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SUMMARY

Acoustic treatment was developed for the NASA QEP engines A and C for '_

suppression of turbine generated noise. The design study required turbine
noise spectra predictions and a definition of the turbine exhaust environment

based on predicted engine cycle data. An evaluation of the various suppression

systems including single-degree-of-freedom; multiple-degree-of-freedom and bulk-

, type absorbers was conducted. Acoustic impedance and duct transmission loss

measurements were made for approximately 30 different proposed suppression

configurations. A materials environmental compatibility study was undertaken i
to determine which materials were capable of functioning in the turbine exhaust
environment, a_d these were then rated on the basis of manufacturing difficulty,

weight, and cost requirements. The configurations were rated acoustically by

applying measured duct transmission loss values to the predicted turbine noise

spectra and calculating the potential PNL reduction. The recommended treatment i
configurations for both engine_ were based on these results.

Engine tests were perfoz _i on both engines, with emphasis placed on !_
evaluating the treatment suppression of the low pressure turbine blade passing _._

frequencies. Engine A contained a four-stage low pressure turbine and was

tested both at approach and takeoff speeds for a hardwall baseline and two i_

treated configurations. Engine C contained a two-stage low pressure turbine
and was tested in an untreated and in one treated configuration at approach and

i takeoff speeds. Data were recorded using acoustic probes, near field and far-
field microphones, and a directional microphone array located in the farfleld.

Probe data presented the most satisfactory means of evaluating the treat-

ment suppression of the blade passing frequencies. The power level of the

fundamental frequencies on engine A was suppressed as much as 16.5 dB and
° harmonics up to 19.5 dB at approach. At rmkeoff suppression ranged from 3.2

to 9.8 dB. Engine C tone power level suppression reached 11.i dB at approach
and 9.5 dB at takeoff.

The directional microphone array measurements were the most satisfactory

means of evaluating broadband data. On engine A the aft sound pressure level

suppression peaked at 6.5 dB and 4.5 db at approach and takeoff respectively.
Engine C broadband noise SPL suppression reached I0 dB at approach power and
5.§ dB at takeoff.

|
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INTRODUCTION

During the past few years much emphasis has been placed on jet engine
noise reduction with almost all the effort concentrated on fan and jet noise

suppression. As the technology has advanced in these areas, turbine radiated
no_se has become an important contributor to the effective perceived noise

level (EPNL) of jet engine aircraft. Therefore, in orde_ Cor most future

aircraft to meet the required EPNL limits as established by the FAA, turbinei

noise suppression has become necessary.

Both NASA and the General Electric Company recognized this problem and
under the NASA Quiet Engine Program, a program providing for the development

of acoustic treatment for turbine noise suppression was initiated by NASA

and the General Electric Company's Aircraft Engine Group.

The primary objective of this program was to first investigate potential

suppression materials and to then identify the treatment configuration design

for optimum suppression of turbine radiated noise. This is contained in

Volume I. The second phase of the program, contained in Volume II, was to
measure the reduction in the engine perceived noise level (PNL) resulting

from the turbine treatment on the fully suppressed fan configurations of

Quiet Engines A and C.

|

t
I
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SECTION I i

ACOUSTIC TREATMENT EVALUATION
I

A. Treatment Confisurations

The three different types of systems evaluated for turbine noise suppression
are referred to as follows:

, • Single-degree-of-freedom (SDOF)

• Multiple-degree-of-freedom (MDOF)

• Bulk absorbers

A generalized comparison of transmission loss capabilities for each system
based on initial duct test results is given in Figure i. Although these trends

w_re recorded in a cold flow _dct facility the same trend exists at elevated

temperatures. From these initial suppression shapes it was believed that the
MDOF and bulk absorber systems offered a wider suppression bandwidth than SDOF

systems.

I. SDOF System

Ising(I)An analytical study, using the procedure as given in Ingard and ,
' was made to identify the parameters of SCOF resonators that control the

absorption bandwidth, and how these parameters may be changed such that the
most effective SDOF resonator design could be produced. The goal was to make

SDOF systems (which are more desirable in respect to weight, manufacturing

technques, and cost requirements than the MDOF systems) equivalent acoustl-

: tally to MDOF systems, A comparison of acoustic reactance values for a
2.54-cm (I.0 in.) thick SDOF system and for a bulk-type absorber of the same

thickness is given in Figure 2. The slope, dx/df, of the reactance curve
for the bulk absorber is less than that of the SDOF system in the region of

zero (optimum) reactance, That is, the reactance is more nearly zero for the
bulk absorber over a greater frequency range and this results in increased

suppression bandwidth. Thus the objective is to design a SDOF system with
the slope of the reactance minimized.

The acoustical impedance is defined as ZA - P/U where P is the acoustic
pressure and U is the volume velocity through a surface.

The acoustical reactance of a single opening into a cavity (Helmholtz

resonator) is given by:

X - _M - I/_CA

\,



where

M = mass/S 2 = acoustical mass (mass within opening)

CA = V/pc2 = acoustical capacitance

then:
2

X = 2_fp£ 0c
Z 2_fV

' where 0 = density of air

Z = plate thickness + 0.85 x hole diameter

S = hole area
J

c = velocity of sound in air

V = cavity volume

f = frequency

In the case of a single hole or of an array of holes in a perforated plate

over a cavity, the volume velocity and therefore reactance is defined over the

face plate area rather than Just the hole area, then

O 2_fV o 2_fB

where o = porosity

oA = hole area, S

B = core thickness

The reactance of a system consisting of an array of holes is dependent
on the face plate porosity, the core thlc_.ness, the hole diameter and the

face plate thickness. The slope of the reactance Is seen to decrease with

increasing core thickness and increasing porosity as sSown in Figure 3. The

reactance change as a function of core thickness is shown in Figure 4. The
slope is also seen to be a function of the face plate thickness and hole

diameter. Decreasing the slope calls for thinner panels and smaller hole

sizes. In the selection of panel configurations to be evaluated In the high

temperature duct facility, an effort was made to include designs in which

some of the parameters would be included in the experimental results. A

description of the SDOF systems evaluated is given in Figures 5 through 7.

