
AN

NASA TECHNICAL NOTE NASA TN D-7407

I

(1 ASA-TN-D -- 7 4 0 7 ) EJ iIGULA AD 4'
QUADtLATEpA PtA2E iAiGULA AND-PAABEhDING FINITE2 V 74-19545EL (NASA) 7 4P HC $3.75 CSCL 20K

Uncias

H1/32 32574

NEW TRIANGULAR AND QUADRILATERAL
PLATE-BENDING FINITE ELEMENTS

by R. Narayanaswami

Langley Research Center

Hampton, Va. 23665

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION * WASHINGTON, D. C. * APRIL 1974

https://ntrs.nasa.gov/search.jsp?R=19740011432 2020-03-23T11:49:45+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42897785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA TN D-7407
4. Title and Subtitle 5. Report Date

NEW TRIANGULAR AND QUADRILATERAL PLATE-BENDING April 1974

FINITE ELEMENTS 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

R. Narayanaswami L-9180
10. Work Unit No.

9. Performing Organization Name and Address 501-22-01-01
NASA Langley Research Center 11. Contract or Grant No.
Hampton, Va. 23665

13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Technical Note

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546

15. Supplementary Notes

Author is an NRC-NASA Resident Research Associate.

16. Abstract

A new nonconforming plate-bending finite element of triangular shape and associated

quadrilateral elements are developed. The transverse displacement is approximated within
the element by a quintic polynomial. The formulation takes into account the effects of
transverse shear deformation. Results of the static and dynamic analysis of a square plate,
with edges simply supported or clamped, are compared with exact solutions. Good accuracy
is obtained in all calculations.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Plate bending Square plate Unclassified - Unlimited
Finite element Free vibrations
Triangular element
Quadrilateral element
Transverse shear strains

STAR Category 32
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*

Unclassified Unclassified 72 $3.75

For sale by the National Technical Information Service, Springfield, Virginia 22151

1*



PRECEDING PAGE BLANK NOT FILMED

CONTENTS

SUM M ARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

INTRODUCTION ............. .... ....... .. ...... .... . . 1

SYMBOLS ......................................... 3

DERIVATION OF ELEMENT PROPERTIES ....................... 6

Triangular Element .......... ......................... 7

Element geometry .................................. 7

Displacement field .... ..... ..... ........ .... ... ... .. 8

Elastic relationships ... ........ .............. ... ... .. 11

Local-global transformations ................... ......... 13

Stiffness matrix ................................. 15

Mass matrix ..................................... 18

Consistent load vector ..................... ........... 19

Quadrilateral Element ................................. 19

FORMULATION AND SOLUTION OF EQUATIONS ................... . 21

RESULTS AND DISCUSSION .................... ........... 21

Static Analysis of a Square Plate ..................... ....... 22

Free Vibrations of a Square Plate ........................... 23

CONCLUDING REMARKS ........................ ......... 24

APPENDIX A - DERIVATION OF RELATION BETWEEN TRANSVERSE SHEAR

STRAIN AND COEFFICIENTS OF POLYNOMIAL FOR TRANSVERSE

DISPLACEMENT ..................................... 26

APPENDIX B - EXISTENCE OF INVERSE OF MATRIX [R] . . . . . . . . . . . . . . 35

APPENDIX C - NONZERO ELEMENTS OF MATRICES [B2 AND [B3] . . . . . . . . .37

APPENDIX D - NUMERICAL INTEGRATION FORMULAS . .............. 41

APPENDIX E - STATIC CONDENSATION ....................... 42

APPENDIX F - MEDIAN PLANE FOR QUADRILATERAL ELEMENT . ........ 45

APPENDIX G - REDUCTION OF MASS MATRIX FOR QUADRILATERAL

ELEMENT IN DYNAMIC ANALYSIS .......................... 47

APPENDIX H - EFFECT OF POISSON'S RATIO ON FINITE ELEMENT

APPROXIMATIONS .................... I............... 50

iii



REFERENCES ................................... 61

TABLES .................................................. 62

FIGURES ............... ........................ 65

iv



NEW TRIANGULAR AND QUADRILATERAL

PLATE-BENDING FINITE ELEMENTS

By R. Narayanaswami*

Langley Research Center

SUMMARY

A new nonconforming plate-bending finite element of triangular shape is developed.

The element incorporates 18 degrees of freedom: ,namely, the transverse displacement

and rotations of the neutral surface at each vertex and at the midpoints of the sides. The

formulation takes into account the effects of transverse shear deformation. The trans-

verse displacement is approximated within the element by a quintic polynomial; thus, the

bending strains vary cubically and the transverse shear strains vary quadratically.

Two associated quadrilateral elements formed by four triangular elements are also

presented. The resulting internal grid points of the quadrilateral are eliminated by static

condensation.

Results of the static and dynamic analysis of a square plate, with edges simply sup-

ported or clamped, are compared with exact solutions. Good accuracy is obtained in all

calculations.

INTRODUCTION

The finite element method has proved to be a powerful tool for analysis of almost

all problems of structural engineering. The analysis of plate-bending problems by using

finite elements is important not only because it enables plates of any shape (and any sup-

port conditions) to be analyzed accurately but also because development of curved elements

for shallow shell analysis depends on availability of satisfactory plate-bending elements.

Plate-bending finite elements are classified as conforming or nonconforming depend-

ing on whether or not the transverse displacement and slope normal to an edge are con-

tinuous between elements sharing the common edge. Some of the early plate-bending finite

elements were developed by Clough and Tocher (ref. 1) and by Bazeley et al. (ref. 2). The

conforming elements presented therein allow only a linear variation of slope normal to an

edge and have been found to be overly stiff, whereas the nonconforming element given in

reference 2 uses a cubic polynomial for transverse displacement and is not of very high

accuracy.

*NRC-NASA Resident Research Associate.
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Improvements to these elements have been made by using higher degree polynomials

for transverse displacements; indeed elements of very high accuracy have been reported
by Argyris et al. (ref. 3), Bell (ref. 4), and Cowper et al. (ref. 5) using quintic polynomials
for the displacement field. But these elements have strains, curvatures, and/or higher
order derivatives of displacements as grid point degrees of freedom which lead to an

inconsistency when nonhomogeneous plates are modeled. The inconsistency is that the

continuity of strains and curvatures implied by their use as degrees of freedom at grid
points is violated wherever concentrated loads, abrupt changes in slope, abrupt changes
in thickness, or connections to other structures occur. In short, the use of elements that
assume continuity of strains and curvatures is valid only for regions where discontinuities
do not occur. Further, the existence of higher order derivatives makes it difficult to

impose boundary conditions and, indeed, the simple interpretation of energy derivatives

as "nodal forces" disappears (ref. 6). Bell has also developed another element in refer-

ence 4, designated "T-15", which has only displacements and rotations as degrees of free-
dom. But element T-15 has a major drawback in that not all grid points of the element
have the same degrees of freedom; consequently, it is difficult to consider connections of
this element with other finite elements. Thus, the practical use of element T-15 in gen-
eral purpose programs is severely limited.

The purpose of the present work is to develop a new accurate plate-bending finite
element that has the advantages of the accuracy associated with a high order displacement
polynomial but does not have the disadvantages just discussed and therefore will be suit-
able for inclusion in general purpose computer programs.

In this paper, a triangular element and associated quadrilateral elements are
described in which the grid point degrees of freedom consist only of displacements and
rotations; the elements use a quintic polynomial for lateral displacement. The triangular
element has 18 degrees of freedom: namely, the transverse displacement and two rota-
tions at each vertex and at the midpoints of the sides. The quadrilateral elements have
24 degrees of freedom and are formed by assembling four triangular elements.

None of the elements discussed in references 1 to 5 possess the property of trans-
verse shear flexibility. This property has been taken into account in the present element
by a procedure based on that used in NASTRAN (ref. 7). The components of transverse
shear strain are quadratic functions of position. Convergence to the limiting case of zero
transverse shear strain is uniform.

Two problems of plate bending are utilized to evaluate the elements, namely, the
static and dynamic analysis of a square plate with edges (1) simply supported and
(2) clamped. The results of calculations are compared with analytical solutions using
classical plate theory and with other published finite element solutions. Good agreement
is obtained with these elements for practical mesh subdivisions.
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SYMBOLS

A11,A12, .. elements of matrix relating transverse shear strains to derivatives of

curvatures

(a) column vector of coefficients of transverse displacement field (general-

ized coordinates)

a,b,c dimensions of triangular element in local coordinate system (fig. 1)

al,a2 ,. . .,a2 1  coefficients of polynomial for transverse displacement field

[B ] B2B[ B3] matrices relating strains and generalized displacements

bl,b2 ,. . .,b 6  coefficients of polynomial expression of yxz

LcJ row vector relating transverse displacement to generalized displacement

c1,c 2 ,. . .,c 6  coefficients of polynomial expression of yyz

Et
3

D plate flexural rigidity,
12(1- v2)

[D] matrix relating bending stress resultants and bending strains

[Dm] material elastic modulus matrix

E elastic modulus

G shear modulus

[G] matrix relating transverse shear forces and transverse shear strains

Go matrix relating interior grid point displacement to exterior grid point
displacements of quadrilateral element

[] matrix relating transverse shear strains and transverse shear forces

3



[K] stiffness matrix

L length of side of plate

[M] consistent mass matrix

(M) vector of bending and twisting moments per unit length

Mx,MyMxy bending and twisting moments per unit length

N number of elements per side of plate

(P) consistent load vector

IQ] matrix relating triangular element displacement vector and vector of polyno-

mial coefficients

q distributed loading

R] augmented matrix of [Q] and constraint relations

[S] matrix relating vector of polynomial coefficients and triangular element

displacement vector

T kinetic energy

[T 1 ,[T2],[T3 ] transformation matrices

t thickness of plate

t effective thickness for transverse shear

U strain energy

U matrix of transformation of strain components

(V) vector of transverse shear forces per unit length

4



Vx,Vy transverse shear forces per unit length

w lateral displacement

wc  central displacement of square plate

X,Y,Z coordinate axes in the global system

x,y,z coordinate axes in the local system

a rotation of xz-plane at each grid point

Protation of yz-plane at each grid point

(Y) vector of transverse shear strains

Yxz,yz transverse shear strains

(6), () column vector of triangular element displacement in local and global system,

respectively

(a) augmented vector of grid point displacements

(si) triangular element displacement vector in local coordinate system at any

grid point i

ptw2 L 4

X nondimensional parameter of eigenvalues,
D

[x] direction cosine matrix of quadrilateral median plane

v Poisson's ratio

p mass density of plate material

inclination of material orientation axis to x-axis (see fig. 1)

displacement vector of quadrilateral element

(x) vector of bending strains
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XxXyXxy bending strains

w circular frequency of plate vibration

Subscripts:

b boundary

e element

g global

gen generalized

i interior

Superscripts:

T transpose of matrix

-1 inverse

DERIVATION OF ELEMENT PROPERTIES

In this section, the derivations of the stiffness matrix, consistent load vector, and
consistent mass matrix of the elements are given. The procedure for the derivation is
well documented in textbooks (see, for example, ref. 6) so that only essential details will
be presented herein. The development of the triangular element follows closely that of
Cowper et al. (ref. 5); the quadrilateral element is assembled from four triangular
elements.

The triangular element has 18 degrees of freedom: namely, the lateral displace-
ment w and rotations a and 0 at each of the six grid points. Three additional con-
ditions are introduced by the requirement that the rotation about each edget (also called
edge rotation) varies cubically along each edge. This requirement establishes three
constraint equations between the coefficients of the polynomial for the w displacement.
These equations together with the 18 relations between the grid point degrees of freedom
and the polynomial coefficients serve to evaluate uniquely the coefficients a1 to a2 1.
The variation of deflection along any edge is a quintic polynomial in the edgewise coordi-
nate; the six coefficients of this polynomial are uniquely determined by deflection and

tFor the case of transverse shear strain varying within the element by a cubic or
lesser degree function of position, the same three constraint equations will result by
considering slope normal to each edge instead of rotation about each edge.
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edgewise slope at the three grid points of the edge. Displacenents are thus continuous

between two elements that have a common edge. The rotation about each edge is con-

strained to vary cubically; however, since the rotations are defined only at three points

along an edge, there is no rotation continuity between two elements that have a common

edge. The element thus belongs to the class of nonconforming elements.

