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FOREWORD

This document is the final report for Contract NAS8-26579,
"Thermal Conductivity of Heterogeneous Mixtures and Lunar Soils."
The work was performed by R. I. Vachon, A. G. Prakouras, R. A. Crane
and M. S. Khader of Auburn University, Departmenf of Mechanical
Engineering, for the National Aeronautics and Space Administration,
George C. Marshall Space Flight Center. The period of performance

of this study was from October 1870 to October 1973.
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ABSTRACT

The heat transport properties of the lunar soil are important
in determining the thermal response of the lunar surface. This informa-
tion leads toward a wider understanding of the nature of the moon
and ultimately of the universe itself. The study to be described in
this report concerns itself only with one aspect of the greater problem;
the theoretical evaluation of the effective thermal conductivity of
granular materials. The basic approarch has been entirely analytical
as others have previously undertaken direct heat transfer measurements.
This work supplements the experimental results of the thermal probe
on the Apollo 17 mission as well as the experiments performed
on lunar samples which have been returned from previous Apollo missions.
Moreover the results are intended as an aid in future evaluation of
the extensive scientific data from both the manned and unmannéd
exploratory probes. The basic formulation is intended to be as general
as possible; this allows application of the final results not only to
terrestial bodies which are yet to be explored but also to a wide
range of non-space related technological applications. These include
such diverse engineering applications as nuclear power generation,
petroleum production, food processing, chemical production, underground

energy transmission and thermal insulation design. In addition

Xiti



analogous diffusion type problems are met in work concerning magnetism,

electricity and hydrodynamics.
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I. INTRODUCTION AND OUTLINE OF REPORT

Considerable effort has been expended over the past sixty years
to find means of calculating the effective thermal conductivity of

heterogeneous mixtures from the conductivities of the individual com-

ponents [1-128]f Interests in developing techniques for such calcu-
lations have been motivated by the widespread applications of hetero-
geneous mixtures in such diverse fields as nuclear power generation [21],
food processing [76], chemical industry [75], process equipment design
[37], ceology [23], petroleum production [36], thermal insulation

design [26], cryogenics [60] and foundary work [58].

About three years ago researchers at the Marshall Space Flight
Center in Huntsville were working on the development of a thermophysical
model of the Tunar surface. During the course of this development it
was found that a method of predicting the effective thermal conductivity
of the lunar soil was required. A review of the availtable literature
indicated that application of the proposed correlations to the case of
Junar sofls resulted in considerable error between analytical and
experimental values. As a result, a study was undertaken at Auburn
University to determine the causes of failure and develop new correla-

tions. The scope of this study is to extend or develop analytical

*
Numbers in brackets refer to references cited.
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techniques of predictina the constant thermal conductivity of hetero-
geneous mixtures and include methods for the prediction of variable
thermal conductivity. The techniques developed in this report are

as agenerally applicable as possible, but specific enough for the
analytical results to be compared with experimental data for many
classes of heterogeneous mixtures, and in particular with the experi-
mental results on basalt powders under vacuum conditions.

The term heteroqeneous mixtures encompasses a large number of
sinale-phase, two-phase or multi-phase physical systems, an excellent
classification of which is aiven in [70]. The common characteristics
of all these systems, with respect to the conduction of heat, is the
thermal conductivity and volume fraction of each individual phase.
Apart from these characteristics, the conduction of heat in hetercgeneous
mixtures in ageneral depends on the followina parameters.

1. Particle shape and size distribution;”

2. Pore shape and size distribution;

3. Coordination number;

4. Contact resistance.

Obviously, all parameters do not enter the problem for each class of
heterogeneous mix:ures. For examnle, in the determination of the
effective thermal conductivity of emuTsions and suspensions the Tast
three parameters are not relevant. The relevant parameters in each
case can be determined by considerina the modes in which heat is
transferred through the mixture. It has been aenerally aareed by the
investicators that the transfer of energv occurs by three mechanisms

(29, 30, 32].
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1. Through the voids by conduction, convection and radiation;

2. Through a series path consisting of an effective solid-path
lenath and void-path lenath;

3. Through the solid phase, the eneray flowing from one
particle to the next throuah the area of contact.

The extent to which each mechanism influences the overall heat transfer
process depends on the geometry of the system under consideration,
together with the environment the heterogeneous mixture is subjected
to, as defined by temperature, pressure, and mechanical loading conditions.

The effective thermal conductivity of a heterogeneéus mixture may
be defined as the ratio of the overall heat flux to the overall tem-
perature gradient. This approach requires that the material be
treated as a continuous single phase so that the temperature distri-
bution predicted by such a model coincides with that of the physical
system only "in the large" [4]. This concept has proven to be a very
effective tool in predicting the transfer of heat through heterogeneous
systems, the dimensions of which are much larger than the dimensions
of the individual components.

Construction of a model that represents reasonably well hetero-
geneous materials has proved to be a difficult problem. Calculation
of the effective conductivity of this model has proved to be equally
complex. The difficulty does not arise from ignorance of the
fundamental laws invoived but from complications in applying them [20].
A detailed solution of the conduction problem would require knowledge
of the shape, size, location and conductivity of each particle in
the system, together with the interactions between particles. Further-

more, a complicated numerical method of solution would be required.
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To overcome these difficulties, investinators have generally followed
two methods of approach.

1. A basic repeated structural unit that represents reasonably
well the heterogenecus mixture has been isolated, and equations
have been derived from special geometries of this unit cell based on

the assumption that heat flows in straiacht lines, normal to parallel
isothermal planes.

2. Based on the assumption of a reaular or random distribution
of spherical particles in such small concentrations that there is no
field interaction, the temperature distribution in the system is
determined. Subsequently, the effective thermal conductivity of
the system is evaluated from the Fourier-Biot law.
In this study both methods have been analyzed and refined, so
that they can be applied to many classes of heterogeneous mixtures, over
a wide range of pressurgs and temperatures. In the proposed developments,
consideration will be primarily directed to two-phase granular systems
and powders for which the following assumptions are valid.

1. The thermal properties of the constituents are both homogeneous
and isotropic;

2. A1l samoles are large in comparison with individual particle
size;

3. A1l samples contain a sufficient number of particles so that
they can be considered typical of the selected packing;

4. The convective component of heat transfer is sufficiently
small to be nealected.

The first three assumptions are consistent with the concept of the
effective thermal conductivity of granular materials, and permit one
to extend the results obtained from the analysis of a unit cube of the
material to the packing as a whole. The fourth assumption is based on
the studies of Waddams [6] and Wilhelm et al [37] who concluded that

natural convection is negligible for pressures below 10 atmospheres, and
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particle diameters less than 3 to 6 mm. Consequently for most granular
materials and powders the transfer of heat by natural convection is
negligibly small.

In Chapter 2 of this report the background information, consisting
of prominent models proposed in the literature, is presented. The
available heat transfer models for heterogeneous systems are classified
as being either flux law models or Ohm's law models. The Ohm's Taw
models are further classified according to the heat flow assumptions
as being either uniform heat flux models or paraliel isotherms models.

In Chapter 3 several representative models have been applied to
172 granular materials, and the calculated values have been compared
to experimental results. The comparisons are presented in a graphical
form. A careful analysis of Figures 3-1 through 3-17 indicates that
the discrepancy between the analytical models and the physical granular
systems can be attributed to one of the following causes.

1. Failure to account for finite particle contact area;

2. Failure to utilize a realistic qeometry, or a realistic
- distribution of the two phases;

3. Idealized heat flow assumptions.
As a result of this analysis, the aim of this study has been focused
on an attempt to develop models in which the above three sources of
error are partially or totally eliminated.

The effect of the uniform heat flux and parallel isotherms assump-
tions on the predicted thermal conductivity of randomly packed granular

systems has been investigated in Chapter 4. Special attention has been
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directed to the idealized heat flow assumptions, because the possibility
of utilizing either one simplifies considerably the problem. However,
application of the uniform heat flux assumption to a physically realistic
probabilistic model results in calculated effective conductivities

that are too low, whereas application of the parallel isotherms assumption
results in calculated effective conductivities that are too high. The
reason for such behavior is that infinite and zero conductivities in

the normal to the heat flow direction are associated with the parallel
isotherms and uniform heat flux assumptions respectively.

In Chapter 5 a parallel fsotherms probabilistic model has been
developed. This model is based upon an extension of concepts originally
proposed by Tsao [8], on the basis of which the effective thermal con-
ductivity can be expressed in terms of the mode, 1, and the standard
deviation, ¢, of the one dimensional porosity as introduced by Tsao.

The mode, u, has been approximated by the bulk porosity of the granular
system, and the standard deviation, o, has been correlated to the solid
volume fraction only, on the basis of experimental evidence., The
resulting equation has been used to determine the effective thermal
conductivity of packed beds with solid fractions between 0.30 and 0.70.

The same basic concepts have been applied in the development of
the stochastic model of Chapter 6. Noting that the effective conductivity
tends to reach a fixed value for o sufficiently large, limiting ex-
pressions have been developed for the effective thermal conductivity

utilizing both the parallel isotherms and the uniform heat flux assumptions.
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Then, rather than assuming both an unrealistic heat flow model and a
distorted distribution, an experimentally derived correlation factor
has been obtéined for each of the limiting expressions. In addition,
an experimentally derived weighting factor has been obtained relating
both 1imiting expressions to experimental data.

In Chapter 7, the packing characteristics of random heterogeneous
mixtures have been utilized to define the phase distribution in a unit
cube of a granular material, by extending the digital simulation technique
originally proposed by Baxley and Couper [20]. The temperature dis-
tribution in the unit cube was then determined assuming both three-
dimensional heat transfer, potential field interaction, and contact
resistance between particles. Finally, the effective thermal conductivity
of the material was determined bj summing heat flows in the direction
of the mean heat flow only.

A1l models discussed up to this point are generally applicable
to granular materials at interstitial gas pressures ranging from
atmospheric to vacuum. In particular, for a vacuum environment, the
basic modes of heat transfer are conduction through the granules and
contact areas, and radiation. This situation is analyzed in Chapter 8
on the basis of a parallel isotherms model consisting of an array of
spheras. The effect of changes in bulk density and mechanical loading
with depth are included, and compared to experimental data on lunar fines.

In Chapters 9 and 10 the results obtained by all models are com-
pared and evaluated with respect to the simplifying assumptions in-

troduced in each model. Moreover, recommendations are made concerning
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the extent of the applicability of each model and the areas where
more work is required in order to improve the dependability of the
predicted effective thermal conductivity values.

The dependence of the effective thermal conductivity on pressure
and temperature, at reduced interstitial gas pressures, has been
generally recognized and treated extensively in the 1iterature. Re-
duction of pressure to extremely Tow values decreases the effective
thermal conductivity of the system by one or more orders of magnitude
[62]. This has been attributed to the decrease of the apparent gas
conductivity when the mean free path of the gas molecules is of the
same order of magnitude or Targer than the effective pore size, as
indicated in Appendix A. Also, at very low pressures, experimental
evidence shows that the effective thermal conductivity of the system
is very sensitive to temperature changes [3], indicating that radiative
heat transfer between particle surfaces is a controlling factor. The
aspects of radiation heat transfer are treated in Appendix B.

In the case of heat flow in granular svstems "in vacuo", the con-
vergence of the heat flux Tines to the contact areas between particles
is characterized by the contact resistance, as indicated in Appendix C.

It is evident that for the development of an accurate model for
the prediction of the conductivity of granular systems, the geometry
of the model should rely heavily on the characteristics of packed beds.
A short review of the advances in packing theory is presented in

nendix £, Twe of th ristics of packed beds are of particuiar
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importance to the heat transfer problem. These are the effective pore
size and the coordination number, and are treated separately in
Appendices D and E respectively.

In summary, the content and results of this report are as fodlows:

1. A critica)l review and classification of previously published
models is presented together with a review of the parameters associated
with the flow of heat through granular systems;

2. Previously published models have been compared to a large
number of experimental data, the results have been evaluated with respect
to the basic assumptions introduced in the development of each model,
and the causes of failure have been summarized;

3. A theoretical development is presented about the effect that
the assumptions of uniform heat flux and parallel isotherms have on
the calculated effective thermal conductivity, and the theory has been
substantiated by experimental evidence;

4. Four new models based on recent results of packing theory
have been developed, and have been successfully applied to granular
materials for a pressure range from atmospheric to vacuum;

5. The sources of error for all models have been analyzed and
related to the geometry and modes of heat transfer;

6. Detailed recommendations with respect to the geometric parameters
required for the description of a generalized physically realistic

model have been presented;

7. The results of all models have been utilized in the construction

of a recommended physically realistic model, which cannot be analyzed
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at present due to lack of experimental data required for the determination

of a number of the parameters.



II. BACKGROUND

Because of the broad occurence of systems involving heat transfer
in granular materials, considerable attention has been given to the
formulation of a model to allow the prediction of the effective
thermal conductivity. Unfortunately, the complexity of the mechanisms
contributing toward heat flow is such that no truly satisfactory model
has been obtained. The continued proliferation of alternate models
attests to these difficulties. Nevertheless progress has been made
in developing a representative model and it is now possible to deter-
mine the effective therﬁa] conductivity of systems whose constituent
conductivities are of similar magnitudes.

Available heat transfer models for heterogeneous systems are
generally classified as being either flux-law models or Ohm's law
models. The flux law model appears to have received the earliest

attention and will be discussed first here.