2. MDOF System

An analytical model, which is described by Kazln, et al., (2) developed for
predlcti_ acoustic reactance for MDOF systems, was used in a study to optimize
the tunln8 and bandwidth of MDO} systems. Resistance damping coefficients
were a required prosram input. These values were based on dc flow resistance
measurements for perforated sheets. MDOF systems differ from SDOF systems in

! respect to the parameters that influence the acoustic reactance behavior. The
cavities are coupled to each other such that damping for any one element affects
the total system. Shown In Fisure 8 are results of a typical I_OF system with

4
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low damping coefficients. As an example of the effect of adding damping, the
same configuration wlth damping is given in Figure 9. The measurements were

taken using a standard standing wave impedance tube. This apparatus and the
procedures in taking measurements are discussed in Smith, et al(3). The

reactance here has only one resonaHce (zero r_actance value) as compared to
three in the case without damping, the zero reactance value is shifted to a

higher frequency with the slope decreased, thereby producing a wide suppression
bandwidth.

Two types of MDOF configurations were evaluated: the double sandwich

resonator which is two SDOF configurations stacked together and the triangular
core MDOF system. De=criptions of both these systems as evaluated are given
in Figures i0 and U.

3. Bulk Absorbers

The bulk-type absorbers are described in Figures 12 and 13. Two types of

bulk systems, "Cprafelt" and "Cer-vit", were acoustically evaluated. A

complete description of these materials is given In the Environmental Compati-

bility section (Vol. I]_. Th bulk absorbers are characterized by their wide

suppression bandwidth due to Lhe relatively small raLe of change in reactance

as a function of frequency.

B. ACOUSTIC TREATMENT CHARACTERISTICS

I. Normal Incidence Impedance

a. Predictions

The acoustic impedance was predicted or measured for all the configurations .
that were selected to be evaluated in the transmission loss duct facility. A

total of 30 configurations were selected to be tested of which 20 were single-

degree-of-freedom, 5 were multiple-degree-of-freedom, and 5 were bulk-type
absorbers (nonmetallic) such as Cer-vit and Cerafelt. Shown in Table I is a

matrix that includes nine of the SDOF configurations. These nine configurations
were the first SDOF configurations to be fabricated and tested in the trans-

mission loss duct facility. This matrix illustrates the wide range of porosity

and panel thickness represented in this selection of designs. Presented in
Table II is an even larger matrix of SDOF designs that were later fabricated
and tested in the duct facility. However, data from only the original nine

$DOF selections, as given in Table I, were avaLZable at the time engine treat-
merit recommendations were made for both engines A and C.

Measured acoustic reactance and resistance, and calculated reactance, for

configurations at ambient and at engine environment temperatures are presented
in Figures 14 to 73. The data were recorded at 130 dB in the high intensity
impedance tube except for Figures 69-73 which were recorded on the BaK apparatus
at 100 dB. The included predictions are a result of analytical models _developed
for SLOF and for HDOF systems described in References 1 and 2) and have the
capability of calculating the acoustic reactance only in the presence of air
flow, Predictions #ere made both for flow and no flow conditions. The acoustic

reactance with flow is calculated by decreasing the end correction factor,
i

1 °

• i
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B. Phillips, (4) on the acoustic mass of the system as the air flow velocity

is increased. This has a definite effect on resonator systems, causing the
peak attenuation frequency to be shifted to higher frequencies as the flow is

increased. No acoustic resistance predictions were made for the resonator

systems at the engine environment temperature. This decision was based on the

fact that no data had been obtained to substantiate the analytical model being
employed for predictions at increased temperature. The behavior of the °

resistance at higher temperatures was not clearly understood at this time.
Flow resistance tests were undertaken for increased temperature and are

discussed later in this report.

Table I, Single Degree of Freedom Panels for Transmission Loss

Duct Facility.

CORE TH ICKNESS

FACE PLATE .0063m .0095m .0127m .0190m

POROSITY (1/4") (3/8") (1/2") (3/4")
=q

2.5% X

4.0% X X

7.0Z X X X X
,, m ,,

i0.0% X

14.57o X

ALL PANELS HAVE THE FOLLOWING DIMENSIONS:

• FACE PLATE HOLE DIAMETER .159cm (.0625")

• FACE PLATE THICKNESS .076cm (,03 tt)

• HONEYCOMB CORE CELL SIZE 1.270cm (.5")
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Table II. SDOF Panel Selections.

CORE THICKNESS

.318cm .635cm .953cm l_27cm 1.91cm 2.54cm !3.81cm

,rosity (I/8)" (1/4") (318") (112") (3/4")i(i.0") (1/5")

2.570 X •

4% X X X X

; 7% X X X X X

: I_/o X X

14Z x x x x

22.5% X X

l
7
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b. Measurements

Impedance measurements were made using a standing wave apparatus. A sketch
of the facility is shown in Figure 74. All measurements were taken at ambient
temperatures in the absence of air flow. Two Altec acoustic drivers were used

to produce a high intensity environment equivalent to thaL expected in the

engine turbine exhaust area. The standing wave pattern was measured by means

of a translating waveguide probe.
I

All the SDOF test samples were approximately 2.54 cm (i.0 in.) in diameter.

However, the triangular-core MDOF configurations were tested in a modified impe-

dance facility capable of accepting a _J.9cm (3.89 in.) square sample. This

was necessary since a 2.54 cm (i.0 in.) sample from the triangular core was too

small to give a true representation of the configuration. With this increase
in specimen size and the increased impedance tube dimensions, data is limited

to frequency measurements < 4000 Hz. The test specimen holder allowed varialion i

in the backivg depth such that any core thickness could be accomodated in the

impedance tube. _,e face plates were removable so that plates with different

porosities could be tested. This variation in both porosity and panel depth
enabled all configurations to be represented in the impedance facility.

2. DC Flow Resistance

The effect of high temperatures, as encountered in the core nozzle region of

an engine, on the dc flow resistance of a perforated plate was investigated.

It was t_ought that the increased temperature may have resulted in nonJlnear

viscous losses in the perforated face plate. Adc flow resistance facility

was constructed to permit testing up to 578 ° K (580 ° F). A sketch of the i
facility is shown in _igure 75. Two vacuum pumps in series were used to
generate the flow ohich was measured using a Merriam flow meter in combination
with a mtcromanometer. A thermccouple was required since an accurate tempera-
ture through the flow meter is needed to determine the flow rate. The rate of
flow through the 8ystemwas controlled by a valve located upstream o_ the flow
meter The air was heated by a Chromalox circulation heater and was passed\
into a plenum of approximately 3.5 x 10 -3 cubic meters (216 cubic inches).
Plem:m air exited through a 5.1-cm (2 in.) diameter test sample. The test
samples were 9% open and 22% open with 0.16 cm (1/16 in.) hole diameter. The
temperature of the plenum air was also recorded using a thermocouple.