The quadrilateral element is formed from four triangular elements and has 24 deg-

rees of freedom: namely, the transverse displacement and two rotations at each corner

and at the midpoints of the sides. The stiffness and load matrices of the separate trian-

gles are evaluated and added by the direct stiffness technique to form the respective

matrices for the quadrilateral. The degrees of freedom associated with the internal grid

points are then eliminated by static condensation.

Triangular Element

Element geometry.- Rectangular Cartesian coordinates are used in the formulation.

An arbitrary triangular element is shown in figure 1. For the triangular element, X, Y,

and Z are the global coordinates and x, y, and z are the local coordinates. The grid

points of the element are numbered in counterclockwise direction as shown in the figure.

The following relationships between the dimensions of the triangular element a, b, and

c, the angle of inclination 8 between the X and x axes, and the coordinates of the

vertices of the element can be easily derived from figure 1:

X3-X1 3 - 1
cos 08 sin 8 = (1)

r r

a=(X3 - X5)cos 8 - y5 - Y 3)sin 0= (X 3  5)3 - 1 ) +(Y 3 Y5)(Y 3  Y (2)

(X5 - x 1) (X3-X1)+ (Y5 1) ( 3 -Y1
b = (3)r

S(X - x1 Y - 1) (Y3 YON - X)1 .
r

where

r = [(X3 .- X3 - (5)

7



Displacement field.- The deflection w(x,y) within the triangular element is

assumed to vary as a quintic polynomial in the local coordinates, that is,

w(x,y) = a 1 + a 2 x + a 3 y + a4x2 + a 5 xy + a 6 y2 + a7x3 + a 8 x2y + a 9 xy2 + a 0oy3

4 3 22 3 4 5 4 32+ a11x + al 2 x y + a13x y + a 14xy3 + a1 5y + a 1 6x + a1 7x y + al 8x y

+ al9x2y3 + a20xy 4 + a 2 1y
5  (6)

There are 21 independent coefficients, a 1 to a 2 1 . These are evaluated by the following

procedure.

The element has 18 degrees of freedom: namely, lateral displacement w in the

z-direction, rotation a about the x-axis, and rotation 3 about the y-axis at each of the
six grid points. The rotations a and P are obtained from the definitions of transverse
shear strains yxz and yz' that is,

aw aw
Yxz ax yz (7)y

It is shown in appendix A that yxz and Yyz' and hence a and /, at any grid point can
be expressed in terms of the coefficients a 1 to a 2 1 . Thus, 18 equations relating w,
a, and p at the grid points to the 21 coefficients are obtained. Three additional rela-
tions are required so that the 21 coefficients can be uniquely determined. These relations
are obtained by imposing the condition that the edge rotation varies cubically along each
edge. It is clear that these three constraint equations involve only the coefficients of the
fifth degree terms in equation (6), since the lower degree terms satisfy the condition of

cubic edge rotation automatically. Moreover, the condition depends only on the orienta-
tion of an edge. Along the edge defined by grid points 1 and 3 (where y = 0), the condi-
tion of cubic edge rotation requires that

a17 = 0 (8)

Along the edge defined by grid points 1 and 5 (inclined at angle 6 to the x-axis), the edge
rotation re is given by

8



re = P sin 6 + a cos 6 = - 5a 16x4 + 4a 1 7x3y + 3a 18x2y2 + 2al 9xy3 + a20Y4)sin 6

+ (a 17 x4 + 2a 18x 3y + 3a 19x 2y2 + 4a 2 0xy3 + 5a 2 1y4)cos 6 +. . . (9)

where the dots indicate terms of third or lower degree. Also, along this edge,

x = s cos 6 y = s sin 6 (10)

where s is the distance along the edge and

cos 6 =b/ b2 2 sin 6 = c/b c2 (11)

By substituting x and y from equations (10) and cos 6 and sin 6 from equa-

tions (11) into equation (9) and rearranging (so that the leading term is positive), the con-

dition for cubic variation of rotation about edge 1-5 is

5b 4 ca 16 + (4b 3 c2 - b5)a 17 + (3b 2 c3 - 2b 4 c)a 18 + (2bc 4 - 3b 3 c2)a 19

+ (c 5 - 4b2c 3 )a 2 0 - 5bc 4 a21 = 0 (12)

Similarly, the condition for cubic variation of the rotation about the edge defined by grid

points 3 and 5 (fig. 1) can be written as

5a 4 ca 16 + (-4a 3 c2 + a5)a 17 + (3a 2 c3 - 2a 4 c)a 18 + (-2ac 4 + 3a3 c2 )a 19

+ (c 5 - 4a 2 c3)a 2 0 + 5ac 4 a2 1 = 0 (13)

The 18 relations between grid point displacements and the coefficients of the polyno-

mial in equation (6) are written as

6 = [Q] a) (14)

9



where (6) is the vector of grid point displacements, [Q] is the 18 x 21 matrix involving

the coordinates of grid points substituted into the function w (eq. (6)) and the appropri-

ate expressions of a and p derived in detail later, and (a) is the column vector of

coefficients a1 to a2 1 . The [Q] matrix is now augmented by the three constraint equa-

tions (8), (12), and (13) to form a new 21 x 21 matrix [R] in the following equation:

a) = [R] a) (15)

where

0
6a) = o

0

For use in the evaluation of the stiffness matrix, (a) needs to be expressed in terms of

(6a) and, hence, it has to be established that the inverse of matrix [R] exists. The non-

singularity of such a matrix [R] for the T-15 and T-21 elements of Bell (ref. 4) follows

from the completeness of the polynomials for w. Cowper et al. (ref. 5) give an explicit
expression for the determinant of such a matrix and show that the matrix is nonsingular
in all practical situations. In this report, a numerical experiment is described in appen-

dix B which verifies that [R] is nonsingular for all practical cases. Hence, equation (15)

is inverted to give

(a) = [R]6a (16)

This equation can also be written as

(a) = [s](6) (17)

-1[]-
where S] is a 21 x 18 matrix and consists of the first 18 columns of [R]

10



From the computational standpoint, it is advantageous to substitute equation (8) into

equation (6) and replace coefficients a 1 8 to a 2 1 by coefficients a 1 7 to a20' respec-

tively. The matrix [Q] then is of size 18 X 20, [R] becomes 20 x 20, and [S] becomes

20 x 18. To add to the clarity of presentation, however, the complete quintic polynomial

for w in equation (6) is retained throughout this report, and matrices [Q], [R], and [S]

and vector (a) will have sizes 18 x 21, 21 x 21, 21 x 18, and 21 x 1, respectively.

Elastic relationships.- The elastic relationships are obtained from the theory of

deformation for plates (ref. 8). The curvatures are defined by

xax 8x

= oi (18)

xy ax - ay

Bending and twisting moments are related to curvatures by

My = [D] Xy (19)

xy Xxy

where [D] is, in general, a full symmetric matrix of elastic coefficients. For a solid

isotropic plate of uniform thickness t,

1 V 0

D]= Et 3  V 1 0 (20)
12(1 - v2)

1-v
2

11



For anisotropic materials, with the material orientation axis inclined at p to the

x-axis, the material elastic modulus matrix [Dm] is transformed to the element elastic

modulus matrix by

[D] = [U] [Dm][U] (21)

where

cos20 sin2€ cos 0 sin 0

U] = sin2 (p cos 2 p -cos ( sin P (22)

-2 cos 0 sin ¢ 2 cos P sin P cos2P - sin2

The positive sense of bending and twisting moments and transverse shear resultants

is shown in figure 2. The moment equilibrium equations are written as

V x + -x + = 0 (23)
ax ay

Vy + my+ - = 0 (24)ay 8x

Transverse shear strains are related to the shear resultants by

(Y)= -= (25)

The matrix [J] is, in general, a full symmetric 2 x 2 matrix of elements Jll' J 1 2

(J21 = J 1 2), and J 2 2 . For a plate with isotropic transverse shear material,

12



where G is the shear modulus and t* is an "effective" thickness for transverse shear.

For the simple case of a plate of uniform thickness t, t* has the value t. From

appendix A, the explicit relation between the transverse shear strain and the generalized

coordinates is written in matrix notation as

( = [B1] a (27)

If the plate is assumed to be rigid in transverse shear, the coefficients All to

A16 and A2 1 to A2 6 of equations (A6) are zero (since G = -) and, hence, coeffi-

cients b 1 to b 6 and cl to c6 of equations (A8) and (A9) are zero. Moreover, the

transverse shear strains vary linearly with G-1 with (y) approaching 0 as G - -; that

is, convergence to the limiting case of zero transverse shear strain is uniform.

Local-global transformations.- The displacement vector (6i) in the local coordinate

system at any grid point i has three displacement components: (1) a displacement wi

in the z-direction, (2) a rotation ai about the x-axis, and (3) a rotation i about the

y-axis. Positive directions of the rotations are determined by the right-hand screw rule

and are shown by vectors directed along the axes in figure 1. The vector (6i) is written

as

i = i (28)

where

ai yzxz (29)

13



The displacement vector in the local coordinate system is

T
= 1 1 w 2 2 2 w3 3 3 w 4 4 w 5 a1 5  w 65 6 6 j (30)

The displacement components in the global system are denoted by primes wi, a , and

Pi); thus, the displacement vector (A) in the global coordinate system is

1) A 2 A 3 A 4 A5 A 6J

=w' a'11 2' a2' w3 a33''4a' 4' w a5' 6 a I (31)

The relationships among w, a, 0, and w', a', p' are

w = w'

a = a' cos 0 + 0' sin 8 (32)

= -a' sin 0 + 0' cos

where 0 is the inclination between the X and x axes as shown in figure 1. The
global and local displacement vectors are related by

(6) = [T 2](A) (33)

where

T1

T 1  0

[T 2 = 1 T 1  (34)

0 T 1

T14

14



and

1 0 0

[T 1 = 0 cos 0 sin e (35)

-sin 0 cos 8

Stiffness matrix.- The strain energy for a plate may be written as

U = (M)x + (V) T  dx dy (36)

where (M) is the vector of bending and twisting moments per unit length, (x is the vec-

tor of curvatures, (V) is the vector of transverse shear forces per unit length, and (y) is

the vector of transverse shear strains. Substituting equations (19) and (25) into equa-

tion (36), and using the symmetry of [D] and [Jl matrices, yields

u=S ((X) [D]( f + T[G]~y)) dx dy (37)

where [G] = [J The vector of curvatures (X) is now rewritten as

(X) = (Xl) + (X 2  
(38)

where

82w 8~xz

8x 2  8x

(xY) = (X2 YZ (39)

82, a x z

ax By ay ax '

15



It follows that (xi) is the vector of curvatures in the absence of transverse shear and

(X2 ) is the contribution of transverse shear to the vector of curvatures. The vectors

(X1) and (2) are expressed in terms of (a) , the vector of coefficients of polynomial

for w (generalized coordinates), as follows:

{X) = [B2] (a) (40)

and

(X2) = [B3](a) (41)

where [B2] and [B3] are obtained by the appropriate differentiation of equations (6)

and (27), respectively, and are given in appendix C. Thus,

X) = (Xi) + (X2) = [B2] + [B3]) a) (42)

Substituting equations (27) and (42) into (37) yields,

U a ([B2 + B3) [D]([B2 + B3 + ([B]T[G[B (a) dx dy (43)

With [K] denoting the generalized stiffness matrix, that is, the stiffness matrix
gen

with respect to generalized coordinates (coefficients of the displacement polynomial) (a),

the strain energy can also be expressed as

U = a [K] en(a) (44)

By comparing equations (43) and (44) and noting that (a) is independent of x and y, the
generalized stiffness matrix can be obtained as

16



[K] gen = [B2] + [B3] [D]([B2] + [B3]) + ([B]T[G][Bl]) dx dy (45)

The element stiffness matrix in the local coordinate system [K] , that is, stiffness

matrix with respect to (6), is, by virtue of equation (17),

[K]e = [s]T[K] gen[S] (46)

and the element stiffness matrix in the global coordinate system [K] , that is, stiffness

matrix with respect to { ), is, due to equation (33),

[K]g = [T 2] T [K e [T2] (47)

The evaluation of the elements of the generalized stiffness matrix [K] of equa-
gen

tion (45) in closed form is, though straightforward, very tedious. This situation is due to

the lengthy expressions involved in the triple matrix products involving matrices [B2]

and [B 3], [B 3] and [B3 ], and [B1 ] and [B1]. The integrations involved in equation (45) are

now split into five integrals as follows:

K]gen =  B 2] DB 2 ]dx dy + [B2]T[D][B3 dx dy + B3 TD][B 2]dx dy

+ 5 [B3] T[D][B3]dx dy + 55 [B1]T[G][Bl]dx dy (48)

The first term 5 [B2]T[D][B2]dx dy is evaluated in closed form; the other four terms

are evaluated by using numerical integration. The numerical integration formulas used

are listed in appendix D. If the plate is assumed to be rigid in transverse shear, the

matrices [B 1] and [B3 ] are null and the last four terms of equation (48) vanish.