Flux Law Models

Flux-law models are characterized by their general approach to
the determination of the effective thermal conductivity. First a
solution is found to the equation describing the temperature field.
The heat flow and temperature gradient are also sought. The Fourier-

Biot law of heat conduction is then applied to determine the effective

1
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thermal conductivity. The principal advantage of this approach iies
in the fact that the actual curvature of heat flux lines and isotherms
may be taken into account. Most of the methods applicable to heat
transfer in heterogeneous materials were originally developed for use
in electrical theory, magnetism or hydrodynamics. However each case
is applicable to heat transfer in heterogeneous systems in that the
same mathematical equations apply.

In considering a cube of heterogeneous material containing a
single particle, the fundamental heat conduction equation may be written
separately in each of the two phases. It is stipulated that the boundary
conditions require a continuous temperature distribution and a
continuous heat flux within the field. If each phase is itself
isotropic and homogeneous the equations reduce to the form of Laplace's
equation. Solutions of this equation are well known.

Maxwell [9] used this technique in finding an expression for the
effective conductivity of a suspension of spheres

Ke kd+2kC-ZE(kc-kd)

© = — (2-1)
c kd+2kc+ s(kc—kd) '

In the derivation of this equation, it was assumed that the spheres

were at sufficient distances from one another that the disturbance of the

flux Tines around each particle did not extend to neighboring particles.

It f0116ws that the geometry of the array of particles does not influence

the effective thermal conductivity wherever Fquation {2-1) applies,
Several authors have worked to extend the model for dilute

suspensions to include solids of alternate geometries. Burgers [10]
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and Fricke [11] developed equations for disperse suspensions with
ellipsoidal solid particles. Many particle shapes, including flakes,
spheres and needles, may be approximated by ellipsoids by properly
selecting the relative size of the semi-principal axes. Burgers'
equation was

(1’E)kc + eFk

d
o7 T e o

In this relation F represents the ratic of the overall average
temperature gradient in the discontinuous phase to that in the continuous

phase. This ratio was found to be given by

SRR

i=1

Thé factor, fi’ referred to as the depolarization factor, depends on
the length of the semi-principal %fes of the e]ljpsoid. These factors
have been normalized such that Z f. = 1. If the three semi-
principal axes are equal the pargfgles become spheres and Equation (2-2)
reduces to Equation (2-1).

DeVries [12] applied Equation {2-2) to granular materials in
calculating the thermal conductivity of soils. He found that if
0 f—kd/kc < 10 then the error obtained from Burgers' equation_wou1d be
less than 10%. Obviously if the conductivities of the constituent
phases are sufficiently close there will be very 1ittle disturbance in

the flux lines around the particles. Thus the restriction stated by

Maxwell is satisfied even though the particles are in close proximity.
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HamiTton and Crosser [13] extended Burgers' development to include
particles of arbitrary shape. The particle shape was defined in terms of
sphericitity, v, that is in terms of the ratio of the surface area
of a sphere compared to that of a particle having the same volume [66].
An empirical relation was developed giving the ratio of the average
temperature gradients, F, as a function of the sphericity and the
constituent conductivities. The modified Maxwell equation used by

Hamilton and Crosser is

kg ) ky + (m-])kC - (m-1) Z(kC - kd)
E—- = — (2-3)
c kd + (m—])kc + & (kc - kd)

where m = 3/y. It was found that whenever 0 i-kd/kc-i 100 the shape

of the solid particles had 1ittle influence on the overall conductivity
of disperse systems. For spherical particles (v = 1) Equation (2-3)
reduces to Maxwell's equation.

Lord Rayleigh [14] considered the case in which the interaction
between particles could no longer be neglected. In essence Laplace's
equation was solved to find the potential field in and about a single
spherical particle. Noting that the Laplace equation is linear it
was then possible to utilize the principle of superposition to determine
the equivalent field for a given particle distribution. Using a cubic
array Lord Rayleigh, with a slight correction given by Runge [15],

obtained
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2k_+k _ 3k _-3k,\ _10/3
( c d) - 7% - 0.525 (—E——d) .

ke c d 4kc+3kd
E-_ = ) (2‘4)
¢ 2k +ky 3k -3kg\ _10/3

(—k—CTE;l‘) + e - 0.525 (m) £

It should be noted that this equation reduces to Maxwell's equation
wheneve} c is suffic{énfay small that the last term in the numerator

and denominator may be neglected. Meredith and Tobias {16] have followed
Lord Rayleigh's development including a larger number of terms from

the infinite series defining the temperature field. The equation

is
2k _+k 6k +3k,\ _1 3k -3k \ 5
K kc_kd - 2% 4 0.409(m7973~~k-‘1>F - 2.133(%—°+—,,E‘i> €
___e__ - ¢ d *C d C 2 d (2_5)
k
c 2k +k Gk _+3k,\ _Z 3k -3k, \ X
kc__kd v+ 0.409(———4kc+3kd) . 0.906(“m4kc+3kd>63
¢ "d ¢ N ¢ 7%

Both equations compare closely with available experimental results
obtained for spheres packed in a cubic geometry. However these
equations do not appear applicable to systems with widely differing
constituent conductivities [16]. Moreover, results do not compare
favorably with those obtained for random packing of spheres. The
explanation for this descrepancy is offered by Laubitz [17] that
although the mathematics is exact the model is so artificial that
it radically departs from real powders.

Bruggeman [18] allowed both for particle size variation and
arbitrary particle orientation, by assuming that various elements

of the same type have in their neighborhood all possible distributions
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of elements of all possible types, in the same frequency in which
the different types are encountered in the two-phase mixture. He
applied Maxwell's equation to find the effective conductivity of an
arbitrary two-phase system, and then using this value as the con-
ductivity of the continuous phase he applied Maxwell's equation again
to find the effective conductivity when one more particle is added
to the system. If this process is repeated indefinitely, for an
infinite particle size range, the effective conductivity approaches
a Timit given by
k- k, k. /3
T () 6

o d e
Using the same basic approach but accounting for only two additions

of the solid particies, Meredith and Tobias [19] obtained a second

relation
EE i 4kc + 2kd - 2c(kc-kd) 4kC + de - e(4kc-kd) (2.7}
k —_— —
C 4kc + de + e(kc—kd) 4kc + de - e(kC - 2kd)

Baxley and Cooper [20] utilized a digital simulation technique
to describe heat transfer in heterogeneous materials. The model
incorporated a random placement technique to arrange solid cubes in
a sgquare array. The Laplace equation was then written for the entire
two phase region and was solved utilizing a numerical relaxation

technique. Once having obtained the proper temperature distribution
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for the system, the effective conductivity was obtained by applying
the Fourier-Biot law. The resulting equations were given in terms

of a computer code. Calculational results obtained from the model
appear to correlate data for suspensions with good accuracy. The
authors note that solid particles of any shape could be considered

by constructing such particles from sufficiently small cubes. The
success of this technique has motivated the construction and analysis
of a similar model for powders and granular materials, which is one
of the subjects of this study.

Summarizing the flux law models it is found that they may be
generally categorized as extensions of the Maxwell model or as finite
difference models. The models derived from Maxwell's formulation may
suffer from one or more of a series of shortcomings as appliied to
granular systems. Maxwell's original equation failed to account for
the interaction of the flux lines around particles. Other equations
are restricted to a regular and quite unrealistic array. Each
breaks down when applied to systems in which the conductivity of the
discontinuous phase is several orders of magnitude larger than that of
the continuous phase. Ideally, for systems in which the solid particles
touch, ke/kc should approach infinity as kd/kc approaches infinity;
however, this condition is not met in these equations [16]. The
reason for this discrepancy appears to be explained by Meredith and
Tobias. They suggest that it is due to the neglection of higher order

terms in the equation defining the temperature distribution. Thus,
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these equations do not appear applicable to the case of granular

systems in a medium of extremely low conductivity.

Ohm's Law Models

The mathematical complexity of the formulation and solution of
the flux law model has precluded consideration of anything but the
simplest shaped particles and arrangements. Since these formulations
have not proved satisfactory in describing most physical systems of
randomly packed powders, attention has more recently centered around
alternate approaches. Here the Ohm's law model has been used extensively,
This model bypasses the determination of the temperature field and seeks
instead to evaluate the equivalent thermal resistance for a given array.

Wiener [7] was among the first to apply the electrical analogy
to the problem of heat transfer in heterogeneous systems. While he did
not obtain an exvression for the effective thermal conductivity, it

was shown that the value would lie between those predicted by the following

formulas:
k k
d'c
Koo = (2-8)
e J— —_—
> E:k.C + (]-e)kd
kep = Ekd + (1-E)kC (2-9)

These two equations, referred to as Wiener's bounding formulas
(Wiernerschen Grenzformeln), represent the cases in which the component
resistances are arranged respectively in series, Figure {(2-2a), and

in parallel, Figure (2-1a) while Equations (7-8) and {2-9) establish
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upper and lower bounds on the effective conductivity they are not
intended to be used to calculate the actual value. This is because
the effective conductivity of the system is strongly influenced by
the constituent's arrangement [21]. Since neither case corresponds
to the actual geometrical arrangement neither formula is satisfactory
for such cases.

Several applications have been made of Wiener's results. Note
that Equation (2-9) represents the effective thermal conductivity as the
weighted arithmetic mean of the constituent conductivities; Equation
(2-8) represents the thermal conductivity as the weighted harmonic
mean. Lichteneker [22] proposed an equation in which the effective

conductivity corresponded to the weighted geometric mean

_ (1—?) £
ke = kC kd (2-10)

Woodside and Messmer [23] report that this equation is generally valid
for the range 0 < kd/kC < 20. Whenever kd/kc exceeds 20 the Lichteneker
equation overestimates the effective conductivity.

Bruggeman [18] states that Equation (2-10) allows for random
orientation of particles in two directions only. For a truly three-
dimensional random dispersion he generalized the Lichteneker equation

to obtain

( =k, L0-0) (1-k2)] CAUDE (2-11)
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where
kd -k

Cc
eV VRV, * g

Another method of generalizing Wiener's results involves geometrically

3
k=3

rearranging the physical system. It would seem reasonable that, since
the parallel and series arrangements represent the Timiting cases, an
equivalent system composed of elements acting partly in parallel and
partly in series could be used to represent the physical system.

Several authors have approximated a granular system by representing
the solid particles as cubes arranged in a cubic lattice. The uniform
spacing between particles is maintained such that the idealized system
retains the proper volume fractions. A typical unit cell of this model
is represented in Figure (2-3a). It is assumed that the effective thermal
conductivity may be determined by considerina the equivalent electrical
resistances in paraliel and in series and bv applying Ohm's Taw.

In taking such an approach, certain additional simplifying assumptions
are generally required. The assumption of straight and parallel heat
flux Tines yields the equivalent electrical network for the cubic
array shown in Fioure (2-3b). An alternate assumption of straight and
parallel isotherms leads to a different equivalent network as shown in
Figure (2-3c).

The two networks result in different effective conductivities both
of which are approximations to the exact solution. In fact, these two
cases represent two bounding solutions to the simplified model. The

exact solution will yield an effective conductivity between those given
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by the two electrical networks. This is more clearly seen when one
considers a nodal point representation of the temperature field in
the prosted system. If the resistances normal to the direction of heat
flow are assumed to be very large, the heat flow will remain uniform in
the direction of the temperature gradient. Conversely, if the lateral
resistances are taken as zero the potential will be equal in each lateral
plane. Therefore, the assumption of linear and parallel heat flux lines
is eguivalent to the assumption of infinite lateral resistance; the
assumption of parailel isotherms.is equivalent to that of zero lateral
resistance. The actual laterial resistance will, of course, fall some-
where between zero and infinity so that these two cases form the
bounding conditions. Whether the two solutions represent the bounding
conditions for the physical system depends upon the suitability of
the proposed model.

It is generally assumed that either one or the other bounding
condition represents a close approximation to the flow of energy in the
proposed model. The suitability of this assumption will be discussed
after the respective models have been considered. In compensation for
this approximation it has been found possible to consider much more

complex geometries than those which are possible using the flux=law model.

Uniform Heat Flux
Lichteneker [24] and son Frey [25] developed the uniform heat-

£lux model shown in Figure (2-3b). The effective thermal conductivity is

then given as



1 kc 1]
) (1-F +e)+ £ (S-¢)
Eg: kdl (2-12)
1 1
¢ (1-&)+ =8
d

It should be noted that this geometry results in a definite gap between
particles and a complete absence of solid to solid contact. Nhi]e such
a model is suitable for dilute suspensions it is doubtful if it could
adequately represent granular materials. In cases where the gas
conductivity is much less than the solid conductivity, solid to solid
heat conduction may, in fact, be the major mode of heat transfer. In
such cases it might be anticipated that the proposed model would yield
consistently low results, especially in 1ight of the fact that the _
assumption of linear heat flux lines should lead to low results.

A number of investigators have continued to develop a similar
model using various schemes to overcome the problem of the refatively
large gap between particles. One such technique is to distort the solid
cube, elongating it in the direction of heat flow. Woodside and Messmer
[23], Schotte [26], Smith [27] and Willhite, Kunii and Smith [31] developed

models assuming such an arrangement. Woodside and Messmer obtained

- 2
ke ) (g + 0.03) kd

o= = + 0.97 - ¢ (2-13)
k. 003k + ek

The equation of Willhite, Kunii and Smith is

=
—
.