The dc flow resistance is given by R - AP/u, where AP is the pressure drop
across the test sample and u is the linear velocity, which is obtained by divi-
ding the volu_e velocity by the total sample area. The pressure drop across
the sample is given by

APT " (1/2 0 v 2 + P)plenum " (1/2 p v 2 + P)atmosphere (2) .

This can be sinplifted to

APT " Pplenum " Pstmosphere (3)

8
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since 1/2 p v2 for the plenum and for the downstream side of the sample are

typically less than 0.25 cm (0.i inch) H20 at a linear velocity of 5 m/see. I

_e velocity through the sampl_ Wd_ d_turmiued by calculating the flow _

using the flow meter calibration curves, and correcting for barometric i

pressure and temperature. This value is the volume velocity, i.e.. cubic meters
per second. The linear velocity was computed by dividing this value by the _

Po,? "
total sample area and multiplying by the term--_ which corrects for the chancre

in density of air in the plenum, and therefore the velocity. Here, Po and TO
are the absolute pressure and temperature in the flow meter and P and T are L

the absolute pressure and temperature in the plenum. The absolute pressures

are less than 0.51 meters (20 inches) H20 above atmospheric so that the

pressure terms can be neglected.

Results of these tests are presented in Figure 76. They show the flow

resistance versus temperature at a flow velocity of 5 m/see. Th_se values were

derived from the measurement at each temperature by (i) plotting resistance a_

a function of flow velocity, (2) constructing a best fit curve, and (3) noting
the resistance value at this desired velocity. A solid line is drawn in the

figure to represent the inverse relationship between resistance and temperature.

Tba_ is, the data show the flow resistance to be inversely proportional to

the temperature. The resistance can also be said to be directly proportional

to the density of the air. Data scatter are greater than expected with several

data points as much as + 15% from the average value. The scatter is attributed
to temperature monitoring problems, difficulty in holding the heater output

constant, problems occurring in measuring these small pressure differentials,

and unsteady flow output from the vacuum pumps• There were, therefore, no
increased viscous losses at higher temperatures.

C. TRANSMISSION LOSS EVALUATION

I. Facility Desc_-ip.ion

The acoustic duct test facility is shown in Figures 77 and 78. Tnls

facility was used in performing transmission loss measurements for all the

treatwent _onfiguratlona. Referring to Figure 79, it Is seen that air to the
_est section enters through a _ate valve located in the 20.2-cm (8 in.) diameter

supply line. The airflow is controlled by a pressure regulating valve down-

stream of a flow measuring orifice. A preburner and burner are situated
downstream of the valves. Aviation fuel can be supplied to the burner in
controlled a=ounts. A sche=atic showing the fuel supply is given in Figure 80.
A transition section aft of the burners converts the clrcular pipe to a
rectangular cross section with internal dilensions of 10.1 cm (4 in.) x 20,2 cm
(s in.).

q

To reduce upstream piping and valve noise and thus improve the signal-to-
noise ratio of the test facility, a muffler was installed in the test section
vallw downstream of the burner. The muffler eystm consists of a perforated
plate vith s wlre screen backing over a bulk-type sound-absorblng =usterial.

t

1
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A thermocu,,:p_ ::r_da pltot-static pressure probe were located immediately

ugstLe._,_of the tc_t section. Swagelock fittings were provided in this section

_,_enable acoustic pro_es (for r.hemeasurement of acoustic pressure level)

co be inserted into the duct.

The two 45.7-cm (18.0 in.) ' -_:r,g rectangular test sections were each capable

of receiving acoustic test panels o: _.35 cm (2.5 in.) maximum depth, thls Is

shown in Figur_ 81. Swagelock f_r;_-s were also provided do.stream of the
treatment for the installation of _ L_;._tlcprobes. The duct was terminated in

a dlf_user section exhausting into t-,., atmosphere.

The noise source used in all :t-,:,;, was a Rartmann noise generator and 13
: shown in Figure 82. A tone is ge_- _ed by directing a supersonic flow of air

into a cyllndrlcal cavity. _y _ r ,,,,the cavity depth, different frequencies
could be generated. A schematl, >: _,Llthe instrumentation required in the

_co,_tic data acquisition is _;,_,,, a Figure 83.

"{_ecalibration of t'_• ., _:,,tywas performed by removing the exhaust
diffuser .ladposltit,_)_ng....,_;!_,ation rake, Figure 84, at the end of the test

section. Th_ rak_ was at'., _,_'.to the stem of a 25.4 cm (I0 in.) actuator
and was thus able t¢: trater_e the duct cross section. The rake consisted of

a vertical row of seven Ln_rmocouples and a row of seven total pressure probes
squally spaced over 8.9 c,_ (3.5 in.). The rake was initially posltlo_d
0.63 cm (0.25 in.) from r.heside duct wall. Additional readings _ere taken

2.5 cm (I.0 in.), 5.1 c_ (2.0 in.), 7.68 cm (3.0 in.), I0.I$ cm (4.0 in.),

12.70cm (5.0 in.), 15.2 c_ (6.O in.), 17,8 cm (7.0 L_.)! and 1.%7 c_ (7.75 in,)
from this wall. These locations were set by the actuator control dial readout.
The calibration was performed with the air supply to the Hart_nn Generator
turned on. A1thoush this airflow was small 0.079 kg/sec (0.175 Ib/sec) It was
sufficient to affect the temperature dlstrlbution in the duct. '

A required test point was se¢, approxl_ately, by referring to the plot of
the mass flow parametric equation and to the carpet plot relating the air mass
flow to orifice pressure drop and upstream pressure.

The Bass flow para_etrlc equation is presented belo_:

wh--

where g = required Bass fl_ in test sect::on
T = tmperatnre in test section, *R
A = effective area of test section

PS= static pressure in test section
N - req_tred _ch number /_ test section

\ ¥ • ratio of specLflc hut at constant pressure to specific

heat at consent volme - cp
Cv

8 " accsl_gtion of gravity
R • uq_vermsl 8_8 constant

10
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This relationship has been plotted _n graphical form in Figure 85. Thus !_
for a required Math No. (M), the mass flow rate can be found if T, A, and Ps
are known (for ambient conditions assume y = 1.4, for high temperature condi- :_
tlons ,ssu=ey = 1.35). __

Assume that Ps is 10.3 x 103 kg/m 2 atmospheric (14.7 lb/in 2 atmospheric), _
since the duct exhausts to atmosphere, and also that =he effective area of the ii
duct is 187 sq cm (29 sq in.). The required air mass flow rate can be equated i -
to actual gach number at various test section temperatures by using Ftgurc 86.

