m a

where Tm(s) is the minimum-phase portion of T(s), and

a" is the location of the RHP zero. If the input is



R(s) = % , @ unit step, then the output response C(s),

assuming zero initial conditions, can be written as

3
_ Tpls) - T D)
=]

C(s) = R(s)T(s) = TéS)

mu=c<u-§é(u

where the roles of R(s), C(s), and T(s) are clarified

in figure 2.1 and

T (s)
_w=ll'm
C, (1) :—i [ S }

This means:

1
C(s) - = C_(0)
C,(8) = a_nm (2.1)

)
1 - =
a

for the general case when there are initial conditions.
This equation points out that an initial condition
is required to solve for the mp set of step response
bounds. A point is regquired where both the mp and nmp
responses are known or the same so the initial condition
can be solved for. This is a point where the response
has settled to a constant. Start at this point and work
backwards solving for the initial conditions. An ini-
tial condition is required at every time when the nmp

boundary is discontinuous.



2.3 Example of Design Method

To demonstrate the technique the equivalent mp

boundaries for the nmp ones in figure 2.1 will be found.

The results are shown dotted in figure 2.1, the mp

bounds. From t2 to t4,

the upper bound is constant at

l + a. The equivalent mp boundary can be found by solv-

ing equation 2.1. The
solved for by knowing

boundaries must equal

initial condition at t2 can be
that at t4 both the mp and nmp

one. From equation 2,1:

0
/tl: /
-7 I
-A

1t _ 1o (o)
C (s) = = a ‘m
m 1 -8
— e oy — — — . a
minimum-phase nonminimur
vinimur -
C(t) phase
l+at
14 T oo e
1-gl
i
]
p |
, i
y i
N
I
o
|
—
1:2 t4

Figure 2.1 Hypothetical set of nonminimum-phase bound-

aries and

bounds.

equivalent set of minimum-phase



which yields

Cm(t) =1+ g - (1 +qg - Cm(tz))ea(t“tz)

To solve for Cm(tz), the initial condition, one can

solve the equation at a point where Cm(t) is known, t4.

c (ty) =l=1+a-(1+a- cm(tz))s-_(t‘r t2)a

which yields

-a({t

(tz) =1 + o - qe

4

Thus the value at t2 is known and can be used to solve

for the value at t = 0 and thus specify the entire upper

bound. For this region:

4 c,(0)
2
cm(S) = T _E
a
which yields
c(t) =2+ at - (& - c (0))edt
nt =1 a m
alty-t)) 4 4 at,
c (t)) =1+ a- ce =3+ dt, - (5 -c (0)e

-—a(t,-t,) ‘ -at
C(0)=[1+a-ae 42-(..d..+dt)]e 2+Q
m 2 ' a

Now the entire equivalent mp upper boundary is known.
The same method is utilized to find the mp lower

bound. Starting at t4 as before:



1-g _ Sa'®
_ 8 a
C,ls) = TS
a
a(t-t3)
Cm(t) =1-B-(1 -8 - Cm(O))e
a(t4—t3)
Cm(tq) =1=1-8-(1L-8 - Cm(t3))e
-a(t,-t,)}
_ _ 4 73
Cm(t3) = 1 B + Be
now for tl < t < t3
C(t) = dt - A
d A Cnt0)
2 5 a
_ s
C,(s) = T s
a
_a d a(t—tl)
Cm(t) =3 - A+ dt + [A - o cm(tl)]e
~a(t,-t,)
_ _ 4 73
Cm(t3) 1 B + Be
- d afty=t;)
=gz - A+dty + [A - =+ C (t))]e
d _ a —alty~tl)l -alty-t))
Cm(tl) a A+ A - z F Be e
for the boundary from 0 < t < tl
N
s a

cm(s) =

10
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- at
Cm(t) = A+ (A + Cm(O))e
_a g —a(t4—t3) -a(t:,_-tl)
Cm(tl) = a' - A+ |:A - —5» + Be e
atl

|
I

A+ (A +C (0))e

Each of these equations, with the initial conditions
substituted into their proper place, yield the complete
set of mp boundaries shown in figure 2.l1. The Horowitz-
5idi technigue could now be applied to these boundaries
to complete a design., |
Because the problem is a nonminimum-phase one,

designing to this set of bounds is not sufficient to
insure a satisfactory response. A set of frequency based
magnitude specifications alone is not enough to control

the response. From the equation describing the response

due to one RHP zero, C(t) = Cm(t) - % éﬁ(t), it is clear
there must also be bounds on the derivative of the
minimﬁm—phase response to insure satisfactory nmp res-
ponses. If both Cm(t) and ém(t) fall within their bounds,
C(t) will also satisfy its specifications. This second
set of boundaries is easily derived from the boundaries
already found. It is found by solving this equation

where all variables are known:
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() = alc (8) - c(e)]

Using the Horowitz and Sidi technique on these two
sets of tolerances will yield a design for the original
set of bounds. This is a fairly direct method for de-
signing to a set of nonminimum-phase specifications as
long as there is no ignorance in the position of the
RHP zero. If there is a range of positions where the
RHP zero could be, designs must be made over the entire
range and the design that meets all conditions must be
chosen. This would mean doing many designs before the
-needed one is found. The only time this would be un-
necessary is when a worst-case set of specifications
could be designed for and this design would be satis-
factory for all other possible positions of the RHP
zero. Since a worst-case would not be obvious, many de-
signs would probably be regquired for each set of bounds.
This is not a practical method of design when there is

ignorance in the RHP zero.

2.4 Method's Worth

This method becomes very impractical when there are
multiple RHP zeros that must be designed for. More and
more sets of boundaries are reguired to specify the al-
lowed variation of each additional derivative that is
required as the number of RHP zeros increase. Not only

do the number of boundaries increase, but the equations
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that must be solved to find the boundaries become in-
creasingly complex. Thus, for multiple zeros, the method
becomes much too complicated and involved to be useful.
This method holds little promise for a more general solu-
tion because of the increasing difficulty with more than

one RHP zero.
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CHAPTER III

FREQUENCY DOMAIN METHOD

3.1 Introduction

This method is to enable a priori design to meet
the nonminimum-phase (nmp) tolerances specified. It was
to be similar to the procedure used to design for
minimum-phase systems (mp) except both magnitude and
phase tolerances of the frequency response must be
studied, but a simplifying discovery was made during
the investigation. This will be clarified later in this
section. In a mp system, the magnitude uniquely defines
the transfer function, but in the nmp system this is
only true if the position of the RHP zero is known. If
a design procedure utilizes both the magnitude and'
phase tolerances of the frequency response, several
designs will not be required as was true with the time

domain method.

3.2 Method

The first step of this method is to transfef the
nmp step response bounds into magnitude and phase bounds
in the ffequency domain. This is accomplished by approxi-
mating whatever the final transfer function may be by

the following: 2
W, b

. 3 (s-a) ‘ :
T(s) = % > (3.1)
(s+b) (s° + 2zw_s + w?)
n n
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If "a" takes on the values of the RHP zero of the plant
and z and w,  are allowed to vary over many values, many
representative step responses can be examined to see
which ones satisfy the required time domain boundaries.
A computer program called TEST2 has been written to per-
form this task. It varies all the parameters of the
transfer function and finds all the responses which fall
within the input time domain bounds. The bounds are de-
scribed by a series of "if statements." All parameter
sets yielding satisfactory responses and the parameters
whose responses "hit" the boundaries are printed out.
These "hits" are stored and when many are found, they
are used to approximate the time domain bounds by equi-
valent frequency domain tolerances, magnitude and phase,
The maxima and minima composite curves and their dif-
ference are printed. This allowed variation of |AT(juw) |
is what is required to use the Horowitz and Sidi method

of design.

