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ABSTRACT

The normal mode expansion technique is applied to the transformed

monoenergetic integral transport equation to develop a solution for the

rotationally invariant and axially infinite, critical, two-region cylin-

der with a finite outer reflector boundary. The model assumes isotropic

scattering and identical neutron mean free paths in the core and reflec-

tor regions. The solution in terms of singular integral equations is

obtained by applying a completeness theorem found for the singular

eigenfunctions. Numerical results for a variety of core and reflector

multiplying properties and reflector thicknesses are presented and com-

pared with the results of other methods. The completeness inherent in

this solution and the high precision in the numerical calculations pro-

vide results which may be used as analytic standards for this problem.

An example of this type of application is given in a study of approxi-

mations inherent in the neutronic design analysis of a small, fast-

neutron-spectrum reactor concept proposed as a space power source.

Using the highly precise critical dimensions for the case which most

closely approximates this reactor, investigations were made of the

reactivity effects of angular quadrature type and order and two-

dimensional geometrical models used in the discrete-ordinates transport

analysis of this concept.



CHAPTER I

INTRODUCTION

1.1 Purpose and Scope

The purpose of this dissertation is to present in detail the

development of a highly precise transport solution for the radially

reflected critical cylinder and to demonstrate how the results from

this solution can be used as analytic standards in evaluating approxi-

mations inherent in numerical transport treatments employed in reactor

design analysis.

A complete solution for the rotationally invariant and axially

infinite two-region critical cylinder with a finite outer reflector

boundary is obtained by applying the singular eigenfunction expansion

technique to the transformed monoenergetic integral transport equation.

The model assumes isotropic scattering and identical neutron mean free

paths in the core and reflector regions. Numerical results for a

variety of core and reflector multiplying properties and reflector

thicknesses are presented and compared with the results of other methods.

The critical dimensions and the neutron density distribution for one

of these cases are then used as analytic standards in evaluating dis-

crete angular segmentation transport programs used in reactor design.

Three aspects of the numerical programs were studied.

1. Angular quadrature order (number of segmentations in the

angular variable)

2. Type of angular quadrature (direction cosines and weights

chosen by various prescriptions)



3. The step-boundary approximation inherent in X-Y geometrical

representations of circular boundaries.

1.2 Background and Dissertation Organization

Neutron transport as a function of position, energy, angle and

time is generally assumed to be described by the Boltzmann equation.

In Chapter II this equation is reduced to the time-independent, one-

dimensional, monoenergetic form. In 1960, Casel obtained a complete

solution to the reduced Boltzmann equation in one-dimensional plane

geometry in terms of singular eigenfunctions. This solution is briefly

described in Chapter II. Concluding Chapter II is a demonstration of

the equivalence between the integral form of the transport equation

and the Boltzmann equation.

In 1963 Mitsis2 obtained exact solutions for the critical sphere

and for the critical infinite cylinder by transforming the monoenergetic

integral transport equation and applying the singular eigenfunction

expansion method of Case. Case and Zweifel 3 have shown a more general

treatment of the same problems by demonstrating a replication property

of the kernel of the integral transport equation. The replication

method has been extended by Gibbs4 to obtain solutions in arbitrary

convex geometry. For the critical sphere and cylinder, Gibbs special-

ized his general solution to duplicate the results of Mitsis.

Lathrop and Leonard have suggested that numerical results from

the Mitsis solution for the critical cylinder could be used to investi-

gate the accuracy of two-dimensional discrete-ordinates angular quadra-

ture sets. However, a recent bibliography6 of neutral particle transport
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theory does not contain any reference to such results and initial

investigation under the present study was directed towards determining

the efficacy of the Mitsis solution for the bare critical cylinder.

This investigation found that the solution as formulated by Mitsis

is not convergent. However, a converging solution could be obtained

by reformulating a function used in separating the outer boundary

condition into singular and nonsingular parts and by redefining the

continuum expansion coefficient. Another variation of the solution

for the bare critical cylinder presented in Chapter III from that of

Mitsis is a more straightforward, though equivalent, treatment of the

singular eigenfunctions. The advantages of this new singular eigen-

function treatment are discussed below.

The development of the solution for the radially reflected critical

cylinder is presented in Chapter IV. The solution is based upon the

integral transform approach developed for the bare core solution by

Mitsis. The same approach has been taken by Smith and Siewert7 and

by Leuthiuser8 in developing solutions for the reflected critical

sphere. Both of these solutions assume identical neutron mean free

paths in the core and reflector regions. Smith9 has demonstrated the

complicated form of the transformed integral equation when this assump-

tion is not made. To reduce the complexity of the problem, the same

assumption is imposed on this solution for the reflected critical

cylinder. However, the multiplying properties of the two media are

allowed to differ. In the context of the monoenergetic model, the

identical mean free path assumption is not a severe restriction,
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especially for fast energy spectrum reactors where total neutron cross

sections are of the same order of magnitude.

Transformation of the integral transport equation in two-region

cylindrical geometry results in integral equations for the neutron

density in each region. Contained in these expressions are kernels

made up of sums of integrals of modified Bessel functions over the

spatial variable. These kernels are separated out and defined as

pseudo neutron distribution functions. The pseudo neutron distribution

functions are shown to satisfy the same integro-differential equation

as arises in the bare core case with the same centerline and outer

boundary conditions. Additional boundary conditions are continuity

of the pseudo neutron distribution function and its spatial derivative

at the core-reflector interface.

Solutions in terms of modified Bessel functions and singular

eigenfunctions (called pseudo eigenfunctions because they are functions

of the transformed variable) are found for the integro-differential

equation by the separation of variables technique. When Mitsis2

introduced these pseudo eigenfunctions, he initially considered the

full range on the eigenvalues. Then he observed that the pseudo

eigenfunctions correspond to the sum of the Case plane geometry eigen-

functions and showed completeness by the theorem proven by Case. 1

In the present solutions for both the bare and reflected systems,

advantage is taken of the evenness of the pseudo eigenfunctions and

of the dispersion function for the eigenvalues to consider only those

eigenvalues in the positive half-range. A full-range completeness

theorem for the pseudo eigenfunctions is proven in Appendix B and its



easy extension to the half-range is shown. This procedure provides

a basis for developing the solution entirely in terms of the eigen-

functions found, without using a decomposition into the Case plane

geometry eigenfunctions as done by Mitsis in obtaining the bare core

solution. A particular advantage of the present approach is the lack

of dependence on the half-range plane geometry eigenfunction complete-

ness theory which requires the calculation of X-functions.3 Also

inherent in the proof of completeness are several very useful ortho-

gonality and normalization relations for the pseudo eigenfunctions.

These relations are developed in Appendix A.

Substitution of the pseudo eigenfunctions into the boundary

conditions and application of the orthogonality-normalization relations

results in two coupled iterative sequences with which the expansion

coefficients can be calculated to any desired degree of accuracy. The

critical condition arises from the reduction of the outer boundary

condition to a Fredholm integral equation for one of the reflector

expansion coefficients. It corresponds directly to an auxiliary con-

dition required in the proof of completeness.

Chapter V contains a description of the numerical techniques used

to obtain the various functions and parameters appearing in the solu-

tions developed in Chapters III and IV. The accuracy of these tech-

niques is drawn from comparison with tabulated values. Then follows

a demonstration of how the precision of the results varies with the

order of numerical quadrature used in evaluating the integral terms

appearing in the solutions. Finally the numerical results for a wide

variety of cases are presented and compared with the results of other
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methods. The bare core results are compared with the results of other

analytic solutions found in the literature. The reflected core results

are compared with the results of high order numerical calculations.

Chapter VI contains a demonstration of how the results from the

highly precise solution for the reflected cylinder can be used as

analytic standards. A case is chosen which, in the context of the

model, most closely approximates the Advanced Power Reactorl0 concept

being studied at the Lewis Research Center. Then, using the exact

critical dimensions, the discrete angular segmentation programs used

in the design of this concept are employed to study the three effects

listed under the Purpose and Scope of this study (1.1).

Chapter VII contains the conclusions and recommendations drawn

from this study. The conclusions pertain both to the analytic solu-

tions found and to the accuracies of the various numerical design

approximations studied. Based on these conclusions, recommendations

are made as to order of approximation required for desired design

accuracies and as to where indicated sources of error might be reduced.



CHAPTER II

MONOENERGETIC TRANSPORT THEORY

2.1 The Boltzmann Equation

The assumptions under which the Boltzmann equation describes

neutron transport in a medium free of independent sources are listed.

1. The neutron acts as a point particle which travels in a

straight line with constant speed between neutron-nuclei

interactions.

2. The probability of neutron-neutron interactions is much less

than the probability of neutron-nuclei interactions and is,

therefore, ignored.

3. The neutron population is sufficiently large so that statisti-

cal fluctuations may be ignored.

4. Secondary neutrons are produced at the time and position of

the primary neutrons.

5. The total cross section, a(r,E), describing the probability

of a neutron-nucleus interaction per unit path length, is a

function of energy and position only.

With these assumptions, the Boltzmann equation for a medium free

of independent sources is written as11

v it (_,E,t) + *V (rE.~E,t) + a (rE) (__,E,t)

=f 11(r E ') f (r -;O' E '4- E ) (r - '.E ',t )d - 'dE ' (2.1)
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where the neutron angular flux, 1(rDE,t), is a function of position,

angle, energy and time; v is the neutron speed; and a (rE) x

f(r;f',E'-CE) gives the total probability of neutron transfer from

',E' to O,E.

The present study is restricted to the greatly simplified, mono-

energetic, stationary form of the Boltzmann equation. Elimination of

the energy and time dependence in Eq. (2.1) yields

.+ o (r) ( ) = (r)c()f f(r;r'n-) ( r')d2' (2.2)

where c(r) is defined as the mean number of neutron secondaries per

collision and enters from the operation

f f(r;O',E'1--E)dE'= c(r ) f(r;Q'-C)

where c(r), a(r) and f(r;C'2-_) are one group, spectrum averaged values.

In order to demonstrate Case's singular eigenfunction technique,

Eq. (2.2) is written for infinite plane geometry with dependence on

one coordinate only. In planar geometry we have the relations

bz

and also dO' = 2dp', -1 ! 5 4 1.

With these substitutions, Eq. (2.2) becomes

1

S(z,) + (z)(z,) = (z)c(z) 2 (z,(2.3)

-1

Eq. (2.3) is further simplified by the restriction to isotropic

scatterings in the laboratory system. In this instance,
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f(z;n' _) = 1/4 n.

Finally, the spatial variation is expressed in neutron mean free paths

through the definition:

x =oa(z')dz'

from which follows - = a (z) - .z bx

With the above substitutions, Eq. (2.3) becomes

1

(X,) + (XP) =CP (x-f+ f = (x,'P')d1' . (2.4)

Eq. (2.4) is the stationary, monoenergetic, one-dimensional, Boltzmann

equation for a source-free, isotropic, homogeneous medium in plane

geometry for which Casel developed the singular eigenfunction solution.

2.2 Case's Singular Eigenfunction Method

The solution to Eq. (2.4) is sought through the separation of

variables technique. Thus we assume a general solution of the form

§(x,;) = X(x)p(P) (2.5)

Substitution of Eq. (2.5) into Eq. (2.4) yields

1

dX(x) c X(x) f 1 c( ')d4'. (2.6)P(P ) dX + x(x)() 2

After collecting like variables in Eq. (2.6) we obtain

1
1 dX(x) c ') 1

dXTx7 =4- T4-4
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Next, each side of Eq. (2.7) is set equal to the separation constant,

-1/u, to obtain the two equations:

dX(x) + X(x) = (2.8)
dx u

and

24 ) /cp(p )d4. (2.9)

The solution of Eq. (2.8) is immediately written as

X(x) = (constant)e-x/u .  (2.10)

To obtain the solution for Eq. (2.9), we first normalize

-1

after which Eq. (2.9) becomes

(u - L)) = (2.11)

Eq. (2.11) yields a family of nonsingular and singular solutions

depending on the value of u. For u[-l,l], we have two discrete solu-

tions given by

c uo (2.12)
o+(f) 2 uo T1

where ± uo are the roots of the dispersion function

A(u) = 1 - cutanh-l(1/u) = 0. (2.13)

For ue[-l,l], we have a continuum of solutions

u(4) = p P - + x(u)b(u-4) (2.14)

where X(u) is the function of Case defined by

%(u) = 1 - cutanh- (u), (2.15)
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and P indicates that the Cauchy principal value is taken for integrals

involving cpu(4). Collecting Eqs. (2.10, 2.12, 2.14), we write the general

solution of Eq. (2.4) as

(x,) = ao++(p)e x/UO+ aocpo.(p)ex/UO+ A(u)cpu(4)e - x/udu.
-1

(2.16)
-1 4 C 1

Casel proved a completeness theorem for the above expansion which is

constructive in the sense that it provides a method for obtaining the

expansion coefficients. He also proved a partial range completeness

theorem. Since these proofs are rather involved and are well documented,

we do not include them here. However, an analogous proof for the eigen-

functions developed in Chapter III is presented in Appendix B.