17



Mass matrix.- The mass of any element is assumed to be uniformly distributed

over the surface of the element. In addition, the mass is assumed to lie in the middle

surface of the plate so that rotary inertia due to finite thickness is ignored.

Two different mass matrices are used: the lumped mass and the consistent mass.

For the lumped mass matrix, one-sixth of the mass of the element is placed at each grid

point. The consistent mass matrix is obtained from the kinetic energy under the assump-

tion that the inertia loading does not alter the displacements at interior points. Thus, the

kinetic energy may be expressed as a quadratic function of the displacements at the grid

points of the element by using the geometric and elastic properties of the element and the

same displacement polynomial (eq. (6)). The kinetic energy of a flat plate vibrating at

radian frequency w is

T 1 2 w2  mw2 dx dy (49)

where m is mass per unit area. From equation (6),

w = c(a) (50)

where

[Cj=1 xyx2xyy2... y5

Substituting equation (50) into equation (49) and pt for m, where p is the mass density
and t is the thickness, yields

T = w2pt S a)TC C(addx dy (51)

With Mgen denoting the consistent mass matrix with respect to generalized

T = 2aT M (a) (52)
2gen

18



By comparing equations (51) and (52) and noting that (a) is independent of x and y,

[M]gen = pt [C [CJdx dy (53)

The mass matrix can be transformed to element coordinates and global coordinates

by the same transformations as those used for the stiffness matrix. Thus,

Me = TMgenS 
(54)

and

M] = [T2]T[M] e [T2] (55)

Consistent load vector.- The consistent load vector is established by imposing an

arbitrary (virtual) grid point displacement and equating the external and internal work

done by the various forces during that displacement. The consistent load vector with

respect to generalized coordinates (a) is found to be

(P)gen = C] q dx dy (56)

where q is the loading per unit area. The consistent load vector can now be trans-

formed to element coordinates and global coordinates, respectively, by

T

(P)e = [s] (P)gen (57)

{P)g = [T2]T(pe 
(58)

Quadrilateral Element

Two quadrilateral elements, both of which are formed from four triangular elements

just described, are shown in figures 3(a) and 3(b). Each quadrilateral element has eight

grid points on its edges. The first quadrilateral element, shown in figure 3(a), is desig-

nated "QUAD1." This quadrilateral element is divided first into two triangles by one

diagonal (case 1) and then into two more triangles by the other diagonal (case 2). In each
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case, one additional grid point is introduced at the midpoint of the diagonal; the stiffness

and load matrices for the triangles are evaluated and added and the degrees of freedom

associated with the internal grid point are eliminated by static condensation described in

appendix E. The stiffness and load matrices of the quadrilateral element are obtained as

the average of the two cases. It may be noted that, in general, grid point 9 of case 1 and

case 2 need not necessarily be in the same physical location and, hence, it is necessary

to use separate static condensation for each case. The second quadrilateral element,

shown in figure 3(b), is designated "QUAD5." For this element, five additional grid points

are introduced so that the quadrilateral is divided into four triangular elements. The

eight grid points on the edges are numbered 1 to 8. Grid point 9 is located at the inter-

section of lines joining midpoints of opposite edges. Grid points 10 to 13 are located at

the middle of the lines joining grid point 9 to each of the corners of the quadrilateral.

The stiffness and load matrices for each of the four triangular elements are evaluated

and added to form the respective matrices for the quadrilateral element. The degrees of
freedom at internal grid points are then eliminated by static condensation.

Because the four corners of the quadrilateral need not necessarily lie in a plane and
because even small deviations of any one corner from the plane of the other three corners

can cause large errors when analyzing three-dimensional structures (especially when a

large number of elements are used), a flat quadrilateral lying in a median plane is defined.
The median plane is selected to be parallel to, and midway between, the diagonals of the

quadrilateral. The adjusted flat quadrilateral is the normal projection of the given quadri-
lateral on the median plane. The short-line segments (of length hi) joining the corners of
the original and projected quadrilateral elements are assumed to be rigid in bending and
extension. This arrangement is acceptable since the short rigid extensions are only
required to transfer extensional forces and bending moments to the grid points and the
transformation matrix is an identity matrix. The procedure for establishing the median
plane is given in appendix F. The quadrilateral element and its projection on the mean
plane is shown in figure 3(c). (Grid points of the original quadrilateral are indicated by
unprimed numbers and projection of grid points on the median plane are indicated by
primed numbers.)

In dynamic analysis, the mass matrices of each of the constituent triangular ele-
ments of QUAD1 and QUAD5 are evaluated and added to obtain the mass matrix of the
quadrilateral elements. The mass associated with the internal degrees of freedom are
then eliminated by Guyan reduction (refs. 6 and 7). The procedure is explained in appen-
dix G.

20



FORMULATION AND SOLUTION OF EQUATIONS

The global stiffness matrices and load vectors for the complete structure modeled

by these elements are assembled from the corresponding matrices of the individual ele-

ments by standard methods (ref. 6) to form the matrix equation

[K](A} = (P) (59)

Because the degrees of freedom at grid points consist of displacements and rotations, it

presents no difficulty to specify the geometric boundary conditions at any irregular and/or

complex boundary. After the boundary conditions are applied, the matrix equation (59)

is solved by Gaussian elimination to obtain the global displacement vector (A).

RESULTS AND DISCUSSION

It is necessary for convergence that the finite element be capable of representing a

state of uniform strain including rigid body motions which are states of zero strain. This

criterion is satisfied for the elements presented herein. The tests performed are very

simple; a plate subjected to constant curvature states was analyzed by using different

finite element meshes and the finite element solution was found to coincide with the exact

solution, irrespective of the subdivision of the plate. The correct representation of the

rigid body motion of the element is verified by observing that the stiffness matrix for a

completely free plate element contains the necessary zero eigenvalues.

The triangular and quadrilateral elements are used to solve two problems in statics

and dynamics of thin isotropic plates. The formulation presented herein is capable of

treating anisotropic plates and effects of transverse shear strains; however, the example

problems are analyzed for the isotropic case without the effects of transverse shear

strains. Such examples are chosen because the results of plate analysis by most of the

other displacement model plate-bending finite elements available in the literature are

presented only for such plates, and a comparison of the present elements with other avail-

able finite elements is meaningful only in such a case. In addition, the effects of trans-

verse shear flexibility in thin plates are shown for the problems analyzed. The two prob-

lems analyzed are (1) the statics and dynamics of a square plate with edges simply

supported and (2) the statics and dynamics of a square plate with edges clamped. All

calculations were carried out on the CDC 6400/6600 series of computers with SCOPE

operating system at the Langley Research Center. Single precision arithmetic is used

throughout. A value of Poisson's ratio of 0.3 is used in all problems. The effect of var-

iation of Poisson's ratio on the finite element approximation is shown in appendix H.
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Static Analysis of a Square Plate

The arrangement of the finite elements in a quarter of the square plate is shown in
figure 4. Two patterns of mesh subdivisions using the triangular elements, denoted as
"P" and "Q" arrangements, are shown in figures 4(c) and (d). The number of subdivisions
of the edge of the square is denoted by N. Due to symmetry, only one-quarter of the
plate is analyzed. The calculated values of the deflection at the center of the plate are
given in tables I and II and are compared with values obtained from the analytical solution
of Timoshenko (ref. 8). These values together with those obtained from other known finite
element analyses available in the literature are also compared in figures 5 to 8 in plots of
deflection as a function of mesh size using a linear scale for N-1

As seen from table I, the Q arrangement is found to give better accuracy than the
P arrangement for the simply supported plate for the coarsest mesh (N = 2); the P
arrangements yield better accuracy for other mesh sizes. For the clamped plate, the
P arrangements are found to be better than the Q arrangements for all mesh sizes as
noted from table II. For the quadrilateral element, QUAD1 is found to be superior to
QUAD5 as regards accuracy and computational efficiency.

The high accuracy achieved with the present elements (triangular and quadrilateral),
even for the coarsest mesh, is evident from table I and figures 5 and 6 for the simply sup-
ported plate. For the clamped plate, the results for the coarsest grid are not as accurate
as for the simply supported plate; however, as the element size is decreased, the values
of deflection obtained with the present elements approach very rapidly the exact results.
From a comparison of the present elements with those of Argyris 6t al., Bell, and Cowper
et al. (refs. 3, 4, and 5) which use quintic polynomial displacement field, it is seen that all
the elements are of the same order of accuracy for the simply supported plate for
v = 0.0. For v > 0.0, the present elements show a variation in the value of the coefficient
for central deflection; this variation is not demonstrated either in the theoretical solution
(ref. 8) or in the conforming elements of references 3, 4, and 5. Nonetheless, this is
characteristic of the finite element approximation with nonconforming elements. The
second example of clamped plates shows a greater percentage error for these elements
than those of Argyris et al. (ref. 3), Bell (ref. 9), or Cowper et al. (ref. 5) for the coarsest
grid, but, for the next subdivision of N = 4, the value of maximum deflection differs from
the exact by less than 4.5 percent for concentrated load and 3 percent for uniformly dis-
tributed loading. The accuracy attainable by the present elements for practical subdivi-
sions is quite satisfactory. The calculated deflection along a center line of a square plate
for the simply supported plate for a central point load (since this case represents one of
the severest test cases for finite element method) is plotted in figure 9. Good agreement
is seen in both cases with the exact solution.
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The results shown in tables I and II and in figures 5 to 9 were obtained for the pres-

ent elements without taking into account the effects of transverse shear deformation so as

to obtain meaningful comparisons with other finite elements. The values of the coeffi-

cients for central deflection with transverse shear effects are calculated for a square

plate with L/t = 96 and are given in table III. For the P arrangement of the example

shown, the value of maximum deflection varies by 0.1138 percent and 0.2632 percent for

central concentrated load and by 0.0283 percent and 0.1335 percent for uniformly distrib-

uted loads (for simply supported and clamped edge conditions of the plate, respectively).

These effects are so small that the question may be posed whether it is worthwhile to con-

sider them in the stiffness formulation. The answer to this question lies in the fact that

the effects of transverse shear are negligibly small for thin isotropic plates (thin iso-

tropic plates were chosen here for reasons cited earlier) but are significant for moder-

ately thick or thick plates, anisotropic plates, and sandwich shells consisting of soft core

and stiff plates. For all such cases, the present elements have a decided advantage over

most other displacement formulation plate-bending elements now available in the

literature.

Free Vibrations of a Square Plate

The natural frequencies of a square plate were determined by using the triangular

and quadrilateral elements. The nondimensional eigenvalues are defined as

- t2L 4  
(60)

D

where

p mass density

t thickness of plate

w circular frequency

L length of side of square plate

D =- Et3 the flexural rigidity of the plate
12(1 - v2 )
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The exact eigenvalues for the simply supported plate are given by

X= (r 2 + s2) 2
IT4 (61)

where (r,s) refers to the number of half-waves parallel to the edge directions.