3.3 Examination of Method

To examine the method and to gain insight into
what is really necessary to complete a design, various
phaseé of the general method will be examined. For this
a useful set of step response boundaries must be found.
These bounds would be given as specifications in a real

problem. To accomplish the above, the far pole in
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equation 3.1, (b} is set at -20, and W, and z were made
one for a critically damped system. The RHP zero (a) was
set at 10 so as to have little effect on the step res-
ponse, A set of boundaries were than centered about this
response. The boundary size was then adjusted to include
sSome responses and to‘exclude others.IThe boundaries had
to be narrow enough so the boundaries are not trivial
and cannot be exceeded, but wide enough so they are not
impossible to meet. The TESTZ2 program was run for the
set of bounds shown in figure 3.1 with a RHP zero at
.75, 1.0, 1.5, 3.0, or 8.0, Figures 3.2,A3.3, and 3.4
show the output plots of the allowed magnitude variation,
the allowed phase variation, and the acceptable regions
of LHP pole variation that yield satisfactory step res-
ponses.

The curves for allowed phase variation are explained
by their region of acceptable pole variations. Since the
phase variation is entirely due to the pole variation, a
plot was made for the phase due to the pole locations
possible in figure 3.4 and is shown in figure 3.5. The
frequencies where the poles may be on the Bode plot
account for the behavior of the phase curves. These phase
curves will not be required in the final design method
since only one value of the RHP zero will be designed
for. Since its position is known, magnitude alone is

sufficient to determine the transfer function. Since the



Figure 3.1 Test set of Nonminimum-Phase Boundaries
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Phase Variation of T(s) = T (8) (s-a)
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Acceptable LHP Pole Variation Regions for Various RHP Zeros
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curves do agree with what is expected though, they do
serve a purpose in that they verify the program's
validity.

The regions of acceptable pole variation (figure
3.4) get larger as the RHP zero moves further out, only
up to a certain point, then they start getting smaller.
The behavior of these curves must be explained. First,
the lower portions of the bounds will be examined. A
transfer function with a RHP zero far from the origin
will have little undershoot and will apprcach a minimum-
phase system. One with a RHP zero very close to the
origin will have a very large undershoot. The allowable
regions for the complex poles relate to the speed of
the system responses for various zeros. Clearly, a sys-
tem with a RHP zero at one will require a faster res-
ponse than one with the zero at ten in order not to
violate the lower response boundary (figure 3.6). This
means a slower system, smaller W, will be acceptable
with the RHP zero further out. This means that as the rup
zero moves further from the origin, pocle variation is
allowed at lower frequencies. This explains the lower
portion of the region.

The equation relating the mp and nmp responses
must be examined to explain the behavior of the upper
boundary. As long as the lower response bound is the
one that will be violated, ém(t) must be kept small for

a zero close to the origin in the equatioh
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Cm(t) .

wi

c(t) = C,(t) -

If the zero is glose to the origin, % is large, there-
fore to make sufe the undershoot does not violate the
lower bound, the response must be slow to keep ém(t)
small. If the zero were further out, "a" is larger,

then ém(t) can be larger without violating the lower
bound. Therefore, while the lower bound is still the one
being violated, the allowable region increases in size
as the RHP zero moves further out, a faster response is

allowed.

Figure 3.6 Lower Bound Violation by Nonminimum-

Phase Responses
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At some point the response will be so fast, it will
violate the upper bound. This occurs as the zero goes
far enough out to allow a response that rises faster
than the upper boundary does. This has been verified by
examining various responses to see which portions of the
boundaries are violated. When this starts to occur, the
allowed pole variation regions begin to close in. The
regions begin getting smaller when the upper boundary
becomes the critical one. Figure 3.7 shows that the res-
ponse with a RHP zero at one will be satisfactory, where-
as the response with the zero at ten will be unsatisfac-
tory. As "a" increases now, the system must be slower to

prevent violation of the upper boundary.

C(t) /47/——‘nonminimum—phase
~
Z
4 AN
1 7 ~ B
/ N\ -~ I
/ -—
/,
/,
/ -
/ minimum phase
V, /a=l
/
a=10
t

Figure 3.7 Upper Bound Violation
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3.4 Design for Worst Case

Given a set of |AT|, variation curves as shown in
figure 3.2, can a design for a certain set of specifica-
tions and one location of the RHP zerc be satisfactory
as the position of the RHP zero changes? Consider a
plant P(s) which can be written as P(s) = P*(s)(s-a),
where P*(s) is indepe;dent of "a", the RHP zero. In
using the Horowitz and Sidi design technique, it is
necessary to have a plant template which can be used in
connection with the Nichols Chart to design a compensa-
tion G. To gain insight into the effect of the RHP zero,

use a plant template for each value of "a". For increas-

ing values of "a"

*
P(s) = P (s) (s-a)
P(jw) = P*(jw)[Vw2+a2 /180° - tan-l g]

this equation clearly shows that both the magnitude and
phase of the term (s-a) increases. This means that if a
plant template is made for each value of "a" the tem-
plates will be identical but will have greater magnitude
4and phase positions with increasing "a" {(fiqure 3.8).

The worst case that can be designed for is when.the
specifications are the same over the range.of RHP varia-
tion. In this case the same variation must be met whereas
other times, as the zero increases, more variation is

allowed (figure 3.2) and the control can be decreased for
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this case. Certainly the most difficult problem is when
the strictest set of specifications must be met over
the entire range of parameter variation.

If designs for the compensation G(s) were made
using tﬁe plant templates of figure 3.8, the same L{jw)
boundaries would result for both zeros if the same set
of worst-case [AT(jw)| specifications were used. Figure
1.1 explains the meaning of G(s) and L(s). This happens
because the size and shape of the plant templates are
independent of the location of the RHP zero, only the'.

plant template values vary (IPiI,é?i). The Nichols Chart

Ipldb .
Py(Jw) —/D
m

-180° 0° /pe

P,(8) = P (s) (s-a,)
*
Pz(s) = p () (B-a2)

where al < a,

. Pigure 3.8 Template Variation
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boundary on L{jw) is found by sliding the plant template
along a constant phase line until it fits between the
T%%%QLT curves that correspond to the allowed varia-
Jw

tion in T(jw). Since the same template is used for var-
] [y ey | | . . . L((IJ) . -
ious "a's", and the same variation in Txf%EET is al
lowed, the same L(jw) boundaries will result. The com-

pensation G(jw) boundaries are found by:

lG(jm)ldb |L(jw)[db - |P(Gw) | gy
6,030 g = LG | g = 1Py 30) | g

from before [P, (jw) |4 < [Py (Gw) | 4

>

which implies lPl(jw)'db + A = |P,(ju) |4, where 4 > 0 db.

IGl(jw)ldb + lPl(jw)|db = IGZ(jw)Idb + IPz(jm)Idb
IGl(jw) Idb - A= IGz(jw) ldb
which implies |G1(jw)|db > |G2(jw)|db

The same argument alsoc will yield égl(jw) ; égz(jm). On a
plot of |G(jw)| vs /G(jw), this means each corresponding
point on Gl(jw) will be higher and to the right of Gz(jw)
(figure 3,9). If Gl(jw) is above G, (jw) at every point,
then a design for the smallest value of the RHP zero will

be satisfactory for all positions of the zero. If Gl(jm)
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is lower than G,(juw) at some phase angle, even though
each corresponding point is higher (figure 3,10), then
the design must be more complicated because more than
one location of the RHP zero must be designed for.

When the design is completed, one set of magnitude
and phase of L(jw) on the L{jw) boundary is realized.
The gquestion whether the G(jw) boundaries cross as in
figure 3.10, is equivalent to asking another guestion.
Utilizing the compensation G(jw) that yielded the point
on the L{jw) boundarf with one position of the RHP zero,
will the L{jw) found as the zero moves also be on or
above the L(jw) boundary? If the Gl(jm) used to get the
point L, on the boundary is below the Gz(jw) boundary,
then the point L, found with a, and G, (jw) is not neces-

sarily above the L(jw) boundary.

