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1.  INTRODUCTION

The positional accuracy of photo-triangulated ground points can
be evaluated either by the use of accurate check points or by statisti-
cal analysis based on the principles of error propagation. In conven-
tional engineering applications of aerotriangulation, some known
ground points are usually withheld from the aerotriangulation solution
and are used to serve as ultimate check on the accuracy of the aero-
triangulation process. Complete reliance on statistical analysis
procedure is not an advisable or common practice,

~ However, in lunar phototrianguiation, there is a complete lack
of accurate ground control points. The accuracy analysis of the
results of lunar phototriangulation must, therefore, be completely
dependent on statistical procedure. It was the objective of this
_investigation to examine the validity of the commonly used statistical
procedures, and to develop both mathematical techniques and computer
softwares for evaluating 1) the accuracy of Tunar phototriangulation;
2) the contribution of the different types of photo support data on
the accuracy of lunar phototriangulation; 3) accuracy of absolute
orientation as a function of the accuracy and distribution of both
the ground and model points; and 4) the relative slope accuracy be-
tween any triangulated pass points.

These statistical techniques were applied to evaluating the tri-
angulation and mapping accuracy of the mapping system flown in the
Apollo 15, 16 and 17 missions. The system included a 76-mm. metric
camera with a 74°x74° field of view and a frame size of 114x1714 mm.
The camera had a glass reseay plate containing 121 reseau crosses at
the focal plane, The camera provided 1:1,450,000 photography at a
nominal altitude of 110 km. with a ground resolution of 20 m. A
76-mm, stellar camera took pictures of the star field to provide
attitude controls for the mapping camera. The two cameras were timed‘
for simultaneous exposures. Scale control was provided by a laser
altimeter which had a designed range accuracy of +2 m. Also included
in the system was a 610-mm, optical bar panoramic camera. It had a
10°46'x108° field with an image size of 114x1,148 mm, At an altitude of



110 km, its photography had a scale of approximately 1:180,000 at the
center of the frame with a resolution of about 1 to 2 m, The panoramic
camera was tilted alternately forward and backward 12.5° so that
consecutive frames of similar tilt had 10% overiap and stereopairs

had 100% overlap. It provided sterocoverage of a strip approximately
330 km, wide, centered on the ground tracks.(5)

The 76-mm. mapping camera photography is being used by NASA to
establish a network of lunar controls by means of phototriangulation.
The high-resolution panoramic photography is used to produce large
scale lunar maps. The pass points obtained from the triangulation of
the 76-mm. photography will be used as ground controls in the absolute
orijentation of the stereomodels from the panoramic photography. In
this investigation, the relative accuracy of the triangulated pass
points was evaluated by a simulation process; and the accuracy of the
absolute orientation process was evaluated using real data provided
by NASA.

Mr. Nick G. Yacoumelos was the research assistant in this project
when he was studying for the doctorate degree at the University of
I11inois at Urbana-Champaign. He did an extensive literature research
on the method of propagation of variance, and assisted ably in both
data processing and data analysis. He is presently an Assistant
Professor at the Lowell Institute of Technology.

Mr. Robert Hill of the Mapping Sciences Branch at the Lyndon B.
Johnson Space Center was the technical contract monitor for NASA.
AS-11-B] data on one model of 76-mm, photography and three models of
panoramic photography from the Apollo 15 mission was provided by the
Lockheed Electronics Company in cooperation with Mr. Robert Hill.



2. THEORETICAL BASIS OF THE METHOD OF PROPAGATION OF VARIANCE

In the application of the Teast-squares method in analytical
photogrammetry, the variance-covariance matrix of the unknown param-
eters is commonly computed as the inverse of the normal equation
multiplied by the standard error of unit weight. For example, in
the simultaneous solution for phototriangulation, the solution
equations may be summarized as follows(4):

§ =N 'C; (2.1)

and

aj = Nj Cj - Qjﬁ for all pass points j; (2.2)

where § is a matrix of the unknown corrections to all the exterior
orientation parameters (i.e. Awi, A¢1, Ani, AX?, AY? and AZ?); and

aj is a matrix of the unknown corrections to the coordinates of

point j, i.e. AXJ, AYj and AZj. The following expressions for the

variance-covarjance matrices were originally developed by Brown and
have been used in common practice(2), (4):

U(S = Gg N‘-Is (2-3)
and
o2 T
UGJ - 0'0 Nj + jGGQj . (2.4)

This method of the propagation of variance was a direct extension
of the technique which was developed for direct linear least-squares
regression, which has been treated extensively in textbooks on statistics
(1), (7). Although many authors (8, 9) have discussed the problems
of iterative least-squares adjustment in geodetic and photogrammetric
literature, there has been no critical examination into the validity
of Brown's formulation.

This investigation showed that Brown's formulation is theoretically
valid in direct least-squares solution, in which the original observation
equations are linear functions of the unknowns. In jterative least-
squares solution, as required by most photogrammetric problems, this



formulation is valid only if the unknown corrections (8 and 6j in
equation (2.1} and (2.2) respectively) converge to zero. In Section
2.1, the theoretical basis of this formulation for a direct least-
squares solution is examined; and in Section 2.2, the condition under
which the formulation becomes invalid for an iterative solution will
be discussed.

2.1 Direct Linear Least-Squares Solutions
2.1.1 A Linear Regression Model

Consider a simple problem in linear regression. Figure 1 pre-
sents the result of an experiment in which the value of a variable y
was measured at various values of x. Let it be assumed that, in the
absence of any error in the measurements, the variable y should be a
Tinear function of x; i.e.

Yy =a,+apx (2.5)

Furthermore, let it be assumed that the measurement of the variable x
can be made exactly. Thus, the only explanation for not having all
the points in Fig. 1 lying in a straight line is the presence of
random errors in the measurement of the variable y. Thus, for point
i in Fig. 1, the following error equation can be generated:

. - Yy = + )
Yi Vi T 8 T A%y

where Vs is the random error in the measured yalue Yy Rearranging
terms, the above equation may be expressed as follows:

vi tag tagx; =y (2.6)

1 1

In matrix notation,
[v;] + [1 x,] = Iyl

i.e. Vi + Bi A=Y, (2.7)



| [ I
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X
Fig. 1. A Linear Regression Problem



With one equation generated by each measurement of y, m points will
generate m equations which may be combined together as follows:

v, By 2
Vo + B, A= | Y2
v B v
b -~ N R L o
i.e. V+BA=Y (2.8)

It can be easily derived that the corresponding normal equations will
be

(8'WB) - A = BTuy (2.9)

where W is the weight matrix for the measured values of y and is de-
fined as follows:

W= olo! (2.10)

where 9, is the standard error of unit weight; oy is the covariance-

covariance matrix of the measured values of y.

Let N =BWB, and C = B'WY (2.11)
The most probable value of the coefficients a, and a, can then be com-
puted as

A=nNc. (2.12)
It can be theoretically proved that, for this solution under the given
set of assumptions, the varijance-covariance matrix for the computed
coefficients may be simply expressed as



- og Nl (2.13)

2.1.2 Statistical Definition of Variance and Covariance

Before attempting to derive Eq. (2.13), the statistical definitions
of mathematical expectation, variance and covariance are first re-
viewed (7). Let X be a random variable which can take on the values
of Xps Xos Xgs enn X with the probability P1s Pps P3s -« P,
respectively. Then, the expected value of X, denoted as E(X), is de-
fined as

H b1 35

E(X) =

; X1P1 (2-]4)

1
The expected value of X is also called the population mean of X. If

X is a continuous random variable which has a probability distribution
function f(x), then the expected value is defined as

=]

E(X) = J %f (x)dx (2.15)

- 00

It can be easily proved that if b is a constant scaler, then E(bX} = bE(X).
The variance of the variable X is defined as follows:

oy = E {(X-E(X))?} . (2.16)

The covariance Oyy between two random variables X and Y is defined
as follows:

oyy =1E (X-E(X}) (¥-E(Y))} (2.17)
et Z be a column matrix of random variables Z], 22, 23, e Zm, i.e,
S
Z
= Zz

(m,1)




Then, it can be easily derived from the above fundamental definition
that the variance-covariance matrix for Z may be expressed as follows:

oy = EL(Z-E(2)) (2-E)D) (2.18)

where o, is an (mxm) matrix.

