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1. INTRODUCTION

The positional accuracy of photo-triangulated ground points can

be evaluated either by the use of accurate check points or by statisti-

cal analysis based on the principles of error propagation. In conven-

tional engineering applications of aerotriangulation, some known

ground points are usually withheld from the aerotriangulation solution

and are used to serve as ultimate check on the accuracy of the aero-

triangulation process. Complete reliance on statistical analysis

procedure is not an advisable or common practice.

However, in lunar phototriangulation, there is a complete lack

of accurate ground control points. The accuracy analysis of the

results of lunar phototriangulation must, therefore, be completely

dependent on statistical procedure. It was the objective of this

investigation to examine the validity of the commonly used statistical

procedures, and to develop both mathematical techniques and computer

softwares for evaluating 1) the accuracy of lunar phototriangulation;

2) the contribution of the different types of photo support data on

the accuracy of lunar phototriangulation; 3) accuracy of absolute

orientation as a function of the accuracy and distribution of both

the ground and model points; and 4) the relative slope accuracy be-

tween any triangulated pass points.

These statistical techniques were applied to evaluating the tri-

angulation and mapping accuracy of the mapping system flown in the

Apollo 15, 16 and 17 missions. The system included a 76-mm. metric

camera with a 740x74 0 field of view and a frame size of 114x114 mm.

The camera had a glass reseau plate containing 121 reseau crosses at

the focal plane. The camera provided 1:1,450,000 photography at a

nominal altitude of 110 km. with a ground resolution of 20 m. A

76-mm. stellar camera took pictures of the star field to provide

attitude controls for the mapping camera. The two cameras were timed

for simultaneous exposures. Scale control was provided by a laser

altimeter which had a designed range accuracy of +2 m. Also included

in the system was a 610-mm. optical bar panoramic camera. It had a

100 46'x1080 field with an image size of 114x1,148 mm. At an altitude of

1



110 km, its photography had a scale of approximately 1:180,000 at the

center of the frame with a resolution of about 1 to 2 m. The panoramic

camera was tilted alternately forward and backward 12.50 so that

consecutive frames of similar tilt had 10% overlap and stereopairs

had 100% overlap. It provided sterocoverage of a strip approximately

330 km, wide, centered on the ground tracks.(5)

The 76-mm. mapping camera photography is being used by NASA to

establish a network of lunar controls by means of phototriangulation.

The high-resolution panoramic photography is used to produce large

scale lunar maps. The pass points obtained from the triangulation of

the 76-mm. photography will be used as ground controls in the absolute

orientation of the stereomodels from the panoramic photography. In

this investigation, the relative accuracy of the triangulated pass

points was evaluated by a simulation process; and the accuracy of the

absolute orientation process was evaluated using real data provided

by NASA.

Mr. Nick G. Yacoumelos was the research assistant in this project

when he was studying for the doctorate degree at the University of

Illinois at Urbana-Champaign. He did an extensive literature research

on the method of propagation of variance, and assisted ably in both

data processing and data analysis. He is presently an Assistant

Professor at the Lowell Institute of Technology.

Mr. Robert Hill of the Mapping Sciences Branch at the Lyndon B.

Johnson Space Center was the technical contract monitor for NASA.

AS-11-Bl data on one model of 76-mm, photography and three models of

panoramic photography from the Apollo 15 mission was provided by the

Lockheed Electronics Company in cooperation with Mr. Robert Hill.
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2. THEORETICAL BASIS OF THE METHOD OF PROPAGATION OF VARIANCE

In the application of the least-squares method in analytical

photogrammetry, the variance-covariance matrix of the unknown param-

eters is commonly computed as the inverse of the normal equation

multiplied by the standard error of unit weight. For example, in

the simultaneous solution for phototriangulation, the solution

equations may be summarized as follows(4):

6 = N-1C; (2.1)

and

6 = N j-' - Qj6 for all pass points j; (2.2)

where 6 is a matrix of the unknown corrections to all the exterior

orientation parameters (i.e. Ami , Ac, Ai, AX1, AY and AZc); and

6. is a matrix of the unknown corrections to the coordinates of

point j, i.e. AXj, AYj and AZj. The following expressions for the

variance-covariance matrices were originally developed by Brown and

have been used in common practice(2), (4):

6 = N 1 , (2.3)

and
2 -1 Tj = 0 N 1 + Qja6 j . (2.4)

This method of the propagation of variance was a direct extension

of the technique which was developed for direct linear least-squares

regression, which has been treated extensively in textbooks on statistics

(1), (7). Although many authors (8, 9) have discussed the problems

of iterative least-squares adjustment in geodetic and photogrammetric

literature, there has been no critical examination into the validity

of Brown's formulation.

This investigation showed that Brown's formulation is theoretically

valid in direct least-squares solution, in which the original observation

equations are linear functions of the unknowns. In iterative least-

squares solution, as required by most photogrammetric problems, this
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formulation is valid only if the unknown corrections (6 and 6a in

equation (2.1) and (2.2) respectively) converge to zero. In Section

2.1, the theoretical basis of this formulation for a direct least-

squares solution is examined; and in Section 2.2, the condition under

which the formulation becomes invalid for an iterative solution will

be discussed.

2.1 Direct Linear Least-Squares Solutions

2.1.1 A Linear Regression Model

Consider a simple problem in linear regression. Figure 1 pre-

sents the result of an experiment in which the value of a variable y

was measured at various values of x. Let it be assumed that, in the

absence of any error in the measurements, the variable y should be a

linear function of x; i.e.

y = a0 + aix (2.5)

Furthermore, let it be assumed that the measurement of the variable x

can be made exactly. Thus, the only explanation for not having all

the points in Fig. 1 lying in a straight line is the presence of

random errors in the measurement of the variable y. Thus, for point

i in Fig. 1, the following error equation can be generated:

yi -" i = ao + alxi

where vi is the random error in the measured value yi~ Rearranging

terms, the above equation may be expressed as follows:

vi + ao + alxi = Yi (2.6)

In matrix notation,

ao

[vi] + [1 xi] =yi ]

i.e. Vi + Bi A = Yi (2.7)
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Fig. 1. A Linear Regression Problem
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With one equation generated by each measurement of y, m points will

generate m equations which may be combined together as follows:

V B YV1  B 1

V2  + B2  A = 2

Vm Bm Ym

i. e. V + B-A = Y (2.8)

It can be easily derived that the corresponding normal equations will

be

(BTWB) * A = BTWY (2.9)

where W is the weight matrix for the measured values of y and is de-

fined as follows:

2 -1W 2 -1 (2.10)

where a is the standard error of unit weight; oy is the covariance-

covariance matrix of the measured values of y.

Let N = BTWB, and C = BTWY (2.11)

The most probable value of the coefficients a and al can then be com-

puted as

A = N-1C. (2.12)

It can be theoretically proved that, for this solution under the given

set of assumptions, the variance-covariance matrix for the computed

coefficients may be simply expressed as
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A = 2 N-1. (2.13)
A o

2.1.2 Statistical Definition of Variance and Covariance

Before attempting to derive Eq. (2.13), the statistical definitions

of mathematical expectation, variance and covariance are first re-

viewed (7). Let X be a random variable which can take on the values

of xl , x2 , x3 , ... xn with the probability p', p2 ' P3 ' "' Pn
respectively. Then, the expected value of X, denoted as E(X), is de-

fined as

n
E(X) = c xiPi (2.14)

i=l

The expected value of X is also called the population mean of X. If

X is a continuous random variable which has a probability distribution

function f(x), then the expected value is defined as

E(X) = xf(x)dx (2.15)

It can be easily proved that if b is a constant scaler, then E(bX) = bE(X).