IG(J(‘U)I ' \//Gl(jw)
\/GZ (Jw)

T80 | | o £6(jw)

Figure 3.9 Desirable G Boundaries



|G (jw) | £ Gy (Gw)

‘\Gz(jw)

L1380 o £6(3u)

Figure 3.10 Undesirable G Boundaries

L (3w) | 4

{— L-boundary

21@

®
La2

-180 | o £L(Jw)

Figure 3.11 Possible Loop Transmissions

29



30

It is known that if Ll is the L(jw) designed for
with G, (jw) and a,, that the resulting point L, as the
zero moves to CPY, where a, > a;, using the designed

compensation G, will be above and to the right of L

1
is above or be-

1
on a |L(jw)| vs /L(jw) plot. Whether L,
low the L boundary, L21 or L22 in figure 3.11, depends
on the lead added by (s-a) at that frequency by the in-
crease in "a" and the slope of the L boundary. For these
reasons it cannot be proven when it will or will not
happen, but an argument can be given that it will not
happen in most problems.

In the majority of problems specifications will not

a
be met at frequencies higher than w = —l, where "a," is

2 1
the minimum RHP zero location. At frequencies much less
than “al“, almost pure gain is added as the zero moves

out, eq. 3.2, %2 = 0, This means that at frequencies
* .
P(s) = P (s)(s-a) > P, (jw) (1 - 4% (3.2)

where w << a, the design for a, will certainly be sa-
tisfactory for a,- As w approaches a;, more and more
lead is added as the RHP zero increases to a,. For most
pPlants, and an exception has yet to be found, the L
boundaries appear as in 3.12,

It is clear that if the phase added by the increase
in the RHP zero is to yield an L(jh) that falls below

the bounds, it would happen at low frequencies where the
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boundaries are most peaked. It is at these frequencies
though where the change is almost pure gain and there is
no problem. As the frequencies increase, it becomes
harder to be above some'L1 and fall below the boundary
also since they flatten out and actually start going ne-
gative. Many examples have been tried and in all cases

a design for the smallest zero will be satisfactory as

the zero varies. This argument at least makes this

w << a

|L(jw) |
- 1

. "130" | - 0° ZL(jw)

Figure 3,12 Typical L(jw) Boundaries
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theory more plausible and the examples fail to expose
any possible problem. A rigorous proof is not possible
since it depends on so many circumstances. Certainly if
the range of RHP zero variation is small or if the fre-
quency range requiring feedback is much smaller than the
smallest RHP zero, a design for the smallest RHP zero
will be satisfactory for all allowed positions of the
RHP zero. In the majority of problems this will be true.
A guick test would be to find all the G(jw) compensation
curves for possible RHP zerc locations to see if the
G(jw) boundaries ever cross. No plant has been found yet
where this has happened.

Whatever the design, it must of course meet the
tightest set of specifications. Thus a design for the
smallest RHP zero and the lowest set of allowed |[AT(jw) |
specifications will meet the.time response specification
as the RHP zero takes on other values. As shown in
figure 3.2, the smallest RHP zero also has the lowest
set of specifications. This is always true from low fre-
quencies up to some higher frequency where the specifi-
cations may cross, i.e., a deéign for ac{3,8], a=3 is

lowest until w = 3.5.

3.5 what are the Lowest Specifications

From figure 3.2, it is clear that the smallest RHP
zero has the lowest specifications at least at fre-

quencies where w < % . From studying figure 3.13, a
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log w
*
Figure 3.13 Straightline Approximation of |AT| where T(s) = T (s) (s-a)
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straight-line approximation of the |AT(jw)| curves for
the regions of acceptable pole variation, figure 3.4,
some general rules may be found. First, the RHP zero, aj
yields the lowest bounds at least until the frequency of
the maximum position of a varying pole if it is less
than the value of the RHP zero. If this frequency is
greater than the RHP zero, the smallest zero, ajs will

yield the smallest |AT(jw)| at least till w = a,. The

1
smallest value of "a" will yield the lowest specifica-
tions at all frequencies if the allowed region of para-
meter variation of a, encloses that of aj where ay < ay.
This is shown by ag[.75,1.0] in fiqures 3.2 and 3.4.

The specs for a = .75 are lower than those of a = 1 at
all frequencies, and the poles of a = 1 could vary at
lower and higher frequencies than those of a = .75,

These guidelines may help in deciding which RHP
zero yields the lowest specs over the frequency range
of interest. The surest way is to run program TEST2 on
several positions of the RHP zero and see what specifi-
cations are lowest. These specifications are required
in the design anyway.

For any set of specifications a design for the
smallest RHP zero will be satisfactory for all loca-
tions of the RHP zero. A design for the smallest set of
allowed variation specs on |AT(jw)| will certainly be

satisfactory when more variation is allowed. Therefore,
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a design for the smallest RHP zero and the lowest set of
specs will yield satisfactory step responses as the zero

is allowed to vary.

3.6 When Cannot the Design Be Completed

One major drawback of a system with a RHP zero is
that the bandwidth ié limited. This means that an ar-
bitrary set of sensitivity or disturbance specifications
are not realizable. Some plant and specification combi-
nations may require a large bandwidth, but this in turn
results in an unstable system. Therefore, it would be
nice to have some guidelines as to when the design can
or cannot be completed so a lot of time is not wasted
in trying to find a stable design when it is not possible
for there to be one.

One of the steps in the design is to ascertain the
frequency range over which feedback is required to meet
the specifications. This is done by seeing where the
curves of |AT(jw)| = |AP(jw)|. Up until wy 4| 8P (Juw) | >

| AT (Fus)

. This means feedback is required up to wy to
constrain the variation of the transfer function due to
the plant variation to the specifications required in

| AT (o)

. The curve [AT(jw)| is obtained as before by
the program TEST2 which takes a composite Bode plot of
the transfer functions which yield satisfactory step
responses. The curve |AP| is the maximum difference be-

tween all the Bode plots of the plant as all parameters
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but the RHP zero vary.

The frequency where these curves cross roughly cor-
responds to the bandwidth of the system. If this fre-
quency is less than half the value of the smallest RHP
zero, the design can be completed satisfactorily. If
this frequency range is ;l < w < 2al, where "al" is the
smallest RHP zero, the design may be completed, but it
will be very difficult to do if it can indeed be done.
If the crossover is at a frequency greater than twice
the smallest RHP zero, the design is impossible. This
should give a rough idea of how difficult a design is,
if it is possible.

Another means of judging if the design can be com-

pleted concerns the Nichols Chart. The loop transmission

can be written as:

L(s) = L) (s) (s-a) = Iy (s) (s-a) {222 = 1 (s) (s+a) (£33

L(s) = Lm(s)A(s)

where A(s) is an all-pass function.

If figure 3.12 was the Nichols Chart boundaries on L(s),
a plot of those for Lm(s) would be shifted to the right
by the phase contributed by the all-pass function at each
frequency. If there is a disturbance in the system, it
must be damped out. The damping can be approximated by

a dominant pair of complex poles whose damping factor z

can be related to the disturbance overshoot allowed,
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This can then be related to a magnitude peaking curve
which yields a forbidden region on the Nichols Chart.
The region specifying the damping of a disturbance, the
ellipse-like shape in figure 3.12, will move also, but
it will be distorted because each point on it corres-
ponds to a different frequency. This is clear if the L
found wraps right around this region. Each point will
move a different amount because the all-pass contributes
a different amount of phase at each frequency.

If the last boundary corresponds to a freguency
w > Zal, the damping region will probably cross the zero

degree line, figure 3.,14. When this happens, a design

T Gw |

-180° -135° °

Figure 3.14 Minimum-Phase Disturbance Regions
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cannot be made because it is not possible to come down

in magnitude any distance in decibels with phase lead.

a
If wy < jl . it is clear a design can be found. If
a
2al > W, > fi r it will be more difficult to stay out-

side the disturbance region. This method of locking at
the problem yields the same results as before but by
being concerned with the damping of a disturbance signal.

If a lot of gain variation is present in the plant,
the last specification curve must be at Wy << Ay, because
it will take a wide frequency range to clear the dis-
turbance region. This means that if w; was near a,, the
disturbance region would almost certainly cross the zero
degree line, and probably over a large magnitude range.
This would definitely make the design impossible to com-
plete (figure 3.15).

|L(jw) |

wy boundary

0db RS

_

-~-180° -135° 0°
Figure 3.15 Impossible Design Case
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3.7 Summary of Design Procedure

This section will present the design steps of the
proposed procedure. First, find the set of frequency
domain specifications on |AT(jw)| by running a program
like TEST2 which approximates T(s) by a third order
function and searches for valid transfer functions.
Next, ascertain the set of specifications that will be
designed to, the zero designed for, and the frequency
where feedback is no longer required. This is usually
the smallest set of tolerances, the smallest possible
RHP zero, and the frequency where |AP(jwl)[ = IAT(jwl)].
With this information use the Horowitz and Sidi design
technique to find the boundaries on the loop transmis-
sion up to W, .

