## NASA CONTRACTOR REPORT

N ASA CR-129021

```
(HASA-CN-129021) STAMIS:ICAL AYKIYSIS CF
```



```
FIGGTS (Ncrthrop Services, Imc..
```



STATISTICAL ANALYSIS OF FLIGHT TIMES
FOR SPACE SHUTTLE FERRY FLIGHTS
By M, E. Graves and M. Perlmutter Northrop Services, Inc. 6025 Technology Dr. Huntsville, Alabama 35805

Jamary 1974


Prepared for
NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER Marshall Space Flight Center, Alabama $\mathbf{3 5 8 1 2}$

TECHNICAL REPORY STANDARD TITLE PAGE


Subsequent to completion of this report NASA terminated all activities relating tu the Air Breathing Engine System for the Space Shuttle Orbiter. This changed the primary mode of Orbiter ferry and flight testing to be by carriex aircraft (C5A or B747). While the change in the Orbiter ferry operation may negate the results the stillwalid analysis techniques warrant publication of the report.

| 17. KEY Monits | - $\|$18. Disthibution STATEment <br> Inclassified - unlimited <br> Acting Director, <br> Aero-Astrodynamics Laboratory |  |  |
| :---: | :---: | :---: | :---: |
|  <br> Unclassified | 20. SECUNity CuASSIF, (or that mol <br> Unclassiffed | 21. MO. OF PAGES 39 | 22. PRICE NTIS |

## FOREWORD

The work described in this report was conducted by Nortirop Services，Inc．， Huntsville，Alabama，for the Natiznal Aeronautice and Spire Administration， George C．Marsfall Space 7 ifght Center，Aerc－Astrodynamics iaboratoiy，under Contrac．No．NAS8－21810，Appendix A，Schedule Order Numbers 13 and 14．Dr． George H．Fichtl and Mr．S．Clark Brown were the Techncal Coordinators for this task．

## ACKNOMLEDGEMENTS

The authors are indebted to Mr．S．Clark Brown and Mr．Kelly $⿴ 囗 十 ⺝ 丶 l_{11}$ of NASA for the use of meteorological data records and chaits．They wish to thank Mr．Brisn and Dr．George Fichtl of NASA for their guidance and zssistance throughout the project．

## TABLE OF CONTENTS

Section Title Page
ABSTRACT. ..... 11
FOREWORD ..... iii
ACK'ONLEDGEMENTS ..... iif
I INTRODUCTION. ..... 1
II MARKOV CHAIN THEORY ..... 3
2.1 MARKOV THEORY WITHOUT PERSISTENCE EFFECTS ..... 3
2.2 MARKOV THEORY WITH PERSISTENCE EFFECTS ..... 5
2.3 ADDITIONAL INDEPENDENT DELAYS ..... 7
III MONTE CARLO THEORY. ..... 8
3.1 HONTE CARLO THEORY WITHOUT PERSISTENCE EFFECTS ..... 8
3.2 MONTE CARLO THEORY WITH PERSISTENCE EFFECTS. ..... 8
IV TRANSITION PROBABILITIES ..... 10
4.1 THEORETICAI, ASPECTS ..... 10
4.2 QUANTIFICATION OF SHUTTLE ORBITER FERRY REQUIREMENTS ..... 12
4.3 INCLUSION OF PERSISTERCE EFFECTS ..... 14

- RESULTS ..... 20
5.1 MARKOV CHATN CUMOLATIVE TREE DISTRIBUTIONS ..... 20
5.2 MONTE CARLO TIME DISTRIBUTIONS ..... 21
5.3 EFFECTS OR INFLIGHT HEADNLAD PERSISTENCE ..... 21
5.4 ADDITIONAL INDEPENDENT DELAYS ..... 22
5.5 SENSITIVITY STUDIES ..... 22
5.6 INTERRELATIONSHIPS AMOMG HYDROMETERS, CEILING, AND VISIBILITY ..... 23
VI CONCLUSIONS ..... 25
VII REFERENCES. ..... 26


## Section I

## :NTRODUCTION

Prior to the launching of a Space Shuttle Orbitcr veincle, a ferrying operation across the southern states may be carried out to move the Orbiter from assembly site to launch point or frum landing point to assembly site. The proposed ronte oí this operation (Figure 1) has seven terminals and a like number of al:ernates for route segments averaging about 35 m miles. The terminals are subject to certain landing and takeoff constraints and the route segments are subject to altitude and headwind constraints. The objective of this study is te find the distribution in time of flight duration berween Edwards AFB and Kennedy Spaceflight Center (KSC) under these constraints, using meteorological data for the four midseasonal months of January, April, July, and October.

To determine this distributjon, two distinct statistical techniques have been used. The first is a Markov chain process and the second is a Monte Carlo method. A certain ferry configuration, a vehicla cruising speed of 250 knots, and some environmental constraints have been set for this particular problem. However, the two statistical methods are entirely applicable to other ferry configurations and other operational values of the variables pertaining to speed limitations and environmental requirements.

To the best of the authors ${ }^{\text {t }}$ knowledge, there is no previous work which is directly applicable to this topic. However, the Markov chain theory has been used by Brodie [1] in solving the similar problem of finding the probability of success of a space mission. A large amount of work has been done on model simulation with the Monte Carlo method (e.g., Schreider [2]).

The study is divided into seven sections. The Markov chain theory is presented in Section II, with application to the simulation of Orbiter ferry flights. The flights are subject to certain persistence effects, so the Markov procedure is outlined for meteorological data which contain persistence as well as for data which are free of persistence.

Section IIl presents an adaptation of the Monte Carlo theory to the prubleiu at hand, again treating the procedure for data containing persistence effects separately frum persistence-free data.

Section IV deals with the transition probabilities of Markov chain theory. After discussing the theoretical aspects of this topic, the application to ferry simulation is made by quantifying the Shuttle Orbiter ferry requirements. These constraints are related to hydrometeors, ceiling, visibility, inflight headwinds, and runway density. The ffects of persistence in cruise headwinds and in hydrometeors, or inclement weather, are also evaluated.

Section $V$ presents a number of distributions of flight duration mater various assumptions, using both the Markov chain and Monte Carlo procedures. The degree of sensitivity of the results to changes in the cruise headwinds requirements and ceiling/visibility constraints is also tested, and the outcome when there is mutual dependence among the hydrometeors and the ceiling/ visibility constraint is investigated to give an optimistic, limiting assessment.

Finally, the conclusions of this investigation are presented in Section VI, the references are shown in Section VII.

## Section II <br> MARKOV CHAIN THEORY

Two applications of Markov Chain theory will be considered. The first case excludes the persjstence of unfavorable conditions. The second case includes such effects. The two cases are presented in subsections 2.1 and 2.2, respectively. In subsection 2.3 , the effect of additional independent delays is investigated.