The variance of the variable X is defined as follows:

aX = E {(X-E(X)) 2} . (2.16)

The covariance aXY between two random variables X and Y is defined

as follows:

IXY ={E (X-E(X)) (Y-E(Y))} (2.17)

Let Z be a column matrix of random variables Z1, Z2, Z3, .. Zm , i.e.

Zl

Z =  Z2
(m,l)

Zm
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Then, it can be easily derived from the above fundamental definition

that the variance-covariance matrix for Z may be expressed as follows:

oZ = E{(Z-E(Z)) (Z-E(z))T) (2.18)

where oZ is an (mxm) matrix.

2.1.3 Derivation of the Variance-Covariance Matrix

The variance-covariance matrix of the unknown matrix A in Eq.

(2.12) can thus be expressed as follows:

GA = E{(A-E(A)) (A-E(A))T}  (2.19)

Substituting Eq. (2.11) and (2.10) into the above expression yields

A = E{(N- 1C - E(N-1C))(NICE(N-1C))T} (2.20)

But E(N- 1C) = E(NlBTWY). Since Y is the only matrix consisting of

variable parameters,

E(N- 1C) = E(N-BTWY) = NI-BTWE(Y)

Therefore, Eq. (2.20) may be expressed as

oA = E{(N-IBTWY - N-1BTWE(Y))(N-IBTWY-NIBTWE(Y))T}

= E{(N-IBTW(Y-E(Y))(Y-E(Y))TWBN-l

= N-lBTWE{(Y-E(Y))(Y-E(Y))T}WBN-l

By definition,

ay = E{(Y-E(Y))(Y-E(Y))
T I

From Eq. (2.10), ay = 2W-1

Therefore,
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oA = a N-1 BTWW-WBN
-

= a2N-(BTWB)N-1

= G2N -1 NN I

Hence aA = a2N-1;

which is Eq. (2.13).

In summary, it can be stated that in a given least-squares ad-

justment problem, if the observation model may be expressed as

V + BA =Y;

and if the only random variables included in the matrix Y are the

measured parameters; then the variance-covariance matrix of the un-

known matrix may be computed as

GA =  oN .

It will be shown in the Section 2.3 that the second condition is not

necessarily satisfied in an iterative least-squares solution.

2.2 Iterative Least-Squares Solutions

2.2.1 Simultaneous Solution for Aerotriangulation

When the observation equations are non-linear functions, an

iterative least-squares solution is generally required. As an example,

consider the solution model for the simultaneous adjustment of photo-

grammetric blocks. The mathematical formulation for this solution

method has been well documented in the literature and will therefore

only be presented here in summarized form.

The solution is based on the following pair of collinearity

equations which relate the image coordinates (xij, yij) to the ground

coordinates (Xj, Yj and Z ):
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f[mll(X -XC) + m2 1 (Y -Yc ) + m3 1 (Zj-ZC)]
F = x -x + = 0

x  ijm p 13 (XX) + m2 3 (Yj-Y) + m33(ZZ)]

and (2.21)

S f[ml2(X-X) + m2 2 (Yj-YC) + m3 2 (Zj-ZC)]

y ijp 1m 3 (Xj-Xc) + m2 3 (YjYC) + m33 (Zj-ZC)]

where xp and yp are the image coordinates of the principal point;

f is the focal length; Xi, Yi and Z. are ground coordinates of the ith

camera position during the exposure; and the m i's are functions of

the three rotation parameters (Wi, i, Ki) of the camera,

By first-order Newton approximation, the collinearity equations

may be linearized as follows:

VFx o a9 + -x0oF c x o Fx o xF

+ ))O ~ ) O + ) Y AZ+ 0 A + F x)xij c 1 YS aZ c a. 1 ai
1 1 1

aF aF aF aF
+ ( )O aK + ( x)o AX + ( -)cc Az + x.o A iZ = E

a Ki i  .ax j a J i  x ij

aF aF aF aF aF
V + (-I )O AX + (J )O AY + (!Y.)O z + (-4 -)A i (9F)o A i
yij aX. aY aZ awi Di

aF aF aF aF
+ )O K + ( Y)O AX + + ( ) AZ ob Y E

a 1 aX aY aZ j yij

(2.22)

where
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f[ml 1 (X O-Xc ) + m21(Y-Yio) + m31 (Zj-Z )

Cx = -[xij-x +
x ijp 13 (X -X o) + m (Y -YC(zO -ZC o[mj 3 (Xj -i 2) + m23 1 j i 33"'--

and
Oc O O YCO) + C

f[ml 2 (Xj-X i o) + m2 2 (Y-Y i  + m3 2 (Zj-Z)]
_ij -yijy p  m oo(XO-CO o Zo +cO)i [m3 (X-X) + m2 3 (Yj-Y 0 ) + m33(Zi

(2.23)

where X , Y , Z9 are approximate ground coordinates of point j,

Xi , YO, Zio are approximate ground coordinates of the ith

camera position

aFx o aF
( ) .c)o, etc. are partial derivatives of Eq. (2.21) com-

i ai puted using the approximate values of all the

parameters.

Equation 2.22 may be expressed in matrix notation as

Vij + Bij + Bi =  (2.24)

where 1 is a matrix of the corrections to exterior orientation parameters

(AXE, AYC, AZ, Awi' i, ) of all camera stations; and A. is the

matrix of the corrections to the ground coordinates of point j.

The complete set of observation equations for all measured image

coordinates will take the following matrix form:

V + B + BA = ;

which may also be simply written as

V + BA = (2.25)

An observation equation may also be written for each coordinate of a

known control point and for each known exterior orientation elements.
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For example, the observation equations for a known control point with

measured coordinates (Xo?, Y, Z0) are as follows:

v - AX X XjO
X j j j

v - AY = Y9 - Y90  (2.26)

VZ - AZ = Z - ZO

In matrix notation:

.j - j = j (2.27)

In general, the complete set of control data may be represented by the

following equation:

V - A = (2,28)

Therefore, combining Eq. (2.25) and (2.26), the complete mathematical

model is as follows:

V + BA = E

V- A =

which may be simply expressed as

V + BA = E. (2.29)

The normal equations will be

(BTWB)A = BTwE (2.30)

where W is the weight matrix for the observations.

The least-squares solution for A is then obtained by the solution

of the above normal equations; i.e.

A = N 1 C (2.31)
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where N = (BTWB) and C = B WE.

However, because of the first-order approximation used in the

linearization of the collinearity equations, the least-square solution

must be iterated until the corrections (A) become negligibly small.

It will be shown in the next section that the convergence of the

A-matrix is the necessary condition for the expression

A = a0 (BTWB)1 to be valid.

2.2.2 Derivation of the Variance-Covariance Matrix

The normal equation in Eq. (2,30) is in exactly the same form

as the normal equation in Eq. (2,9). Therefore, the derivation pro-

cedure should be identical to that presented in Section 2.1.3 until

the following expression is reached:

a = N BTWE{(e-E(E))(s-E(e))T}WBN-

Since, by definition, E{(E-E(e))(E-E(E))T} = a

SA = NlBTWa WBN'-1 (2.32)
E

Two conditions of convergence of the least-squares solution are

next considered separately.

a) Convergence with A approaches zero.

As A becomes zero, Eq.(2.29)becomes

V = e.

That is, the residual terms ij and E in Eq. (2.23) and the residual
ij Yij

terms ej in Eq. (2.27) are caused only by errors in the measured

parameters. Therefore, the approximation parameters in these observation

equations have become constant parameters and the only random variables

in the residual terms are the measured parameters. Let aoo denotes

the variance-covariance matrix of all the observations. Then it is

obvious that under this condition of convergence, the following relation-

ship is true:
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a =oo (2.33)

Since by definition, W = a2 (0oo)-1

a = oo 2 -1 (2.34)

By substituting Eq. (2.34) into Eq. (2.32), it can be easily shown

that again

2 -1
a = 0 N

Let Xo denote the matrix of all the approximate parameters, and X

denotes the matrix of all the unknown parameters; i.e.