2.3 The Integral Transport Equation

Attempts by Mitsis to apply Case's method for solving the Boltzmann

equation in other than plane geometry were unsuccessful. However, suc-

cessful applications were obtained in spherical and cylindrical geometry

after making suitable transformations of the integral form of the trans-

port equation. Here we wish to show the equivalence of the Boltzmann

equation and the integral transport equation. First the monoenergetic,

stationary Boltzmann equation as it appears in Eq. (2.2) is rewritten as

0 v- (r,n) + a(r) (r,n) = q(r,Q) (2.17)

where the source term, q(r,_Q), is given by

q(r,_) = o(r)c(r) f(r;_' -. _)(r,' )d_'.
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With the position vectors as shown below,

so

we define r = o + so and write Eq. (2.17) as

.! (ro+ so,n) + a(r, +s)(, + sn,n) q(L + so,0). (2.18)

Operation on Eq. (2.18) with the integrating factor

exp f a(ro +s'_)ds

results in

Sexp[f a( + s') ds (ro + s, 0) =exp (ro +s'_)ds q(ro + sf_,)

(2.19)

as can be shown by applying Leibnitz's Rule. In Eq. (2.19) we replace

s by s' and s' by s", then operate by the integral over s' from -o

to s obtaining
S'

exp C(ro+s")ds" (ro+sln,0a) = exp a (ro+s"Q)ds" q(ro+s '_,)ds'

S-o (2.20)

In evaluating the left hand side of Eq. (2.20) at the lower limit we

assume that
lim I(ro +s'_,_) = 0.
S I  

- -CO

Transposing the exponential term on the left hand side of Eq. (2.20),

dividing the range on the integral in the transposed exponential from

-m to s' and from s' to s, and, after cancellation, we obtain
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(O + s,) = exp - (ro +s")ds" q(+s,)ds'. (2.21)

Now recalling that r = +so, r = r -so, we write Eq. (2.21) ass s

(r,0) = sexp (r + [s" - s]n)ds q(r + [s'- s ]n,)ds'. (2.22)

Next, inserting new variables p" = s - s" and p' = s - s', Eq. (2.22)

becomes

#(r,) = fexp - c(r -pF"O)dp] q(r -p'o, 0)dp'. (2.23)

Returning to the more conventional displacement variable, we let

p' = s and p" = s' in Eq. (2.23) obtaining

C s

#(r,_) =0 exp - ] (r -s'_)dsj q(r - s_,_)ds. (2.24)

Upon imposing isotropic scattering on the source term, thereby eliminating

its dependence on i' as it appears in Eq. (2.17), Eq. (2.24) becomes

ao s
t(r,) = exp c(r - s'Q_)ds a(r- so)c(r - sr_)(r - sba)ds. (2.25)

In order to eliminate the angular dependence, we operate on Eq. (2.25)

with the integral over 0 as follows:

(r,_)d = 1 exp o(r - s'o)ds' o(r - s_)c(r - s_))(r - s_)dsdO,

n- 0 (2.26)

let r' = r - so_, and recognize that the volume element dsdd =

dr'/jr-r 12, and use the definition for optical length, T(Ir'-rl)

0 o(r-s'O)ds', to obtain

IL exp[ -T7(r' - rl)]
() =  r' 2  (r')c(r'),(r')dr'. (2.27)

4TT f - r12
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After expressing the volume element dr' as d3r ' and changing the

spatial variable to mean free paths, Eq. (2.27) becomes

(r) = e c(r')(r')d3 r' .  (2.28)

Finally we rewrite Eq. (2.28) in terms of the neutron density by

multiplying through by the average speed, v, and using p(r) = v_(r),

to obtain

1 ~-r' 3(22
p(r) = -rr c(r')p(r')d r '  (2.29)

Eq. (2.29) is the stationary, monoenergetic, integral transport equation

for the neutron density in a source free, homogeneous medium with

isotropic scattering.



CHAPTER III

SOLUTION FOR THE BARE CRITICAL CYLINDER

3.1 Transformation of the Integral Equation in Cylindrical Geometry

The monoenergetic integral transport equation, Eq. (2.29), is

written for a single region as follows:

-Ir - rI'

p (r) = p(r')e d3 r', (3.1)

r Ir-r'2

where c, the mean number of neutron secondaries per collision, is a con-

stant. We wish to apply this equation to the bare cylindrical geometry

shown in Fig. 1. In Fig. 1 we have represented the position r' by the

cylindrical coordinates (t, a, z) and have located r at (r, o, o). We

observe from Fig. 1 that

2 2 2 2 2 2
r r = x +z = r + +z = r+t .2rtcos(a)+z 2 (3.2)

Expressing the volume integral over r' in cylindrical coordinates,

Eq. (3.1) becomes

C 2r cexp[- x2+z] dz, ( 3)
p(r) = c tp(t)dt d x2  dz, (3.5)

where R represents the radius of the outer boundary and the limits on

z correspond to the axially infinite cylinder.

The integral over z is reduced by first defining I as
z

2 fexp [-xl+(z/x)2] dz. (3.4a)
z - J I+ (z/ x)

Then I can be written as
z

2 ( dz
I - z ex u +(z/x)z7 du. (5.Lb)
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Iz
II

I r
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Figure 1. - One region cyl-
indrical geometry.
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Substituting v= z/x, Eq. (3.4b) becomes

I z2 1 f exp [-u- V]dv. (3.4c)

Now by defining t' = /T +V 2 , we can express Eq. (3.4c) as

I du e t'dt (3.4d)

z x Jt ' -1

The second integral in Eq. (3.4d) corresponds to the Laplace transform

of F (t') = (t' -1)-1/2 , which is equal to Ko(u), modified Bessel

function of the second kind; therefore,

I 2 fKo(u)du. (3.4e)

x

Finally, we make the substitution, . = x/u, into Eq. (3.4e) obtaining

I = 2 JK(x/A) d. (3.4f)

Substitution of Eq. (3.4f) into Eq. (3.3) and expressing x as in

Eq. (3.2) results in

R 2r 1

p(r) = ftp(t)dt f da Ko +t rtcos (5)

The integral over a in Eq. (3.5) is performed by applying the addition

theorem for the modified Bessel function of the second kind; namely,

S+t -2rtcos(a) ein Kn(r/)In(t/u), r t.6a)
0 K (t/4)I (r/4), r _t-

and noting that

Seinda 2, n =O0O, nO. (3.6b)
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The result of this procedure is an integral equation for the neutron

density distribution With integrals over the radial variable, t, and

the transformed variable, p.

p(r) = c o(r/)Io(t/)t(tdt

R

+ fKo(t/p)Io(r/p)tp(t)dt (3-7)

3.2 The Pseudo Neutron Distribution Function

Adopting the nomenclature of Mitsis,2 we define the kernel appearing

in Eq. (3.7) as a pseudo neutron distribution function, 1(r,p), related

to the neutron density such that

1

p(r) - (rp) d., (3.8)
o

where

(r,4) = c oK o(r/p)Io(t/)tp(t)dt

R

+ K (t/4)I (r/)tp(t)d t] (3.9)
r

Next, we wish to show that (r, ) obeys an integrodifferential equation

made up of first and second derivative terms. In taking the first

derivative, we use the relations:

K'(z) = -Kl(z);I'(z) = Il(z).

Use of Leibnitz's Rule and the above relations yields the first derivative

of J(r,4) with respect to r as
R

c Kl(r/p)Io(t/4)tp(t)dt + Ko (t/)I 1(r/4)tp(t)dt (3.10a)
br = r



19

The second derivative is found by continuing the above procedure and

using the additional relations:

1 1
I'(z) = Io(z) - Il(z);K'(z) = -Ko(z) - Kl(z);

and the Wronskianl2 for the modified Bessel functions:

Ko(z)Il(z) +Kl(z)Io(z) = 1/z.

Use of the above relations yields the second derivative of (r,4) as

b 2 (r,) = - o ( r / p) + Kl(r/p Io(t/p)tp(t)dt

+ 7 K (t/)o(r/) - I(r/) tp(t)dt

- cp(r). (3..10b)

Now substituting from Eqs. (3.9), (3.10a) and (3.10b), we form the

equation:

b 2 (r,) +1 b (r,p) 1
br r br -

0[Ko(r/p) +r Kl(r/k) I (t/ 1
)tp(t)dt +

K (t/) o(r/ ) - Il(r/A) t (t)dt - c (r) +

rR-2 K )otpdt 1(r/pltp(t)dt

C [oKo(r/p)Io(t/p)tp(t)dt +JKo(t/)Io(r/)tp(t)dt] (3.10c)

Canceling like terms on the right hand side of Eq. (3.10c) and substi-

tuting Eq. (3.8) for p(r) we obtain
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1
+ 21 r,C) +1Q(r,p) 1 2 (r, ) f (r, ') (sld)

br 2 r br 2

Having shown the integro-differential equation that (r,p) obeys, now

we need to establish the boundary conditions satisfied by (rp).

Inspection of (r,P) as defined in Eq. (3.9) at the core centerline,

r = o, with the consideration that Io(0) = 1 and that the limit of

t Ko(t/p) = o as t -o, establishes the boundary condition:

S(o,p) finite. (3.11a)

The outer boundary condition is constructed by first substituting r = R

into Eq. (3.9) to determine (R,) as

(R,p) = c jKo(R/)Io(t/p)tp(t)dt. (3.11b)

Next, substituting r = R into Eq. (3.10a) yields for the first deriva-

tive term

R

r I r=R - iKl(R/)Io(t/)tp(t )dt. (3.11c)

Inspection of Eqs. (3.11b and c) as combined below establishes the

outer boundary condition as

K (R/4) r, + (R/p) (R,.p) = 0. (3.11d)
0 b I r=R

3.3 Singular Eigenfunction Expansion and Solution

In developing the eigenfunctions, we assume a solution of Eq. (3.10d)

of the form

I (rp) = R (r)M (P). (3.12)
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Substitution of Eq. (3.12) into Eq. (3.10d) and using 1/v2 as the

separation constant yields

d2R(r) 1 dR (r) 1
dr + - R (r) = 0 (3.13)

dr r dr v R

and 1

( - (P = c . d)'. (3.14)

The general solution of Eq. (3.13) is

R (r) = xI (r/v) +BKo(r/v). (3.15)

To find the eigenfunctions and eigenvalues of Eq. (3.14), we first

normalize by setting

1 M (P )

f 2-" d4 ' = 1 (3.16)
o0

after which we have

(V2 - 2)M (j) = cv2 ,o - 4 1 (5.17)

Here we find it convenient to make the definition

V() = M ()/p2, (3.18)

where we call T(p) our pseudo eigenfunction. Substitution of Eq. (3.18)

into Eq. (3.17) yields one discrete solution as

T0(d -: 2 , v~[O,1] (3.19)

where vo is obtained from the dispersion function, Eq. (2.13). For

ve[O,1], a continuum of solutions is obtained as

1(J) = cP - 2 + k(v)5(v -_) (3.20)
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where P denotes that the Cauchy principal value is taken for integrals

involving )(4p), and %(v) is the function of Casel given by Eq. (2.15).

When Mitsis2 introduced these pseudo eigenfunctions, he initially

considered both positive and negative ranges on the eigenvalues, and

then observed that the pseudo eigenfunctions are related to the plane

geometry eigenfunctions of Case, Eqs. (2.12) and (2.14), in the following

manner:

4o) CPO () + P.- (4

and

%(L) C =(P () +CP-(pL4.

Mitsis went on to complete his bare core solution in terms of the plane

geometry eigenfunctions. Therefore, the Mitsis solution depends on

half-range plane geometry eigenfunction completeness theory which

involves the calculation of X-functions. Here we take advantage of

the evenness of the pseudo eigenfunctions and the dispersion function

to consider only those eigenvalues in the positive half range. In

Appendix B we prove a full-range completeness theorem for the pseudo

eigenfunctions and show its easy extension to the half range. This

procedure provides a basis for developing the solution entirely in

terms of the pseudo eigenfunctions. In addition to the theoretical

consistency of the present approach, the resulting solution provides

a simpler sequence for obtaining numerical results than the approach

taken by Mitsis. The numerical results from both approaches are

equivalent. Furthermore, the proof of completeness for the pseudo

eigenfunctions involves orthogonality and normalization relations

developed in Appendix A which are very useful in obtaining the solution
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for the two-region problem. Efforts to obtain a two-region solution

with the Mitsis approach, that is, using the plane geometry eigen-

functions, were unsuccessful.

Proceeding with the bare core solution, the general solution for

(r,p) is obtained by substituting Eqs. (3.15), (3.19) and (3.20) into

Eq. (3.12) yielding

0 r : R (r,p) = [aoI 0 (r/vo) +b 0oK(r/v)1 2 10GP)

0 P 1
1

+ f[A(v)Io(r/v) +B(v)Ko(r/v)] 2  (~)dv. (3.21)

For a critical system, c, the mean number of neutron secondaries

per collision, must be greater than unity. In this instance, v0 as

given by Eq. (2.13) will be purely imaginary. Thus, in Eq. (3.21),

Io(r/vo) becomes Jo(r/lvol) and K(r/vo) is equal to i[Jo(r/ vo) +

iY(r/jo )]. With the singular nature of Yo(r/lvol) and Ko(r/v) at

r = o, bo and B(v) must be zero to satisfy the boundary condition,

Eq. (3.11a). Eq. (3.21) for the pseudo distribution function is now

rewritten as

1

S(r,p) = aoJ0 (r/ ) ( ) 2 0) . (V)Io(r/v)L2% ()d. (3.22)

The next step in the solution is to substitute (r,4) as defined

in Eq. (3.22) into the outer boundary condition, Eq. (3.11d), yielding

1 KI(R/ 1 )J°(R/v°1) - Ko(R/.)Jl(R/Iv)I 1 a 2 ]( )

K1 (R/p)Io(R/v) Ko(R/)I 1 (R/vj)
+ + KA(v)p 2 ()dv = 0. (3.23)
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Multiplying Eq. (3.23) by R/ 
2 , we obtain

KI(R/p)J 0(R/Iv
° )

- K°(R/4)J1 (R/Iv ) Rao% ( )

1

+A(v)q(v,4)P.] ()dv = 0, (.24)

where

q(v,h) = -K 1 (R/ p)Io(R/v) + -RK(R/ )I 1 (R/v).

At this point we wish to separate Eq. (3.24) into singular and

nonsingular parts. This is effected by defining the function:

H(v,p) = - 1(R q(vp) -1 (5.25a)

or

H(v,) - -- Kl(R/.)Io(R/p) +R KO(R/t)Io(R/) I(R/) - 1 (3.25b)

Considering the behavior of the modified Bessel functions as shown in Fig.

2 and the asymptotic expressions, Eqs. (5.10) and (5.11), pg. 55, it can

be seen that H(v,p) is a bounded function. This procedure closely parallels

the work of Mitsis.2 However, the function of Mitsis which corresponds to

H(v,p) is unbounded. The reformulation of H(v,4) as presented here is sug-

gested in the general solution of Gibbs4 for arbitrary convex bodies.