The lowest six eigenvalues obtained by using the present elements and the exact

results are shown in table IV. The eigenvalue problems are solved by using a Jacobi

routine that produces the complete set of eigenvalues and eigenvectors. A consistent

mass matrix is used for all calculations. It is seen that the lowest eigenvalue is calcu-

lated to within 3 percent of the exact value for the coarest mesh. Good agreement is

obtained for higher eigenvalues as well. For the examples of (r + s) or (r - s) even, krs
is not equal to Xsr when triangular elements are used, even though this equality should

be the case due to the symmetry of the configuration. However, for quadrilateral ele-

ments there is no such discrepancy. A comparison of the lowest eigenvalue for the sim-

ply supported plate using the present elements and other finite element solutions is given

in table V. The present elements are more accurate than the ACM or CFQ elements

(refs. 1 and 10) but slightly less accurate than that of Cowper et al. (ref. 5).

The results of calculations for a square plate with clamped edges are shown in

table VI. No exact solution is available for this case and, therefore, the present values

are compared with the upper and lower bound values given in reference 5. Reasonable

agreement is observed although the accuracy is not as good as that for the simply sup-

ported plate.

CONCLUDING REMARKS

A new triangular plate-bending finite element using a quintic polynomial for trans-

verse displacement is described. The element has only displacements and rotations as
grid point degrees of freedom and thus avoids certain ambiguities associated with the sec-
ond and higher order derivatives of displacements as degrees of freedom. Two associated
quadrilateral elements are also described which are assembled from the basic triangular
element. Sample calculations for the static and dynamic analysis of plates were per-
formed and the results were compared with analytical solutions using classical plate
theory and with other published finite element solutions. Good agreement was obtained
with these elements for practical mesh subdivisions.

The effect of transverse shear deformations is included in the element formulation.
Convergence to the case of zero transverse shear strain is uniform. The present ele-
ments are expected to give better approximations than most displacement model plate-
bending elements for solving problems where transverse shear effects are significant.
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These elements are ideally suited for inclusion into general purpose computer pro-

grams because of (1) simplicity of formulation, (2) use of only displacements and rotations

as grid point degrees of freedom, (3) high accuracy for practical mesh subdivisions, and

(4) inclusion of transverse shear flexibility in the element properties.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., January 25, 1974.
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APPENDIX A

DERIVATION OF RELATION BETWEEN TRANSVERSE SHEAR STRAIN

AND COEFFICIENTS OF POLYNOMIAL

FOR TRANSVERSE DISPLACEMENT

From equations (23), (24), and (25), it follows that

Yxz = -J x + - J12 +

(Al)

x M aM MxS = + - 221 + |
~yz x ax

Performing the partial differentiation with respect to x and y on equation (19), with

subscripts on D denoting the elements of [D], results in

aM ax 8x ax
-xD x+D X +D xy
ax 11 ax 12 ax 13 ax

am ax ax ax
ay D 1 2 y +D 2 2 y +D 23 ay

(A2)
M axx ax

-=D + D +D
ax 13 ax 2 3 ax 33 ax

aMxy axx __Y a__
ay 1 3 ay 23 ay 33 a

where the symmetry of the [D] matrix has been used. By substituting equations (A2)

into equations (Al),
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ax ay
axz + D - + D + D + D 2 3  D332ax y 23 3

12 12 + D 2 2  y D 23  ay 13x +D 2 3 ax 33 (A3)

and

yz 1 2 D11 12  x + D 1 3 ax D 13 y 2 3 ay 33 y J

-i XJ +D !! +xy + D -+D +D x(A4)
22 12 + D22 y + D23 ay 13 ax 2 3 ax 33 ax(A4)

Rearranging and writing equations (A3) and (A4) in matrix notation yields

Xx,x

- Xy,x

xz=A 1 A 12 A 13 A 14 A 1 5 A 16  Xxy,x

yz A21 A2 2 A2 3 A2 4 A2 5 A2 6 x (,y)

xy,y

where a comma in the subscript denotes partial differentiation and where

A l l = -(J11D11+ J 12D 13 ) (A6a)

A 1 2 =- (J 1 1D 1 2 + J 1 2 D 2 3 ) (A6b)

A 1 3 = - (JllD 1 3 + J 1 2 D3 3 ) (A6c)
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A 1 4 =- (J 11 D 1 3 + J 1 2 D 2 ) (A6d)

A 1 5 = - (J 11 D 2 3 + J 1 2 D 2 2 ) (A6e)

A 1 6 =- (J 1 1D 3 3 + J 1 2 D 2 3 ) (A6f)

A2 1 =- (J 1 2 D 1 1 + J 2 2 D 1 3 ) (A6g)

A 2 2 =- (J 1 2 D 1 2 + J 2 2D 2 3 ) (A6h)

A2 3 = - (J 1 2 D 1 3 + J 2 2 D3 3 ) (A6i)

A2 4 =- (J 1 2 D 1 3 + J 2 2 D 1 2 ) (A6j)

A2 5 =- (J 1 2 D 2 3 + J 2 2 D2 2 ) (A6k)

A2 6 =- (J 1 2 D3 3 + J 2 2 D2 3 ) (A61)

From equations (7) and (18), it follows that

- 8 2 w  yxz
x ax 8x 2  ax

8X 82a w - Tyz (A7)
XY y ay2 8y

= - = 82w 8  -xz 8 yz
Xxy 8x y ax By By 8x

Shear forces (and hence shear strains) are proportional to the third derivatives of

the displacements. Since the displacement within the element is assumed to vary as a

quintic polynomial, shear strains are expressed by a quadratic polynomial as follows:

Yxz = b 1 
+ b2 x + b 3 y + b4 x2 + b 5xy + b 6y2 (A8)
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yyz = cl + c 2 x + c 3 y + c 4 x2 + c 5xy + c 6 y2  (A9)

The task now is to express the unknown coefficients b 1 to b 6 and cl to c 6

in terms of the generalized coordinates a 1 to a 2 1 . Performing the differentiations on

yx , xy, and Xy and substituting w, yxz, and yyz from equations (6), (A8), and (A9)

into equations (A7) results in

xx,x - 2 - 6a 7 + 24allx + 6a12Y + 60a 1 6 x2 + 24a 17 xy + 6a 1 8 y2 - 2b 4  (A10)

8x 3  ax 2

y, 3 w z = 2a 9 + 4a13x + 6a14Y + 6a18x 2 + 12al9xy + 12a202 - c 5  (All)

xyx = 2
ax2ay ax ay 8x2

= 4a 8 + 12a 1 2 x + 8a 1 3 Y + 24a 17x
2 + 24a 18xy + 12a 1 9 y2 - b 5 - 2c 4  (A12)

= -w yz = 6a10 + 6a14x + 24a1 5y + 6a19x
2 + 24a2 0xy + 60a2 1y

2 - 2c6  (A14)
Y,Y ay 3  ay

=2 2  a2 xz a2yy z
Xxy,y 2 2 ax 8yax ay2  ay2  ax ay

= 4a 9 + 8a 1 3 x + 12a 1 4 y + 12a 1 8 x2 + 24a 1 9 xy + 24a20 2 - 2b 6 - c 5  (A15)
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By substituting equations (A8) to (A15) into equations (A5), the following equations are
obtained:

b1 + b2x + b3y + b4x2 + b5xy + b6 y 2 = A 1 1 (6a7 + 24a11x + 6a1 2y + 60a 1 6x
2 + 24a1 7xy

+ 6a 1 8 y2 - 2b4) + A 1 2 (2ag9 + 4a13x + 6a14Y

+ 6a18x
2 + 12a 19xy + 12a 2 0

2 - c5) + A 13 (4a8

+ 12a 1 2x + 8a13Y + 24a 17x
2 + 24a 18xy + 12a 1 9y

2

- b5 - 2c4) + A 14 (2a8 + 6a12x + 4a13y + 12a 1 7x
2

+ 12a 18xy + 6a 1 9 y 2 - b5) + A 1 5(6a1 0 + 6a14x

+ 24a1 5y + 6a19x
2 + 24a 2 0xy + 60a 2 1y

2 - 2c6)

+ A 1 6 (4a + 8a13x + 12a 14y + 12a 18x
2 + 24a 19xy

+ 24a2 0Y
2 - 2b6 - c5) (A16)

C1 + c2x + c3y + c4x2 + c5xy + c6y
2 = A 2 1 (6a7 + 24a1 1x + 6a12Y + 60a 1 6x

2 + 24a17xy

+ 6a 1 8 Y2 - 2b4) + A 2 2 (2a9 + 4a1 3x + 6a14Y

+ 6a1 8x
2 + 12a 19xy + 12a 2 0y

2 - c5) + A 2 3 (4a8

+ 12a 12x + 8a13y + 24a 17x
2 + 24a18xy + 12a 19y

2

- b5 - 2c4) + A 2 4 (2a8 + 6a12x + 4a1 3y + 12a1 7x
2

+ 12al8xy + 6a19y
2 - b5) + A 2 5(6a10 + 6a14x

+ 24a 15y + 6a1 9x
2 + 24a2 0xy + 60a 2 1y

2 - 2c6)

+ A 2 6(4ag9 + 8a13x + 12a 14y + 12a 18x
2 + 24a1 9xy

+ 24a2 0Y
2 - 2b6 - c5) (A17)
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By comparing coefficients of like powers in x, y, x2 , xy, and y2 and constants of

equations (A16) and (A17), the coefficients b 1 to b 6 and c 1 to cg can be expressed

in terms of the generalized coordinates al to a 2 1 . Thus,

b2 = 24A 1 1all + 6(A 1 4 + 2A 13)a12 + 4(A 1 2 + 2A 1 6)a 13 + 6A 15a14

b3 = 6A 1 1a12 + 4(A 1 4 + 2A 13)a13 + 6 (A 1 2 + 2A 1 6)a 14 + 24A 1 5a15

b4 = 60A 1 1a1 6 + 12 (A14 + 2A 13)a 1 7 + 6 (A12 + 2A 16)a18 + 6A 1 5a 1 9

b5 = 24A 1 1 a1 7 + 12 (A1 4 + 2A 1 3 )a 1 8 + 12 (A12 + 2A 1 6 ) al 9 + 24A1 5a 2 0  (A18)

b6 = 6A 1 1 a 1 8 + 6 (A 1 4 + 2A 13)a19 + 12 (A12 + 2A 16)a20 + 60A 1 5a2 1

b1 = 6A 1 1a7 + 2 (A14 + 2A 1 3)a8 + 2(A 1 2 + 2A1 6)a9 + 6A 1 5a 10 - 2A11b4 - (A13

+A 14)b5 - 2A 1 6b 6 - 2A 13c4 - (A12 + A 16)c5 - 2A 15c6

2 = 24A 2 1 all + 6(A2 4 + 2A2 3)a 12 + 4(A 2 2 + 2A 2 6)a 13 + 6A 2 5 a 1 4

c3 = 6A 2 1 a 1 2 + 4(A 2 4 + 2A2 3)a13 + 6(A 22 + 2A2 6)a 14 + 24A2 5 a 1 5

c4 = 60A 2 1 a 1 6 + 12(A 2 4 + 2A 2 3)a1 7 + 6(A2 2 + 2A2 6)a18 + 6A2 5a1 9

c5 = 24A 2 1a1 7 + 12 (A24 + 2A 23)a1 8 + 12 (A22 + 2A 2 6 )a 1 9 + 24A2 5 a 2 0  (A19)

c6 = 6A2 1a 18 + 6(A24 + 2A 23)a19 + 12 (A22 +2A26)a + 60A 2 5a 21

cl = 6A 2 1a7 + 2(A2 4 + 2A2 3 )a 8 +2(A 22 + 2A2 6 )ag + 6A2 5a10 - 2A2 1b4 - (A23

+ A2 4 )b 5 - 2A2 6b 6 - 2A 2 3 c 4 - (A22 +A 2 6)c5 - 2A2 5c6
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If equations (A18) and (A19) are substituted into equations (A8) and (A9), the explicit

relation between the transverse shear strain and the generalized coordinates (i.e., coef-

ficients of the displacement polynomial) can be obtained in matrix notation as

S= [B ] a) (A20)

where [B1 ] is a 2 x 21 matrix whose nonzero elements are as follows:

