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ABSTRACT

The normal mode expansion technique is applied to the transformed
monoenergetic integral transport equation to develop a solution for the
rotationally inveriant and axially infinite, critical, two-reglon cylin-
der with a finite ocuter reflector boundary. The model assumes isotropic
scattering and identical neutron mean free paths in the core and reflec-
tor reglions, The solution in terms of singular integral egquations is
obtained by applylng a completeness theorem found for the singuiar
elgenfunctions, Numerical results for a varlety of core and reflector
multiplying properties and reflector thicknesses are presented and com-
pared with the resulﬁs of other methods, 'The completeness inherent in
this sclution end the high precision in the numerical celeculaticns pro-
vide resulibs which may be used as analytic standards for this problem.
An example of this type of application is given in a study of approxi-
mations inherent in the neutronic design analysis of a small, fast-
neuwtren-spectrum reactor concept proposed as a space power source.

Using the highly precise critical dimensions for the case which most
closely approximates this reactor, iwestigations were made of the
reactivity effects of angular quadrature type and order and two-
dimensional gecmetrical models used in the discrete-ordinates transport

analysis of this concept.



CHAPTER 1

INTRODUCTION

1.1 Purpose and Scope

The purpose of this dissertation is to present in detail the
development of a highly precise transport solution for the radially
reflected critical cylinder and to demonstrate how the results from
this solution can be used as analytic standards in evaluating approxi-
mations inherent in numerical trensport treatments employed in reactor
design analysis.

A complete solution for the rotationally invariant and axially
infinite two-region critical cylinder with a finlte outer reflector
boundary is obtained by applying the singular eigenfunction expansicn
technique to the transformed monoenergetic integral transport equation,
The model assumes isotropic scattering and ldentical neutron mean free
paths in the core and reflector regicns, Numerical results for a
veriety of core and reflector multiplying properties and reflector
thicknesses are presented and compared with the resulis of other methods,
The critical dimensions and the neutron dengity distribution for one
of these cases are then used as analytic standards in evaluating dis-
crete angular segmentation transport programs used in reactor design.

Three aspects of the mumerical programs were studied,

1. Angular quedrature order (number of segmentations in the

angular variable)

2. Type of angular quadrature (direction cosines and welghts

chosen by various prescriptions)



3. The step-boundary approximation inherent in X-Y geometrical

representations of circular boundaries,

1.2 Background and Dissertation Organization

Neutron transport as a function of position, energy, angle and
time is generally assumed to be described by the Boltzmann equation,

In Chapter II this equation is reduced to the time-independent, one-
dimensional, monoenergetic form. In 1960, Casel obtained a complete
solution to the reduced Boltzmann equation in one-dimensional plane
geometry in terms of singular eigenfunctions, This solution is briefly
deseribed in Chapter IX, Concluding Chapter II is a demonstration of
the equivalence between the integral form of the transport equatiocn

and the Boltzmamm equation.

In 1963 Mitsi52 obtained exact solutions for the critical sphere
and for the critical infinite cylinder by transforming the moncenergetic
integral transport equation and applying the singular eigenfunction
expangion method of Case, (ase and Zweif313 have shown a more genersl
treatment of the same problems by demonstrating & replication property
of the kernel of the integral transport equation, The replication
method has been extended by G—ibbs4 to obtain solutions in arbitrary
convex geometry. For the critical sphere and cylinder, Gibbs special-
ized his general sclution to duplicate the results of Mitsis,

Lathrop and Leonard5 have suggested that numerical results from
the Mitsis solution for the critical ecylinder could be used to investi-
gate the accuracy of two-dimensional discrete-ordinates angular quédra—

ture sets. However, & recent bibliography6 of neutral particle transport



theory does not contain any reference to such results and initial
investigation under the present study was directed towards determining
the efficacy of the Mitsis solution for the bare critical cylinder.
This investigation found that the solutlon as formulated by Mitsis
i1s not convergent. However, a converglng solution could be obtained
by reformulating a function used in separating the outer boundary
condition into singular and nonsingular parts and by redefining the
continuum expansion ccefficient, Another variation of the solution
for the bare critical cylinder presented in Chapter ITI from that of
Mitsis i1s a more straightforward, though equivalent, treatment of the
singular eigenfunctions. The advantages of this new singular eigen-
function treatment are discussed below.

The development of the solution for the radially reflected critical
cylinder is presented in Chapter IV. The solution is based upon the
integral transform approach developed for the bare core solution by

Mitsis, The same approach has been taken by Smith and Siewert7 and

8

by Leuthfuser” in developing solutions for the reflected critical

sphere, Both of these solutions assume identical neutron mean free
paths in the core and reflector regions, Smith9 has demonstrated the
complicated form of the transformed integral equation when this assump-
tion is not made. To reduce the complexity of the problem, the same
assumption is imposed on this sclution for the reflected eritical
cylinder, However, the multiplying propertles of the two media are

allowed to differ. In the context of the monoenergetic model, the

identical mean free path assumption is not a severe restriction,



especially for fast energy spectrum reactors where total neutron cross
sections are of the same order of magnitude,

Transformation of the integral transport equation in two-region
cylindrical geometry results in integral equations for the neutron
density in each region., Contained in these expressions are kernels
made up of sums of integrals of modified Bessel functlons over the
gpatial variable. These kernels are separated out and defined as
pseudo neutron distribution functions., The pseudo neutron distribution
functions are shown to satisfy the same integro-differential egquation
as arises in the bare core case with the same centerline and outer
boundary conditions,  Additional boundary conditions are continulty
of the pseudo neutron distribution function and its spatial derivative
at the core-reflector interface,

Solutions in terms of modified Begsel functions and singular
elgenfunctions (called pseudo eigenfunctions because they are functions
of the transformed variable) are found for the integro-differential
equation by the separation of varisbles technique, When Mit5132
introduced these pseudo eigenfunctions, he initially considered the
full renge on the eigenvalues, Then he observed that the pseudo
eigenfunctions correspond to the sum of the Case plane geometry elgen-
functions and showed completeness by the theorem proven by C:a.rae.:L
In the present solutions for both the bare and reflected systems,
advantage is taken of the evenness of the pseudo eigenfunctions and
of the dispersion function for the eigenvalues to consider only those

eigenvalues in the positive half-range, A full-range completeness

theorem for the pseudo eigenfunctions is proven in Appendix B and its



easy extension to the half-range is shown, This procedure provides

a basis for developing the solution entirely in terms of the eigen-
functions found, without using a decomposition into the Case plane
gecmetry eigenfunctions ar done by Mitsis in obtalning the bare core
soclution, A particular advantage of the present approach is the lack
of dependence on the half-range plane geometry elgenfunction complete-~
ness theory which requires the calculation of X-functions.3 Also
inherent in the proof of completeness are several very useful ortho-
gonality and normalization relations for the pseudo eigenfunctions.
These relations are developed in Appendix A.

Substitution of the pseudo eigenfunctions into the boundsry
conditlons and application of the orthogonelity-normalization relations
results 1n two coupled iterative seguences with which the expansion
coefficlents can be calculated to any desired degree of accuracy. The
critical condition arises from the reduction of the outer boundary
condition to a Fredholm integral equation for one of the reflector
expansion cbefficients. It corresponds directly to an auxiliary con-
dition required in the proof of completeness,

Chapter V coﬁt&ins a description of the numerical technigques used
to obtain the various functions and parsmeters appearing in the solu-
tions developed in Chapters IIT and IV. The accuracy of these tech-
nigques is drawn from comparison with tabulated values. Then follows
a demcnstration of how the precision of the results varies with the
order of numerical quadrature used in evaluasting the integral terms
appearing in the soluticns, Finally the numerical results for = wide

variety of cases are presented and compared with the results of other



methods, The bare core results ere compared with the results of other
analytic solutions found in the literature, The reflected core results
are compared with the results of high order numerical calculations,

Chapter VI contains a demonstration of how the results from the
highly precise solution for the reflected cylinder can be used as
analytic standards, A case is chosen which, in the context of the
model, most closely approximates the Advanced Power Reactorlo concept
being studied at the Lewis Research Center. Then, using the exact
critical dimensions, the discrete angular segmentatlon programs used
in the design of this concept are employed to study the three effects
listed under the Purpose and Scope of this study (1.1).

Chapter VII contains the conclusions and recommendations drawn
from this study. The conclusions pertain both to the analytic soluw
tlons found and to the accuracies of the variocus numerical design
approximations studied, Based on these conclusions, recommendaticns
arc made as to order of approximation required for desired design

accuracies and as to where indicated sources of error might be reduced,



CHAPTER II

MONOEWERGETIC TRANSPORT THEORY

2.1 The Boltzmann Equation

The assumptions under which the Boltzmenn equation describes

neutron transport in a medium free of independent sources are listed.

1, The neutron acts as a point particle which travels in a
gtraight line with constant speed between neutron-nuclei
interactions,

2. The probability of neutron-neutron interactions is much less
than the probability of neutron-nuclei interactions and is,
therefore, ignored.

3. The neutron populaticn is sufficlently large so that statisti-
cal fluctuations may be ignored.

4, Secondary neutrons are produced at the time and position of
the primary neutrons,

5. The total cross section, o (r,E), describing the probability
of & neufron-nuclEus interaction per unit path length, is a
functicon of energy and position only,

With these assumptlons, the Boltzmann equation for a medium free

of independent sources is written asll
1
¥ s+ (DQ,E,t) +Q-Ve(r,Q,E,t) + o (r,E) 3(r,Q,E,t)

o (1,B') £(r;Q",E0,E) §(x,0’,E',t)a0 a8 (2.1)
T

1
=
I -‘D\



where the neutron angmlar flux, @(gbg;E,t); is a function of position,
anglé, energy end time; v is the neutron speed; and o (r,E} x
£(r;Q',E*-Q,E) gives the total probability of neutron transfer from
1,E' to Q,E,

The present study is restricted to the greatly simplified, mono-
energetic, stationary form of the Boltzmann equation, Elimination of

the energy and time dependence in Eg., (2.1) yields
0QVE(x,Q) +o(z) 8(r,0) = 0(3)G(_l:)f £(r;Q'0) 2 (x,Q')dQ’ (2.2)
o0

vhere c(r) is defined as the mean number of neutron secondarles per

collision and enters from the operation
_/ £(2:0", B0, E)AE' = o(z) £(z;0'0)
El

where c(r), o(r) and f(r;Q')) are one group, spectrum averaged values,
In crder to demonstrate Case's singular eigenfunction technique,
Eq. (2.2) is written for infinite plane geometry with dependence on

one coordinate only, In planer geometry we have the relations

3

o

QOVQ == IJ,

A
, where p ={l-z,

le 4
o]

and also did' = 2mdp', -1 <p =<1,

With these substitutions, Eg. (2.2) becomes
1

m g;i (z,b) + c(z)@(z,u)_ = G(z)c(z)2nf Fz;2'-0) 2 (z,u')au", (2.3)
-1

Eq. (2.3) is further simplified by the restriction to isotropic

scatterings in the laboratory system, In this instance,



£(z;0'%) = 1/4 .

Finally, the spatial variation is expressed in neutron mean free paths

through the definition:

: Z
X =fo(z')dz'
o

o _ o
from which follows 5z o(z) 5% ¢

With the above substitutions, Eq. (2.3) becomes

1
DQ c t t
Boi— (xM) + 3(xu) =5 R CHVRDI- TR (2.4)
dxX 2 1
Eq. (2.4) 1is the stationsry, monocenergetic, one-dimensional, Boltzmann
equation for a source-free, isotropic, homogenecus medium in plane
geometry for which Casel developed the sinpular eigenfunction solutiocn.

2.2 Case's Singular Eigenfunction Method

The solution to Eg. (2.4) is sought through the separation of

variables technique. Thus we assume a general solution of the form

8(x,n) = X(x)oln) (2.5)

substitution of Eq. (2.5) into Eq. (2.4) yields

1
we () EXG% + X(X)olu) = 5 X(X)fl p(p')du’ - (2.6)

After collecting like variables in Eq. (2.6) we obtain
1

1 dAX(x) 1\,
T :El-b;(u)./_‘l wlht)an’ -

(2.7)

T|F
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Next, each side of Eq. (2.7) is set equal to the separation constant,

-1/u, to obtain the two equations:

dXdJ(CX) . ng) -0 (2.8)
(% ] %)Ep_c_(u ) f ol Y (2.9)

The sclution of Eq. (2.8) is immediately written as
X(x) = (constant)e'x/u. (2.10)

To obtain the solution for Eq. (2.9), we first normalize

1
f plp)du

-1

H
[

after which Eq. (2.9) becomes

I

(v - wolk) C—EU (2.11)

Eq. (2.11) yields a family of nonsingular and singular solutions
depending on the value of u. For uy[-l,l], we have two discrete solu-

tions given by

® 1 (8) = 5 5 (2.12)
where + u, ére the roots of the dispersion function
A(v) = 1 - cutanh™t(2/v) = O. (2.13)
For ve[-1,1], we have a continuum of solutions
¢, (k) = 5 P B-ljg + A {(v)a(v-p) (2.1L)

where A (v) is the function of Case defined by

Mu) = 1 - cutanh"l(u), (2.15)
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and P indicates that the Casuchy principal value ig teken for integrals
involving mu(u). Collecting Egs. (2.10, 2.12, 2.14), we write the general

solution of Eq. (2.4) as

§{x,p)

a'o+%+(p)e'x/U°+ ao_[po_(u)ex/u% / A(U)tpu(u)e—x/udu.

(2.16)

A
[

=l =y

Casel proved a completeness theorem for the above expansion which isg
constructive in the sense that it provides a method for obtaining the
expansion coefficients. He also proved a partial range completeness

theorem. 8ince these proofs are rather involved and are well documented,
we do not include them here. However, an analogous proof for the eigen-
functions developed in Chapter IIT is presented in Appendix B.

2.5 The Integral Transport Equation

Attempts by Mitsis to apply Case's method for solving the Boltzmann
equation in other than plane geometry were unsuccessful. However, suc-
cessful applications were obtained in spherical and cylindrical geometry
after making suitable transformations of the integral form of the trans-
port equation. Here we wish to show the equivalence of the Boltzmann
equation and the integral transport equation. First the monoenergetic,

stationary Boltzmann equation as it appears in Eq. (2.2) is rewritten as
Q- ve(r,0) + o(@)e(r,Q) = alr,0) (2.17)

where the source term, q(r,Q), is given by

a(r,q) = a(r)e(r) 'f(r_;gz_' - Q)8(r,0")aq’.

BN
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With the position vectors as shown below,

we define r = + sQ and write Eg. (2.17) as

Io
2 (1, +50,0) + o(zo +50)8(x, +50,0) = qlzo +50,0)- (2.16)

Operation on Eq. (2.18) with the integrating factor

S
exp‘ ‘ c(zp-+s'g)ds]
. -0
results in :

s
a 1] 1 L} 1
E{exp[j_io(;_o +s'0)ds ]Q(E_o + s@_,_@)} = expumc(zo +8 Q)dS}Q(ro + 80,0R)

(2.19)
as can be ;hown by applying Leibnitz's Rule. In Egq. (2.19} we replace
s by &' and s' by s", then operate by the integral over s' from -
to s obtaining

8
g' 5!

8
exp[f g (£0+s"9_)ds']§(£0+s'§_3_,g) =f exp[fo (£O+s"_0_)ds']q(r0+s'Q,(_’é)ds'.

-G

e (2.20)
In evaluating the left hand side of Eq. (2.20) at the lower limit we

assume thet
lim 3(r, +s'Q,Q) = O.

s' - =m

Transposing the exponential term on the left hand side of Eq. (2.20),
dividing the range on the integral in the transposed exponential from

- to s' and from s' to &, and, after cancellation, we obtain
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8
3(r, +80,0) = f
-c

Now recalling that r = r, +8Q, r, = r - 80, we write Eq. (2.21) as

g
exp -[f o (ro +S"g)d8”}q(£p +s'g,Q)ds'.  (2.21)
8

S ]

$(r,Q) = f exp[—f c(£+[5"-519)d8']q(1+[5'-S]g,g)dS‘- (2.22)
ol--1 s!