_ /[ k O\

e _ — c Y C -
= o= 1+efr- L) XL L 4
ke k kd) ” k kd) : (2-14)
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where 2
kd-kc sine
sin%e Ky
N K k k -k
n 44D q)cose]| - 4 < (1-cose)
k k k
C c d

o= sin ' ﬁJf%

In this relation n is the average number of contact points on the particle.
The experimentally derived parameter,y , represents the ratio of the
effective length of the solid particle to the diameter of the physical
particle. The authors state that a value v =2/3 correlates a wide

range of data.

A number of investigators have continued to develop similar
models using various Scheme§ to overcone the problem of the relatively
large gap between particles. Bernstein [44] effectively utilized this
approach in arranging rectangular particles in a staggered two dimensional
array. For high porosity (e > 0.5) systems the solid cube was distorted
by lengthening its dimension in the direction of heat flux while
decreasing its lateral dimensions to maintain the proper volume fractions.
For Tow porosity systems (¢ < 0.5) Bernstein interchanged the solid and
void regions of the unit cube so that the effective thermal conductivity

is given by the equations.

k _ K
e _ 4F d _
I K + (- 2) (2-15a)
¢ (l + —53) ¢
K
d
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™
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A second scheme of reducing the gap between particles considers a portion
of the solid phase to pass entirely through the unit cube. This accounts
for‘the residual conductivity of the system in a pure vacuum. A typical

element of this type is shown in Figure (2-4). Several authors [ 28-34] have

used this technique to include contact between particles. However, most
of these developments have required the inclusion of one or more
parameters which must be experimentally obtained for each sample., Gen-

erally this information is not available.

Using the same basic assumption of linear heat flux lines Schumann
and Voss [35] developed a model using a somewhat different geometry. It
was assumed that a unit cell of the material could be replaced by an
equivalent geometry in which the two phases are divided by a rectangular

hyperbola. Thus the solid phase appears as a somewhat distorted

“cylinder" arranged in a square array oriented normal to the direction
of heat flux. The varying fraction of the snlid phase seems much more
representative of the physical system. The effective thermal conductivity

obtained by Schumann and Voss is:

k 3 (1+p)(k ~k,)  k
e =3, 1 - (1-8) P1+p) (k kg [c]+ ]}
= (T-g)” + {'I + 1
kg kg
(2-16)
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where p is implicitly defined by the relation:

1_g:p(p+1)1n1—;9~p

The inclusion of an implicit relation makes the equation somewhat

difficult to solve analytically although a graphical tabulation has

been qiven.

In comparison to the Lichteneker and son Frey model, the model
of Schumann and Voss is much more realistic in representing granular
systems in that the finite gap between particles has been eliminated.
Nevertheless the effective thermal conductivity obtained from this
equation still tends to fall below experimentally obtained values. This
tendency was noted separately by Preston [36] and wiihelm [37]. Both
authors presented correction terms to the Schumann and Voss equation
to bring the calculated value closer to the experimental data. Wilhelm's
correlation has been widely used, and its predictions are in good agree-
ment with many experimental data for granular materials since it was con-

structed from these data. This equation is
k

log(a x 10°) = m+n ( 9 (2-17)
T-¢
where A in cal/cm-sec-"K is an error term to be added to calculated con-

ductivities according to Schumann and Voss, and the "least squares"

values of the constants are
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Gorring and Churchill [4] used a development somewhat analogous
In this case,

to Schumann and Voss' for three dimensional particles.

an equivalent geometry was assumed in which the two phases were separated
The solid particles then appear as distorted

by a parabola of revolution.
For this geometry the effective

"spheres" arranged in a square array.

ke . \/B’-Bx +x
k C B+x n
€ ef1- —)CB o V3B
d

conductivity is given by

E

-‘l3—tan‘] (\,—%_)‘+ } 1 - f;i l (2-18)

kc 3
where: B = [C—(-Fd—"k—_ﬁ)-

for & < %D' x, = 1.0
¢ - 10
o

Systems of spherical particles arranged in a square array were

studied by Hengst [38] and later by Lyalikov [39] and Kaganer [40].
Kaganer's expression for the effective conductivity of granular systems

assumes the form

k nek k k

e d d d

_ = = = ]n T - 1 LZ—'[Q)
2(kd kc) kd kC kc
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In this expression n is taken as the average number of contacts for

each particle. Note that the geometry utilized in this model is pre-
cisely the same as that assumed by Lord Rayleigh in the case of touching
spheres (e = 0.524). Equation (2-18) is suggested for use with packing
fractions greater than 0.524. Physically this is difficult to visualize
as denser packings are not possible with the prescribed geometry.
Deissler and Eian [41] accounted for variations in packing frac-
tions in a different manner. Two separate models were developed to
account for such variations. One model considered spheres in a cubic
array with point contact; the second used cylinders in a square array
with Tine contact. Including the cases in which the material is com-
posed of all solid or all gas, the relation between ke/kC and kd/kC
is then known for four values of =. For any other packing fraction
the effective conductivity could be found by interpolation. Krupiczka
[42] used the same approach but introduced solutions for the spherical
and cylindrical arrays based on flux-law models. Krupiczka then curve

fitted his solutions together with certain experimental data to obtain

e

k

kC

k _ (kd) [0.280 - 0.757 1n {1-€) - 0.057 1n (kd/kc)} (2.20)

c

Loeb [69] was one of the first to deviate from an assumed rigig
geometry and account for the distribution of the two phases. His
basic assumption is that if a unit cube of the two-phase material is
subdivided into parallel to the heat flow tubes, the dispersed phase

may be arranged to lie completely within a set of tubes (Figure 2-1b).

An electrical analogy is then wrilten for each tube, and the conduc-
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tance of the unit cube is expressed as the sum of the tube conductances.

The final expression for the effective thermal conductivity is

p
kK, =k 1- ¢
e Tk [(1-Pc)+ k- (2-21)
where: P_ = fraction of cross-sectional area occupied by the
c
tubes
PL = fraction of tube length occupied by discontinuous

phase.

Parallel Isotherms

As previously noted, the development of an Ohm's law model requires
first the selection of an equivalent geometry. Then either the assump-
tion of uniform heat flux or parallel isotherms may be used. It is
not surprising, then, that frequently models of each type have been
developed starting from the same basic configuration.

Russell [43] selected the same cubic array of cubical partécles

as Lichteneker and son Frey. Assuming parallel isotherms, Russell

obtained
2 kC 2
X ? o+ kg (1-8)
e .
k. 2 k 7 (2-22)
c - §+....E.('|__€J+E)

Here again, the model does not consider solid to solid contact so
that it might be anticipated that results would tend to fall below
experimental values. Laubitz [17] reported that Russell's equation
typically gave results which were low by about a factor of two.
Jefferson [78) derived an expression for spherical particles,

each enclosed in a unit cube of the continuous phase. His derivation
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is based on one-half such unit (Figure 2-2b), and the resulting

equations are

(0.5+n) Ky Ke
= k 1-*-—1-—]4’ nz 0.5 k. *+h K
ke ™ fc seen)? 1 ageeny? L0 et

(2-23)

2k k

d d 2

kzk.k[_.____——u-.[n(_‘)‘k_k]
C d (kd - kC)2 kC d C

n=0.403 ()3 .05

Baxiey and Couper [207] report that for suspensions and emulsions

the average error of Equation (2-22) is 21%.

Godbee and Ziegler [45] developed a parallel isotherm model
analogous to that proposed by loodside and Messmer. The solid
particies in a heterogeneous system were replaced by a pore free
parallelopiped within the representative material cube., The authors
have obtained an exnression relating the dimensions of the solid
region to the material volume fractions and the particle size distribution

so that the effective thermal conductivity is given by the relation

(2-24)
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where

o
1

_/s0 1/3
(%)

Topper [46], Webb [47] and Woodside [48] proposed models incorporating
spherical particles arranged in a cubic lattice similar to that of Hengst.
The introduction of spherical particles will tend to reduce the gap
between particles. Unfortunately the method is restricted by the
requirement that the spheres do not overlap, i.e. the solid fraction
must be less than 0.524. Most granular materials tend to pack to a
higher density so that this model is of restricted application. The
formula developed by Woodside is

k
£

BN C TSI

(2-25)

where:

-9
o

0 <€ <0.524
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Tsao [8] was able to overcome the problem of introducing solid
to solid contact while simultaneously introducing a truly randomly
packed array. The development of the stochastic model is indicated in
Figure (2-5a). Considering a typical unit cube, the heterogeneous material
was divided into a large number of laminae oriented normal to the
direction of heat flow. By taking the Taminae sufficiently thin the area
of each phase will remain essentially constant across the element. Thus
the two phases may be viewed as acting in parallel across the laminae.
The arrangement of the parallel resistances do not affect the overall
resistance so that the element may be replaced by one in which the two
phases have been segregated as shown in Figure (2-5b). Similarly since
each of the laminae may be viewed as a resistance acting in series the
order of the laminae may be arbitrarily changed. For simplicity Tsao
arranged the elements in order of decreasing solid fraction. This final
arrangement is shown in Figure (3c). Probability theory was then used
to develop an expression for the shape of the distribution curve. The
final expression is given in terms of the experimentally obtained solid

distribution parameters M and 91

1
e =7 P, (2-26)

ke * 0]\[~ F3f [ ] dx

1
0 1
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FIGURE 2-5. EQUIVALENT GEOMETRIES FOR LINEAR ISOTHERMS
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Here uy represents the mean solid fraction and oy represents the standard
deviation of the solid fraction in the horizontal laminae of the re-
distributed element shown in Figure (2-5d); these laminae are chosen
parallel to the direction of heat flow as opposed to the vertical
laminae used in the redistribution. A considerable amount of theore-
tical and experimental work has been done on material distributions in
packed beds [49-51]. These studies show that the mean solid-area
fraction is equal to the bulk solid fraction but thus far no data is
given to evaluate the standard deviation in solid area fraction of
these redistributed elements. Furthermore, it does not appear possible
to evaluate this parameter directly.

Warren and Messmer [52] noted that Tsao failed to normalize the
frequency distribution used in Equation {2-26). This is not a serious
fault provided that Mj is sufficiently small. Under the conditions
301 < ¢ and 301 < (1-£) the normalized distribution reduces to that
used in Tsao's correlation.

One important contribution by Tsao was to show how random distri-
butions could be analyzed without resorting to the regular arrays assumed
by each of the previous investigations. Furthermore, this correlation
is applicable to granules of any shape and size distribution. Thus
Tsao's correlation is one of the most gerneral eguations presented thus
far.

Summarizing the Ohm's law models, it is found that they are
characterized by unrealistic assumptions regarding the lateral con-

ductivity of the mixture. Frequently these models retain the same
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unrealistic geometries common to the flux law models. However, more
realistic geometries can and have been used with this type of analysis.
Eduations have been developed to predict the thermal conductivity
for special cases. Very dilute suspensions and emulsions are represented
quite adequately by the Maxwell equation. However, each of the
proposed models retains one or more approximations which greatly limits
their utility and accuracy when applied to granular materials. The
purpose of this study is to derive a general set of equations which will
predict the effective thermal conductivity of a two phase granular

system while overcoming these specific objections.



III. COMPARISON OF PUBLISHED MODELS AND CRITIQUE

Before an attempt can be made to develop models that improve the
predicted effective thermal conductivity values, an investigation of
when and why already published models fail should be made. To accomplish
this, a number of the models presented in Chapter 2 have been applied
to the granular systems listed in Table 6-I. The models chosen are
those which are most widely used in the current literature and in
present engineering practice. In cases where the development of two
models is only slightly different, one of the two is chosen.

The results are presented in Figures (3-1) through (3-18) and
summarized in Table 3-I. The figures are classified according to the

categories mentioned in Chapter 2 as follows:

1. Figures (3-1) through (3-4) present flux law models;

2. Figures (3-5) through (3-13) present Ohm's Law, uniform
heat flux models;

3. Figures {3-13) through (3-16) present Ohm's Law, parallel
isotherms modeis;

4. Figures (3-17) and (3-18) present Lichtenecker's weighted
equations.

Figures 3-1 through 3-4 indicate that the flux law models are

in good agreement with experimental measurements at low constituent

38
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conductivity ratios, but predict considerably Tower values at high
constituent conductivity ratios. There is a number of reasons to
explain this behavior. First, the heat flow path from particle to
particle is neglected due to the absence of a finite particie contact
area. Thus an important mode of heat transfer at high conductivity
ratios is not taken into account. Second, the idealized particle

shape and geometry utilized in the models do not provide a sufficiently
close approximation to the geometry of most granular materials. Finally,
with the exception of Bruggeman's equation, the flux law models have
been extrapolated beyond the porosity range for which they are theore-
tically applicable %_5 P 5 1).

It should be noted that whereas the conductivities predicted by
Lord Rayleigh's and Meredith and Tobias' equations are comparable,
Bruggeman's equation represents a considerable improvement of the
calculated values. This is probably an indication that the geometry
of any future flux law model should not radically depart from the
geometry of real granular systems.

Figures 3-5 through 3-13 indicate that in general uniform heat
flux models predict low effective thermal conductivities and the
discrepancy increases with the ratio of constituent conductivities.