B 1 (1,7) = 6A 1 1

B 1 (1,8) = 2A 3 1

B 1 (1,9) = 2A 3 2

B 1 (1,10) = 6A 1 5

B 1 (1,11) = 24A 1 1 x

B 1(1,12) = 6(A 3 1x + AllY)

B 1(1,13) = 4(A 32x + A 3 1Y)

B 1(1,14) = 6(A 1 5x + A 3 2Y)

B 1(1,15) = 24A 1 5

B 1(1,16) = -120(A 1 + A 1 3A2 1 - 0.5A 1 1x
2

B 1(1,17) = -24[A1( A 31 + A3 8 ) + A 1 3 A3 3 + A21 A 3 9 - 0.5A 3 1x
2 - AlxY]

B 1(1,18) = -12(A 1 1A 3 2 + A 1 3 A3 4 + A 3 8 A3 1 + A 3 9A 3 3 + A 1 1A 16 + A 1 5 A2 1

- 0.5A 3 2x
2 - A 3 1xy - 0.5Ally2)
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B 1 (1,19) = -12 (A 1 1 A 1 5 + A 1 3 A2 5 + A3 8 A3 2 + A3 9 A3 4 + A 1 6 A3 1 + A 1 5 A3 3

- 0.5A1 5 x2 - A3 2 xy - 0.5A3 1 Y2)

B 1 (1,20) = -24(A 1 5 A3 8 + A2 5 A3 9 + A1 6 A3 2 + A 1 5 A3 4 - A 1 5 xy- 05A3 2 Y2)

B 1 (1,21) = -120(A 1 5 A 1 6 + A 1 5 A2 5 - 0.5A1 5y2)

B 1 (2,7) = 6A 2 1

B 1 (2,8) = 2A 3 3

B 1 (2,9) = 2A 3 4

B 1 (2,10) = 6A 2 5

B 1 (2,11) = 24A 2 1x

B 1 (2,12) = 6(A 3 3 x + A 2 1y)

B 1 (2,13) = 4(A 3 4 x + A 33y)

B 1 (2,14) = 6(A 2 5 x + A3 4y)

B 1 (2,15) = 24A 2 5

B 1 (2,16) = -120(A 1 1 A2 1 + A2 3 A2 1 - 0.5A2 1 x2)

B 1 (2,17) = -24 (A 2 1 A3 1 + A 1 1 A4 0 + A 2 3A 3 3 + A 2 1A 3 4 - 0.5A3 3 x 2 - A2 1 xY)

B 1 (2,18) = -12 (A 2 1 A3 2 + A 2 3 A3 4 + A 40A 3 1 + A 4 1A 3 3 + A 2 6A1 + A25A21

- 0.5A3 4 x 2 - A 3 3 xy - 0.5A2 1Y2)
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B 1 (2,19) = -12 (A 2 1 A 1 5 + A2 3 A2 5 + A4 0 A3 2 + A4 1A 3 4 + A2 6 A 3 1 + A2 5 A 3 3

- 0.5A2 5x 2 - A3 4 xy - 0.5A3 3y2)

B 1 (2,20) = -24(A 1 5 A4 0 + A2 5 A4 1 + A2 6 A3 2 + A 2 5 A3 4 - A2 5xy - 0.5A3 4 y2)

B 1 (2,21) = -120(A 1 5 A2 6 + A5 - 0.5A2 5
2 )

where All, A1 2 , A 1 3 , A 1 4 , A 1 5 , A 1 6 , A2 1 , A2 2 , A2 3 , A2 4 A2 5 , and A2 6 are
as defined in equations (A6) and

A 3 1 = A 14 + 2A 1 3

A3 2 = A1 2 + 2A 1 6

A3 3 = A2 4 + 2A 2 3

A3 4 = A2 2 + 2A 2 6

A3 5 = A3 3 + All

A3 6 = A3 4 + A3 1  (A21)

A 3 7 = A 2 5 + A 3 2

A3 8 = A 13 + A 1 4

A3 9 = A 1 2 + A 1 6

A4 0 = A2 3 + A2 4

A4 1 = A 2 2 + A2 6
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EXISTENCE OF INVERSE OF MATRIX [R]

The details of the numerical experiment performed to verify the existence of the

inverse of matrix [R] (see eq. (15) and the paragraph that follows on p. 10) are given in

this appendix. Three cases of the triangular element are considered and for each case

the inverse of matrix [R] was evaluated with and without transverse shear effects. Since

it is not possible to consider the infinite combinations of geometric and material proper-

ties that yield varying transverse shear effects, a practical case of significant transverse

shear and the case with no transverse shear are considered. Any intermediate case of

transverse shear effect will produce results between the two extreme situations analyzed.

The three cases of the triangular element are shown in figures Bl(a) to Bl(c). Fig-

ure Bl(a) shows a triangle with three acute angles. Figure B1(b) shows the triangle with

two acute angles at grid points 3 and 5 and an obtuse angle at grid point 1. Figure Bl(c)

shows the triangle with two acute angles at grid points 1 and 5 and an obtuse angle at grid

point 3.

A total of 300 triangles, about 100 in each case, with varying values of the dimension

of the triangle a, b, and c were analyzed. The [R] matrix was formed, and the deter-

minant and inverse of the matrix [R] were evaluated. Single-precision arithmetic was

used in the calculations. The determinant of [RI was nonzero in all examples analyzed.

For small values of a, b, and c (say, a = 0.1, b = 0.1, and c = 0.1), the determinant of

[R was very small; however, no instability was observed in evaluating the inverse. (The

elements of [R] were observed for any unbounded growth of the numbers as the value

of the determinant of [R] became smaller and smaller. The maximum value of any ele-
-1

ment of [R] for the problem with the smallest value of the determinant of [R] was of

the order of 103. The matrix [R] was very stable for all the problems investigated)

The same 300 problems were used to evaluate the inverse of [R] for the case with

significant transverse shear strains. In general, the effect of the transverse shear strains
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was to increase the value of the determinant of [R] and, hence, even for problems with

small values of a, b, and c of the triangle, the determinant of [R] was considerably

higher. No instability was noticed in any of the examples analyzed.

y

5 (O,c)

1(-b,O) 2 3(a,0)

(a) Acute angles at grid points 1, 3, and 5.

S5 (0,c) 

5(0

4 6

1 2 3 1 2 3
(b,O) (a,0) (-b,0) (-a,0)

(b) Obtuse angle at grid point 1. (c) Obtuse angle at grid point 3.

Figure Bl.- Triangular element shapes.
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NONZERO ELEMENTS OF MATRICES [B2] AND [B3]

The nonzero elements of matrix [B 2 ] (see eq. (40)) are as follows:

B 2 (1,4) = 2

B 2 (1,7) = 6x

B 2 (1,8) = 2y

B2 (1,11) = 12x 2

B 2 (1,12) = 6xy

B 2 (1,13) = 2y 2

B 2 (1,16) = 20x 3

B 2 (1,17) = 12x 2 y

B 2 (1,18) = 6xy 2

B2 (1,19) = 2y 3

B 2 (2,6) = 2

B 2 (2,9) = 2x

B 2 (2,10) = 6y

B 2 (2,13) = 2x 2

37



APPENDIX C

B 2 (2,14) = 6xy

B2 (2,15) = 12y 2

B 2 (2,18) = 2x 3

B2 (2,19) = 6x 2 y

B 2 (2,20) = 12xy 2

B 2 (2,21) = 20y 3

B 2 (3,5) = 2

B 2 (3,8) = 4x

B 2 (3,9) = 4y

B 2 (3,12) = 6x 2

B 2 (3,13) = 8xy

B 2 (3,14) = 6y 2

B 2 (3,17) = 8x 3

B 2 (3,18) = 12x 2 y

B 2 (3,19) = 12xy 2

B 2 (3,20) = 8y 3
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The nonzero elements of matrix [B3 ] (see eq. (41)) are as follows:

B 3 (1,11) = -24A 1 1

B 3 (1,12) = -6A 3 1

B3 (1,13) = -4A32

B3 (1,14) = -6A 1 5

B 3 (1,16) = -120A 1 1x

B3 (1,17) = -24 (A 3 1 x + AllY)

B3 (1,18) = -12(A 3 2 x + A3 1Y)

B 3 (1,19) = -12(A 1 5x + A3 2 y)

B 3 (1,20) = -24A 1 5

B 3 (2,12) = -6A21

B 3 (2,13) = -4A 3 3

B 3 (2,14) = -6A 3 4

B3 (2,15) = -24A 2 5

B 3 (2,17) = -24A 2 1 x

B 3 (2,18) = -12 (A 3 3 x + A2 1Y)

B 3 (2,19) = -12(A 3 4 x + A3 3Y)
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B 3 (2,20) = -24 (A 2 5 x + A 3 4y)

B 3 (2,21) = -120A 2 5

B 3 (3,11) = -24A 2 1

B 3 (3,12) = -6(All + A3 3)

B 3 (3,13) = -4(A 3 1 + A3 4)

B 3 (3,14) = -6A32 + A2 5)

B 3 (3,15) = -24A 1 5

B 3 (3,16) = -120A 2 1x

B3 (3,17) = -24[ (A11 + A3 3 )x + A 2 1y]

B 3 (3,18) = -12[(A 3 4 + A3 1 )x + (A 3 3 + All)Y]

B 3 (3,19) = -12[ (A 2 5 + A3 2 )x + (A 3 4 + A3 1 ]

B 3 (3,20) = -24[A1 5x + (A 3 2 + A 2 5)y]

B 3 (3,21) = -120A 1 5

where All, Al 2 , . .. , A3 4 are as given in equations (A6) and (A21).
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NUMERICAL INTEGRATION FORMULAS

For a triangle, the integrals of the form

I =I f (L 1 L 2 L 3 )dL 1 dL 2  (D1)

can be integrated by using a seven-point numerical integration which can exactly integrate

functions up to and including quintic order. The value of the integral is given by

7

I = Wkfk (L,L 2 ,L 3 ) (D2)

k=1

where the points and the weighting factors are as follows:

Point Triangular coordinates,
PointL1 L2 L3 Weight, 2W kL 1, L2, L3

1 1/3, 1/3, 1/3 0.225

2 a 1 ,' 1' 01

3 401, a 1 0.13239415

1 4 P1,' 1, 1

5 a 2 ' 02' 02

6 02', a 2 , 2 0.12593918

7 02' 22, a 2

with

a = 0.05971588 P1 = 0.47014206

a 2 = 0.79742699 92 = 0.101286505

Note the error in the value of a 1 as given in reference 6, page 151.
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STATIC CONDENSATION

The details of static condensation, by which the stiffness and load terms associated

with the internal grid points of the quadrilateral are eliminated, are briefly described in

this appendix.

Let the stiffness matrix [K] and load vector (P}e of the quadrilateral element

be partitioned with respect to grid points on the boundary (subscript b) and interior

(subscript i) as follows:

kbb kbi Pb
K]e = b kii (Pe = (E 1)

Let the total potential energy defined as a functional of the displacements be X.

The finite element process is equivalent to an approximate minimization of the functional

X with respect to grid point displacements. The total functional is equal to the sum of

the contributions of all the elements; that is,

n

X = Xe (E2)
e=l

Let (4) be the displacements of the quadrilateral element which will be subdivided

into parts that are on the boundary (and hence common with other elements) (O)b and

parts that occur in the particular element only (0)i.

The finite element equations for any element can be written as

[Xe - [K] e (P)e (E3)

such that the matrix equation for the total structure is

[K] () + (P) = (0o) (E4)
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where

n

[K] = e[K (E5)
-e=l

and

n

{() = I {)e (E6)

e=l

with the summations being as in standard structural assembly process.