Since v and p range over the same values, it can be shown with

the use of the Wronskian that H(v,p), as defined in Eq. (3.25b), is

indeterminate. Use of L'Hospital's rule yields H(v,v) as

H(v,v) = Ko(R/v ) 1 (R/v)/I (R/v) -I(R/v) (3.25c)

which is also a bounded function.
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Figure 2. - Modified Bessel functions.
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Next we rewrite Eq. (3.25a) as

I (R/v)
q(v,p) = i 0 (R/) 1 + (v-p)H(v,,p) (3.25d)

and substitute for q(v,p) in Eq. (3.24) obtaining

1 1 (R/v)

A(v) Io(R/p) 1 + (v - p)H(v,p)V (pl)dv
o o

KI(R/p)Jo(R/ vo ) Ko(R/p)JI(R/vo )
= - K(R/)J(R/ )- IRaolo(4). (3.26a)

Now returning to the pseudo eigenfunction as defined in Eq. (3.20) we

note that

(3.26b)

Using this observation, multiplying through by Io(R/p), and transposing

terms, we complete the separation of Eq. (3.26a) into singular and non-

singular parts as

1
A' (v)+ ()dv = -'(4) (3.27a)

where

Ko(R/ lJl(R/oL)

- Rao o

- cfA' (v)H(v , ) 2 du (3.27b)

and A'(v) = A(v)Io(R/v). (3.27c)



27

The discrete expansion coefficient, a0 , is chosen to correspond to

some arbitrary power level and is thereby set equal to unity. The remain-

ing problem is to find a solution for the continuum expansion coefficient,

A'(v). Eq. (3.27a) does not provide a closed form solution for A'(v)

because of the nondegenerate Fredholm term appearing in the definition

of '(4). However, an iterative solution for A'(v) can be constructed,

provided that a free expression for A'(v) can be found. Now Eq. (3.27a)

is the equivalent half-range form of Eq. (B.2a) in the proof of complete-

ness for the pseudo eigenfunctions. Therefore, the desired free ekpres-

sion for A'(v) corresponds to Eq. (B.15) which we write as

1

A'() = lQN-(~7)' ()d (5.28)

where N(v) is the normalization function for the continuum eigenfunctions,

Eq. (A.31). The criticality condition is the auxiliary condition Eq.

(B.11a) in the completeness proof, expressed over the half range as

1

cf2 +I12o d12 = 0. (3.29)
0 101

Eqs. (3.27a, b, c), (3.28), and (3.29) form the solution for the

bare critical cylinder. Successive approximations are constructed by

the following scheme:

Ao (p) = 0 (3.30a)

S0Ko (R/)J1 (R/ Vo ) Kl(R/4)Jo(R/jvo I) 1°() = 1 (R/p)R (O ) I.I 4 (3.3Ob)
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SA' (v)H(v,p)v(
n' (P) = '(4) -c dv (3.30d)n+1 o v +

c + IV dp = o. (3.30e)

The critical core radius is found by conducting a radius search to

satisfy the criticality condition, Eq. (3.30e), for a convergent itera-

tive sequence for A'(v), Eqs. (3.30a through 3.30d). After the critical

radius and converged expansion coefficients are obtained, the neutron

density distribution can be calculated as

1

p(r) = aJo(r/lv) + A'(v)dv, (3.31)

which we have obtained by operating on Eq. (3.22) as in Eq. (3.8),

substituting A'(v) from Eq. (3.27c), and using the normalization, Eq.

(3.16). Numerical results for the bare critical cylinder are presented

in Chapter V.



CHAPTER IV

SOLUTION FOR THE REFLECTED CRITICAL CYLINDER

4.1 Formulation of the Equations

The solution for the two-region problem generally follows that of

the one-region problem. However, here we have the added complexity of

an intermediate boundary separating the core region C1 > 1, and the

reflector region, C2 < 1. We begin by rewriting Eq. (2.29), the mono-

energetic integral transport equation describing the neutron density

in an isotropically scattering medium as

p(r) = _ r  -r ' l  d3r (4.1)

where c(r') denotes the mean number of neutron secondaries per collision

and distances are measured in mean free paths. By assuming a constant

neutron mean free path throughout, we are able to apply this equation to

the two region cylindrical geometry shown in Fig. 3. In Fig. 3 we have

represented r' by the cylindrical coordinates (t, a, z) and have located

r at (r,.o, o). We observe from Fig. 3 that

2 2 2 2 2  2
r -- ' = x +z = r +t -2rtcos(a) +z

Expressing the volume integral over r' in the cylindrical coordinates,

Eq. (4.1) becomes

R2  2t o expx 2 +z"
p(r) = c(t)tp(t)dt expx 2 +  d

z  (4.2)
0 0 -00
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Figure 3. - Two region cylindrical
geometry.
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where c(t) = C1, 0 - t - R1; c(t) = C2 , R1  t - R2, and the limits on

z correspond to.the axially infinite cylinder.

The integral over z in Eq. (4.2) is reduced in the same manner

as in Chapter III, Eqs. (3.4a through 3.4f). Under this procedure

Eq. (4.2) becomes

R 2+ 1

p(r) = c(t)tp(t)t)dtf dfKo (4.3)
2ro oI 0

The integral over a in Eq. (4.5) is performed by applying the addition

theorem for the modified Bessel function of the second kind,

( ) eia K n(r/p)I n (t /p ) r t
Ko  e K (t/ P)I (r/p) r _ t

and noting that 2n

Seina d 2 , n =0
= 0, n$O

The result of this procedure is an integral equation for the neutron

density in each region given by

1 r

Pl(r) = Cl Ko(r/4)Io(t/p)tp(t)dt

o -r GR1
1

+ C1  K(t/)I(r/p)tp(t)dt

+ C2 Ko (t/ (r/p)tp(t)dt (4 .4a)
RI
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p2(r) = K1 {/K(r/p)Io(t/p)tp(t)dt

R1 _r =R2

+ C2 RK 0(r/4)I (t/P)tp(t)dt + C2 Ko(t/)Io(r/)tp(t)dt.
1 

(4.4b)

4.2 The Pseudo Neutron Distribution Functions

As in the bare core solution, we again adopt the nomenclature

of Mitsis 2 by defining the kernels appearing in Eqs. (4.4a & b) as

pseudo neutron distribution functions related to the neutron densities

such that 1

pl(r) = o , (4.5a)

and

p2(r) = , (4.5b)

where
r

l(r,) = C1 oKo(r/p)Io(t/4)tp(t)dt

o 5 r 5 R1

+ C1 f Ko(t/4)Io(r/p)tp(t)dt

+ C2  Ko o(t/) (r/4)tp(t)dt, (4.6a)

and

2(r,4) = C1 lKo(r/4)Io(t/4)tp(t)dt

R 1 <r <_R2  r

+ C2  Ko(r/)Io(t/ (t)dt

+ C2 K o(t/I)Io(r/4)tp(t)dt. (4.6b)
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Next we wish to show that both l(r,,p) and 2(rp) obey the same

integro-differential equation, Eq. (3.10d), obeyed by the pseudo neutron

distribution function in the bare core solution. Toward this end we

take the first derivative of Il(r,p) and 2 (r,4) by using the relations

K'(z) = -Kl(z) and I'(z) = Il(z), and Leibnitz's rule to obtain
0 0

b Cj(r,P) C or7rr) - fK l(r/p)Io(t/p)tp(t)dt

+- KO i (r/p)tp(t)dt

R+ - Ko(t/)Il(r/)tp(t)dt, (4.7a)

and

) C- Kl(r/p)I (t/)tp(t)dt

r

- - / Kl(r/p)Io(t/p)tp(t)dt

+ -- Ko (t/p)I1 (r/p)tp(t)dt. (4.7b)

We find the second derivatives by continuing the above procedure,

using the additional relations

1 1
I(z) = Io(z) - z 1(z), K(z) = - Ko(z) - - K (z)

and applying the Wronskin for the modified Bessel functions

Ko(Z)I(z) + Kl(z)Io(z) = 1/z

to obtain
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r

b2(r,) C Ko(r/)+ Kl(r) (t/l )t(t)dt

Ko(t/ o(r/p)- E Il(r/p) tp(t)dt

2

+2 C f2 Ko(t/)[ (r/) - E Il(r/p )tp(t)dt -Cl1 l(r)

1 (4.8a)

and

b2 2(r,) [Ko(r/) + K(r/p) o(t/)t(t)dt

r
C+ [Ko(r/p) +.R Kl(r/p)]lo(t/4)tp(t)dt

+ 2 K (t/) (r/p) - I(r/p)]tp(t)dt -C 2 2 (r)

(4.8b)

Now substituting from Eqs. (4.6a), (4 .7a), and (4 .8a), we form the

equation

b2 §(r,p) 1 b (r,p) 1
S + r rr(r)

r R
C1 Ko(r/4 ) + Kl(r/)] lo (t/K)t (t)dt + Ko(t/P) lo(r/4)

I, (r/L .)]tp(t)dt + : Ko(t/.)[Io(r/p) -L I1(r/4)]tp(t)dt
r R

- 01p (r) - (r/p)I(t/)t(t)dt +K(/ (r/)t(t)dt

+ r K(t/P)I (r/p)tp(t)dt -  2 Ko(r/p)Io(t/)t(t)dt

1
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C1
- -/ Ko(t/p)Io(r/)tp (t)d t

-12

C2  Ko(t/4)Io(r/p)tp(t)dt. (4.9a)

-7 RC1

Upon cancellation of like terms in the right hand side of Eq. (4.9a)

and the substitution of Eq. (4-.5a) for Pl(r), Eq. (4.9a) becomes

1

b2%1(r() i bCl(r,~) ) d,)
br2  + r r - (r' ) = -Cl d ' Q cl ,

(4.9b)

which is identical in form to Eq. (3.10d). Now substituting from

Eqs. (4.6b), (4.7b), and (4.8b), we form the equation

b22(r.p) 1 b 2 (r,p) 1

br2  r br ~- 2 (r,p)

= 1lI K (r/)+ l± ~ (r/±) /loU(t)u +t. - K(r/p)

-+ KK (r) lo(t/i)tp(t)dt + 2Kot/ o(r/P)

S Kl(r/ I~)o(t/(t)t ~ Ko(r/)I(t/)tp(t) dt
1

R2
- Ko(t/) o(r/ )tp(t)dt. (4.10a)

r r
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Upon cancellation of like terms in the right hand side of Eq. (4.10a)

and the substitution of Eq. (4.5b) for P2 (r), Eq. (4.10a) becomes

b22(rp) 1 b2(r) 12(r')
br 2  + r r , = - ° , ' ,
br r b - df P12, (4.10b)

which is identical in form to Eqs. (4.9b) and (3.10d).

Having established that 1 (r,p) and 2 (r,ji) obey the same integro-

differential equation that arises for f(r,p) in the bare core solution,

we now wish to determine the boundary conditions satisfied by fl(r,p)

and f2 (r,p). Inspection of f1 (r,p) as defined in Eq. (4.6a) at the

core centerline, r =0, with the consideration that Io(0) =1, and that

the limit of tKo(t/p) =0 as t - O, establishes the boundary condition:

l1(0,0) finite. (4.11)

Next we evaluate fl(r,p) and §2 (r,p) as defined in Eqs. (4.6a,b)

at the core-reflector interface, r=R 1, obtaining

R,) = C K o(Rl/)Io(t/p)tp(t)dt +C2 K(t/)Io(Rl/p)tp(t)dt,

(4.12a)

and R R

2(R14) = C1  cK (R/P)o(t/p)tp(t) d t +C2  Ko(t/)Io(Rl/)tp(t)dt.

(4.12b)

Comparison of Eqs. (4.12 a and b) yields one interface boundary condition as

R13 = 2(R1,p)- (4.13)
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A second interface boundary condition is established by evaluating

the first derivative terms, Eqs. (4.7a and b) at r=R 1 , obtaining

bl(r,)p) - C- L I  Kl(Rl/0 (t/P)tp(t)dt +Cz Ko(t/)I1(Rl/p)tp(t)dt

r =R 1  (4.14a)

and

b 2 (r.) I= - CL/ K(Rl/p)Io(t/p)tp(t)dt + i1 2 K (t/)Ii(R1/p)tp(t)dt

r =R 1  1 (4.14b)

Comparison of Eqs. (4.14a & b) yields the second interface boundary

condition as

br (4.15)

r =R1  r =R1

It is interesting to note that the result of operating on boundary

condition (4.13) by Eqs. (4.5a, b), thereby converting to the neutron

density, is the familiar continuity of scalar flux across the interface

boundary which is used in neutron diffusion theory solutions. The

result of performing the same operation on boundary condition (4.15)

is equivalent to the continuity of the neutron current. This equiva-

lence is dependent on identical diffusion coefficients in each region

which holds here due to the identical total cross sections and iso-

tropic scattering in the postulated two-region model.

A fourth boundary condition is sought at the outer reflector

boundary, r=R2 . First we evaluate 2 (r,p), Eq. (4.6b), and its first

derivative, Eq. (4.7b), at the outer boundary, obtaining
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(R2,) = C1 Ko(R 2 /)Io(t/P)tp(t)dt +C2  Ko(R2/)Io(t/)tp (t)dt ,

1 (4.16a)

and R R
2 I Kl(R2 oI (t/)tp(t)dt --Ca R2 Kl(R 2 /)Io(t/p)tp(t)dt.(r r-L =

r =R21 (4.16b)

Inspection of Eqs. (4.16a,b) as combined below establishes the outer

boundary condition as

K (R /) b2(rP) + KI(R ) (R = 0, (4.17)

r = R2

which corresponds to Eq. (3.11d) in the bare core solution.

In summary, we have developed two pseudo neutron distribution

functions given by Eqs. (4.6a,b) and have shown that they obey the

same integro-differential equation, Eqs. (4.9b), (4.0lb). Also we

have established four boundary conditions, Eqs. (4.11), (4.13), (4.15),

(4.17), satisfied by the pseudo neutron distribution functions.

4.3 Singular Eigenfunction Expansion and Solution

Since it was shown in the previous section that both l(r,4)

and 2 (r,4) obey integro-differential equations of the same form as

Eq. (3.10d) in the bare core solution, the general solution for

l(r,p) and 2 (r,4) corresponds to the form of Eq. 
(3.21) which we

write here as

£(rp) = [(of o(r/vo) + PoKo(r/Vod ] 2 o (4)

2=1,2 1

+.faIo(r/v) + Ko(r/v)] 42 LV()dv (4.18)
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where oe () and (p) are given by Eqs. (3.19) and (3.20), respectively.

Two additional aspects of the bare core solution are present here for the

pseudo neutron distribution function in the core region. One is that Vol

will again be imaginary, giving rise to regular Bessel functions, and the

second is that the centerline boundary condition, Eq. (4.11), is identical

to the bare core centerline boundary condition, Eq. (3.11a). Therefore,

Eq. (4.18) for 1 (r,p) reduces to the form of Eq. (3.22) which we write

here as
1

b(r,) = boJ(r/Jvol 01) 2 01 + B(v)Io(r/v)4 2 lv()dv (4.19)

Adopting more specific symbols for the coefficients in the reflector

region, we write Eq. (4.18) for 2 (r,4) as

2(r,4) = [ao o(r/vo2)+ doKo(r/o21P 2(4)

+ [A(v)Io(r/v) +D(v)Ko(r/v)] 2 2I() dv. (4.20)

The coefficients in Eqs. (4.19) and (4.20) will be obtained from

the following iterative procedure:

1. B(v) is initially taken to be zero.

2. b is an arbitrary constant corresponding

indirectly to the power level which we set

equal to unity.