### 2.1 MARKOV THEORY WITHOUT PERSISTENCE EFFECTS

Markov theory ieals with processes in which the probability of obtaining a particular state in the $n^{\text {th }}$ trial depends only upon the state preceding the trial. To illustrate, the probability of obtaining a chain of events $E_{0}, E_{1}, \ldots$ $E_{n}$ can be written as $P\left(E_{0}, E_{1}, \ldots E_{u}\right)=P\left(E_{0}\right) P\left(E_{1} / E_{0}\right) \ldots P\left(E_{n} / E_{n-1}\right)$. Here $P\left(E_{0}\right)$ is the probability of being in the initial state $E_{0} \quad P\left(E_{1} / E_{0}\right)$ is tine conditional probability of passing from state $E_{0}$ to $E_{1}$ in the first trial.

In the simplest Shuttle ferrying case, the possible states can be assumed to be

$$
E=\left[\begin{array}{l}
a_{1}  \tag{1}\\
a_{2} \\
\cdot \\
\cdot \\
\cdot \\
a_{7}
\end{array}\right]=\left[a_{1}\right], i=1,2, \ldots, 7
$$

where $a_{1}$ is the initial airport, $a_{2}$ is the terminal for the first leg, etc. (see Figure 1), and $a_{y}$ is the final destination. Taking initially the case where all flights begin at the sime airport, then $P\left(E_{0}\right)$ becomes

$$
P\left(E_{0}\right)=\left[\begin{array}{c}
P\left(a_{1}\right)  \tag{2}\\
P\left(a_{2}\right) \\
\cdot \\
\cdot
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
\cdot
\end{array}\right]=\left[I_{1}\right], 1=1,2, \ldots 7
$$

where $\left[I_{i}\right]$ is equivalent to $P\left(E_{0}\right)$.

The term $P\left(E_{n} / E_{n-1}\right)$ is the conditional probability of going from state $E_{n-1}$ to state $E_{n}$ in the $n^{\text {th }}$ trial. This can be written as the matrix of transition probabilities,

$$
\begin{align*}
P\left(E_{n} / E_{n-1}\right) & =\left[\begin{array}{ccccccc}
T_{1,1} & T_{1,2} & 0 & 0 & 0 & 0 & 0 \\
0 & T_{2,2} & T_{2,3} & 0 & 0 & 0 & 0 \\
0 & 0 & T_{3,3} & T_{3,4} & 0 & 0 & 0 \\
0 & 0 & 0 & r_{4,4} & T_{4,5} & 0 & 0 \\
0 & 0 & 0 & 0 & T_{5,5} & T_{5,6} & 0 \\
0 & 0 & 0 & 0 & 0 & T_{6,6} & T_{6,7} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]  \tag{3}\\
& =\left[T_{i, j}\right], i=1,2, \ldots, 7, j=1,2, \ldots, 7
\end{align*}
$$

Here, $T_{7,7}$ is set equal to 1 because state $a_{7}$ is the absorbing state, or final destinatior. The zeroes repres $2 n t$ the transition probabilities for nonadjacent airports; all flights operate between adjacent airports.

If persistence effects are excluded, then the states $E$ (or $a_{i}$ ) refer to the airports along the route $A_{i}$ (Figure $2 a$ ). Each trial is cor :idered to require half a day. The transition probability, $T_{i+1}$, gives the probability of leaving airport $A_{i}$ and reaching the next airport, $A_{i+1}$, during the half-day trial period. The transition probabilities for morning trials are different from those for afternoon trials.

In Figure 2a the initial state $a_{1}$ is shown at 1 (A.M.). This san be assumed to be $\mathbb{N}$ identical aircraft at the first airport ready for the first norning trial. A fraction $T_{1,2}$ of $N$ will be successful and proceed as shown in Figure za to point $a_{2}$, the second airport, at 1 (P.M.), ready for the afternoon trial. The remainder $N\left(1-T_{1,2}\right)=N T_{1,1}$ will be unsuccessfal ad remain at $a_{1}$ at 1 (P.M.) ready for the afternoon trial.

After the afternoon trial, there is a probability $T_{2,3}$ of the aircraft at airport $a_{2}$ moving to airport $a_{3}$ at 2 (A.M.).

The probability of reaching stace $a_{7}$, which is the final destination after a given number of trials, is the result being sought. The probability of attaining state a7 after the first event is

$$
\begin{equation*}
P\left(1 / a_{7}\right)={\underset{i=1}{7}}_{I_{i}} T_{i, 7}=0 \tag{4a}
\end{equation*}
$$

after 2 events,

The probability of reaching the final airport after $n$ half-days is

$$
P\left(n / a_{7}\right)={\underset{i=1}{7} \underset{j=1}{7} \cdots \sum_{m=1}^{7} I_{i} T_{i, j} T_{j, k} \cdots T_{m, 7}=\sum_{i=1}^{7} I_{i} T_{i, 7}{ }^{(n)}(4 c) ~}_{(4)}
$$

where

$$
\begin{align*}
& T_{i, 7}{ }^{(2)}=\sum_{j=1}^{7} T_{i, j} T_{j, 7}  \tag{5a}\\
& T_{i, 7}{ }^{(3)}=\sum_{j=1}^{7} \sum_{k=1}^{7} T_{i, j} T_{j, k} T_{k, 7}  \tag{5b}\\
& T_{i, 7}{ }^{(n)}=\sum_{j=1}^{7} \cdots \sum_{m=1}^{7} T_{i, j} T_{j, k} \cdots T_{m, 7} \tag{5c}
\end{align*}
$$

Since all aircraft are at the first airport initially, Eqs. (5) becomes

$$
\begin{equation*}
P\left(n / a_{7}\right)=\sum_{j=1}^{7} \cdots \sum_{n=1}^{7}(1) T_{1, j} T_{j, k} \cdots T_{n, 7}=T_{1,7}^{(n)} \tag{6}
\end{equation*}
$$

This matrix multiplication can be carried out directly.

$$
\begin{equation*}
S_{t}=\sum_{n=0}^{t} P\left(n / a_{7}\right) \tag{7}
\end{equation*}
$$

is also of interest. It gives the probability of reaching the final airport on or before the $t^{\text {th }}$ trial.

### 2.2 MARKOV THEORY WITH PERSISTENCE EFFECTS

In this section, the term "persistence" signifies the effect of mfavjrable conditions of the previous trial on the transition probabilities of the next trial. Such conditions signify that the previous trial was a "No go" outcome. Persistence is taken into account by redefining the Markov states as

$$
E=\left[\begin{array}{c}
a_{1}  \tag{8}\\
a_{2} \\
\cdot \\
\cdot \\
a_{m}
\end{array}\right]
$$

where $a_{1}$ now refers to being located at the initial airport under previously favorable conditions; $A_{1}(F) a_{2}$ now refers to being located at the initial airport under previous.y unfavorable conditions: $A_{1}$ (U) $a_{3}$ refers to being located at the next airport with previous conditions favorable; $A_{2}$ (F) $a_{4}$ is similar to $a_{3}$ but with previous conditions unfavorable, $A_{2}(U)$ and so forth. Then as in Eq. (2), taking initlally the cases where all fiights begin at the same initial airport, $P\left(E_{0}\right)$ is redefined as

$$
P\left(E_{0}\right)=\left[\begin{array}{c}
P\left(a_{1}\right)  \tag{9}\\
P\left(a_{2}\right) \\
P\left(a_{3}\right) \\
P\left(a_{4}\right) \\
\cdot \\
\cdot \\
P\left(a_{13}\right)
\end{array}\right]=\left[\begin{array}{c}
P(F) \\
P(U) \\
0 \\
0 \\
\vdots \\
\vdots \\
0
\end{array}\right]=\left[I_{i}\right]
$$

where $P(F)$ is the probability of the previous weather being favorable while $P(U)$ is the probability of the previous weather being unfavorable.