X = X+A

Then, since Xo has stabilized to become a constant term, the variance-

covariance matrix of the computed values of the unknowns is equal to

the variance-covariance matrix of the corrections; i.e.

ax = a

b) Solution stabilized but A fails to approach zero.

In a weakly conditioned photogrammetric solution, such as that

caused by poor geometry or low-accuracy controls, some or all of the

correction parameters may never approach zero. After a certain number

of iterations, these correction parameters may simply oscillate between

certain boundary limits from iteration to iteration. If the iteration

procedure is allowed to continue, such a solution will eventually begin

to diverge rapidly.

In such a solution, the residual terms in the observation equations

will include measurement errors, approximation errors, and errors

introduced by the linearization of the observation equations, It

is no longer true that the variance-covariance matrix of these residual

terms is equal to the variance-covariance matrix of the measurements;

i.e.
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2 -1Consequently, oa  0 N-

There is no statistical method available for directly computing a

from the solution.
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3. ACCURACY ANALYSIS IN LUNAR PHOTOTRIANGULATION

3.1 Computer Program SAPGO-A

A computer program was developed for performing complete error

analysis on lunar phototriangulation. It is based on the principle of

propagation of variance, as described in Chapter 2. The program may

be used for either the triangulation of real photogrammetric data, or

for simulation study using fictitious data. It can accept as input

the following types of data:

1) photographic image coordinates with a specified variance-

covariance matrix for all points;

2) ground controls with known rectangular ground coordinates

(Xj, Yj and Z ) and the corresponding variance-covariance matrix

for each control point;

3) distances, horizontal angles and azimuths measured on the lunar

surface with the corresponding standard error for each measure-

ment;

4) the position of any exposure station in rectangular coordinates

(Xe, Yi and Z) with its corresponding variance-covariance matrix;

5) the orientation of the camera axis defined by the three rotation

angles w, , and K at each camera station, together with the

corresponding variance-covariance matrix;

6) the straight-line distance between a camera station and any

ground point, together with its standard error; and

7) the known ground coordinates of a set of check points.

The output of the program includes the following:

1) the correction parameters at the end of each iteration;

2) the computed standard error of unit weight at the end of each

iteration;

3) the final adjusted values of the exterior orientation parameters

and their estimated standard errors (X + c + c c c+ c
- Xi Y- Y i -iZ.

w. + i , . + i , and K. + a);
1 1 1
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4) the final adjusted ground coordinates of all the pass points

and their standard errors; and

5) the true errors at the check points.

This program was a modified version of the SAPGO-A program which

was originally designed for aerotriangulation in earth application.

SAPGO is the acronym for simultaneous adjustment of photogrammetric and

geodetic observations. The mathematical formulation of the solution

has been published in (5). The modified version of SAPGO-A is equally

applicable for both lunar and earth application, and a full documenta-

tion of the program is being prepared (6).

3.2 A Simulation Model

A simulation was conducted to achieve two objectives: 1) to test

the reliability of the method of accuracy analysis in the computer

program SAPGO-A; and 2) to evaluate the contribution of the various

types of control data on the accuracy of lunar phototriangulation.

Fictitious data was generated by a computer program called

DTAGEN, which was developed at the University of Illinois. For a

given flight configuration specified by the camera focal length, flight

altitude, percentage overlap, origin of the reference coordinate-system,

and position of the first exposure; program DTAGEN generates all the

necessary photo image coordinates, exterior orientation parameters,

and ground coordinates of all corresponding image points. To simulate

the measurement errors in practice, these parameters were perturbed

according to some specified standard errors. Both the perturbed and

the true values of all of these parameters were provided by the program.

The simulation model in this study consisted of a strip of 11

photos having the same flight configuration as the 76-mm. metric

photography from the Apollo 15 mission. The flight attitude was

110 Km and the longitudinal overlap was 60%. There were 25 pass points
arranged in a 5x5 rectangular pattern in each photo, and the photo

coordinates were perturbed with a standard error of +5 pm.

Three types of control data were generated: 1) laser altimeter
measurement; 2) attitude data (Wi , pi, Ki) for the camera; and 3)

tracking data. The laser altimeter measurements were the straight-line

distances between the camera stations and the pass points located at
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that center of the photos. These distances were perturbed with a

standard error of +3 m. The camera attitude data were perturbed with

the following standard errors: a = +10", ao = +20", and a = +10".

These accuracy levels have been found to be realistic from the analysis

of actual data from the Apollo 15 mission (7).

In reality, the tracking data for each orbit consisted of a

position vector in the epoch, velocity vector of the orbit, and time

of exposure with respect to the epoch. These data can be used to

constraint the position of the exposure stations. Since the objective

of this study was to determine the internal accuracy of the photo-

grammetric solution rather than the absolute positioning accuracy,

the exterior orientation parameters (Xc, yc, Zc, , , and K) of

the first photo in the strip was held fixed and assumed to be error

free.

Helmering (7) reported that, from the analysis of three strips

of Apollo 15 photography, the attainable accuracy for the velocity vector

was about +0.1 meter per second while the timing accuracy was +1

millisecond. In this study, simulation runs were performed using three

different levels of accuracy in the velocity vector: +0.1, +0.5 and

+1.0 meter per second, The relative timing accuracy was assumed to be

+1 millisecond. At these accuracy levels, the corresponding uncertainty

in the coordinates of the exposure stations corresponds to those listed

in Table 1. All three coordinates (X , Yi, Zc) of each exposure

station were assumed to have the same standard error.

3.3 Experimental Verification on the Propagation of the Variance

3.3.1 Well-controlled photography

Figures 2, 3, 4 and 5 show the results of a series of simulation

using various combination of control data. A tracking accuracy of

+0.5 m/sec. for the velocity vector was assumed for all cases; i.e.

the exposure station coordinates were weighted according to the standard

errors listed in column 2 of Table 1. The following four combinations

of controls were used:
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Table 1. Standard Errors of Exposure Station Coordinates

for Three Levels of Velocity Vector Accuracy (cV)

(a Xc Yc Zc
1i i i

Std. Errors of Exposure Station Coordinates

Photograph YV = +0.1 m/sec. V = +0.5 m./sec. = +1.0 m./sec.

1 0 0 0

2 +4 m. +20 m. +40 m.

3 6 29 57

4 7 35 70

5 8 40 81

6 9 45 90

7 10 50 99

8 11 54 107

9 12 57 114

10 12 61 121

11 13 64 128
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1) tracking data alone (Fig. 2);

2) tracking data and altimeter measurements (Fig. 3);

3) tracking data and attitude measurements (Fig. 4); and

4) tracking, altimeter and attitude data (Fig. 5).

Five independent strips of 11 photos were triangulated. In these figures,

the true errors in the adjusted coordinates of the pass points located

near the center of each photo are plotted against the estimated RMS

error computed from the propagation of variance. With the exception

of a few data points, all the true errors felt within the three sigma

value of the computed RMS errors. Thus, the RMS errors present a

realistic evaluation of the accuracy of the computed coordinates.

Tables 2, 3 and 4 list the estimated RMS errors versus the true

errors in the computed coordinates of the exposure stations for five

cases in which tracking, altimeter and attitude data were all used as

controls. Also listed in these tables are the magnitude of the correction

parameters in the last iteration of the iterative least-squares solution.

Except in case 5 of Table 4, all the corrections were less than the estimated
RMS errors of the parameters.

3.3.2 Poorly Controlled Photography - Cantilever Extension

Figures 6, 7 and 8 show the true errors in the computed coordinates

of the center pass points for a cantilever strip. The exterior orienta-

tion parameters of both the first and second photo in the strip were held
fixed in the solution. The strip was not controlled by any other control
data. Five independent strips were triangulated, and the true errors were
plotted in these figures against the three-sigma value of the estimated
RMS errors.