At the core-reflector interface we obtain

3. ao as a function of discrete terms and B(v).

4. d as a function of discrete terms, a , and B(v).

5. D(v) as a function of discrete terms and B(v).
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At the outer boundary we obtain

6. an inner iterative sequence for A(v) depending

on ao , d, and D(v). This sequence provides

the criticality condition.

At the core-reflector interface we obtain

7. B(v) as a function of a , d, A(v), and D(v),

completing the iterative sequence.

To effect steps 3 through 7 of the iterative solution, extensive

use will be made of the orthogonality and normalization relations for

the pseudo eigenfunctions developed in Appendix A. Another useful

equation which relates the continuum eigenfunctions in different

regions is written as

C. C. -C.
J(L) =i C, i 4() + -I ( -4). (4.21a)

1 1

To verify Eq. (4.21a), we substitute Eq. (3.20) for 7.v(4) obtaining

7].(L) = C P + 1-C.P V di 8(v-p)

C.

+ (v-P) - 0 5(v-) (4.21b)
1

where we have substituted Eq. (2.15) for Mi(v). Canceling the like

terms on the right hand side of Eq. (4.21b) we have

]j(~) = CjP V2 + X(v)5(v-~), (4.21c)

which establishes Eq. (4.21a).
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Proceeding with the solution, we substitute Eqs. (4.19) and (4.20)

into the interface boundary condition Eq. (4.13), obtaining

1

bo o(R1/ Vo I ) 2 ol(0 ) + o B (v)Io (R1/ 1 2 1V(p )dv

= o o(R/V o2)d oKo(Rl/ o2)] 2 02 %(4

1

+ [A(v)I(R1/v) +D(v)K (R1/ )] 2 Y()d. (4.22)

Next we operate on Eq. (4.22) with the integral of Io2(L) over p

to yield

1

b Jo(R1/ 11 )ol 2 o ()o2 (p)dP

1 1

+ dvB(v)Io(R1/V )  ( C) C1 +(-) 2 (4)o2i~(

O 0

1

= oo(Rl/o 2 ) +doKo(R1/ o 2 o2)2(

1 1

+ fdv[A(v)ol(R1/v) +D(, (R/ o2r2, o2(4)dy, (4.23)

where we have substituted Eq. (4.21a) for T(V(). Now we apply the

orthogonality and normalization relations, Eqs. (A.6), (A.7) and

(A.12), to reduce Eq. (4.23) to the form:

1

boJo(R1/l l I)Nol2 + (v)B(v)I(RI/V)( C C 2 2o2(v)

= [aIo (Rl/ o02 )+ doKo(R 1/o2)] No2 . (4.24)
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At this point we accomplish step 4 of the iterative procedure by solving

Eq. (4.24) for do in terms of the other variables, resulting in
0

do K= (R//I )No [boJo (R1/ 11 )No12 - o (R/ 2)No2

1

+jdVB(v) Io(R1 C VCC % 2(01- .(4.25)

To obtain another equation so as to isolate ao, we turn to the second

interface boundary condition Eq. (4.15) and substitute Eqs. (4.19)

and (4.20), obtaining

1

l (Rl/ (Vo2) " d -- Kl(R/V 2 )]P2 %2(4)

1

+ Il( ) (R1/v) - Kl(Rl/vI 2 1.(4)dv. (4.26)

Next we operate on Eq. (4.26) with the integral of o2(4) over p to

yield

1
-b
+VT J1(Rl/ 1 l / 01 ) 2 o)l(4)dy

1

1 I (R1 o2 ) K 1K 1 2o2) 2 o2 )2= To(0o () d-,

1 1

+ dv A~v) 11 (R1/v) /- f(R1 o2(4)d (4.27)
0 0
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where we have substituted Eq. (4.21a) for yv(p). Now we apply the

orthogonality and normalization relations, Eqs. (A.6), (A.7), and (A.12),

to reduce Eq. (4.27) to the form:

1
-b (0 2

I (/IV I)N +fdv !VA

= 1 (R/ 02  K1(R/vo2 )]No2. (4.28)

Now, with Eqs. (4.24) and (4.28), we algebraically eliminate do and,

after substituting the Wronskian for the modified Bessel functions,

obtain the equation for a required in step 3 as

a = R o(RV/I v ))Ki(R /V,2) - J,(R, /I I)K(R/v N 12
o Nk2 o Voa 01 ol2

1

+ (C-P CI dB(.) l ( R / v) K, (R/v , ) + I,(R,/v)K (R,/v 2)) 2 o2

C 2 /JfL V0 2  V JV fl 0 (v)

(4.29)

To develop the equation for D(v) as required in step 5, we return

to Eq. (4.22), operate with the integral of V s(4) over 4, and thereby

obtain

1

1 1

+ /dvB(v)Io(Rl/V) / 2 IV 2- IV, (4) + CC) 6(v'-4) d

= 0[aI(R /vo2 , + .0K0R/2. o 2 I )

1

+ ol ( 02 o o(R/ /2 "2( 2)T' (4)(

+odv A(v)Io(Rl/v) + D(v)Ko(RI/ 2 I2V() , (4)dy (4.30)
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where on the left hand side we have substituted Eq. (4.21a) for 2,(p).

Now we apply the orthogonality and normalization relations, Eqs. (A.6) and

(A.21), to reduce Eq. (4.30) to the form:

bJ(R/lv I)(o C1 C) v211 l(v') + B(v')1 0 (R1 /v') - N(V)

1

+ JdvB(v)I(R/V)(1 C C 2 Iv

= [A(v')Io(R/v ) + D(v')Ko(R1/Vj1N2 (v'). (4.31)

Now returning to Eq. (4.26), we again operate with the integral of

2,(p) over p to obtain

b1 J1RI/ 01i) f 2 (1) I,(P) + (v' -4) d.

1 1

o B v) 11 )v l l (C- d-
d I 1

1 1

+Rv D(L) Kl(R-., 2,2 2, (4)dl, (4.52)

where on the left hand side we have substituted Eq. (4 .21a) for

12v' (p). Now we apply the orthogonality and normalization relations,

Eqs. (A.6) and (A.21) to reduce Eq. (4.32) to the form:
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/ (Rl/ 01 C C ,o') B (') I1(R1/v' ) ? (,

+ v B() Il(R1 (C I- CC,2

F (R/v D(') K1(R1/V'] N2 (v'). (4.33)

Now, with Eqs. (4.31) and (4.33) we algebraically eliminate A(v) and,

after substituting the Wronskian for the modified Bessel functions,

obtain the equation for D(v) required in step 5 as

D(') = b)(R,, v )I(R/v')

Substituting Eq. (5.20) for ,(v') in Eq. (4.4) and evaluating the

delta function leaves the indeterminate form

D v (-01W v v

The function is evaluated by L'Hospital's rule to be

F(v,v) = [Io(R/)o(R/v - I(R/)I (R . (4.6)
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To accomplish step 6 of the iterative procedure, we turn to the

outer boundary condition, Eq. (4.17), and substitute Eq. (4.20) along

with its derivative for the pseudo neutron distribution function in

the reflector to obtain

K,(R2/4)I,(R 2/v,) + K,(R2/p)Ia(R/va)} ao 2
2 ()

Ci ~4 V 0 2

1

+ K(R2/j)I,(R2/v) + K, (R2/)I,(R,/) A(v)42 T()d

1

+oK,(R,/)Ko(R/v)- K,(R,/f)K,(R/v) D(o) v22l()dv = 0. (4.56)

Separation of Eq. (4.56) into singular and nonsingular parts follows

directly as in Eqs. (3.23) through (3.27c) in the bare core solution.

The result of this procedure on Eq. (4.36) is

1

A'(v)lv(4)dv = '(4), (4.37)

where

,'(-) = -R 2 1o(R 2/ ~)[K,(R,/4)I (R2/vno)+ K+ (R,/a)I(Rp/vp) a

+ K(R 2 /4)K,(R/v n ) - K0 (R,/p)K (R,/v,2)] d 2 ()

± K (R/p)K-(R2/v) KO(R2/t)K,(R./v) D( )v

1

- C2 fA'(v)vH(v'4) dv,
2 0 V +P
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A'(v) = A(v)Io(R/v), and H(v,p) is defined in Eq. (3.25b). To demon-

strate that '(p) is indeed nonsingular, we further reduce the integral

containing D(v) by substituting Eq. (3.20) for J(2() and immediately

evaluate the delta function to obtain

1

[IK,(R2/p)K,(R/v) K,(R,/4)KI(R,/v) D ()C 2

JV V - d

Next we extract the indeterminate portion of the above integral and

define it as

1 KI (R2/4)Kn(R,/v) Kn(R/)K (R2 /p)] (438)
F(vp)= -~----n. - )] . (4.58)

Finally, we apply L'Hospital's rule to Eq. (4.38) for F(v,4) to obtain

F(v,v) = [K(R 2/v)K(R 2/v) - Ko(R2/v)Ko(R2/)]. (49)

With the above demonstration and recalling that H(v,v), Eq. (3.25c),

is a bounded finite function, we have successfully demonstrated that

'(p), as defined above, is a nonsingular function.

Now the inner iterative sequence for A'(v) required in step 6

can be constructed in a manner closely analogous to that of the bare

core solution, Eqs. (3.27a) through (3.29). The associated discussion

concerning the completeness theorem proof giving rise to a free expres-

sion for A'(v) and the criticality condition carries over directly.

Successive approximations for A'(v) are constructed by the following

iteration scheme:

A'(v) = 0 (4.40a)



) = (R K,(R2/P)I(R/v,2) + K, (R,/p)I,(R,/v) a (p)

V 2 V02

1

1~ A -'v )  d v ( 4. 4 0d )

Eqs. (4 .40a) through (4.40d) represent the inner iterative sequence

for A'(v). The criticality condition, Eq. (4.40e), is checked after

convergence of the outer iterative sequence for ao, do, D(v) and B(v)

and after a simultaneous convergence of the inner iterative sequence for

A(v). Among the solutions for two-region problems, this solution is

unusual in that the criticality condition is developed at the outer

reflector boundary.

The remaining portion of the solution is to develop the equation

for B(v) as required in step 7. Toward this end, we return to Eq. (4.22)

and operate with the integral of l,(u) over 4 to obtain
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1 1 1

bJ o(R/1 1 2I ol( l 2 %1() ' (I)#P + dvB(v)Io(R1/v) f l2 1()l ()C

=a oo(R /V + d oKo(R/ o2 ) 2 IV, (2 +

(f 21V4) ((Cb)(Vs -) d4
+jdv[A(v)Io(R1/v) +D(v)Ko(R1 2 2l 6( 'GO+)

(4.41)

where we have substituted Eq. (4.21a) for hv,(L) on the right hand

side of Eq. (4.41). Now we apply the orthogonality and normalization

relations, Eqs. (A.6) and (A.21) to reduce Eq. (4.31) to the form:

B(v')Io(R1/v')N1(') = [aoo(R /vo2 ) +doKo(Rl/vo2 CC, )v'] 2 (v')

+ [A(v')Io(R1/') +D(v')Ko(R 1/v\) ]gJ N2V

+ f v[A(v)Io(R1/v) +D(v)K (R/V] C Ci 2 t 2  (v'). (4.42)

Rearrangement of Eq. (4.42) yields the required equation for B(v) as

B(v') = i(R/1)N(v') [a I (R1 /02) +dK(R1/V 2)] C 1 ) Vt 2 ( v)

+ [A(v')Io(R1 /v') +D(v')Ko(R 1 /v')]1 N2 (v')

+ d\ A(v)Io(R1/v) +D(v)Ko(R 1/ )] 2  2(V (4.43)

We note that the integral term in Eq. (4.43) leads to a singularity.

The numerical evaluation of such singular integrals is discussed in

Chapter V.
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Finally, we identify the various equations which appear in the

iterative solution for the two-region problem previously outlined.

1. B(v) is initially taken to be zero.

2. b is set equal to unity.

3. a from Eq. (4.29).

4. do from Eq. (4.25).

5. D(v) from Eq. (4.34).

6. Inner iterative sequence for A(v), Eqs. (4.40a)

through (4.40d), criticality condition Eq. (4.40e).

7. B(v) from Eq. (4.43).

Upon finding the critical core radius for given values of C1,

C2, and the reflector thickness, the expansion coefficients can be used

to calculate the neutron density distribution in each region from

the equations:

1

Pl(r) = bo J(r/v oll) + /B(v)Io(r/v)dv (4.45)

0-0o ;-r <R 1

1

p2 (r) = aoIo(r/vo2) + doKo(r/vo 2 ) + A'(v) +D(v)Ko(r/v)]dv,

R1 r R2  (4.46)

which we have obtained by operating on Eqs. (4.19) and (4.20) as indicated

in Eqs. (4 .5a and b) and applying the normalization of the pseudo

eigenfunctions as in Eq. (3.16).

This completes the solution for the radially reflected critical

cylinder. Numerical results are presented in Chapter V.



CHAPTER V

NUMERICAL METHODS AND RESULTS

5.1 Numerical Methods

In obtaining numerical results from the iterative solutions developed

in Chapters III and IV, various parameters, functions, and operations

appearing in the solutions were evaluated by the following methods:

1. The dispersion function for the discrete eigenvalues, which is

the transcendental equation, Eq. (2.13), was solved by Newton's

method.

2. The regular Bessel functions were calculated with a recurrence

relationship.

5. The modified Bessel functions were calculated with a series

expansion for the smaller arguments and by an asymptotic series

for the larger arguments.

4. Singular integrals were treated by subtracting out the

singularity, evaluating the resulting integral term by Gauss-

Legendre quadrature and evaluating the derivative term by

Lagrange interpolation.

5. Nonsingular integrals were evaluated by Gauss-Legendre

quadrature.

Although these methods are generally well-known, for completeness

we shall give a brief description of each method and make appropriate

references.

For c > 1 the discrete eigenvalue as given by Eq. (2.13) is purely

imaginary. The solutions developed in Chapters III and IV are formulated

in terms of the magnitude of this imaginary eigenvalue. Therefore, we
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use Newton's iteration scheme as

A(l li)
IIi+l = ivi - A(lIli) (5.1)

(i=0,1,2,i... )

where A(Ivl) = 1-cly tan- 1 (I/ Il)

and A'(jj) = clvl/(lvl2+) - tan-l(/l l)].