As before, the N identical aircraft are started at airport 1 . However, this time a certain fraction $P(F)$ have previously favorable weather and are in state $a_{1}$, while the other fraction $P(U)=1-P(F)$ are considered to have previously unfavorable weather and are in state $a_{2}$ (Figure 2b).

The transition probability $T_{1,3}$ in Figure $2 b$ gives the fraction of aircraft at the first airport with favorable previous weather $a_{1}$ at 1 \{A.M.) that successfully reach the second airport, or state $a_{3}$, at 1 (P, M.) after the first morning trial. $T_{1,2}$ gives the other unsuccessful fraction which remain at the first airport but now with the previous weather unfavorable (e.g., state and at 1 (P.M.) after the morning trial.

Similarly, the tansition probability $T, 3$ in Figure 2 b gives the fraction of aircraft at the first airport with unfavorafite previous wear - state a. at 1 (A.M.), that successfuliy reaches the second airport, or cate $a_{3}: 1$ (P.M.), after the morning trial. ${ }^{T}{ }_{2}, 2$ gives the unsuccesseul fraction which remain at the first airport in state $a_{2}$ at 1 (P.M.) ai :er the first trial.

The probaisility of reacining the final destination in $n$ trials is now given by

The cumulative distribution is now given, as in Eq. (9), by

$$
\begin{equation*}
s_{t}=\sum_{n=0}^{t} p\left(n / a_{13}\right) \tag{10b}
\end{equation*}
$$

### 2.3 ADDITIONAL INDEPENDENT DELAYS

During the flights, there will be occasions when an independent, additional delay beyond the previously calculated delays may occur. For instance a large scale weather formation may extend the overall flight time. The probability of an additional delay of $d$ days of a flight can be written as $p_{d}$. Then the probability $P_{d}(t)$ of reaching the destination in $t$ days can be written as

$$
\begin{equation*}
P_{d}(t)=P(t)\left[1-\sum_{d=1}^{m} P_{d}\right]+\sum_{d=1}^{t} p_{d} P(t-d) \tag{11}
\end{equation*}
$$

where $P(t)$ is the probability of completing the trip in $t$ days without the independent additional delay and $P(t-d)$ is the probability of completing the trip in t-d days without such a delay.

The cumulative distribution as in Eq. 7 will now become

$$
\begin{equation*}
S_{d, t}=\sum_{::-i)}^{t} P_{d}(n) \tag{12}
\end{equation*}
$$

## Section III

## MONTE CARLO THEORY

In this section the Monte Carlo analysis is discussed. Subsection 3.1 is the case without persistence effects while subsection 3.2 extends the analysis to include the effects of persistence.

### 3.1 MONTE CARLO THEORY WITHOUT PERSISTENCE EFFECTS

Model sampling can be used to evaluate the probable numier of days needed to reach the final destination. The simulated aircraft is started at the infial airport and its new location is calculated after the first event by the transition probability, $T_{i, j}$ where $T_{1,1}+T_{1,2}=1$. As before, the two subscripts indicate the $i$ irports of origin and of termination, respectively. A random number wr:ch is uniformily distributed between 0 and 1 is generated. If it is less than $T_{1,2}$, the simulated aircraft is moved to the next airport. Otherwise, the aircraft is held at its present location. Its new position is calculated similarly for the next event. This process is continued until the simulated aircraft reaches the final afrport aftir even $s$. It is then scored in the t-category. This process is then repeated for $N$ samples. The probability of reaching the final destination after 1 trials can then be estimated by

$$
\begin{equation*}
P\left(t / a_{7}\right)=n_{t} / N \tag{13}
\end{equation*}
$$

where $n_{t}$ is the namber of simulations that reach the final destination in $t$ trials, and $\mathbb{N}$ is the cotal number of simalations.

The 95 -percent confidence 1 imits $. n n_{t} / N, \delta$, are given by Schreider [2] as

$$
\begin{equation*}
\left|n_{t} / N-P\left(t / a_{7}\right)\right|=s \leq 1.96 \sqrt{P\left(t / a_{7}\right)\left(1-P\left(t / a_{7}\right) / N\right.}=1.96 \sigma \tag{14}
\end{equation*}
$$

This expression can be evaluated directly as before.

### 3.2 MONTE CARLO THEORY WITH PERSSTENCE EFFECTS

The Monte Carlo procedure can be modified, as was the Markov chain method, to include the effects of persistence. If $P(F)$ is the probability of favorable
conditiens om a yiven day, the simulated aircraft is, irted at the in: ial dirpost
 with $P(F)$. If the random number is less than $P(F)$, then the frevious weatiar is considered favorable: otherwise, il is considered nifiavorable it the foevious weather is iavorate, 1,3 is used in tine ne:tt trial; if not, $T_{2,3}$ is used. As discussed previnusily, this procedure is continued to find

$$
\begin{equation*}
P\left(t / 1_{13}\right) \quad n_{t} / N \tag{1;}
\end{equation*}
$$

## Section IV

## transition probabilities

In this section, the transition probal .ities used in the analysis are discussed. In subsection 4.1, the theoretical aspects are considered, first excluding persistence and then including this factor in the discussion. In subsection 4.2, the Shuttle Orbiter Ferry requirements are quantified with persistence effects excluded. In subsection 4.3 , the persistence effects are then added.

### 4.1 THEORETICAL ASPECTS

### 4.1.1 Theoretical Aspects Without Persistence

Consider a number of factors called $A_{1}, A_{2}, \ldots A_{1}$. If any of these events occur, the aircraft will not proceed. The probability of events $A_{1}$ or $A_{2}$ or ... or $A_{i}$ occurring is given by

$$
\begin{align*}
& P\left(A_{1} \text { or } A_{2} \text { or } \ldots \text { or } A_{i}\right)=\sum_{\substack{j=1}}^{i} P\left(A_{j}\right)-\sum_{\substack{j, k \\
j \neq k}} P\left(A_{j} A_{k}\right)  \tag{16}\\
& \quad+\sum_{\substack{j, k, m \\
j \neq k \neq m}} P\left(A_{j} A_{k} A_{m}\right)-\ldots=T_{i, i}=1-T_{i, j}
\end{align*}
$$

If $A_{i}$ and $A_{j}$ are mutually exclusive, then

$$
\begin{equation*}
P\left(A_{i} A_{j}\right)=P\left(A_{i}\right) P\left(A_{j} / A_{i}\right)=0 \tag{17a}
\end{equation*}
$$

If $A_{i}$ and $A_{j}$ are suependent events, then

$$
\begin{equation*}
P\left(A_{i} A_{j}\right)=P\left(A_{i}\right) P\left(A_{j} / A_{i}\right)=P\left(A_{i}\right) P\left(A_{j}\right) \tag{17b}
\end{equation*}
$$

If $A_{i}$ and $A_{j}$ are inclusive, so that whenever $A_{i}$ occurs $A_{j}$ must occur,

$$
\begin{equation*}
P\left(A_{i} A_{j}\right)=P\left(A_{j} / A_{i}\right) P\left(A_{i}\right)=P\left(A_{i}\right) \tag{17c}
\end{equation*}
$$

These relationships will be used to evaluate the overall transition probabilities for the various operational constraints.