2.1.3 Derivation of the Variance-Covariance Matrix
The variance-covariance matrix of the unknown matrix A in Eq.
{2.12) can thus be expressed as follows:

o, = EL(A-E(A)) (A-E(A))T) (2.19)
Substituting Eq. (2.11) and (2.10) into the above expression yields

op = Etv e - envlen o Te-envTen™s (2.20)

But E(N']C) = E(N']BTWY). Since Y is the only matrix consisting of
variable parameters,
E(N'e) = e TBTWY) = NTTRTWE(Y)

Therefore, Eq. (2.20) may be expressed as

oy = ECOV BT - NTBTUE(Y)) (T BT wy-nTBTuE (V) T
= ECNVTBTW(Y=E(Y) ) (Y-E(Y)TweN" 3

N TBTWEL (Y-E(Y)) (Y=E(Y)) 1uBN"]

By definition,
oy = EL(V-E(HY-E(N))3

From Eq. (2.10), oy = agw'1.

Therefore,



- G§N'1BTNN"NBN‘]

cgﬂ"](BTNB)N']

2 _
GON

2. -
Hence op = coN ];
which is Eq. (2.13).

In summary, it can be stated that in a given least-squares ad-
justment problem, if the observation model may be expressed as

V+BA=Y,;

and if the only random variables included in the matrix Y are the
measured parameters; then the variance-covariance matrix of the un-
known matrix may be computed as

o 2y-1
It will be shown in the Section 2.3 that the second condition is not
necessarily satisfied in an iterative least-squares solution.

2.2 TIterative Least-Squares Solutions
2,2.1 Simultaneous Solution for Aerotriangulation

When the observation equations are non-linear functions, an
iterative least-squares solution is generally required. As an example,
consider the solution model for the simultaneous adjustment of photo-
grammetric blocks. The mathematical formulation for this solution
method has been well documented in the literature and will therefore
only be presented here in summarized form.

The solution is based on the following pair of collinearity
equations which relate the image coordinates (xij’ yij) to the ground

BE

coordinates (Xj, Yj and ZJ
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f X -XS Y. v 7.-2%
oo s [my 1 (X5-X3) + mz]( ) + m3]( )] o

* v [inq 3 (X5=XS) + Mg (¥5-Y5) + myy(Z4-25)]
and (2.21)
C C C
Y 1] °p c C C
[y 5 (X5=X3) + moa(Y5-Y5) + myq(Z;-25)]

where x_and y_ are the image coordinates of the principal point;
f is the focal length; XC, YC and ZC are ground coordinates of the ith
camera position during the exposure, and the m1J 's are functions of
the three rotation parameters (mi, ¢i’ Ki) of the camera.

By first-order Newton approximation, the collinearity equations

may be linearized as follows:

aF, oF aF aF
v, +{(— ) AX + ( AYS 4 (=20 478 + (=20 pes + (=50 ne,
x'|J ax 3Y.| 1 32? 1 Bm_i 1 3¢_| 1
aF F
X\0 0 0 0 -
+ (EET) Ay + ( ) AX + ( ) AY + (BZ =) J =&,
1 1]
oF
v, ot (—1) ax§ + (——l) aYS + (—3-)0 aZ5 + (—l)%w + (—0)° 10,
Yij ax aY az w; 2,
aF aF oF oF
ALY AL ALY =
+ (3“1) By + ( ) AXJ + (BYj) AY, + (azj) AZJ Eyij

(2.22)

where



1

o COo 0o ,CO a LCo
f[m1](xj —xi Y+ m2](YJ—Yi ) + m3](zj“zi )]

Exij B -[xij-x * [m (x 0 XCU) + (YO YCU) + ZO ZCO)]
130K XY+ mpa(V5-Y37) + maq(Zy-2y
and
o ,CO Q ,COo 0 LC0
. - _[y.‘—y + f[m]z(xj*xi ) + mZZ(Yi-Yi ) + mBZ(Zj'zi )]
Yis JUp 0 ,CO 0 ,CO 0 ,COo
(2.23)
where Xg, Yg, Zg are approximate ground coordinates of point j,
Xfo, Y?O, Zfo are approximate ground coordinates of the ith
camera position
an o aF o
(E_E) R (m—%J . etc. are partial derivatives of Eq. (2.21) com~-
X i puted using the approximate values of all the
parameters.
Equation 2.22 may be expressed in matrix notation as
Voo # Bush + Buuhe = 615 (2.24)

1] 11 1773 1

where A s a matrix of the corrections to exterior orientation parameters
(ax§, AY?, AZ?, Moy Mys beg) of all camera stations; and Ej is the
matrix of the corrections to the ground coordinates of point j.

The complete set of observation equations for all measured image

coordinates will take the following matrix form:
V+BA+BA= &
which may also be simply written as

V+BA= e (2.25)

An observation equation may also be written for each coordinate of a
known control point and for each known exterior orientation elements,
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For example, the observation equations for a known control point with

measured coordinates (X?O, Ygo, Zgo) are as follows:
ij - aXg = X§ - xg°
By - (2.26)
sz - a5 = zg - z§°
In matrix notation:
V. - & = &, (2.27)

In general, the complete set of control data may be represented by the
following equation:

V-a=t (2.28)

Therefore, combining Eq. (2.25) and (2.26), the complete mathematical
model is as fTollows:

which may be simply expressed as
V+Ba=e. | (2.29)

The normal equations will be

(87wB)a = B!

We {2.30)
where W is the weight matrix for the observations.

The least-squares solution for A is then obtained by the solution
of the above normal equations; i.e.

A=N'C- {2.31)
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where N = (BTWB) and C = B'We.

However, because of the first-order approximation used in the
linearization of the collinearity equations, the least-square solution
must be iterated until the corrections (A) become negligibly small.

It will be shown in the next section that the convergence of the
A-matrix s the necessary condition for the expression

o, = cg 8TwB)™! to be valid,

2.2.2 Derivation of the Variance-Covariance Matrix

The normal equation in Eg. (2,30} is in exactly the same form
as the normal equation in Eq. (2,9), Therefore, the deriyation pro-
cedure should be identical to that presented in Section 2.1.3 until
the following expression is reached:

1 1

o, = N'BTWE{ (e-E(2)) (e-E(e)) TIHBN"

Since, by definition, E{(E-E(s))(s-E(e))T} =0_

']BTNUENBN'1. (2.32)

GA=N
Two conditions of convergence of the least-squares solution are
next considered separately.
a}) Convergence with A approaches zero.
As A becomes zerc, Eg. (2.29)becomes

Y = e,

That is, the residual terms axij and Eyij in Eq. (2.23) and the residual
terms € in Eq. (2.27) are caused anly by errors in the measured
parameters, Therefore, the approximation parameters in these observation
equations have become constant parameters and the only random variables
in the residual terms are the measured parameters. Let o%° denotes

the variance-covariance matrix of all the observations. Then it is
obvious that under this condition of convergence, the following relation-

ship is true:



14

o = g% (2.33)

o = g% = o2 y! (2.34)

By substituting Eq. (2.34) into Eq. {2.32), it can be easily shown
that again

Let X° denote the matrix of all the approximate parameters, and X
denotes the matrix of all the unknown parameters; 7j.e.

X=Xx%+a

Then, since x° has stabilized to become a constant term, the variance-
covariance matrix of the computed values of the unknowns is equal to
the variance-covariance matrix of the corrections; i.e.

b) Solution stabilized but A fails to approach zero.