Next, inserting new verisbles p" = s-s" and p' = s-s8', Eq. (2.22)

$(r,Q) :fexp(-f c(;—p"g)dp‘]Q(g-P'Q,g)dp'- (2.23)
-~ 0 L Jo

Returning to the more conventional displacement variable, we let

becomes

t

p' = s and p" = s' in Eg. (2.23) obtaining

o) 5
3(r,Q) = fexp [— f olr - S'Q)ds] a(r - sn,n)ds. (2.24)
6] 0 .

Upon imposing isotropic scattering on the source term, thereby eliminating

its dependence on Q' as it appears in Eq. (2.17), Eq. (2.2L) becomes
s

8(r,Q) = IE-?_/OEJCP[' lc(z- s'g)ds':lc(z— sRle(r -sn)#(r -sn)ds.  (2.23)

In order to eliminate the angular dependence, we operate on Egq. (2.25)

with the integral over (Q as follows:
8

f@(;:,fi)dﬁl = 4"17/:[ exp -fc(z - s'Q)as’|o(z - s)e(r - Q)E(r - )dsdq,
{ Q0

0
- (2.26)
let r' = r - s, and recognize that the volume element dsdl =
dz'/|£-£'|2, and use the definition for optical length, ""(|.I_'"£l) =
|2z
'/O. o(r-s'Q)ds', to obtain
1 expl -7(|z' - )]
t(x) = ;7 o(z')e(z')e(xr')dr'. (2.27)

T! |£-£l|2
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After expressing the volume element dr' as 4"r' and changing the

spatial varisble to mean free paths, Eq. (2.27) becomes

L feleer 2.28
$(r) =y “—E—F—C(T ye(x' )d r’ (2.28)
Finally we rewrite Eq. (2.28) in terms of the neutron density by
multiplying through by the average speed, v, and using p(z) = vé(z),
to obtain
e lz-r' |
e(r) _E_ "—‘!Tg C(I")D(I")dr (2.29)

Eq. (2.29) is the stationary, monoenergetic, integral transport equation
for the neutron density in a socurce free, homogeneous medium with

isotropic scattering.



CHAPTER III

SOLUTION FOR THE BARE CRITICAL CYLINDER

3,1 Transformation of the Integral Equation in Cylindrical Geometry

The monoenergetic integral transport equation, Eq. (2.29), is

written for a single region as follows:

- r - r'l

p(r)—-—-—-f p(r e T T g3, (3.1)
1‘2

where ¢, the mean number of neutron secondaries per collision, is a con-

stant. We wish to apply this equation to the bare cylindrical geometry
shown in Fig. 1. In Fig. 1 we have represented the position r' by the
cylindrical coordinates (t, @, z) and have located r at (r, c, o). We

observe from Fig, 1 that
IE"E'IE e X+t = xo +t2-2rtcos(a)—kze, (3.2)

Expressing the volume integral over 3' in c¢ylindrical coordinates,

Eq. (3.1) becomes

21 =3}
p(r) = Ifﬁftp(t)dt f w f exp[-x'\;iaz: 22] dz, (3.3)
e} o] -0

where R represents the radius of the outer boundary and the limits on

z correspond to the axially infinite cylinder.

The integral over z is reduced by first defining IZ as

I - exp[-x,\/ +Ez?x)3]

Z x2 1+ (z/x)% (5-4a)

Then IZ can be written as

2 4z
IZ:K_E.[JW [exp[-u,\/l+(27xi2] du. (3.4b)




Figure 1. - One region cyl-
indrical geometry.
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Substituting v = z/x, Eq. (3.Ub) becomes

[- -]
I =2 dufe"P ['u'ﬂ*;]av. (3.hc)
b4 X O )j+va
Now by defining t' = L +v2, we can express Eq. (3.lUc) as
o0 ©
-ut'_,,
1 =2 u/Pdu 4{‘51:::2257'- (3.44)

The second integral in Eq, (3.4d) corresponds to the Laplace transform
of F (t') = (t'® —l)'1/2, which is equal to Ko(u), modified Bessel

function of the second kind; therefore,

==

2
I, =% fKo(u)du. (3.4e)
X
Finally, we make the substitution, u = x/u, into Eq. (3.lte) obtaining
1
I =2 f&_ﬂ.’_‘/ﬁ - (5.4F)

Substitution of Eq. (3-4f) into Egq- (3.3) and expressing x as in

Eg. (3.2) results in
R

2n 1
o(r) - ‘2% ftp(t)dt f o fKO( Nk .u2rtc08(a))iig . (3.5)
o) o]

Q

The integral over ¢ in Egq. (3.95) is performed by applying the addition

theorem for the modified Bessel function of the second kind; namely,

(3-6a)

A

JYE + 12 -Ertcos(a)) N < ino Kn(r/u)In(t/u), rezt
KO( b B _zme }Kn(t/u)In(r/u), r £t

and noting that "

2
ing 2r, n=0
.{ et ™Maa = g: n 0. (3.6b)
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The result of thislprocedure is an integral equetion for the neutron
density distribution with integrals over the radial variable, t, and

the transformed variable, .

o(r) = c fgig[ffc (x/w)T (/) tp(t)at

R
v .[Ko(t/u)lo(r/u)to(t}dt] (5.7)

3.2 The Pseudo Neutron Distribution Funection

Adopting the nomenclature of Mitsis,2 we define the kernel appearing
in Eq. (3.7) as a pseudo neutron distribution function, &(r,u), related

to the neutron density such that

1
o(r) = ‘/‘§(i’ ) dp, (3.8)
o .

where

3(r,u) = c[fKo(r/u)Io(t/u)tp(t)dt

o

R
. fKo(t/u)Io(r/u)tn(t)dt]- (5.9)
ha

Next, we wish to show that &(r,pn) obeys an integrodifferential equation
made up of first and second derivative terms. In taking the first

derivative, we use the relations:
T . i _ .
Ko(z) = Kl(z),Io(z) Il(z)

Use of Leibnitz's Rule and the above relations yields the first derivative

of $(r,u) with respect to r as

, R
b@bgr,ul _c [_le(r/u)Io(t/u)tp(t)dt + fKo(t/u)Il(f/u)tp(t)dt]- (3.10a)
r m T

o)
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The second derivative is found by continuing the above procedure and
uging the additional reletions:
1 1
1 _ = K7 - - - = .
1i(z) = 1 (2) - = I;(2)K (2) = -K (2) - 7 ¥ (2);
and the Wronskianl2 for the modified Bessel functions:

K (2)1 (z) +K; (2)1,(2) = 1/z.

Use of the above relations yields the second derivative of &(r,u) as

b?r(r,u) u‘; / [K (x/u) + £ K (r/u)] I_(t/p)tp(t)at

lI

+

ﬁ; Ko(t/u)[lo(r/u) -g Il(r/u)]tp(t)dt

r

cp(r). (3.10b)
Now substituting from Eqs. (3.9), (3.10a) and (3.10b), we form the

equation:

zé(r,u) 128(x,p)
dr T dr

1
- IIE'Q(I':H') =

r
fg [[KO(T/M) +% Kl(r/u):llo(t/u)tp(t)dt +

—fK (4/u) [x (r/u) B I (r/m] it - e () +
r R
Ec; [-[Kl(r/u)Io(t/u)to(t)dt +[Ko(t/u)Il(r/u)tp(t)dt]-

R
%[[Ko(r/u)lo(t/u)to(t)dt *[Ko(t/u)lo(r/u)tp(t)dt]. (3.10¢)

Canceling like terms on the right hand side of Eq. (3.10c) and substi-

tuting Eq. (%3.8) for p{r) we obtain
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1
528 108 §(r,u')
—E).I('%.lﬂ' = -—(EJ—) u (o(r:u-) = 'C/O- I-lv FL dp' - (3.104)

Having shown the integro-differential equation that $(r,u) cbeys, now
we need to establish the boundary conditions satisfied by 3(r,p)-
Inspection of &§(r,u) as defined in Eg. (3.9) at the core centerline,
r = o, with the consideraticn that IO(O) = 1 and that the limit of

t Ko(t/u) =0 as t -0, establishes the boundary condition:
8(o,u} finite. (3.11a)

The outer boundary condition is constructed by first substituting r = R

into Bq. (3.9) to determine & (R,w) as

#(Rou) = © u/;ko(R/u)Io(t/u)tp(t)dt- (3.110)
(o}
Next, substituting r = R into Eq. (3.10a) yields for the first deriva-
tive term
" R
de(r,p e
Sl IRE I S RCEIOES (5.11)
r=R (o}

Inspection of Egs. (3.11b and c) as combined below establishes the
outer boundary condition as
‘ pé(r
KO(R/u) ——b(l,-%}il _L(_R/L $(Ryn) = 0. (3.114)
r:R .

3.3 Singular Eigenfunction Expansion and Sclution

In developing the eigenfunctions, we assume a solution of Eq. (3.10d)

of the form

B (51) = B (0, (u). (3.12)



. 2
Substitution of Eg. (3.12) into Eq. (3.10d) and using 1/v" as the

separation constant yields

a*R,(r) (r)
- RS NCRY

and
1
Mv(u‘)

1 l) 1

—_ . =M (H) = o — dp'-
2 ]

(H v v o B

The general solution of Eq. (3.13) is

Rv(r) = alo(r/v)-+5Ko(r/§).

To find the eigenfunctions and eigenvalues of Eq. (3.14)}, we first

normalize by setting

1
/‘ M)
1
=1
= du
o M
after which we have
(V@ -u2)M (u) = efuf 05 51

Here we find it convenient to make the definition

T]v(u) = Mv(“)/uey

21

(3.13)

(3.1h)

(3.15)

(3.16)

(3.17)

(3.18)

where we call ﬂv(u) our pseudo eigenfunction. Substitution of Eq. (3.18)

into Eq. (3.17) yields one discrete solution as

2

o
ﬂo(u) pv-pr vg{0,1]

where v, is obtained from the dispersion function, Eq. (2.13), For

vel0,1], a continuum of solutions is obtained as

M) = e g + A(V)5(v - u)

(3.19)

(3.20)
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where P denotes that the Cauchy principal value is taken for integrals

invelving ﬂv(p), and A(v) is the function of Casel given by Eq. (2.15).
When Mitsis2 introduced thege pseudo eigenfunctions, he initially

congldered both positive and negative ranges on the elgenvalues, and

then observed that the pseudo eigenfunctions are related to the plane

geometry eigenfunctions of Case, Egs. (2.12) and (2.14k), in the following

manner:

Tolk) = o () +o__(k)

and

N,{k) = o (W) +o_ (u)-

Mitsis went on to complete his bare core soclution in terms of the plane
geometry eigenfunctions. Therefore, the Mitsis solution depends on
half-range plane geometry eigenfunction completeness theory which
involves the calculation of X-functions. Here we take advantage of
the evenness of the pseudo eigenfunctions and the dispersion function
to consider only those eigenvalues in the positive half range. In
Appendix B we prove a fullw.range completeness thecorem for the pseudo
eigenfunctions and sﬁow its easy extension to the half range. This
procedure provides a basis for developing the solution entirely in
terms of the pseudo eigenfunctions. TIn addition to the theoretical
consistency of the present approach, the resulting solution provides
a simpler sequence for obtaining numerical results than the approach
taken by Mitsis. The numerical results from both approaches are
equivalent. Furthermore, the proof of completeness for the pseudo
eigenfunctions involves orthogonality and normalization relations

developed in Appendix A which are very useful in obtaining the solution
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for the two-region problem. Efforts to obtain & two-region solution
with the Mitsis approach, that is, using the plane gecometry eigen-
functions, were unsuccessful.

Proceeding with the bare core solution, the general solution for
$(r,u) is obtained by substituting Egs. (3.15), (3.19) and (3.20) into

Eq. (3.12) yielding

OsrsR §r,p) = (a1 (v/v,) +bOKO(r/vO)]u2Tlo(u)
O=spu =1

1
+ f[A(v)Io(r/v) +B(v)Ko(r/v) ]p.e'ﬂu(p.)dv- (3.21)

For a critical system, c, the mean number of neuwtron secondaries
per collision, must be greater than unity. 1In this instance, v, 8s
given by Eg. (2.13) will be purely imaginary. Thus, in Eg. (3.21},
Io(r/vo) becomes Jo(r/|vo|) and Ko(r/vo) is equal to % i[%#r/|v0|)+
iY(r/lvD|)]. With the singular nature of Yo(r/]vo|) and Ko(r/v) at
r = 0, bo and B(v) must be zero to satisfy the boundary condition,
Eq. (3.11a). Eq. (3.21) for the pseudo distribution function is now

rewritten as

1
& (r,u) = a g (x/ v, u Tl u)+fA(v (r/v)u" M, (k)av (3.22)
o]

The next step in the solution is to substitute $(r,u) as defined
in Eq. (3.22) into the outer boundary condition, Eq. (3.11ld), yielding

Ky (R/WT (R I )k (R/w)ay (R |v, 1)

m = |v | 8k ﬂ W)

+

(K (R/u)I (R/v) KO(R/u)Il(R/\;) >
f% " A(v)e™N, (W)dv = O. (3.23)



Multiplying Eq. (3.23) by R/pe, we obtain

%Kl(R/“)Jo(R/I\’OU ) K, (B/u)d, (R |y, |) fe 1L (v)
m [V oo
1
+fA(V)Q.(V’lJ»)T]v(u)dV = 0, (3'21*)
o

where

a(urm) = Sy (BT, (/%) +3, (BT, (B/).

At this point we wish to separate Eq. (3.24) into singular and

nonsingular parts. This is effected by defining the function:

I (R/) %

1
IO(R/v) Q(VJM) -1

H{v,u) = g (3.25a)

W

or

I, (R/v)
Hlow) = 5 15 K RT,E/) +5 KWT W) Tgry - li- (3.250)

Considering the behavior of the modified Bessel functions as shown in Fig.
2 and the asymptotic expressions, Egs. (5.10) and (5.11), pg. 55, it can
be seen that H(v,u) is a bounded function. This procedure closely parallels
the work of Mitsis.2 However, the functlon of Mitsls which corresponds to
H{v,u) is unbounded. The reformulation of H(v,u) as presented here is sug-
gested in the general solution of G-J‘.bbs4 for arbitrary convex bodies,
8ince v and p range over the same values, it can be shown with
the use of the Wronskian that H(v,u), as defined in Eq, (3.25b), is

indeterminate. Use of L'Hospital's rule yields H{wv,v) as
' R? 2
H(vsv) = 55 KoB/W I RV I (R/v) ~ I (R/V) (3.25¢)

which is also a bounded function.



Iglx), Kolx), Ij(x), and Ki(x)

Figure 2. - Modified Bessel functions.
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Next we rewrite Eg. (3.25a) as

I, (R/v)
alwm) = 22y {1+ (v = (o)} (3-254)
(o

and substitute for gq(v,u) in Eg. (3.2L) obtaining

% IO(R/v)

J A(v) T {l-+(v-u)H(v;u)}ﬂv(u)dv

Ky (R (R [y ) K (R (R v, )

3 m [V

Ragly(w)e  (3.263)

Now returning to the pseudo eigenfunction as defined in Eg. (3.20) we

note that
1 1 1
2 2
_[(v-u)'ﬂv(u)dv = [(v-u)[cP ——Hv_u + X (v)?:(v-u)] dy = c_[vv+u dv.