### 4.1.2 Theoretical Aspects With Persistence

 svents occur, the trial will be unfavorable, in thit

$$
\begin{equation*}
v_{t}=\left(A_{1} \text { or } \dot{A}_{3} \text { cr } \ldots\right)_{t} \tag{18}
\end{equation*}
$$

The probability of unfavorable feither in the present frial, given that the previous trial was unfavorable, is

$$
\begin{align*}
P\left(U_{t} / U_{t-1}\right) & =P\left[\left[A_{1} \text { or } \dot{A}_{2} \text { or } \ldots\right]_{t} Y_{t-1}\right] \\
& =\sum_{1} P\left[\left(A_{i}\right)_{t} / U_{t-1}\right]-\sum_{j \neq k}^{j \neq k} P\left[\left(A_{i}, A_{k}\right) / U_{t-1}\right]+  \tag{19}\\
& \left.+\sum_{j, k, m}^{r} P\left(A_{j} A_{k} A_{m}\right) / U_{t-1}\right]-\cdots \\
& ={ }_{\mathbf{T}_{2,2}} \text { or } T_{4,4} \text { or } \ldots
\end{align*}
$$

These quantities define the persistence factors desired in the calculation.

If $A_{j}$ is independent of the previous unfavorable weather, then

$$
\begin{equation*}
P\left[\left(A_{j}\right)_{t} / U_{t-1}\right]=P\left(\hat{A}_{j}\right) \tag{20}
\end{equation*}
$$

It can be seen that

$$
\begin{equation*}
\mathrm{P}\left[\mathrm{~F}_{t} / \mathrm{U}_{t-1}\right]=1-\mathrm{P}\left[\mathrm{U}_{t} / \mathrm{U}_{t-1}\right]=\mathrm{T}_{2,3} \text { or } \mathrm{T}_{4,5} \tag{21}
\end{equation*}
$$

which is the probability of a " $\mathrm{Co}^{\mathrm{I}}$, or favorable weather on the present trial, $\mathbf{F}_{\mathbf{t}}$, given the previous trial was unfavorable, $\mathbf{u}_{\mathbf{t}-1}$.

As given in Reference [3],

$$
\begin{equation*}
P\left[F_{t} / F_{t-1}\right]=1-\frac{P[U] P\left[F_{t} / U_{t-1}\right]}{[1-P(U)]}=T_{1,3} \text { or } T_{3,5} \text { or } \ldots \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{P}\left[\mathrm{U}_{\mathrm{t}} / \mathrm{E}_{\mathrm{t}-1}\right]=1-\mathrm{P}\left[\mathrm{~F}_{\mathrm{t}} / \mathrm{E}_{\mathrm{t}-1}\right]=\mathrm{T}_{1,2} \text { ut } \mathrm{T}_{3,4} \text { or } \ldots \tag{23}
\end{equation*}
$$

### 4.2 QUANTIFICATION OF SHUTTLE ORBITER FERRY REQUIREMENTS

The takeoff, landing, and inflight constraints specified for this study include: (1) operation under visual flight rules with no icing; (2) acceptable ceiling and visibility at the point of origin and the destination upon landing or taking off; (3) tolerable inflight headwinds; and (4) acceptable runway atmospheric density for takeoff. The first three of these constraints are somewhat interrelated, as is indicated in the Venn ciagrams for eastbound and westbound flights (Figure 3). The a ount of interaction displayed in the diagrams is merely figurative. The symbols are explained in subsections 4.2 .1 to 4.2.4.

To quantify the constraints, ceriain meteorological variables observed at the seven air bases were selected and their monthly sumaries [4] were obtained over as long a period of record as possible. In general, the period of record exceeds 20 years. The meteorological variables which enter into the computation of transitional probability are listed in Table 4-1 with their specified constraining values in some cases. The effects of possible long-term weather trends were not considered becsise of insufficient data.

Table 4-1. SUMMARY OF THE METEOROLOGICAL VARIABLES UNDER FOUR CATEGORIES OF CONSTRAINTS, WITH AN INDICATION OF THE CONSTRAINING VALUES

| CATEGORY | VARIABLE | CONSTRAINT |
| :---: | :---: | :---: |
| 1 | Thunderstorm | No operation |
|  | rain and/or drizzie | No operation |
|  | Freezing rain | No operation |
|  | Snow ?n:. 0 or sleet | No operation |
| 2 | Ceiling/visibility | $\geq 1000$ feet/3 miles |
| 3 | Headwinds | Maxinum wind velocity |
| 4 | Rumway density | Runway temperature < $103^{\circ} \mathrm{F}$ |

### 4.2.1 Constraints Related to Hydrometeors

The variables under Category (1) are mutually exclusive in the sense that only one can be reported as "Present Weather" at a particular hour. Therefore,
the percentage frequency ot occurrene: wi the four variables in this category are simply added to form a hydrometeor froup called "H" in the vern didgramb. These data are in the form of monthly summaries fur cach of eight 3-hour periods per day.

### 4.2.2 Constraints Related to Ceiling and Visibility

The variables under Category $\mathbf{1 d}^{2}$ ) are reported jointly in the monthly sumaries as the "percentage frecuency of juint occurrence". The probability of $\mathrm{C} / \mathrm{V}$ for "No Go" due to this coustraint was similary taken from the monthly summaries. Thus the two most important parameters, ceiling and visibility, are conveniently combined in the avallatie statistics. They are indicated as C/V in the Venn diagrams.

### 4.2.3 Constraints Related to Inflight Headwinds

The variable under Category (3) is taken into account by the use of equivalent headwind data supplied by the National Climatic Center, NOAA, Asheville, N, C. These data give the mean and standard deviation of the equivalent headwind for each of the six legs (Figure 1) and for each month. The $300-\mathrm{mb}, 500-\mathrm{mb}$, and $700-\mathrm{mb}$ levels are provided.

To arrive at a transition probability for headwinds, a flight altitude of 3000 meters was selected for all legs except the westernmost leg between Edwards AFB and Tuscon. The latter segment was evaluated at 4600 meters. The specified constraints at these two levels are 9 meters per second and 14 meters per sacond, respectively. For eastbound flights, a map inspection of several years' upper air charts showed that the probability of encountering headwinds greacer than these magnitudes is negligible in all seasons, For westbound flights, a Gaussian distribution of equivalent headwind values for the given mean and variance is assumed, and the transition probability was calculated from standard tables. The headwinds parameter is called " $W^{*}$ in the Venn diagrams.

### 4.2.4 Construints Reloted to Runway Density

The variable under Category (4) has probability values which are obtained from the percentage frequency of occurrence of temperature exceeding $100^{\circ} \mathrm{F}$ at the instrumeit shelter. This constraining value is believed to be a
conservative approximation to a corresponding "No $60^{\text {" }}$ condition over the runway (currently assumed to be a runway temperature exceeding $103^{\circ} \mathrm{F}$ (see Table 4-1)). This variable is called "T" in the Venn diagrams.