In a weakly conditioned photogrammetric solution, such as that
caused by poor geometry or low-accuracy controls, some or all of the
correction parameters may never approach zero. After a certain number
of iterations, these correction parameters may simply oscillate between
certain boundary 1limits from jteration to iteration. If the jteration
procedure is allowed to continue, such a solution will eventually begin
to diverge rapidiy. '

In such a solution, the residual terms in the observation equations
will include measurement errors, approximation errors, and errors
introduced by the Tinearization of the observatjon equations, It
is no longer true that the variance-covariance matrix of these residual
terms is equal to the variance-covariance matrix of the measurements;
i.e.
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Consequently, o, # cg N

There is no statistical method available for directly computing o,
from the solution,
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3.  ACCURACY ANALYSIS IN LUNAR PHOTOTRIANGULATION
3.1 Computer Program SAPGO-A

A computer program was developed for performing complete error
analysis on Tunar phototriangulation. It is based on the principle of
propagation of variance, as described in Chapter 2. The program may
be used for either the triangulation of real photogrammetric data, or
for simulation study using fictitious data. 1t can accept as input
the following types of data:

1)  photographic image coordinates with a specified variance-
covariance matrix for all points;

2)  ground controls with known rectangular ground coordinates
(Xj, Yj and Zj) and the corresponding variance-covariance matrix
for each control point;

3) distances, horizontal angles and azimuths measured on the luna%
surface with the corresponding standard error for each measure-
ment;

4)  the position of any exposure station in rectangular coordinates
(X?, Y? and Z?) with its corresponding variance-covariance matrix;

5) the orientation of the camera axis defined by the three rotation
angles w, ¢, and x at each camera station, together with the
corresponding variance-covariance matrix;

6) the straight-Tine distance between a camera station and any
ground point, together with its standard error; and

7)  the known ground coordinates of a set of check points.

The output of the program includes the following:

1)  the correction parameters at the end of each iteration;

2)  the computed standard error of unit weight at the end of each
jteration; |

3) the final adjusted values of the exterior orientation parameters

c

and their estimated standard errors (X? + oxc, Y% j'aYC, Z? tog,
i i i

|
m.l__ w.?

i ¥ i—°¢1’ and Ky t o, )3

i
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4) the final adjusted ground coordinates of all the pass points

and their standard errors; and
5) the true errors at the check points.

This program was a modified version of the SAPGO-A program which
was originally designed for aerotriangulation in earth application.
SAPGO is the acronym for simultaneous adjustment of photogrammetric and
geodetic observations. The mathematical formulation of the solution
has been published in {5). The modified version of SAPGO-A is equally
applicable for both lunar and earth application, and a full documenta-
tion of the program is being prepared (6).

3.2 A Simulation Mode]

A simulation was conducted to achieve two objectives: 1) to test
the reliability of the method of accuracy analysis in the computer
program SAPGO-A; and 2) to evaluate the contribution of the various
types of control data on the accuracy of Tunar phototriangulation,

Fictitious data was generated by a computer program called
DTAGEN, which was developed at the University of I1linois. For a
given flight configuration specified by the camera focal length, flight
altitude, percentage overlap, origin of the reference coordinate-system,
and position of the first exposure; program DTAGEN generates all the
necessary photo image coordinates, exterior orientation parameters,
and ground coordinates of all corresponding image points. To simulate
the measurement errors in practice, these parameters were perturbed
according to some specified standard errors., Both the perturbed and
the true values of all of these parameters were provided by the program.

The simulation model in this study consisted of a strip of 11
photos having the same flight configuration as the 76-mm. metric
photography from the Apollo 15 mission., The flight attitude was
110 Km and the longitudinal overtap was 60%. There were 25 pass points
arranged in a 5x5 rectangular pattern in each photo, and the photo
coordinates were perturbed with a standard error of +5 um,

Three types of control data were generated: 1) Taser altimeter
measurement; 2) attitude data (wi, ¢y zi) for the camera: and 3)
tracking data, The Jaser altimeter measurements were the straight-1ine
distances between the camera stations and the pass points located at
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that center of the photos. These distances were perturbed with a
standard error of +3 m. The camera attitude data were perturbed with
the following standard errors: o = +10", oy = +20", and o = +10",
These accuracy levels have been found to be realistic from the analysis
of actual data from the Apollo 15 mission (7).

In reality, the tracking data for each orbit consisted of a
position vector in the epoch, velocity vector of the orbit, and time
of exposure with respect to the epoch. These data can be used to
constraint the position of the exposure stations, Since the objective
of this study was to determine the internal accuracy of the photo-
grammetric solution rather than the absolute positioning accuracy,
the exterior orientation parameters (Xc, v, 5, w, ¢, and «) of
the first photo in the strip was held fixed and assumed to be error
free.

Helmering (7) reported that, from the analysis of three strips
of Apollo 15 photography, the attainable accuracy for the velocity vector
was about +0.1 meter per second while the timing accuracy was +]
millisecond. In this study, simulation runs were performed using three
different levels of accuracy in the velocity vector: +0.1, 0.5 and
+1.0 meter per second, The relative timing accuracy was assumed to be
+1 millisecond. At these accuracy levels, the corresponding uncertainty
in the coordinates of the exposure stations corresponds to those listed
in Table 1. Al1 three coordinates (xg, vg, Z?) of each exposure
station were assumed to have the same standard error.

3.3 Experimental Verification on the Propagation of the Variance
3.3.1 MWell-controlled photography

Figures 2, 3, 4 and 5 show the results of a series of simulation
using various combination of control data. A tracking accuracy of
+0.5 m/sec. for the velocity vector was assumed for all cases; i.e.
the exposure station coordinates were weighted according to the standard
errors listed in column 2 of Table 1. The following four combinations
of controls were used:
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Table 1. Standard Errors of Exposure Station Coordinates
for Three Levels of Velocity Vector Accuracy (UVJ

(o &

Std. Errors of Exposure Station Coordinates

Photograph oy = *0.1 m/sec. = +0.5 m./sec. +1.0 m./sec.
1 0 0 0
2 +4 +20 m. +40 m.
3 b 29 57
4 7 35 70
5 8 40 81
6 9 45 90
7 10 50 99
8 1 54 107
9 12 57 114
10 12 61 121
11 13 64 128
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1) tracking data alone {(Fig. 2);

2) tracking data and altimeter measurements (Fig. 3);

3} tracking data and attitude measurements (Fig. 4); and

4} tracking, altimeter and attitude data (Fig. 5).
Five independent strips of 11 photos were triangulated. In these figures,
the true errors in the adjusted coordinates of the pass points located
near the center of each photo are plotted against the estimated RMS
error computed from the propagation of variance, With the exception
of a few data points, all the true errors felt within the three sigma
vaiue of the computed RMS errors. Thus, the RMS errors present a
realistic evaluation of the accuracy of the computed coordinates.

Tables 2, 3 and 4 1ist the estimated RMS errors versus the true
errors in the computed coordinates of the exposure stations for five
cases in which tracking, altimeter and attitude data were all used as
controls. Also listed in these tables are the magnitude of the correction
parameters in the Tast iferation of the iterative least-squares solution,
Except in case 5 of Table 4, all the corrections were less than the estimated
RMS errors of the parameters,

3.3.2 Poorly Controlled Photography - Cantilever Extension

Figures 6, 7 and 8 show the true errors in the computed coordinates
of the center pass points for a cantilever strip. The exterior orienta-
tion parameters of both the first and second photo in the strip were held
fixed in the solution. The strip was not controlled by any other control
data. Five independent strips were triangulated, and the true errors were
plotted in these figures against the three-sigma value of the estimated
RMS errors.

These figures show rapid accumulation of systematic errors in the
phototriangulation process. Furthermore, the systematic pattern varies
from strip to strip. The computed RMS errors failed to detect these
systematic errors and clearly underestimated the inaccuracy of the solution.