(3.26b)

Using this observation, multiplying through by IO(R/H); and transposing
terms, we complete the separation of Eq. (3.26a) into singular and non-

singular parts as

1
Sromwas - e (3.272)
(o]

where
K (R/w)Iy (B |v,])

[V |

Kl(R/u)Jo(R/]vol)%
"

' () = I_(R/u)

Ra 7, (k)

1
- C.[A'(V)H(VJM)VQ dy (3.27b)

v+

and A(v) = AT (R/V) . (3.27¢c)
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The discrete expansion cocefficlent, &, is chosen to correspond to
some arbitrary power level and is thereby set equal to unity. The remsin-
ing problem is to find a solution for the continuum expansion coefficient,
A'(v). Eg. (3.27a) does not provide a closed form sclution for A'(v)
because of the nondegenerate Fredholm term appearing in the definition
of $'(u). However, an iterative solution for A'(v) can be constructed,
provided that a free expression for A'(vj can be found. Now Eq. (3.272)
is the equivalent half-range form of Eq. (B.2a) in the proof of complete-

ness for the pseudo eigenfunctions. Therefore, the desired free expres-

sion for A'(v) corresponds to Eq. (B.l5) which we write as
1
' 1 2 '
W) = gy [0 (5:28)

where N(v) is the normslization function for the continuum eigenfunctions,
Eq. (A-31). The criticality condition is the auxiliary condition Eg.

(B.11la) in the completeness proof, expressed over the half range as

i
25
C‘o/. Eﬁ_-([%rg d.p, =0. (5-29)

Eqs. (3.278, b, ¢), (3.28), and (3.29) form the sclution for the
bare critical cylinder, Successive approximations are constructed by

the following scheme:

Al(w) =0 (3.302)

K (R/w)I (R v D) % (R)T (R |y, ])
[V, i M

8 (k) = I (R/W)RT, () (3.300)
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1
A V) = m%)'_[uaﬂ\,(u)@;l(u)du (3.30c)
Al L (WIH(v,p) VR
8 () = 8l(u) -c_of o+l v dv (3.304)
Fuze! L (u)
°.[ :TH}TO% dp = 0. (3.30€)

The critical core radius is found by conducting & radius search to
satisfy the criticelity condition, Eq. (3.30e), for a convergent itera-
tive sequence for A'(v), Egs. (3.30a through 3.304). Aftér the critical
radius and converged expansion coefficients are obtained, the neutron
density distribution can be calculated as

L
o(x) = a g (/o) + far vy, (3.31)
[}

which we have obtained by operating on Eq. (3.22) as in Eq. (3.8),
substituting A'(v) from Eq. (3.27c), and using the normalization, Eq.
(3.16). Numerical results for the bare critical cylinder are presented

in Chapter V.
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CHAPTER IV

SOLUTION FOR THE REFLECTED CRITICAL CYLINDER

4.1 Formulation of the Hquations

The solution for the two-region problem generally follows that of
the one-region problem. However, here we have the added complexity of
an intermediate boundary separating the core region Cl > 1, and the
reflector region, Cy < 1. We begin by rewriting Eq. (2.29), the mono-

energetic integrsl transport equation describing the neutron density

in an isotropically scattering medium as

o(x) ZE]'-',/,- C(E')o(_{')e_lz-z | or (1)

s z-z']?

where c¢(r') denotes the mean number of neutron secondaries per collision
and distances are measured in mean free paths. By assuming a constant
neutron meanh free path throughout, we are able to aspply this equation to
the two region cylindrical geometry shown in Fig. 5.. In Fig. 3 we have
represented E' by the cylindrical coordinates (t, o, z) and have located

r at (r, o, o). We observe from Fig. 3 that
|z -z'|" = % 4 o° = oF +t2-2rtcos(a)-+22

Expressing the volume integral over r' in the cylindrical coordinates,
Eq. (4.1) becomes

R2 217
I}—ﬁ- c(t)tp(t)dt_o[dafe@[;a“?_czgzaj (4.2)

Qo




Figure 3. - Two region cylindrical
geometry.
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where c(t) = C;» 0 =t =Ry; c(t) = Cyy Ry £t £R,, and the limits on
z correspond to.the axially infinite cylinder.

The integral over z in Egq. (4.2} is reduced in the same manner
as in Chapter III, Egs. (3.4a through 3.4f). Under this procedure

Eq. (4.2) becomes
R 2m \

1
o) = & [ etwraas [ e [ Ko(~/r2+t2-§rtcosfa>)%- (1.3)
o]

[] o

The integral over ¢ in Eq. (4.3) is performed by applying the addition

theorem for the modified Bessel function of the second kind,

IV
t'-

1A
-

n ~ K, (t/p)T (r/u) r

KO(«/“ 12 -2rtcos<a>) i einot} Ko (F/W)T, (t/u)

-l

and noting that -

e
irﬂ - 2'”, n:O
1{-e Ay = 0, n#0

The result of this procedure is an integral equation for the neutron

density in each region given by

r

1
p(r) =_[E§- {Clﬁo(r/u)lo(t/u)tn(t)dt

O=fYr =R
1 R

1
v oy [ (/e ea (e

Ro
i Koct/mo(r/u)tp(t)at} , (1. ln)
1
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1 R
1
po(T) =‘o/%{Cl[Ko(r/u)Io(t/u)tp(t)dt

r R
v ep Sk (/w1 (Heyte(e)as + CQ[KO(’E/M)IO(r/u)tD(‘G)dt}-
E UNEY

4.2 The Pseudo Neutron Distribution Functions

As in the bare core solution, we again adopt the nomenclature
of Mitsis2 by defining the kernels appearing in Eqs. (4.4a & b) as

pseudo neutron distribution functions related to the neutron densities

/8 (5 0)
py (r) = [ pe o dus (4.52)

1
oty = [ Eelid (. 5b)

such that

where
r

8, (rou) = Cl[Ko(r/u)Io(t/u)to(t)dt

Ry

R
1
+ clf Ko (6/w) T, (r/n)tp (t)dt
r

liA

o0 =r

2
. ¢, ﬁ/5 Ko (6/0) T (x/u)to (£)at, (t-6a)
8 .
and

) |
8,00 ) = cldéﬁ Ko (r/w)I, (t/u)to(t)at

<y <
Rl £r _R2 r

W EXCREXUAIIEE
1

By

N A O N RRIBLS (1-60)
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Next we wish to show that both @l(r,u) and Qa(r,u) obey the same
integro-differential equation, Eq. (3.10d4), obeyed by the pseudo neutron
distribution funetion in the bare core solution. Toward this end we

take the first derivative of Ql(r,u) and Qg(r,u) by using the relations

Ké(z) = -Kl(z) and Ié(z) Il(z), and Leibnitz's rule to obtain

T
3, (xr, c
d ;ir ) =[x (/)T (6/u)te(t)at

(=}
1
.- f Ky (8/u) T, (r/w) e (6)at

R
2
2 15(/ K, (66 (v/u)to (£)at, (b.70)
1
and R
28, (1) C
R AU X RO

r
- Sj— E%/’Kl(r/u)-'Ec,(‘c/u:)tp(t)dt
1

R
o
+%[Ko(t/u)Il(r/u)to(t)dt- (4.7b)

We find the‘second derivatives by continuing the above procedure,
using the additional relations
1 1
1 _ - ! = = - —
Ij(z) = I(2) - T 1,(2), Kl (2) = - K_(2) - 3 K, (2)
and applying the Wronskin for the modified Bessel functions
Ko(z)Il(z) + Kl(z)Io(z) =1/z

+to obtain
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by
2
o) Q;_S:U‘) - E.QL [[KO(T/U) +}r£ Kl(r/u)]Io(t/M)tD(t)dt

R

" 1
+ E%f Ko(t/“)[xo(r/u) -*% Il(r/u)]tp(t)dt
X

R
2
¥ E% ﬁf Ko (6/m)[1,(r/u) -& 1) (r/1)] to(t)at - Cypy (x)
1 (L.8a)

and

2 1
d @Zg,u) =E_;Z[Ko(r/“)+% Kl(r/p)]lo(t/u)to(t)dt

r
- 1:{f [Ko(a/u) +§ Ky (#/w) o (6 /u)ea(t)at
!

R
2
+ S;[ K (t/w)[ I, (/) -£ 1, (x/w)] to(€)at - Cypy (r)
(I.80)

Now substituting from Egs. (4.6a), (4.7a), and (4.8a), we form the

equation
281 (r,H)

br

bzil(rsp‘)

—-—.07——-1-

1
r

L
- ¢, ()

M

L R
1
= -E% [[Ko(r/u) +£ Kl(r/u)] I (t/u)te(t)at +9% [ Ko(t/p)[ID(r/p,)

R
c 2
- 1 (/u)] te(t)at ] E{ Ko (/W[ I (r/u) - & 1) (r/u)] to(t)at

T R
oy () -2 [Kl(r/u)lo(t/u)tp(t)dtJfg—; [ K (/T (e wte(e)ar
R2 r

‘2 fKo(t/u)ll(r/u)tp(t)dt-%;Ko(r/u)lo(t/u)to(t)dt .
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Q

Ry ‘
- ;%f K (t/u)Io(r/u)tP(t)dt

o)

R

2
_.E.Z. fKo(t/lu)ID(r/u)tp(t)dt. (4.9a)

Ry

Upon cancellation of like terms in the right hand side of Eq. (4.9a)

and the substitution of Eq. (4.5a) for pl(r), Eq. {%.9a) becomes

1
2 3, (r,u'
d<%1(r,u) lb@l(r,u)_i 8, (r,u) = -C L(rsu') au,
T ar T or s Y oow

(4. 9p)
which ig identical in form to Eq. (35.10d). Now substituting from

Egs- (4.6b), (4.7b), and (k.Bb), we form the equation

biz(r:u)
dr

Dz§2(r:U)

1
o tF

1
= 73 QZ(TJH)
"

Ry

r
= gé- [Ko(r/p.) +—¥- Kl(r/u)JIo(t/u)tD(t)dt +’E‘§ J[Ko(r/p,)
1

o]

k=

+

p e, /2
;Kl(r/u)]lo(t/u)tp(t)dt +;§~J[ Ko(t/u)[lo(r/u)

R
1
1y e/ fo (0t - cana(e) - B [y (e (ohes (0o

. Ho
2 [k e/ e ()as <& [k 6T (e/urto(t)as
R r

b

€

%flK (r/u)I_(4/p)te(t)at - & f (r/ t/
[ % w)I_(t/p)te % { K (r/w)I_(t/ulte(t)at

B>

- ng Ko(t/u)Io(r/u)tp(t)dt. (4.10a)
xr

(9]
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Upon cancellation of like terms in the right hand side of Egq. (4.10a)

and the substitution of Eq. (4.5b) for pg(r), Eq. (4.10a) becomes

%2 (r,u) 28z (v 1 '
1 sh) 1 d2 (r,u')
are + T 3z T LT $2(r,u) = -sz —_M'z dpt, (4.10b)
: o

which is identical in form to Egs. (4.9b) and (5.104).

Having established that §1(T:M) and Qe(r,u) obey the same integro-
differential equation that arises for $(r,u) in the bare core solution,
we now wish to determine the boundary conditions satisfied by @l(r,u)
and ée(r,u). Inspection of Ql(r,p) as defined in Eq. (L.6a) at the
core centerline, r =0, with the consideration that IO(O):zl, and that

the limit of tKO(t/u):zo as t - 0, ‘establishes the boundary condition:
@l(O,u) finite. (4.11)

Next we evaluate @l(r,p,) and me(r,u) as defined in Egqs. (L4.6a,b)

at the core-reflector interface, r:Rl, obtaining

By o
3 (Rysm) = € [Ko(Rl/u)IO(t/u)tp(t)dt+02 R/Ko(t/u)IO(Rl/u)tp(t)dt,
1
(k.12a)
and R R2

1
85(Rys1) =cl[KO(Rl/u)IO(t/u)tp(t)dt+c2 RfKo(t/u)ro(lal/u)tp(t)dt-
1

(4.12b)

Comparison of Egs. (4.12 & and b} ylelds one interface boundary condition as

él(Rl’u) = §2(Rl,u)- (M'lB)
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A second interface boundary condition 1s established by eveluating

the first derivative terms, Eqs. (4.7a and b) at r =Ry, obtaining

Ry 5
-5 Propmmons foshnapmon
r=Ry 1 (h.1ha)
and R o
1
Ralr) |- f K (R /W) T (t/w)ee(t)at +22 f k (6/u)T (R /u)ta(b)at
r =R, 1 (4.14b)

Comparison of Egs. (4.1la & b) yields the second interface boundary

condition as

D&, (r,u) d¥2 (r,u)
—_—— | = — (4.15)
dr dr

r=Rl r=Rl

It is interesting %o note that the result of cperating on boundary
condition (4.13) by Egs. (4.5a, b), thereby converting to the neutron
density, is the familiar continuity of scalar flux across the interface
boundary which is used in neutron diffusion theory solutions, The
result of performing the same operation on boundary condition (4.15)
is equivalent to the continuity of the neutron current. This equiva-
lence is dependent on ldentical diffusion coefficients in each region
which holds here due to the identical total cross sections and isc-
troplc scattering in the postulated two-region model.

A fourth boundary condition is sought at the outer reflector
boundary, r=R,. First we evaluate Qg(r,p), Eq. (4.6b), and its first

derivative, Eg. (4.7b), at the outer boundary, obtaining
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By 2o
8, (Rypi) = Cy _/-KO(RB/M)IO(‘fa/u«)tp(‘G)d‘G +C, R/‘ K_(Ry/w)I (t/n)te(t)dt,
? 1 (4.168)
and Rl Rg
d3; (¥, 1) -4 fKl(RQ/u)IO(t/u)tD(t)dt-% p/ Ky (Ry/w)T_(t/u)tp(t)at.
ox r=R, ° 1 (4.160)

Inspection of Egs. (4.1l6a,b) as combined below establishes the outer
boundary condition as

KO(RE/M) 0%’2_5‘_1'_:%_) + E;I(Bﬂl ¢ (Rysu) = 0, (4.17)

r==R2
which corresponds to Eq. (3.11d) in the bare core sgolution.

In summary, we have developed two pseudo neutron distribution
functions given by Eqs. (4.6a,b) and have shown that they obey the
same integro-differential equation, Egs. (4.9b), (4.10b). Also we
have established four boundary conditions, Eqs. (L.11), (&.13}, (L.1%),

(k.17), satisfied by the pseudo neutron distribution functions.

L.3 Singular Eigenfunction Expansion and Solution

Since it was shown in the previous section that both Ql(r,u)
and ég(r,u) obey integro-differential equations of the same form as
Eq. (3.10d4) in the bare core solution, the general solution for
@l(r,p) and ég(r,u) corresponds to the form of Eg. (3.21) which we

write here as

8, (ram) = [0, To(x/v, ) + B Ko (2/vg ] oM, , ()
1=1,2

1
+f[a£vlo(l"/v) + BMKO(r/\»)]ueT]“(u)dv (4.18)
o)
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where ﬂoﬂ(u) and_ﬂzv(u) are given by Egs. (3.19) and (3.20), respectively.
Two additional aspects of the bare core solution are present here for the
pseudo neutron distribution function in the core region., One 1s that Vol
will again be imaginary, giving rise to regular Bessel functicns, and the
second is that the centerline boundary condition, Eq. (4.11), is identical
to the bare core centerline boundary condition, Egq. (3.1la). Therefore,
Eq. (4.18) for él(r,u) reduces to the form of Eg. (3.22) which we write

here as
1

8 (Tou) = boJo(r/|vol|)u2ﬂol(u) + '[B(v)Io(r/v)ugﬂlv(u)dv . (4.29)

Adopting more specific symbols for the coefficients in the reflector

region, we write Eq. (4.18) for ég(r,u) as

éz(r,u) = [}OIO(T/vOE) + doKo(r/voei]“enoz(“)

L ,
+ /[A(v)Io(r/v)+D(v)K0(r/v)]u2TbU(u)d\’- (4.20)
(o]

The coefficients in Eqs. (4.19) and (4.20) will be obtained from
the following iterative procedure:
1. B{v) is initially taken to be zero.
2. bo is an arbitrary constant corresponding
indirectly to the power level which we set
egqual to unity.
At the core-reflector interface we obtain
3. a, &8s a function of discrete terms and B(v).
L. d as a function of discrete terms, &, and B(v).