These figures show rapid accumulation of systematic errors in the
phototriangulation process. Furthermore, the systematic pattern varies
from strip to strip. The computed RMS errors failed to detect these
systematic errors and clearly underestimated the inaccuracy of the solution.

Tables 5, 6 and 7 list the true errors in the computed coordinates
of the exposure stations for the same cases. The magnitude of the
corrections in the last iteration are also listed. It was observed
that beyond station No. 7, the corrections generally exceeded the
estimated RMS error of these parameters.
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Table 2. Expected RMS Error vs. True Error in X-Coordinate of

Exposure Stations (Tracking + Altimeter + Attitude

Controls With aV = +0.5 m./sec.)

Station Expected RMS True Error in Case Last Correction in Case

Errors 1 2 3 4 5 1 2 3 4 5

(+ meters) (meters)

2 10 -5 -10 4 26 -6 -3 -3 5 -6 1
3 11 +3 -13 1 6 6 -6 -3 6 -6 2
4 12 25 20 18 3 -10 -9 -2 5 -4 3
5 13 -1 -10 -19 -4 -6 -10 2 7 -8 2
6 13 -2 -32 -28 2 14 -10 6 7 -2 7
7 14 -7 -17 -31 2 21 -5 -2 4 -7 5
8 15 3 -14 -39 7 -4 -9 -6 8 -6 5
9 15 -16 -25 -36 9 -25 -11 -7 8 -9 0

10 16 -16 -11 -38 13 -33 -12 -3 10 -9 1
11 18 13 0 -36 17 -8 -9 -2 5 -7 0
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Table 3. Expected RMS Error vs True Error in Y-Coordinates of Exposure

Stations (Tracking + Altimeter + Attitude Controls With

aV = +0.5 m./sec.),

Expected True Error in Case Last Correction in Case
Station RMS

Error 1 2 3 4 5 1 2 3 4 5
(+ meters)

(meters)

2 7 -14 4 -16 - 5 + 3 -2 3 0 1.0 1
3 7 11 13 - 9 - 3 - 5 -4 2 0 0 1
4 8 4 11 4 -15 -13 -3 4 0 0 1
5 8 -17 5 - 9 -24 - 4 -5 3 0 -1 0
6 8 8 4 - 4 - 1 0 -5 5 0 -1 2
7 9 6 19 - 6 - 8 - 8 -4 5 0 -1 3
8 9 12 27 - 5 - 9 -16 -5 8 0 -1 3
9 10 1 19 - 1 -17 11 -6 8 0 0 3

10 11 2 16 16 -12 - 8 -5 10 1 -1 5
11 11 16 17 10 -15 4 -5 9 0 -2 4
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Table 4. Expected RMS Error vs True Error in Z-Coordinates of Exposure

Stations Tracking + Altimeter + Attitude Controls With

aV = +0.5 m./sec.)

Expected True Error in Case Last Correction in Case
Station RMS

Error 1 2 3 4 5 1 2 3 4 5
(+ meters)

(meters )

2 6 10 - 8 2 - 4 9 - 2 - 0 2 1

3 8 8 -20 - 6 2 0 - 4 - 1 0 3 - 3

4 9 13 -13 - 4 0 8 - 4 - 2 -2 3 - 5

5 9 23 -14 - 1 0 11 - 3 -5 -2 5 - 8

6 10 23 -15 -7 - 5 8 - 3 -7 3 5 -13

7 11 12 -19 - 9 - 6 13 - 5 -10 -2 4 -17

8 11 15 -19 -18 1 5 - 7 -10 -2 4 -20

9 12 11 c12 -14 -14 6 - 9 - 8 -4 5 -22

10 14 11 - 6 -18 -14 7 - 8 - 6 -4 8 -25

11 16 16 - 8 -21 -23 11 -12 - 5 -6 10 -24
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Table 5. Expected RMS Error vs. True Error in X-Coordinates of Exposure

Stations (Cantilever Extension)

True Error in Case Last Correction in Case
Expected

Station RMS 1 2 3 4 5 1 2 3 4 5
Error (meters)

2 - - - - - - - - - - -

3 31 109 70 -19 - 18 - 5 16 -19 -15 47 - 1

4 37 100 79 61 -137 2 16 -34 26 17 - 6

5 35 74 -188 116 -184 12 7 -35 1 -19 -11

6 35 24 -356 171 -190 33 16 -13 -32 9 - 5

7 36 -105 -467 248 -231 93 33 - 7 -20 -19 - 2

8 37 -168 -553 244 -325 137 59 33 2 -15 0

9 37 -299 -573 169 -454 192 71 79 19 -43 - 3

10 43 -670 -637 111 -590 216 74 102 68 -83 - 6

11 59 -360 -667 - 4 -753 219 57 142 77 -103 -16
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Table 6. Expected RMS Error vs. True Error in Y-Coordinates of Exposure

Stations (Cantilever Extension)

Expected True Error in Case Last Correction in Case
Station RMS

Error 1 2 3 4 5 1 2 3 4 5

(meters )

3 20 42 -15 -17 - 57 1 4 -16 - 6 21 - 5

4 26 - 8 -34 -28 - 92 27 5 -27 15 24 -10

5 30 - 92 -26 27 -127 61 - 4 -17 6 17 -17

6 29 -139 -35 10 -131 84 -16 -11 -21 24 -26

7 30 -187 -46 - 12 -127 107 -20 -12 -24 36 -34

8 30 -233 -13 - 40 -110 133 -30 - 1 -34 59 -50

9 32 -277 29 - 58 -113 160 -44 19 -25 38 -60

10 37 -391 77 - 52 -158 195 -52 4 -37 65 -81

11 46 -542 122 -103 -153 223 -37 58 -70 35 -99
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Table 7. Expected RMS Error vs. True Error in Z-Coordinate of Exposure

Stations (Cantilever Extension)

Expected True Error in Case Last Correction in Case
Station RMS

Error 1 2 3 4 5 1 2 3 4 5

(meters )

2 - - - - - - - .

3 12 - 36 21 27 -27 11 - 5 12 4 -15 5
4 19 - 71 11 29 1 34 - 5 21 -17 -16 11
5 22 - 85 23 17 15 58 0 27 -17 - 2 20
6 23 -104 87 -1 7 85 2 34 - 3 - 9 31
7 23 -114 178 93 - 2 114 - 4 38 8 - 2 36
8 23 -101 285 - 91 -34 125 -14 28 22 4 39
9 26 77 381 -141 -17 124 -26 9 36 18 40

10 37 - 31 499 -168 - 7 128 -36 - 9 49 42 40
11 55 - 7 613 -149 27 140 -39 -55 65 93 45
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3.3.3 Conclusions from experiments

Based on these experimental results, the following conclusions

can be drawn:

1. In phototriangulation problems whereonly low-accuracy controls

are available, the correction parameters generally will not

reach zero in the iterative least-squares solution. However,

the correction parameters should converge to a value less than

the estimated RMS errors computed from the propagation of

variance.

2. Generally, if controls are available throughout the strip or

block (even though they are of low accuracy) and if the correction

parameters converge to a value less than the computed RMS values,

then the computed RMS values should be a good estimator for the

accuracy of the computed parameters.

3. The RMS errors computed by the propagation of variance cannot

detect the rapid accumulation of systematic effects from random

errors. It is well known that the double-summation effect of

random errors produce systematic errors in phototriangulation.

4. Generally, when the corrections in the last iteration exceed

the computed RMS errors, then the RMS errors are not reliable

as estimator of adjustment accuracy.