Tables 5, 6 and 7 1ist the true errors in the computed coordinates
of the exposure stations for the same cases. The magnitude of the
corrections in the Tast iteration are also 1isted. It was observed
that beyond station No. 7, the corrections generally exceeded the
estimated RMS error of these parameters.
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Table 2. Expected RMS Error vs. True Error in X-Coordinate of
Exposure Stations {Tracking + Altimeter + Attitude
Controls With o, = 0.5 m./sec.)

Station Expected RMS True Error in Case Last Correction in Case
Errors i 2 3 4 5 1 2 3 4 5
{+ meters) (meters)
1 - - - - - - - - - - -
2 10 -5 -0 4 26 -6 -3 -3 5 -6 ]
3 11 +3  -13 1 6 6 -6 -3 6 -6 2
4 12 25 20 18 3 -10 -9 -2 5 -4 3
5 13 -1 -10 -19 -4 -6 -10 7 -8 2
6 13 -2 =32 -28 2 14 =10 7 -2 7
7 14 -7 17 -1 2 21 -5 -2 4 -7 5
8 15 3 -14 -39 7 -4 -9 -6 8 -6 5
9 15 -16 -25 -3 9 -25 -11 -7 8 -3 0O
10 16 -6 -11 -38 13 -33 -12 -3 10 -9 1
I 18 13 o -3 17 -8 -9 -2 5 -7 0
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Table 3. Expected RMS Error vs True Error in Y-Coordinates of Exposure
Stations (Tracking + Altimeter + Attitude Controls With
oy = #0.5 m./sec.)

Expected True Error in Case Last Correction in Case
Station RMS
Error 1 2 3 4 5 1 2 3 4 5
(+ meters) (meters)

1 - - - - - - - - .
2 7 -14 4 -1 -5 +3 =2 3 0 1.0 1
3 7 11 13 -9 -3 -85 -4 2 0 0 1
4 8 4 11 4 -15 -13 -3 4 0 0 1
5 8 -17 5 -9 24 -4 -5 3 0 - 0
6 8 8 4 -4 -1 0 -5 5 0 -1 2
7 9 & 19 -6 -8 -8 -4 5 0 A 3
8 9 12 27 -5 -9 -16 -5 8 0 -1 3
9 10 ] 19 -1 -17 11 -6 8 0 0 3
10 1" 2 16 16 -12 -8 -5 10 1 -1 5
11 1 16 17 10 -15 4 -5 9 0 -2 4
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Table 4. Expected RMS Error vs True Error in Z-Coordinates of Exposure
Stations fracking + Altimeter + Attitude Controls With
oy = +0.5 m./sec.)
Expected
Station RMS
Error 9 2 3 4 5 1 2 3 4 5

True Error in Case Last Correction in Case

(+ meters)
(meters )

1 _ - - - - - - - - - -

2 6 10 -8 2 ~4 9 -2 - g 2 1
3 8 g8 20 -6 2 0 -4 -1 0 3 -3
4 9 13 13 -4 0 8 -4 -2 -2 3 -5
5 9 23 -14 -1 0NN -3 -5 -2 & -8
6 10 23 -15 -7 -5 8 -3 -7 <3 5 -13
7 11 12 -19 -9 -6 13 -5 -10 =2 4 -17
8 11 15 -19 <18 1 5 -7 <10 -2 4 -20
9 12 11 -2 -14 -14 6 -9 -8 -4 § 22
10 14 M -6 =18 -14 7 -8 -6 -4 8 -25
1 16 16 -8 -21 =23 11 -12 =5 .6 10 -24
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Table 5. Expected RMS Error ys. True Error in X-Coordinates of Exposure
Stations (Cantilever Extension)
True Error in Case Last Correction in Case
Expected
Station RMS 1 2 3 4 5 ] 2 3 4 5
Error (metersj
1 - - - - - - - - - - -
2 - - - - - - - - - - -
3 31 109 70 -19 -18 -5 16 -19 -15 47 -1
4 37 100 79 61 -137 2 16 -34 26 17 -6
5 35 74 -188 116 -184 12 7 -35 T =19 -1
6 35 24 -356 171 -190 33 16 -13 -32 g .5
7 36 -105 -467 248 -231 83 33 -7 -20 -19 -2
8 37 -168 -553 244 -325 137 59 33 2 -15 0
9 37 -299 -573 169 -454 192 7] 79 19 43 -3
10 43 -670 -637 111 -590 216 74 102 68 -83 -6
1 59 -360 -667 - 4 -753 219 57 142 77 -103 -16
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Table 6. Expected RMS Error vs. True Error in Y-Coordinates of Exposure
Stations {Cantilever Extension)
Expected True Error in Case Last Correction in Case
Station RMS
Error 1 2 3 4 5 1 2 3 4 5
(meters )
‘I - - - - - - - - - - -
2 - - - - - - - - - - -
3 20 42 -15 17 - 57 1 4 16 -6 21 -5
4 26 - 8 -34 -28 - 92 27 5 =27 15 28 -10
5 30 - 92 -26 27 127 61 -4 -17 6 17 =17
6 29 -139 -35 10 -131 84 -16 -11 -21 24 -26
7 30 -187 -46 - 12 -127 107 -20 -12 -24 36 -34
8 30 -233 -13 - 40 -110 133 -30 -1 -34 59 -50
9 32 =277 29 -58 -113 160 -44 19 -75 38 -60
10 37 391 77 - 52 -158 195 -B2 4 -37 65 -8]
1 46 -542 122 -103 -153 223 -37 58 -70 35 -99
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Table 7. Expected RMS Error vs. True Error in Z-Coordinate of Exposure
Stations (Cantilever Extension)

_ Expected True Error in Case Last Correction in Case
Station s 2 3 4 5 1 2 3 4
( meters )
1 - - - - - - - - - - -
2 - - - - - - - - - - -
3 12 -3 21 27 =27 11 -5 12 4 15 5
4 19 -7 1 29 1 34 -5 21 ~17 -16 11
5 22 - 85 23 17 15 58 0 27 =17 -2 20
6 23 -104 87 - 1 7 85 2 34 -3 -9 31
7 23 -114 178 93 -2 14 -4 38 8 -2 36
8 23 -101 285 - 91 -34 125 -4 28 22 4 39
9 26 77 381 -141 -17 124 -26 9 36 18 40
10 37 -31 499 -168 -7 128 -36 -9 49 42 40
1 5 - 7 613 -149 27 140 -39 -5k 93 45

65
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3.3.3 Conclusions from experiments
Based on these experimental results, the following conclusions

can be drawn:

1. In phototriangulation problems whereonly low-accuracy controls
are available, the correction parameters generally will not
reach zero in the iterative least-squares solution. However,
the correction parameters should converge to a value less than
the estimated RMS errors computed from the propagation of
variance.

2. Generally, if controls are available throughout the strip or
block {even though they are of low accuracy) and if the correqtion
parameters converge to a value less than the computed RMS values,
then the computed RMS values should be a good estimator for the
accuracy of the computed parameters.

3. The RMS errors computed by the propagation of variance cannot
detect the rapid accumulation of systematic effects from random
errors. It is well known that the double-summation effect of
random errors produce systematic errors in phototriangulation.

4. Generally, when the corrections in the last iteration exceed
the computed RMS errors, then the RMS errors are not reliable
as estimator of adjustment accuracy.

It is recommended that in simulation studies, true errors of

the adjusted parameters should always be computed to check on the

computed RMS error  For problems in which the controls-are sparsely

distributed, several independent simulation cases should be performed
to provide a check between the estimated RMSerrors and the true errors.