5. D(v) as a function of discrete terms and B(vy).
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At the outer boundary we obtain
£. an inner iterative sequence for A(v) depending
on & , do’ and D(v). This sequence provides
the eriticality corndition.
At the core-reflector interface we obtain
7. B(v) as a function of 8, do’ A(v), and D{v),
completing the lterative sequence.

To effect steps 3 through 7 of the iterative solution, extensive
use will be made of the orthogonality and normalization relations for
the pseudo eigenfunctions developed in Appendix A. Ancother usefil
equation which relates the continuum eigenfunction§ in different
regions is written as
C, =C,

.jv(“') = Ei My, (W) + ( lC J) (v =-p)- (4.21a)

i

To verify Eq. (4.2la}, we substitute Eq. (3.20) for niv(“) obtaining

o 1
j e e

: =2 (0P g—p +|1-CP [ 44—y -

nav(”‘) C; i¥ ¥on +[ Cl-[v -u du:‘a(v 2

C.
+ a(v-u)-a‘:’- 5(v-u) (4.21b)
1

where we have substituted Eq. (2.15) for hi(u). Canéeling the like

terms on the right hand side of Eg. (4.21b) we have

To) = CP g + 2 (W8(v - 1), (1.21e)

which establishes Eq. (4.21a).
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Proceeding with the solution, we substitute Eqs. (4.19) and (4.20)

into the interface boundary condition Eq. (4.13), obteining

1l
b (By/ [vgy Mg (1) + f B(v)I_ (R /v (w)av

- [aoIO(Rl/voe)'FdoKo(Rl/vOEi]HEHOE(“)

1
+ /o‘[A(v)Io(Rl/v) +D(v)K0(Rl/v)] uznav(u)dvo (4.22)

Next we operate on Eq. (k.22) with the integral of ﬂoe(p) over

to yield

1
2
3o (By/ 1V 1) o/“ Mg () N (1)

1 1
+ _[d"B(“)Io(Rl/”)A% T, (w) +(92(—3:a£’-) B(v-u)g ueﬂog(u)du

1 .
= [aOIO(Rl/vog) +doKo(Rl/voe)]_[Meﬂog(u)ﬂog(u)du

1 1 .
+ _[dv[A(v)Io(Rl/v) +D(v)Ko(Rl/u)].O/;ET]ev(u)T]Oa(p,)dp, (4.23)

where we have substituted Eq. (4.21a) for ﬂlv(u). Now we apply the
orthogonality and normalization relations, Egs. (4.6), (4.7) and

(A.12), to reduce Eq. (4.23) to the form:

1
boJo(Rl/lvoll)Nol2+‘O/IivB(v)Io(Rl/V)(EaE;—CL)”EHOE(V)

= oo (Biogp)+ a K (Ry /v o) M s (k.24
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At this'point we accomplish step 4 of the iterative procedure by solving

Eg. (4.24) for d_ in terms of the other variables, resulting in

1l
d° - Ko (Ry/ Vo2 MWoa [bOJO(Rl/IvOlI)NblE"aoIo(Rl/vOE)NOQ

1
[ /v)(—a—l-)v 1,(»]- (1.25)
Q

To cbtain another equation so as to isolate &y We turn to the second
interface boundary condition Eq. (4.15) and substitute Egs, (4.19)

and (4.20), obtaining

1

Bar 5, 8/ I DTy ) ¢/ 22 1 R /oy e
© &}

) [%3511(31/(v02)'%32 Kl(Rl/v02i]“2n02(u)

1

. Uéfiégv)

Next we operate on Eq. (4.26) with the integral of ﬂoe(p,) over p to

D(v)
\Y

Ky (Ry /)] w1, (1) (1.26)

yield

1
_b 2
Toar] Iy (By/ vy )[u« Ty ()T (w)du

1
:l-/‘METLBv(M)nOe(H)dM: {]4'-27)
[e]
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where we have substituted Eq. (4.21a) for nl\;(“‘)' Now we apply the
orthogonality and normelization relations, Egs. (A.6), (A.7), and (4.12),

to reduce Eq. (4.27) to the form:

1

-[—Q—T-?JM 31 (By/ vy D¥ 10 +[dv BS“) Il(Rl/v)(-qaa;—p-L)veﬂog(v)

= I:%g—; Il(Rl/vQE) '%g; Kl(Rl/vOE)}NOE. (LI-'ES)

Now, with Eqs. (4.24) and (4.28), we algebraically eliminate do and,
after substituting the Wronskian for the modified Bessel functions,

obtain the equation for ay required in step 3 as

a = Ry 5b [Jn(Rl/|V01[)K1 (R1/Voe_) _d4 (R1/|V011)K0(R1/“na):| N
o} ol?2

o Noal Vo2 [Vorl

1
. (C C;CJ )_o/.dVB("") [ID(R;L/\J\_))I;; (B, /voz) + :F1 (RI/V)}\EO (RL/VQ?L)]\JE 02(\!);.-
(4.29)

To develop the equation for D(v) as required in step 5, we return

to Eq. (4.22), operate with the integral of ngv:(p) over u, and thereby

obtain
1
boJotal/fvﬂ!)[uenol(u)%%f— Ty (8) + (91-5—“2—) 5(v! -u)}du
1 1 ( |
2 C c, -C 1
+ ‘Z‘de(v)Io(Rl/v)_Zu ﬂl\,(u))a":ﬁ Ty w) + (_JT&) 5(v -u)fdu

1
= I:aOIO(Rl/voe) + doKo(Rl/uoe)J [;eﬂog(u)nav.(u)du

L

1
+[dv[A(v)Io(Rl/V) + D(v)Ko(Rl/v)][;szlgv(u)ﬂEV.(u)du. (4.30)
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where on the left hand side we have substituted Eq. (hk.2la) for Moy 1 ().
Now we apply the orthogonality and normalization relations, Egs. (A.6) and

(A.21), to reduce Eq. (4.30) to the form:
I B/ vy N[E5S2)v B (v1) + BT R/ 2 W (v)
1/ Vo1 ¢, AL 5 R AAREI AT C, 1

‘ flduB(v)r (/) (2% ) m ")

(o]

= [A(v')IO(Rl/u') + D(v')KO(Rl/leNQ(v')- (4-31)

Now returning to Eq. (4.26), we again operate with the integral of

Tbv'(“) over y to obtain

-=b L
1%]’ Jl(Rl/|voll)[“'2nol(N){%? My () + (g’%a)ﬁ(v' -u)}du
1

1
+fdv B 1 (r,/v) fnl\,m%%a Ty (k) + (9:-51-9:-)5( -m}du

o 1

a d, g
= [\?_02 Il R /‘\)02 -E K R /‘JOE} Oe(u)nzvl(u)d‘i

1
o

where on the left hand side we have substituted Eq. (L4.21a) for

]fu T (), 4 ()i (4.32)

Il(Rl/ v

ﬂev.(u)- Now we apply the orthogonality and normalization relations,

Eqs. (A.6) and (A.21) to reduce Eq. (L.32) to the form:
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TLF 3, (Ry/ v ll)( ) v o) Bl /) 2w ()
1

+[d\) BEJ\-‘) Il(Rl/V)(El'é-l_ca)“'zﬂlv(V')

. [A(“ L (r /) - 2y Kl(Rl/\")]Ne(V')' (4.33)

Wow, with Egs. (4.31) and (L4.33) we algebraically eliminate A(v) and,
after gubstituting the Wronskian for the modified Bessel functions,

obtain the equation for D(v) required in step 5 as

-

D(v') z%ﬁ"’f{bo(&c_fz) (v -)[Jo 1/|vm| 1 (Ry/v")

1

Jl(Rl/ [ 1 )IQ (Rl/ ') ’Cl —C |'2 ' ID(RJ_/\)le (Rl/vl)
+ [v \[)01] v ] + ( z a)[de(v)v Tilv(v )I: v

L (R,/V) T (R /v")]
- v - v ]} . | (4. 34)

Substituting Eq. (3.20) for T]lv(\)‘) in Eg. (4.34) and evaluating the

delta function leaves the indeterminate form

Fv,v') = w: 1 - [In (R1/V)I1 (R:L/VT) 5L (R:L/V)In(Pq/\)‘)]_

-y Y v

The function is evaluated by L'Hospital's rule to be

Fwv) = piy [T (R/WIT (R/V) - T, (R /)T, (B /v)] - (4.36)

W
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To accomplish step 6 of the iterative procedure, we turn to the

outer boundary condition, Eq. (%.17), and substitute Eq. (L4.20) along

with its derivative for the pseudo neutron distribution function in

the reflector to obtain

{KG(RQ/H)I1(RE/V02) + Kj(Rﬂ/u)Iﬁ(RB/vOQ)} aouenog(“)

Voz B

+ gK1(Ra/u)Ko(Rz/vna) _ Kn(Rﬂ/“)Kl(Ra/vnz)} dougﬂoe(u)

o Voz
1
.\ %!¥Kﬂ(32/t)ll(Ra/v)4.Kl(Rg/t)Io(Ra/V);,A(V)uengv(p)dv
1

M

. l }ixltaa/uixo (Ra/v) _ Ko (Ro/u)K; (Ra/v) }n(v)fngvmav 0. (4.36)

Separation of Eg. (4.36) into singular and nonsingular parts follows
directly as in Egs. (3.23) through (3.27¢c) in the bare core solution.

The result of this procedure on Eq. (L4.36) is

1
S om wa - s, (4.57)
Q
where
5 () = _REIO(Rg/u);'[Kn(Ra/uaig(Rg/vop) . Kl(Rg/uﬁlo(Rglzaal] a 7 (k)

[l ) (Rl ven) <Rg/501: (Ra/vez) ] a n_,(u)

1l
. fK (Ra/u Ko (Ro/v)  Kg(R /u)P\i (R /v)] D(v)%(u)d\,}

[o}

'(v)veH (v,u)
- 02 { v dv,
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AT(v) = A(v)IO(R/v), and H(v,u) is defined in Eq. (3.25b). To demon-
strate that 3'(u) is indeed nonsingular, we further reduce the integral
containing D(v) by substituting Eq. (3.20) for nev(p) and immediately

evaluate the delta function to obtain

1
uértﬁl(Ra/uiKn(Ra/vl ) Kn(Ra/“&Kl(Rz/“)} _%g;}%%* Vay.

Next we extract the indeterminate portion of the sbove integral and

define it as

Flv,u) = v?%-uz [Kl(Rg/uan(Rn/V) - Kn(Rz/ﬂlKl(Ra/u)] ) (4.%8)

Finally, we apply L'Hospital's rule to Eq. (4.38) for F(v,u) to obtain
F(v,v) = 52z [K) (Ry/VIK; (Ry/v) - K (Ry/VIK (Ry/v)] - (4-59)

With the above demonstration and recalling that H(w,v), Eg. (3.25¢),
is a bounded finite function, we have successfﬁlly demonstrated that
$"{(pn), as defined above, is a nonsingular function.

Now the inner iterative sequence for A'(y) required in step €
can be constructed in a manner closely analogous to that of the bare
core solution, Eqs. (3,272) through (3.29). The associated discussion
concerning the completeness theorem proof giving rise to a free expres-
sion for A'(v) and the criticality condition carries over directly.
Successive approximations for A'(vw) are constructed by the following

iteration scheme:

Aé(v) -0 (L. 40e)
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Pu) - -R210<R2/u>{liK°(Ra/tijl(Ra/v°al e S

[ lBaludha (ol vaa) | KolRaluts (a/vea) [ o o)

1

+-/.|:K1(R£/p_31{ﬂ(132/v) ) Kn(Ra/L\J;)& (Rg/v)} D(v)ﬂgv(u)dv} | (4.Lob)

Q

1
1] 1 2 1
Al (V) = O] / " ﬂgv(u)ﬁn(u)du (4.L4oc)
[ 8 e (DH(wu)V |
¢é+l(u) = @é(u) - C, uéfn T dv (Lk.kod)
1

Co f%zﬁT:(,:’_)s dp = 0 (k.4oe)

0 2

Eqs. (4.40a) through (4.L0Od) represent the innef iterative sequence
for A'(v). The eriticality condition, Eq. (4.40e), is checked after
convergence of the outer iterative sequence for a4 s D{v) and B{v)
and after g simulténeous convergence of the inner iterative segquence for
A(v). Among the solutions for two-region problems, this solution is
unusual in that the criticality condition is developed at the outer
reflector boundary.

The remaining portion of the solution is to develop the equation
for B(v) as required in step 7. Toward this end, we return to Eq. (L.22)

and operate with the integral of nlv'(u) over p to obtain
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1 1 1
b I (R / vy, [) / ueﬂol(u)ﬂlv,(u)du +[de(v)Io(Rl/v) uzﬂlv(u)'ﬂl\)'(u)du

C

1
= [E.OIO(R:L/\)OE) +doK0(Rl/v02)] /“'2'“02(“‘){%:2" '['12\)‘ (IJ') + (9-2—(—3-;7-1-) a(vl 'U)}G-LL
/ | !
[h[A(v I_(R)/v) +D(V)K (R /v) / Moy (k) )C T () +( )6(\: _u)j du

(L.b1)

where we have substituted Eg. (L.2la) for ﬂlv,(p) on the right hand
side of Eq. (4.41). Now we apply the orthogonality and normelization

relations, Egs. (A.6) and (A.21) to reduce Eq. (4.31) to the form:
B(w)I (R0 Iy (v) = [T, (Ry/vep) +d K, (R /v )] (92-5;-‘1?-) v o (")
# AT R0 +DOv K (B /9] G (1)

v/};v[A(v)I (R /v)—+D(v K (R /vi](ga-:gl) v'eﬂev(v‘). (4.42)

o}

Rearrangement of Eq. (h4.42) yields the required equation for B(v) as

B(v') = IO(RI[}"ﬂml L) {[a I (Rl/\) )+d K (R /V ](EBF;EL) v! nog(.‘-’f)

+ [A(v’)Io(Rl/v')+D(v K, (B /v’ ]c Ny (v')

1

+ﬁv[A(v)Io(Rl/v)+D(v)Ko(Rl/v):|(-g3—£L) ng\J } (4.143)

o}

We note that the integral term in Eq. (4.43) leads to a singularity.
The numerical evaluation of such singular integrals is discussed in

Chapter V.
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Finally, we identify the various equations which appear in the
iterative solution for the two-region problem previously outlined.

1. B(v) is initially taken to be zero.

no

bo iz set equal to unity.
a_ from Eq. (4.29).

3
L. d_ from Eq. (L.25).

wn

D{v) from Eq. (4.34).
6. TInner iterative sequence for A(v), Egs. (h.4Oa)
through (L.40d), criticality condition Eq. (4.hOe).
7. B(v) from Eq. {(L.L3).
Upon finding the critical core radius for given values of Cl’
: CQ’ and the reflector thickness, the expansion coefficilents can be used

to calculate the neutron density distribution in each region from

the equations:

1
o) = b3 &/ [y |) + B (/) (4.15)
. o]
oéréRl
1
0ot = 8L (x/vg) +a ko (x/vg) + f1 ) +DCK, (/)] v,
R, ST SR, (L.4E)

which we have obtained by operating on Egqs. (4.19) and (4.20) as indicated
in Eqs. (4.5a and b) and applying the normalization of the pseudo
eigenfunctions as in Eq. (3.16).

This completes the seclution for the radially reflected critical

eylinder. Numerical results are presented in Chapter V.
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CHAPTER V

NUMERICAL METHODS AND RESULTS

5.1 Numerical Methods

In obtaining numerical results from the lterative solutions developed

in Chepters III and IV, various parameters, functions, and operations

appearing in the solutions were evaluated by the following methods:

1.

The dispersion function for the discrete eigenvalues, which is
the transcendentsl equation, Eq. (2.13), was solved by Newton's
method.