For c < 1 the discrete eigenvalue is real and we apply Newton's method as

A (vi)
v =v. - (5.2)i+l 1 A'(v.) '

(i=0, 1,2,...)

where A(v) = 1 - 2  -n2 VV/( -1)
and A'(v) = 2v/(v2-1) - In( .

Initial estimates for IvbI are taken from Fig. 4. The iterative sequences,

Eqs. (5.1) and (5.2), were run until the error in Ij I was less than 10 - 9 .

The recurrence relation used to calculate the regular Bessel

functions is taken from Goldstein and Thaler.15  The recurrence relation is

F (x) + F () () F (x). (53)n+l n-l x n

The desired Bessel function is

Sn (X) = F(x), (5.4)

M-2
where a = Fo(x) + 2 1 F2n(x) (5.5)

m=l

and M is initialized at Mo .

Mo is the greater of MA and MB where

MA = [x+6] if x < 5 (5.6a)
[1.4x + 60/x] if x > 5

and
MB = [n + x/4 + 2] (5.6b)
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7-

6-
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4-

E 2

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0
C

Figure 4. - Variation of the discrete eigenvalue for 0(<c < 2. (Mean number of second-
aries per collision).
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Sequential values FM_ 2, FM_, . ., F 2 , Fl, F O are evaluated using Eq.

(5.3) with FM = 0 and FM_ 1 = 10 - 3 0 . Values of a and J n(x) are then

computed using Eqs. (5.5) and (5.4), respectively. The computation is

repeated for M + 3 and the values of Jn(X) for M and M + 3 are compared.

If these values differ by less than 10 - 9 , the value of Jn(X) is accepted.

If the test fails, the computation is continued by adding 3 to M and

using this as a new value of M.

The methods for calculating the modified Bessel functions are

taken from Abramowitz and Stegun.12 For values of the argument less

than 8.5, we use the ascending series:

1 2  1 22 23
I (z) = 1 + Z ( z ) + (T z + (57)o . 2

and
1 2

K (z) = -[n(z) + I + (z)

+ (-+72) (722 + (l+-2 (z 2)3+ . . ., (5.8)
2 3

where y is Euler's constant. The first order modified Bessel functions

are calculated from the differentiated forms of Eqs. (5.7) and (5.8)

according to

II (z) = Io (z), (5.9a)

and K (z) = -Ko (z). (5.9b)

The expansions were carried out to thirty terms or until a major under

flow results from the calculation. For values of the argument greater

than 8.5, we use the asymptotic series
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ez + - (P-1) (P-9

In(Z) - z 21 (8z)2

- (p--9 (p -25) + (5.10)" 3.: (8z)3 3 (5.10)

and

N -z (P-1)(-9)
K(z) + 8 + 21 (8z)2

where I. = 4n2.  + (-1 (I -9 (1 -25 I (5.11)
3: (8z)3

The series were carried out to thirty-two terms.

Principal value integrals were treated by subtracting out the

singularity as shown in Metcalf and Zweifel,14
1 1

lP F(p1')d' [F(P') - F( )] d' + F(p) In , (5.12)

and approximating the principal value by

1 M F(P )-F(p.) W.dF()
p F(')d' W + 1 + F(4i)2n ,

PI =L ZPj-pi dp = i \ 1i / '

ji 
(5.13)

where the singularity is at pi and the W's and p's are the weight

factors and abscissas of Gauss-Legendre quadrature adjusted to the

half-range as shown below. The derivative term in Eq. (5.13) is

evaluated by Lagrange's differentiation formula:

M

F'(i) = k (pi)F( k) + RM(i), (5.14)
k=o

M M

where k P(i) =  (i-'n)
j=o n=o (5.15a)
jfk M

(Pi-Pk)(4i-j7 T (Pik-n)
n=o

nfk
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M M+
and R' ( i) =i (i-1.n) dF) (5.15b)

n=o dM+

Using M Gauss-Legendre quadrature points, the error in calculating

F'(Gi) by Eq. (5.14) is proportional to the (M+1-)th order derivative of

the function as shown by Eq. (5.15b). At the beginning of the computer

program, the coefficients 1k (pi) are calculated by Eq. (5.15a) and stored.

This procedure significantly simplifies the subsequent numerical evalu-

ation of the principal value integrals in the iterative solutions.

Nonsingular integrals were evaluated by Gauss-Legendre quadrature

over the half-range as

F (p) dp = 7 w . F(pi), (5.16)
o i=l

where Pi = (Xi + 1)/2,

and w = W./2,

X. and W. being the full-range Gauss-Legendre abscissas and weight
2. 1

factors listed in Abramowitz and Stegun. 1 2

5.2 Numerical Precision

The objective in seeking numerical results from the iterative

solutions of Chapters III and IV was to obtain critical dimensions

accurate to a minimum of six significant figures. Results of this high

precision can be used as input data for evaluating design analysis

programs as is demonstrated in Chapter VI. Therefore, the computer

programs used to obtain these results were written entirely in double

precision. The calculations were performed on IBM-7094-II and CDC-6600

computers. A minimum of twelve significant figures were carried in
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performing the calculations.

Where possible, comparisons were made between the results of methods

described in section 5.1 and tabulated values in the literature. The

discrete eigenvalues agreed with the seven-significant-figure values of

Kowalska.1 5 Sample values of the Bessel functions agreed with the

12
tabulated values in Abramowitz and Stegun to at least nine significant

figures.

The bare and reflected core calculations were done over Gauss-

Legendre quadratures of twenty-four and forty points respectively. The

variation of the critical core radius with the number of Gauss-Legendre

points is shown in Table I. It indicates that twenty-four Gauss-Legendre

points are sufficient for seven significant accuracy in the bare core

radii. The use of forty Gauss-Legendre points provides seven significant

figure accuracy for the large reflected cores and six significant figure

accuracy for the smaller configurations. This reflects the increasing

importance of the continuum contribution and its integrated quantities

in the solution for the smaller configurations.

At each trial value in the critical radii searches, the iterated

quantities in the solutions were converged to nine significant figures

before the criticality conditions were evaluated. The criticality

conditions, Eqs. (3.29) and (4.40e), were considered satisfied when

the value of the integral was less than 10-9 .

5.3 Bare Core Results

Critical radii calculated with the one-region cylinder solution of

Chapter III, along with results of other analytic solutions found in the

literature, are listed in Table II. Using the results of the present



TABLE I. -VARIATION OF CRITICAL CORE RADIUS WITH
THE NUMBER OF GAUSS-LEGENDRE QUADRATURE POINTS

Case Description Number of Gauss-Legendre Points

C1  c2 2  R2 - R1  8 24 40 96

1.02 Bare ---- 9.0432542 9.0432547 9.0432547 --------

2.0 Bare ---- .66862087 .66861281 .66861285 --------

1.1 0.9 10.0 2.795180 2.795122 2.795120 2.795120

1.4 .85 1.0 1.141910 1.141755 1.141750 1.141748



TABLE II. - CRITICAL RADII IN MEAN FREE PATHS FOR BARE CYLINDERS

17 18
c Present Carlson- Hendry Hembd

Solution Bell1 6  F3G8  IT4

1.02 9.043255 9.0433 ----- 9.04458

1.05 5.411288 5.4118 5.414 5.41152

1.1 3.577391 3.5783 ----- 3.57744

1.2 2.287209 2.2884 ----- 2.28724

1.4 1.396979 1.3973 ----- 1.39699

1.6 1.020839 1.0209 ----- 1.02085

1.8 0.807427 0.8067 ----- 0.80743

2.0 0.668613 0.6673 0.670 0.66862



60

work as reference values, we see that the values of Carlson and Belll
6 are

most accurate for the largest system (c = 1.02) and least accurate for

the smallest system (c = 2.0). Carlson and Bell used the extrapolated

endpoint method for the larger systems, R > 1.5. For the smaller systems,

they interpolated between values calculated with the extrapolated endpoint

and variational methods. The values of Hendry1 7 were obtained by Fourier

expansion of the neutron distribution function in one of the angular

variables and solution of the resulting equations using integration by

Gauss quadrature. The ITn method of Hembd 18 is based upon a Fourier

transformation of the integral equation. It appears to be particularly

effective, especially for the smaller systems. The reduced accuracy of

the IT method for the larger systems is recognized by the author.18
n

The neutron density or total flux was calculated from Eq. (3.31).

Table III lists the neutron density relative to the centerline value.

It is seen that the radial drop-off in the neutron density decreases

with a reduction in the size of the system. Figure 5 shows the neutron

density distribution for the smallest case, c = 2.0, calculated by the

method presented here and by various order discrete ordinate calculations.

The discrete ordinate calculations were performed with the TDSN program1 9

using a moment modified quadrature. The neutron density distribution

from the S16 calculation agrees very closely with the exact distribution.

However, the excess system multiplication calculated by discrete ordinates

indicates the increasing importance of the error in the neutron density

distribution as the discrete quadrature order is reduced.

The first term of the neutron density, Eq. (3.31), is the asymptotic

density arising from the discrete mode. The asymptotic density



TABLE III. - NEUTRON DENSITY AS A FUNCTION OF POSITION

c

1.02 1.05 1.1 1.2 1.4 1.6 1.8 2.0

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.25 0.9236 0.9299 0.9361 0.9433 0.9508 0.9550 0.9578 0.9598

0.50 0.7118 0.7340 0.7561 0.7819 0.8093 0.8248 0.8352 0.8426

0.75 0.4124 0.4522 0.4922 0.5399 0.5918 0.6218 0.6421 0.6570

0.85 0.2821 0.3267 0.3718 0.4263 0.4868 0.5223 0.5466 0.5644

0.91 0.2033 0.2492 0.2960 0.3535 0.4181 0.4566 0.4830 0.5026

0.95 0.1502 0.1958 0.2430 0.3016 0.3686 0.4088 0.4366 0.4572

0.98 0.1086 0.1531 0.1999 0.2589 0.3273 0.3688 0.3976 0.4190

1.0 0.0747 0.1179 0.1641 0.2233 0.2926 0.3351 0.3646 0.3867
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Exact (k = 1. 0000)
S 16 (k = 1. 0029)

1.05 - S (k = 1. 0086)
S4 (k = 1. 0093)

.95

.85

S.75

.65

.55

.45

.35 I I I I I
0 .2 .4 .6 .8 1.0

Fraction of radius, RIRO

Figure 5. - Neutron density
distribution (C = 2. 0).
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corresponds to the diffusion theory solution based on the exact diffusion

coefficient. Table IV lists the ratio of the asymptotic to total

neutron density as a function of position. The value of this ratio

at the outer boundary for the case c = 1.02 agrees with the corres-

ponding value for the Milne problem with c = 1.0. As anticipated,

the error in the asymptotic density is most severe on the boundary of

the smallest system.

5.4 Reflected Core Results

Critical core radii as a function of core and reflector multiplying

properties and reflector thickness are presented in Table V. We note

the anticipated increase in critical core radius with a decrease in

either reflector multiplication or reflector thickness.

The critical dimensions of two widely varying cases in Table V

were used in one-dimensional discrete-ordinates and diffusion theory

analyses. The results of these analyses are given in Table VI. The

discrete-ordinates calculations were performed with the TDSN program1 9

using a moment modified quadrature. For both types of calculations

it is seen that the variation of the effective multiplication factor

from critical is strongly dependent on the amount of neutron absorption

in the core. Thus it appears that in evaluating numerical methods by

comparison with exact analyses, one should include a realistic amount

of absorption in choosing the cross sections. A relatively high order

of angular quadrature is required for good discrete-ordinates analysis

of the small system. Diffusion theory is adequate for analyzing the

large system which more closely corresponds to power reactors.



TABLE IV. - ASYMPTOTIC RELATIVE TO TOTAL NEUTRON DENSITY

c

r
1.02 1.05 1.1 1.2 1.4 1.6 1.8 2.0

0.0 1.0000 1.0000 1.ooo4 1.0024 1.0087 1.0153 1.0214 1.0266

0.25 1.0000 1.0001 1.0006 1.0030 1.0102 1.0174 1.0239 1.0294

0.50 1.0000 1.0004 1.0018 1.0062 1.0164 1.0258 1.0337 1.0403

0.75 1.0006 1.0034 1.0092 1.0205 1.0391 1.0532 1.0641 1.0728

0.85 1.0033 1.0110 1.0226 1.o040o6 1.0652 1.0821 1.0946 1.1043

0.91 1.0109 1.0263 1.0443 1.0680 1.0965 1.1146 1.1277 1.1376

0.95 1.0294 1.0539 1.0773 1.1041 1.1335 1.1513 1.1639 1.1734

0.98 1.0775 1.1084 1.1326 1.1571 1.1824 1.1976 1.2084 1.2165

1.0 1.2318 1.2337 1.2368 1.2424 1.2522 1.2601 1.2664 1.2716



TABLE V -CRITICAL CORE RADII IN MEAN FREE PATHS FOR REFLECTED CYLINDERS

Case Reflector Thickness (MFP

C1  c2  1 3 6 10 20

1.02 0.99 8.160095 6.981947 6.220461 5.914592 5.814384
1.02 .95 8.286641 7.621081 7.431634 7.410246 7.409152
1.02 .90 8.411027 8.036229 7.981761 7.979325 7.979288
1.02 .85 8.508960 8.276755 .8.255960 8.255474 8.255471

1.05 0.99 4.618945 3.772231 3.325398 3.159486 3.105828
1.05 .95 4.724733 4.203900 4.068247 4.053117 4.052340
1.05 .90 4.831448 4.520869 4.477548 4.475609 4.475579
1.05 .85 4.917318 4.718400 4.700988 4.700581 4.700578

1.1 0.99 2.899832 2.323758 2.057837 1.961971 1.930929
1.1 .95 2.982381 2.602577 2.511010 2.500863 2.500339
1.1 .90 2.068188 2.828581 2.796556 2.795120 2.795098
1.1 .85 3.13909 2.97985 2.96628 2.96596 2.96596

1.2 0.99 1.76189 1.41589 1.26942 1.21684 1.19964
1.2 .95 1.81837 1.57685 1.52221 1.51616 1.51585
1.2 .90 1.87916 1.71823 1.69762 1.69670 1.69668
1.2 .85 1.93105 1.81967 1.81047 1.81025 1.81025

1.4 0.99 1.03831 .853831 .778234 .750720 .741640
1.4 .95 1.07179 .938396 .909237 .905989 .905820
1.4 .90 1.10898 1.01652 1.oo5o4 1.oo452 1.oo451
1.4 .85 1.14175 1.07560 1.07028 1.07015 1.07015

ON
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TABLE VI -NUMERICAL ANALYSES OF CRITICAL CONFIGURATIONS

Case Description

C1 1.02 1.02 1.4 1.4

c2  .99 .99 .85 .85

R2-R1 20.0 20.0 1.0 1.0

Eal .0 .25 .0 .25

Effective Multiplication Factor*
Discrete Ordinates

S 1.00695 1.00051 1.02280 1.01391

S8  1.00288 1.00021 1.00753 1.00462

S16 1.00224 1.00016 1.00217 1.00134

S32 ------- ------- 1.00074 1.00045

S6 4  ------- ------- 1.00035 1.00021

Diffusion The.ory

0.98310 0.99873 0.80653 0.87137

*To be compared with k = 1.eff
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The neutron density distribution as calculated by the present

solution and by discrete ordinates is presented in Fig. 6. The distri-

bution from the S64 calculation agrees with the exact values to at

least three significant figures at all points. The tendency of the

distribution as calculated by discrete ordinates to peak away from the

core centerline is most pronounced for the S4 calculation but persists

even into the S32 calculation. Here again, the excess multiplication

calculated by discrete ordinates indicates the increasing importance

of the error in the neutron density distribution as the discrete

quadrature order is reduced.