3.4 Effectiveness of Various Control Data .

The effectiveness of the three types of control data in improving
the accuracy of lunar phototriangulation was studied by the propagation
of variance. Three Jevels of tracking accuracy were assumed: +0.1,
+0.5 and +1.0 m./sec, Altimeter measurements were assumed accurate
to +3 m., and the attitude data were assumed to be accurate to +10 sec.,
120 sec. and +10 sec. for w, ¢ and k respectively. For each level of
tracking accuracy, the following combinations of control data were con-
sidered:
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1) +tracking alone;

2) tracking and altimeter;

3) tracking and attitude; and

4) tracking, altimeter and attitude.

" Figures 9, 10 and 11 show the estimated RMS errors at the center
pass points for the different combinations of controls at the three
levels of tracking accuracy.

The results showed that the altimeter measurements mainly improved
the accuracy in the X-coordinates of the pass points; while the attitude
measurements improved the accuracy of the Y-coordinates. This result
was anticipated because the altimeter measurement served primarily as
scale control, while the attitude data served as direction control.

Both types of control data were needed to achieve maximum accuracy in
phototriangulation. Both the altimeter and attitude controls improve
the elevation accuracy by about the same amount.

The cases in which all three types of controls were used are of
particular interest. It can be concluded from Figures 9, 10 and 11
that for a single stereo model, the coordinates of the pass points
can be determined with an RMS error of +7 m, in both X and Y and #15 m,
in Z. At a tracking accuracy of +0.1 m./sec. for the velocity vector,
there is practically no degradation of accuracy along the strip due
to error propagation. At a tracking accuracy of +0.5 and +1.0 m./sec.,
the degradation in elevation accuracy along the strip is also negligible;
but in both instances, the accuracy in the X- and Y- coordinates degenerates
at the rate of about 1 m. and 0.5 m. per model respectively.
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4.  ACCURACY ANALYSIS IN ABSOLUTE ORIENTATION
4.1 Compute Program THREED

The accuracy of absolute orientation depends on the following
factors: 1) accuracy of the model coordinates; 2) accuracy of the
ground controls, 3) densityand distribution of control points, 4) size
of the area, and 5) scale of the stereo model.

A computer program with complete error analysis capability has been
developed for performing absolute orientation. The program is code
named THREED. It may be used to perform any one of the following
functions:

1. To perform absolute orientation.

The program takes as input the model coordinates of a set of model
points and the ground coordinates of a group of control points. Both
the model and the ground coordinates of the control points can be
weighted individually according to their variance-covariance matrices.
The program computes the seven transformation parameters (XT= YT’ L,
w, ¢, « and scale} and their estimated standard errors. The program
also transforms the model coordinates of any pass point in the ground
reference system and determines the standard errors of the transformed
coordinates.

2. To determine accuracy of absolute orientation by simulation.

In simulation application, the program takes as input 1) the ground
coordinates of a set of control points; 2) the variances of the ground
control coordinates; 3) the variances of the model coordinates; and
4) the scale of the model. The program then generates a set of model
coordinates for the given ground points and perturbs them according
to the specified accuracy of the model points. It then performs a
regular absolute orientation solution and outputs the estimated
standard errors of the seven absolute orientation parameters.

3. To determine the uncertainty in the orientation of a surface
defined by a set of triangulated pass points.

The direct output of any phototriangulation solution is the ground
coordinates of a set of pass points and their standard errors. Program
THREED can be used to determine the uncertainty in the orientation

(XT, Yr: Z1s w, ¢, x and scale) of the surface defined by the set of
pass points.
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A compiete documentation of this program is being published
separately (8).

4.2 Mathematical Formulation
The program THREED is based on the eguations for three-dimensional
conformal transformation which are as follows:

% M1 M2 M3 Ki-Xp
23 M3y W3y Mgy L~y
| ] |
where
xj, yj, zj model coordinates of point j
Xj, Yj, Zj ground coordinates of point j

XT, YT, ZT three translations

A scale factor

Myp = COS ¢ COS

Mo = €OS w sin gk + sin w sin ¢ €05 Kk
ma = sin w sin k - ¢cos w sin ¢ cos
a3 = -COS $ sin x

8,0 = COS w COS k = sin w sin ¢ sin «
8,3 = sin w cos x + €COS w sSin ¢ sin x
ag] = sin ¢

830 = -sin w cos ¢

833 = COS w COS ¢

After linearization by first-order approximation, Eq. (4.1) may be
expressed as follows:



a1

L . T
ij by Pyz b3 byg byg byg Byg|| 2%y dyp dyp dyg| [ 2Ky s
AY _
Vyj t | By bpp By boy byg bog Doz || 5T | 4| dyy dp, dpg] |4V = Y,
aZ
.
sz b3y P3p by b3y by byg by 3y d3p d33| [Z5] |eq,
L § e - Hw ! I 4 L J_
A
Ak
Al
L -
i.e. V\.j + BJ-A + BJ. 5 = & (4.2}

The model coordinates of each control point generates one set of equations
as in Eq. (4.2). For m control points, the complete set of cbservation
equations may be expressed as follows:

0] (8] B 17z .
! i ' R 1
y B B A ¢
2 2 2 2 2
+ . A+ - .
Vm Bm | Bm 1L Am_ | ém
i.e. V+BA+BA =& (4.3)

In order to permit flexible weighting of the seven transformation
parameters as well as the ground control coordinates, one set of
observation equations is introduced for each. The set of observation
equations for the transformation parameters are as follows:

" _ 0 00
Y _ 0 00
VYT - AYT = YT - YT
v _ <0 00
A
V - Aw = mo - wOD



42

M [¢] 00

V¢ -Ap = ¢ - ¢

ﬁ - A = KO - KOO
K

V, - m = A0 - 00

where X?, Y?, ... and A% are approximated parameters; and X?O, Y?O, cen
and %9
equations may be simply written as follows:

are measured parameters. In matrix notation, this set of

"

" A = % (4.4)

(7.1) (731 (7.0)

The observation equations for the jth ground control point are as
follows:

r . - - - N

I 0,00

ij AXj Xj Xj

vy - AY; = Y?—Y?O (4.5)
J .

e 0 DO

Again, the superscript (o) denotes approximation parameters and the
superscript (oo} denotes measured parameters. Equation (4.5) may be
simply written as

- -A?. - LiL ]
ViAo
The complete set of observation equations for all control points are
as follows:
V2 1= | 22T =2
| Vn =y m

i.e. V-a=T¢ (4.6)
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Combining Eqs. (4.3), (4.4) and (4.6) yields the following observation
model ;

il e 5] [a] :
V| +]-1 o =] &
v 0 -I A J 3
ie.  y+Ba-cC o _ (4.7)

The normal equations is then as follows:

(B"WB)a = BTuC (4.8)

where W is the weight matrix for the observations. An iterative
solution procedure must be followed. An initial set of approximate
values is assigned to all unknown transformation parameters. The
~ solution solved for the corrections and then apply the corrections to
the approximations. The solution is iterated until a stable solution
is reached.