As it will be discussed in detail in Chapter 4, the uniform heat flux
assumption necessitates that the conductivity of the constituents in
the normal to the heat flow direction be zero. Consequently, the Tow

predicted thermal conductivities are an expected result of the linear
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heat flow assumption. However, the equation of Woodside and Messmer
predicts high values at low constituent conductivity ratios, but when
kd/kc increases beyond a certain 1imit the calculated values become
iow. The explanation of this behavior lies on the geometry assumptions
introduced in the model. In the Woodside and Messmer model the solid
phase is elongated in the direction of heat flow, thus rendering the
calculated effective conductivity high at low values of kd/kc. However,
when kd/kc increases, the absence of finite contact areas between
particies and the linear Heat flow assumption come into effect, and
as a result the calculated effective conductivities are low.

It is seen that the equations of Preston,; Wilhelm et al, and
Krupiczka, which include correlation terms, are in very good agreement
with the experimental data for granular materials and powders at
atmospheric pressures.

Figures 3-14 through 3-16 indicate that parallel isotherms
models generally predict high values for the effective thermal con-
ductivity. Again, this is due to the introduction of infinite con-
ductivity in the normal to the heat flow direction, necessitated by
the heat flow assumption. Russell's model is an exception to this
conclusion, since it predicts Tow values at high ratios of constituent
conductivities. This is probably due to the simplified geometry of
the model, and to the relatively Targe gaps between particles. It
appears that the influence of the simplified geometry and the absence
of contact areas between particles dominate over the influence of the

heat flow assumption.
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In Figures (3-17) and (3-18) Lichtenecker's weighted equations
are compared to experimental data. Evidently the values predicted
by these equations are in error, indicating that any such future
attempt should rely heavily on experimental evidence.

Summarizing the comparison of published models, it is found
that the major sources of error can be attributed to the following

causes.

1. Distorted or idealized geometry;
2. Idealized heat flow;

3. Absence of finite particle contact area.

Not all sources of error are applicable to each one of the models
discussed. Typically, one or more are applicable in each case. How-
ever, it is difficult to isolate a prior source of error for a par-
ticular model. It appears that the discrepancy between calculated
and experimental values is due to an interaction of all sources, each
source dominating over a particular range of kd/kC depending on the
geometry and heat flow assumptions. Consequently, in any more refined
mode]l the influence of each of the above sources of error should be
minimized, especially if it is expected that the model should be
applicable to granular materials having large ratios of constituent
conductivities. Such an attempt has been undertaken in the models that
will be described in the rest of this study. First, however, the

effects of the uniform heat flux and paraliel isotherms assumptions will

be investi d, cecause iT it were possibie to utilize either
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assumption, the problem of finding the effective thermal conductivity

of granular materials would be simplified considerably.
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TABLE 3-I.  AVERAGE ERROR, AVERAGE BIAS AND
ERROR VARIANCE OF CALCULATED THERMAL
CONDUCTIVITY AT ATMOSPHERIC PRESSURE
BASED ON SELECTED MODELS

Av. Bias % Av. Error 3 Error Var.
Flux Law Models
1. Maxwell -37.9 40.2 0.0606
2. Lord Rayleigh -24.8 33.7 0.0594
3. Meredith and Tobias -18.7 34.4 0.0416
4, Bruggeman 23.8 32.9 0.1540
Uniform Heat Flux Models
1. son Frey -43.8 45.1 0.0599
2. Woodside and Messmer 20.9 34.8 0.0992
3. Kanager -6.7 18.9 0.0286
4, Gorring and Churchill -10.7 20.0 0.0192
5. Willhite, Kunii and Smith -3.6 17.8 0.0268
6. Schumann and Voss -21.1 25.8 0.0260
7. Preston 26.6 30.5 0.0875
8. Wilhelm et al -2.1 19.7 0.0373
9. Krupiczka 13.2 21.2 0.0693
Parallel Isotherm Models
1. Russell -30.3 35.0 0.0566
2. Bernstein §77.9 686.1 85.05
3. Woodside 670.3 670.4 55.16
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TABLE 3-I. Continued

D. Weighted Ohm's Law Models

1. Lichtenecker 3-D 701.1 701.2 48.70
2. Lichtenecker 2-D 194.5 195.0 2.98



IV. CHARACTERISTICS OF PROBABILISTIC MODELS

As indicated in Chapter 2, almost all methods proposed to
determine the thermal conductivities of two-phase systems may be
grouped into two general classes. The first classification con-
sists of the Ohm's law model equations derived from some special
geometries, usually some orderly array of spheres or cubes distributed
in a continuous medium.

The second ¢lassification consists of the flux law model equations
which account for non-linear heat flow. However, most of these
equations are based on the assumption that the concentration of
particles is small enough so that the field surrounding one particle
.is not affected by the presence of other particles.

As indicated in [68], published correlations for the thermal
conductivity of granular materials, are not applicable to systems com-
posed of different materials for which the thermal conductivities are
highly different. This is the case, because the approximations inherent
to the assumptions of both classifications mentioned above are no
Tonger valid when the ratio of the compdnent conductivities becomes
exceedingly high. The object of this study is the development of a
model that will account for non-linear heat flow, that can be

extended to a large range of the ratio of thermal conductivities,
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and will include the following parameters:

1. Volume fraction of one phase;

2. Particle shape;

3. Particle size distribution;

4. Contact resistance.

The description and analysis of such models is preceded
by the development bf two Chm's Taw models based on the assumption
of parallel isotherms and uniform heat flux respectively. Both
these models are an outarowth of Tsao's [8] and Loeb's [69] models
supplemented by recent results on the structural prOperties of
packed beds [49, 51]. It should be noted that apart from the heat
flow assumptions, the basic proposition utilized in the development
of the models is that a qranular material can be considered as a
random mixture of two phases, in which all particles of the same
size and shape have the same probability to occupy each unit volume
of the mixture. The validity of this proposition together with its
Timitations have been discussed extensively by Debbas and Rumpf
[51], and it has been utilized in Tsao's [8] model.

The purpose of these preliminary developments is two-fold.
First, to indicate that Ohm's law models with realistic aeometries
provide an upper and Jower bound to the effectjve conductivity of
granular materials. Second, to illustrate the need for a probabi-
listic flux Taw model that includes particle interaction, so that the
unrealistic assumptions concerninag the value of the thermal con-
ductivity in the direction perpendicular to the heat flow can be

gvercome.
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Ohm's Law Model - Parallel Isotherms

Consider a unit cube of a granular material subdivided into
N3 cubicles by a three-dimensional grid. Assume that the grid is
fine enough, and the two phases are arranged in such a manner that
each cubicle is occupied either by the continuous or the discon-
tinuous phase. It has been shown [51] that most granular materials
can be thought of as a random mixture of the two phases. Accordingly,
the probability that a cubiﬁle is occupied by the continuous phase
is P, the volume fraction of the continuous phase. It has been
also shown [8, 53] that due to the paraliel isotherms assumption,
the conductivity of each lamina perpendicular to the heat flow
direction depends on the volume fraction of the continuous phase
present in the lamina, but is independent of the manner in which the
two phases are arranged. Consequently, the effective thermal
conductivity of each Tamina does not change if the continuous phase
s arranged as indicated in Figure (4-1b). Also, since the laminae can
be thought of as series resistances to the flow of heat, the
effective conductivity of the unit cube does not change if the
laminae are rearranged according to decreasing height of the
continuous phase as indicated in Figure (4-1c), approximatea by a
continuous distribution curve indicated in Figure {4-1d). Summation
of the series resistances yields the followina expression for ke,

the effective conductivity of the unit cube
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k = ] - (4-1)

e
-/P dz
kg + (ke = kg y

0

A number of attempts have been made to determine a functional
relationship between y and z by either expressing y as a function of
Z, y, and g, whgre u is the mean value of z and o is the standard devi-
ation of z [8, 53], or by approximating the phase distribution curve by a
curve by a parabolic function [70]. The method proposed in this
study is based om the initial assumption of randomness.

Consider one of the laminae that is pérpéndicular to the mean heat flow.
The probabiﬁity that exactly rN cubicies, out of the N2 cubicles
present in the lamina, are occupied by the continuous phase is given

by the binomial distribution:

2

[(eN) = (NB):Ezi)i - Pt - N " (4-2)
where
¢=1-P (4-3)
N 1amina is

Suppose that the height of the continuous phase in the m

r/N after the laminae have been rearranced according to decreasing

height of the continuous phase, as indicated in Figure 4-1c. It
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follows that there are m laminae in which the height of the contin-

uous phase is equal to or greater than r/N, and consequently

m= N E I1(rN) '(4-4)

If N s large enough, I{rn} can be approximated by the normal

distribution [71],

] - (rh-Pi?)?
-1 5 ~
e 2(N° PQ)
V2r  VNepo

f(rN) = (4-5)

Substitution of Equation (4-5) into Equation (4-4), and noting that

and r/N =y, it follows that

z=1% {1 -erft) , t-= Hf—iiL:;j:{ (4-6)
Vad pq
Equation (4-6) is an expression for z as a function of y in terms
of the parameters P and N. The continuous phase volume fraction
P is assumed to be known since it 1s'reported in all experimental
investigations of granular materials. N is a measure of the fineness
of the three-dimensional grid. In other words, it is a measure of
the sample size. Although, there is no analytical method to determine

N if the size of the cubicles is not selected, a lower bound for N
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can be found by the constraint that the total number of cubicles in
the unit cube occupied by the continuous phase must be equal to

3

PNY. In other words

1

j 2dy =P {4-7)

Q

Equation (4-7) is satisfied when N2 is larger than 8/P and 8/Q. It
can be also shown that under this condition, the approximation of
the binomial distribution by the normal distribution is also valid.
In view of the discussion above, Equations (4-1) and (4-6) con-
stitute a solution for the effective thermal conductivity of granular
materials, provided the model and the assumptions associated with it
constitute a realistic approximation of the system., However, it
should be noted that the additional resistance to the heat flow from
one particle to the other, introduced due to the contact surface
of fwo particles, has not been taken into account in the development.
This assumption is certainly justified for unconsolidated porous
media, but induces large errors in the case of granular materials
[34]. To overcome this discrepancy, an additional term will be
introduced in Equation (4-1) to account for contact resistance.
Let NC be the total number of contact areas in a unit cube."
Assuming that these contact areas are randomly distributed and
oriented, the number of contact areas in the z-direction, N

cz
is NC/3. These contact resistances can be distributed over the
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Jaminae shown in Figure (4-1c) in such a manner that the number of

contact resistances in a lamina hcz is proportional to the dis-

continuous phase present in the lamina. That is:

N) ez - (4-8)

Now, taking info account that each lamina is composed of
continuous phase cubicles, discontinuous phase cubicles, and cubicles
containing contact areas as given by Equation (4-8), summation over
the thermal resistances present in each lamina, and integration over

all laminge, yields a modified form of Equation (4-1).

1
Ko = — (4-9)

dz
f N
kg * (ke = kqly - T(H%‘ g‘:c'ai (kg = kep)

o
In Equation (4-9), kcr is the contact thermal conductivity associated
with a contact area. In the calculations, an expression for kcr
is taken from Luikov [34],

It is still necessary to find an expression for the total number
qf contact areas per unit cube, in order to determine ch' This
éan be accomplished by assigning a characteristic volume to each
particie and considering the coordination number n which is the aver-

er particle, As indicated in [66] the
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characteristic volume of each particle is evd3, where €y is an
experimentally determined volumetric parameter that depends on the
particie shape, and d is a characteristic particle size obtained
from the sieve data. [t follows then that the number of particles

per unit volume is —llf%-. The coordination number is given in
€.,d
v

[49] as
n = 39.39 (0.571 - P) {4-10)

For spherical particles Ey is equal to n/6. Combination of these

expressions yields, for spherical particles

_ 12.54 (0.571 - P) (4-11)
3

N {(1-P)
cz d

Combination of Equations (4-1), (4-9), (4-11) constitute a
soTution for the effective thermal conductivity of granular materials
in terms of the conductivities of the components, the porosity, and
the parameters mentioned. The equations have been solved and com-
pared to a number of experimentally determined values. It should
be noted that the value of N chosen for each case satisfied the lower
bounds mentioned, and was such that the cubicles were smaller than

the particles and the voids.

Ohm's Law Model - Uniform Heat Flux

Again, consider a unit cube of a granular material subdivided

into N3 cubicles by a three-dimensional grid. Looking at the parallel-
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to-the-heat-flow rectanqular tubes, it can be seen that they include
continuous phase and discontinuous phase cubicles. Under ‘the
assumption of uniform heat flux, the effective thermal conductivity
of the rectangular tubes does not change if the cubicles are
rearranged in such a manner that the continuous phase is pushed
forward [69], as indicated in Figure (4-2b).

The effective thermal resistance of each tube is due to the
thermal resistance of the continuous phase and the thermal resistance
of the discontinuous phase present in the tube, acting in series.
Moreover, since the effective thermal resistances of all tubes are
in parallel, summation of all the thermal conductances of the tubes
gives the effective thermal conductance of the unit cube. Assuming
that the summation can be approximated by integration, the effective

thermal conductivity of the unit cube is

1
k=f dx d
e f]_:yz (4-12)

0o ——Ed—ﬂ + T(_

C

where z is the height of the discontinuous phase at {(x,y). To

integrate Equation (4-12), it is necessary to know z as a function of

x and y. This can be accomplished by a rearrangement of the rectangular
tubes that are narallel to the heat flow as follows:

1. In each parallel to the heat flow x-z lamina, the tubes are
rearranged according to decreasing height of the continuous
phase in the x-direction (Figure 4-2c).
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2. The x-z laminae are rearranged according to the total amount of
continuous phase present in each lamina. Further, the rearrange-
ment is such that the continuous phase void fraction of each
lamina decreases with y (Figure 4-2d).