Not__e: The '*effective*' area of the duct can be found vccurately by using
true Much No.'s found from the calibration and true mass flows measured by the
orifice and aubstitutxng these values into the mass flow parametric equations _
Anu solving for A. _nls calculation was repeated for several t_st conditions
and resulted in an average value of 187 sq. cm (29 sq in.).

The equatton for rate of flow through the facility orifice is

PIAPWa " 1.4067 Y --_1 (5)

where Wa = mass flow rate kg/sec, (lb/sec)
AP

Y - expansion factor = 1.0 - 0.01174 _ _ 1
Pl --

P = pressure downstream of orifice absolute, kg/m 2 (lb/tn. 2)

AP = pressure drop across orifice, cm of water (in. water)

T1 = incoming air temp °R

This equation is shown as a carpet p:ot in Figure 87. The mass flow
paramatrlc equation enableg an approximate mass flow to be establlshed for the
facLLicy at various test sectlon temperatures and Math numbers. The carpet plot
888£8ta in obta:n4.ng the required mass flow. In practice, it has been found
sore J_table to keer the pressure downstream of the gate valve (PI) constant
at 703 x 102 kg/m2 absolute _ $97 x 102 gauge (ZOO p_is, _ 85 pst8) and adjust
the pressure drop (_2) across the orifice by means of the regulator valve in
order to meet the various flow requirements.

Zho equation is now reduced to:

4_ &*j,•

|n It:laura 88, Wa is plotted against AI' for an air inlet temperature of
540" i; (300" g).

11
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The burner was ignited and fuel was supplied at increasing flow rates un-

til the upstream thermocouple indicated the desired temperature (corrected for

radiation effect, Figure 89). When conditions were steady, readings were

taken of upstream total pressure, upstream temperature, and the seven rake total

pressures and temperatures. The ambient conditions were also noted. The rake
was then moved to a new position and these data were recorded. The upstream

static press,re was also recorded. °

, The relationship between the single upstream thermocouple reading and the
true average value of the rake temperatures over the Mach number range is shown

in Figures 90-94. It can be seen from the summary plot, Figure 95, that as

the Mach number is increased, the single thermocoup_e reading agrees more

closely with the actual average temperature across the duct area. This may
in part be due to the reduced effect of the Hartmann air flow. The data, as

shown in Figure 96, have been arranged so that the temperature distributions

over the duct cross section can be easily observe_.

The relationship between the Rach number calculated from the upstream

probe pressure reading and that calculated from the average values measured by
the rake are shown in Figures 97-100. There is no variation due to temper-

ature as can be seen by the summary plot of Figure I01.

The total pressure reading, in inches of water, obtained from the total and

static probes is converted to Math number by the following process: i1

I. Ensure pressure readings are absolute by correcting for initial mano-

meter settings.

2. Multiply barometric pressure readi_ig in cm (inches) of mercury by ,
13.6 to convert to cm (inches) of wa_er.

3. Add barometer reading from No. 2 to values of total (PT) and static (Ps)
pressure obtained from No. I.

PS

4. Calculate ratio _ for each ca_e.dL

5. Use carpet plot of M vs. PS/PT (Figure 102) to obtain Mach number.
Assume 7 = 1.4 for ambient conditions and Y = 1.35 for high tempera-
ture conditions).

Alternatively, direct readouts of Mach number vs. total gage pressure, PT,

in ca (inches) of water, for a range of static pressuresD PS, in cm (inches) of
water, are given in Figures 103 and 104 for 7 = 1.4 and 7 = 1.35.

The relationship between true Mach Number and fuel flow (whicL was measured

by frequency in Hz proportional to weight flow by the flow meter) for the range i
\ of test temperatures is shown in Figure 105. The amount of fuel used at a I

Siven test temperature and Mach number is dependent on the inlet air tempera- :+
Cure. Thus some variation above and below the lines is to be expected.
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2. Panel Fabcication

The single-degree-of-freedom (SDOF) resonator panels consisted of a core,

facing, and back sheet with sidc_;nd end plates. The overall dimensions were
45.7 cm (18 in.) by 11.2 cm (4.4 in.) _or each panel. A sample panel and the

components of the panel are shown in Figures 106 and 107, respectively. The
_ face plates were 0.076-cm (0.03 in.) thick sheet, perforated with 0.159-cm

(1/16 in.) diameter holes in a staggered pattern and varied in density to give

, _ the different porosities. The back and side plates were 0.127 cm (0.05 in.)

i thick. The core material used for the SDOF configurations was honeycombhaving 1.27 cm (I/2 in.) square cell size with 0.0152 cm (0.006 in.) ribbon.

i All panel components were 321SS. The brazing alloy used "Coast metal 50 Powder".

Joining of the face plate and back plate to the core material was accom-

pllshed by brazing in a high vacuum furnace. _le brazing alloy (CM-50 of

_ NI-Si-B) operates at temperatures up to 1033° K to i089° K (1400-1500 ° F)
with good oxidation resistance. The powder was applied to the panel face and

back plates by both flame spraying techniques and broadcasting onto an acrylic

base cementing agent. Both _thods proved to be satisfactory on a laboratory

scale and the method most practical was used in panel production. Stopoff wasapplied at the face and back plate edges and to the low carbon steel plates

used to separate the panels during the brazing process.

The panels were assembled on the vacuum furnace hearth plate with separator

plates on top, bottom, and sandwiched between the panel assemblies. Flat weights

were applied to the top of the stock, and sheet metal heat shields were located

along the side to prevent warpage normally caused by nonunlformheatlng and
• cool/rig. The panels were brazed at 1380 ° K (2025 ° F) l0 minutes under vacuum

equal to better than 5.0 x 10 -4 torr. Furnace leak outgassing rates were less
that 4 microns per hour total prior to applying heat to the furnace. A slow
heating rate of 266° K (20° F) per minute was used to reach the brazing
temperature. After brazing, the parts were vacuum cooled to 1033 ° K (1400° F)

and helium quenched to room temperature. For most of the panel, the braze was

i 100% effective. Capillary action drew brazing allowance up the nodes strength-ening the honeycomb. However, some panels had voids at points near the outer

I edKe probably caused by honeycomb deflection and warpage of the plate. When

necessary, defectl _e panels were rebrazed with extra alloy applied as a slurry.
All of the side plates were TIG tack welded to the face and back plates and

the end plates were completely TIG welded to the face, back, and slde plates.