The regular Bessel functions were calculated with a recurrence
relationship.

The modified Bessel functions were calculated with a series
expansion for the smaller arguments and by an asymptotic series
for the larger arguments.

Singular integrals were treated by subtracting out the
singularity, evaluating the resulting integral term by Gauss-
Legendre quadrature and evaluating the derivative term by
Lagrange interpolation.

Nonsingular integrals were evaluated by Gauss-Legendre

gquadrature.

Although these methods are generally well-known, for completeness

we shall give a brief description of each method and make appropriate

references.

For ¢ > 1 the discrete eigenvalue as given by Eg. (2.13) is purely

imaginary. The solutions developed in Chepters III and IV are formulated

in terms of the magnitude of this imaginary eigenvalue. Therefore, we
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use Newton's lteratlon scheme as

(o) -
lvli+l= |vli-A'(‘\J1ij ] .

(i=0,1,2,...)

where A(|v]) = l-c|v] tan"T(1/]v])

aa  ar(v]) = o[ [vl/(v 3 - tena/b]))].

For ¢ < 1 the discrete eigenvalue is real and we apply Newton's methed as

Y (5.2)

141 = V1 T E;)
(i=0,1,2,...)

cv vtl
where A(v) =1 - = ﬂn(v—:i')

and A'(v) = % [Ev/(vg-l) - 1n(%§%-].

\Y

Initial estimates for |w | are taken from Fig. 4. The iterative sequences,
Egs. (5.1) and (5.2), were run until the error in |w | was less than 1077,
The recurrence relation used to calculate the regular Bessel

functions is taken from Goldstein and Thaler.13 ‘The recurrence relation is

P )+ F () = () F_(x), (5.3)
The desired Bessel function is
5 (x)=Fat)s (5.4)
n o
M-2
where o = Fo (x) + 2 Ezl FEm(x) (5.5)

and M is initialized at M.

Mo is the greater of MA and ME where

_ \(x+6] if x < 5 (5.68)
[1.bx + 60/%x] if x 2 5

My

and

My = [n + x/b + 2] | (5.6b)



|v0| Imagnitude of discrete eigenvalue)
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| I I I I | I I | |

.2 4 .6 .8 L0 1.2 1.4 L6 18 2.0
C

Figure 4. - Variation of the discrete eigenvalue for 0<c <2. (Mean number of second-
aries per collision).



54

FO are evaluated using Eg.

Sequential values FM—2’ Fﬁ_5,,. « ey FE’ Fl’
(5.3) with Fy = O and F, , = 107°°. Values of a and J (X} are then

computed using Egs. (5.5) and {5.4), respectively. The computation is
repeated for M + 3 and the values of Jh(x) for M and M + 3 are compared.
If these values differ by less than 10-9, the value of Jn(X) is accepted.
If the test fails, the computation is continued by adding 3 to M and
using this as a new value of M.

The methods for calculating the modified Bessel functions are
taken from Abramowltz and Stegun.12 For values of the argument less

than 8.5, we use the ascending series:

RO L L RPN (5-7)
o TETjg TETSE Tgij
and
K () = -Cen(E2) + 11 () + B 7
o 0 [€5))
F ) ) @D @Y. (5.8)

Znye EDE
where v is Euler's constant. The first order modified Bessel functions
are calculated from the differentiated forms of Egs. (5.7) and {5.8)

according to

1, (2) =10 (2), (5.92)
and K (z) = -K! (z). (5.90)

The expansions were carried out to thirty terms or until a major under
flow results from the calculation. For values of the argument greater

than 8.5, we use the asymptotic series
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z p-1 pw=1) (p-9

1-% *oo Z)2

I (z)=

e
n \f2ﬂz

) @9 @w=23) é,

5.10
5T (82)3 (5.10)
and
N|;ﬂ -z p=1 . (B-1)(-9)
Ky(z) = ¢35 ¢ %l Al Ay (8z)2
- 4n Lo fe-l) (-9) (w=25) |
where U = 4n“. 5T (82)3 A (5.11)
The series were carried out to thirty-two terms.
Principal value integrals were treated by subtracting out the
singularity as shown in Metcalf and Zweifel,l4
f‘l_)_' . f Ele) LEN ' ) an (—Hl; ) (5.12)

and approximating the principal velue by

[F(u -F )} W, aF (i)
+
f x5 =

lﬁii
+ F(ui)ﬂn »
R=tg Hi

i
7 (5.13)
where the singularity is at ui and the W's and u's are the weight
factors and abacissas of Gauss-Legendre quadrature adjusted tc the
half-range as shown below. The derivative term in Eg. (5.13) is
evaluated by Lagrange's differentiation formula:
t 1
F'(n;) = }2:—:0 B (W )F () + Ryl (5.14)
M oM
shere 2 (wg) = 2. T (wy—bp)
Jj=0 n=0 (5.152)
Ik M ’
(gmtige) (gmbg) T (bgep)
n=o

n#k
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M
M+
and Rﬁ (ui) =T (ui-un) dF!g! _ (5.15b)
n=0 T__-TT . M+l
S (ML) du )
n#i u=g, Ho < E Sty
Using M Gauss-Legendre quadrature points, the error in calculating
F'{u;) by Eq. (5.14) 1s proportional to the (M+1)th order derivative of
the function as shown by Eq. (5.15b). At the beginning of the computer
program, the coefficients f} (“i) are calculated by Eq. (5.15a) and stored.
This procedure significantly simplifies the subsequent numerical evalu-
ation of the principsl value integrals in the iterative solutions.
Nensingular integrals were evaluated by Gauss-Legendre quadrature
over the half-range as
1 M
f Fo(w) ap =2 v, Flu), (5.16)
o i=1
where hy = (Xi + l)/2,
and v, o= w.l/e,

Xi and Wi being the full-range Gauss=-Legendre abscissas and weight

factors listed in Abramowitz and Stegun.12

5.2 Numerical Precisgion

The objective in seeking numerical results from the iterative
sclutions of Chapters IIT and IV was to obtain critical dimensions
accurate to a minimum of six significent figures. Results of this high
precision can be used as input data for evaluating design analysis
programs as is demonstrated in Chapter VI. Therefore, the computer
programs used to cbtain these results were written entirely in double

precision. The calculations were performed on IBM=-7094-II and CDC-E6600

computers. A minimum of twelve sighificant figures were carried in
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performing the calculations.

Where possible, comparisons were made between the results of methods
described in section 5.1 and tabulated values in the literature. The
discrete eigenvalues agreed with the seven-significant-figure values of

Kowalska. >~

Sample values of the Bessel functions asgreed with the
tabulated values in Abramowitz and Stegun12 to at least hine significant
figures.

The bare and reflected core calculations were done over Gauss-
Legendre quadratures of twenty-four and forty points respectively. The
variation of the eritical core radius with the number of Gauss-Legendre
points is shown in Table I, It indicates that twenty-four Gauss=Legendre
points are sufficient for seven significant accuracy in the bare core
radii. The use of forty Gauss-Legendre points provides seven significant
figure accuracy for the large reflected cores and six significant figure
accuracy for the smaller configurations. This reflects the increasing
importance of the continuum contribution and its integrated quantities
in the solution for the smaller configurations.

At each trial value in the critical radii searches, the iterated
quantities in the solutions were converged to nine significant figures
before the criticality conditions were evalﬁated. The criticality
conditions, Egs. (3.29) and (4.L0e), were considered satisfied when

the value of the integral was less than 10'9.

5.5 Bare Core Results

Critical radii calculated with the one-region cylinder solution of
Chapter III, along with results of other analytic solutions found in the

literature, are listed in Table II. Using the results of the present



TABLE I.

-VARTATTON OF CRITICAL, CORE RADIUS WITH
THE NUMBER OF GAUSS-LEGENDRE QUADRATURE POINTS

Case Description fumber of Guuss-Legendre Points
‘1 2 Ro . Ry 8 ol 10 96
1.02 Bare ——— 9.0k32542 9.0432547 9.0U32547 | —-ee----
2.0 Bare S 66862087 66861281 66861285 | ccmemee-
1.1 0.9 10.0 2.795180 2.795122 2.795120 2.795120
1.4 .85 1.0 1.141910 1.141755 1.141750 1.141748

a5



TABLE IT. - CRITICAL RADII IN MEAN FREE PATHS FOR BARE CYLINDERS
c Present Carlson- Hendry]'7 Hre:mde"8
Solution Bellt6 F3Gg IT,
.02 9.043255 9.0433 | ee-a- 9.04458
.05 5.5411288 5.4118 S.h41l4 5.41152
1 3.577391 3.5783 | ----- 3.577hk
.2 2.287209 o.288k | oo 2.28724
A 1.396979 1.3973 | ===-- 1.39699
.6 1.020839 1.0209 | me--- 1.02085
.8 0.807427 0.8o67T | ----- 0.80743
.0 0.668613 0.6673 0.670 0.66862

65



60

work as reference values, we see that the values of Carlson and Be1116 are
most accurate for the largest system (¢ = 1.02) and least accurate for
the smallest system (c = 2.0)}. Carlson and Bell used the extrapolated
endpoint method for the larger systems, R > 1.5. For the smaller systems,
they interpolated between values calculated with the extrapolated endpoint
and variational methods. The values of Hendryl7 were obtained by Fourier
expangion of the neutron distribution function in one of the angular
variables and solution of the resulting equations using integration by
Gauss quadrature. The ITn method of Hem.bd18 is based upon a Fourier
transformation of the integral equation. It sppears to be particularly
effective, especially for the smaller systems. The reduced accuracy of
the ITrl method for the larger systems is recognized by the a.uthor.18

The neutron density or total flux was calculated from Eg. (3.31).
Table III lists the neutron density relative to the centerline value.
Tt is seen that the radiel drop-off in the neutron density decreases
with a reduction in the size of the system. Figure 5 shows the neutron
density distribution for the smallest case, ¢ = 2.0, calculated by the
methed presented here and by various order discrete ordinate calculations.
The diserete ordinate calculations were performed with the TDSN program.:"9
using a moment modified quadrature. The neutron density distribution
from the Sl6 calculation agrees very closely with the exact distributicn.
However, the excess gystem multiplication calculated by discrete ordinates
indicates the increasing importance of the error in the neutron density
distribution as the discrete quadrature order is reduced.

The first temm of the neutron density, Eq. (3.31), is the asymptotic

density arising from the discrete mode. The asymptotic density



TABLE III., - NEUTRON DENSITY AS A FUNCTIOW OF POSITION
c
/Re
1.02 1.05 1.1 1.2 1.h 1.6 1.8 2.0

0.0 1.0000 1.0000 1.0000 1.0000 1.0C00 1.0000 1.0000 1.0000
0.25 0.9236 0.9299 0.9361 0.9433 0.9508 0.9550 0.9578 0.9598
0.50 0.7118 0.73%0 0.7561 0.7819 0.8093 0.8248 0.8352 0.8k26
0.75 0.hk124 0. 4522 0;u922 0.5399 0.5918 0.6218 0.6421 0.6570
0.85 0.2821 0.3267 0.3718 0. 4263 0.4868 0.5223 0.5466 0.56ich
0.91 0.2033 0.2492 0.2960 0.3535 0.8 0.4566 0.4830 0.5026
0.95 0.1502 0.1958 0.2430 0.3016 0.3686 0.4088 0.4366 0.4572
0.98 0.1086 0.1531 0.1999 0.2589 0.3273 0.3688 0.3976 0.4190
1.0 0.0747 0.1179 0.1641 0.2233 0.2926 0.3351 0.36L46 0.3867

19
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Figure 5. - Neutron density
distribution (C = 2.0).
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corresponds to the diffusion theory solution based on the exact diffusion

coefficient. Table IV lists the ratio of the asymptotic to total
neutron density as a function of position. The value of this ratio
at the outer boundary for the case ¢ = 1.02 agrees with the corres-
ponding value for the Milne problemE_with c =1.0. As anticipated,
the error in the asymptotic density is most severe on the boundary of

the smallest system.

5.4 Reflected Core Results

Critical core radil as a function of core and reflector multiplying
properties and reflector thickness are presented in Table V. We note
the anticipated increase in critical core radius with a decreage in
either reflector multiplication or reflector thickness.

The critical dimensions of two widely varying cases in Table V
were used in one-dimensional discrete-ordinates and diffusion theory
analyses. The results of these analyses are given in Table VI. The
discrete-ordinates calculstions were performed with the TDSN programl9
using a moment modified quadrature. For both types of calculations
it is seen that the variation of the effective multiplication factor
from critical is strongly dependent on the amount of neutron absorption
in the core. Thus it appears that in evaluating numerical methods by
comparison with exact analyses, one should include a realistic amount
of absorption in choosing the cross sections. A relatively high order
of angular quadrature is required for good discrete-ordinates analysis

of the small system. Diffusion theory is adequate for analyzing the

large system which more closely corresponds to power reactors.



TABLE IV. - ASYMPTOTIC RELATIVE TO TOTAL ﬁEUTRON DENSITY
c
r/Rc
1.02 1.05 1.1 1.2 1.4 1.6 1.8 2.0

¢.0 1.0000 1.0000 1.0004 1.002k 1.0087 1.0153 1.0214 1.0266
0.25 1.0000 1.00CL 1.0006 1.0030 1.0102 1.017k 1.0239 1.0294
0.50 1.0000 1.c00k 1.0018 1.0062 1.0164 1.0258 1.0337 1.0L403
0.75 1.0006 1.003% 1.0092 1.0205 1.0391 1.0532 1.064 1.0728
0.85 1.0033 1.0110 1.0226 1.0406 1.0652 1.0821 1.0946 1.1043
0.91 1.0109 1.0263 1.0k4L3 1.0680 1.0965 1.11&6 1.1277 1.1376
0.95 1.0294 1.0539 L.0773 1.1ok 1.1335 1.1513 1.1639 1.173k
0.98 1.0775 1.108k 1.1326 1.1571 1.1824 1.1976 1.2084 1.2165
1.0 1.2318 1.2337 1.2368 1.2hk2h 1.2522 | 1.2601 1.2664 1.2716




TABLE V -CRITICAL CORE RADII IN MEAW FREE PATHS FOR REFLECTED CYLINDERS

Case Reflector Thickness (MFP)
€1 Co 1 3 6 10 20
1.02 0.99 8.160005 6.981947 6.220461 5.914592 5.814384
1.02 .95 8.286641 7.621081 7.431634 7.410246 7.409152
1.02 .90 8.411027 8.036229 7.981761 7.979325 7.979288
1.02 .85 8.508960 8.276755 . 8.255960 8.255474 8.255471
1.05 0.99 - 4.618945 3.772231 3.325398 3.159486 3.105828
1.05 .95 L. 724733 4. 203900 4,068247 4.053117 4.052340
1.05 .90 4.831448 4 .520869 L 477548 4, k75609 4, 475579
1.05 .85 4.917318 4. 718400 4, 700988 L, 700581 4. 700578
1.1 0.99 2.899832 2.323758 2.057837 1.961971 1.930929
1.1 .95 2.982381 2.602577 2.511010 2.500863 2.500339
1.1 .90 2.,068188 2.828581 2,796556 2.795120 2.795098
1.1 .85 3.13909 2.97985 2.96628 2.96596 2.96596
1.2 0.99 1.76189 1.41589 1.26942 1.21684 1.19964
1.2 .95 1.81837 1.57685 1.52221 1.51616 1.51585
1.2 .90 1.87916 1.71823 1.69762 1.69670 1.69668
1.2 .85 1.93105 1.81967 1.81047 1.81025 1.81025
1.4 0.99 1.03831 .853831 LT78234 .T750720 LTL1640
1.4 .95 1.07179 938396 .909237 .905989 .905820
1.k .90 1.10898 1..01652 1.0050k 1.00452 1.00451
1.4 .85 1.14175 1.07560 1.07028 1.07015 1.07015

G9



TABLE

VI -NUMERICAL ANALYSES OF CRITICAL CONFIGURATIONS

Case Description

cl ‘L.02 1.02 1.4 1.4
(o]
2 .99 .99 .85 .85
Ro-Ry 20.0 20.0 1.0 1.0
o1 .0 .25 .0 .25
Tffective Multiplicaticon Factor®

Discrete Ordinates
S), 1.00695 1.00051 1.02280 1.01391
Sg 1.00288 1.00021 1.0C753 1..00h62
516 1.00224 1.00016 1.00217 1.C0134
832 -------------- 1.00074 1.00045
Sgy | =mmmmme | mme-e- 1.00035 1.00021

Diffusion Theory
0.98310 £.99873 0.80653 . 0.87137

*To be compared with kKope = 1.

gy
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The neutron density distribution as calculated by the present
solution and by discrete ordinates is presented in Fig. 6. The distri-
bution from the S6h calculaetion sgrees with the exact values to at
least three significant figures at all points. The tendency of the
distribution as calculated by discrete ordinates to peak away from the
core centerline is most pronounced for the Sh caleculation but persists
even into the 832 calcuistion. Here again, the excess multiplication
calculated by discrete ordinates indicates the increasing Importance
of the error in the neutron density distribution as the discrete
quadrature order is reduced.