This rearrangement of the rectangular tubes does not affect

the effective thermal conductivity of the unit cube, since the height

of the continuous phase in each tube remains the same, but permits one

to express the distribution of the phases in the unit cube by con-
tinuous functions. The arguments leading to these distribution
functions are the same as the ones presented for the development

of Equation (4-6), and will not be repeated here. The results are

the following. For each lamina at y, and having thickness dy,

N(z - P
x =% (1 - erft), t = ——i———di) - (4-13)

QZN P_y Qy

where Py is the ratio of the volume of the continuous phase present
in the lamina to the total volume of the lamina, and Qy =1 - Py.
Analysis of Figure {4-2d) gives,
Ne(p, - P)
y =% {1 - erfu), ys ——— (4-14)

V2n2pg

Again, the constraint that the total number of cubicles in the unit
cube, occupied by the continuous phase, must be equal to PN3 is

satisfied when N is larger than 8/P and 8/Q. Under these conditions
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the approximation of the binomial distribution by the normal dis~
tribution is also valid.

Combination of Equations {4-12), (4-13) and (4-14) constitutes a
solution for the effective thermal conductivity of granular materials
in terms of the conductivities of the components and the porosity.
The equations have been solved and compared to a number of experi-
mentally determined values. Again, the value of N chosen for each
case satisfied the lower bounds mentioned, and was such that the
cubicles were smaller than the particles and the voids. It should
be noted that in this model the thermal contact resistance, due to
the contact areas between particles, has not been introduced. The
reason is that the uniform heat flux assumption renders the cal-
culated effective conductivity smaller than the experimental one,
and introduction of the contact thermal resistance will increase

the discrepancy between calculated and experimental values.

Comparison of the Ohm's Law Models

Equations (4-9) and (4-~12) have been obtained to predict the
effective thermal conductivity of granuiar materials as a function
of the constituent conductivities, porosity, and the parameters
indicated. In both models, a representative unit cube of the
granular material has been considered. The basic assumption utilized
in order to obtain the distribution of the two phases in the

unit cube is that a granular material can be considered a
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random mixture of two phases. In view of the evidence given by
Debbas and Rumpf [51] and Baxley and Cooper [20], this assumption
is in good agreement with experimental results, and consequently it
can be concluded that the assumed geometry of the unit cube is

quite accurate for most granular materials.

Fquations (4-9) and (4-12) have been solved for a number of cases,
and some of the results are presented in Figures {4-3) and (4-4), repre-
senting granular systems with porosities 0.42 and 0.38, respectively.
Wiener's upper and lower bounds are also indicated. The experimentaily
determined values have been obtained from references [6, 21, 23,

36], It can be seen that the paraliel isotherms model grossly
overpredicts the effective thermal conductivity of granular materials,
while the uniform heat flux model predicts Tower values. The
discrepancy increases with the ratio of the constituent conductivi-
ties. Although, the region between the upper and lower bounds thus
defined is smaller than the region defined by Wiener's bounds, the
specific values obtained from Equations (4-9) and (4-12) Teave much to
be desired.

This difference between calculated and true effective thermal
conductivity values can be explained by Laubitz's [17] observation
that in the uniform heat flux model it is effectively assumed that
the thermal conductivity of the medium in the normal to the heat flow

directions is infinite, while in the parallel isotherms model it is
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vanishingly small. It also provides an explanation as to why previous
Ohm's Law models, based upon an assumed regular array, have generally
not been successful at higher constituent conductivity ratios. Some
of the discrepancy due to the heat flow assumptions has been countered
in previous Ohm's law models by assuming a somewhat distorted array.
However, at high constituent conductivity ratios, the effect of the
heat flow assumptions prevails, and the calculated values continually
deviate from the true effective thermal conductivity values.

Since the lateral conductivity of granular materials falls be-
tween the limits of zero and infinite lateral conductivity, it can
be concluded that Equations (4-9) and (4-12) constitute an upper and
lower bound to the true effective thermal conductivity. RNumerous
correlation forms have been developed in the literature []8] asso-
ciating the true conductivity of the granular material to the
bounding values. However, it does not appear possible to select the
correlation which is more consistent with the physical system. Con-
sequently, an aiternate approach is suggested, where the geometry of
the granular system is the same, while no assumption is made with
respect to the heat flow. This constitutes the basic model of this
study, and it differs from the Ohm's law models presented in that
both the geometry and the heat flow assumptions are realistic. The
Ohm's law models will be utilized in the discussion that follows as
a criterion for the selection of a number of parameters such as

contact resistance, coordination number, etc.



V. PARALLEL ISOTHERMS MODEL

The approach specified in this chapter is based upon an extension
of the approach originally proposed by Wiener [7] and later extended,
first by Russell [43], and later by Tsao [8]. The effective thermal
conductivity of the heterogeneous system is determined using the
electrical analogy. Probability techniques are used to describe the
random distribution of the particles within the system as introduced
in Tsao's model. Two statistical parameters are introduced and are
determined based upon bulk physical properties.

Consider a unit cube of the heterogeneous system shown in
Figure (2-5a). The system is to be divided into a series of fine
laminae oriented normal to the direction of heat flux. These elements
are sufficiently thin that the cross-sectional area of the solid
particles are essentially constant throughout its width. Assuming
paraliel isotherms within the unit cube, the discontinuous (solid) and
continuous phases will act as resistances in parallel within each
lamina. The order of the parallel resistances may be changed arbitrarily
without affecting the overall resistance of the parallel circuit. Thus
the resistances of the solid elements may be combined into a single

solid resistance at the bottom of the laminae as shown in Figure (2-5b).

80
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A simple calculation then shows that the equivalent resistance is given

by the eguation

k. = L (5-1)

€ h
m-z ke + (kg = ke

In this equation the fraction of solid in the mth lamina is given by

Eﬁ and the width of each lamina is Ax.

Note that the laminae act as resistances in series. Again the
order of the resistances does not affect the overall thermal resistance
so that the elements may be rearranged in order of decreasing solid
fraction as shown in Figure (2-5¢). If the width of the laminae is
allowed to approach zero then the effective thermal conductivity for

Figure (2-5d) becomes

k, = (5-2)

f dx

The solution of this equation requires the knowledge of a relationship
between the solid area fraction ¢ and the position x. Such a relation-

ship is given in the form

‘f‘ -1/2( 22u )2
e g
Pt do

(1 1720 2k )2
b )

(5-3)

dp
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In this expression p and o represent the mode and the standard
deviation of the one dimensional porosity as introduced by Tsac. For
the case at hand the mode, n, will be very close to the bulk solid
fraction. The standard deviation, o, is unknown. In general, it
will be a function of the particle shape, size distribution and volume
fraction. By restricting consideration to uniform sized particles
which are either spherical or semi-spherical the standard deviation

becomes a function of the volume fractions only. Or
o=f(¢e) (5-4)

Using the experimental data available from the literature, Equations
(5~2) and (5-3) may be solved to determine o for each case. These
data have been curve fitted using a least squares technique to obtain

the relation

o = 0.32248 (1 - T) - 0.092543 (1 - 2)2 (5-5)

The resulting equations may be used to determine the effective
thermal conductivity of packed beds with solid fractions between 0.3
to 0.7. Beyond these limits the assumption of random packing of

semi-spherical particles no longer holds.

Results

Data describing the effective thermal conductivity of packed beds
have been compiled from the literature. Generally, results obtained
from Equation (5-2) fall within ¥ 20% of the reported values, provided

that radiation may be neglected. A representative sample of data
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taken from several sources [6, 35, 37, 58] is shown in Figure (5-1).
A more extensive comparison between predicted and experimentally
determined values for granular materials at atmospheric pressure is
included in Chapter 6.

The model has also been extended to the case of particulate
basalt in a simulated lunar environment, and the results are shown
in Figure (5-2). It is noted that the model predicts a slightly
greater dependence of the effective conductivity on packing fraction
than is indicated by the experimental data. This could be off-set
to some extent by modifying the empirical distribution function used
in the correlation; such a modification would be difficult to justify

on theoretical grounds and therefore has not been undertaken.
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VI. STOCHASTIC MODEL

Over the past sixty years [7] numerous Ohm's law models have
been introduced. Most of these models are based upon a rough approxi-
mation of granular materials in terms of solid parallelopipeds or
cubically arrayed spheres. Neither geometry bears a close relation to
the random dispersions commonly found in nature. The approach described
herein avoids these unnatural arrays and unrealistic geometries by
assuming a random distribution of arbitrarily shaped solid particles.

As noted in the literature survey, those models incorporating
Ohm's law almost universally utilize assumptions of zero or infinite
lateral conductivity. In any real substance the lateral conductivity
will fall bedween these two extremes. Consequently these two assumptions
lead toward a set of bounding equations for the effective thermal con-
ductivity of the model. These bounding equations set much narrower limits
than those originally proposed by Wiener [7]. A comparison of fhe two
sets of equations is shown in Figure (6-1}. The effective conductivity of
a square array of uniform spheres (e = 0.5236) is represented. Note that
at a constituent conductivity ratio of 106, these new bounding conditions
are approximately one order of magnitude above the lower bound and a
factor of five below the upper bound established by Wiener. Therefore,
a set of such equations, applicable to any packing geometry would

represent a considerable improvement over Wiener's formulation.
86
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Herein Qi11 be developed a set of such equations, genera?iy applicable
to any shape particle. |

Consider a typical unit cell of the heterogeneous system shown
in Figure (6-2a). Divide the unit cell into uniform sized channels by
passing both vertical and horizontal planes through the element. These
planes are to be oriented parallel to the direction of heat flux and are
to be equispaced. If the channels are sufficiently small compared to
the dimensions of the solid particles, they will appear as consisting
of sections of the continuous and discontinuous phases placed in serijes.
Assuming a uniform heat fiux in each channel, the order of the series
resistances does not influence the overall resjstance. Consequently,
the two components may be separated as shown in Figure (6-2b). The

resistance of the channel is then given by

£ (1-¢.}
R, = ! + L
i deA kcAA

(6-1)

The channels behave as resistances in parallel. The overall resistance

is then given as:

(6-2)

JZJ|—'
:Ul—-'

1 1
5= = o+ e e
Re R] 2 n

The order of these channels and their shape may be altered so long
as the individual channel resistances remain unchanged. They may then
be distorted to a unit width by changing the vertical dimension while

retaining the unit length. They are then arranged in order of decreasing



89
solid fraction. This geometry is shown in Figure (6-2c). The effective
thermal conductivity for the specified element is

kck AA

- d 6-3
ke = — (6-3)

0
ch&:i + kd(]-ei)

i=]

If the area of the channels is allowed to approach zero as the number
of channels approaches infinity the summation in Equation (26) may be

replaced by an integral.

kckd al : )
kK = 6-4
e, kcs + kd(]-s)
A
or,
1 1
k k
d
k. = S dxdy
e, kd + € (kc-kd)
0 o
1
k k
cd
= dx (6-5)
0

since the integrand is constant in the horizontal direction. The
corresponding geometry is shown in Figure (6-2d).
In a similar manner the effective conductivity has been found

assuming infinite lateral conductivity [8, 53]:
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- (6-6)

Both equations for zero and infinite lateral conductivity require
a knowledge of the funétiona] relation between the solid area fraction,
e, and the position, x, to solve the integral. Consider the arbitrary
material distribution shown in Figure (6-2c)}. The verticle position of
each lamina 1{s determined by'its solid fraction. The portion of the
elements below a particular element is then equal to the portion of

elements having larger solid fractions. N

1l
-ﬁ
——
-
L
.
-
—
ik
]
—

dx ==f(e )de (6-8)

This relationship may be substituted into Equations (6-5) and (6-6) for the
thermal conductivity with uniform heat flux and parallel isotherms. The

limits of integration must be changed accordingly

de (6-9)
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G
L f(e) d (6-10
kK. = [kc+s(kd-k) € ( )

€ c

Equations (6-9) and (6-10) are entirely genera].in'that no
assumptions have yet been made regarding the particle shape or
size distribution. The effects of these parameters on the solid
area fraction were studied by Debbas and Rumph [51] and Haughey
and Beveridge [43]. These sources found experimentally that the
distribution of the solid area fraction is Gaussian for most packings.
A notable exception occurs after prolonged vibration of a sample.
This packing produces large regions of ordered distribution and
strong anisotropic effects. Similarly large particle size variations
tend to allow sifting of smaller particles into the lower regions
of a given sample. This produces a defiﬁite bulk porosity gradient
in the vertical direction. In such cases the radial distribution
remains normal., Neglecting all such non-normal distributions the

frequency distribution may be taken as Gaussian.

f(t) = e (6-11)

The integral in the denominator serves to normalize the truncated

Gaussian distribution. By replacing the standardized random variable

Equation (6-11) may be written in the form:



(<5*)

L [or () (2]

The mode of the distribution, p, and the standard deviation of the

{0-12)

fle) =

solid area fraction, o, remain to be evaluated. The mode may be
defined implicitly in terms of the standard deviation from the basic
geometry of the mixture. The total solid volume is equal to the sum

of the elemental solid volumes.