The values of tabulated neutron density distributions for a number

of cases, as supplementary to the critical dimensions given in Table V

when applied as analytic standards, are given in Appendix C.
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Figure 6. - Neutron density distribution. C1, 1.4; C2, 0.85; reflector
thickness, 1 MFP -



CHAPTER VI

APPLICATIONS AS AN ANALYTIC STANDARD

6.1 The Analytical Model

For this study, a model was chosen which, in the context of the two-

region solution developed in Chapter IV, most closely approximates the

Advanced Power Reactor concept described by Whitmarsh1 0 and shown in

Fig. 7. The operational requirements for this space power reactor

concept are that it provide 2.17 thermal megawatts for 50,000 hours with

a coolant outlet temperature of 12220K to a Brayton-cycle power conversion

system. The design requirements of compact size, long core lifetime,

and high operating temperature dictate the materials appearing in the

system and therefore its neutronic characteristics. The concept

employs highly-enriched uranium nitride fuel, tantalum-based alloy clad

and structural material, lithium coolant, and molybdenum reflectors.

This material composition leads to a very hard spectrum, fast reactor

with a median neutron energy of 0.44 MeV.

Two major problem areas arise in the neutronic analysis of this

design. The first problem area concerns the adequacy of the neutron

cross sections for these relatively little-used materials. Estimates

of the reactivity biases due to the cross sections have been obtained

from the analysis of small, fast-spectrum critical assemblies20 containing

21
these materials and are reported in Mayo and Lantz. Unfortunately,

it is not possible to separate the error in the reactivity due to the

cross sections from that which arises from the approximations inherent

in the method of analysis. This difficulty brings us to the second

major problem area, the analytical bias. Since the analyses leading to
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drum bearing

CD-10889-22

Figure 7. - Advanced power reactor concept.
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the critical dimensions presented in Chapter V are based on hypothetical

c values, these dimensions are particularly suitable for use in studying

various contributions to the analytical bias in the design methods.

At the high neutron energies present in this reactor, the cross

sections are much smaller than those associated with thermal reactors.

Thus the average neutron mean free path is of the same order of magnitude

as the physical dimensions of the system. The resulting relative

proximity of any position in the system to the core and reflector

boundaries precludes the use of neutron diffusion theory in performing

design analysis. Consequently, the design analysis has been performed

with the discrete-ordinates transport theory programs TDSN,19 ANISN,22

and DOT-IIW.23

The azimuthal asymmetry of this drum-controlled concept necessitates

two-dimensional calculations in the analysis of quantities such as

control swings and radial power distributions. With these large spatial

descriptions, computer running time and storage considerations have

restricted the analytical model to the S4 angular quadrature approxi-

mation. The first investigation of the present study concerns the effects

of quadrature order and quadrature type upon the reactivity. The second

investigation is concerned with a consistent discrepancy between the

multiplication factors for a single configuration calculated with x-y

and R-0 geometry descriptions. Each of these investigations employs

the analytical model described in Table VII. The neutron cross sections

are approximate one group values. They have been derived from spatial

and energy group flux-averaged reaction rates taken from a multigroup

discrete-ordinates calculation of the Advanced Power Reactor concept.
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Table VII

The Analytical Model

Cross Core, cl = 1.1 Reflector, C2 = 0.95

Sections R = 2.6025766MFP R2 - RI = 3MFP

E 0.105 0.05
a

vgf 0.205 0.00

Et 1.000 1.00

E 0.895 0.95
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Although the cross sections only approximately represent the actual

system, in the context of the one group model they accurately produce the

core and reflector c values. That is, neutron absorption and secondary

neutron production are conserved. To meet the criterion of identical

neutron mean free paths in the core and reflector regions, the cross

sections are adjusted to a normalized total macroscopic cross section

of one cm-1 in each region. The core and reflector dimensions in mean

free paths closely correspond to the one-group average values of the

actual configuration. These dimensions, along with the c values,

represent one of the cases in Table V.

6.2 Discrete-Ordinates Quadrature Study

This study is concerned with the effects of quadrature type and

quadrature order as used in calculating the analytical model in R-6

geometry with the DOT-IIW discrete-ordinates transport program. 2 3

The interest in R-0 geometry arises from the sixty degree azimuthal

symmetry present in Advanced Power Reactor configuration. The effects

of quadrature type are studied in the S4 approximation corresponding

to the approximation level employed in the design analysis.

In addition to the even moment quadrature set ordinarily used with

the DOT-IIW program, seven other quadrature sets are included in the

study. The various prescriptions under which the quadrature points were

selected are described in the literature. The even moment, odd moment,
24

level moment, and P3 T4 quadrature sets are from Lathrop and Carlson.

The projection invariant sets A and B are from Carlson.2 5 The DP1
26

quadrature set is from Carlson and Lee. And the moment modified

quadrature set is from Carlson.27
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The quadrature sets are presented in Tables VIII through XV. The

points are located on the surface of the unit sphere an octant of which

is shown in Fig. 8. The tabulated values include eight positive values

of the direction cosine T followed by eight negative values. Thus the

values include the entire upper half of the surface of the unit sphere.

The points are located along fixed values of the direction cosine g.

It should be noted that these R-0 quadrature sets are orthogonal to the

more familiar X-Y and R-Z quadrature sets which are based upon fixed

values of the direction cosine called in our convention.

The R-0 geometry used to describe the analytical model in the

DOT-IIW calculations is shown in Fig. 9. The largest radial mesh

intervals are 0.26 cm (MFP) in the core and 0.3 cm in the reflector.

Much smaller mesh intervals are grouped near the center and at the

boundaries. The angular mesh interval is one degree. Perfect reflection

boundary conditions were applied at the top, center, and bottom bounda-

ries. A vacuum boundary condition was applied at the outer boundary.

The cross sections used appear in Table VII.

The results of this study are given in Table XVI. From the view-

point of quadrature type, it is reassuring to observe that the even

moment set which is ordinarily used in DOT-IIW and the moment modified

set which is ordinarily used in TDSN give the best results.

From the viewpoint of quadrature order, it is somewhat disturbing

to observe the 0.6% Ak/k reactivity bias associated with the results

given by the standard S4 design analysis approximation. However, this

information can be used to obtain an estimate of the reactivity bias

associated with the design analysis of the actual configuration.
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Table VIII

Even Moment, S 4, R-0 Quadrature Set

i i Ili,i+8* _ I__+8

1 0.0 0.00000001 -0.93674178

2 0.08353333 0.35002120 -0.86889028

3 0.08333333 0.86889028 -0.35002120

4 0.08333333 0.86889028 0.35002120

5 0.08333333 0.35002120 0.86889028

6 0.0 0.00000001 -0.49500473

7 0.08333333 0.35002120 -0.35002120

8 0.08333333 0.35002120 0.35002120

*The sequence listed here corresponds to the input sequence

used in the DOT-IIW code. The negative values of f in the

second quadrant are positioned in the same order as the

first quadrant values shown in Fig. 8.
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Table IX

Level Moment, S4 , R-0 Quadrature Set

i Wi I71 i+8 Li, i+8

1 0.0 0.00000001 -0.95006840

2 0.08333333 0.31276157 -0.89711210

3 0.08333333 0.89736271 -0.31204180

4 0.08333333 0.89736271 0.31204180

5 0.08333333 0.31276157 0.89711210

6 0.0 0.00000001 -0.44180300

7 0.08333333 0.31276157 -0.31204180

.8 0.08333333 0.31276157 0.31204180
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Table X

Moment Modified, S4, R-0 Quadrature Set

i Oi I Iii+8 Aiji+8

1 0.0 0.00000001 -0.93743690

2 0.08333333 0.35874166 -0.86607870

3 0.08333333 0.86607872 -0.35874166

4 0.08333333 0.86607872 0.35874166

5 0.08333333 0.35874166 0.86607170

6 0.0 0.08650678 -0.49236600

7 0.08333333 0.35874166 -0.34815530

8 0.83333333 0.35874166 0.34815530



Table XI

Odd Moment, S4, R-0 Quadrature Set

i Wi i,1+8 1i,+8

1 0.0 0.00000001 -0.95522640

2 0.0833333 0.29587580 -0.90824830

3 0.08333333 0.90824826 -0.29587590

4 0.08333333 0.90824826 0.29587590

5 0.0833333 0.29587580 0.90824830

6 0.0 0.00000001 -0.41843159

7 0.08333333 0.29587580 -0.29587590

8 0.08333333 0.29587580 0.29587590
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Table XII

PT 4 , S 4, R-6 Quadrature Set

i i wi+8 i,i+8

1 0.0 0.11676916 -0.94043230

2 0.08151814 0.34041838 -0.86884590

3 0.08151814 0.86096378 -0.35988780

4 0.08151814 0.86096378 0.35988780

5 0.08151814 0.34o41838 0.86884590

6 .o0 0.11548774 -0.50837410

7 0.08696369 0.340o41838 -0.35947480

8 0.08696369 .340o41838 0.35947480



Table XIII

DP1 , S4, R-0 Quadrature Set

i wi 1 1,i+8 1,i+8

1 0.0 0.00000001 -0.97741590

2 0.125 0.57735032 -0.78867510

3 0.0625 0.95429742 -0.21132490

4 0.0625 0.95429742 0.21132490

5 0.125 0.57735032 0.78867510

6 0.0 0.00000001 -0.61481020

7 0.0625 0.57735032 -0.21132490

8 0.0625 0.57735032 0.21132490
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Table XIV

Projection Invariant Set A, S4, R-e Quadrature Set

i I , i+8 pi, i+8

1 0.0 0.00000001 -0.94280904

2 0.08333333 0.33333333 -0.88191710

3 0.08333333 0.88191710 -0.33333333

4 0.08333333 0.88191710 0.33333333

5 0.08333333 0.33333333 0.88191710

6 0.0 0.00000001 -o.47140452

7 0.08333333 0.53333333 -0.33333333

8 0.08333333 0.33333333 0.33333333



Table XV

Projection Invariant Set B, S 4 , R-0 Quadrature Set

i w i,i+8 pii,i+8

1 0.0 0.00000001 -0.71007688

2 0.08333333 0.09175171 -0.70412415

3 0.08333333 0.70412415 -0.09175171

4 0.08333333 0.70412415 0.09175171

5 0.08333333 0.09175171 0.70412415

6 0.0 0.00000001 -0.99578192

7 0.08333333 0.70412415 -0.70412415

8 0.08333333 0.70412415 0.70412415
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Figure 8. Direction mesh for S

Figure 8. - Direction mesh for S4 quadrature.



- Core-reflector boundary

Figure 9. - R-8 description of the analytical model.



Table XVI

1
APR Model Quadrature Study

Quadrature Quadrature keff*
Type Order

DP1  4 1.0081

P3 T4  4 1.0065

Level Moment 4 1.0095

Even Moment2  4 1.0062

Even Moment 8 1.0016

Odd Moment 4 1.0112

Moment Modified3  4 1.0064

Proj. Inv. Set A 4 1.0074

Proj. Inv. Set B 4- 1.0211

All calculations performed with the DOT-IIW
program in R-0 geometry using the diamond

difference model.

Normally used with DOT-IIW.

Normally used with TDSN.

* To be compared with keff =1.



The difference between the multiplication factors given by the S4 and

Sg calculations in Table XVI is 0.46% Ak/k. The corresponding value

given by the analysis of the actual configuration is 0.3% Ak/k. The

larger value given by the analysis of the analytical model reflects

the greater importance of the radial leakage in the axially infinite

model. By scaling the 0.6% Ak/k reactivity bias by the ratio of these

differences, we obtain an approximate value of 0.4% Ak/k reactivity

bias to be used with the standard S4 , R-e design approximation. This

value is significant when compared to the 0.32% Ak/k total reactivity

requirement for the first 10,000 hours of operation as calculated by

Whitmarsh .10

6.3 X-Y Boundary Approximation St

The motivation for this study is the observation that, for the

type of fast reactors under design consideration, an R-e calculation

of the multiplication factor consistently produces a higher value than

does an X-Y calculation of the same parameter. This phenomenon was

noted by Mayo and Lantz 21 in their pre-critical analyses. In the

neutronic design analysis of the Advanced Power Reactor concept by

Whitmarsh,lO this discrepancy is determined to be worth 0.65% Ak/k

in reactivity.

An X-Y representation of a circular boundary is done in a stepwise

manner. This results in an outward displacement of the core material

into the reflector region accompanied by an inward displacement of the

reflector material into the core region. Also the length of a stepwise

boundary is a factor of 4/n greater than the actual boundary. The

combined effects of having the fuel material in a lower importance
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region and having a higher probability of neutron leakage from the core

will result in a negative reactivity effect. This will be somewhat off-

set by the positive reactivity due to the possible unrealistic first-

flight neutron reentry into the core.

On the other hand, an R-0 geometry is capable of describing

circular boundaries exactly. Therefore it might be assumed that the

lower multiplication factors calculated in X-Y geometry are in error

due to the effects discussed above. However, without an absolute

standard it is not possible to assess the accuracy of either geometrical

representation. This demonstrates the usefulness of applying the highly

precise analytic values of Chapter V in resolving this discrepancy.