The values of tabulated neutron density distributions for a number

of cases, as supplementary to the critical dimensions glven in Teble V

when applied as analytic standards, are glven in Appendix C.
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Exact kEff =10
564 kEff & 1. 00021
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Radius in mean free paths

Figure 6. - Neutron density distribution. Cq, 1.4; Cyp, 0.85; reflector
thickness, 1 MFP -
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CHAPTER VI

APPLICATIONS AS AN ANALYTIC STANDARD

6.1 The Anzlytical Model

For this study, a model was chosen which, in the context of the two-
regicn solution developed in Chapter IV, most clogely approximates the

16 and shown in

Advanced Power Reactor concept described by Whitmarsh
Fig. 7. The coperational requirements for this space power reactor
concept are that it provide 2.17 thermal megawatts for 50,000 hours with
a coolant outlet temperature of 1222°K to a Brayton-cycle power conversion
sysﬂem. The design requirements of compact size, long core lifetime,
and high cperating temperature dictate the materials appearing in the
system and therefore its neutronic characteristics. The concept
employs highly-enriched uranium nitride fuel, tentalum-based alloy clad
and structural material, lithium coclant, and molybdenum reflectors.
This material composition leads to a wvery hard spectrum, fast reactor
with a median neutron energy of O.44 MeV.

Two major problem areas arise in the neutronic analysis of this
design. The first problem area concerns the adequacy of the neutron
cross sections for these relatively litile-used materials. Eétimates
of the reacﬁivity biases due to the cross sections have bheen obtained
from the analysis of small, fast-spectrum critical assemblieseo containing
these materials and are reported in Mayo and Iantz.gl Unfortunately,
it is not possible to separate the error in the reactivity due to the
cross sections from that which arises from the approximations inherent
in the method of analysis. This difficultiy brings us to the second

major problem area, the analytical bias. Since the analyses leading to
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the eritical dimensions presented in Chapter V are based on hypothetical
¢ values, these dimensions are particularly suitable for use in studylng
various contributions to the analytical bias in the design methods.

At the high neutron energies present in this reactor, the cross
gections are much smaller than those associated with thermal reactors.
Thus the average neutron mean free path is of the same order of magnitude
as the physical dimensions of the system. The resulting relative
proximity of any position in the system to the core and reflector
boundaries precludes the use of neutron diffusion theory in performing
design analysis. Consequently, the design analysis has been performed

with the discrete-ordinates transport theory programs TDSN,lQ ANISN,Q2

and DOT-IIW.23
The azimuthal asymmetry of this drum-controlled concept necessitates

two-dinensicnal calculations in the analysis of guantities such as

control swings and radial power distributions. With these large spatial

descriptions, computer running time and storage considerations have

restricted the analytical model to the §), angularfquadrature Approxi-

mation. The first investigation of the present study concerns the effects

of guadrature order and quadrature type upon the reactivity. The second

investigation is concerned with a consistent discrepancy between the

multiplication factors for a single configuration calculated with x-y

and R-# geometry descriptions. Each of these investigations employs

the analytical model described in Table VII. The neutron cross séctions

are approximate cone group valueg. They have been derived from spatial

and energy group Tlux-averaged reaction rates taken from a multigroup

discrete-ordinates calculation of the Adwvanced Power Reactor concept.



Table VII

The Analytical Model

Cross Core, e, = 1.1 Reflector, 02 = 0.95
Sections R, = 2.,6025T6EMFP R, - R, = 3MFP
bX 0.105 0.05
a
VEp 0.205 0.00
Z, 1.000 1.00
ZS 0.895 0.95
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Although the cross sections only approximately represent the actual
system, in the context of the one group model they accurately produce the
core and reflector ¢ values. That is, neutron absorption and secondary
neutron production are conserved. To meet the criterion.of identical
neutron mean free paths in the core and reflector regions, the cross
sections are adjusted to a normalized total m8croscopic cross section

of one cm_l in each region. The core and reflector dimensions in mean
free paths closely corréspond to the one-group average values of the
actual configuration. These dimensions, along with the c¢ wvalues,
represent one of the caseg in Table V.

6.2 Discrete-Ordinates Quadrature Study

This study is cbncerned with the effects of quadrature type and .
quadrature order as used in calculating the analytical model in R-§
geometry with the DOT-ITW discrete-ordinates transport program.23
The interest in R-B geometry arises from the sixty degree azimuthal
symmetry present in Advanced Power Reactor configuration. The effects
of quadrature type are studied in the 5), approximation corresponding
to the approximation level employed in the design analysis.

In addition to the even moment quadrature set ordinarily used with
the DOT-IIW program, seven other gquadrature sets are included in the
study. The various prescriptions under which the quedrature points were
selected are described in the literature. The even moment, odd moment,
level moment, and P3 Th quadrature sets are from lathrop and Carlson.24
The projection invariant sets A and B are from Carlson.25 The DPl

26
guadrature set is from Carlscn and Lee. And the moment modified

27

quadrature get is from Carlson.
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The quadrature sets are presented in Tables VIII through XV. The
points are located on the surface of the unit sphere an octant of which
is shown in Fig. 8. The tabulated values include eight positive values
of the direction cosine T followed by eight negative values. Thus the
values include the entire upper half of the surface of the unit sphere.
The points are located along fixed values of the direction cosine §.

Tt should be noted that these R-8 quadrature sets are orthogonal to the
more familiar X-Y and R-Z quadrature sets which are based upon fixed
values of the direetion cosine called T in our convention.

The R-6 geometry used to describe the analytical model in the
DOT-ITW calculstions is shown in Fig. 9. The largest radial mesh
intervals are 0.26 cm (MFP) in the core and 0.3 cm in the reflector.
Much smaller mesh intervals are grouped near the center and at the
boundaries. The angular mesh interval is one degree. Perfect reflection
boundary conditions were applied at the top, center, and bottom bounda-
ries. A vacuum boundary condition was applied at the outer boundary.
The cross sections used appear in Table VII.

The results of this study are given in Table XVI. From the view-
point of quadrature type, it is reassuring to observe that the even
moment set which is ordinarily used in DOT-IIW and the moment modified
set which is ordinarily used in TDSN give the best results.

From the viewpolint of quadrature order, it is somewhat disturbing
to observe the 0.6% Ak/k reactivity blas associated with the results
given by the standard Sh design analysis approximation. However, this
information can be used Lo obtain an estimate of the reactivity bias

agsociated with the design analysis of the actual configuration.



Table VIIT

Even Moment, Sh’ R-6 Quadrature Set

i w3 |1, 1+8% Wi, 1+8

1 0.0 0.00000001 -0.93674178
2 0.08333333 0.35002120 -0.86869028
3 0.0833%333 0.86889028 ~0.35002120
L 0.08333333 0.86889028 0.35002120
5 0.08333333 0.35002120 0.86889028
6 0.0 0.00000001 =0.49500473
it 0.0833333% 0.35002120 -0.35002120
8 - 0.08333333 0.35002120 0.35002120

75

¥The sequence listed here corresponds to the input sequence
used in the DOT-IIW code, The negative values of T in the
second quadrant are positioned in the same order as the

first quadrant values shown in Fig. 8.



Table IX

Level Moment, §), R-@ Quadrature Set

i Wy mly, 148 Hi,148
1 0.0 0.00000001 -0.95006840
2 0.08333333 0.31276157 -0.89711210
3 0.08333333 0.89736271 -0.31204180
L ¢.08333333 0.89736271 031204180
5 0.08333333 0.31276157 0.89711210
6 0.0 0.0000000L -0. 44180300
7 0.08333333 0.31276157 -0.31204180
.8 0.08333333 0.31276157 0.31204180

76



Table X

Moment Modified, 8), R-8 Quadrature Set

1 @y Inl,1+8 B4, 148

1 0.0 0.00000001 -0.93743690
2 ©.08333333 0.3587k166 -0.86607870
3 0.08333333 0.86607872 -0.35874166
I 0.08333333 0.86607872 0.35874166
5 0.08333333 0.35874166 0.86607170
6 0.0 0.08650678 -0.49236600
T 0.08333333 0.35874166 -0.34815530
8 0.83333333 0.35874166 0.34815530

77



Table XTI

0dd Moment, Sh’ R=6 Quadrature Set

i Wy Iﬂ‘i,i+8 By 148

1 0.0 0.00000001 -0.95522640
2 0.08333333 10,29587580 -0.9082483%0
3 0.08333333 0.90824826 ~-0.29587590
L . 0.08333333 0.9082L826 0.2958759C
5 0,08333333 0.29587530 0.90824830
6 0.0 0.00000001 -0,418L%1 59
7 0.08333333 0.29587580 ~0.29587590
8 0.29587580 0.29587590

0.08333333
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Table XIT

P3T4, Sh’ R=8 Quadrature Set

1 0y Il s, 148 b1,1+8
1 0.0 0.11676916 ~0.940L3230
2 0.08151814 0.340L1838 -0.86884590
3 0.08151814 0.86096378 -0.35988780
b 0.08151811; 0.86096378 0.35988780
¢.0815181% 0.34041838 0.86884590
6 0.0 0.1154877h -0.50837410
7 0.08696369 0.340L418328 -0.35947480
8 0.08696369 0.34041838 0.359k 7480
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Table XITI

Sh, R-6 Quadrature Set

t ®g 4148 by 148

1 0.0 0.00000001, ~0.97741590
2 o.i25 0.57735032 -0.78867510
3 0.0625 0.95429742 -0.21132k90
4 0.0625 0.95429742 0.21132490
5 0.125 0.57735032 0.78867510
6 0.0 0.00000001 -0.61481020
7 0.0625 0.57735032 -0.21132490
8 0.0625 0. 57735032 0.21132490
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Table XIV

Projection Invariant Set A, Sh’ E=9 Quadrature Set

i ©4 1My 1ee 1,148

1 0.0 0.00000001 -0.94280904
2 0.08333333 0.333353233 -0.88191710
3 0.08333333 0.88191710 ~0.333355355
b 0 -08533353 0.88191710 0.333233333
5 0.08%33333 0.33333333 0.8819171C
6 0.0 $.00000001 -0.b71kols2
7 0.08333333 0.33353335 ~0.23333333
8 0.08333333 0.33333333 0.53355333
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Table XV

Projection Invariant Set B, Sh’ R~-€ Quadrature Set

03 1148 1,148
- 0.0 0.00000001 -0.71007688
0.08333333% 0.09175171 -0. 70412115
0.08333333% 0.70h12415 -0.09175171
. 0.08333333 | 0.70412415 0.09175171
0.08333333 0.09175171 C.70412415
0.0 0.00000001 -0.99578192
0.08333335 0.70412h15 -0.70412415
0.08333333 0.70412415 0.70k12415

g2



Figure 8. - Direction mesh for S, quadrature.
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‘ .
- Core-reflector boundary

Figure 9. - R-8 description of the analytical model.



Table XVI

1
APR Model Quadrature Study

Quadrature Quadrature keff*
Type Order
P, 1l 1.0081
3Ty, b 1.0065
Level Moment L 1.0095
Even Moment 4 1.0062
Even Moment 8 1.0016
0dd Moment b 1.0112
Moment ModifiedS b 1.0064
Proj. Inv. Set A L 1.007h
Proj. Inv. Set B L 1.0211

A1l caleculations performed with the DOT-IIW
program in R-# geometry using the diamond
difference model.

Normally used with DOT-IIW.

Normally used with TDSN.

¥ To be compared with Kepp = L.
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The difference between the multiplicstion factors given by the Sh and
Sg calculations in Teble XVI is 0.46% Ak/k. The corresponding value
given by the analysis of the actual configuration is 0.3% Ak/k. The
larger value given by the analysis of the analytical model reflects
the greater importance of the radial leakage in the axially infinite
model. By scaling the 0.6% Ak/k reactivity bias by the ratio of these
differences, we obtain an approximate value of 0.4 Ak/k reactivity
bias to be used with the standard Sh’ R-6 design approximation. This
velue is significent when compared to the 0.32% Ak/k total reactivity
requirement for the first 10,000 hours of operation as calculated by
Whitmarsh.lo

£.5 X=Y Boundary Approximation Study

The motivation for this study is the observation that, for the
type of fast reactors under design consideration, an R-6 calculation
of the multiplication factor consistently produces a higher value than
does an X-Y calculation of the same parsmeter. This phenomenon was
noted by Mayo end Lantzgl in their pre-critical analyses. In the
neutronic design snalysis of the Advanced Power Reactor concept by
Whitmarsh, " this discrepancy is determined to be worth 0.65% Ak/k
in reactivity.

An X~Y representation of m circular boundary is done in a stepwise
manner. This results in an outward displacement of the core matérial
into the reflector region accompanied by an inward displacement of the
reflector material into the core region. Also the length of a stepwise
boundery is & factor of 4/m greater than the actual boundary. The

combined effects of having the fuel material in a lower importance
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region and having a higher probability of neutron leakege from the core
will result in a negative reactivity effect. This will be somewhat off-
set by the positive reactivity due to the possible unrealistic first-
flight neutron reentry into the core.

On the other hand, an R-@ geometry is capable of describing
circular boundaries exactly. Therefore it might be assumed that the
lower multiplication factors calculated in X-Y geometry are in error
due to the effects discussed above. However, without an absolute
standard it is not possible to assess the accuracy of either geometrical
representation. This demonstrates the usefulness of applying the highly
precise analytic values of Chapter V in resolving this discrepancy.

The approach taken in performing the study was to calculate the
analytical model in systematically finer X-Y geometrical representations
and note the improvement in the multiplication factor due to the
reduction of the effects discussed sbove. A computer program was
written to determine the X-Y houndaries and provide the input for the
discrete-ordinates program, DOT-IIW.

The progrem selects the X-Y boundaries according to three criteria.

1. The areas of the core and reflector regions are preserved.

o, Each of the interstitial areas formed by the X-Y and circular

boundaries is no greater than a maximum input value.

%« Paired sets of succesgsive interstitisal areas exterior and

interior to the cirecular boundary are the same size.
These criteria are effected in the following manner. First, we consider

two successive interstitial sreas as shown on the next page:
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X,,7 %
107t 1Yy
A
x?.'o}"a
A
X2 | X3,%3

Here we have assumed that the point, x),y,, is known and A corresponds
to the input value of the maximum Iinterstitial area, The value of Xy
is found by integration of

A -=j.xxz (yl - VR2-1-C2 )dx, (6.1a)

1
obtaining

ps 2 X
2 2 B .12
A=yx, -3 (Rz-xg)2 - 3 sin l(R )

X 1 2 X
2 2 . 2.5, R Lo=1 1
- ¥E t g (R -xl)2 + 35— sin (—) s (6.1b)

and solving the transcendental Eg. (6.1b) for X, by Newton's method.

Having found Xp, We determine Yo by Yo = VRz- 3 .