1
E = f e dx (6_]3)

Using the results of Equation (6-8) this expression may be written:

0
€ = f -e fle) de . (6-14)

1

Determination of an exact expression for the standard deviation
is difficult. Stange [50] reports that the standard deviation is

given by the relation,

constant

W

where M is a measure of the cam

(6-15)

1o edan
e LTZg.
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The exact value of the standard deviation is difficult to
evaluate. However, it may be noted from Figure (6-3) that the
effective conductivity tends to reach a fixed value for o sufficiently
large. Consequently a sufficiently large value of ¢ may be selected

for analysis.
Development of an Effective Conduc;fvity Correlation

Equations {6-9) and (6-10) have been obtained to predict the effective
thermal conductivity of a two phase mixture as a function of the constituent
conductivities and the volume fractions. These expressions are based
upon the assumptions of zero and infinite lateral conductivity, respec-
tively. Since the lateral conductivity of the mixture falls between
these limits the two equations form a set of bounding Timits for the
physical case. As noted in the review of literature, numerous authors
have proposed correlations which effectively imply that one of these
two assumptions is sufficiently close to the physical system that it
may be used in obtaining an effective conductivity expression. In spite
of arguments presented for proponents of both methods, it does not
appear possible to select,a priori, the correlation which is more consistant
with physical system. Results from both correlations are then to be
compared with experimental results.

Such a comparison has been made and the results are shown graphically
in Figures (6-4),(6-5) and (6-6). These figures represent granular systems with
porosities of 0.31, 0.43 and N.58 respectively. The selected values renresent a
range of packing fractions so that they may be considered as representative
of all random packings. The non-dimensionalized effective conductivity
is given as a function of the constituent conductivity ratios. The

experimental values are taken from a number of independent sources and
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are listed in Tablé *S-I. Note that the bulk of these data fall between
the two bounding curves as would be anticipated. For .a constituent
conductivity ratio, kd/kc < 10 either bounding equation gives reasonably
accurate results. For kd/kC > 160 both bounding equations deviate
significantly from the experimental data. This indicates the reason
why previous Ohm's law models, based upon an assumed regular array,
have generally not béen successful at higher constituent conductivity
ratios. No doubt, some of the discrepancy has been countered by
assuming a somewhat distorted array. Uniform heat flux models have been
developed such that an inordinate amount of the higher conductivity
material is arranded in series with itself. Thus thé calculated con-
ductivities have been raised above the lower bounding curve. Similarly
for parallel isotherm models an excessive amount of the higher conductivity
material is placed in parallel with itself and in series with the low
conductivity phase. This distortion tends to result in a lower calculated
conductivity than that of the upper bound.

Rather than assuming both an unrealistic heat flow model and a
distorted distribution, three alternate approaches are suggested here.
A uniform heat flux model and a parallel isotherm model
were developed based upon a theoretical distribution of the granular
material which has been experimentally verified. Since only the heat flow
model is simplified, an experimentally derived correction factor for the
heat flow shall be obtained for each correlation. In addition, an experi-
mentally derived weighting factor shall be obtained for the two correlations.

The effective thermal conductivity will then by given by:
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Koee = Foo Ky (6-16)
ket = Fo Ko (6-17)
ke = Ko = Fulk, = ko) (6-18)

where:

F = Correction factor for nonparallel isotherms
F_ = Correction factor for nonuniform heat flux

F = Weighting factor for bounding equations

These correction factors are considered to be, in general, functions of
the material solid fraction, constituent conductivity ratio, particle
shape and particle size distribution. Unfortanately, previous attempts
to describe arbitrary particle shapes with a single parameter have been
largely unsuccessful [13]. Various statistical techniques have been
proposed for accounting for particle size distribution [45, 54] but
sufficient experimental data are not yet available to consider this
parameter at this time. For this reason the correction factors are
treated as functions of the conductivity ratios and the solid fractions
only.

Equations (6-16) through 18) may be solved together with available
experimental data to obtain the empirical values of the correction factors. This
has been done for a wide range of data from the several sources as listed
in Table 6-I. The correction factors listed do, of course, include both
experimental ervor and data scatter. To obtain an easily usuable correlation
these factors have been correlated into a polynomial function using a least-~

squares technique [55]. The fitted correction factors have
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been found to be represented by the functional relations:
In {F ) = 6.038 + 0.28697 1n(kd/kc) - 0.079693 [1n(kc/kd)]2
- 42.035(1-%) + 94.701(1-2) - 0.91135(1-¢) Tn{k,/k.)
2

+ 0.0029629 [1n(kd/kc)]3+ 0.0040281(1-¢) [In{ky/k )]

+ 0180897(1-5)’1n(kd/dc) - 69.049(1-2) (6-19)

n (F.) = -2.4006 + 0.83611 In(k,/k ) - 0.0036959 [1n(kd/kc)]2
+12.426(1-3) - 16.278(1-¢) - 3.0926(1-2) In(k,/k )
+ 0.0019151 [ln(kd/kc)]a— 0.034069{1-¢) [1n(kd/kc)]2

+3.3197(1-8)" Tn(ky/k,) + 2.5768(1-2) (6-20)

F = 1.5287 + 0.06425% Tn(kdkc) - 0.0064623 [1n(kd/kc)]2

6.1759 + 11.059e% + 0.22176¢ 1n(kd/kc)

+

0.00015041 [In(k,/k )1® - 0.0042453 & [1n(kd/kc)]2

0.10921 E’]n(kd/kc) - 7.2252 &° (6-21)

In conclusion, three correlations have been proposed for evaluating
the effective thermal conductivity of granular systems. There appears
to be no theoretical basis for selecting one solution in preference to
the others. Thus, selection of the best correlation must be made solely

on the basis of a comparison with experimental results.
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Comparison of Available Heat Transfer Models

A number of proposed heat transfer models have been presented in
the Titerature survey. No doubt a number of other correlations may be
found through a more exhaustive search of the literature. Nevertheless,
the equations which have been presented represent those models which are
most prominently used in the current 1iterature and in present engineer-
ing practice. Moreover, many of the models are somewhat redundant in
that they represent only slight variations of the same basic geometrical
assumptions.

The approach to be used in making a comparison of these correlations
is to select models representing varying basic geometries and varying heat
flow assumptions. Where two models of the same type are particularly
well known both are included. Certain prominent models require the
input of parameters which are generally unknown; these are, of necessity,
excluded from the comparison.

Table 6-1I includes a representative sample of correlations based on
flux law models. Tables 6-~III and 6-IV present Ohm's law models utilizine
the assumption of uniform heat flux. Table 6-V presents those Ohm's lay
models based upon an assumption of parallel isotherms. Table 6-VI
includes those Ohm's law models which inciude a weighting factor or a
correction factor to circumvent the simplifying heat flow assumptions,
Figure (6-7) presents the results of Equation (5-2) in a graphical form.

Figures (6-8) through (6-10) present the results of Equations (6-16) through
(6-18)
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It should be noted that several of these equations have been
extrapolated or extended beyond the range for which they are
thebretica1ly aﬁp1icab]e. The correlations by Lord Rayleigh, Hengst,
and Woodside were derived based on the assumption of a cubical array
of uniform sized spheres. The geometrical limits on the solid fraction
are then such that 0 < & < n/6. Similarly the equation presented by
Schumann and Yoss and by Preston are limited to solid fractions of
0.5 < ¢ < 1. In order to compare these correlations with the remaining
correlations over the same number of cases it was necessary to
- extrapolate the derived equation beyond its theoretical limits; where
extfapolation was not possible, the closest pqssible value of the
" solid fraction was taken.

Initial results indicated that the correlation by Gorring and
Churchill [4] was in considerable error. It was suspected that a
typographical error may have existed in the correlation as published.
Following the approach described by the authors Equation (2-17) was

rederived and the corrected form of the equation was found to be:

k \B2: 2 _ -
g - T n B2 -Bx, +x2 +V3 tan 2%, Q
B+x, By f3
e C
6 |1 - —]CB
kg

-V3 tan (\:/-—]5_)]+ IE- %El {2-17a)

This equation was found to fit the experimental data much more

closely.
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In summarizing the results obtained from each correlation, it is
found that the major sources of error can be attributed to the following
causes:

1. Distorted particle geometry

2. Idealized heat flow

3. Absence of a finiﬁe particle contact area.

Not every source of error applies to each correlation. Typically one
source will dominate depending upon the ratio of the constituent
conductivities, kd/kc‘ It is difficult to define an exact range of
kd/kC over which one source will dominate as the range will vary between
models. However, it is possible to discuss relative ranges.

A system composed of materials of equa1'conductivities will itself
have a conductivity equal to that of the constituents. This is true
regardiess of the distribution or contact areas. Moreover the assumptions
of uniform heat flux and parallel isotherms are both valid for such a
system. Consequently each model should be equaily valid for kd/kC = 1.
If the ratio kd/kc 1s increased beyond 1.0 the effects of a distorted
particle geometry appear as the dominant source of error. At still
higher values of kd/kC the effects of the heat flow assumption become
dominant. At yet higher values of kd/kC the effects of the particle
contact area predominate.

The tendency of the particle contact area to predominate as a
source of error at high constituent conductivity ratios is clearly
demonstrated. In granular systems with extremely low gaseous conductivities

direct particle to particle conductions wiT] be a major mode of heat
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transfer. The effective conductivity of any idealized system having no
finite partiele contact will approach zero as the conductivity of the
gaseous phaee approaches zero. An example of such action 15 shown in the
results for a simulated Tunar soil. These data are listed in the Tab1e$
as cases 159 to 164. The bulk of the correlations yield results far balow
the experimental values. Those correlations based upon an assumed
Gaqss}an disfhibution of the two phases are the exception. The reason
for this actioh is attributed to the fact that, while the normalized
.Gaussiah disfhgbution allows only point contact, the granules are in
c]bée bédxih{ty.over<a larger area.

3 ‘ The assumpt1on of a uniform heat flux tends to yield results
somewhat sma]]er than the exper1nenta1 value while the assumption of

para]1e1 1sotherms tends to yield values which are overly 1arge Th1s

tendency‘can ‘be offset by a distortion of the material d1str1but1on:so
'that the effects are- somewhat seTf compensat1ng However, the effeeﬁs
of these two' factors are not the same overall ranges of kd/k Thehefore,
calcu1a;1onal:resu1ts tenq to be h1gh or 10w depend1ng on wh1ch facfor'
pteddmﬁhatesie_

The resh]is of the comparison between the models is summarized
in Table 6—?11, Here a nondimensionalized variance is listed for the
results of each model calculated over all 172 cases of Table 6-1. The
fhkmd]a usea“}h determining the variance is:

172 7o \2
" Variance = Z ( eff _ ex )
kh.

n=1
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where kh is equal to either keff or kex s Whichever is greater. This

p
method of comparing the variance ensures that calculational results
which are either high or low by the same factor are penalized equally
for the difference.

It should be noted from Table 6-VII that Equation (5-2)}
equation together with the Equations {6-1€), (6-17) and (A-18) result in
the least variance. It is therefore concluded that these equations
represent the closest estimation of the experimentally derived
effective thermal conductivity.

The major source of error in these formulations is expected
- to be the failure to account for particle size distribution and
shape. Additional experimental work in these areas would provide
data from which Equations (6-19), (6-20) and (6-21) could be rederived to
more closely fit the actual effect of hending of the heat flux lines.

Failure to account for the contact resistance between particles
may or may not be an important source of error. If contact resistance
~were an important parameter it would be anticipated that the effective
thermal conductivity of a system would be a definite function of
particle size. Systems of small particies would then have a lower
conductivity than systems of large particles, all other parameters being
equal. While sufficient data of the necessary kind is not available to
draw a definite conclusion, comparisons can be made. Waddams [6] lists
the thermal conductivity of 1/8 inch steel spheres in air (Case 84,
Table 6-1) as 0.517 kcal/m-hr-K while that of 7/32 inch steel spheres
(Case 107, Table 6-I) is given as only 7.473 kcal/m-hr-¥X; the smaller
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diameter, lower density particles are reported to have the larger
conductivity in this case. Other data may show similar or opposite
trends. Further experimental work will be required before a definite
conclusion may be drawn. ’ '

The results of Table fA-vI and Table 6-VII indicate that the proposed
models each perform we11'over the range of constituent conductivity
ratios of 0 < ky/k. 5_109. Further, it is seen that most previous
models fai]'atimuch lTower conductivity ratios. Thus the correlations
described herein represent a significant extrapolation of previous

models.



TABLE 6-I. COMPARISON OF BOUNDING CONDUCTIVITIES TO EXPERIMENTAL CONDUCTIVITIES

Case I ryid | solid
Phase Phase
1 air Calcite
L2 310
s
2 - Alr i Steel
2.4 1650
3 i Helium Steel
11.95 1650
4 i Glycerin | Steel
© 45.4 1650
! :
5 | Water ¢ Steel
i 51.6 © 1650
6 ! (0. | Basalt
i .08016  10.76
7 EtOM ‘ Calcite
. 15.7 310
g Ajr Calcite
2.4 310
o | air ' Calcite
L2103

. 310

Experiment

21.4

22.4

75.5

246

272

Conductivity, (kca1/m-hr-k) x 100

Uniform
Heat Flux

121
16.1
60.48
170.6
187.4
.0047
49.9
1.9

10.6

Parallel
Isotherms (kd/kc)
64.8 128.63
| 261.1 684.647
i
341.2 138.075
456.4 36.343
471.9 31.976
2.259 138.177
101 19.745
i
I 65.7 128.63
|
65.7- 145.54

l-¢ i
S S—
493
489 |
.489 g
480 .
489 |
i
E
470 !
.465
458 .
E
454

36

36

36

36

56

56

8ol



TABLE &6-I.