After the Jast iteration, the variance-covariance matrix (UT)
of the computed transformation parameters is computed by the following
expression:

op = o2 (87wB)"! (4.9)

where ug is the variance of unit weight. The ground coordinates of
all other model points and the corresponding standard errors are
computed by the following expressions:

-1

A = 5 (mpxg # My 4 mgpzg) + Xp
21

Vo= 5 (mgxg + Mypys + mypz.) + ¥y

J

-1
Zy = 5 (mgxy + mysys + maqazs) + 74
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2 _ 2
o0 = (myxs + My mgz)
J J
2,-2_ 2
+ [~ (s1n¢c05K)x + (s1n¢s1nn)y + cos¢z; 1 %,
+ [-cos¢s1‘n:<xJ - COS$COSKY; ]2 -2 Kz
2 -2 2 2 -2 2 2 -2 2 2
F My A g + m; A g + My A o] + o
18 Xj 2] Yj 31 Zj XT
2 _ 2 4 2
oy,” = (Mg + Myoys + Maoz5)"A "o,
J J
+ [(-sinwsink +c05msin¢c05n)xj + (~sinwcosk - c05msin¢sinK)yj
- c05mcos¢z Jz 2 2
. \ . . . 2.-2_ 2
+ [(s1nwcos¢cos|c)xj - (s1nwcos¢s1nm)yj + s1nms1n¢2j] A
. . . 2.-2 2
+ {(coswcosk - s1nms1n¢s1nx}x - (cosusink + s1nms1n¢cosK)y 1% o,
2 .-2 2 2 -2 2 2 -2 2 2
+ M{,A o +m Ao + mo,A o + g
12 Xj 22 Yj 32 Zj YT
UZ 2. (m]3x + Myays + m3gZ, )2 -4 AZ
; ,

+ [{coswsing + sinwsin¢c05n)xj + (coswcosk - sinwsinqnsinx)yj

- s1nwcos¢z ]2 2 2

2 2
%

+ [(-COSmCOS¢COSK)Xj + (COchos¢sinK)y - c05ms1n¢z J A o

+ [(sinucosk + c05ws1n¢s1nn)x + {-sinwsink + COSmS]ﬂ¢COSK)y ]2 20 2
2.-2 2, 2,2 2, 2 -2 2,

+-mi,A o + Mpah o + my.h o o]
13 Xj 23 Yj 33 Zj ZT

2 (4.10)

The m.s terms in the above equations are defined as in Eq. (4.1},



45

4.3 Accuracy Analysis by Simulation

One major application of program THREED is the determination of
absolute orientation accuracy by the method of simulation. Table 8
lists the simulation results for twenty-five cases in which the accuracy
of the ground controls ranged between 1 km, and 2 km, The standard
errors of the model coordinates ranged between 2 and 200 meters. The
dimension of the square area ranged between 2 and 2000 km., while
the scale of the model varied from 0.4 to 1.2. 1In all cases, the area
was assumed to have twenty-five control points arranged in a 5 by 5
rectangular array.

Based on the results of these twenty-five cases, an unsuccessful
attempt was made to develop a prediction equation for each of the
transformation parameters. The following general polynomials was
used in a regression analysis:

_ 2 2 2 2
0% 8, T Ayoyyz * 30,y tagh t 3y +ageyy, +ago,,,m +agATt +ags

(4.11)

where
Iyy7 standard errors of ground control coordinates

standard errors of model coordinates

xyz
area
S scale
The coefficients s 21> ... and ag Were determined in a regression

analysis using the data in Table 8. Although excellent fit was obtained
for the translation parameters (cx » oy_» and o, ), errors in the pre-
dicted accuracy of the rotational garamlters (UNT c,, and aK) generally
exceeded +1°,

Furtheﬁmore, Eq. (4.11) gives no consideration to the density and

¢

distribution of ground controls, which, are important factors governing
the accuracy of absolute orientation, ‘

Program THREED should provide the best means for evaluating absolute
orientation accuracy.



Table 8 Accuracy of Absolute Orientation

g a Dimension Standard Error of Absolute Orientation Parameters
X,Y,Z x,v,z of Square Model
Area Scale Scale XT YT ZT w ) 3

(meters) (meters) {km) {meters) (meters} (meters} e o LT et
1000 20 200 0.8 .0013 174 174 174 0- 8-55 0- 6-57 o- 7- 0
1250 20 0.6 012 219 219 219 1-48-51 1-24-54 1-29-31
1250 20 1.0 020 217 217 217 1-47-59 T=23-53 1-28-133
1250 2000 0.6 L0001 218 218 218 0-01-07 0- 0-52 0- 0-52
1250 2000 1.0 . 0002 216 216 216 0-01-07 0- 0-53 0- 0-52
1250 63 20 0.6 012 217 217 217 1-48-37 1-24-138 1-29-07
1250 63 20 i.0 .021 218 218 218 1-48-52 1-24-56 1-29-30
1250 63 2000 0.6 .0001 216 216 216 g- 1-07 0- 0-52 0- 0-52
1250 63 2000 1.0 .0002 217 217 217 0- 1-07 0- 0-52 0- 0-52
1750 20 0.6 017 305 305 305 2-31-01 1-59-13 2-05-04
1750 20 1.0 .027 296 296 297 2-25-31 1-53-03 1-58-34
1750 2000 0.6 00017 304 304 304 0-01-33 0-01-13 0-01-13
1750 2000 1.0 ,00028 295 295 295 0-01-34 0-01-13 0-01-13
1750 63 20 0.6 .018 305 305 305 2-32-20 1-59-56 2-05-14
1750 63 20 1.0 .029 305 305 305 2-31-28 1-59-47 2-04-47
1750 63 2000 0.6 .00017 303 303 303 0= ¥=33 0- 1-13 0- 1-13
1750 63 2000 1.0 .00028 304 304 308 0- 1-34 0- 1-13 0= 1-13
1500 20 200 0.4 .001 261 261 261 0-13-21 0-10-26 0-10-29
1500 20 200 i.2 .003 261 261 261 0-13-22 0-10-26 0-10-29
1500 20 2 0.8 .12 275 278 274 10-21-52 10-48-23 15-48-47
1500 20 2000 0.8 .00602 261 261 262 o- 0- 8 0- 0- 6 0- 0- 6
1500 2 200 0.8 L0017 244 256 250 0-11-54 0-09-34 0-09-27
1500 200 200 0.8 .0019 260 260 260 0-13-21 0-10-26 0-10-28
1500 20 200 0.8 .0019 261 261 261 0-13-23 0-10-27 0-10-29
2000 20 200 0.8 .0026 348 348 34g 0-17-49 0-13-56 0-13-59

9%
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4.4 Analysis of Apolio 15 Data

Program THREED was used to evaluate the mapping accuracy of the
Apollo 15 photography, Figure 12 shows the 6%er1apping coverage be-
tween a stereoscopic model of the 76 mm. metric photography and three
successive stereoscopic models of panoramic photography.

The stereoscopic model of 76-mm. metric photography was absolutely
oriented on the AS-11-Bl using orientation parameters derived from
tracking and stellar camera data. The ground coordinates of the
model points in Fig. 12 were measured directly from the model in the
AS-11-B1. Table 9 presents a listing of these ground coordinates.

The three panoramic stereomodels were also individually oriented %n
the AS-11-Bl. The model coordinates of the control points as well as
about 20 other model points were recorded. To minimize the errors
introduced by the geometry of the panoramic photography, only the
central 17.5° sweep portion of each frame (+8.25° from center) was
used. Tables 10, 11 and 12 1ist the model coordinates for the three
panoramic stereo models,

A1l the above AS-T1-B1 measurements were performed by Lockheed
Electronics Company, at the NASA Johnson Space Center, Houston.

Program THREED was used to perform absolute orientation of the
panoramic models and to perform error analysis, After several trial
solutions, the following sets of standard errors for both the maodel
and the ground coordinates were found to give the best agreement
between the computed standard error of unit weight and the predefined
value;

Mode} Coordinates Ground Coordinates
o, =+ 0.010 mn. oy =+ 15 m,
o, = * 0.010 mm, oy =+ 10 m,
o, = 1 0.010 mm. a7 =+ 25 m,

Table 13 Tists the standard errors computed by program THREED for both
the transformation parameters and the adjusted ground coordinates.
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It can be concluded from this study that the ground coordinates
derived from this procedure have the following relative positional
accuracy within the 76-mm. stereo model: oy = +15 m., gy = +10 m.
and a7 = +25 m. The orientation accuracy of the panoramic stereo
models can be expected to be +3 minutes of arc in the w and k ro-
tations and +7 min. in the ¢ rotation.
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a
4
Three Panoramic Models
22/27 20/25 18/23
A 23 25 A 29
24h A A 26
A 27
a2l 30
20 -5 &
A
27 & A]QA R i7 -
A 18 £
5 11 D>
a9 a ald —
A A A Alb
8 10 12
Metric Model
6 A
A
) 104 Km, .
Fig, 12, Stereoscopic Coverage at One Metric Model and