Now by some technique, possibly trial and error,
find an L(jw) that meets these requirements and yields
the desired amount of disturbance damping to the ac-
curacy desired. Knowing the plant and the loop transmis-
sion, the compensation G(s) can be solved for. With this
G(s) and the varying plant a set of actual |AT(juw)|
specs can be found., The prefilter F(s) can be solved for
which shapes the transfer functions to the same shape
and bandwidth of the specifications. This completes the

design and should yield satisfactory step responses.
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CHAPTER IV

FIRST EXAMPLE

Now that a design technique has been postulated,
it is necessary to work a meaningful example that will
test this postulate. The first step in postulating an
example is to have a valid set of time domain specifi-
cations. The specifications must be tight enough to make
the example meaningful, non-trivial, and yet not too
tight so as to make it impossible to complete the design.
This was accomplished by approximating the transfer

function by:
2
buw

" (s-a)

2 -2
(s+b) (™ + 2zwns + mn)

T(s) =

as was done in the earlier theory section. This approxi-
mates the transfer function essentially by the RHP gzero
and a dominant pair of complex poles. As before, the
time domain bounds are centered around a critically
damped response of T(s) and then situating the bounds
50 some responses are confined to the interior and other
responses exceed the bounds, The resulting bounds are
shown in figure 4.1.

To use the Horowitz and Sidi design technique a
set of ]ATldb spécifications in the frequency domain

are required. A program, TEST2, was written to vary z
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and W in T(s) and find many T(s)'s whose step responses
satisfy the time domain specification. Frequency domain
plots of those that "hit" the boundaries yield the equi-
valent frequency domain bounds of the original time
domain specifications. The required [ATl(jw)| specifica-~
tions are the differences between the minimum and maxi-
mum plots at each frequency.

Specifications were obtained for several RHP zeros,
figure 3.2. Since the allowed |AT(jw)| variation is al-
most the same for aefl.5,8], it was decided to let the
RHP zero vary from one to eight so the theory would be
tested to the fullest by designing over a wide range of
allowed variation. That is, if the theory were wrong, it
should certainly fail when there is a large difference
in specifications over the allowed range of RHP varia-
tion.

There is a rule of thumb that the maximum obtain-

able bandwidth in a nonminimum-phase system is w = % ’

where "a" is the position of the RHP zero. If the RHP
zero varied from .75 to 8. instead of 1 to 8, this would
mean feedback would be required over the range
we[0,.375] and the tolerances for a = .75 allowed very
little plant variation. The remaining parameters of the
plant could not have any meaningful variation without

requiring a larger bandwidth. For these reasons a = 1

was chosen as the minimum RHP zero for this problem.
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By examining the allowed |AT| variation a plant
was chosen which would not require feedback over w = .25

or % . The plant chosen was:

S-a ae[1,8]
P(s) = , where
5 (s+b) be[.015,.15]

Feedback is not required once [AP|a=1 is below |AT]a=l
jw + ,15

where ]AP[a=l = ifr:ffﬁig , see figure 4.2. Since the
variation in the overall transfer function is due to the
variation in the plant, once the plant variation is be-
low the allowed variation of the transfer function no
further control over the plant is required to hold it
there. Now the example has been completely defined con-
sisting of a set of time domain boundaries and a plant
with RHP zero and LHP pole variations. The remainder of
this example will show how the design technique is ap-

plied to this type of problem and how well it solves

the problem,

db

////~—]AP(jw}|

| AT (Jw) |

w =.25 log w

Figure 4.2 Range of a Requiring Feedback
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The first step in using the Horowitz-Sidi design
technique is to arrive at a set of boundaries on the
loop transmission Ll(jw) where Pl(jw) is the plant at a
set of parameters yielding maximum phase lag at all fre-
quencies. If the compensation G that is used with this
Pl yields an Ll which does not violate the disturbance
damping region and is stable, then the plots of the
other L's resulting from all other sets of plants para-
meters will be to the right of Ll on the Nichols Chart.
This means that for all plant conditions, the resulting
L is stable and has at least the required damping of a

disturbance. This is why this Py is used in the design.

In this problem /P(jw) can be expressed as:

1 1

/P(jw) = 90° - tan” g - tan

ole

It is clear that the most phase lag is available when
both a and b are at their minimum conditions, i.e.,
a=1, b= .015. The design technique indicates that a
design for the smallest value of the RHP zero will work
as the zero varies. Therefore the smallest value of "a"
will be the only value of concern throughout the design.
A program implementing the Horowitz and Sidi tech-
nique was used to yield a set of Ll boundaries that
meet the input |AT{jw)| specifications by using a plant
template that describes the allowed plant variation.

(Figure 4.3) Any compensation which in connection with



Ll-Boundaries

Figure 4.3
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Pltjw) yield a set of magnitude and phase values of
L(jw}) that fall above these boundaries at all frequen-
cies will more than meet the allowed |AT(jw)| varia-
tions. The L(jw) meeting all the boundaries is found by
trying various pole zero combinations with the RHP zero
at its lowest wvalue until an acceptable solution is
found.

Also shown in figure 4.3 is a small.elliptical
shaped region near the -180°, 0db point. If there is a
disturbanée in the system, it must be damped out. If
the damping can be approximated by that of a pair of
dominant complex poles, the damping factor z can be re-
lated to the disturbance overshoot that can be allowed.
This z can then be related to a magnitude'peaking curve
which shows up as a region on the Nichols Chart. The
region used here is approximately a 3db curve and cor-
responds to an allowable 25% of.disturbAnce overshoot.

The optimum L(jw) would fall on éédh L-boundary at
each frequency and follow the 3db boundary without
entering it. Using the trial and error method of design,
this is the most time consuming portion éf the design.
As.the frequency approaches that of the,BHP zero, phase
lag is introduced with gain. This makes it extremely
difficu;t to stay below the 3db region., If feedback is
required at half or three-fourths the value of the RHP
zero, it may be impossible to find aﬁ-L(j&)_that acts

in the desired manner.
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The Ll(s) for this example is

_ —640000(s-1) (s+.15) (s+.015) (s+.4)

Ly (s) 3
s (s+.015) (S+100)° (s+.02) (s+.24)
L sy = 62+.225+.0625) (s2+1.4s+1) (s%+.1055+.005625)
12 (s%+.355+.065) (s%+1.85+1) (s°+.1355+.005625)
Ly(s) =Ly ()L ,(s)

Once a suitable Ll(s) is found, it is necessary to
solve for the required compensation G(s). This is done
as follows:

ths)

Ll(s) = G(s)Pl(s) => G(s) = iGTE;T

For this problem, the following G(s) resulted:

-640000. (s+.15) (s+.015) (s+.4)

G 3
(s+100)  (s+.02) (s+.24)

11(8) =

(s24.228+.0625) (s2+1.45+1) (s2+.1055+.005625)
(s2+.355+.065) (5°+1.85+1) (5°+.1355+.005625)

Gyp(s) =

Gis) = Gll(s)Gzz(s)

If this were the optimum G(s), yielding an L{jw)
on the boundaries at all fregquencies, it would yield a
|AT (5w) |, as the parameters of P varied, which would be
identical to the |AT{jw)| specified. Since all points of
L(jw) ére on or above the boundaries, the resulting
|AT(jw) | for the example, call it |aT, |, should be the

same or less than that specified, called [AT1|. Figure

4.4 compares these two curves. It is clear that the
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curves are not as expected. The error is not in the
method of designing for the smallest zero since the zero
has not been allowed to take on any other values. After
examination of the program which finds the roots of T(s)
from L(s), an error is clear. This program takes the
rocts of L(s)} and outputs the poles of T(s). For one run
there is a pole and a zero of L at .015 and therefore
there should be a pole and a zero of T(s) at the same
point. The program says the pole is at .0155 instead of
.015. This error alone leads to a |AT2| that is in error
by easily the amount encountered. The method used by the
subroutines of this program lead to a significant error
when poles are used at such low frequencies, Since there
is an error, but an unavoidable éne for this example,
the example will continue. This error does not appear

to be a significant one.