It is recommended that in simulation studies, true errors of

the adjusted parameters should always be computed to check on the

computed RMS error For problems in which the controls-are sparsely
distributed, several independent simulation cases should be performed

to provide a check between the estimated RMSerrors and the true errors.

3.4 Effectiveness of Various Control Data

The effectiveness of the three types of control data in improving

the accuracy of lunar phototriangulation was studied by the propagation

of variance. Three levels of tracking accuracy were assumed: +0.1,
+0.5 and +1.0 m./sec. Altimeter measurements were assumed accurate

to +3 m., and the attitude data were assumed to be accurate to +10 sec.,

+20 sec. and +10 sec. for w, 0 and K respectively. For each level of

tracking accuracy, the following combinations of control data were con-

sidered:
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1) tracking alone;

2) tracking and altimeter;

3) tracking and attitude; and

4) tracking, altimeter and attitude.

Figures 9, 10 and 11 show the estimated RMS errors at the center

pass points for the different combinations of controls at the three

levels of tracking accuracy.

The results showed that the altimeter measurements mainly improved

the accuracy in the X-coordinates of the pass points; while the attitude

measurements improved the accuracy of the Y-coordinates. This result

was anticipated because the altimeter measurement served primarily as

scale control, while the attitude data served as direction control.

Both types of control data were needed to achieve maximum accuracy in

phototriangulation. Both the altimeter and attitude controls improve

the elevation accuracy by about the same amount.

The cases in which all three types of controls were used are of

particular interest. It can be concluded from Figures 9, 10 and 11

that for a single stereo model, the coordinates of the pass points

can be determined with an RMS error of +7 m. in both X and Y and +15 m.

in Z. At a tracking accuracy of +0.1 m./sec. for the velocity vector,

there is practically no degradation of accuracy along the strip due

to error propagation. At a tracking accuracy of +0.5 and +1.0 m./sec.,

the degradation in elevation accuracy along the strip is also negligible;

but in both instances, the accuracy in the X- and Y- coordinates degenerates

at the rate of about 1 m. and 0.5 m. per model respectively.
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4. ACCURACY ANALYSIS IN ABSOLUTE ORIENTATION

4.1 Compute Program THREED

The accuracy of absolute orientation depends on the following

factors: 1) accuracy of the model coordinates; 2) accuracy of the

ground controls, 3) densityand distribution of control points, 4) size

of the area, and 5) scale of the stereo model.

A computer program with complete error analysis capability has been

developed for performing absolute orientation. The program is code

named THREED. It may be used to perform any one of the following

functions:

1. To perform absolute orientation.

The program takes as input the model coordinates of a set of model

points and the ground coordinates of a group of control points. Both
the model and the ground coordinates of the control points can be

weighted individually according to their variance-covariance matrices.
The program computes the seven transformation parameters (XT, YT, ZT'
w, q, K and scale) and their estimated standard errors. The program

also transforms the model coordinates of any pass point in the ground
reference system and determines the standard errors of the transformed
coordinates.

2. To determine accuracy of absolute orientation by simulation.

In simulation application, the program takes as input 1) the ground
coordinates of a set of control points; 2) the variances of the ground
control coordinates; 3) the variances of the model coordinates; and
4) the scale of the model. The program then generates a set of model
coordinates for the given ground points and perturbs them according
to the specified accuracy of the model points. It then performs a
regular absolute orientation solution and outputs the estimated
standard errors of the seven absolute orientation parameters.
3. To determine the uncertainty in the orientation of a surface
defined by a set of triangulated pass points.

The direct output of any phototriangulation solution is the ground
coordinates of a set of pass points and their standard errors. Program
THREED can be used to determine the uncertainty in the orientation
(XT, YT' ZT, W

'
, , K and scale) of the surface defined by the set of

pass points.
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A complete documentation of this program is being published

separately (8).

4.2 Mathematical Formulation

The program THREED is based on the equations for three-dimensional

conformal transformation which are as follows:

x m11  m12  m13  Xj -XT

y = m2 1  m22 m23  Y j-YT (4.1)

zj m31 m3 2  m33  Zj-Z T

where

xj, yj, zj model coordinates of point j

Xj, Yj, Zj ground coordinates of point j

XT' YT' ZT three translations

X scale factor

mi = cos cos K

ml2 = cos w sin K + sin w sin cos K

m13 = sin w sin K - cos w sin cos K

a 21  = -cos . sin K

a = cos w cos K - sin w sin sin K

a23 = sin w cos K + cos w sin sin K

a31  = sin c

a32 = -sin w cos 4

a3 3 = cos cos

After linearization by first-order approximation, Eq. (4.1) may be

expressed as follows:



41

V b11 b12 b13 b14 b15 b16 b17 AXT d11 d12 d13  AX EX
x_ 1
V + b21 b22 b23 b24 b25 b26 b27 AYT + d21 d22 d23  AYj =

3AZ
Vz. b3 1 b32 b33 b34 b35 b36 b37  T d3 1 d3 2 d3 3  AZj EZ

Aw

AK

AX

i.e. V + B A + B.A = E (4.2)

The model coordinates of each control point generates one set of equations

as in Eq. (4.2). For m control points, the complete set of observation

equations may be expressed as follows:

V1 B1  B1 1 1
V2  B2 

2 2
+ . A +

Vm m m m m

i.e. V + BA + BA = e (4.3)

In order to permit flexible weighting of the seven transformation

parameters as well as the ground control coordinates, one set of

observation equations is introduced for each. The set of observation

equations for the transformation parameters are as follows:

X o oo- AX = XT - XT
X T T T

" AY = YO - Yo
YT T T T

o 00
Z - AZ =o ooV T  = T  - Z

o 00
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S 0 00

0 00
V - AK = - K

0 0 00 00

where XT , ... and Ao are approximated parameters; and X oo Y

and Aoo are measured parameters. In matrix notation, this set of

equations may be simply written as follows:

- A = ' (4.4)
(7,1) (7,1) (7,1)

The observation equations for the jth ground control point are as

follows:

V AX X? - XoX

V AY Y= -Yoo (4.5)
3 3 J J

. j 0

Again, the superscript (o) denotes approximation parameters and the

superscript (oo) denotes measured parameters. Equation (4.5) may be

simply written as

V- Aj =j

The complete set of observation equations for all control points are

as follows:

V1  A1  el

V2  A2  E2

m A (46)

i.e. V-A= (4.6)
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Combining Eqs. (4.3), (4.4) and (4.6) yields the following observation

model:

V B B E

V + -I 0 E

V 0 -I

i.e. V + BA = C (4.7)

The normal equations is then as follows:

(BTWB) = BTWC (4.8)

where W is the weight matrix for the observations. An iterative

solution procedure must be followed. An initial set of approximate

values is assigned to all unknown transformation parameters. The

solution solved for the corrections and then apply the corrections to

the approximations. The solution is iterated until a stable solution

is reached.