Three Panoramjc Models
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Table 9. Ground Coordinates Derived From the Metric Model
GFOUNT CUDRKRDINATES
POINT 7
6 =3649/,0000 =g117 0000 232,0000
9 =2968¢,0000 =5%36,0000 377.,0000
10 =22551,0000 =8501,0000 422,.,0000
21 =30412,0000 13031,0000 372,0000
22 =22827,0000 £572,0000 203,0000
23 =3532Y,0000 22215,0000 1182,0000
24 =22453,0000 211C1,000U 295,0000
11 =16923,0000 =4820,0000 1006,0000
12 =9550,0000 =9020,0000 476,0000
25 =17108,0000 20788,0000 338,0000
26 =9752,0000 18863,0000 326,0000
19 =9076,0000 6880,0000 471,0000
20 =19326,0000 B844,0000 133,0000
18 =2361,0000 5845,0000 305,0000
27  1806,0000 150%6,0000 310,0000
26 1075Y,0000 21624,0000 386,0000
15 14080,0000 =9575,000C 904,0000
14 8007, 0000 =6116,000UV 360,0000
17 BT0G1,0000 5200,0000 301,0000
30 17234,0000 9647 ,0000 3147 ,0000
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Table 10, Mode)l Coordinates from Panoramic Model 22/27

M 0o E L

CUOUDRDIMATLS

1, CONTRUL POINTS

NUMEFER

~N A e

2. UNKNDWN PDINTS

NUMRER

POINT

&

9
10
21
722
723
24

POINT

126
118
110
103
te2
109
117
125
124
108
101
107
115
123
122
106
127
119
111
104

105

‘112
120
128

~36,8500
¥,0b20
56,3500
®,0890
55,.,334¢
=29,5%300
S5Y%,9810

38,0270
=, U400
20,1510
63,8470
62,5500
32,3130
=, 3240

“36,9070

39,3250
2Y9.247¢
61,7860
32,7640
g, 0260

=35,3630

-36|a530
20,5890

=33,7020
=3,5630
40,7050
62, 39y

64,3700

36,4960
-2,0950
35,1640

99,3960
76,4540
96,8570
47,5630
3,614¢0
1¢9,1990
100,4220

17,6710
-18,2550
=17 ,7480
=17,3580
19,5060
21,08R0
20,4110
20,1300
49,6360
51,8260
53,9560
90,25RU
87,3500
87,5960
115,8250
118,64800
44,6800
=50,3710
48,0320
-47,8490
~85,4150
53,3250
69,6810
“77,9410

1.8350
244740
246570
2:4370
1.4570
To83A0
2,2830

7

2.315¢
3,0560
2,3440
1.4810
1.2460
2.483480
246310
2.5790
2.255¢C
243590
242960
2.,7140
84,1060
2.6990
Ta9540
27150
2,3020
4,1170
6,0890
44,3590

4,9000

2.8670
2.,7150
2:.0910
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Model Coordinates From Panoramic Model 20/25

MODEL

1, CONTROL POINTS

NUMBER

~N P A BN .

POINT

11
12
25
26
19
20
18

2. UNKNOWN PDINTS

NUMBER

a
9

10
1
12
13
14
15
16
17
18
19
20
21
2?
23
24

POINT

130
136
144
152
154
146
138
131
132
139
147
155
156
148
140
133
134

10,5850
=3/.4780
11,3460
15,3690
=53,2620
5%, 7380

43,300
=H,4390
25.817¢0
59,1410
59.6470
24,754y
=6,1570

=43,7580

w43 7830
"6,¥850
31,8370
58,8940
59.9080
27,8720
=3, 7810

-38,9030

“iy2.,A850

X

CODRDTIWM

74,6960

~103,1930

96,1670
82,7220

2,6830
16,7970
=4,6610

110,140

112,9540
116,5010
111,115u
40,5920
50,9030
56,0330
45,3210
10,4920
17,9130
21,2860
10,7340
=-22,9870
=30,3710
»21,7520
-22,8870
=49,6090

ATES

Y XY PN LNy LY Yy Yy ey e LYYy

Y

z

“2.1410
*5:5%40
=6.7080
*6.8140
55,6740
=7,8810
=6,9810

7

*6,6990
66,4160
»6,2930
56,2430
65,5840
63250
=5,6140
=8,0040
=7,8070
=6, 7400
*6,3660
=6,4890
=5.,6030
=5,1090
=6,6150
»7.,8320
46,1500
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Table 12, Model Coordinates From Panoramic Model 18/23

M Qaon

1, CONTRUL POINTS

NUMEBFR

o IRV NN NPT RN

POINT

27
°y
15
i4
17
30

2, UNMKEDWN POINTS

NUMBER

PUINT

2
28
175
182
1%¢
181
174
166
172
173
180
18¢&
169
177
184
185
178
170
163
171
186

187
169
168
183
217

F L cun

=45,3060
14,9040
33,9300
=6,402¢0
0,470
56 ,R220¢

49,3940
48, 019(¢
“d,n570
1741600
Ho,AFBY
19,5660
=10,9570
=42,5250
=10,756(0
13,2660
20,1330
571720
=-9,58530
20,3240
54,6090
58,5690
26,0900
=1U,885(
=41 ,6540
*D,2450
54,8420

53,0320
28,9790
-~11,2190
54,2960
23,8970

F DI MATES

54,3960
100,8650
=167 .63%R0
-83,6530
=8,4340
20,2310

3s, 13720
106 ,5860
=122,27RU
~117,1890
=115,561V
=84,5990
88,4420
~B6,6240
=Z21,.7630
=57,2540
50,1970
=55.,845U
72,5150
75,1330
76,3210
47 ,B650
52,0830
51,4980
5,0400
16,6590
13,6500
=14,.10¢0
=23,7330
108,819¢0

112,7730
110,4950

z
"Q.,7990
*"0.,0610

3.,1330
=0,215¢C
“0.7040
=0,3620

rd

3,494
“0.,4200
D.2750
33,0980
44,2270
1,9580
“0.3510
"0,2290
=0.5830
00,3670
0,L560
2+.1830
=0,1700
*0,128¢0
3.1110
2.9140
D.02R0
*0.2350
046790
*0N,1240
*0.2230

0,5070
=1,1820
*0.,0410

2.95865%0

0,3390
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Table 13. Accuracy in the Absolute Orientation of the Panoramic

Models
Panoramic Model
Parameters 18/23 20/25 22/27
Predefined o, +0.01 mm.  +0.01 mm. 0,01 mm.
Computed o 0.012 mm. 0.010 m. 0.012 mm.

a im, 6 m. 7 m.

A7
g 5m, 4 m, 5 m.

Y
a9z 13 m, 9 m. 12 m.