Next, the value cof ¥q is found by integration of

A =f ( R —y2 - %, )dy, (6.2a)

I3
obtaining

y 1 2 v
2 2. 2%, R -1 2

A 5 (R —-yz) + 5 8in ('ﬁ"‘) - X5¥s

Y3 o 24 R 1V

-5 (R -yg)g -5 sin Cul + XZYB, (6.2Db)

and solving the transcendental Eg. (6.2b) for V3 by Newton's method.



89

This procedure is repeated until the unknown X is found to be
greater than R/,/ 2 or the unknown ¥ is found to be less than R// 2 .
The point, x =y = R,/ 2 , corresponds to where the forty-five degres
line drawn from the center intersects the circle. The symmetry about
this line allows us to reflect the boundaries found for the upper
octant of the cirele into the lower cctant. That is, Xn = yl, yn = xl,
X1 7Y 29,1 =% ete. The only problem remaining is the approach

to the interface point. If this point is passed on an X search,.x2

is determined by
52 [2 sin™* X, - n/E] , (6.3)
2 T B V) R
which is found by solving Eqs. (6.1b) and (6.2b) simultaneously and

substituting

X and R™-x = yé.

1”93

A similar procedure cannot be used upon passing the interface
point on a ¥ search, since criterion 1 could then not be satisfied.
In this instance, the previous X search calculation is re-perfofmed
on successively finer wvalues of the interstitial area until the
subsequent ¥ search produces a value greater than R/,/ 2 . Then
the final value of x, is found by Eq. (6.3).

Two of the four x-y descriptions of the analytical model which
have been determined by the above procedure are shown in Figures 10
and 11. The input criterion for the maximum interstitial area was

0.04 MFP squared for the coarsest mesh. This value was successively

halved to a value of 0.005 MFP squared for the finest mesh.
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Figure 10, - X-Y description of the analytical model, 16 x 16
mesh.
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0

.68 .87 1.31.,66 2.,342.62.89 3,31 3,96 4,294,64 5,225,45
1.7 2.1 3.75 4,02 4,95
1.84
1.92

Figure 11. - X-Y description of the analytical model, 22 x 22
mesh.
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The calculations were performed with the DOT-IIW discrete-ordinates
program using the diamond difference model and the even moment, Sh’
quadrature. Thus, these calculations differ from the even moment, Su,
B-8 calculaticn of Table XVI only in the geometry description.

The results of the x-y calculations are given in Table XVII. As
anticipated, the calculated value of the multiplication factor is low
and it improves as the X-y mesh is refined. However, it was unanticipated
that even the least accurate X-y caleculation yields a better value of
the multiplication factor than that given by the R-6 calculation.
Furthermore, the results of the finer X-¥ mesh calculaticns appear
to be approaching 0.1% Ak/k below critical. This value is better than
that given by the 38 s R-8 calculation. The general conclusion of this
study is that the source of the discrepancy between the results of X-¥
and R~-8 calculations lies in the inaccuracy of the R=86 calculstion.
Therefore, it 1s recommended that design calculations fram which highly
precise values of the multiplication factor are required, be done in the
X-y geomelry. It is noted that it was not possible to resolve the
source of this discrepancy without the highly precise results of the
analytical solution presented in Chapter IV.

As shown in Chapter V, both the error in the multiplication factor
and the error in the neutron density distribution from R-9 calculations
are gquadrature dependent. Therefore, it is reasonable to assume that
these errors are related and that possible methods to eliminate the
"centerline dip" and improve the neutron density distribution as
calculated by low quadrature order, discrete-ordinshes calculations in

R-6 geometry would be a worthwhile subject for further research.



Table XVII

X-Y Step Boundary Approximation Studyl

Interstitial Ares (MFP)2 Mesh Size keff*
0.0h 16 X 16 0.99539
0.02 22 X 22 0.99718
0.01 o8 X 28 0.99832
0.005 38 X 38 0.99895

1 .

A1l calculations performed with the DOT-IIW program
using an even moment, Sh quadrature and the dismond-
difference model.

*To be compared with K pp = 1.

f
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATTONS

1.1 Conclusions

The conclusgions drawn from this study fell into two genheral
categories. The first category concerns the successful development of
the singular elgenfunction solution for the reflected eritical cylinder
through the use of new relations for the singuwlar elgenfunctions. The
second category concerns the application of the highly precise numerical
results obtaeined from this solution in assessing the acéﬁracy of more
approximate methods of firansport analysis.

In evaluating the singular eigenfunction solution for the bare
critical cylinder by Mitsis, it was found that his solution contained
an unbounded function. This function was reformulated and the continuum
expansion coefficient was redefined to obtain a converging solution.
Furthermore, it was shown that the procedure taken by Mitsis in decompos-
ing the singular eigenfunctions into the sum of the Case plane geometry
elgenfunctions was unneccessary and that it introduced additional
numerical complexity into the solution. This procedure was avoided
through the use of & completeness'proof for the singular eigenfuncticns
which naturally arise in the solution of the transformed integral
transport equation in e¢ylindrical geometry.

In developing the singular eigenfunction solution for the reflected
critical cylinder, application was made of the reformulated function and
the completeness proof mentioned above. Also, extensive use was made
of orthogonality and normalization relations found for the singular

eigenfunctions. The solution is in the form of two coupled iterative
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sequences with which the expansion coefficients and ultimately the
eritical dimensions can be found to any desired degree of accuracy.

Critical core radii accurate to seven significant figures are
presented for bare cylinders and compared with the results of other
analytic methods. It was found that for small systems, C > 1.6,
values that.had previously served as analytic standards are accurate
to only three significant figures.

Highly precise values of critical core radii as a function of
core and reflector multiplying properties and reflector thickness are
presented. Comparison of these results for two widely varying systems
with the results of numerical solutions demonstrates the relative
accuracy of various design‘approximations. High order discrete-
ordinates calculations gave good results for both systems while the
diffusion theory was inadequate for analyzing the smaller system. It
was shown that errors in the multiplication factor and the neutron
density distribution as caleculated by discrete ordinates are dependent
on the order of angular quadrature used. Also, it was shown that the
introduction of a realistic amount of neutron absorption in making=up
the core ¢ values significantly improved the results of the numerical
calculations.

Additional conclusions were reached in a study of design analysis
methods using the highly precise results of the present solution as
analytic standards. These analytic standards are particularly effective
because of their lack of dependence upon measured values cof neutron
cross sections. Three conclusions concerning the neutronic design

analysis of the fast reactor concept under consideration were made.
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First, of eight different types of angular quadrature sets studied, the
even moment set ordinarily used in the DOT-IIW discrete-ordinates program
is as effective as any of the other sets studied when applied in the Sh
approximation in R-6 geometry. Second, using this level of design
analysis introduces an estimated analytical bias in the maltiplication
factor of +0.4% Ak/k. Third, for the same level of quadrature order,

an x-y geometry representation can be used to obtain a much more accurate
value of the multiplication factor than can be obtained in R-6 geometry.

7.2 Recommendations

Since this work represents the first successful singular eigen-
function solution of the transport equation for critical cylinders, the
opportunity exists for much worthwhile additional work in this area.

For exsmple, a two energy group solution would be very useful for the
analysis of hydrogen moderated systems. Also, a solution Including
anigotropic scattering could be used to analyze systems in which this
phencmenon is important. These features have been successfully incorpor-

ated into singular eigenfunction solution329’3o’3l

of the Boltzmann
equation in eritical slab geometry. How these features might be
incorporated into the present solution, which is based on the transformed
integral transport equation, has not been investigated. However, it
appears to be relatively straightfcorward to apply the techniques developed
in the present work to obtain sclutions for multiregion problems. The
results from such scolutions could be used as analytic standards for

nethods used to analyze radially fuel-zoned cores or deep radiation

penetration into multilgyered shield configurations.



97

From the results of Chapter VI, it is recommended that further
design analysis of the Advanced Power Reactor concept using the DOT=-ITW
discrete-ordinates transport program in the Su approximation and in R-©
gecmetry include a reactivity bias of -0.4% Ak/k applied to the calculated
multiplication factor. It is also recommended that x-y rather than R-©
geometry be used in analysis requiring high precision in the multi-
plication factor.

Finally, the results of Chapters V and VI have shown a serious
deficiency of low quadrature order discrete-ordinates transport anélysis
in R-8 geometry. Investigatlion into the source of this problem would

be a worthwhile area for further research.
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APPENDIX A
CORTHOGONALITY AND NORMALIZATION RELATTONS
FOR THE PSEUDO EIGENFUNCTIONS

The purpose of this appendix is to present the development of an
orthogonality relation for the pseudo eigenfunctions found in Chapter III
and the development of normslization relations for their discrete and
continuum modes.

To demonstrate the orthogonality properties, we begin by substituting

Eg. (3.18) for LN () into the Eq. (3.16), obtaining

1
j n, ()d = 1 (A.1)

0]

Making the same substitution into Eg. (3.17), we have
2 2 2
(V7 = I () = eV (A.2)

Next we rewrite Eq. (A.2) for two eigenvalues, v and v', in the form:

2 .
( - Hé)n () = c, (4.3a)
and
2
(1 - %*2) (k) = e (A.3b)

Now we operate on Eq. (A.3a) with the integral of e (W) over n and

operate on Eq. (A.3b) with the integral of n, (w) over w, obtaining

1 2 1
f (1 - & )TL) (T, ()ap = CJ’ M, (w)au, (A.La)
0 Y 0
and 4 5 1
f (1 - %Tg)ﬂv.(u)ﬂu(u)du = c'/. M, (e )au. (A.kb)
0 0
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We observe from Eq. (A.l) that the right hand sides of Egs. (A.la,b)
are just equal to c. With this observetion, we subtract Eq.(A.lb)

from Eq. (A.bla) to obtain
1
(—15 -J;g)f B0, 1,0 (b) = 0. (.5)
0

Eq. (A.5) implies the orthogonality relation

1
f ueﬂ\,(u)ﬂv.(u)du =0, v ¥ v. (A.6)
0

Next we wish to develop the normalization integral for the

discrete modes, defined by

1 ‘
_ 2
N, —[ B ()T () (a.7)
Substituting Eq. (3.19) for 0, (b) into Eq. (A.7) we have
1 2 cv2 c§2
N =I " 0 0 du . (A.8)
°© L 2.2 27
o] K Q M

By partial fraction expansion Eq. (A.8) can be shown to be equivalent to

02\)3 L
Nno=_To jo. [u s - " ] ap. (A.9)

(v )% v+ )?

Performing the integral over the terms in Eq. {(A.9) we cbtain

N =° 7 enfv -u] + o v + | = v '
o n = il A — o o) ] s (A.10)
o v+
o o

which is evaluated at the 1limits to yield

)
1

no= 2% [ce U5 ] : (A.11)
Q

v =1 v
o]
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Anticipating the requirement for a discrete normalizeation integral
to apply in solving the two-region problem of Chapter IV, we next seek

the relation

1
2
= . 2
Mo f RPN ()T, (el (r.12)
o
where ¢y >1, Vo1 imaginary; ¢, <1, Voo real. Substltuﬁlng the discrete
mode eigenfunctions into Eq. (A.12) we have
' 2 ¢ |\J |:2 c \JE
N 1o =f v 1' ol 2 o du. (A.13)
© o v 2 +u2 B -l
ol s o2 T H

Upon partial fraction expansion Eq. (A.13) becomes

c e, |v |2v2 o I |v |2

Nogp=_L2 ol o2 08 _lol au . (A.1h)
MR oo T el
voll Vo2 o g2 T M Vol K

Performing the integral over the terms in Eq. (A.14), we obtain

1
e lv, |BVF VNV .t v | + iu
N =172 ol! o2 o2 02 - |\—’ |£n ol (A.15)
olZ2 5 5 > ol —_—_— .
|vol| + v02 \)02 - 1 2i |vol| - ip
which is evaluated at the limits to yield
c.c |v |2v2
N = 121701l Yo2 [1 1 . (A.16)
olz S _— - -
IO R 2 A
ol o }2

Finally, we wish to obtain the normelization function for the

continuum medes, defined by
1

N(v) =f uem(u)ﬂv.(u)du, vh= v, (A.17)
[a]

This function is to be used in the evaluation of coefficients, A{v'),

appearing in the expansion of an arbitrary function, f£{(u) in the
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following manner:

1
f(u)':lﬂ A(vt) T, (wlav'. (A.18)
=)

Operating on Eg. (A.18) by the integral of pETb(u) over u, we obtain

1 1 1
J' uemm)fmdu-—-[ ueTlV(u)duI AT, ()av (4.29)
8] (o] (o}
Initially we define the normalization function, N{v), such that
1
NOUORY i KBLO (4.20)
o]
Now, substituting Eq. (A.20) into Eq. (A.19), we obtain
1 1
1 2 Y '
n(v) = m)lu SOUY RADLMOIRE (a.21)

Recognizing that the order of integration over singular functions is

not directly interchangeable, we evaluate Eq. (A.21) by considering
_ 1 1 1 5
— T 1
N{v) = KTG),I; avia(v {[ BT (o) (e (a.22)
o

Upon substitution of Eg. {3.20) for Tk(u) and Tb,(u), Eq. (A.22) becomes

1 1
A =f dv'A(v‘)fuedui A(V)B (=i )N (v )6 (v =)
QO O

+ AV )B (v =p)eP V2
2

2
- L
2
+ A(v)&(v-p)eP V!
. 2
v
+ ¢cP v2 cP v'e }
2 2 2 2 ). (A.23)

Vo= A
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Evaluating the terms in Eq. (A.23) which contain delta functions we have

1
A(VIN(V) = A(v)vg?\.e(v) + vchf av'a{v') \J'EM\J'!
o] ~‘)2 - \J,E

1
2
+ ve?\(v)cPf avta(v') V!
2 2
Q v -V
o2t 2 2
+ e vf dvtafvr)v? mn P P A (A.24)
o 2 2 ,e 2
0 AV BT v - K .

The last term in Eq. (A.2L) is expanded by partial fractions to yield

1
2 2
cevefdv'A(v') v f P v _P 2 dp.
(o) 2 2 Yo 2 2 2 2
vt o=y v

- hY] -

Next we use the function, A (v), in the form obtained by integrating Eg.

(3.20) over u,

1

AMv) =1 - cPf V2 a,
2 2
o VT -

to write this term as

1
C\PJ avialv') w2 ') - A(W)]

5 v'2- \)2

The term as written above identically cancels the second and third
terms of Eq. (A.24), léaving

A(VN(v) = AGIAEW). (A.25)
Now returning to the éva.luation of Eq. (A.21) we insert the
eigenfunctions to obtain

A(VIT(v) fd,uu 1c N + Nv a(v-u)ffdv Alv') cP v'2
2 2 2 2

+ A(v')B (v =) i . (A.26)
After performing the integrals over the terms containing delbta functions

in Eq. (A.26) we have
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2

AGVNG) = A(VIVAR(Y) + cvle avia(v )P ! A(v')
(o] 2

v !

e —

2 1 o
+ ey k(v)J- dvia(vt) P oy'
(o]

Vi =y

1
+flc1> Ve dp.f aviA{v YeP  v'© (A.27)
o 2 2 o 2 2

Vv o=y v e

We note that the first three terms of Eq. (A.27) are identical to those
of Eq. (A.24). The fourth terms differ by the order of integration.
We eveluate the fourth term of Eq. (A.27) by putting it in the form of

3
the Poincare'-Bertrand f‘ormula.2 as follows:

1 1
cePf ”2\)2 dp.PJ. A(vY) ’u'2 av!
o] 2 o]

3 7 2
v o= Vo=l
22 pb 1
= =c%y Pf dy, Pj‘o g(v',un) dv' ' (A.28)
' -
O =y v H

where g(v',u) = A(v')v'eug/(v+u)(v'+u)-

The Poincare'=Bertrand formula is‘

]_?J’J'_dp_P'j‘l givi,p} dv'
AT

2
= = g{v,v) + Ji dv'Ji P 1 P 1 g(v,udu. {A.29)
V=il vi-p

Now, comparison of Egs. (A.28),(A.29) and the fourth term of Eq. (4.2L)
shows that the difference of the two fourth terms is the additional term,
cgvgwgg(\),v), arising from Eq. (A.29). With this observation, we cancel
the identical terms of Eq. (A.27) as before and write Eq.(A.27) as
AGIN(Y) = AVERE(V) + AV PrPe(v,v). (A.30)
Finally, substituting Eq. (A.28) for g(v,v) into Eq. (A.30) and canceling

like terms we obtaln



107

22 L

2?\.2(\)) +cmv
-

N(v) = v
(A.31)

es the normalization function for the continuum modes of the pseudo

eigenfunctions.
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AFPENDIX B

PSEUDO EIGENFUNCTICN COMPLETENESS

Theorem: The functions Tk(u) and ﬂv(u) form a complete set in the sense
that any arbitrary known even function #(pu) can be expanded in terms of

these eigenfunctions for -1 £ < 1. Proof: We write the expansion

_ L -

§(p) = aOTB(u) 4 JLl Aév! nv(u)dv, 1<p <1 (B.1)
and the task is to show that we can solve for the expansion coefficients
a_s A(v), in terms of the known function #(u).