To minimize the functional X with respect to the displacements of the element

03, a system of equations can be expressed by

aX 0 (E7)

By virtue of equation (E2), equation (E7) can also be written as

(P 0 (E8)

e=l

Equation (E8) can be partitioned as

n aX e 0 (E9)

e=1 apb

n aX e
S()e = 0 (E10)

e=1 i

By noting that (0)i occurs only on the particular element, equation (E10) can be written

as
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ax
ax - 0 (Ell)

for every element. Partitioning equation (E3) and using equations (Ell) and (El) yields

XXe [kbb kbi19) b (b)

aXe a b kib i + Pi) (E12)

From the second row of equation (E12), it can be written that

i= - (d[1kib, + i (E13)

which on substitution into the first set of equations yields

ax e  Kb b b 
(E14)

where

[K] [K* = [kbb] -i k -1I kb (E15)
b e

P*)b {P*)e = (Pb) - [kbi] [kii] - 1 P (E16)

The matrix equation for the total structure would still be given by equation (E4) so
that

n

e=l e

n

e=l
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MEDIAN PLANE FOR QUADRILATERAL ELEMENT

The median plane is selected to be parallel to, and midway between, the diagonals

of the quadrilateral. The calculations for establishing the median plane and the associated

transformation matrix from global coordinates to in-plane coordinates are explained in

this appendix.

The following equations are used to calculate the three unit vectors in the median

plane (i), (j), and (k) which define the element coordinate system (see fig. 3(c)):Xi
(Vi) (i = 1, 2,. . ., 8) (Fl)

The diagonals are

(d) = (V 8) - (Vj) (F2)

(d 2) = (V 6)- (V 3 ) (F3)

(k) d) x (d2) (F4)
(dl) x (d2)

al) = (V 3 - {V1 } (F5)

= al T(k) (F6)

The vectors lying in the median plane are computed from

(al) - 2 h(k)
(i)- (F7)
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(j) = (k) x (i) (F8)

The transformation matrix from global coordinates to in-plane coordinates is, for

the purposes of evaluation of the stiffness matrix,

[X] Y1 (F9)

where

1 2 3

[= k j2 j3 (FlO)

Lki1 k2  k3 j

and X'1 , Y, and Z' are the coordinates in the median plane.
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REDUCTION OF MASS MATRIX FOR QUADRILATERAL ELEMENT

IN DYNAMIC ANALYSIS

The equation for free vibrations of elastic structures vibrating at circular frequency

w can be written as

([K]- w2 [M)(Ao= 0 (G)

where [K] is the stiffness matrix, [M] is the mass matrix, and (Ao) is the vector of dis-

placement amplitudes. This is a typical eigenvalue problem from which the natural fre-

quencies of the system can be obtained.

The stiffness matrix [K] can be evaluated by using equations (E15) and (E17). The

mass matrix of the quadrilateral element is obtained by adding the mass matrices of the

constituent triangular elements and then eliminating the mass associated with the inter-

nal degrees of freedom by using the Guyan reduction scheme. Let the mass matrix of

the element IM]e be partitioned in terms of degrees of freedom at boundary (subscript

b) and at interior (subscript i) as follows:

mbb mbi
M = (G2)

From equation (E13), in the absence of any forces on interior points,

i= [GO])b (G3)

where

[Go] -[ki1][kib] (G4)

For cases with applied forces on the quadrilateral element, the reduced dynamic load vec-

tor is, by analogy to equation (E16),
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()b = (b) + [Go]T Pi) (G5)

By virtue of equation (G3), (P)e can be written as

()e ) b )b (G6)

that is,

e =[T 3] b (G7)

where

[T3] =[L (G8)

and [I] is the identity matrix.

The resulting mass matrix, referred to degrees of freedom at boundary grid points

of the quadrilateral, is

M*e = T3JT e FT3]
e e

G] T mbb m bi[I

= [Go]j [mib mii [Go]j

= mbb + [Go] T [mib] + [mbi][Go] + [Go] T [mii][GO] (G

48



APPENDIX G

The assembled mass matrix [M] of the structure is

n

[M]= [M*le (G10)

e=1
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EFFECT OF POISSON'S RATIO ON FINITE ELEMENT APPROXIMATIONS

For the example problems considered in this report, namely, uniform plates sub-

jected only to a normal load and having boundaries consisting entirely of segments that

are either (a) clamped or (b) simply supported and straight, the differential equations as

well as the boundary conditions are independent of Poisson's ratio and, hence, the exact

solutions are also independent of Poisson's ratio. (An indirect dependence on v through

the plate rigidity D is not considered here for purposes of this discussion.) Cowper

et al. (ref. 5) prove that this independence is true of finite element approximations pro-

vided the elements conform. For nonconforming elements, like the present elements, the

finite element approximations are dependent on Poisson's ratio even for the aforemen-

tioned class of problems of plate bending. No data are presently available in the litera-

ture on the extent of this dependence. To study the effect of Poisson's ratio on the finite

element approximations using the present elements, a numerical experiment was con-

ducted on the static analysis of a square plate with clamped and simply supported edges.

Twelve values of Poisson's ratio were used: 0.0, 0.05, 0.10, 0.166, 0.20, 0.25, 0.30, 0.333,
0.40, 0.45, 0.49, and 0.495. Due to symmetry, only one-fourth of the plate is analyzed.

For completeness, the dimensions of the square plate and values of elastic modulus used

are listed:

Length of side of plate, L, 1.2192 m (48 in.)

Thickness of plate, t, 0.0762 m (3 in.)

Elastic modulus, E, 4.788 GN/m 2 (6.944 x 105 psi)

For the mesh subdivision of N = 2 with the P arrangement (fig. 4(c)), the

18 eigenvalues of the 18 x 18 stiffness matrix of a triangular element for the 12 values of

Poisson's ratio are shown in table H1. From the table, it is seen that although the largest

eigenvalue (eigenvalue 1) changes with Poisson's ratio approximately as the plate rigidity

D D = 3 , eigenvalues 2 to 15 do not clearly follow any specific trend. Eigen-
12(1 - v2

values 16, 17, and 18 are practically equal to zero and correspond to the rigid body modes.

Values of the coefficient for central deflection for different Poisson's ratios for

simply supported and clamped plates for central concentrated loads and uniformly distri-

buted loads are shown in tables H2 to H5. The results for Q mesh of simply supported

plate and P mesh of clamped plate are plotted in figures H1 to H4. From tables H2 to

H5 and figures H1 to H4, it is seen that the effect of an increase in the Poisson's ratio is

to make the finite element approximation (using these elements) of the structure more
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flexible. Also, it can be noted that the percentage error in the coefficients for simply

supported plates for v = 0.0 even for coarse meshes is quite small and is comparable

to that of the conforming elements of references 3, 4, and 5.

Values of the coefficient for central deflection for Poisson's ratio of 0.0 for the

quadrilateral elements QUAD1 and QUAD5 are given in tables H6 and H7. As before, it

is seen that the percentage error in the coefficients for v = 0.0 is quite small even for

the coarsest mesh.

To study the effect of variation of Poisson's ratio on the vibration analysis, the non-

dimensional eigenvalues were evaluated for v = 0.0 for mesh size of N = 2 - and N = 4

for the simply supported and clamped square plates. The results are presented in

tables H8 and H9. Again, it is observed that the percentage error in the lowest eigenvalue

for the simply supported plate for v = 0.0 is very small even for the coarsest mesh.
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TABLE H1.- EIGENVALUES OF STIFFNESS MATRIX FOR

VARIOUS POISSON'S RATIOS

Eigenvalue v = 0.0 v = 0.05 v = 0.10 v = 0.166 v = 0.20 v = 0.25

1 1.3069E+07 1.3083E+07 1.3164E+07 1.3382E+07 1.3542E+07 1.3853E+07

2 9.5575E+06 9.5485E+06 9.5868E+06 9.7144E+06 9.8133E+06 1.0010E+07

3 6.1866E+06 6.1701E+06 6.1855E+06 6.2576E+06 6.3172E+06 6.4388E+06

4 3.6924E+06 3.7012E+06 3.7288E+06 3.7965E+06 3.8445E+06 3.9364E+06

5 2.1206E+06 2.1224E+06 2.1351E+06 2.1701E+06 2.1958E+06 2.2458E+06
6 1.2807E+06 1.2893E+06 1.3045E+06 1.3355E+06 1.3561E+06 1.3939E+06

7 4.7615E+05 4.7597E+05 4.7851E+05 4.8631E+05 4.9223E+05 5.0388E+05
8 3.5783E+05 3.4716E+05 3.3741E+05 3.2572E+05 3.2037E+05 3.1294E+05
9 2.1174E+05 2.0794E+05 2.0491E+05 2.0200E+05 2.0101E+05 2.0010E+05

10 1.4687E+05 1.4028E+05 1.3431E+05 1.2718E+05 1.2392E+05 1.1938E+05

11 1.1279E+05 1.1103E+05 1.0932E+05 1.0711E+05 1.0603E+05 1.0443E+05

12 6.6299E+04 6.3965E+04 6.1851E+04 5.9337E+04 5.8197E+04 5.6622E+04

13 6.3454E+04 6.1083E+04 5.8994E+04 5.6593E+04 5.5539E+04 5.4122E+04

14 3.8497E+04 3.7987E+04 3.7475E+04 3.6778E+04 3.6422E+04 3.5876E+04

15 2.9989E+04 2.9995E+04 2.9997E+04 2.9988E+04 2.9977E+04 2.9952E+04
16 -5.2898E-07 8.8311E-07 1.4591E-06 5.5643E-07 8.9640E-07 9.5491E-08

17 -7.2196E-07 -6.6216E-07 8.1557E-07 2.6894E-07 6.0835E-07 -4.5497E-07
18 -2.4895E-06 -3.2533E-06 -2.2123E-06 -2.0010E-06 -2.0421E-06 -9.9257E-07

Eigenvalue v = 0.30 v = 0.333 v = 0.40 v = 0.45 v = 0.49 v = 0.495

1 1.4257E+07 1.4587E+07 1.5420E+07 1.6230E+07 1.7024E+07 1.7134E+07
2 1.0271E+07 1.0487E+07 1.1036E+07 1.1575E+07 1.2106E+07 1.2179E+07
3 6.6038E+06 6.7407E+06 7.0930E+06 7.4408E+06 7.7847E+06 7.8325E+06
4 4.0550E+06 4.1511E+06 4.3922E+06 4.6260E+06 4.8546E+06 4.8863E+06
5 2.3112E+06 2.3646E+06 2.4995E+06 2.6309E+06 2.7598E+06 2.7777E+06
6 1.4413E+06 1.4790E+06 1.5720E+06 1.6609E+06 1.7470E+06 1.7589E+06
7 5.1924E+05 5.3183E+05 5.6370E+05 5.9479E+05 6.2529E+05 6.2952E+05
8 3.0617E+05 3.0201E+05 2.9452E+05 2.8963E+05 2.8618E+05 2.8578E+05
9 1.9992E+05 2.0022E+05 2.0197E+05 2.0443E+05 2.0726E+05 2.0767E+05

10 1.1521E+05 1.1261E+05 1.0783E+05 1.0456E+05 1.0212E+05 1.0182E+05
11 1.0287E+05 1.0184E+05 9.9829E+04 9.8354E+04 9.7198E+04 9.7054E+04
12 5.5194E+04 5.4319E+04 5.2737E+04 5.1686E+04 5.0924E+04 5.0833E+04
13 5.2882E+04 5.2145E+04 5.0859E+04 5.0039E+04 4.9460E+04 4.9393E+04
14 3.5315E+04 3.4934E+04 3.4158E+04 3.3569E+04 3.3096E+04 3.3037E+04
15 2.9916E+04 2.9884E+04 2.9803E+04 2.9725E+04 2.9652E+04 2.9643E+04
16 4.2738E-07 3.4780E-07 1.8821E-06 6.2980E-07 1.1078E-06 1.7082E-06
17 6.2187E-08 -7.6369E-08 -5.6961E-07 -3.2935E-07 - 1.9916E-07 -3.6222E-07
18 -1.7431E-06 -2.7652E-06 -3.8552E-06 -2.5545E-06 -1.8411E-06 -1.3526E-06
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TABLE H2.- COEFFICIENT FOR CENTRAL DEFLECTION DUE TO CENTRAL

CONCENTRATED LOAD P ON SIMPLY SUPPORTED PLATE

N=2 N=4 N=6 N=8 N= 12

Poisson's
ratio, v Q P Q P Q P Q P Q P

Arrangement Arrangement Arranement Arrangement Arrangement Arrangement Arrangement Arrangement Arrangement Arrangement