10
. 11
12
13
14
15
16
17
18
19
20

21

E4CH
15.7

Water
50.5

Alr
2.12
Air
2.13

Air
2.34

Water
50.8
Air
2,38
Air
2.34
later
54,5
Air
2.25
Air
2.25

Hydrogen
16.6

Continued

- Calcite
+ 310.

" Calcite
- 310

© Calcite
- 310

Calcite
310

Lead
2850

© Calcite

310

Quartz
950.1

Lead
2950

Silica
873.9

Quartz

945

Coal
36

Coal
36

63.5

127

19

17.2

30.4

118

. 36.5

23.85

216.0

26.8

25.3

48.7

103.8

10.7

10.6

16.1

_104.4

14.0

15.4

154.3

12.7

6.2

10.3

154.3

€4.7
65.6
455
154.3
170.1
475.7
356,Q
176.3
13.6

27.7

19.7452

6.1386

146.2264
145.54
1260.6841
6.1024
398.7498
1260.68412
17.8689
420 &
16

2.1687 |

.454

453

-451
451
450
447
.440
439
433
.438

437

437

56 |

42

42

42

42

56 !

36

35

35

351

601
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TABLE 6~I. Continued

22
23

24

25 -

26

27

28

29

30

31

32

Air
2.308
Air
2.34
EtOH
29.34
Air
2.34

Water
54.5

IC8
12.29
0i1
15.4

Water
4.5

Water
4.5

Hater
54.5

Water
54.5

e ———

Silica
973.9
Steel
3350
Silica
973.9
Lead
2950
Silica
973.9

Glass
93.96

Lead
2410
Silica
973.9
Silica
873.9
Silica
973.9
Silica
873.9

21.89
341
144.7
34.4
244.9

35.14

224.9
217.4
218.89

218.9

13.0

15.8

98.4

15.4

154.3

26.5
73.1

154.3

154.3

154.3

154.3

181.7

604.7

302.0

475.7

356.1

44.6

533.3

356.1

356.1

356.1

356.1

421.9353
1645.2996
33.198
1260.6841
17.8689
7.6485
156.4935
17.8689
17.8689
17.8639

17.8689

437
435
.434
.433
431
431
430
.430
430
430

.430

36
36

3%
36 -
42 5
36
36
36

36

oLl



TABLE 6—1.. Continuad

33

3¢
35
36
37
38
39
40
41
42

43

Ha
14.85

Alr
2.08

GO,
1.26

1C8

12.29
1C8
12.29

Glycerin

46.3

SiC
1550
Silica
G73.9
Silica
973.9
Glass
94
Silica
973.9
Silica
973.9
Silica
873.9

Silica
973.9

Glass
94,0

91

20

15.6

94.4

84.0

73.3

207.0

212.9

22.3

70.8

18.5

65

12.8

8.3

50.6

50.7

29.1

156.7

153.4

13

50.4

8.1

371.3

266.2

250.6

247.0

247

73.3

350.5

358.0

182.6

248.4

27.9

104.3771

745.1921

1230.1594

79.2727

79.2727

2.0289

17.8689

17.8689
421.9353
79.2727

40.7097

.429

429

429

.428

.428
.428
.426
426
426
426

426

37

37

37

36

36
36
36
36‘
36
36

36 |

LLL
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TABLE 6-1I. Continued

44

. 45

46

47

48

49

50

51

52

53

54

1

Helium
11.95

Hydrogen -

14.85

Air
2.08

COL

1.26
Air
2.3
Co,
].2
Air
2.41
Air
2.41
Air
2.41
Glycerin
26.3
Air

2.34

- SiC

1550
SiC

. 1550

- sic
1550

SiC

1550

 Silica

., 973.9

890

700

Si0
700

Si0

700

Si0
700
Silica
873.9

. Steel
| 3850

61.5

85

22.6

14.7

22.6

16.3

23.8

23.4

25.2

205.5

44.6

54.4

64.7

12.7

8.2

13

7.1

12.8

12.8

12.8

136.6

15.7

357.

373.

267.

252

182.

125

139.

139.

139.

342.

608

129.7071
104.3771
745.1921
1230.1594
421.9353
583.3333
290.4563
29074563
290.4563
21.0289

1645.2996

.425
425
.425
.425
424
.424
424
.424
.424
.424

423

37

37

37

36

36

2Lt

36

36 .

36

36



TABLE 6-1. Continued

55
56
57
58
59
60
61
62
63
64

65

EtCH
29.3

EtQH
29.3
Air
2.34
Aiy
2.41

Helium
11.65

Helium
11.95

EtOH
29.6

ELOH
29.6

G1ycerol
45.4 -

Hater
51.6

Water
51.6

Silica

973.9 -

Gﬁass
84.0

Lead
2850

Glass
93.5

Glass
93.5

Glass
93.5

Glass
3.5

Glass
93.5

Glass
93.5

! GBlass

93.5

Giass
93.5

36

17.1

34.2

35.6

53.3

71.4

71.6

71.4

87.9

45.3

15.3

8.4

25.9

25.9

45.5

45.5

58.1

62.3

62.3

3036
61.7
478.3
28.1
48.3

44.3

61.8

73.8

78.1

78.1

33.1980
3.2030
1260. 6841
38.7967
7.8243
7.8243
3.1588
3.1588
2.0595

1.8120

1.8120

423
423
.420
.420
420
.420
420
420
420

428

420

36

36

36

36

36

36

36

36

36

36

gLl



TABLE 6-1I. Continued

66

67

63

69

70

7

72

73

74

75

76

|
|

Water i
57.1 ;

IC8
12.3

1C8
12.3

EtOH
29.3
Air
2.34
Air
2.48
Air
2.25
Air
2.34
Alr
2.308
Hater
54,5
Air
2.34

Lead
3000

Silica
973.9

Silica
973.9

Silica

- 973.9
~ Steel

3850

Lead
2950

Quartz
945

Lead
2950

Glass
94.0
Silica
873.9

Steel
3850

358

70.7

144.4

37.8

42.5

29.7

36.4

17.1

230.8

35.1

196.1

50.4

50.4

97.9

15.7

16.1

12.7

15.3

8.1

153.4

15.7

816.9

248.4

248.4

303.6

608

481.4

177.3

478.3

27.9

358.0

608

+
!

58.7084
79.2727
79.2727
33.198
1645.2996
1189.5161
420
1260.6841
40.7097 i

17.8689

1645.2996

.420

.420

.49

418

417

L7

416

416

.414

.414

42
36
36

36

57
35

6
36!

36

pLL
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77

78

79

80

81

82

83

84

85

86

87

Continued
Hydrogen
14.85

Air
2.08

SiC
1550
SiC
1550
Sic
1550
Sand
187.5
Silica
873.9
Glass
g4
Silica
§73.9

Steel
3850

Lead
3C00

Copper
32950

Steel
3850

100.7

22.4

17.8

20.7

154.9

73.1

24.6

51.7

32.3

78.6

36.8

64.7

12.7

82.1

87.9

64.3

13

15.7

14.1

18.4

15.7

373.3

267.7

252

49.9

303.6

80.2

182.6

4381.1

4700

608

104.3771 410

|
|
745.1921 | .410

!

1230.1594  .410
65.6250 | .410
33.1980 | .410

1.7240 © .408

421.9353 ; .408
1645.2996  .406
1401.8694 406
13313.2539 .403

1645.2996.  .402

37

37

37

29

36

36

36

42 |

56 |

Sl
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88

89

90

91

92

93

94

95

96

97

98

Continued

Air
2.34
Air
2.14

“Air

2.25

Hydrogen
16.6

Water
54.5

Glycerin
24.4

Hydrogen
12.6
Air

2.48
Air

2.91

Air

2.91

Air

2.91

Steel
3850.

Lead
3000.

Lead
3030.

Lead
3030.

Lead
3030.

Lead
3030.

Glass
93.5

Glass
93.5

Steel
4500.

Steel
4500.

Steel
4500.

-

- 47.5

32.5
37.0
120.6
298.0
176.0
39.6
15.5
53.2
55.4

58.5

15.7

14.1

14.8

80.8

206.5

110.1

26.7

8.6

19.4

19.4

19.4

608.0

481.1

487.9

655.2

835.3

704.9

45.1

. 28.3

714.8

714.8

714.8

1645.3

1401.9

1346.7

182.5

55.6

124.2

7.42

37.7

1546.4

1546.4

1546.4

401

.40

.400

.400

.400

.400

400

.400

.400

.400

.400

42

35

35

35

35

57

57

29

29

29

gll
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99

100

101

102

103

104

105

106

107

108

109

Aijr
2.
Air
2.91
Air
2.34
Air
2.41
Et0OH
15.7
Air
2.34
Air
2.34
EtOH
29.3
Air
2.34
Water
50.9
Air
2.34

Steel
4500. -

Steel
4500.

Cellite
92.0

Coal
36.0

Lead
3000.

Steel
3850.

Steel
3850.

Copper
33163.

Steel
3850.

Lead
3000.

Steel
3850.

59.5
61.1
23.4
10.2
126.0
43.5
51.7
327.6
2.3
327.0

44.6

19.4

19.4

8.2

6.4

77.0

15.7

15.7

198.4

16.0

193.5

15.6

714.8

714.8

27.5

13.9

643.3

608.0

608.0

5197.1

597.1

824.8

614.4

1546.4
1546.4
39.3
14.§
191.1
1645.3
1645.3
1130.5
1645.3
58.9

1645.3

.400

.400

.400

.400

.397

.394

.394

.392

.391

.391

-390

29

29

42

42

36

36

42

Ll
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110

in

112

113

114

115

116

117

118

119

120

Air
2.85
Air
2.38

EtOH
29.8

EtOH
29.8

Glycerin
45.4

Glycerin
45.4

Water
51.6

Water
51.6

Water
51.6

Water
54.5

Water
54.5

Sand
187.6

Quartz -

950.1

Copper
11500,

Copper
11500.

Copper
11500.

Copper
11500.

Copper
11500.

Copper
11500.

Copper
11500.

Copper
33163.

Copper
33163,

26.3

0.8

318.0
342.0
580.0
5950
550.0
615.0
630.0
629.9

597.1

13.2

163.7
163.7
232.2
232.2
257.8
257.8
257.8
321.2

321.2

50.4

181.7

2210.0

2210.0

2370.0

2370.0

2424.0

2424.0

2424.0

5950.6

5950.6

65.6

398.7

385.9

385.9

253.3

253.3

222.9

222.9

222.9

608.5

608.5

.390

.390

. 388

. 388

.388

.388

.388

.388

.388

.387

.387

29

56

36

36

36

36

36

36

36

36

36

. 8Ll



TABLE 6-I.

121

122

123

124

125

126

127

128

129

130

13

Continued

EtCH
29.33

Glycerin
46.3

Glycerin
46.3

Water
54.5
Air
2.43

Methane
3.0

Propane
1.6

c0,
1.35

Hydrogen
16.4
Air
2.34

011

15.4

Copper
33163.

Copper
33163.

Copper
33163.

Copper
33163,

Steel
3030.

Steel
3300.

Steel
3300.

Steel
3300.

Steel
3300.

Steel
2850.

Lead

2410.

323.1

607.6

549.5

634.4

45.0

55.8

35.0

32.4

188.0

45.7

101.0

321.2
321.2
187.5
219.4
15.7
19.1
10.9
9.3
80.4
15.1

72.0

5950.6
5950.6
5499.4
5818.1
497.1
548.9
516.5
509.8
708.4
468.7

541.9

1130.5
716.1
716.1
608.5
1246.9
1100.0
2062.5
2444 .4
201.2
1217.9

156.5

.386

.386

.385

.384

.380

.380

. 380

.380

.380

.380

.380

36

36

36

36

58

58

58

57



TABLE 6-1. Continued

132

133

134

135

136
137
.138
139
140

141

142

Air
2.86
Air
2.25

Hydrogen
16.6

Helium
11.95
Air
2.12
Air
2.08
Air
2.23
Hydrogen
14.9
Air
2.08

co,
1.27

Hydrogen
14.9

Sand
187.6

Steel
2250.

Steel
2250.

Glass
93.5

Glass
93.5

Glass
59.1

Lead
3030.
SicC
1548.7
SiC
1548.7
SiC
1548.7
SiC
1548.7

26.4

35.6

110.0

3t.1

13.8

13.8

34.2

95.4

27.3

26.2

61.7

14.2
75.5
25.6
7f5

6.61

14.5

64.1 .

12.6

8.2

64.1

50.4

378.4

520.0

44.8

27.5

19.4

492.6

377.2

270.4

254.6

377.2

65.6

1000.0

135.5

7.8

441

28.3

1358.7

104.0

742.8

1223.5

104.0

.370

.365

.365

.350

.350

- 349

.346

.328

.328

.328

.325

29

35

35

37

37

59

12

59

59

59

59

0cl



TABLE 6-I.

143

144

145

146

147

148

149

150

151

152

153

Continued

Air
2.08
Co,
1.27
Air
2.38
Hydrogen
14.9
Rir
2.08
co,
1.27
Helium
12.0
Air
£.25
Air
2.25
Air
2.25
Water
54.5

Sic
1548.7
Sic
1548.7
Quartz
950.1
SiC
1548.7
SiC
1548.7
SiC
1548.7
SicC
1548.7
Lead
3030.