### 4.2.5 Transition Probobility Values

The transition probabilities corresponding to the four Categories are combined by the use of Eq. 16 (assuming terms beyond the second to be negligible) and Eq .17 b , yielding a set of values for each leg, for both eastbound and westbound flights, for each of four midseasonal months (January, Apri:, July, and October). These values, which are equivalent to $T_{i, i}$, are given in Table 4-2. For example, the value . 047 which appears opposite 1000 hours under leg A is the probability of "No Go" in the morning from Edwards AFB to Tuscon in January.

### 4.3 INCLUSION OF PERSISTENCE EFFECTS

The principal causes of delay due to persistence are found in (1) the winds at cruising levels and (2) quasi-stationary or slowly moving systems breeding inclement operational weather over route segments and terminals. The first effect influences westbound flights because easterly winds are negligible; the second effect retards eastbound flights more than westbound flights because the mo - on of the synoptic systems are basically eastward and a flight usually cannot penetrate the system as it moves along its fiight path. The essential information for counting consecutive days of delay, or "runs", was gleaned from an examination of eight years of Daily Weather Maps of the ESSA and NOAA organizations $[5,6]$ subsequent to 1964. These Maps contain the surface and $500-\mathrm{mb}$ charts, anci prior to 1969 they include a second surface map spaced 12 hours from the mai. chart.

### 4.3.1 Inflight Heodwind Persistence

Headwind persistence was evaluated by noting the runs in which the opposing component of the wind at 500 mb was 40 kt or more. It is believed that this wind intensity at 500 mb usually indicates marginal conditions at lower cruising levels when the assigned constraints are observed. Three sectors consisting of two legs apiece were set up for the counting process. The result for each midseasonal month is given in Table 4-3.

Table 4-2. TRANSITION PROBABILITIES, $\mathrm{T}_{\mathrm{i}}$, ; FOR EACH LEG OF EASTBOUND AND WESTBOUND F:IGHTS IN EACH OF FOUR MIDSEASONAL MONTHS. THE EASTBOUND LEGS ARE DESIGNATED BY A (EDWARDS/TUSCON), B (TUSCON/EL PASO), C (EL PASO/ABILENE), D (ABILENE/ SHREVEPORT), E (SHREVEPORT/EGLIN), AND F (EGLIN/KSC). THE WESTBOUNG LEGS ARE DESIGNATED BY A (KSC/EGLIN), ... F (TUSCON/EDWARDS). THE FLIGHT DEPARTURE TIMES ARE 1000 AND 1300 LOCAL TIME

| EASTGOUND |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JANUARY |  |  |  |  |  |  |  |
|  | A | B | C | D | E | F |  |
|  | $\mathrm{T}_{1} .1$ | $\mathrm{T}_{2,2}$ | $\mathrm{T}_{3,3}$ | $\mathrm{T}_{4,4}$ | $\mathrm{T}_{5,5}$ | $T_{6,6}$ | T 7.7 |
| 1000 | . 047 | . 051 | . 193 | . 334 | . 334 | . 233 | 1 |
| 1300 | . 043 | . 054 | . 151 | . 493 | . 253 | . 185 | 1 |
| APRIL |  |  |  |  |  |  |  |
| 1000 | . 015 | . 025 | . 120 | . 165 | . 160 | . 134 |  |
| 1300 | . 030 | . 041 | . 098 | . 115 | . 140 | . 134 |  |
| JULY |  |  |  |  |  |  |  |
| 1000 | . 002 | . 018 | . 053 | . 067 | . 160 | . 160 | 1 |
| 1300 | . 491 | . 448 | . 167 | . 226 | . 276 | . 239 | 1 |
| OCTOBER |  |  |  |  |  |  |  |
| $\begin{aligned} & 1000 \\ & 1300 \end{aligned}$ | .019 .036 | . 0222 | .131 .089 | .125 .084 | . 125 | .03 .099 | 1 |
| WESTBOUND |  |  |  |  |  |  |  |
| JANUARY |  |  |  |  |  |  |  |
|  | A | B | C | D | E | F |  |
|  | ${ }^{T} 1,1$ | $\mathrm{T}_{2,2}$ | $\mathrm{T}_{3,3}$ | T 4,4 | ${ }_{5}{ }_{5,5}$ | $\mathrm{T}_{6,6}$ | T,7 |
| 1000 | . 631 | . 702 | . 724 | . 645 | . 456 | . 243 | , |
| 1300 | . 610 | . 676 | . 702 | . 629 | . 435 | . 240 | 1 |
| APRIL |  |  |  |  |  |  |  |
| 1000 | . 491 | . 542 | . 607 | . 530 | . 358 | . 157 | I |
| 1300 | . 491 | . 528 | . 546 | . 519 | . 367 | . 169 | 1 |
| JULY |  |  |  |  |  |  |  |
| 1000 | . 220 | . 238 | . 150 | . 297 | . 064 | . 014 | 1 |
| 1300 | . 290 | . 305 | . 198 | . 242 | . 205 | . 421 | 1 |
| OCTOBER |  |  |  |  |  |  |  |
| 1000 1300 | .319 .306 | .332 .373 | .363 .334 | .363 .332 | . 202 | . 069 | 1 |

Table 4-3. NUMBER OF RUNS OF OCCURRENCES OF FLIGHT DELAYS DUE TO PERSISTENT HEADWINDS, FOR WESTEOUND TRIPS IN JANUARY, APRIL, AND OCTOBER. THE SECTORS ARE KSC/SHR (KENNEDY SPACEFLIGHT CENTER/SHREVEPORT), SHik/ELP (SHREVLPORT; EL PASO), AND ELP/EDN (EL PASO/EDWARDS AFB). THE DATA ARE TAKEN FROM THE DAILY WEATHER MAP(s) SERIES

|  | RUNS (DAYS) |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} N \\ \text { (Years) } \end{gathered}$ | SECTOR | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| January | $71 / 2$ | $\begin{aligned} & \text { KSC/SHR } \\ & \text { SHR/ELP } \\ & \text { ELP/EDW } \end{aligned}$ | $\begin{aligned} & 4 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{aligned} & 4 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 3 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & 3 \\ & 1 \end{aligned}$ | $2$ |  | $\begin{aligned} & 2 \\ & 1 \end{aligned}$ | $1 \begin{aligned} & 3 \\ & 1 \end{aligned}$ | 1 | 1 | 2 |
| April | 8 | KSC/SHR <br> SHR/ELP <br> ELP/EDW | $\begin{array}{\|r} 4 \\ 6 \\ 11 \\ \hline \end{array}$ | $\begin{array}{\|l} 2 \\ 3 \\ 5 \\ \hline \end{array}$ | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 3 \\ & 2 \end{aligned}$ | 2 | 2 | 1 |  | 2 |  |
| October | 9 | KSC/SHR <br> SHR/ELP <br> ELP/EDW | 2 2 3 | $1 \begin{aligned} & 1 \\ & 4 \end{aligned}$ | $1$ |  |  |  |  |  |  |  |  |

The presence of persistence in these data can be investigated by a method described by Brooks and Carruthers [7, pp. 309-313]. If there is no persistence, a theoretical distribution of runs of occurrences is computed by successive evaluations of the quantity $\mathrm{Np}^{k} \mathrm{q}, \mathrm{k}=1,2, \ldots \mathrm{n}$, where i is the number of days in the sample; $p$ is the independent probability of a constraining headwind, and is obtained as discussed in subsection 4.2.3; $q=1-p ; k$ is the number of days in the run. Thus the expected number of runs of at least 1 day, 2 days, ... $n$ days are found. Taking the difference of adjacent values then gives the expected number of runs of exactly 1 day, 2 days, ... $n-1$ days.