0.0 11.8270 12.0650 11.7661 11.7055 11.6901 11.6472 11.6564 11.6271 11.6285 11.6128

.05 11.9011 12.1349 11.7987 11.7202 11.7069 11.6534 11.6667 11.6306 11.6336 11.6143

.10 .11.9870 12.2118 11.8368 11.7371 11.7265 11.6608 11.6787 11.6347 11.6396 11.6162

.166 12.1225 12.3266 11.8974 11.7638 11.7579 11.6728 11.6980 11.6416 11.6491 11.6193

.20 12.2003 12.3900 11.9325 11.7791 11.7761 11.6798 11.7092 11.6457 11.6547 11.6212

.25 12.3312 12.4938 11.9923 11.8048 11.8072 11.6917 11.7283 11.6527 11.6642 11.6245

.30 12.4810 12.6096 12.0618 11.8344 11.8434 11.7057 11.7506 11.6609 11.6753 11.6284

.333 12.5928 12.6943 12.1144 11.8564 11.8709 11.7162 11.7676 11.6671 11.6837 11.6314

.40 12.8494 12.8851 12.2377 11.9073 11.9356 11.7408 11.8076 11.6818 11.7036 11.6385

.45 13.0755 13.0504 12.3495 11.9524 11.9946 11.7629 11.8441 11.6951 11.7219 11.6449

.49 13.2810 13.1993 12.4538 11.9936 12.0479 11.7833 11.8784 11.7074 11.7390 11.6590

.495 13.3084 13.2191 12.4679 11.9992 12.0574 11.7860 11.8831 11.7091 11.7414 11.6518

1000 w D
TABLE H3.- COEFFICIENT FOR CENTRAL DEFLECTION DUE TO UNIFORMLY

qL
4

DISTRIBUTED LOAD q ON SIMPLY SUPPORTED PLATE

N=2 N=4 N=6 N=8 N=12

Poisson's
ratio, v Q P Q P Q P Q P Q P

Arrangement Arrangement Arrangement Arrangement Arrangement Arrangement Arrangement Arrangement Arrangement Arrangement

0.0 4.0807 4.1730 4.0666 4.0749 4.0642 4.0668 4.0634 4.0646 4.0628 4.0633

.05 4.0907 4.1843 4.0688 4.0758 4.0651 4.0671 4.0639 4.0648 4.0630 4.0633

.10 4.1042 4.1968 4.0719 4.0770 4.0663 4.0675 4.0645 4.0650 4.0633 4.0635

.166 4.1279 4.2154 4.0778 4.0793 4.0687 4.0684 4.0658 4.0655 4.0639 4.0637

.20 4.1426 4.2257 4.0816 4.0807 4.0703 4.0691 4.0667 4.0659 4.0643 4.0639

.25 4.1685 4.2428 4.0885 4.0833 4.0732 4.0702 4.0683 4.0666 4.0649 4.0642

.30 4.1996 4.2616 4.0972 4.0865 4.0769 4.0717 4.0703 4.0674 4.0658 4.0646

.333 4.2236 4.2754 4.1040 4.0890 4.0799 4.0729 4.0720 4.0681 4.0665 4.0649

.40 4.2806 4.3067 4.1208 4.0952 4.0872 4.0758 4.0760 4.0699 4.0683 4.0657

.45 4.3324 4.3339 4.1367 4.1009 4.0943 4.0786 4.0799 4.0715 4.0700 4.0665

.49 4.3804 4.3583 4.1519 4.1064 4.1011 4.0813 4.0838 4.0731 4.0717 4.0673

ul .495 4.3869 4.3616 4.1540 4.1071 4.1021 4.0817 4.0843 4.0734 4.0720 4.0674



1000w D
TABLE H4.- COEFFICIENT FOR CENTRAL DEFLECTION C DUE TO CENTRAL

PL
2

CONCENTRATED LOAD P ON CLAMPED PLATE

N=2 N=4 N=6 N=8 N=12
Poisson's
ratio, v Q P Q P Q P Q P Q P

Arrangement Arrangement ArrangArrangerrangement Arrangement Arrangement Arrangement Arrangement Arrangement Arrangement

0.0 6.4089 6.1942 5.8213 5.6916 5.7214 5.6494 5.6794 5.6341 5.6452 5.6225

.05 6.4942 6.2705 5.8562 5.7089 5.7395 5.6571 5.6904 5.6384 5.6506 5.6244

.10 6.5878 6.3549 5.8957 5.7290 5.7601 5.6662 5.7030 5.6436 5.6568 5.6267

.166 6.7268 6.4812 5.9566 5.7605 5.7923 5.6808 5.7229 5.6520 5.6667 5.6306

.20 6.8034 6.5510 5.9911 5.7785 5.8107 5.6893 5.7342 5.6570 5.6723 5.6330

.25 6.9281 6.6651 6.0486 5.8087 5.8416 5.7037 5.7354 5.6655 5.6819 5.6370

.30 7.0662 6.7917 6.1141 5.8432 5.8772 5.7204 5.7756 5.6755 5.6930 5.6418

.333 7.1668 6.8839 6.1629 5.8688 5.9039 5.7330 5.7923 5.6831 5.7014 5.6454

.40 7.3916 7.0896 6.2751 5.9275 5.9660 5.7622 5.8314 5.7007 5.7211 5.6540

.45 7.5844 7.2654 6.3747 5.9790 6.0218 5.7881 5.8666 5.7166 5.7389 5.6619

.49 7.7563 7.4216 6.4661 6.0257 6.0735 5.8119 5.8995 5.7312 5.7557 5.6692

.495 7.7791 7.4422 6.4784 6.0319 6.0805 5.8151 5.9040 1 5.7332 5.7579 5.6701

TABLE H5.- COEFFICIENT FOR CENTRAL DEFLECTION 1000 DUE TO UNIFORMLY
qL

4

DISTRIBUTED LOAD q ON CLAMPED PLATE

N=2 N=4 N=6 N=8 N=12Poisson's
ratio, v Q P Q P Q P Q p Q pArrangement Arrangement Arrangement Arrangement t Arrangement Arrangement Arrangement Arrangement Arrangement

0.0 1.4351 1.4206 1.2882 1.2738 1.2763 1.2683 1.2719 1.2670 1.2684 1.2661
.05 1.4544 1.4334 1.2922 1.2758 1.2779 1.2692 1.2727 1.2675 1.2688 1.2663
.10 1.4757 1.4477 1.2967 1.2783 1.2797 1.2704 1.2737 1.2682 1.2692 1.2667
.166 1.5073 1.4696 1.3039 1.2826 1.2827 1.2725 1.2753 1.2695 1.2699 1.2673
.20 1.5248 1.4819 1.3080 1.2851 1.2845 1.2738 1.2763 1.2702 1.2703 1.2676
.25 1.5533 1.5021 1.3149 1.2895 1.2874 1.2760 1.2780 1.2715 1.2711 1.2683
.30 1.5850 1.5249 1.3228 1.2946 1.2909 1.2786 1.2799 1.2731 1.2719 1.2690
.333 1.6081 1.5415 1.3288 1.2985 1.2936 1.2806 1.2814 1.2744 1.2726 1.2696
.40 1.6598 1.5791 1.3425 1.3075 1.2998 1.2853 1.2850 1.2773 1.2742 1.2711
.45 1.7043 1.6115 1.3548 1.3115 1.3055 1.2897 1.2882 1.2800 1.2757 1.2725
.49 1.7441 1.6404 1.3660 1.3228 1.3108 1.2936 1.2913 1.2826 1.2771 1.2737
.495 1.7493 1.6442 1.3675 1.3238 1.3115 1.2942 1.2917 1.2829 1.2773 1.2739



APPENDIX H

TABLE H6.- COEFFICIENTS FOR CENTRAL DEFLECTION OF SIMPLY

SUPPORTED SQUARE PLATE OF SIDE L FOR v = 0.0

FOR QUADRILATERAL ELEMENTS

1000 wcD 1000 w D
Coefficient a = c Coefficient =

Number of PL 2  qL 4

elements due to central concentrated due to uniformly
per side, load P distributed load q

N

QUAD1 QUAD5 QUAD1 QUAD5

2 11.886797 12.294189 4.115169 4.177057

4 11.704203 11.760712 4.068629 4.078833

6 11.653533 11.673154 4.064797 4.068828

8 11.632881 11.642431 4.063666 4.065832

12 11.616516 11.620020 4.062927 4.063869

Exact 11.600 4.062

TABLE H7.- COEFFICIENTS FOR CENTRAL DEFLECTION OF CLAMPED

SQUARE PLATE OF SIDE L FOR v = 0.0

FOR QUADRILATERAL ELEMENTS

1000 w D 1000 w D
Number of Coefficient a = Coefficient P -

elements PL qL4

per side, due to central concentrated due to uniformly
N load P distributed load q

QUAD1 QUAD5 QUAD1 QUAD5

2 6.276204 6.634375 1.427327 1.499818

4 5.728607 5.774994 1.279252 1.286955

6 5.670867 5.683594 1.271472 1.270605

8 5.647926 5.652885 1.268923 1.267993

12 5.629617 5.630804 1.267001 1.266436

Exact 5.600 1.260
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TABLE H8.- NONDIMENSIONAL EIGENVALUES OF SIMPLY SUPPORTED SQUARE PLATE FOR v = 0.0

N=2 N=4

Mode Triangular Quadrilateral Triangular Quadrilateral Exact
(r,s) element element element element solution

Arrangem QUAD1 QUAD5 QUAD1 QUAD5
Arrangement QUAD Arrangem Arrangement Arrangement QUAD

(1,1) 386.14 384.97 388.10 387.20 388.93 388.74 389.08 388.53 389.64

(1,2) 2 477.59 2 477.59 2 558.41 2 628.19 2 415.26 2 415.26 2 420.91 2 427.66 2 435.23

(2,2) 6 541.93 6 541.94 7 997.35 8 910.19 6 179.56 6 179.56 6 209.53 6 195.16 6 234.18

(. 7 149.37 10 008.09 10 116.30 10 413.34 9 482.08 9 334.84 9 620.47 9 769.04 9740.91

9 922.22 10 458.52 10 201.76 11 160.88 9 704.72 9 548.69 9 620.47 9 769.04)

(2,3) 18 181.25 18 181.25 22 162.54 25 570.30 16 144.46 16 144.46 16 358.12 16 436.21 16 462.14

(3,3) 32 072.08 35 119.77 39 554.70 46 018.82 30 843.18 30 676.12 31 361.90 31 498.11 31 560.55

TABLE H9.- NONDIMENSIONAL EIGENVALUES OF CLAMPED SQUARE PLATE FOR v = 0.0

N=2 N=4

Mode Triangular Quadrilateral Triangular Quadrilateral Upper Lower
element element element element bound bound

(r,s) (ref. 5) (ref. 5)

QUAD1 QUAD5 QUAD1 QUAD5Arrangement Arrangem ent Arrangement

(1,1) 1 128.01 1 176.20 1 163.36 1 132.04 1 270.30 1 286.59 1 280.74 1 282.36 1 294.96 1 294.93

(1,2) 5 527.46 6 430.53 5 569.76 5 618.99 5 638.97 5 662.55 5 685.23 5 767.57 5 386.66 5 386.42

*(2,2) -------- -------- ---------------- 11 813.51 11 938.64 11 972.7 11 821.4 11 710.8311 709.96

(1,3) 16 022.77 18 218.73 17 835.6517 162.29 16 290.10 16 028.25 16 534.9017 013.2417 313.5017 311.47

(3,1) 16 316.84 18 492.14 22 112.03 21 159.71 16 615.87 16 390.92 16 576.1317 082.72 17 478.1317 475.96

*(2,3) -------- -------- -------- -------- 25 272.33 25 633.44 25 762.75 25 460.7027 225.2027 194.90

*(3,3) -------- -------- -------- ------- 42 967.97 42 377.02 43 813.1242 606.7248 414.6048 368.80

*Values for N = 2 are quite high because of the small number of net degrees of freedom for analysis and,
hence, are not recorded.
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Figure H1.- Central concentrated load P on Q mesh of simply supported plate.
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qL
4.20 0.3

4.15 0.2

4.10 0.1

4.050
4.05 Il-- I -Exact

0 .083.125.166 .25 .5
Mesh size, N

I I I I I I
oo 12 8 6 4 2

Number of elements per side, N

Figure H2.- Uniformly distributed load q on Q mesh of simply supported plate.
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Figure H3.- Central concentrated load P on P mesh of clamped plate.