The final step in the design is to find the prefil-~
ter that will put the variation in the shape and band-
width of the allowed region indicated by the components
of [ATll. The compensation G holds the plant variation
to an acceptable value and F shapes it to match the 'I‘1
specifications. From the equation below, a way of cal-
culating F(s) is to use the maximum curve making up
IATll and subtracting the maximum curve of |AT2] in
decibels. This difference can be realized by some F(s)

that will make the curves coincide. If the optimum G(s)
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had been obtained,

- F(s)L(s) _
Tl(s) = Im:—ETET = F(S)Tz(s)
T, (Jw)

FGo = 5 ey
IF(jw)|db = ITl{jw)Idb - ITZ(jm)[db

this F(s) would force the minimum curves of Tl and T,
to be the same also since |AT,| = |aT,| in this ideal
case. Since the G(s) used is only close to ideal, two
prefilters would result, but they are so close to being
the same that either should yield a satisfactory res-

ponse. Figure 4.5 shows these curves and the F(s)

realized which was:

53.352 (s + .265 + .0625)
(s+2) (s+3)%(s® + .35s + .0625)

F(s)

Now the design for the closed loop structure of figure
1.1 is complete. Figure 4.6 shows the step responses of
the system under various plant conditions. It is clear
the design worked very well. The allowed region varia-
tion is utilized to the fullest and all responses are
acceptable.

Some things should be pointed out about the example.
Usually the simplest problem is gain variation, but this
was not possible here. The specifications on IATl] were

so low in this frequency range that only an extremely
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low gain variation could be used. Since it would be so
impractically small,it was left out of this example.
Another example with larger tolerances must be worked
in order to demonstrate the technique's validity in
problems with gain variation.

This example was to design over a range of RHP
zeros where the |[AT(jw)| specifications vary greatly.
Variation from one to eight demonstrates how correct the
premise is of designing for the smallest zero. If the
specifications were RHP zeros from three to eight where
the tolerances are almost constant, there could still be
doubt in the usefulness of the theory here extended. A
range of specifications will not be of main concern in
the next example since this one showed how effective
the design technique is.

Another example will therefore be worked in this
area to investigate gain variation. A higher frequency
range will be worked with to diminish the effect of
errors encountered in the subroutines of the program
that finds the roots of T(s).

This should help clarify whether the subroutines
are the cause of the error or not. Also another example
will stress the effectiveness of the method. Modeling
time domain boundaries by a third order transfer func-
tion gave a very adéquate set of frequency specifica-

tions on |AT{(jw)]|.
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CHAPTER V

SECOND EXAMPLE

Whereas the first example was concerned purely with
verifying the design theory be designing over a range of
specification variation, this example was to answer other
questions. The first example, although verifying the de-
sign technigue, had raised some questions that needed
more than a possible explanation. Pirst, was the exces-
sive variation of the designed transfer function (|AT2|)
really caused by the inaccuracy of the subroutines of
the root finding program? Second, gain variation was im-
possible due to the low specs that had to be met in the
first example. Does the design method work for gain
variation, or are further problems encountered? To an-
swer these questions, this example has gain variation
and deals with a higher frequency range to help decrease
the error in the subroutines.

This example uses the same time domain specifica-
tions as the first example, but the plant is changed to:

ac[3,8]

P(s) = g—fﬁ’r , where XKe[l,2.2]

be{.075,.75]

This plant needs feedback to meet the design specs up to
a frequency of .72 RPS. This was found by seeing where

the |AP| ., specs become lower than allowed lATlIdb
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specs (Figure 5.1).

The next step is to find the L-boundaries for the
plant over this frequency range. These are found by the
program implementing the Horowitz and Sidi method and
are shown in figure 5.2. Also shown in the figure is
the region that must be avoided in order to permit only
25% overshoot of a disturbance signal.

Finding a loop transmission L(s) that meets these
boundaries is the most difficult part of the design.
The optimal solution is to meet each boundary at each
frequency and to come as close as possible to the for-

bidden region. Shown in figure 4.2 is a plot of the

ab

Ty | =3\

log w

2.2(jw+.75)
1{jw+.75)

|P(jm)la=3=

Figure 5.1 Frequency Range Requiring Feedback



L-Boundaries and Resulting Ll(jw)

Figure 5.2

56



57

L(jw) found for this problem. A much better L(jw) can be
found but requires a great deal more effort by the trial

and error method employed. The loop transmission found

5-3

s(s+.075) 'S¢

suitable for Pl(s) =

_ =140000. (5-3) (5+.75) (8°+2.665+3.61) (5°+9.85+49)
s (s+.05) (s+100) > (s2+1.525+3.61) (5°+5.65+49)

Ll(S)

Now the required compensation G may be found as
follows:
L, (s)

L,(s) = G(s)P,(s) => G(s) = §IT§T

For this problem:

_ -140000. (5+.075) (8+.75) (s°+2.665+3.61) (s°+9.85+49)

G(s) T2 3
(8+.05) (8+100) > (5%+1.525+3.61) (£245.68+4.9)

Using this compensation and allowing the plant parameters
to vary throughout their entire range, holding a = 3,
will yield the actual variaton of the transfer function
|AT2|db. As in example one, the maximum component of
|AT2| will be required to complete the design by solving
for the required prefilter F(s). Figure 5.3 compares
|aT,| and the specs of |AT1|. If the L, found in figure
5.2 had points on all the L-boundaries instead of some
above and some below, the plotslof lATl],and

|AT,| would be identical. When a point is above the

L-boundary, the [AT2[ at that frequency will be below
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that for |AT1] and the opposite is also true. This was
the problem encountered in example one and thought to be
caused by errors due to the technigues used in the sub-
routines of root finding program. Note that the problem
is not encountered here as was hoped. Poles do not occur
at the low frequencies encountered in the first example,
and therefore if the subroutines were the cause of the
error they should not and do not lead to erroneous re-
sults here. This answers or at least supports the sus-
pected answer to the‘question concerning the origin of
the error encountered in the first example.

Figure 5.4 shows four things, the maximum component
of IATlldb (Ty,) » the maximum component of IAT2|db (Ty )
the prefilter required For and the prefilter realized
Fp. As before, Fo is simply the point by point subtrac-

tion of sz from Tlm as explained by:

Lm
TZm T IL
m
IT | _ F Lm _ IF| - ITlmI - ITlml
Inm 1+L L [sz[
1+L
m
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The prefilter found is:

3.49 (s+2.5) % (s%+.425+.176)

F(s) =
(s+.7) % (s+4) 2 (s°+.985+.49)

Thus the design is now complete. Figure 5.5 shows exact-
ly what is meant by a prefilter F and compensation G
as to their part in the closed loop structure. To test
the design, all parameters were varied over their al-
lowed range and plots of their step responses were made.
Figure 5.6 shows that again the design technique works
perfectly. The allowed time response region is utilized
to ité fullest as the economical design should,

This example accomplished two things. First, it
again verified how well the design technigue functions
when applied to a problem. Second, it helped answer the

questions that prompted a second example. The inaccuracy

R(s) C(s)
F(s) () G(s) P (s)
L(s) = G(s)P(s)

Figure 5.5 Closed Loop Structure



Figure 5.6

Step Responses of Final Design for P(s)

_ K{s-a)
" s(s+b)

Z9
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of the subroutines of the root finding program at very
low frequencies certainly seems to be the cause of ex~

cessively large variation of |AT at certain frequen-

5l

cies in the first example. The design technique works

for gain variation without introducing any complications.
The example again strenghtened the feeling that a

a_.
design for a system requiring feedback up to w = ?1n

is not an easy problem, but is a workable one. A problem

a_.
requiring feedback up to m;n will be much more difficult

if the trial and error method is used to find the L
meeting the required L-boundaries. This is the only dif-
ficult part of the design and reguires time in exponen-

tial proportion to the accuracy desired.
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CHAPTER VI
CONCLUSIONS

The first design method presented in this paper is
not very useful in the majority of real world problems
because of its inability to handle variation of the
right-half-plane zero. Its technique may yield a more
general method or at least give some insight in the
problems encountered in a nonminimum-phase problem.