Applying this technique to the January headwind runs, which have a value of $p=0.555$, the theoretical and empirical frequency distributions are computed and are presented in Table 4-4, just for the KSC/SHR sector.

Table 4-4. THEORETICAL AND EMPIRICAL FREQUENCY DISTRIBUTIONS FOR THE KSC/SHR (KENNEDY SPACEFLIGHT CENTER/SHREVEPORT) SECTOR IN JANUARY. $N=232$ DAYS AND $\mathrm{p}=0.555$

| Calculated Value $k$ or more days $k$ days | $\begin{gathered} k p^{k}{ }_{q} \\ \left(N p^{k} q\right) \end{gathered}$ | $\begin{array}{r} \hline 2 \\ 57 \\ 25 \end{array}$ | $\begin{array}{r} 3 \\ 32 \\ 14 \end{array}$ | $\begin{array}{r} 4 \\ 18 \\ 8 \end{array}$ | $\begin{array}{r} 5 \\ 10 \\ 5 \end{array}$ | $\begin{aligned} & 6 \\ & 5 \\ & 2 \end{aligned}$ | $\begin{aligned} & 1 \\ & 3 \\ & 1 \end{aligned}$ | $\begin{aligned} & 8 \\ & 2 \\ & 1 \end{aligned}$ | $\begin{aligned} & 9 \\ & 1 \end{aligned}$ | $10$ | 11 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Observed value <br> $k$ or more days <br> $k$ days |  |  | $\begin{array}{r} 17 \\ 4 \end{array}$ |  |  | 7 2 | 5 | 5 2 | 3 | 3 | 3 1 | 2 |

The higher frequency in the last row of values, compared to the first row, when $k \geq 6$ indicates that persistence is present in the data. The next step is to assume that the probability of unfavorable conditions depends on the previous conditions. Let this probability be designated as $\mathrm{P}\left(\mathrm{U}_{t} / \mathrm{U}_{t-1}\right)$; this is the probability of not reaching the next airport, given that headwind conditions prevented flight progress on the previous trial.

Following Reference 7, the probability of 2 or more unfavorabie days is given by $P_{2 t}$. Then 3 or more unfavorable days is given by $\left(P_{2 t}\right) P\left(U_{t} / U_{t-1}\right)$, and 4 or more by $\left(P_{2 t}\right) p^{2}\left(U_{t} / U_{t-1}\right)$. Sumang, this gives

$$
\begin{equation*}
\mathrm{S}=\mathrm{P}_{2 t}\left[1+\mathrm{P}\left(\mathrm{U}_{t} / \mathrm{U}_{t-1}\right)+\mathrm{P}^{2}\left(\mathrm{U}_{t} / \mathrm{U}_{t-1}\right)+\ldots\right]=\frac{\mathrm{P}_{2 t}}{1-\mathrm{P}\left(\mathrm{U}_{2} / \mathrm{U}_{1}\right)} \tag{24}
\end{equation*}
$$

which can be rewritten, where $P_{2 t}$ and $S$ are obtained from the observed values (Table 4-4), as

$$
\begin{equation*}
i\left(U_{t} / U_{t-1}\right)=\frac{N P_{2 t}}{N S}=1-\frac{21}{(21+17+13+\ldots+2)}=0.764 \tag{25}
\end{equation*}
$$

Again, following Reference 7, a set of theoretical frequencies can be computed using $P\left(U_{t} / U_{t-1}\right)=0.764$. The frequency of $k$ or more unfavorable days is given by $N\left(P_{2 t}\right) P^{k-2}\left(U_{t} / U_{t-1}\right)$, where $A P_{2 t}$ in Table $4-5$ is 21 . The differences between the values on the top line of Table $4-5$ give the expected number of runs of $k$ unfavorable days. These values are compared to the observed values of runs of $k$ unfavorable days as given in Table 4-4.

Table 4-5. THEORETICAL AND EMPIRICAL FREQUENEY DISTRIBUTIONS FOR THE SAME SECTOR AND MONTH AS IN TABLE 4-4, BUT WITH $P\left(U_{t} / U_{t-1}\right)=0.764$

| Calculated Value <br> $k$ or more days <br> $k$ days | $\begin{aligned} & \left((21) p^{k-2}\left(u_{t} / u_{t-1}\right)\right. \\ & \therefore\left((21) p^{k-2}\left(u_{t} / U_{t-1}\right)\right) \end{aligned}$ | 21 | 16 |  | 2 3 | 5 9 | 6 7 2 | 5 |  |  |  | 2 0 | 11 2 1 | 12 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| observed value $k$ days |  |  | 4 |  | 3 | 3 | 2 | 0 |  |  |  | 0 | 1 |  |

The encouraging outcome of this trial over the KSC/SHR sector led to the adoption of the above procedure to compute $P\left(U_{t} / U_{t-1}\right)$ for each of the three sectors for lanuary, April, and October data. The results are listed in Table 4-6.

Tabie 4-6. VALUES OF $P\left(U_{t} / U_{t_{-}}\right)$COMPARED WITH VALUES OF $P(U)$ FOR THREE WESTBOLND SECTORS IN JANUARY, APRIL, AND OCTOBER. THE SECTORS ARE AS DESIGNATED In TABLE 4-3.

| MONTH | SECTOR | $P\left(U_{t} / U_{t-1}\right)$ | $P(U)$ |
| :--- | :--- | :--- | :--- |
| January | KSC/SHR | 0.764 | 0.555 |
|  | SHR/ELP | 0.710 | 0.592 |
|  | ELP/EDN | 0.515 | 0.316 |
| Apri1 | KSC/SHR | 0.643 | 0.435 |
|  | SHR/ELP | 0.733 | 0.480 |
|  | ELP/EDN | 0.553 | 0.243 |
| October | KSC/SHR | $-\cdots$ | 0.246 |
|  | SHR/ELP | 0.428 | 0.270 |
|  | ELP/EDW | 0.428 | 0.128 |

When the effect of headwind persistence is taken into account by Eqs. (21-23) and the data in Table 4-6, a new transition matrix is produced. This matrix includes the probabilities related to the other constraints (see Figure 3) and the newly derived headwind probabilities, which exceed the old headwind probabilities in sectors where persistence is effective. The resultins time distribution of days required for a complete trip has been evaluated by the Markov two-state chain technique. The results are presented in section $v$.