59



APPENDIX H

1.66 - v
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0.3

1.50 -
Coefficient for 0.2

central deflection,
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I I I l I I

00 12 8 6 4 2
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Figure H4.- Uniformly distributed load q on P mesh of clamped plate.
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TABLE I.- CENTRAL DEFLECTION OF SIMPLY SUPPORTED SQUARE PLATE

Central concentrated load Uniformly distributed load

Number of Triangular Quadrilateral Triangular Quadrilateral
elements element element element element

per side, N
Q P Q P

Arrangement Arrangement QUAD1 QUAD5 Arrangement Arrangement QUAD1 QUAD5

2 12.481019 12.609566 12.415948 12.969755 4.199645 4.261581 4.206310 4.281619

4 12.061776 11.834372 11.867523 11.930068 4.097157 4.086519 4.084618 4.094603

6 11.843386 11.705700 11.733735 11.751625 4.076928 4.071701 4.071428 4.075169

8 11.750629 11.660884 11.681019 11.687980 4.070332 4.067423 4.067305 4.069277

12 11.675284 11.628410 11.661173 11.664712 4.065832 4.064577 4.066784 4.067732

Exact solution 11.600 4.062

(ref. 8)

TABLE II.- CENTRAL DEFLECTION OF CLAMPED SQUARE PLATE

Central concentrated load Uniformly distributed load

Number of Triangular Quadrilateral Triangular Quadrilateral
elements element element element element

per side, N
Q P Q P

Arrangement Arrangement QUAD1 Arrangement ArrangementUA1 QUA

2 7.066235 6.791689 6.836933 7.349924 1.584978 1.524858 1.542626 1.628655

4 6.114092 5.843160 5.901673 5.945223 1.322830 1.294588 1.301405 1.296453

6 5.877212 5.720419 5.757109 5.761662 1.290939 1.278577 1.281229 1.276015

8 5.775625 5.675495 5.699818 5.698141 1.279936 1.273145 1.274434 1.270888

12 5.693018 5.641786 5.677693 5.676650 1.271947 1.269034 1.272375 1.270499

Exact solution 5.60 1.26

(ref. 8)



TABLE III.- COEFFICIENTS OF CENTRAL DEFLECTION OF SQUARE PLATE INCLUDING

TRANSVERSE SHEAR EFFECTS, USING TRIANGULAR ELEMENTS

[E = 4.788 GN/m 2 ; v = 0.0; L/t = 96]

Simply supported edges Clamped edges

Central concentrated Uniformly distributed Central concentrated Uniformly distributed
N Mesh load P load q load P load q

a b c a b c a b c a b c

12 Q 11.628511 11.643453 0.1281% 4.062843 4.064213 0.0337% 5.645222 5.660855 0.2772% 1.268392 1.270035 0.1293%

12 P 11.612820 11.626107 0.1138% 4.063288 4.064431 0.0283% 5.622482 5.637223 0.2632% 1.266093 1.267783 0.1335%

1000 w D
a Coefficient for central deflection without transverse shear effects for concentrated load P.

PL
2

1000 wcD
b Coefficient for central deflection with transverse shear effects for uniformly distributed load q.

qL
4

c Increase in the coefficient due to transverse shear = b a x 100.
a

TABLE IV.- NONDIMENSIONAL EIGENVALUES OF SIMPLY SUPPORTED SQUARE PLATE

pt2 L

N=2 N=4

Triangular Quadrilateral Triangular Quadrilateral ExactMode(rs) element element element element solution
(r,s)

Q P Q P
QUAD1 QUAD5 QUAD1 QUAD5

Arrangement Arrangement QUD QUAD Arrangement Arrangement

(1,1) 378.95 380.13 382.46 380.65 386.89 387.47 387.65 387,12 389.64

(1,2) 2 476.96 2 476.96 2 579.27 2 614.69 2 386.91 2 386.91 2 393.62 2 408.43 2 435.23

(2,2) 6 541.94 6 541.94 7 997.35 8 943.58 6 090.60 6 090.60 6 119.33 6 090.40 6 234.18

( 7 361.34 9 154.84 9 278.13 9 890.04 9 060.72 8 952.28 9 375.75 9 635.83

(1,3) 9 967.93 9 702.58 9 845.21 10 512.26 9 499.83 9 395.30 9375.75 9 635.839 740.91

(2,3) 17 713.33 17 713.33 20 601.13 25 672.94 15 670.75 15 670.75 15 917.84 15 980.11 16 462.14

(3,3) 29 521.72 32 609.40 36 340.21 44 996.98 29 507.27 29 477.98 30 132.14 29 981.26 31 560.55



TABLE V.- FINITE ELEMENT SOLUTIONS FOR LOWEST EIGENVALUE

OF SIMPLY SUPPORTED PLATE

Present elements
Number of ACM CFQ C-N
elements (ref. 1) (ref. 10) (ref. 5) Triangular Triangular

per side, N Q P QUAD1 QUAD5
Arrangement Arrangement

2 324.77 ------ 389.83 378.95 380.13 382.46 380.65
4 366.72 401.81 389.64 386.89 387.47 387.65 387.12

Exact

solution 389.636

TABLE VI.- NONDIMENSIONAL EIGENVALUES OF CLAMPED SQUARE PLATE

X= ptw2L4

N=2 N=4

Mode Triangular Quadrilateral Triangular Quadrilateral Upper Lower
(rs) element element element element bound bound

(ref. 5) (ref. 5)
Q P Q P

g QUAD1 QUAD5 QUAD1 QUAD5Arrangement Arrangement QUAD Arrangement Arrangement Arrangement

(1,1) 1 018.04 1 116.50 1 079.38 1 053.79 1 242.27 1 264.92 1 258.80 1 269.38 1 294.96 1 294.93
(1,2) 5 483.54 6 314.05 5 422.86 5 470.79 5 378.97 5 433.94 5 447.74 5 641.15 5 386.66 5 386.42

*(2,2) -------- -------- -------- -------- 11 186.95 11 403.98 11 387.93 11 313.97 11 710.83 11 709.96
(1,3) 16 011.69 17 837.24 17 948.30 17 150.06 14 895.44 14 783.07 15 517.61 16 494.60 17 313.50 17 311.47
(3,1) 16 160.85 18 399.41 21 599.55 21 159.71 15 656.77 15 620.66 15 556.55 16 548.29 17 478.13 17 475.96

*(2,3) -------- -------- -------- -------- 23 413.41 24 018.08 24 031.44 23 854.86 27 225.20 27 194.90
*(3,3) -------- -------- ----------------- 38 928.26 39 976.01 40 121.98 38 417.69 48 414.60 48 368.80

*Values for N = 2 are quite high because of the small number of net degrees of freedom for analysis and, hence,
are not recorded.



5 (X5 Y5) Material orientation
Y axis

Figure 1.- Triangular element geometry.

M dy

M V + xx x x

a 3 Mx
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Figure 2.- Sign convention for moments and shears.

65
65



CASE1 CASE2

(a) QUAD1.

31 2 3
11 5

(b) QUAD5.

6
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I h

h2h h

(c) Median plane for quadrilateral element.

Figure 3.- Quadrilateral element geometry.
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Ty
L/2

2 2

(a) Square plate of uniform thickness.

6 a

N 2 N=4 N-6 N=8

(b) Quadrilateral element mesh idealization.

N-2 N 4 N=6 N=8

(c) P arrangement of triangular element mesh idealization.

N=2 N-4 N*6 N=8
(d) Q arrangement of triangular element mesh idealization.

Figure 4.- Finite element idealization of square plate.
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13.0 \

Z \ACM

Notation Eshapment Reference

QI N T (Q mesh) Present paper

12.0 , \ P T (P mesh) Present paper
12.0Q1 Q Present paper

Q5 Q Present paper

Coefficient for Exact ACM R 1
central deflection, HCT T

1000 w D C-N  TUBA-6 T 3

2 TUBA-6 B-2 T (T-18) 4,9

PL 1.0B-3 / / B-3 T (T-21) 4,9
C-N T (Q mesh) 5

-2 / C-P T (P mesh) 5

/ / NQ Q 7
/ / CFQ Q 10

CFQ/ HCT/ T - Triangular; Q - Quadrilateral;
/ / R - Rectangular

10.0 / I I
2 4 6 8 1216 oo

Number of elements per side, N

Figure 5.- Central deflection we due to central point load P on simply supported
square plate.

,,-Q5
4.2 -1 -B-1

N Notation Element Reference-3 .,Nti shape

4.1 N T (Q mesh) Present paper
Exact P T (P mesh) Present paper

TUBA-6,/ Q1 Q Present paper
B-3 Q5 Q Present paper

Coefficient for 4.0 C-N ACM R 1

central deflection, HCT T 1
1000 w D 3.9 / Z T 2

c- / TUBA-6 T 3
4 /B-i T (T-15) 4

qL4CFQ ACM / /'NQ /HCTS/NQ B-2 T (T-18) 4,9

3.8 -/ B-3 T (T-21) 4,9

/ / C-N T (Q mesh) 5
/ / C-P T (P mesh) 5

// NQ Q 7
3.7 - I CFQ Q 10

/ / T - Triangular; Q - Quadrilateral;

/ / R - Rectangular

3.6 I I I I I I
2 4 6 8 1216 o

Number of elements per side, N
Figure 6.- Central deflection we due to uniformly distributed load q on

simply supported square plate.
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6.8 N

6.4 05

P -ACM

6.0 - Notation Element Reference
Coefficient for shape

central deflection, N T (Q mesh) Present paper
central deflection, T (P mesh) Present paper

1000 w D Exact -
c 5.6 w - - - - ,Q1 Q Present paper

2 -C-N , Q5 Q Present paper

C- - .-- ACM R 1
/ - - "-CFQ / HCT T 1

5.2 - / z T 2

/ C-N T (Q mesh) 5
SC-P T (P mesh) 5

NQ/ HCT/ NQ Q 7
4.8 CFQ Q 10

I T - Triangular; Q - Quadrilateral;

/ f R - Rectangular

4.4 / I I I I II
2 4 6 8 1216

Number of elements per side, N

Figure 7.- Central deflection w c due to central point load P on clamped square plate.

1.40 \

\ZQ5 \

1.35 - N -- Notation Element Referenceshape

\ACM N T (Q mesh) Present paper
P T (P mesh) Present paper

1.30 - P Q1 Q Present paper
Coefficient for Q5 Q Present paper

Nit/ ACM R 1

C-N HCT T 1central deflection, C-N R 1 _ -

1000 w D - -- Z T 2
c 1.25 -3 Exact , B-2 T (T-18) 4,9

qL B-2 / B-3 T (T-21) 4,9
C -2 // C-N T (Q mesh) 5

--,// C-P T (P mesh) 5

1.20 /NQ Q 7
CFQ Q 10

NQ CFQ/ HCT/ T - Triangular; Q - Quadrilateral;
/ R - Rectangular

1.15 I I/ I I
2 4 6 8 1216 o

Number of elements per side, N

Figure 8.- Central deflection wc due to uniformly distributed load q on

clamped square plate.
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12 N - 2, Q arrangement
- Exact deflection (ref. 8)

10

Deflection along 8
line of symmetry,

1000 wD

PL2  6

4-

2-

0 .1 .2 .3 .4 .5
Distance along center line, x/L

Figure 9.- Deflections along line of symmetry for simply supported plate due to
central point load.

12-

10-

8
Deflection along

line of symmetry,
1000 wD 6

PL2

4-

N - 2, P arrangement of mesh

2 - Exact deflection (ref. 8)

0 .1 .2 .3 .4 .5
Distance along center line, x/L

Figure 9.- Concluded.
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