The second method is very effective in presenting
an a priori design technique for a plant with one right-
half-plane zero and the plant is not a function of the
right-half-plane zero in any other way. Necessary exten-
sions of this method are to handle multiple right-half-
plane zeros and plants that depend on the right-half-
plane zeros in more complicated ways than just having a
zero there, i.e., gain is a function of the position of
the zeros.

Some of the simplicity of this method may be lost
when these extensions are made, but this method allows
an insight into phases of the design which point out
short cuts. For example, it made it clear that under
certain circumstances a design for one position of the
zero will work for all variations. It also facilitated
the presentation of criteria explaining when a design is
not possible by this method. It seems very likely that a
pursuit of the nonminimum-phase problem along these

1ines‘may'yield a general design technique.



[1)

(2]

[3]

[4]

[5]

[6]

65

BIBLIOGRAPHY

Smith, Otto J.M., "Feedback Control Systems,"
McGraw-Hill Inc., New York, N.Y., 1958, pp. 11l1-113

Hammond, P.H., "Feedback Theory and its Applica-~
tions," English Universities Press, Ltd., London,
England, 1958, pp. 104-108.

Wass, C.,A.A., "Automatic and Manual Control,"
Butterworths Scientific Publications, London,
England, 1952, p. 43.

Horowitz, I.M., "Synthesis of Feedback Systems,”
Academic Press, New York, N.Y,, 1963, pp. 333-353.

Ogata, Katsuhiko, "Modern Control Engineering,"
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1970,
pp. 390-391.

Horowitz, I.M., and Sidi, Marcel, "Synthesis of
Feedback Systems with Large Plant Ignorance for
Prescribed Time Domain Tolerances," Research paper,
July 1, 1971. (To be published in the International
Journal of Control).



646

Appendix A
DIGITAL COMPUTER IMPLEMENTATION OF TIME DOMAIN TO

FREQUENCY DOMAIN TRANSFORMATION

A.l1 General Despription

The program which yields the |AT| specs necessary
to make the design and the maxima and minima curves of
T to calculate a prefilter F is presented here. It is
coded in FORTRAN IV source language and has been exe-
cuted on a Control Data Corporation 6400 computer, A
series of IF STATEMENTS in the subroutine INVLAP de-
scribe the step response boundaries. A "hit" is a res-
ponse that at some time came to within .01 of the
boundary without ever exceeding this tolerance. This
tolerance and the amount the complex pair of poles are
incremented each time can be adjusted to suit the ac-
curacy desired.

The program varies the complex poles of

w2 20

(s-a) (——0)
T(s) = 2~a
{s™ + Zzwns + mn)(s+20)

and finds the region of pole variation that yields step
responses within the boundaries. It will print out the
first and last set of parameters giving satisfactory
responses for a given real value of the poles, varying
the imaginary part. The sets of parameters that yield

"hits" are also printed out. Finally the program prints
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out the maximum, minimum, and difference of the magni-
tude and phase bode plots of all the hits. All this in-
formation provides the insight necessary to design for
one set of parameters and yield satisfactory responses
as the parameters vary.

The following is a logic flow chart of the program
and a complete 1istiﬁg of the program with a sample set

of output.
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A.2 Flow Chart of Time to Frequency Domain Transformation

&

INITIALIZE COMSTANTS

READ ZERO -~ RHP

D

5TCP END

(

[INITIALIZE REAL PART OF COMPLEX POLE PALK]

fem
l

INTIALIZE IMAGINARY PART OF COMPLEX
POLE PAIR

Print Last,
z,w,

INCREMENT REAL PART BY .1

INCREMENT IMAGINARY PART BY ,05
CALCULATE HIGH FREQUENCY GAIN
CALCULATE TIME RESPONSE

Is
STEP RESPONS
IN BOUNDS

FIRST
IME WITH THI
REAL PART
7

IMAGINARY
PART > 15

PRINT FIRST, =z, Wy,

PRINT OVER 15
FIND MIN & MAX OF
BODE PLOTS OF ALL HITS

PRINT MIN, MBX, AND A

PRINT HIT, z, W, ' OF MAGNITUDE & PHASE
STORE z, W; FOR BODE PLOTS
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A.3 Program Listing

PROGRAM TEST2 (INPUT,OUTAUT) )
| DIMENSION RD(20) sRNI20)0A(10149)2CNIR0)sP(5)Z(5) 4Pe(2910) s
; 2B(101+9)+DATI200+4)9ZC(2410)
: COMPLEX RNyRD
; 10 ITEMa2 . _ ' .
! CNili=p, )
i IFINI=p :
I A‘I’l’.ll
RD{1)®CMPLX(0e04000) §
RD(2)}8CMPLX (=20,0¢0,0)
20 READ 900+ 2ERQ
i 900 FORMAT(F1046)
' PRINT ©0)s2ERD
' 901 FORMAT (1XsF1lD.8}
IMITa}
l IFIZERG «LEs +1} B0 TO 500
| IFINISIFINIel
I RN{1IaCMPLX(ZERQD.0)
i

. POLERe, 3 ) ) :
30 POLEI=p.
POLER®=POLER+,1
FRST=0,
35 POLEISPOLEI+.0%
o “INmD
' " RD{3)=CMPLK {«POLER+«POLES}
RD {4} =CMPLX {=POLER+POLET}
SFu = |20,/ZERQ) & (POLER##34POLE[#932)
CALL'INVLAP(SF-RDv#-RNoInﬁNvIOOIolploPOLER.POLEI:DﬂTnRETOZEROOAl
2ITEM)IHITsIN+FRST}
’ IFIRET=3,)35+30,4
80 ITEMImIHIT=] ’
- DO 39 Iwl,y100
Al(Se2)m=1000,
A(Is3)m}000,
Bil12)a=]000.
39 B{l+3}=1000.
. DO 100 IslsITEM}
PilymDAT(Is D)
Zi1)abaT{Is2)
PCl1el)wDAT (I3,
T 95(2'1}‘0“7[1!‘} . '
) fmy,
NPm]
NPCm]
NZml
DEL=s]
NIC=(
S=Q,
CALL BODE|SoGlNP|FONPCQPCiNZ.Z|NZCrZC¢DBIQIDELDA|B)
100 CONTINUE ' ‘
INOWRIFINE+3 |
DO 200 I=}»100 '
AlL+INOWImA (1921 =A({1:3)
Sll1+INOWI=B(I+2)=B{1:+3)
200 CONTINUE ‘ . !
- 600 PRINT gl0
00 300 I=1s+100 .
PRINT Q05+ (AUTo ) vumled) o (BIIvd) 1JnZeé)
300 CONTINUE
905 FORMAT (1X¢TF1304}
910 FORMAT(1K]) \
PRINT 910 :
80 TO 10 . .
S00 CONTINUE
990 END




SUBROUTINE INVLAP!SFOHDlNDI“NINNIFNINT'DTfK!pOLEROPDLEIlD‘TIRETI
2ZEROIA ITEMeIHIT+INGFAST)
COMMENT ROUTINE EVALUATES THE INVERSE LAPLACE TRANSFORM oFf A RATIONAL
FUNCTION AT NT POINTS AT INTERVALS DT,
INPUT FORMS .
Kel, SF'!GS'RN(IIl'-o-‘lS'RNINN)))/IlS-RDGl}!'-i."S”RDlNDlli‘
Ks2, SF'IS.‘NN‘CIEf‘S"INN'I)*-coOClNNl'SiCINN’IIl/
{IS-RD{I))*_-.-'iS-RDIND))’c '
DIMENSTON CN(ZO]lﬂDIEO)iRH(RDI|RE$I20’|DATCZOO|!!lAthli9|
COMPLEX CTls RDy RNy RES
INTEGER WIT . ] .
HIT=0
.1 FORMAT(1H s10XsaIMAGINARY PART OF TIME RESPONSE OUT OF LIMITS AT
2Ta8yFlo .4 CTu®42E12,.5)

oOoDOO

DO T IaluND
RES(I)uSF

- IFINNLEG.O) GO TO &

G0 TO(244) 1K o _

0D 3 JmlsNN ' Pt

RES(1)mRES{I}®{RD(I)=RN{J))