### 4.3.2 Hydrometeor Persistence

The second effect of persistence has been analyzed by scanning the surface charts during the period when two eharts per day were rublished in the Daily Weather Map series. The most :ommon type of weather delay phemomenon is found to be a frontal wave in the Guli of Mexico, with slownoving cold fronts also accounting for a number of delay cases. Considering just east pound filghts, which suffer more delays then westbound flights, the number of cases attributable to persistent synoptic-scale phenomena has been categorized according to length of delay for the entire trip. The data do not justify a sector by sector analysis, as was done for headwinds. The results, which are quite subjective, are presented in Table 4-7.

Table 4-7. SUMMARY OF THE EFFECTS OF PERSISTENT WEATHER DELAYS ON EASTBOUND FLIGHTS IN JANUARY, APRIL, AND OCTOBER. $N$ IS THE NUMBER OF DAYS INCLUDED IN THE SURVEY

|  | N <br> (Days) | TOTAL DELAY <br> (Days) | NO. CASES | NO. CASES/N |
| :--- | :---: | :---: | :---: | :---: |
| January | 140 | $11 / 2$ | 4 | .029 |
|  |  | 2 | 1 | .007 |
|  |  | $21 / 2$ | 1 | .007 |
|  |  | $31 / 2$ | 3 | .022 |
|  |  | 2 | .014 |  |
| Apri1 | 104 | $11 / 2$ | 1 | .009 |
|  |  | 2 | 1 | .009 |
|  |  | $21 / 2$ | 2 | .019 |
| October | 129 | $1 / 1 / 2$ | 1 | .008 |
|  |  | 2 | 1 | .008 |
|  |  | $21 / 2$ | 1 | .008 |

The month of January is the only month studied which accrues an appreciable number of persistent weather interruptions of schedule. The probability of occurrence of an independent delay of $t$ days was defined in subsection 2.3 (Rq. 11). In Table 4-7, the values of $p_{d}$ are (see righthand columa) $y_{2}=.029+.007=$ $.036, p_{3}=.007+.022=.029, P_{4}=.014$. Since no transition probabilities are calculable for this particular kind of delay, the results are deferred to subsection 5.3.

## Section V

## RESULTS

Using the procedures which have been out lined in Sections II to IV, a number of computations have bern carried out for the designated Shutile Grbiter Ferry Route in compliance with certain en : ronmental constraints. The results of these computations are presented in the following order:

1. Cumulative time distributions of flight duration obtained by the Markov chain method, omitting persistence effects.
2. Time distributions of flight duration obtained by the Monte Carlo process, umitting persistence effects.
3. Same as 1, with persistence of inflight headwinds included.
4. Tim. distribution of flight duration in January based upon a survey of meteorological charts, Including persistence effects of hydrometeors.
5. Eensitivity studies of the variation of constraints for inflight headwinds and ceiling/visibility, using the Markov chain technizue without persistence effects.
6. Sensitivity study of an assumed intordependence among the hydrometeors, ceiling, and visibility, using the Markov chain technique without persistence effects.

### 5.1 MARKOV CHAIN CUMULATIVE TIME DISTRIBUTIONS

The Markov chain procedure applied under the designated constraints discussed in Section IV, and confined to takeoff times of 1000 and 1300 lecal time with no persistence effects operating, yields the cumulative time distributions of flight duration between Edwards AFB and KSC shown in Figure 4. This outcome is also the probability of reaching the final terminal on or before a given day. For example, in Figure 4a the July curve indtcates that 87 percent of the flights in this month should traverse the eastbound route from Edwards AFB to KSC in 4 days or less. Alternatively, there is an 87 -percent probability that a particular eastbound trip will complete its flight in 4 days or less. The principal difference between eastbound and westbound results, as well as the difference between the seasons, is accounted for by the headwinds factor. The greater duration of July flights eastbound, compared to the transition seasons, is caused by the occurrence of precipitation forms and high summer temperatures (in the Southwest).

### 5.4 ADDT: TONAL INDEPENDENT DL: : : :

 indeprondent delays, or $p_{d}$ - vain. . if subsection i. 3. 3 , yields a new time distribution of trip duration for easi . . Jd flights in faiatary. The Jatuary probabilitiess are platted (Figure 5a) th st - elongation al the tail of tise dishijution
 samiative time distrib. , $\because$ alsu plotted (Figure 4a) to disclose an increase



Such delays are sis:mal in other midseasonal months (Table $4-7$ ) and they are appreciably less an westbound flights than eastbound trips. Therefore, they are not represented additionally in graphe or tables.

### 5.5 SENSITIVITY Studies

A number of computer runs were made to observe the outcome when certain Shuttle Orbiter Ferry requirements were eliminated or modified. First, the Inflight headwinds constraint was studied with the other constraints heid at their nominal values. Second, the ceiling/visibility constraint was studied with tie other constraints eliminated.

### 5.5.1 Inflight Headw inds

The result $=$ of a step by step relaxation of the designated headwind constraint is related here, the 1 imiting headwind values vi $9 \mathrm{mec}^{-1}$ at ,000 m and $14 \mathrm{~m} \mathrm{sec}^{-1}$ at $4 n 00 \mathrm{~m}$ being multiplied by factors of $1.25,1.50,1.75$, and 2.00 . When the four midseasonal months are combined, the resulting set of cumulative percentage frequency curves show a marked improvement as the limitation is relaxed progressively (Figure 8). For example, curve "a" corresponding to the designated nominal maximum headvind indicares that 95 percent of all westbound trips traverse the KSC/Edwards AFB route in 10 days or less. However, if the headwind constraint is relaxed to twice its designated value, the result (seen $1 n$ curve " $e^{4}$ ) indicates that 95 percent of all westbound trips traverse the route in 6 days or less. The conclusion reached by this sensitivity study is that the longer durations of westbound trips in wirter and transition seasons can be reduced significantly if greater headwind strengths can be tolerated.



 latter case if tise headwind constraitit $\quad$ reliaxid t. twion the designated value.

### 5.5.2 Ceiling Visibility

A .reond experiment tosts the sebusitivity if the mast fryortane weatherrelater variablea, namely, the veiting and visitility parame lelio, when other

 time distribution can be computed as before for comparison (fizure 10). Two


When categories "e" and "d" are compared, the midseational monchs of lanut ry, April, and october show a gain of about $1 / 2$ day while July has almost no gain. A tightening of constraints to $2000 \mathrm{ft} / 5 \mathrm{mi}$ (Cat*gry "b") yidids a loss of nearly one day in January and a loss of about $1 / 2$ day in the ot lex rouths. A further tightening of constraints to $3000 \mathrm{ft} / 6$ miles (Categury "a") results in an additional exteusion of merely $1 / 2$ day to one day in each month. This test therefore reveals little sensitivity in the ceiling and visibllitv, in comparison with the neadwind constraint.