The two-degree-of-freedom double-sandwlch-type panels were fabricated the
same as described above. The only difference being in the addition of the inner
perforated sheet. The two-degree-of-freedom configurations having a triangular
core were also fabricated the same as previously described. The triangular-
core material was 321SS with a wall thickness of 0.0635 cm (0.02 in.). The

required shape of the core naterial was formed by a bending process. Alternate
walls were perforated with slots using an electronic drill.

13
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3. Test Results

The corrected transmission loss values for all the acoustic test panels as

listed in Table III are given in Figures 108 through 222. Almost all of the

test panel configurations were evaluated at the following test conditions.

• Average duct temperature 589 ° K (600° F)

, • Duct Mach numbers of 0.21, 0.25, 0.30, and 0.45

• Treated length to duct height ratio (L/H) of 4.5 or 2.25

The acoustic duct facility has already been described. The instrumentation

for the acoustic measurements was given in Figure 83. The upstream duct

(forward of the acoustic treatment section) sound pressure level profile

measurements were made with the five-element acoustic probe rake as indicated

in the schematic. A multiplex average sound pressure level was then used to

represent the upstream sound pressure level. A similar acoustic probe rake
was locateo downstream of the acoustic treatment section of the duct. The

multiplex average of the five probes was used to represent the downstream

sound pressure level. The transmission loss (difference between the two sound
pressure values) was then found.

The values were corrected for the noise level difference between the

upstream and downstream probes with a hardwall configuration in the treatment

section of the duct. Thus, all the results as given are suppression values

resulting directly from the insertion of treatment within the treatment
section (corrected transmission loss).

Most of the treatment configurations were tested for a L/H value of 4.5

and at a temperature as predicted for the turbine exhaust environment. Each

¢onflguration was tested at four different gas stream Mach numbers. The results

of these tests were used in the evaluation and the selection of the engine
treatment configurations for both engines A and C. The frequency range from

2,000 Hz to i0,000 Hz was investigated. The specific frequencies at which data

were recorded corresponded to the frequencies at which the Hartmann generator

gave maximum acoustic power. Im some of le figures the test results are

plotted with an open circle symbol rather than the dark circle. The open

symbols are used to indicate that the total suppression at that frequency could
not be measured due to the noise floor existing within the acoustic duct. For

many of the treatment configurations there appears to be one or more inconsis-

tent data points. These for the most part are attributed to data scatter.

A limited number of probe immersions were used. Therefore, at certain

frequencies the full power level may not have been recorded. For these

reasons a best fit curve was drawn through the data thus giving the suppression
for each configuration at each set of conditions.

These test results were examined on a basis of peak suppression, peak
suppression frequencyp and suppression bandwidth as an initial selection
method. These configurations were then evaluated on the basis of their potential
to suppress the turbine spectrum in terms of PNL.

14
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Data from the double sandwich II configuration, which was recommended to

be installed on engine A, are shown in Figures 193-198. The_ results

correspond to an L/H value of 3.0 and were obtained at somewhat different

temperatures and Mach numbers than were used for the majority o: tile tests.

These conditions more closely approximate the measured value_ within the

engine A turbine treatment section.

The effects of panel dept'_, porosity, and Mach number on suppression

, amplitude and peak frequency w_re investigated. These results were also used

in developing the procedure for turbine treatment design as presented in the

section on Treatment Design contained in the Discussion of Results.
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SECTION II

TEST INSTRUMENTATION

A. ACOUSTIC PROBES

The acoustic probes, Figure 223, consisted of a stainless steel waveguide

with a streamlined tip containing four rows of nine holes each such that their

total area approximated that of the w_veguide's internal cross sectional area.

A microphone was located at the opposite end of the probe, which was also

attached to an "infinite" termination (coil of tubing which was long enough

so that reflections from its end would be negligible) at the microphone posi-

tion. The total length of the probes from sensing tip to microphone was approxi-

mately 1.0 meter.

It was suspected that airflow at elevated temperatures over the tip

of a waveguide acoustic probe might alter the acoustic impedance of the

probe opening and therebylchange the effective probe loss relative to a no
flow condition. It was already known from Olson(5) , that an increased temp-

erature in the probe tube would result in increased viscous losses. An example

of this effect is shown in Figure 224 for 533 ° K (500 ° F) and 811 ° K (I000 ° F).

Up to a 3 dB increase in probe loss at i0 kHz is predicted. Of course, in

both the test facility and engine tests, the internal temperature of the probe

will not be constant but will vary from the gas temperature at the tip of

the probe to a much lower value at the microphone. The latter temperature

will depend on the ambient temperature, the probe length, and the cooling

effect of flow over the external probe stem. For these reasons, the high tempera-

ture application was not expected to produce additional viscous losses in excess .

of 1 dB. To investigate the effects of high temperature airflow over the

probe tip, an acoustic probe calibration facility, Figure 225, was constructed.

The facility consisted of a 0.305-m (12 in.) long, 0.0254-m (i in.)

diameter cylindrical test section inserte_ between muffler sections. The

upstream muffler section was connected to a plenum containing wire mesh

screens as flow straighteners. This in turn was connected to a hydrogen

burner and a shop air supply. The test section contained provisions for

inserting a probe so that the tip could be positioned along the axis of the

test section. In addition, a 0.64 cm (1/4 in.) microphone could be mounted

at the plane of the openings of the probc tip. The external portion of _he

microphone was water cooled. The test section was modified after completlon

of the first series of tests to reduce the background noise and thereby

increase the slgnal/nolse ratio. This modification consisted of welding a

hollow water-cooled plate lengthwise to the test section so that the cross sec-

tion presented a flat surface on which the microphone could be mounted. The

plate also contained provision for mounting the test probe while maintaining
a smooth internal surface.

An Altec 290D acoustic driver was located upstream of the test section

and was used to generate a sine wave acoustic signal. The difference between

the signal amplitude measured at the flush-mounted microphone and at the probe-

mounted microphone, after correcting for microphone sensitivity, is defined as

probe loss.