680 T0 &

RES{D)w{ADII)*CN(2})

DO 5 Jm2,NN

RES(I)=RES{I)*Rp 1Y) +CN{Je1)

RES|I)aSFeRES(I)

DO 7 Ju)sND ' i
FileEQuu) GO TO T ) ' L
ES {1 wRES(IIZ(RDC(II=RD{Y)) -
=T CONTINUE

Tima{l, 1)
DO 9 lsloNT
CTisp,
© D08 JmlaND
8 cr:-CT:onEStdl':xP|T1*a!nL:RDtJ))iccnPLx:FUStrlfnanolnDiJ:))-
2SIN(TISAIMAG(RD(J)))) o
IF(ABS(AIMAGI(CT])) ¢0T40005#ABS5 (REAL(CTS))) PRINT 1+T14CT]
s MlsdleT] - g
ACTyITEM) =REAL (¢T1)
95 IF(T1 .0KE. 9.87) GO TO 780 :
100 IF(TL .GEs (7e) oANDs A{I+ITEM} oLEoflell)eAND. ALT.ITEM) +GE,
21«8%9))a0 TO 700 .
102 IFI(TL .0+ 7.} @0 TO 125 ‘
T.10% IF(TL .oz.l~.a.AND.A(I-!TEH:.LE.lx.zil.AuD.Atl.xTEnn.Gz.l.bt))
260 T0 s00
107 IF(T]1 ,GEs 44) 0O TO 129 .
11¢ IFITI.GE;lacIoﬁND-A(IlITEM?-LE-Il.ZI) «AND, A{1+1TEM) ,BE,
20431667%T1-,83)y GO TO Sp0 . :
112 1F(T1 ,6E. 3.) GO TO 128
118 IFATI  4BEs (le) oANDe A(L+ITEM) oLE, Cod®T1e001l) LAND, AIIITEM)
2+6E0 [,316674T1-,63)) GO TO 40¢
117 IP(T1 ,B8E. 147 GO TO 128
120 IF (A(I+ITEM) «GE« {=431) AND, A(I+ITEM) oLEe (o0T14,01))
260 TO 200
125 HITs=0
IF _(FRST +LE. «5) GO TO 330

-0t e N

127 OMEQA=SQAT(POLER#®Z+POLETS#2)
ZETAWPOLER/OMEGS
- PRINT o71,POLER,POLET+ZETA,OMEGA

971 FORHQT(lx:SHREAleFxogOOJX!!HIHABliFiUobogltSHZETAIbFIUoit!l!u oo

26HOMEOA® ¢F 10460 4X 0 4NLAST /) ‘
FRSTs0, = - R ) . .
. nET.a' . - Y - - P & ‘_,4 .

90 70 18 R KR

T 130 IF (POLEI sOE. 15.) Q0 TO 180 ° - = ‘- - T
T 13%8°3F {IN .0f, 2) 60 YO 37O . - L .
‘145 G0 TO 30 ' - ' S -
150 RETas, ' e - Tty ey
PRINT 973 B ST
" 973 FORMAT[1X¢1IHPOLEL OVER 154//) R A T
195 &0 TO ;8

sl

310 1IF (IN LLE., 2) go TO 350

LI L I R T
s RN

30R IFAA(TIITEN} oLEe {=+29) " 4ORp l!{i!fﬁﬂ!‘QG!,‘(g‘ltia!ollg¥ﬁlrgiww

70



328 80 T 9
350 INed ’
0 B0 T0 9
3710 INmD
- 40 TQ 10 ‘ . ) i
400 IF (AII2ITEM) oLEe [,31867#T1=,80667) J0Re A{IsITEM) ,GE.
2lodoTley0l1)) HITed . . L
410 80 T0 310
s00 a:ilAIIOITEM’ sLEe (o31647#Ti=,60067) «+ORe A{IsITEM) +0Es [1419))
2HITed
s0s GO TO 310 : e
8Q0 IF (AT ITEM) -LE. {o+86) +OR4 A(IlITEN) «GEe (1e19)) HIT"
- 408 80 T0 310
00 IF(ACT, ITEN) oLEa (e31) JORe A(I+ITEM) oGE. (1-09)) HIT'#
T0% G0 Y0 1310
S 750 1P IFRST -GE. {,5)) GO To 778
. OHEGAISQRTtPDLER"!OFOLEI"Z)
7 IETASPOLER/OMEOA
PRINT 970¢POLER,POLET+ZETAJOMEGA
070 FOHNAT(lxl5HﬂEﬁLl0F1016031.SHIMAG.'FIO.503XISHZ£TAI.F1°|5l3xI
2OHOMEGA® F1048v4X95HFIRST)
FRST»=},
178 IF (MIT JLEs 2) GO TO 10 :
760 OMEGAWSQRT (FOLER®®2+POLEI##2)
ZETAWPOLER/OMEQH
PRINT 972+POLER,POLEI+ZETA+OMEDRA
972 'ORHATIIXoSHREALivFlo-6-3X|!HIMlG'|F10¢603105HZETAI.P10060331
2O0HOMEGAR+F 10694 X23RHIT /)
HITed
DAT(IHIT+))m20,
OAT(INITy+2) m=(IgRD)
DAT(INIT+3)uZETA
CAT(IHITs4) sOMEQA
IRITAIHIT+]
9 TieTlepT |
10 RETw2,
15 RETURN
- END - e e e o

SUBROUTINE BODEtSsﬂyNPuPoNPcaPCeNZoZpNZCoZCaDBaQaDELnA.BI
COMMENT SUBROUTINE EVALUATES RATIONAL FUNCTION AT S. i
COMMENT POLES=P(])y ZEROS=Z{I}ys COMPLEX POLESSZETA+OMEGAmPC(1eI)sPCLRs])
COMMENT COMPLEX ZEROSwZETAyOMEGARZC(141)+ZC{2¢1)» ERROA CONSTANTS(,
DIMENSION P(1)92(1)ePC{2e10) s 2C52020) vA (1013} 4BL1010)
FIs3,1413927
00 100 IBID=l+lpo C ’ T -
SeS+DEL ; ) . L
AIIBID.IIOS
8{IBID,1)=S
DRwg¥s : N
Quo, ’ o
IF (NPoLE.Q) GO TO 3 v )
DO 2 IslyNP ' ‘
IF(P(I)<EQe0s} g0 TO 1 . . CT oo
DBwDBeP (1) ®#02/(ge®24P ) 002) o :
UnQeATANIE/PIY)) : L - S g -
“ G0 T0 2 . . . W -
ol DdspB/gwe? . : " o -
- QuGeRl/2, : ’ ' i
. 2 CONTINy® : : : . T e
- 3 IFINZJLE.C) B0 TO 5 . .
. D0 % ImbaNT - L o ST e
o IF(Z(I)EQe0s) 00 TO & ’ ' ' . -
e DIlDB't!O'ZOZII!O'ZSIZIII"! c L S =
’ G'G-ATANIS/ZiI}) i ’ o "
. 00 TO B " - ' o oo : R
" & DBupBeges? . - - S IER
" 0‘9”:,2. ° Lo ' . R R '.-,. . :,.
"8 CONTINUE ' ' C ) B -
- % IF(NPC,LE.0) Q0" TD ¢
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" PO B8 IelshPC
l DD-DBOPCtZoIl'OQII(PC|2'!l"2'5"?)0’80‘.'(PclaoI)OPCtluI!*Sl"Zl
GlﬂoATaN(E-OPCIloIIGPC{EollOSI(PC(Z-I)*'E-S"El} ;
J’ : IF{S'LE.PC(2s1); QO TO B
| s IFIPC{1s1)4LTe0,) G0 TO 7
i A=QeP]
i B0 Y0 @
QnQ+P1
CONTINUE
IF(NZC.LE+0) GO TO 12
DO 11 1wi¢NZC
DBIDB‘ttZClz'IlO'Z-S"Eiiizt‘giIZCllnll'zpIE-IIQS)OOE)/ZCIE-I!*‘Q
GIDOATANIZ-'ZCIzoIIOZCIZvII*SIIZC(E-I)"2~S"ZIl
IF(S.LE-ZC(2+1)) QO TO 11
IF(ZC{1+1)4LTe0.) GO T0 10
Qagepl
60 TOQ 11
10 @sQep]
11 CONTINUE
12 DB=SQRT (ABS{DB) )
IF (DB .6T. 0+) GO TO 13
FRINT 937,1IBID
937 FORMAT (10Xy110s /)
PRINT F0LeP LI 2201 2sPCYel) sPC{291)