### 5.6 IMTERRELATIONSHIPS AMONG HYDROMETEORS, CEILING, AND VISIBILITY

Although the above resuits assume that the events (e. .f., tite meteorolugical record of constraining factors) are independent, but not mutualiy exclusive, this assumption is not strictly defensilile. The degree of correlation between the various factors is not known. However, some interciependence can be expected between the hydrometeors and the ceiling/visibility parameter. A very uptimistic assumption would be to state that such events are inclusive in the sense that the greatest probability of occurtence within Categories 1 and 2 (Table 4-1) represents that pair of Categories. When this substitution is made, the new set of transition probabilities gives a more optimistic result which may be regarded as a lower bound on the number of days required for a complete trip in each season. The
outcome for eastbound and westbound trips, using the nominal headwind limits specified for the problem, is entered in Figure 7. Thus, in January the optimistic limit for eastbound filghts is $41 / 2$ days, compared to 5 days for the nominal case, whereas this limiting value for westbound flights is $111 / 2$ days, compared to $121 / 2$ days for nominal ceiling and visibility constraints. Thus, the reduction of trip duration attributable to interdependence among hydrometeors, ceiling, and visibility is rather minimal.

## Section VI

## CONCLUSIONS

The Markov chain and Monte Carlo analyses are effective metiods to determine probable flight times for Space Shuttle ferrying on=rativns. Furthermore, the techaniques uied in this study are applicable tu other routes and other trensport configurations.

Because of the assumption that only one leg can be completed cach half-day, the present results indicate that the designated sinutte orbiter route and requirements correspond to an absolute mininm period of 3 davs. This period is needed to traverse the six-leg path betwisa Idwards AFT and hennedy Spaceflight center, flying in either direction.

Eastbound flights are found to be free of ground delays caused by the designated headwind constraint of $9 \mathrm{~m} \mathrm{sec}{ }^{-1}$ at 3000 m and $14 \mathrm{~m} \mathrm{sec}^{-1}$ at 4600 m . However, the other constraints (e.g., ceiling, visibility, and hydrometeors) result in a 95 -percent probability of completion within 5 days in any season. Conyersely, there is a 5-percent risk of exceeding 5 days in a flight started at random. Persistently unfavorable weather conditions extend the expected delay period an additional day in winter.

Westbound flights are affected by the designated headwind constraint in winter and in transition seasons. Evaluation of the ground delays caused by this factor and the other constraints reveal an annual 95 -percent completion level ranging from 5 days in July to 13 days in January. Inclusion of persistence in the headwinds has little effect except in winter, when the 13-day figure is raised to 17 days.

[^0]
## Section YII

## REFERENCES

!. Brodie, S. B., "Saturn V Launch Vehicle and Spacecraft Launch Probability", Lockheed Missiles and Space Cumpzay, Final Report, April 1969.
2. Shreider, Yu, A., "The Monte Carlo Method", Pergamon Press, 1966.
3. Cohen, A Clifford, "Probabilities of Sequences of Favorable and Unfavorable Launching Intervals", Technical Report Number 27, The University of Georgia, 1968.
4. Revised Uniform Summary of Surface Weather Observations, Data Processing Division, ETAC/USAF, Air Weather Service (MATS), Asheville, N. C.
5. Daily Weather Map, U. S. Department of Comerce, Weather Bureau, Washington, D. C.
6. Daily Weather Maps, U. S. Department of Cumerce, ESSA (NOAA) Enviromental Data Service, Silver Spring, Md.
7. Brooks, C. E. P. and Carruthers, N., "Handbonk of Statistical Methods in Meteorology", London, 1953, pp. 309-313.




Figure 3. SCHEMATIC VENN DIAGRAM OF THE CONSTRAINING FACTORS FOR EASTBOUND AND WESTBOUND FLIGHTS, SHONING A DEGREE OF INTERRELATIONSHIP. THE LETTER DESIGNATORS HAVE THE FOLLOWING MEANING: C/V - CEILING/ VISIBILITY, H - HYDROMETEORS, $T$ - RUNMAY TEMPERATURE; $W$ - HEADWINDS


Figure 4. CURVES OF CLMULitive PROBABILITY FOR NUNBER OF DAYS ( $t$ ) REQUIRED TO FLY BETWEEN EDWARDS AFB AND KSC, EASTBOUND (4a) AND HESTBOUND (4b), FOR JARUARY, APRIL, JULY, AND OCTOBER. THE CONSTRAINTS LISTED IN TABLE 1 ARE APPLIED, WITHOUT PERSISTENCE EFFECTS, TO OBTAIN THE CONTINUOUS CURVES. THE EFFECTS OF PERSISTENT, INCLEMENT WEATHER (SECTION V) are included to obtain the broken curve in 4a. the markov chain PP.JCEDURE IS THE RELEVANT TECHNIQUE



Figure 6. PROBABILITY OF THE NUMBER OF DAYS ( $t$ ) REQUIRED TO FLY HESTBOUND TRIPS FROM KSC TO EDHARDS AFB IN JANUARY, (6a), APRIL (6b), AND JULY (6c). THE DOTS AND SHORT HORIZONTAL LINES ARE THE VALUES AND TWO-SIGMA CONFIDENCF LIMITS, RESPECTIVELY, FOR CALCULATIONS MADE BY THE MONTE CARLO METHOD. CIRCLES REPRESENT VALUES FOUND BY THE MARKOV CHAIN PROCESS.


INCLUDING HEADWIND PERSISTENCE IS
MARKOV CHAIN METHOD IS THE RELEVANT PROCEDURE
Figure 7.


Figure 8. ANN:IAL CURVES OF CUMULATIVE PROBABILITY FOR NUMBER OF DAYS ( $t$ ) REQUIRED TO FLY BETNEEM EDHARDS AFB AND KSC, EASTBOUNO AND WESTBCLND, FORMED BY AVERAGING THE DATA FOR JAMUARY, APRIL, JULY, AND OCTOBER. CURYES a (WESTBOUND) AND $X$ (EASTBOUND) ARE BASED UPON THE DESIGNATED HEADWIND CONSTRAINTS OF $9 \mathrm{~m} \mathrm{sec}-1$ AT 3.0 km AND $14 \mathrm{~m} \mathrm{sec}-1$ AT 4.6 km , THE THG FLIGHT LEVELS USED IN THE COMPUTATIONS. CURVES $b, c$, $d$, AND e (ALL hestbound are based upon a relaxation of the headhind constrrint, in STEPS OF OME-QUARTER, TO A MAXIMUM RELAXATION OF 2.00 H . H REFERS TO EITHER OF THE DESIGMATED hEADIIND CONSTRAINTS. THE MARKOV CHAIN PROCESS IS THE RELEVANT METHOD

Figure 9, 95-PERCENI PROBABILITY VALUES FOR THE NUMBER OF DAYS ( $t$ ) REQUIRED TO


Figure 10. 95-PERCENT PROBABZLITY VALUES FOR THE MUMBER OF DAYS (t) REqUIRED TO FLY EASTBOUND OR WESTBOUND TRIPS IN JARUARY, APRIL, JULY, AND OCTOBER, UNDER FOUR COMBINATIONS OF THE CEILING/VISIBILITY CONSTRAINT. THE OTHER CONSTRAINTS ARE HIL. THE MARKOV CHAIM PROCESS IS THE RELEVANT METHOD


[^0]:    Sensitivity tests upon the headwind constraint indicate that relaxation of this factor sigaificantly reduces the 95 -percent probability time. For example, increasing the 1 imit to $1 / 2$ times its designated value reduces the 13-day figure to 9 days. On the other hand, the adjustmen of ceiling/visibility constraints has little effect upon flight duration.