T
Gm 3I 53" 3] 4“ 3l 2“
% g 471 5' 3" 6' 49"
O-K '| 1 54" 'l I 2511 '| ] 32n
Iy Adjusted Control 10 m, 9 m, 10 m.
ay Coordinates 8 m. 6 m. 8m,
a7 25 m. 18 m. 23 m,
ay Transformed 13 m. 9 m. 11 m,
oy Model Coordinates 10 m. 7 m, 8 m.,
dz 32 m. 22 m, 26 m,

No. of Control Points Used
in Solution 6 7 7
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5.  SLOPE ACCURACY
5.1 Error Prdpagation Formula

Let D be the horizontal distance between points i and j which have
elevation hi and hj respectively. Then, the slope angle from point i
to point j can be computed by the expression

- -1 .3y _ -1 ;Ah
Sij = tan L—TT—J = tan (5~) {5.1)

Hence, by the law of propagation of random errors, the standard error
of the slope may be expressed as follows:

3sS..
2 _ ij\2 2
OV (aAh) i’ * 550 9 (5.2)
Since
5S..
ik AT 5
3S. .
Ui 2.1
and O (1 + (&2 ) ) ("——
2 1 2 ané 2
o =[1+( )] c [= 0, (5 6y ] (5.3)
Sij DZ ah 02 D

Assuming that O = 9, T 9
i J
then _
= 20h. (5.4}

Furthermore, since D = [(Xj—-Xi)2 + (Yj-Yi)z]I/2

2
0 j

Assuming that

- nl 2 2 2_ 2 2 2 2 2



g =gy, =0y =T 0, =0 .
XJ Yj X1 Yi XY
2 _ 2rand 2
then UD - D {2D } GX;Y
ie. o = ch’Yz

Substituting Eqs. (5.4) and (5.5) into Eq. (5.3) yields
3 Chy29-1 f1 2, ahy2 o 24172
0813 V2 [] + ( D) ] [? Uh + (Dz) GX,Y ] \(5-6)

in which og . 1s given in radians. In general, Eq. (5.6) may be re-
written as 'V follows:

_ h,24-1 1 2 AhL 2 241/2
o =c[1+ &I [5 0.+ (BN 0, 7] (5.7)
where c = 1,414 for og in radians;
ij
= 81,016 for o . in degrees;
1]
= 4861 for og in minutes;
iJ

2.916x105 for o in seconds,

Sij

When D is much greater than Ah, the term for 9y Y2 may be neglected resylting

in the following simplified expression:
C .
a = i a (5'8)
543 o[1 + (By2g

5.2 Application on the Apollo 15 Data '

Table 14 1ists. the THREED output ground coordinates for all pass
points in the panoramic model 22/27. Table 15 lists the RMS errors in
slopes along two profiles in this model. In all instances, the term

2
(A%) qDZ in Eq. (5.3) is negligibly small and Eq. (5.8) was used for
D

computing the RMS errors, The parameter o}, was computed as the mean of

the RMS elevation errors of the two end points of each Tine.



Point

126
118
110
103
102
109
117
125
124
108
101
107
115
123
122
106
127
119
111
104
105
112
120
128

Table 14,

X Y
(meters)
=356878,465 3120.151
=31540,133 3148,194
=26952.520 3797.8p8
-21628,878 3841.647
-21882,055 8%68,773
264214601 9133.398
=31390¢.719 8952.133
=36802.0652 R23.164
=317236, 378 1372434347
~26955,492 137364559
=22079.,617 14138,652
=26595,476 1950%4143
=31732+180p 18990,473
=36733,3567 18947,098
=36965,18¢ 23179.227
~27214,973 2375?.?07
"36165,94 =890,930
=31634,402 “16724.051
-24996,781% =1214.539
=21294,375 =1127.74a5
~21356,891 "6T65,.,285
=25543,000 “651R.941
=31364,633 ~“4565,129
=36305.215  =5B883.742

e

339,285
453,093
348,501
2214624
184, 357
360,276
8r. a27
376,983
326.652
347,189
340,022
398,657
605,118
391,567
1178,684
397.091
339,056
613,865
912,851
655,118
736,173
431,012
404.653
309,035

7,373
7,151
T.278
T.828
7790
Te343
T.162
T+413
B.084
T«948
R,456
G, 363
9,175
9,352
10,877
1n.ba?2
T7.797
T.888
R, 195
R.523
9.77T1
9.194
R,425
R.BTS

RMS Errors
Y

5.600
5.p012
5.3
6,550
6,508
5.470
5,078
5,596
6,132
5.91n
6,967
T.074
6.5668
7,078
8,161

8,08

5.86%

5.57%
6,182
T.040
7.898

6,969

6.081

6,742

Ground Coordinates of Pass Points in Panoramic Model 22/27

16,933
12.687
15.215
22.828
22.471
15,918
12.732
16,855
18,420
164557
23,155
19,578
17.015
20,180
22.754
21.600
16,937
14.142
18.61°2
24,095
25.T33
20037
15,493
19,095

£9
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Table 15. RMS Errors in Slope

Point No.  Horizontal Elevation STope o RMS Error
From To Distance (D) Difference {ah) in Siope
(meters) {meters) (meters)

122 123 4,238 -787 -10° 31 +21 +23"
123 117 11,333 - 5 -0° 2 16  +7
117 110 7,188 - 39 - 0° 19" 14 +10"
110 171 7,183 +565 +4° 30" 17 +11°
111105 5,637 -175 - 1° 47" 22 +9"
ns 117 10,044 -218 - 1° 15! 15 + 7
117 118 5,806 + 66 +0° 39 13 +7"
118 119 4,821 +161 +1° 55 13 +13"
119 120 2,906 -209 - 4° 07" 15 +25'

*

g, was computed as the mean of the RMS elevation errors of the two

h
end points.
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6.  CONCLUSIONS
Theoretically, the method of propagation of variance is a reliable

means of evaluating the accuracy of an iterative least-squares solution

only if the correction parameters converge to zero. However, simulation

results in lunar phototrianguiation showed that the method is also

applicable to iterative least-squares solutions for which the follow-

ing two conditions are achieved: 1) the corrections in the last

iteration are smaller than the estimated standard errors of these parameters;

and 2) the photogrammetric solution is well controlled to prevent any

rapid accumulation of systematic errors.

Two computer programs have been successfully developed to use
the method of propagation of variance to evaluate the relative and
absolute accuracy of Tunar phototriangulation. Programs SAPGO-A
and THREED form an accuracy analysis package which may be used to per-
form the following functions in any phototriangulation project:

1} to predict the internal accuracy of photogrammetric solution
(SAPGO-A);

2) to determine whether auxiliary data or ground controls of a
specific accuracy can strengthen the solution (SAPGO-A);

3) to predict the accuracy of the final solution, including standard
errors of both the triangulated pass points and the photo orienta-
tion parameters (SAPGO-A);

4) to determine the uncertainty in the tilt of the terrain surface
defined by the computed pass points (THREED); and

5) to determine the absolute orientation accuracy of any stereo-
model (THREED).

A simple expression was also developed for computing the standard
error of the slope as a function of the standard error of the elevation
at the two end points.

Simutation studies of the Apollo 15, 75-mm. photography showed
that both the laser altimeter and the stellar camera measurements ‘
contributed significantly to improving the phototriangulation accuracy.
A relative accuracy of +7 m. in the X and Y coordinates and 5 m, in
the Z coordinates should be obtainable for the triangulated pass points
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in a single stereo model even if the velocity vector has an RMS error
of +1.0 m./sec. At a tracking accuracy of +0.1 m./sec. in the velocity
vector, there was practically no degradation of accuracy due to error
propagation in the phototriangulation process. At a tracking accuracy
of +0.5 m. and +1.0 m. sec., the degradation in elevation accuracy is
also negligible; but the accuracy in the X and Y coordinates degenerated
at the rate of about 1 m, and 0.5 m., per model respectively.

Analysis of the AS-11-Bl measurements provided by NASA showed that
the relative positional accuracy of the control points derived from one
model of 76-mm. metric photography were: oy = +15 m., oy = +10 m. and
oy = +25 m. These RMS errors are approximately twice as large as those
predicted from the simulation studies. This finding should not be sur-
prising, because the simulation studies assumed a rather small RMS
error of +5 um. for the image coordinates; whereas, the model coordinates
actually measured from the AS-11-B1 were found to have an RMS error of
+10 um. A lower image fidelity together with some unavoidable instrumental
and human error in the AS-11-Bl measurements would then easily account
for the larger RMS errors in the computed ground coordinates.

The control points derived from the 76-mm. photography could be
used to orient the high-resolution models of panoramic photography with
a relative accuracy of *+3 minutes of arc in the « and « rotations and
+7 minutes of arc in the ¢ rotation. Within the +8.25° sweep area of
the panoramic model, the relative position of any point in the model
area could also be determined with an RMS error of +15 m., +10 m. and
+25 m, in the X, Y and Z coordinates respectively.
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