17
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Velocity profiles, turbulence measurements, and temperature profiles were

made in the test section. Shown in Figure 226 are the normalized velocity and

turbulence measurements at midstream for M = 0.39. Normalized temperature
profiles are shown in Figure 227 at midstream temperatures of 533° K (500° F)

and 811° K (i000° F). The normalized temperatures are plotted in degrees
Rankine. All the above mentioned measurements were made with the acoustic

probe removed from the test section. These measurements were not repeated
, using the modified test section. The only change anticipated would be reduced

turbulence intensity.

Calibration tests were conducted in the facility using the original

test section with no airflow and T = 288° K (60° F); with M = 0.40, 0.30, and
0.20, r = 288 ° K (60°); M = 0.40, r = 533 ° K (500° F); and M z 0.40, T = 811 ° K

(i000° F).

Shown in Figure 228 is the SPL measured in the test section by the reference

microphone with a probe present. Measurements were made on-line with a B&K 6% |_

analyzer which was used to analyze individual frequency bands. It can be shown

that the noise peaks are not due to vortex shedding since they are independent

of Math number. At Math = 0.40, the vortex shedding frequency should be 4.35

kHz. The second peak appears to be a phenomena of transverse duct resonance

' which occurs at f = nc/2D _ 6.78 kHz. Here, n is an integer, c is the velocity
of sound, and D is the diameter of the test section. The calibration signal

was at least 6 dB above these background levels.

The measured probe response at M = 0.0 - 0.40 is shown in Figure 229. Prcbe

losses appear to increase slightly with increasing frequency due to the
presence of airflow. These results, however, were not verified in modified

test section calibrations (Figure 230) which shows no effect due to airflow. "_

r

The effect of increasing temperature at M = 0.40 is seen in Figure 231.

Data at 533 ° K (500° F) and 811° K (i000 ° F), recorded in the original facility,
is plotted relative to results found with no flow. No distinct trend is seen.

U

These curves were derived from the average of two test runs. Repeatability

was approximately _ 1 dB up to 4 kHz and _ 1.5 dB at 6 kHz. Data were taken
only at 500 Hz intervals due to time limitations imposed for temperature stabillza-

tlon while using individual bottles of hydrogen as a fuel.

The repeat_ lity problem of the flow data is at least in part due to
the unsteadiness of both the reference microphone and probe microphone outputs.

, Even wlth a 6% bandwidth filter tuned to the signal frequency and a signal to
nnlse ratio in excess of 6 dB, each microphone output typically fluctuated +

1.5 dB. Evidently, turbulence in the flow changed the impedance seen by the

&:oustic driver, thereby affecti_ its output. An attempt was made to equalize

_ pressure on the driver diaphragm to increase its efficiency by installing a short
_ section of tubing from the back of the driver diaphragm to the section of pipe

ahead of the driver. This, however, resulted in diaphragm failure due to water
condensing on the diaphragm and coil.

!_ An electronic counter was used to set each frequency fo_ _ompariaon
between repeat runs. However, temperature variations between runs had

18
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the effect of altering the signal wavelength. As can be seen in Figure 229,

there is an oscillation superimposed on the frequency response curves. This

is a function of the length of the probe between tip and microphone block

and also the wavelength, and is a result of the discontinuity at the

microphone block. The tubing had a circular cross section whereas the block
had a square internal cross section to permit installation of a microphone on

the flat wall. Any temperature change, therefore, will result in a frequency °

shift of the oscillation pattern. The effect on probe loss computations would

be small at low frequencies; at high frequencies, however, the accuracy of the
calibration is limited to the peak-to-peak amplitude of this oscillation.

The test data show that the airflow does not significantly affect the

value of probe loss and that temperatures at the probe tip have no effect

greater than the internal reflection effect. Therefore, probe calibrations

at ambient pressure and temperature in the absence of airflow can be assumed

to apply at duct conditions up to M = 0.40 and T = 811° K (i000° F). The

probe loss values used in the engine data reduction are shown in Figure 232.
This was based on calibration runs for each ot the five probes and was fitted

to the data to minimize the oscillation amplitude since this is temperature

dependent.

The power level is calculated from probe data by logarithmically summing
the levels at each immersion (after correcting for probe losses and applying

a p(wer factor correction based on the duct area).

(I n )IS ]
PWL = og E PLi + Probe Loss + I0 log Ai (7)

i = 1

where n = number of immersions

2

Ai = area of each annular area in meters

B. DIRECTIONAL ACOUSTIC ARRAY

The directional acoustic brGadside microphone arra>, Figure 233, consists

of a rigid beam containing 14 equally spaced Hewlett-Packard microphones, Model
14109B, and associated shading and summing elctronics. b

It operates on the principle of unequal path length between the source

and each microphone element. Microphones and electronics were therefore

phase matched. In designing the broadside microphone array several objectives
needed to be satisfied. These included frequency range, beam width, and the

ability to operate at a specific distance from the source. The numbez of

elements and the spacing between them are the principle design parmeters, and
these in turn are limited by economic and size limitations. The physical size of

the array was the first constraint imposed. This in turn sets the lowest fre-

quency, whereas the number of elements (an economic constraint) sets the upper

\
\
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!

frequency limit. It was found based on Albers, (6) that an array of 14 elements |

with a spacing of 0.35-m (12 in.) between them would result in a beamwidth of |
approximately + i-i/2 ° at 2000 Hz for a source-receiver distance of 30.48-m !
(i00 ft) with _he second major lobe occuring at approximately 33 degrees from |

the array axis. _

The off-axis rejection offered by a uniform array is not adequate, due to

, the anticipated presence of _nterferring noise sources of similar or greater
amplitude than the source on which the array is trained. The sensitivity of the !

side lobes was, therefore, controlled by a process called "shading". In the

shaded broadside (source direction normal to the line of the microphone elenents)
array all the microphones are operated in phase, but their sensitivities are

varied. The Dolph-Cheb_scheff shading technique was used. This method described
by Albers (6) and Dolph ( ) optimizes the array directivity pattern so that for
any minor lobe level relative to the major lobe level the minimum beam width is

obtained. This system requirea adjusting the gains of the individual array ele-
ments before summation. The physical placement of the elements in an unshaded f

array will yield the same major lobe pattern in a Dolph-Chebyscheff array with

only slightly increased beam width.