After the last iteration, the variance-covariance matrix (aT)
of the computed transformation parameters is computed by the following

expression:

aT = a (BTWB) - l  (4.9)

where a is the variance of unit weight. The ground coordinates of

all other model points and the corresponding standard errors are

computed by the following expressions:

1

Yj = 1 (ml12x + m2 2Yj + m3 2zj) + XT

1j +(mlxj  + m2 j  m32zj) + YT

-(m 13xi 23y m33z) ZT
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2 2 -4 2
X. = (m11 + m21j m31zj) 24
J J

+ I-(sin~cosK)xj + (sin sinK)yj + coszj] 
2 X2 a 2

+ [-cososinKx - cosccosKyj ]2-2o 2

2 -2 2 2  -2 2 m 2  -2  2 2
+ m1.1 1 X + m21A q + m31 Z x X

224 2
y = (ml2x + m22Yj + m32zj) 2-4x 2

+ [(-sinwsinK +coswsincosK)xj + (-sinwcosK - coswsinosinK)yj

-2 -2 2
- cosmcos~zj]2- 2

+ [(sinwcosocosK)x - (sinwcososinK)yj + sinwsinozj]2 -2 C 2

+ [(cosWcosK - sinwsinosinK)xj - (coswsinK + sinsinfcosK)yj]2 -2o 2

+M2 2 a2 +2 m22  -2a 2 + m 2  -2 2 +a 2
+ 2 22 Y. 32 Z Y

3 j

2 2 -4 2
Z2 (m13xj + m2  + 33zj) A

+ [(coswsinK + sinwsincoSK)x. + (cosWcosK - sinwsinsinK)yj

2 -2 2- sinwcoszj ] 1 a2

+ [(-COsWCOSOCOSK)xj + (coswcososinK)yj - coswsinzj ]2 2

+ [(sinwcosK + coswsinsinK)xj + (-sinwsinK + coswsin@cosK)yj]2 c-2 2

2 2 2 2 -2 2 2 -2 2 2 (4.10)
+.m13 A X + m23 - + m33 x aZ Z T

The mij terms in the above equations are defined as in Eq. (4.1).
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4.3 Accuracy Analysis by Simulation

One major application of program THREED is the determination of

absolute orientation accuracy by the method of simulation. Table 8

lists the simulation results for twenty-five cases in which the accuracy

of the ground controls ranged between 1 km. and 2 km. The standard

errors of the model coordinates ranged between 2 and 200 meters. The

dimension of the square area ranged between 2 and 2000 km., while

the scale of the model varied from 0.4 to 1.2. In all cases, the area

was assumed to have twenty-five control points arranged in a 5 by 5

rectangular array.

Based on the results of these twenty-five cases, an unsuccessful

attempt was made to develop a prediction equation for each of the

transformation parameters. The following general polynomials was

used in a regression analysis:

a = a + alaXYZ + a2axyz + a3A + a4S + a5aXyZ + a6Uxyz2 + a7A2 + a8S2

(4.11)

where

aXYZ standard errors of ground control coordinates

oxyz standard errors of model coordinates

A area

S scale

The coefficients ao, a , ... and a8 were determined in a regression

analysis using the data in Table 8. Although excellent fit was obtained

for the translation parameters (aX , ay , and aZ ), errors in the pre-

dicted accuracy of the rotational aramlters (a a t, and a ) generally
exceeded +10,

Furthermore, Eq. (4.11) gives no consideration to the density and

distribution of ground controls, which, are important factors governing

the accuracy of absolute orientation.

Program THREED should provide the best means for evaluating absolute

orientation accuracy.



Table 8. Accuracy of Absolute Orientation

Dimension Standard Error of Absolute Orientation Parameters0 X,Y,Z 0x,y,z of Square Model
Area Scale Scale XT  YT ZT w

(meters) (meters) (km) (meters) (meters) (meters) o , ,, , ,,

1000 20 200 0.8 .0013 174 174 174 0- 8-55 O- 6-57 0- 7- 0

1250 6 20 0.6 .012 219 219 219 1-48-51 1-24-54 1-29-31

1250 6 20 1.0 .020 217 217 217 1-47-59 1-23-53 1-28-33

1250 6 2000 0.6 .0001 218 218 218 0-01-07 0- 0-52 0- 0-52

1250 6 2000 1.0 .0002 216 216 216 0-01-07 0- 0-53 0- 0-52

1250 63 20 0.6 .012 217 217 217 1-48-37 1-24-38 1-29-07

1250 63 20 1.0 .021 218 218 218 1-48-52 1-24-56 1-29-30

1250 63 2000 0.6 .0001 216 216 216 0- 1-07 0- 0-52 0- 0-52

1250 63 2000 1.0 .0002 217 217 217 0- 1-07 0- 0-52 0- 0-52 4

1750 6 20 0.6 .017 305 305 305 2-31-01 1-59-13 2-05-04

1750 6 20 1.0 .027 296 296 297 2-25-31 1-53-03 1-58-34

1750 6 2000 0.6 .00017 304 304 304 0-01-33 0-01-13 0-01-13

1750 6 2000 1.0 .00028 295 295 295 0-01-34 0-01-13 0-01-13

1750 63 20 0.6 .018 305 305 305 2-32-20 1-59-56 2-05-14

1750 63 20 1.0 .029 305 305 305 2-31-28 1-59-47 2-04-47

1750 63 2000 0.6 .00017 303 303 303 0- 4-33 0- 1-13 0- 1-13

1750 63 2000 1.0 .00028 304 304 305 0- 1-34 0- 1-13 0- 1-13

1500 20 200 0.4 .001 261 261 261 0-13-21 0-10-26 0-10-29

1500 20 200 1.2 .003 261 261 261 0-13-22 0-10-26 0-10-29

1500 20 2 0.8 .12 275 278 274 10-21-52 10-48-23 15-48-47

1500 20 2000 0.8 .00002 261 261 262 0- 0- 8 0- 0- 6 0- 0- 6

1500 2 200 0.8 .0017 244 256 250 0-11-54 0-09-34 0-09-27

1500 200 200 0.8 .0019 260 260 260 0-13-21 0-10-26 0-10-28

1500 20 200 0.8 .0019 261 261 261 0-13-23 0-10-27 0-10-29

2000 20 200 0.8 .0026 348 348 349 0-17-49 0-13-56 0-13-59
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4.4 Analysis of Apollo 15 Data

Program THREED was used to evaluate the mapping accuracy of the

Apollo 15 photography. Figure 12 shows the overlapping coverage be-

tween a stereoscopic model of the 76 mm. metric photography and three

successive stereoscopic models of panoramic photography.

The stereoscopic model of 76-mm. metric photography was absolutely

oriented on the AS-11-Bl using orientation parameters derived from

tracking and stellar camera data. The ground coordinates of the

model points in Fig. 12 were measured directly from the model in the

AS-11-B1. Table 9 presents a listing of these ground coordinates.

The three panoramic stereomodels were also individually oriented in

the AS-11-B1. The model coordinates of the control points as well as

about 20 other model points were recorded. To minimize the errors

introduced by the geometry of the panoramic photography, only the

central 17.50 sweep portion of each frame (+8.250 from center) was

used. Tables 10, 11 and 12 list the model coordinates for the three

panoramic stereo models,

All the above AS-11-BI measurements were performed by Lockheed

Electronics Company, at the NASA Johnson Space Center, Houston.

Program THREED was used to perform absolute orientation of the

panoramic models and to perform error analysis. After several trial

solutions, the following sets of standard errors for both the model

and the ground coordinates were found to give the best agreement

between the computed standard error of unit weight and the predefined

value;

Model Coordinates Ground Coordinates

ox = +0.010 mm. aX = +15 m.
y = + 0.010 mm. y = + 10 m.

az = + 0.010 mm. oZ = - 2 5 m.

Table 13 lists the standard errors computed by program THREED for both
the transformation parameters and the adjusted ground coordinates.