The approach taken in performing the study was to calculate the

analytical model in systematically finer X-Y geometrical representations

and note the improvement in the multiplication factor due to the

reduction of the effects discussed above. A computer program was

written to determine the X-Y boundaries and provide the input for the

discrete-ordinates program, DOT-IIW.

The program selects the X-Y boundaries according to three criteria.

1. The areas of the core and reflector regions are preserved.

2. Each of the interstitial areas formed by the X-Y and circular

boundaries is no greater than a maximum input value.

3. Paired sets of successive interstitial areas exterior and

interior to the circular boundary are the same size.

These criteria are effected in the following manner. First, we consider

two successive interstitial areas as shown on the next page:



X11 Y, A Xz)Ya

XZY3 X X3)Y3

Here we have assumed that the point, xl,y1 , is known and A corresponds

to the input value of the maximum interstitial area. The value of x2

is found by integration of

x2 1(6.1a)

obtaining

A = y lx2 - (R2- 2 - 2 sin -1

- ylx1 + (R -x2) + - sin -  , (6.1b)

and solving the transcendental Eq. (6.1b) for x2 by Newton's method.

Having found x2 , we determine y2 by y 2  -x2

Next, the value of y3 is found by integration of

A f 22 -x 2)dy, (6.2a)

obtaining

2 2 R2 1 2A = - (R2 -y 2  sin - x2 Y2

and solving the transcendental -1 + x2 3 , (6.2b) for 3 b Newton's method.

and solving the transcendental Eq. (6.2b) for yj by Newton's method.



This procedure is repeated until the unknown x is found to be

greater than R/ - or the unknown Y is found to be less than R/lT .

The point, x = y = R/ J-, corresponds to where the forty-five degree

line drawn from the center intersects the circle. The symmetry about

this line allows us to reflect the boundaries found for the upper

octant of the circle into the lower octant. That is, xn = Yl' Yn = xl'

Xn-l = Y2 Yn-1 = x 2 , etc. The only problem remaining is the approach

to the interface point. If this point is passed on an x search, x2

is determined by

R2 [2 sin 1 - r/2 (6.3)

2 2(x1 - 1)

which is found by solving Eqs. (6.1b) and (6.2b) simultaneously and

substituting

X = Y3 and R2

A similar procedure cannot be used upon passing the interface

point on a Y search, since criterion 1 could then not be satisfied.

In this instance, the previous x search calculation is re-performed

on successively finer values of the interstitial area until the

subsequent y search produces a value greater than R/T2- . Then

the final value of x 2 is found by Eq. (6.5).

Two of the four x-y descriptions of the analytical model which

have been determined by the above procedure are shown in Figures 10

and 11. The input criterion for the maximum interstitial area was

0.04 MFP squared for the coarsest mesh. This value was successively

halved to a value of 0.005 MFP squared for the finest mesh.
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Figure 10. - X-Y description of the analytical model, 16 x 16
mesh.
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Figure 11. - X-Y description of the analytical model, 22 x 22
mesh.
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The calculations were performed with the DOT-IIW discrete-ordinates

program using the diamond difference model and the even moment, S 4 ,

quadrature. Thus, these calculations differ from the even moment, S4 ,

R-e calculation of Table XVI only in the geometry description.

The results of the x-y calculations are given in Table XVII. As

anticipated, the calculated value of the multiplication factor is low

and it improves as the x-y mesh is refined. However, it was unanticipated

that even the least accurate x-y calculation yields a better value of

the multiplication factor than that given by the R-8 calculation.

Furthermore, the results of the finer x-y mesh calculations appear

to be approaching 0.1% Ak/k below critical. This value is better than

that given by the S , R-e calculation. The general conclusion of this

study is that the source of the discrepancy between the results of x.y

and R-e calculations lies in the inaccuracy of the R-O calculation.

Therefore, it is recommended that design calculations from which highly

precise values of the multiplication factor are required, be done in the

x-y geometry. It is noted that it was not possible to resolve the

source of this discrepancy without the highly precise results of the

analytical solution presented in Chapter IV.

As shown in Chapter V, both the error in the multiplication factor

and the error in the neutron density distribution from R-0 calculations

are quadrature dependent. Therefore, it is reasonable to assume that

these errors are related and that possible methods to eliminate the

"centerline dip" and improve the neutron density distribution as

calculated by low quadrature order, discrete-ordinates calculations in

R-e geometry would be a worthwhile subject for further research.
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Table XVII

X-Y Step Boundary Approximation Studyl

Interstitial Area (MFP) 2  Mesh Size keff

0.04 16 X 16 0.99539

0.02 22 X 22 0.99718

0.01 28 X 28 0.99832

0.005 38 X 38 0.99895

1All calculations performed with the DOT-IIW program

using an even moment, S4 quadrature and the diamond-

difference model.

*To be compared with keff = 1.



CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The conclusions drawn from this study fall into two general

categories. The first category concerns the successful development of

the singular eigenfunction solution for the reflected critical cylinder

through the use of new relations for the singular eigenfunctions. The

second category concerns the application of the highly precise numerical

results obtained from this solution in assessing the accuracy of more

approximate methods of transport analysis.

In evaluating the singular eigenfunction solution for the bare

critical cylinder by Mitsis, it was found that his solution contained

an unbounded function. This function was reformulated and the continuum

expansion coefficient was redefined to obtain a converging solution.

Furthermore, it was shown that the procedure taken by Mitsis in decompos-

ing the singular eigenfunctions into the sum of the Case plane geometry

eigenfunctions was unneccessary and that it introduced additional

numerical complexity into the solution. This procedure was avoided

through the use of a completeness proof for the singular eigenfunctions

which naturally arise in the solution of the transformed integral

transport equation in cylindrical geometry.

In developing the singular eigenfunction solution for the reflected

critical cylinder, application was made of the reformulated function and

the completeness proof mentioned above. Also, extensive use was made

of orthogonality and normalization relations found for the singular

eigenfunctions. The solution is in the form of two coupled iterative
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sequences with which the expansion coefficients and ultimately the

critical dimensions can be found to any desired degree of accuracy.

Critical core radii accurate to seven significant figures are

presented for bare cylinders and compared with the results of other

analytic methods. It was found that for small systems, C > 1.6,

values that had previously served as analytic standards are accurate

to only three significant figures.

Highly precise values of critical core radii as a function of

core and reflector multiplying properties and reflector thickness are

presented. Comparison of these results for two widely varying systems

with the results of numerical solutions demonstrates the relative

accuracy of various design approximations. High order discrete-

ordinates calculations gave good results for both systems while the

diffusion theory was inadequate for analyzing the smaller system. It

was shown that errors in the multiplication factor and the neutron

density distribution as calculated by discrete ordinates are dependent

on the order of angular quadrature used. Also, it was shown that the

introduction of a realistic amount of neutron absorption in making-up

the core c values significantly improved the results of the numerical

calculations.

Additional conclusions were reached in a study of design analysis

methods using the highly precise results of the present solution as

analytic standards. These analytic standards are particularly effective

because of their lack of dependence upon measured values of neutron

cross sections. Three conclusions concerning the neutronic design

analysis of the fast reactor concept under consideration were made.
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First, of eight different types of angular quadrature sets studied, the

even moment set ordinarily used in the DOT-IIW discrete-ordinates program

is as effective as any of the other sets studied when applied in the S4

approximation in R-e geometry. Second, using this level of design

analysis introduces an estimated analytical bias in the multiplication

factor of +0.4% Ak/k. Third, for the same level of quadrature order,

an x-y geometry representation can be used to obtain a much more accurate

value of the multiplication factor than can be obtained in R-0 geometry.

7.2 Recommendations

Since this work represents the first successful singular eigen-

function solution of the transport equation for critical cylinders, the

opportunity exists for much worthwhile additional work in this area.

For example, a two energy group solution would be very useful for the

analysis of hydrogen moderated systems. Also, a solution including

anisotropic scattering could be used to analyze systems in which this

phenomenon is important. These features have been successfully incorpor-

ated into singular eigenfunction solutions2 9'3 0'
3 1 of the Boltzmann

equation in critical slab geometry. How these features might be

incorporated into the present solution, which is based on the transformed

integral transport equation, has not been investigated. However, it

appears to be relatively straightforward to apply the techniques developed

in the present work to obtain solutions for multiregion problems. The

results from such solutions could be used as analytic standards for

methods used to analyze radially fuel-zoned cores or deep radiation

penetration into multilayered shield configurations.
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From the results of Chapter VI, it is recommended that further

design analysis of the Advanced Power Reactor concept using the DOT-IIW

discrete-ordinates transport program in the S4 approximation and in R-8

geometry include a reactivity bias of -0.4% Ak/k applied to the calculated

multiplication factor. It is also recommended that x-y rather than R-6

geometry be used in analysis requiring high precision in the multi-

plication factor.

Finally, the results of Chapters V and VI have shown a serious

deficiency of low quadrature order discrete-ordinates transport analysis

in R-0 geometry. Investigation into the source of this problem would

be a worthwhile area for further research.
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APPENDIX A

ORTHOGONALITY AND NORMALIZATION RELATIONS
FOR THE PSEUDO EIGENFUNCTIONS

The purpose of this appendix is to present the development of an

orthogonality relation for the pseudo eigenfunctions found in Chapter III

and the development of normalization relations for their discrete and

continuum modes.

To demonstrate the orthogonality properties, we begin by substituting

Eq. (3.18) for (p) into the Eq. (3.16), obtaining

1 Tk ()d1 = 1. (A.1)

Making the same substitution into Eq. (3.17), we have

2 _ 2 2
( - ) c (A.2)

Next we rewrite Eq. (A.2) for two eigenvalues, v and v', in the form:

( 
21) () = c, (A.3a)

and

1 , 2) ' (P) = c. (A.3b)

Now we operate on Eq. (A.3a) with the integral of T,(p) over p and

operate on Eq. (A.5b) with the integral of % (p) over p, obtaining

2 ) %
2 (p)%},(p)dp = c ,, (A.4a)

and

1 01
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We observe from Eq. (A.1) that the right hand sides of Eqs. (A.4a,b)

are just equal to c. With this observation, we subtract Eq.(A.4b)

from Eq. (A.4a) to obtain

S - 12 P 2T (4) , (p) = 0. (A.5)

0

Eq. (A.5) implies the orthogonality relation

P 2 (,)%()d V= ' v. (A.6)

Next we wish to develop the normalization integral for the

discrete modes, defined by

N 0 =f 2 (p)_ ()d. (A.7)

Substituting Eq. (3.19) for % (p) into Eq. (A.7) we have

2 2
N = cv p. (A.8)

o -- 2 22
vo V

By partial fraction expansion Eq. (A.8) can be shown to be equivalent to

2 3 1
N = cvo p P2 - . (A.9)
o ~ 2 (Vo+ P) 2

Performing the integral over the terms in Eq. (A.9) we obtain

c2 3 [
N = [tnI -L + o - £nl + p-1
o o In d , (A.10)

o v '+
o o

which is evaluated at the limits to yield

c c 1N 0= o 2 2 (A.11)
2 v - 1 v
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Anticipating the requirement for a discrete normalization integral

to apply in solving the two-region problem of Chapter IV, we next seek

the relation

No12 f 1 2 1 1 (' b ) % 2 (11) dj ,  (A.12)

where c l > 1, Vol imaginary; c2 < 1, Vo2 real. Substituting the discrete

mode eigenfunctions into Eq. (A.12) we have

2 clv12 c V2

N°12 =f C o2 C2o2 dJ. (A.15)
ol2 v 12+ 2 V 2 2

Upon partial fraction expansion Eq. (A.13) becomes

12 1 2 F "

N c1 c21 12  02  o2  o1lV2  p. (A.14)Noi2  2 2 2 2 12
ol o2 o 62 ol

Performing the integral over the terms in Eq. (A.14), we obtain

21

N I2 12 + 2 2 I 2i
ol o2 o2 - 2i IVol o

which is evaluated at the limits to yield

= c1 c 2 1Vo 1 12 V 2
No12 2 1o2 1 1 (A.16)

IV 2 + V2 c2  c1

Finally, we wish to obtain the normalization function for the

continuum modes, defined by

1

N(v) =fo p 2 rG()Ty,(p)dp, v' = V. (A.17)

This function is to be used in the evaluation of coefficients, A(v'),

appearing in the expansion of an arbitrary function, f(p) in the
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following manner:

f(p) A(v') , (p)dv'. (A.18)

Operating on Eq. (A.18) by the integral of p2 Ty(L) over I, we obtain

1 1 1

fo 2  (p)f(p)dp =f P 2T (P)d1o A(v'), ,(p)dv' (A.19)

Initially we define the normalization function, N(v), such that

1

A(v)N(v) =f P 2  (p)f(p)dp (A.20)

0

Now, substituting Eq. (A.20) into Eq. (A.19), we obtain

1_f1 21

N(v-) = ~ v) )d( A(v' )v, (p)dv'. (A.21)

Recognizing that the order of integration over singular functions is

not directly interchangeable, we evaluate Eq. (A.21) by considering

(v) = 1--) Jdv'A(v')f T,( )()dp.I. (A.22)

Upon substitution of Eq. (3.20) for T%(p) and T,(), Eq. (A.22) becomes

A(v)N(v) =fdvA(vl) f dp h(v)8(v-p)X(v')(v'-p,)

+ %(v' )8(v'-p )cP v 2

2 2
V - ,i

+ X(v)8(v-p)cP v' 2

2 2v'2 11

+ cP v
2  cP v' 2

2 2 V'2 2 ). (A.23)v -F L1
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Evaluating the terms in Eq. (A.23) which contain delta functions we have

A(v)N(v) = A(v)v2 2 (v) + 2cP dv'A(v') v'2 %V ' )

I V2 _ V,2

J 2 2

o v' - V

+ V %(V)cP dv'A(V . V

+ c 2f dv'A(v)v?2 2 P 2 2 . (A.24)
S0o V2 2 ,2 2

o v - L v - L

The last term in Eq. (A.24) is expanded by partial fractions to yield

2 2 fdA 2 p v' ,2 2 - ,2 d .
2 2 2 2 )2
V f dv'A(v') v v P vp.

Next we use the function, k(v), in the form obtained by integrating Eq.