The electronic amplifier assembly was designed to sum the outputs of the

• 14 array elements both uniformly and with Dolph-Chebyscheff gain weighting
: (with side lobe suppression of 40 dB). This unit also contained the 200-volt

supply for the condenser microphones. Gain weighting is accomplished by switch-

able voltage dividers at the input of each channel. The cannels are then summed

by four Analog Devices No. 144A Operational Amplifiers. The outputs of these

summing amplifiers are then combined to provide a single summed output for all >
14 channels.

This resulted in a highly directional microphone system emcompassing!
a frequency range from 1.25 kHz to 6.3 kHz, and a narrow beam width and sufficient

included angle between on-axis and off-axis lobes to be a,le to separate closely

spaced sources. The array characteristics (based on an ortdoor calibration with ,_a single acoustic driver as a source) extended from 1.25 k!Lz to 6.3 kHz are shown
in Figure 234. The peak at zero degrees represents the on-axis sensitivity of ._
the array. This falls off to the horizontal line which represents the effective
side lobe suppression. Additional peaks represents off-axis major lobe sensiti- i
_ity. The off-axls sensitivity is the undesirable result of an array design
exhlb_cing large side lobe suppression and a narrow beam pattern. The side lobe

sensitivity, as measured, is greater than the deslgn goal of -40 dB relative
to the on-axis sensitivity. This increased sensitivity arises from atmospheric

cc._ditions which cause the acoustic slgnal to arrive at each microphone element

at a less than optimum phase relationship. The side lobes, off-axis major

lobes, atmospheric disturbances, ground reflection, large source size (as opposed

to the optimum point source), the tolerance involved in placing the microphone
elements on the proper radius of curvature, and the tolerance of each microphone

sensitivity, each provide for potential system inaccuracy.

C. NEAR FIELD MICROPHONES

An array of microphones mounted in close to the sources can be used to

help pinpoint the source of an acoustic slgnal. It w_11 be of no help in calcu-

lating power level due to the close proximity to the source.
20
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D. FARFIELD MICROPHONES

An array of farfield microphones is tne accepted procedure for determining

the sound pressure level and power level of a source. The array was comprised

of 16 B&K Model 4133 microphones located at angles measured from the inlet

of 10 degrees through 160 degrees ih i0 degree increments on a 45.8m (150 ft)

arc. A height of 12.2 in. (40 ft) was chosen in order to reduce the effect of

ground reflections in the frequency range of interest. °

e The ground surface consists of crushed gravel with approximately 5 cm (2 in.)

being the largest dimension. It extended well beyond the microphone arc and up

to the concrete engine pad.

I
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14% Porosity _, :r-r-r-r--F-]SDOF No. 10 .019m (3/,1") :

'
Figure 5. High Temperature Test Panels, Single-Degree-of-Freedom

Resonators, .0127m (1/2") Square Cell Honeycomb Core.
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Figure 6. High Temperature Te_,t Panels.
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47.Poros ity

I--I-T-1--I--I"-SDOF #22 .0032m (1/8")
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47.Porosity, .00025m (.Ol")Thick

s_ _23 j .oo_(_/4")
7Z Poros:LCy, .00025m (,01") Thick

V-i-l-T-i-qSDOF 024 .0063m (1/4")
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Figure 7. High Temperature Test Panels.
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(Hole Diameter .0016m (.0625")

(Faceplate Thickness .0008m (.030")

(Core Wall Thickness .0005m (.020")
i

7% Porosity

OO iIdDOF I I/ .006_;m (1/4")_k

77. Porosity _

4% Poroslty

NDOF II .0063m (1/4")

___ !
7% Porosity .!

4_eoro--tty i-f-
MDOF llI .0127m (i12")

/ \ / ___

Figure 10. High Temperature Test Panels Multiple Degree of Freedom
_ Resonators.
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(Hole Diameter .0016m (.0625")

(Faceplate & Core Plate Thickness .008m (.03"_

DOUBLE SANDWICH II

7% Porosity

.0063m (1/4") _.0127m
_(1/2"

.0063m (1/4")_ 1

DOUBLE SANDWICH III

7?0 Poros ity 4% Poros ity

• i.0127m (1/2") (1.0") "

, _

Figure 11. High Temperature Test Panels Double Layer Honeycomb
Resonators.
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(Molten Homogenous Glass)

40?. Open,Hole Dia..0005m (.02")

liltIJIJllII1fIIIIlIfrlrlJllCERVIT i .0127m (112")
_#_

40?. Open. Hole Dia..OO05,l _.02")

i

20% Open, Hole Dia..0008m (.03")

II[llIlillIllIIIfll11IIIIiiiCERVIT 4 .0063m (1/4")
..t.

Figure 12. High Temperature Test Panels Non-Metallic Configurations
Cervit 126.
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Figure 13. High Temperature Cera£elt Test Panel.
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Figure 14. Impedance Components of SDOF Panel No. 1
at Ambient Condtttonm.
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Figure 15. Calculated Reactance of SDOF Panel

No. 1 at T_rblne Temperatures.
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;'lgure 16. Impedance Components of SDOF Panel No. 2
at Amblent Conditions.
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Figure 17. Calculated Reactance of SDOF Panel

No. 2 at Turbine Temperatures.
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Figure 18. Impedance Components of SDOF Panel No. 3

at Ambient Conditions.
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Figure 19. Calculated Reactance of SDOF Panel

No. 3 at Turbine Temperatures.
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Figure 20. Impedance Components of SDOF Panel No. 4
at Ambient Conditions.
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Figure 21. Calculated Reactance of SDOF Panel

No. 4 at Turbine Temperatures.
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Figure 22. Impedance Components of SDOF Panel No. 5

at Ambient Conditions. _
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Figure 23. Calculated Reactance of SDOF Panel
No. 5 at Turbine Temperatures.

48

1974011287-062



4
! I

ConfiK. LrawinK

Figure 24. Impedance Components of SDOF Panel No. 8
at Ambient Conditions.

47

1974011287-063



Config o ,Drawing

i

-4 _

M -- 0

--- -------" M _ 0.3

"rempcraturc'- 5149 _ K (600 ° F)

-6 I I I I 1 1
2 3 ,1 5 6 7 8 9 10

F r(tqu_ncy, KHz

Figure 25. Calculated Reactance of SDOF Panel
No. 8 at Turbine Temperatures.