48

It can be concluded from this study that the ground coordinates

derived from this procedure have the following relative positional

accuracy within the 76-mm. stereo model: aX = +15 m., ay = +10 m.

and aZ = +25 m. The orientation accuracy of the panoramic stereo

models can be expected to be +3 minutes of arc in the w and K ro-

tations and +7 min. in the 6 rotation.
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a 3
4

Three Panoramic Models

22/27 20/25 18/23

A 23 24 A A 2 5  A 29

227
A 2 1 2 30

22 20 19A A

18 A
5 2
5 A9  A11  A1 4  2

A 8  10 1 2  A15

Metric Model

6

A 7

104 Km.

Fig. 12. Stereoscopic Coverage at One Metric Model and

Three Panoramic Models
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Table 9. Ground Coordinates Derived From the Metric Model

GFP 0 UN r COOU R D I N A T ES

PUTNT X y 7

8 -3649,U0000 -9117,0000 232,0000
9 -296820000 "5536,0000 377,0000

10 -22551,0000 -8501.0000 422,0000
21 -30412,0U00 13031,0000 372.0000
22 -2282(,n000 6572,0000 203,0000
23 -35327,0000 22215,0000 1182,0000
24 -22453,0000 21101,0000 295,0000

11 -16923,0000 -4820,0000 1006,0000
12 -9550,u000 -9020,0000 476,0000
25 -17108.0000 20788,0000 338,0000
26 -9752,0000 18863,0000 326,0000
19 -9076,0000 6880,0000 471.0000

20 -19326.0000 8844,0000 133,0000
18 -2361,0000 5845,0000 305.0000

27 1806.0000 15096,0000 310,0000
29 10759,n000 21624,0000 386,0000
15 14080,000 -9575,0000 904,0000
14 8007,0000 -6116,000U 360.0000
17 8701,0000 5200,0000 301,0000

30 17232,0000 9647,0000 347,0000
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Table 10. Model Coordinates from Panoramic Model 22/27

S0 E L CO U H u I N A T L S
--- ---- - * ** ** * ** ** ** *

1. CONTRUL POINTS

NUMPEP PUINT X Y 7

I b -3b.9500 -99,396U 1.8360

2 9 V.Ob20 "76.4540 2.4T60

3 10 56.3500 -96.8570 2.6570

4 21 .0690 47.5630 2.4370

5 22 55*5340 3,6140 1,4570

6 23 -25.5300 109.1900 7.8360

7 24 59.9810 100,4220 2.2830

2, UNKNOhN POINTS

NUMPEP POINT X y 7

8 126 3b.0220 -17,8710 2.3150

9 118 -?,4400 -18,25~0 3.0560

10 110 28.1510 17T.740 2.3440

11 103 oJ,S470 "17.35U0 1.4810

12 102 62.5500 19,5060 1,2460

13 109 32,130 21,0880 2,4340

14 117 OU.240 20.4110 2.6310

15 125 "36.070 20.1300 2.5790

16 124 -39.3250 49.6360 2.2550

17 108 29.04T0 51,8240 2,3590

18 101 61,7860 53,9560 2*2960

19 107 32,2640 90.2580 2,7140

20 115 -. ,0260 67,3500 4,1060

21 123 -3t,3630 87,5960 2,6990

22 122 -36.4530 115.8250 7.9560
23 106 28.5890 118.6400 2.7150

24 127 -3,7020 -44,6800 2.3020

25 1I19 -3.530 -50.3710 4,1170

26 111 40V,050 -48,0320 6,0890

27 104 65,3b90 -47,8490 4.3590

28 105 64.3700 "85,4150 4,9000

29 .112 30,4960 *83,3250 2,8670

30 120 -2,0950 -69,6810 2,7150

31 128 -3,51640 -77.9410 2.0910
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Table 11. Model Coordinates From Panoramic Model 20/25

M 0 0 F L C 0 n R 0 I N AT E S

1, CONTROL POINTS

NUMPFP POINT X Y Z

1 11 -37,9920 -74,6960 2.1410

? 12 10,6850 "103,1930 5.5940
3 25 -3(.4780 96.1670 "6.7080
4 26 11,5460 82,7240 06.8140
5 19 15,3690 2.6830 "5,6740
6 20 -53.?6?0 16,797U0 -78810
7 18 59r.380 -4.,6610 "6.9810

2, UNKNOWN POINTS

NUMBER POINT X Y 7

8 130 -43,3800 110,1490 -6,6990
9 136 8,.4390 112,9540 06.4160

10 144 25.6170 116,5010 -6,2930
11 152 59,1410 111,11 *6.2430
12 154 59.6470 40,5900 -6.5840
13 146 24,f540 50,9030 -6.3250
14 138 -6.1570 56,0330 -6,6140
15 131 -43,7580 45,3210 -8,0040
16 132 =43,r830 10,4970 -7,8070
17 139 -6.Y850 17,9130 -6,7400
18 147 31,370 21,2860 -6,3660
19 155 58,6940 10,7360 -6,4800
20 156 59*9080 -22,9870 6,6030
21 148 27T,6720 30,3710 6,1000
22 140 =3,7810 -21,7570 -6,6150
23 133 -36,9030 -22,8870 7,.8320
24 134 -42,6850 -49,6090 -6,1500
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Table 12, Model Coordinates From Panoramic Model 18/23

M 0 F L C U O P I M A T L S
---l-a. .. ...... 1.. -. l.--- mom

1, CONTRIL POINTS

NUMBFE PUINT X Y Z

1 27 -45,2060 58,3960 O,.7990
2 29 14.9640 100,8610 "0.0610
3 15 33.9300 -107.630 3.1330
4 14 -64u02o -83,6530 -0.2150
5 17 -o,4790 -8,43110 -07040
6 30 5,.M220 20.2310 0,.3610

2, UNKNhOWN POINTS

NUMBER PUINT X Y 1

7 2 49.5940 36.1320 3,4910
8 28 -36.190 106,5860 -0.4200
9 175 -,.9570 -122.27P0 0.2750

10 182 19.1600 -117,189U 3.0960
11 190 56.780 "115.561u 4.2270
12 181 19.5660 "84.5990 1,9580
13 174 -10.9570 -88,44U0 -0.3510
14 166 42?,.550 *86,6240 0,.2290
15 172 -10.0560 -21,7630 "0.5830
16 173 "13.P660 -57,25a0 -0.3670
17 180 20.1330 "50.1900 0.0560
18 188 51.1720 -55,84U0 2.1830
19 169 -9.5530 72,51u0 -0.1700
20 177 20.240 75,1330 "0.1280
21 184 54.609U 76.3210 3.1110
22 185 59,5690 47.8650 2.9140
23 178 26,0900 52,0830 0.0280
24 170 -10,6850 51.4980 o0.2360
25 163 -41.6560 5,0400 -0.6790
26 171 -~5.450 18,6500 0.,1260
27 186 54,8420 13.6500 -0.2230

28 187 53,0320 -14.1090 0.5070

29 199 2.,9790 -23.7330 -1.1820
30 168 -11.?190 108.8190 -0.0410
31 183 58.2960 112.7730 2,5850
32 217 23.m970 110,4950 0.3390
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Table 13. Accuracy in the Absolute Orientation of the Panoramic

Models

Panoramic Model

Parameters 18/23 20/25 22/27

Predefined ao +0.01 mm. +0.01 mm. +0.01 mm.

Computed a0 0.012 mm. 0.010 m. 0.012 mm.

aXT 7 m. 6 m. 7 m.

FYT 5 m. 4 m. 5 m.

oZT 13 m. 9 m. 12 m.

a 3' 53" 3' 4" 3' 2"

a 8' 47" 5' 36" 6' 49"

a 1' 54" 1' 25" 1' 32"
K

OX Adjusted Control 10 m. 9 m. 10 m.

Gy Coordinates 8 m. 6 m. 8 m.

aZ 25 m. 18 m. 23 m.

aX Transformed 13 m. 9 m. 11 m.

oy Model Coordinates 10 m. 7 m. 8 m.

aZ 32 m. 22 m. 26 m.