901 FORMAT(1X+4F10.8)
13 R=DB#*COS(Q)
AMEDB*SIN(Q) :
DBEu20,#ALOG10(Dg) ‘ : !
UnQ@e 1By, /Pl : _ :
IF(A(IBID+2) +BE, DB) GO TO 50
45 A(IBID.2)=DB
- 50 IF(A(IBID»I) <LE, DB) GO 7O &0
55 A(IBID,3)=DB
60 IF(PIIBIDs2) +GE. G) BO TO 70
65 B(IBID,2)eQ@
70 IF {BIIB10+3) +LEs G} GO TO 80
- TS B(1IB10,3)=Q
80 CONTINUE
. 100 CONTINUE
o " RETURN
END

O @~

"3,000000 . .
REALs 1400000 1MAGs  ,350000 ZETA=  ,752677 OMEGAm  .531507  FIRST
REAL® 400000 IMAG=  ,750000 ZETA®  .470588 OMEGAs  .380000  HJT
REALS +400000  INAG®  .,800000 ZETA® 447214 OMEGAR 894427  LAST

REAL®  .500000 IMAG®  .250000 ZETA® 894427 OMEGA®  .S%017 FIRST
REAL®  .500000 IMAGs 250000 ZETAs  ,894427 OMEOAs  ,550017 HIT

EAL®  .500000 IMAGx  ,950000 ZETA® 465746  OMEGAm 1.073548  NIT
REALS  .500000 IMAG® 1.000000 ZETA® +447214  OMEGAs 10118038  LAST

REAL®  ,600000  IMAGw  ,050000 ZETAw ,996546 OMEGA®  ,602080  FIRST
REAL®  +800000  IMAGS  ,050000 ZETAm 996548 OMEGAs.  .602080  HIT

TEALI-- «600000  IMASE 100000 ZETA®  .98639s ' OMEGAS. 808278 HIT
REALN .aonoool IMAGE z.oooqon 2ETa= oS14498 OMEgA® 1,168190 LAST

REALS 0700000 © IMAQs  ,080000 ZETA®  .997459 OMEGA® 701783  FIRST
REAL®  ,700000 IMAGa 1.000000 ZETAs - +8T3462  OMEGAm. 1,220656 ~ LAST



REAL®  ,800000
REAL® 800000

REAL® 900000
REAL®  ,900000

REAL®" 4900000
FAL®  1.000000

REAL® 1.000000

IREAL® -~ 1,000000

REAL= 14100000
REAL® 1.100000

REAL® 1.100000

REAL® 1.200000
REAL® 1.200000

REAL® 1200000

REAL® 1.300000
REAL® 1.300000

REAL®s 1.300000

REAL® 1.400000
REAL®™ 1.400000¢

EAL®  1,400000
REAL®  1.400000

REAL® 1.500000
REAL® 1.500000

REAL®  1.500000
AEAL® 1.500000

REAL® 14600000
REALe - 1,600000

REAL® . }.400000
REAL® l.%00000

REAL®. 14700000
REAL® 1.700000

REAL® . 1,700000

|REAL® (14700000

REAL® 14700000
| REAL® 14700000

'ReaL® ‘10700000

"AEAL® 17000007

IMAGE
IMApe

IMAQe
INAGe

INAGe

IMAG=
IMAGe

INAGE

IMAG=
IMAG=

IMAGE

IMAgE
IMAQE

IMAG=

IMAGS
IMAGE

iMAns

IMags
IMAGw

IMAQS
IMAG=

IMAGs
N IMag=

IMAGge

IMAGS

"iIMAgs
- ITMAG=

INAGE=
IMAQs

IMAQE |

IMAGE

IMAGe

IHAQI
IMAGe

POLET OVER'1S

IMAGw

IMAge
;MAG:

«DB0g00
1.000000

«050000
+950000

1.000000

«050000
«950000 .

1000000

«050000
+300000

+950000

«050p00
«850000

-900000

«050p00
«800000

«850000

+050000
+700000

« 750000
+800900
«050p00

1600000
«&509000

4700000

2050000
+450000

+500000
«550000

+050000

050600
«100000
.lsoooo
»200500
+250000
'.3ooopu
+350000

IETAw
ZETAm

ZETAm
2ETas=

ZETAm

2ETaw
ZETAm

IETAn

ZETas -

ZETa=
ZETAw

ZETAw
ZETAw

ZETA=

ZETAw
ZETAm

ZETAw

ZETaAw
ZETAm

ZETa=
ZETAm

ZETas
ZETas

ZETAs

IETA=

ZETAm
IETAm

ZETA=
ZETAn

ZETAm
IETam

ZETA®

ZETas
ZETas

IETam

IETam

LETAm

1998053
16240958

998450

1687745
1668965

+998752
s T2499%

'TOTIOT

+998969
s TTINST

«TBGB23

+999133
816024

+800000

«99926]
«851658

+8369T70

+999383
894827

+Bal480
+B68243
999445

_ 928477

4917554

090618

+9995]12
«96268]

«954480

2945687

2999568
1399558

 +998274

1996130
+99318]

989359

+984784
+979487

OMEGA®
OMEQA=

OMEQA®
OMEGA®

OMEGA=

OMEQA=

OMEGAs
OMEGAR

OMEGAm

OMEGA=
OMEGAm

OMEQAw
OMEGAS

OMEGA®

OMEQA®
OMEGAn

OMEGAS

QOMEQA=
OMEGAw

OMERAS
CMEQA®

OMEGA=
OMEGAS

OMEGA=

OMEGAN

OMEGA=

OMEGAS

OMEQAw:
OMEGA=
OMEGAs:

CMEGAm
OMEGAm
OMEGAS
OMEQAm
ONEGAS
OMEgA®

OMEGAS. -

280156}
l.2800628

«901388 .
1,30962%

1,345362

1.001249
1.,379311

l.4la2le

1.10113¢
1.421267

1.483444

1,20108)
Le470544

1.800000

1.30096)
1526434

l.553222

1,400893
1,568248

1,588238
1,612452

1,500633
1.615549

14834778
1.655268

l.60078)
le682077 -

1.076308
le891092

1.700738
1.70073%

la702%39
1708808
l.711728

1eT10204
l.720268

173868y
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FIRST
LAST

- FIRST

HIT

" LAST

FIRST
HIT

LAST

FIRST
HIT

LAST

FIRST
HIT

LAST

FIRST
HIT

LAST

FIRST
HIT

W1T
LAST
FIRST

HiT

HIT
LAST

FIRST
niT

BT
LAST .
FIRST
HIT

HET

. HITIH

T
AIT
HIT
LAST




w*
+1000
+2000
«3000
+&000

T #5000

L #7000 .

«8000
«9000

1.0000°

‘1e1000
'le2000
‘13000
i1e4000

115000 -

16000
‘147000
1.8000
149000

2.0000

2.1000
2.2000
‘23000
204000
‘250090

'2.6000

27000

"248000 .

29000
- 3.0000
31000

'3.2000 .

3. 3000
3.4000
3.8000
3.6000
3,7000
"3.8000
3.9000
- 4s0000
T 41000
4,2000
423000
4e4000
4.5000

Tjnai

«0718
«2812
+6136
1,0314
11,4581
1.7584
1.,7780
1.9680
1,9261)

1,5797

9278
«0358
=1.0026
" =2,1026
=31.089]
'3-6365
=%,2167
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