48

1974011287-064



I

I

I
"" ! l .... T '-

C0nfig._DrawinK
14% Porosity

r--,...._-_-.-t-- -F
i

2 -t i i I .otgm _
____ .... L.......... __t_. I /i

_ __o__o o___.J_...."_Lo

-2 _-.Z::_ " t

0 R/:oc o

/X jX/0oC°

-4 Calculated M = 0
©r

Measured M = 0

Temperature = 294 ° K (70 ° F)

o I I
1 2 3 4 5 6 7 8 9 10

Frequency, Kltz

Figure 26. Impedance Components of SDOF Panel No. 10
at Ambient Conditions.
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Figure 27. Calculated Reactance of SDOF Panel
No. 10 at Turbine Temperatures.
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Figure 31. Calculated Reactance of SDOF Panel

No. 12 at Turbine Temperatures.
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Figure 34. Impedance Components of SDOF Panel No. 14
at Ambient Conditions.
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Figure 35. Calculated Reactance of SDOF Panel

No. 14 at Turbine Temperatures.
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Figure 38. Reactance o _ SDOF Panel No. 17 at
: Ambient Condi +ions.
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Figure 39. Calculated Impedance Components of SDOF

Panel No. 17 at Turbine Temperatures.
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Figure 40. Impedance Components of SDOF Panel No. 18
at Ambient Conditions.
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Figure 41. Calculated Reactance o1 SDOF Panel

No. 18 at Turbine Temperatures.
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Figure 42. Impedance Components of SDOF Panel
No. 19 at Ambient Conditions.
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Flgure 44. .mpedtnce Components of SDOF Panel No.
20 a_ Amblent Conditions.
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Figure 45. Calculated Reactance of SDOF Panel

No. 20 at Turbine Temperatures.
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Figure 46. Impedance Components of SBOF Panel
No. 21 at Ambient Conditions.
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Figure 47. Calculated Reactance of SDOF Panel
No. 21 at Turbine Temperatures.

7O

m

1974011287-086



4- Confi_. Drawing /I !i
I

-- .002_2m t I4_

' ' I/. _L. I ,

° t/,t/_ ,

° / I

/ _

/ M = 0

,---._--- M = 0.3 _**

Tempera ure = 29.t ° K (70 ° F) 'i

-6 / I I 1 z _
¢

i 2 3 4 5 g 7 8 9 i0

Frequency, KHz
/¢

Figure 48. Calculated Reactance of SDOF Panel No. 22
at Ambient Conditions.
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Figure 49. Calculated Reactance of SDOF Panel

No. 22 at Turbine Temperatures.
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Figure 50. Calculated Reactance of SDOF Panel No. 23
_t Ambient Conditions.
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Figure 51. Calculated Reactance of SDOF Panel

No. 23 at Turbine Temperatures.
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Fi_re 52. Calculated Reactance of S_F Panel No. 24

at Ambient Conditions.
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Figure 53. Calculated Reactance of SDOF Panel No.
24 at Turbine Temperatures.
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Ambient Conditions.
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Figure 61. Calculated Reactance of Panel MDOF III

with High Damping at Ambient Conditions.
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Figure 62. Calculated Reactance of Panel MDOF III
with Low Damping at Turbine Temperatures.
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Figure 64. Calculated Reactanc_ of Double Sandwich II with i

High Damping at Turbine Temperatures.
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Figure 69. Impedance Components of CER-VIT No. 1
(40_ Porosity Facing, 0.127m (1/2 inch)
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Figure 70. Impedance Components of CER-VIT No. 2
(40_ Porosity Facing, .0063m (1/4 inch)
Thick).
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Figure 71. Impedance CoNponents of CER-VIT No.. 3

(20_ Porosity Facing, .127m (1/2 inch)
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Figure 72. Impedance Components of CER-VIT No. 4
(20% Porosity Facing, .0063m (1/4 inch)
Thlck).

L

I 95
i

1

1974011287-111



4 t I _ l
i 0 R/0oC o0 i

0 {5 jX/_oe°0 0 0
001 I

2 0
0

0

= 0

-4

-6

1 2 3 -t 5 6 7 8 9 10

Frequency, KHz

Figure 73. Impedance Components of Cerafelt (22.5%
Porosity Facing, .038m (1.5 inch) Thick).
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Figure 76. DC Flow Resistance Vs. Temperature for Perforated Plates.
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Figure 82. Hartmann Noise Generator.
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Figure 86. Summary of Required Air Mass Flow Rate Vs. Actual Mach Number.
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Figure 89. Thermocouple Radiation Correction.
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F_gure 90. Temperature Relat_onship of Probes at Mach No. = 0.20.
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Figure 93. Temperature Relationship of Probes at Mach No. = 0.40.
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Figure 9_. Temperature Relationship of Probes at Mach No. = 0,45.
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Figure 95. Summary of Probe Temperature Relationshipq.
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Figure 98. Mach No. Relationship at 589 _ K (600 _ F).
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Figure 99. Mach No. Relationship at 753" K (850" F).
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Figure 100. Mach No. Relationship at 811 ° K (1000 ° F).
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Figure 234. Beam Patterns of Directional Acoustic Array.
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NOMENCLATURE LIST

B & K Bruel and KJaer Precision Instruments

BPF Blade Passing Frequency

Broadband I/3-Octave Bano SPL minus pure tone component
Noise

#

CTL Corrected Transmission Loss, dB

2
dB Decibel, re 0.0002 dynes/cm

g Acceleration of Gravity

H/I ° Duct Height/Wavelength of Sound in Stationary Medium

Hz Hertz (cycles per second)

L/H Length to Duct Height Ratio

LPT Low Pressure Turbine

M Duct Mach Number

Nfc Fan Speed, corrected to standard day

MDOF Multiple-Degree-of-Freedom

P Ambient Pressure
o

PNL Perceived Noise Level; at calculated annoyance weighted
sound level, PNdB

Porosity (o) Percent Open Area (perforated face plate)

PWL Power Level; re 10-13 watts

QEP Quiet Engine Program

R Universal Gas Constant

rpm Revolutions Per Minute

SDO¥ Single-Degree-of-Freedom

Standard Day 288 ° K (59 ° F) Temperature and 70Z Relative Humidity

SPL Sound Pressure Level; a level of sound pressure that occurs in
a specified frequency range at any instant of time
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NOMENCLATURE LIST - Concluded

T Ambient Dry Bulb Temperature,
O

£ t + 0.85d

t Face Plate Thickness

d Ho]e Diameter

f Frequency, Hz

V V_ fume

p Medium Density

¢ Sonic Velocity

A Area

y Ratio of Specific Heat at Constant Pressure to

W Mass Fiow
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