(3.20) over ~,

%(v) = 1 - cPf d2,

0o V -2

to write this term as

cv2 Idv'A(v') '2
o v2 2

The term as written above identically cancels the second and third

terms of Eq. (A.24), leaving

A(v)N(v) = A(v)v2 2(v). (A.25)

Now returning to the evaluation of Eq. (A.21) we insert the

eigenfunctions to obtain

A(v)N(v) = p2 cP v2 + (v)(v-pv) I+dv'A(v') cP v' 2

22 2 2
v -tp v' -p

+ (v')8(v'-p) . (A.26)

After performing the integrals over the terms containing delta functions

in Eq. (A.26) we have
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A(v)N(v) = A(v)v2 2(v) + cv2  dv'A(v')P v'2 (,

+ cv (v) a v'A(v') P v',2 V

o V2 2V

V' -v

2 2 2
+ cP v 2 L ddv'A(v')cP v'2  (A.27)

2 2 2 2

We note that the first three terms of Eq. (A.27) are identical to those

of Eq. (A.24). The fourth terms differ by the order of integration.

We evaluate the fourth term of Eq. (A.27) by putting it in the form of

the Poincare'-Bertrand formula2 8 as follows:

1 2
c 2 Pf 2 2 dpP A(v') v2 d'

2 2 22v-a v' -

= -c22Pl PS P g(v',p) dv' (A.28)
V' -

where g(v',p) = A(v')v'2P 2/(V+I)(v'+I).

The Poincare'-Bertrand formula is

Pt _dp P g(v', dv'

-n g2 (vv) + dv'SI P 1 P 1 g(v',p)dp. (A.29)
V-P V'- P

Now, comparison of Eqs. (A.28),(A.29) and the fourth term of Eq. (A.24)

shows that the difference of the two fourth terms is the additional term,

c v 2 g(v,v), arising from Eq. (A.29). With this observation, we cancel

the identical terms of Eq. (A.27) as before and write Eq.(A.27) as

A(v)N(v) = A(v)v2 2() + c2 v 2 g(v,v). (A.30)

Finally, substituting Eq. (A.28) for g(v,v) into Eq. (A.30) and canceling

like terms we obtain
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N(v) = v2 2() + c2 2

4 (A.31)

as the normalization function for the continuum modes of the pseudo

eigenfunctions.



APPENDIX B

PSEUDO EIGENFUNCTION COMPLETENESS

Theorem: The functions T(P) and Ty(P) form a complete set in the sense

that any arbitrary known even function I(P) can be expanded in terms of

these eigenfunctions for -1 < p < 1. Proof: We write the expansion

) = a%() + A( ) T (p)dv, -1 : p r 1 (B.1)
2

and the task is to show that we can solve for the expansion coefficients

ao, A(v), in terms of the known function (p).

In the proof we make use of the boundary values of the dispersion

function, A(z), where

A (v) = 2 + c PJ1 dp nicv,
2 2

or

A (v) = %(v) ± nicv,

are obtained from the Plemelj formulas28

F(y) = PJa f(x) dx ± if(y).
x-y

We note that A(v) and X(v) are twice as large as the functions defined

in Eqs. (2.13) and (2.15). This difference is consistent with the

half range normalization to unity, Eq. (3.16). First we write from

Eq. (B.1)

(P) = i A(v) % (p)dv (B.2a)
2

where

='(p) = *(p) - ao%(P). (B.2b)

Inserting Eq. (3.20) for T (P) into Eq. (B.2a) we have
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Q'(4) = x(p)A(p) + cP 1 A(v)v2  dv, (B.3a)
2 2 2 2

or

'() = A+(p) + A(p) A(p) + P 2 2 dv, (B.b)

where we have substituted the sum of the boundary values of the

dispersion function for X(P).

Next we introduce the function N(z) defined by

N() = cvA( dv (B.4)
S- z

We note that N(z) e A in the complex plane cut from -1 to 1 along the

real axis and N(z) - 1/z 2 as z-m. Adding and subtracting the boundary

values of N(z) as given by the Plemelj formulas, we obtain

c P 1 A(v)v2  dv = ni(N () + N-(&)) (B.5a)
2 2 2

and

A()=2 N+() - N-(P) ) (B.5b)

Substitution of Eqs. (B.5a,b) into Eq. (B.3b) yields

A {(+p) + A-(p))(N+)-N-())

+ 2ricp(N +() + N- ()) . (B.6)

Now, inserting the difference of the dispersion function boundary

values for 2rricp, multiplying through and canceling like terms, Eq.

(B.6) becomes

cp§'(p) = A+(p)N+(i) - A-(p)N'(p). (B.7)

Next we seek a function, N(z)A(z), whose boundary values on the cut

satisfy equation (B.7). Thus we define the function J(z) as
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J(z) = N(z)A(z) - c 2p,() (B.8)
---- -1z2ni 2 2

- Z

with boundary values such that

+(p) - J"(p) = N+(p)A+(pl) - N-()A-() - c'(pl). (B.9)

Comparison of Eq. (B.9) and Eq. (B.7) shows that the difference of the

J(z) function boundary values is zero. With no discontinuity across

the cut, J(z) is a bounded entire function which, by Liouville's

theorem, must be a constant. Furthermore, since J(z)-o as z -m, J(z)

is everywhere equal to zero. With this result we rewrite Eq. (B.8) as

N(z) 2c A(z) -1 C, z 0. (B.10)
2riA(z) -1 2 2

Now since ± v are the roots of the dispersion function, in order for

N(z) as defined in Eq. (B.10) to be analytic at ± vo, we must require

2 2 d = 0. (B.11a)
-V

To obtain the solution for the discrete coefficienta o , we insert

Eq. (B.2b) into Eq. (B.lla), yielding

1 2 (p) - aoT(p)) dt = 0. (B.llb)2 2

Substituting the definition of %(0 ), Eq. (3.19), which is valid for

the full range of v and p, we rewrite Eq. (B.llb) as

J1 1  
2 m(4(() - a (i)) d = 0. (B.11c)

Now use of the normalization relation Eq. (A.7) yields the desired

expression for ao, namely
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ao 1 2 (p)dp. (B.12)
o2N

To obtain the similar expression for the continuum coefficient

A(v), we insert the boundary values of N(v) as defined from Eq. (B.10)

into (B.5b) to give

2 c 1 1 c 1' ,A(-) - c PPI dp
cp 2ni [A+ A ) -1 P2

[ -+ + A() 
c p ' ( P)  . (B.13a)

Upon substitution of the sum and difference of.the dispersion function

boundary values Eq. (B.13a) becomes

A( A) = 2 1  c'2 ' ( ' ) dp' + j'(p)() . (B.ljb)

Now letting p = v and p' = p we have

A(v) = 2 P cv2 V'() 2  dp + i 2 (v)(v)5(v-t)d .

2A +(v)A (v) v 2 _ 2

(B.13c)

The two terms of the continuum eigenfunction as defined by Eq. (3.20)

appear in Eq. (B.13c), allowing us to write

A(v) = 2 11 2 (P'(p)L. (B.13d)
v A (v)A (v)

Now inserting Eq. (B.2b) for '(p) into Eq. (B.13d) we obtain

A(2) = A ) 2()( () - ao~o( )d4. (B.13e)
A(Y) \ 2A+(v)A_-()

Applying the orthogonality relation, Eq. (A.6), and substituting the

normalization constant N(v), Eq. (A.31), we have the solution for A(v) as
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A(v) = 2N ) (p)d (B.14)

This completes the proof for the full range case.

An immediate extension can be made to the half range case if we

note from Eqs. (3.17) and (3.18) that

T(-[L) = 5(P)

and from the theorem, §(-p~) = (W).

Thus we can write the solution for A(v) as

A(v) = 1 1 2T)(i) (B.15)

and the expansion given by Eq. (B.1) as

(p) = ao( + 1 A(v)T()dv, (B.16)

where, again from Eq. (3.17) and (3.18), we have used

V (P) = %(p) and we have assumed, because of the evenness of

all functions involved, that A(-v) = A(v).
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APPENDIX C

NEUTRON DENSITY DISTRIBUTIONS FOR REFLECTED CYLINDERS

Neutron density distributions corresponding to several of the cases

for which the critical dimensions are given in Table V are presented

here for the use of interested researchers. Since the numerical results

of all one hundred cases calculated would be rather voluminous, we

have selected combinations of cases which provide various parametric

ranges. First, we present the largest and the smallest cases calculated.

Then follows a variety of cases from which the effects of the independent

variation of core c value, reflector c value and reflector thickness

can be drawn.
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r r/R1 c=1.02, c2=0.99 cl=1.4, c2=0. 8 5

or R2 - R1 = 20 MFP R2 - R = 1 MFP

r2=r-R1  p(r1 )/p(o) P(r2)/p(o) p(rl)/p(o) p(r2)/P(O)

R2-R
1

0.0 1.0000 0.5415 1.0000 0.4906

0.01 0.9999 0.5126 0.9999 0.4788

0.02 0.9998 0.4871 0.9998 0.4691

0.1 0.9949 0.3327 0.9946 0.4082

0.2 0.9795 0.2124 0.9785 0.3506

0.3 0.9542 0.1378 0.9520 0.3037

0.4. 0.9192 0.0902 0. 9153 0.2640

0.5 0.8752 0.0593 0.8688 0.2294

0.6 0.8228 0.0387 0.8131 0.1987

0.7 0.7628 0.0247 0.7485 0.1710

0.8 0.6959 0.0149 0.6753 0.1455

0.9 0.6228 0.0076 0.5927 0.1212

0.95 0.5838' 0.0046 0.5464 0.1089

0.98 0.5592 0.0029 0.5155 0.1010

0.99 0.5507 0.0022 0.5041 0.0981

1.00 0.5415 0.0015 0.4906 0.0948
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r=r/R1  c1=1.02, c2=0.95 c =1.02 , c2 =0.95

or R2 - R1 = 3 MFP R2 - R1 = 10 MFP

r 2 =-R 1  P(rl)/(o) P(r 2 )/P(O) P(r1)/(o) P(r2)/P(O)

R2-R 1

0.0 1.0000 0.2858 1.0000 0.3153

0.01 0.9999 0.2806 0.9999 0.2990

0.02 0.9996 0.2758 0.9997 0.2847

0.1 0.9912 0.2423 0.9916 0.1977

0.2 0.9649 0.2068 0.9668 0.1277

0.3 0.9219 0.1761 0.9261 0.0830

0.4 0.8633 0.1490 0.8705 0.0542

0.5 0.7906 0.1249 0.8014 0.0354

0.6 0.7058 0.1031 0.7206 0.0230

0.7 0.6110 0.0834 0.6300 0.0147

0.8 0.5085 0.0651 0.5316 0.0090

0.9 0.4006 0.0476 0.4274 0.0050

0.95 0.3450 0.0387 0.3733 0.0033

0.98 0.3106 0.0330 0.3397 0.0024

0.99 0.2987 0.0309 0.3280 0.0020

1.0 0.2858 0.0283 0.3153 0.0016
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rl=r/R1  cl=1.05, c 2=0.8 5 c1=1.05, c2=0.
8 5

or R2 - R1 = 3 MFP R2 - R1 
= 10 MFP

r2=r-R1  p(rl)/P(o) p(r2 )/P(o) p(rl)/P(o) p(r2 )/P(o)

R2-R 1

0.0 1.0000 0.2859 1.0000 0.2897

0.01 0.9999 0.2765 0.9999 0.2624

0.02 0.9997 0.2685 0.9997 0.2405

0.1 0.9913 0.2177 0.9914 0.1291

0.2 0.9655 0.1708 0.9658 0.0625

0.3 0.9233 0.1349 0.9239 0.0309

0.4 0.8657 0.1067 0.8667 0.0155

0.5 0.7942 0.0842 0.7956 0.0078

0.6 0.7105 0.0660 0.7125 0.0040

0.7 0.6167 0.0510 0.6192 0.0020

0.8 0.5148 0.0384 0.5179 0.0010

0.9 0.4064 0.0275 0.4100 0.0005

0.95 0.3494 0.0223 0.3531 0.0003

0.98 0.3133 0.0190 0.3171 0.00021

0.99 0.3004 0.0178 0.3042 0.00018

1.0 0.2859 0.0164 0.2897 0.00015



rl1 =r/RI  cl=1.1, c2 =0.95 cl=.l, c2 =0.95

or R2 - R1 = 3 MFP R2 - R1 
= 10 MFP

r2=r-R1  p(rl)/p(o) p(r2 )/P(O) p(rl)/p(o) p(r2 )/p(o)

R2"R1

0.0 1.0000 0.4992 1.0000 0.5293

0.01 0.9999 0.4864 0.9999 0.4916

0.02 0.9998 0.4753 0.9998 0.4611

0.1 0.9945 0.4031 0.9949 0.2953

0.2 0.9780 0.3329 0.9796 0.1789

0.3 0.9508 0.2758 0.9545 0.1113

0.4 0.9134 0.2280 0.9197 0.0702

0.5 0.8662 0.1871 0.8758 0.0446

0.6 0.8099 0.1518 0.8233 0.0284

0.7 0.7452 0.1206 0.7628 0.0178

0.8 0.6728 0.0927 0.6947 0.0108

0.9 0.5927 0.0669 0.6189 0.0059

0.95 0.5491 0.0541 0.5773 0.0039

0.98 0.5208 0.0459 0.5502 0.0028

0.99 0.5106 0.0429 0.5404 0.0024

1.0 0.4992 0.0392 0.5293 0.0019
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rl=r/R1  cl=1.4, c2=0.95 c1=1.4, c2=0.95

or R2 - R =3 MFP R2 - R = 10 MFP

r2= r-R1  p(r1 )/P(O) p(r2)/P(o) p(r1 )/p(o) p(r2)/P(O)

R2-R1

0.0 1.0000 0.4992 1.0000 0.6384

0.01 0.9999 0.4864 0.99996 0.5597

0.02 0.9998 0.4753 0.99985 0.5057

0.1 0.9945 0.4031 0.9965 0.2790

0.2 0.9780 0.3329 0.9859 0.1564

0.3 0.9508 0.2758 0.9683 0.0933

0.4 0.9134 0.2280 0.9438 0.0573

0.5 0.8662 0.1871 0.9128 0.0357

0.6 0.8099 0.1518 0.8744 0.0224

0.7 0.7452 0.1206 0.8275 0.0139

0.8 0.6728 0.0927 0.7774 0.0084

0.9 0.5927 0.0669 0.7168 0.0045

0.95 0.5490 0.0541 0.6819 0.0030

0.98 0.5208 0.0459 0.6581 0.0021

0.99 0.5106 0.0429 0.6491 0.0018

1.0 0.4992 0.0392 0.6384 0.0014