No. of Control Points Used
in Solution 6 7 7
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5. SLOPE ACCURACY

5.1 Error Propagation Formula

Let D be the horizontal distance between points i and j which have

elevation hi and hj respectively. Then, the slope angle from point i
to point j can be computed by the expression

Si = tan -  (h ) = tan "  (.h) (5.1)

Hence, by the law of propagation of random errors, the standard error

of the slope may be expressed as follows;

aS 2 aS
2 a aU) 2  + (. 11)2 aD2 (5.2)

Since

aS 2 -1
13U (1 +(Ah) ) 1-

aAh

and aD = (1 +a ()2 -1 (2
D

2 -2 2 2Ah 2
S. = [ + (- -- ] D 2 h+ DA ] (5.3)

13 D D2

Assuming that ah = 0h ah;
1i

then

GAh = 2ah (5.4)

Furthermore, since D = [(Xj-Xi)2 + (Yj-Yi)2]1/2

aD = D2{(XX 2 2 + (Y Yi)2 Y 2 + (Xj Xi) 20X 2 + (Y -Yi) 2  2

Assuming that
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Xj = X = Y = o XY'

2 2

then 02 = D2{2D2 } 0X,y 2

i.e. = 2oX,D X,Y

Substituting Eqs. (5.4) and (5.5) into Eq. (5.3) yields

S2 1 + (- )2 -1 h2  2 Ah2 2 /2 (5.6)
lJ D D

in which aS is given in radians. In general, Eq. (5.6) may be re-

written as ij follows:

S = c [I + -1 h2 2 X,2 + /2 (5.7)
ij D D

where c = 1,414 for Sa in radians;
ij

= 81.016 for a in degrees;

Sij= 4861 for S in minutes;

= 2.916x10 5 for a in seconds.
ij

When D is much greater than Ah, the term for XY 2 may be neglected resulting

in the following simplified expression:

a = + c ah (5,8)
1j D[ +(

5.2 Application on the Apollo 15 Data

Table 14 lists the THREED output ground coordinates for all pass

points in the panoramic model 22/27. Table 15 lists the RMS errors in

slopes along two profiles in this model. In all instances, the term

Ah 2

(. ) Qh in Eq. (5.3) is negligibly small and Eq. (5.8) was used for

computing the RMS errors. The parameter ah was computed as the mean of

the RMS elevation errors of the two end points of each line.



Table 14. Ground Coordinates of Pass Points in Panoramic Model 22/27

RMS Errors
Point X Y Z X Y Z

(meters)

126 -36878.465 3120.151 339.285 7.373 5.600 16.933
118 -31540.133 3148,194 453,093 7,151 5.012 12.687
110 26952.520 3297.808 348.501 7,274 5.341 15.215
103 i21628,828 3441.667 221.624 7,828 6,550 22*828
102 -21882.055 8968,773 184.357 7.790 6.508 22.471
109 "26421.641 9133.398 360.276 7.343 5,470 15.918
117 *31390,719 8952*133 387,427 7.162 5.028 12.732
125 -36802.652 8823.164 376.983 7.413 5,596 16,855
124 -37236,3?8 13243.367 326.652 8.044 6.132 18.420
108 "26955.492 13736.559 347.189 7,946 5,910 16.557
101 i22079.617 14130.652 340,022 R.456 6,967 23.155
107 -26595,426 19509.113 398.657 9.363 7.076 19,578
115 *31732.180 18990.473 605.118 9,175 6.668 17T,.015
123 -36733,367 18947.098 391.567 9,352 7.078 20.180
122 -36965.180 23179.2?7 1178.684 10.877 8.161 22*754
106 -27214.9T3 23757,707 397.051 10(642 8,041 21.600
127 "36165.941 -890,930 339,056 7.(97 5.861 16.937
119 -31634.402 "1672.051 613.865 7,846 5.575 14.142
111 -24996.781 "1214.539 912.851 8.195 6. 84 18.612
104 -21294.375 '1127.785 655.118 P.523 7.040 24.095
105 "21356,891 "676,.285 738.173 9,771 7.898 25.733
112 "25543,000 "6 51 8.941 431.012 9.194 6,969 20.037
120 "31364.633 "4565.129 404.653 8.425 6.081 15.493
128 "36305*215 "5883.762 309.035 8.875 6.472 19.095
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Table 15. RMS Errors in Slope

Point No. Horizontal Elevation Slope ah RMS Error

From To Distance (D) Difference (Ah) in Slope

(meters) (meters) (meters)

122 123 4,238 -787 -100 31' +21 +23'

123 117 11,333 - 5 - 00 2' 16 +7'

117 110 7,188 - 39 - 00 19' 14 +10'

110 111 7,183 +565 + 40 30' 17 +11'

111 105 5,637 -175 - 10 47' 22 +19'

115 117 10,044 -218 - 10 15' 15 + 7'

117 118 5,806 + 66 + 00 39' 13 +11'

118 119 4,821 +161 + 10 551 13 +13'

119 120 2,906 -209 - 40 07' 15 +25'

ah was computed as the mean of the RMS elevation errors of the two

end points.
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6. CONCLUSIONS

Theoretically, the method of propagation of variance is a reliable
means of evaluating the accuracy of an iterative least-squares solution

only if the correction parameters converge to zero. However, simulation
results in lunar phototriangulation showed that the method is also
applicable to iterative least-squares solutions for which the follow-
ing two conditions are achieved: 1) the corrections in the last
iteration are smaller than the estimated standard errors of these parameters;
and 2) the photogrammetric solution is well controlled to prevent any
rapid accumulation of systematic errors.

Two computer programs have been successfully developed to use
the method of propagation of variance to evaluate the relative and
absolute accuracy of lunar phototriangulation. Programs SAPGO-A
and THREED form an accuracy analysis package which may be used to per-
form the following functions in any phototriangulation project:
1) to predict the internal accuracy of photogrammetric solution

(SAPGO-A);

2) to determine whether auxiliary data or ground controls of a
specific accuracy can strengthen the solution (SAPGO-A);

3) to predict the accuracy of the final solution, including standard
errors of both the triangulated pass points and the photo orienta-
tion parameters (SAPGO-A);

4) to determine the uncertainty in the tilt of the terrain surface
defined by the computed pass points (THREED); and

5) to determine the absolute orientation accuracy of any stereo-
model (THREED).

A simple expression was also developed for computing the standard
error of the slope as a function of the standard error of the elevation
at the two end points.

Simulation studies of the Apollo 15, 75-mm. photography showed
that both the laser altimeter and the stellar camera measurements
contributed significantly to improving the phototriangulation accuracy.
A relative accuracy of +7 m. in the X and Y coordinates and +15 m. in
the Z coordinates should be obtainable for the triangulated pass points
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in a single stereo model even if the velocity vector has an RMS error

of +1.0 m./sec. At a tracking accuracy of +0.1 m./sec. in the velocity

vector, there was practically no degradation of accuracy due to error

propagation in the phototriangulation process. At a tracking accuracy

of +0.5 m. and +1.0 m. sec., the degradation in elevation accuracy is

also negligible; but the accuracy in the X and Y coordinates degenerated

at the rate of about 1 m. and 0.5 m. per model respectively.

Analysis of the AS-11-Bl measurements provided by NASA showed that

the relative positional accuracy of the control points derived from one

model of 76-mm. metric photography were: ox = +15 m., ay = +10 m. and

aZ = +25 m. These RMS errors are approximately twice as large as those

predicted from the simulation studies. This finding should not be sur-

prising, because the simulation studies assumed a rather small RMS

error of +5 pm. for the image coordinates; whereas, the model coordinates

actually measured from the AS-11-Bl were found to have an RMS error of

+10 Pm. A lower image fidelity together with some unavoidable instrumental

and human error in the AS-11-Bl measurements would then easily account

for the larger RMS errors in the computed ground coordinates.

The control points derived from the 76-mm. photography could be

used to orient the high-resolution models of panoramic photography with

a relative accuracy of +3 minutes of arc in the w and K rotations and

+7 minutes of arc in the rotation. Within the +8.250 sweep area of

the panoramic model, the relative position of any point in the model

area could also be determined with an RMS error of +15 m., +10 m. and

+25 m. in the X, Y and Z coordinates respectively.
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