In the proof we make use of the boundary values of the dispersion
function, A{z)}, where

+ 2 )
AT (v) =2 + ev ijl gg . + miev,
or o=V
*
AT (v) = A(v) £ miev,

are obtained from the Plemelj formulas

F'(y) = P[0 £(x) ax + mie(y).
X~y

We note that A(v) and A(v) are twice as large as the functions defined
in Egs. (2.13) and (2.15). This difference is consistent with the

half range normalization to unity, Eq. (3.16). First we write from

Eq. (B.l)

2 (n) = j%l éézl n, (w)dv (B.2a)
where

8 {p) = 8() - a M (w). (B.2b)

Inserting Eq. (3.20) for'ﬂv(u) into Eq. {B.2a) we have



109

8'(p) = AplA(p) + e P ﬁl Agv2v2 dv, (B.3a)
2 2 2 2
Voo-
or
2
Br(w) = (A7) + A7)t + S [T ARl (5.50)
Vo=

where we have substituted the sum of the boundary values of the
dispersion function for A(u).

Next we introduce the function N(z) defined by

2
Nz) = 2 [ %;-flz% av . (8.4)

We note that W(z) ¢ A in the complex plane cut from -1 to 1 along the
real axis and N(z) ~'l/z2 as z—o, Adding and subtracting the boundary

values of N{z) as given by the Plemelj formulas, we obtain

cP ﬁl A(v}ve dv = TTi(N+(|J,) + N'(p,)), (B.52)
2 N

and
AR) =& (@) - W) ). (8.5b)

Substitution of Egqs. (B.Sa,b) into Eq. (B.3b)} yields

1 L+ - + -
£0) = ge {070+ 47 () - 1 W)
+ -
+ 21'ricu(N (W) + W (p,))}. (B.6)
Now, inserting the difference of the dispersion function boundary
values for 2micu, multiplying through and canceling like terms, Eq.
(B.6) becomes
+ + - -
end ' (p) = A (N (b)) =~ A (u)N (u). (B.7)
Next we seek a function, N(z)A(z), whose boundery values on the cut

satisfy equation (B.7). Thus we define the function J(z) as
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3(z) = N2(z) - <[5 w5 @) a, (8.8)
2mi p‘2 _ 22

with boundary velues such that

THu) = () = T @IAT(R) - WA () - cue’ (u). (B.9)
Comparison of Eg. (B.9) and Eq. (B.7) shows that the difference of the
J(z) function boundaery values is zero. With no discontinuity across
the cut, J(z) is a bounded entire function which, by Liocuville's
theorem, must be a constant. Furthermore, since J(z)-o as qum, J{z)

is everywhere equal to zero. With this result we rewrite Eq. (B.8) as

2§,

N(z) = m)— f}l 22 du, |z| = 0, (B.10)

Now since % v, 8re the roots of the dispersion function, in order for

N(z) as defined in Eq. (B.1C) to be analytic at =+ Vs We must require

5 5 du = 0. (B.11s)

To cobtain the solution for the discrete coefficient a s we insert

Eq. (B.2b) into Eq. (B.lla), yielding

{l
e

o
ﬁl —52“— (@ (w) - aOT]O(u)) du (B.11b)

2
v
o}

Substituting the definition of Tb(p.), Eq. (3.19), which is valid for
the full range of v and p, we rewrite Eg. (B.1llb) as

-—15 _[‘}l ugﬂj(u)(@(u) - aoﬂo(u)) au = 0. (8.11c)

Y
o

Now use of the normalization relation Eg. (A.7) yields the desired

expression for a,; namely
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% = g o W T, (3.12)

Te obtain the similar expression for the continuum coefficient
A(v), we insert the boundary values of N(v) as defined from Eq. (B.10)
into (B.5b) to give

M) = 21 o etk L) g
"

ou A ) T LBl B
41 o+ cpd * (1) E . (B.13a)
A () A (w) 2

Upon substitution of the sum and difference of the dispersion function

boundary values Eq. (B.l3a) becomes

Aw) = BoewBn e v e e } . (B.13)

At (u)A () { u2 -

Now letting p = v and u' = p we have

Alv) = 2 {P j%l cv2§'(E)E
2
A"

v2A+(v)A_(v) - uz

du + jil vek(v)é'(v)S(v—u)du} .

7/
(B.13c)
The two terms of the continuum eigenfunction as defined by Eq. (3.20)

appear in Eq. (B.13c), allowing us to write

A(W) = _2 (5 68N ()2 (wau. (B.134)
v2A+(v)A-(v)

Now inserting Eq. (B.2b) for &'(p) into Eq. (B.13d) we obtain

2 2 '
M) = [ w ) (816 = an () au. (B.13¢)

Applying the orthogonality relation, Eq. (A.6), and substituting the

normslization constant N(v), Eq. (A.31), we have the solution for A(v) as
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1 L 2
AV = By Jop RO E(R)du. (B.14)
This completes the proof for the full range case.

An immediate extension can be made to the half range case if we

note from Egs. (3.17) and (3.18) that

(=) = W)

and from the theorem, #(-p) = &{u).

Thus we can write the solution for A{v) as

A(v) = ﬁ) fi ug'ﬂv(u)@(u)du, (B.15)
and the expsnsion given by Eq. (B.l) as
£6) = a0 + [ AT ()ay, | (5.16)

where, again from Fq. (3.17) and {3.18), we have used

ﬂ_v(u) = ﬂv(u) and we have assumed, because of the evemmess of

all functions involved, that A(-v) = A(v).



113

APPENDIX C

NEUTRON DENSITY DISTRIBUTIONS FOR REFLECTED CYLINDERS

Neutron density distributions corresponding to several of the cases
for which the criticel dimensions are given in Table V are presented
here for the use of interested researchers. Since the numerical results
of all one hundred cases calculated would be rather voluminous, we
have selected combinations of cases which provide verious parametric
renges. First, we present the largest and the smallest cases calculated.
Then follows a variety of cases from which the effects of the independent

variation of core c value, reflector ¢ value and reflector thickness

can be drawn.
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rl;r/Rl e,=1.02, ¢,=0.99 ci=1.u, c2=0.85
or R, - R, = 20 MFP R, - R, = 1 MFP
r =r-R, p(r )/ e(0) | plry)/e(o) p(rl)/p(O) p(ry)/plo)

RomRy

0.0 1.0000 0.5415 1.0000 0.4906
0.01 0.9999 0.5126 0.9999 0.4788
0.02 0.9998 0.4871 0.9998 0.4691
0.1 0.9949 0.3327 0.9946 0.k4082
0.2 0.9795 0.2124 0.9785 0.3506
0.3 0.9542 0.1378 0.9520 0.3037
0.4 0.9192 0.0902 0.9153 0.26L0
0.5 0.8752 0.0593 0.8688 0.2294
0.6 0.8228 0.0387 0.8131 0.1987
0.7 0.7628 0.0247 0.7485 0.1710
0.8 0.6959 0.0149 0.6753 0.1455
0.9 0.6228 0.0076 0.5927 0.1212
0.95 0.5838° 0.00k46 0,564 0.1089
0.98 0.5592 0.0029 0.5155 0.1010
0.99 0.5507 0.0022 0. 5041 0.0981
1.00 0.5415 0.00L5 0.4906 0.09L8
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rl=r/Rl ¢y=1.02, ¢;=0.95 c,=1.02, ¢,=0.95
or R, - Ry = 5 MFF R, - R, = 10 MFP

IR | e(m))/ele) | p(xp)ele) | plr)/ele) | e(xp)/e(e)

Ry=Ry

0.0 1.0000 0.2853 1.0000 0.3153
0.01 0.9999 0.2806 0.9999 0.2990
0.02 0.9996 0.2758 0.9997 0.284L7
0.1 0.9912 0.2h23 0.9916 0.1977
0.2 0.9649 0.2068 0.9668 0.1277
0.3 0.9219 0.1761 0.9261 0.0830
0.k 0.8633 0.1430 0.8705 0.0542
0. 0.7906 o.1249l 0.801L 0.0354
0.6 0.7058 0.1031 0.7206 0.0230
0.7 0.6110 0.0834 0.6300 0.0147
0.8 0.5085 0.0651 0.5316 0.0090
0.9 0.4006 0.0476 ook 0.0050
0.95 0.3450 0.0387 0.3733 0.0033
0.98 0.3106 0.0330 0.3397 0.0024
0.99 0.2937 0.0309 0.3280 0.0020
1.0 0.2858 0.028%3 0.3153 0.0016
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rr=r/R1 ¢,=1.05, ¢;0.95 ©,=1.05, ¢5=0.95
or R2- l=3MFP RE-R;L=10MFP
r=r-R, p(xy)/e(o) [ plr,)/e(o) p(ry)/e(o) | »fr,)/e(0)

R,-R;

0.0 1.0000 0. hoT6 1.0000 0. 4kok
0.01 0.9999 0.3989 0.9999 0.h1h1
0.02 0.9997 0.3912 0.9997 0.3918
0.1 0.9931 0.3386 0.9936 0.2622
0.2 0.9726 0.28L8 0.9745 0.1641
0.3 0.9388 0.2394 0.9431 0.10kL2
Q.b 0.8926 0.2003 0.8999 0.0668
0.5 08347 0.1662 0.8458 0.0k29
0.6 C.T663 0.1361 0.7816 0.0275
0.7 0.6887 0.1091 0.7086 0.0174
0.8 0.6032 0.0845 0.6278 0.0106
0.9 0.5108 0.0613 0.5399 0.0058
0.95 0.4617 0.0497 0.4928 £.0039
0.98 0.h307 0.0423 0.4628 0.0027
0.99 0.4197 0.0395 0.4522 0.0023%
1.0 0.4oT76 0.0362 0. hkok 0.0019




117

r =r/Ry ¢,=1.05, ¢;=0.85 ¢,=1.05, ¢;=0.85
or R, = R = 3 MFP R, = R, = 10 MFP

rr-R, p(ry)/ o) | olry)/elo) p(ry)/p(0) | elry)/plo)
RomRy
0.0 1.0000 0.2859 1.0000 0.2897
0.01 0.9999 0.2765 0.9999 0.262k
0.02 0.9997 0.2685 0.9997 0.2405
0.1 0.9913 0.2177 0.991k 0.1291
0.2 0.9655 0.1708 0.9658 0.0625
0.3 0.9233 0.134g 0.9239 0.0309
0.h 0.8657 0.1067 0.8667 0.0155
0.5 0.7942 0.0842 0.79% 0.0078
0.6 0.7105 0.0660 0.7125 0.0040
0.7 0.6167 0,0510 0.6192 0.0020
0.8 0.5148 0.0384 0.5179 0.0010
¢.9 0.k4o6L 0.0275 0.4100 0.0005
0.95 0.3kok 0.0223 0.3531 0.0003
0.98 0.3133 0.0190 0.3171 0.00021
0.99 03004 0.0178 0.3042 0.00018
1.0 0.2859 0.0164 0.00015

0.2897
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rl=r/Rl e;=1.1, ¢ =0.95 ¢;=1.1, ¢;=0.95
or R, =R =3 MFP R, - R, = 10 MFP
r=r-R p(r;}/e(o) | elry)/e(o) p(ry)/plo) | elry)/elo)

Ro=By

0.0 1.0000 0.4992 1.0000 0.5293
0.01 0.9999 0.4864 0.9999 0.4916
0.02 0.9998 0.4753 0.999 0.4611
0.1 0.9945 0.4031 0.99L9 0.2953
0.2 0.9780 0.3329 0.9796 0.1789
0.3 0.9508 0.2758 0.9545 0.1113
O.h 0.9134 0.2280 0.9197 0.0702
C.5 0.8662 0.1871 0.8758 0.0u4k6
0.6 0.8099 0.1518 0.8233 0.0284
0.7 O.Th52 0.1206 0.7628 0.0178
0.8 0.6728 0.0927 0.6947 0.0108
0.9 0.5927 0.0669 0.6189 0.0059
0.95 0.5491 0.0541 0.5773 0.0039
0.98 0.5208 0.0k59 0.5502 0.0028
0.99 0.5106 0.0429 0. 5404 0,002k
1.0 0.4kg92 0.0392 0.529% 0.0019
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rl=r/Rl cl=i.2, ¢,=0.95 c,=1.2, ¢;=0.85
or R, - R = 5 MFP R, = R = 3 MFP
r=r-R; p(ry)/elo) | p(ry)/e(o) p(ry)/plo) | plry)/e(0)

BBy |

0.0 1.0000 0.5732 1.0000 0.L639
0.01 0.9999 0.5539 0.9999 0.4266
0.02 0.9998 0. 5380 0.9998 0.3976
0.1 0.9956 0.4413 0.9942 0.2483
0.2 0.9823 0.3546 0.9768 0.1487
0.3 0.9602 0.2879 0.9482 0.0922
0.k 0.9297 0.23h2 0.9087 0.0582
0.5 0.8910 0.1898 0.8589 0.0371
0.6 0.84k5 0.1523 0.7995 0.0237
0.7 0.7903 0.1199 0. 7310 0.0151
0.8 0.7286 0.0015 0.6540 0.0094
0.9 0.6587 0.0655 0.5680 0.0055
0.95 0.6196 0.0528 0.5204 .0040
C.98 0.5937 O.OlkT 0.4883 0.0031
.99 0.58k2 C.0417 O.L77h 0.0027
1.0 0.5732 0.0382 0.4639 0.0024
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rlfr/Rl cl=1.u, ;70.95 clzl.h, ¢;=0.95
or R, - R = 3 MFP R, = Ry = 10 MFP
r = r-Ry p(r;)/e(o) | o(xy)/plo) p(r)/p(0) | olry)/e(6)
Ry=Ry

0.0 1.0000 0.4ggo 1.0000 0.6384
0.01 0.9999 0.4864 0.999% 0.5597
0.02 0.9998 0.4753 0.99985 0.5057
0.1 0.9945 0.ko31 0.9965 0.2790
0.2 0.9780 0.3329 0.9859 0.1564
0.3 0.9508 0.2758 0.9683 0.0933
0.4 0,913k 0.2280 0.9438 0.0573
0.5 0.8662 0.1871 0.9128 0.0357
0.6 0.8099 0.1518 0.87hk 0.0224
0.7 0.T452 0.1206 0.8275 0.0139
0.8 0.6728 0.0927 0. 77Tk 0.0084
0.9 0.5927 0.0659 0.7168 0.0045
0495 0.5490 0.0541 0.6819 0.0030
0.98 0.5208 0.0459 0.6581 0.0021
0.99 0.5106 0.0Lk2g 0.6L401 0.0018
1.0 0.4992 0.0392 0.6384 0.00LL