Quartz

945.0
Quartz

945.0
S.S.

1795.9

27.0

25.2

49.0

110.8

27.5

26.4

85.2

58.4

70.0

76.0

272.5

12.6

8.2

13.4

62.5

12.3

7.97

52.7

14.3 -

12.2

12.2

195.8

270.4
254.6
178.1
386.4
277.0
260.7
260.7
505.1
183.5
183.5

496.8

742.9
1223.5
398.7

104.0

742.8

1223.5
129.2
1346.7

420.0

420.0

33.0

.325

.325

.310

.308

.308

.308

.308

.310

.276

.24]

.901

59
59
56
59
59
59
59
35
7
31

36

12l



TABLE 6-1. Continued

154

155

156

157

158

159

160

161

162

163

164

Glycerin
46.3

EtOH
29.3

Hydrogen
14.85

Air
2.08

Hydrogen
14.85

c0,
.1578x10"

co,
.1856x10"

co, .
.2373x10

€0,
.2967x10

o,
.4764x10

co,
1464107

7

7

7

7

7

7

S.S.
17685.9

S.S.
1795.9

(C H.), NH
1897

(G, Hs ), NH
18.9

SiC

1550.

Basalt
90.7

Basait
90.7

Basalt
90.7

Basalt
90.7

Basalt
90.7

Basalt
90.7

248.7
172.7
16.5
6.9
46.
L1061
.08183
.05598
L0511
.0414

.1404

172.9

120.7

16.7

5.1

 68.3

.1280x10

.1760x10

.1933x10

.2747x10

.181x10

.652x10

475.5

422.3

16.7

7.5

322.1

10.53

38.8

1.3

9.1

104.4

5.75x10

4.89x10

3.82x10

3.16x10

2.23x10

6.19x10

.502

.505

.513

513

.518

.540

.600

.654

.683

721

470

36

36

37

37

37

37

zel



TABLE 6-1Lontinued

165

166

167

168

169

170

171

172

Air
2.08

c0,
1.26
Air
2.47
0il
15.4
0i1
15.4
011
15.4
0il
15.4

o,
.2013

SiC
1550.
SiC
1550.

Iron
5628.9

Copper
32000.

Steel
3500.

Glass
61.2

Lead
2410,

Basalt
96.8

15.6

11.85

39.9

130.

81.5

29.8

60.

1.024

12.7

8.1

13.2

80.6

62.2

25.2

58.7

.602

218.9

205.6

584.0

3365.

512.8

31.2

381.7

18.28

745.2
1230.2
2277.1
2077.9
227.3
3.974
156.5

480.7

518

518

.575

.580

.580

.580

.580

.720

37

37

56

57

42

42

42

g2l



TABLE 511  COMPARISON OF SELECTED FLUX LAW MODELS

Lnre : ERFECTIVE TAm 2L CORDUCTIVITY (KCAL/M=HR-K ) X 171

25z LD R T Tak Ma {WE LL FAYLEIGH MEREDITH BRUGGEM AM
£ TORIAS

: 21,3599 3> 0% 10432832 11.925T: 17321554
2 SFes950Y T, 3947 10.85322 12,474 4 15.95781
k2 12,5 L7,8:758 52.14. 79 6" 415923 Re, 5147 R
4 EES N i16f. 67621 173, 89758 2.B.,61°64 254,9%724
= 272, 135.622832 195,73761 233,215932 278. 58374
& i. 137 s DBESG 37632 T e43272 Ca654675
7 L2, E5438 Soa. 1452 6 14163 T 451235 T7,23344
% 254 1 54335 11.85223 13.59271 27a3342)
G LT EPRN A 17272323 12.25495 19, 18465
i E3.5 57, 5746 52429413 T3.565%6 E"e™18TT
1 V274 130,42732 134,33577 158.,94152 143,49553
e 1%, Se 322 17.81323 12.32177 19,4227.4
k- 17.0 G, 586728 1 W.Re2%1 1239723 13.57473
la T .336%9 10, 87432 12.47522 l4.11478 25.7 1587

174!



TABLE 5-11

(LW
&~
A~
)
[
¥
[a}
¥
0

CONTEINUED

:CTIQE THERAML CCONDUCTIVITY (KCAL/¥-HR-K) X 177

MAXWZLL

2342 45

RAYLFIGH

13he 264644
13.12524
1312744

2214369 6
12.53G27

H,31648
2671422
12.%2428
13.3GE8372

135,1213

1
e

et
¥}
D

175

2

[AS]

7.2825

wn

AT TT6T3

RH., 59778

MERFD IT H
& TOBIAS
161.73436
14,76922
1474412
262,35938
14.11174
1/ 456934
28,5917 3
14.53338
1499745

161.94485

4£5:.36514

97.54688

RRUGGEMAN

145,451 %4
25,9797
26498979
272,.,57317
24439319
17-.58189
26.13719
2%.72222
27.8477¢
168, 3297¢€
2B."56T73
285,5%21 4
41,25337

167, 52133

gzl



TABLE 6-11 CONTINUED

CaTh ESFECTIVE THEIKMAL COMDUCTIVITY (KCAL/M=-HR=K) X 17
CASE  oXPIRIMENTAL MAXWELL FAYLEIGH MEREDITK RRUGGEMAN
& TNSIAS

2% 224,859G5 Z.07.82314 228,..4282 27" 441699 286, 47747
S Z17.26655 Z.7. 82314 228, 4282 277 441690 286,252°5
D! Z16,R60¢S 27 7.82214 Z2R.T 4232 27441699 2Bh4 36499
iz F19.5965% 27282314 228474282 277441699 2R6,36499
2% Gles ¥ o 77438913 82,1788 92.81613 144,37750
24 2a 1 03 R13 12,19656 12,6%151 2516855
24 15,5 5.26272 7.41735 Re26378 15.52164
e C4,3056y 57.51353 £6,765% 3 ?5.87f54 112, 61175
27 $4435669 $7,51352 £heT6R"3 75487754 112, 61165
2 73,2€658 T, @798 7 25729 7643537 7:451149
3% CoTer 2.3.52138 231.12563 274411352 289, 76667
4: I1Z.7505g 219,62138 231,12563. 274.17352 289.P4G61
41 12e75963 11.48383 13,647 46 15,2%18" 27.595432
¢z 7. 485557 57, 86711 67.37192 76046379 113, 7662¢

921



TABLE o-Il.

ra

(e}

i
o
A%

—
I=

181
e

CEP LN TMEN TAL

FEFFECTIVE

bmad

CONTINUED

MAXWELL

THIRAL CUNDUCTIVITY

RAYLEIGH

11.46%546
ABL,153716
H3.58272
12.44176
Ta56726
13.77631
713293
14425591
14425591
14.25551
?Eab64229
14, 21003
145,15849

5?0“?%582

(KCAL/ M=HR=-K) X 177"

MEREDITH
& TORTAS
13,5178
76465494
94.28964
13.82354
8.29993
15.32526
7.59" 74
15.,89282
15.89282
15.89292
243.69396

15, 74292

168.41991

6742899

ARIJGGREM AN

17.327311
124471662
147,4G5832

25486356

15494831

27, 95585

14,83859
2R, 27928
28.72272¢6
23,23377
267,72511
3%.24588
2" 772396

59, 36821

L2l



TABLE 6-11.

[. J{"T i

{ast

(3
ol

EAPURIMENTAL

t—

52,25593
'._.-"50 !
Tia3CUSH

71,55565

Tl.25¢¢%

CONTINUED

EFFRCTIVE THERMAL CONDUCTIVITY

MAXWELL

[§¥]
-
on
"
,;;.
el
[§S]

Ll
<
-
1
il
(g
b
1

S5de- 2736
£2, 55447
T2.42126
Tl.w2l2¢e
23% 4276

Blie €GL1S

REYLEIGH

T, al T
12,42718
3R, 7352
3te: 7352
S5B.,72177

58.771°7

o

6. EGELD

713.53389

73,53RA0

L4, GORTT

(KCAL/ M=HR=-K} X 100

MERED [TH
& TORIAS
15,9213
14,31834
454547 64
45,947 64
67.75724
hT.75734
76479613
79,45315
79445815
317.83447
78,3439
78.64511
171.56953

1641357

BRUGGEMAN

3, 67448
18,3139
L1, 5RE7T
41.,5%145
59.67 811
5%. 67846
T '«12710
T3.6h144%
T3.6837
447,21973
117.,32720
117.532%2
21478298

31452958

gel



TABLE 6-fl.

EATS

Cas TXPr MM TAL
‘1 4265
77 2% 7
e 3L.25565
F 4 174 C&EG
74 E2 T R
P e 3E, GGG
77 2T
75 12.38663
Sc 17.76C99
3 2 el
1 134090566
3 T3, G694
. 24 ,6686G
Qg 5107 7

CONTINUED

SPRECTIV

FaxwiLl

ldagl6l3
11,6500
12,1386
17 ,5896T¢
Plol.iRA37
lia2720¢8
Ta, 12 79
1 372 18
Ay EOTAZ

12,9491

it
]

9% 22

132,
76, 74554
i

15252

AR

(9]

(=)

e A4S

THERMAL COMDUCTIVITY

RAYLLIGH

14.,97375
1%5,322939
134447118

8.16226
14,5717
153,15465
75, RATTO
14,9653,

15.558635

(KCAL/ M=HR =K} X
MEPFNITH
& TNBIAS

17,7814
15442 64
16418451
14411691
285.57251
16447419
1°°,39573
14,7075
8.,93278
18 .67726
176.77412
51731567
1634273

6 8A85Y

RRUGGEMAN

33,9277
28e AT4 4G
21454257
18.271822
39 .92758
22, 44736
159, 65567
2R 62177
17.77522
27a15118
2176 £42265
75.99522
21,76193

34.799G9

62l



TABLE 6-11. CONTINUED

CATA ERFECTIVE THERMAL COMIUCTIVITY (KCAL/M-HR=K) X 1.7

Casvo CXPZH TN TAL MIXwWELL EAYLEIGH MEREGITH RPUGGFMAN
& TORIAS

£h 22,5956 11, 24351 14421559 15.43543 31.7°2811
tc Tes 500535 1344%535 14484563 1g.1921¢S 27, TE£RS2
£ 2E,TEE5S 1747355 1846, 63> 17.1747°7 5,7 %3¢%6
Ha 47.5 ¢ 12,77E73 15.89943 17.2463R 35424762
£G 2.5 1148676 3 14,1817 15.7623%3 32415775
& 37" .7 1231887 15445297 16.63954 34,5927
$1 e o568 96G #8a336°7 1.5.,34789 115.34536 . 212478203
Ce eS8, 0T T 212842 224458273 364.7””2? £14,57127
EE 176at . 77 1274865421 157.29483 172,73455 289,11446
c5 15,5€¢659 IRLTEY 3 4l 5339 49 ,92776 L4, 295™]
€z 1548 777 11740629 13,873253 15.83772 2921743
G L3e2 . . 19, 54177 2.et 7313 21453267 Lbbhe2774]
27 5E.3200%% | 15, 94177 £ w7313 21e4532G 44,1883
& 5C€a% 15,54177 ZK.ﬁ“313 21.5329% 44, 10771

0el



ot

TABLE 6-11. CONTINUED

: EESCTIVE THERMAL CONDUCTIVITY (KCAL/M=HP=K} X 177

CLSE  ixPe? IYLNTAL M KiF LL EAYLEIGH MERED ITH ARUSGHEM AN
& TNBIAS

o5 55,5 15, 641 77 20,7 313 21.5329 44,7076
£1, €999 154 94177 2. ~213 21,51329" 44,2261°
L 22,3€5G3 11a14626 12,1173 1540 2176 1944725
D 1ol 2, o a7 17454475 12.59162 126 £6756
: 126 G4, 5.438 1°5,37512 114045631 27 5,92126
: 43,5 - 13.78758 16465917 17 .76472 17.21918
c 51,7 . 13, .57+ 16065317 1776472 37,22675
é 237, 53€55 166e TLR™A 21 52751 223,961 3 466413599
7 4 420678 13,22317 16.55222 179933 17, 98765
X 227, 267,924 7 319,54712 255,12183 511.55884
¢ 24055559 12.,26836 17,7 6726 34,0736 28, 34334
: 26,23559 1ty d w5 19, 24736 3" 16972 20, AR664
1t 4y, 7E7 5% 13,356 3 $T.04173 1B, 14583 25,99596
1: 218, . V68, 2666 215, 0877 22927558 556, 37273

LEl



LY
o

"
V]
tJ

6-11. CONTINUED

A XwELL

14,249%:

17,5797

EEFECTIVE THERHAL CONDUCTIVITY

RAYLEIGH

21E8e45.7€92
34342927
345,538, 9
477 ,98486

15,8113

23419476

(KCAL/ M=HR=-K} X L17¢

MERED IT K
& TOBIAS
226 ,27646
346,673 8
146,407 8
392 441406
392,414 6
392,41476
423,5235"
423,5835"
237 .7 2147
362,1R555
363,74438
429,718
19 .5687 4

24414165

RRUGGEMAN

454,94434
£5R, RG4T 4
658.,512¢&7
T334 7467'S
724,41235
734,4&753
BT e £87 1
RE9, 52915
4RG,M35RG
T54. 82277
159,73125
RRAQ, 41"552

42,456672

52.1” 484

¢el



TABLE 6-fl. CONTINUED

CAANTLL

Q.4 Yac
TaClbn
Gle L 254
13715955

okl

£7:1

LKV

15, 8399"

13, 59732

SHL2% 1%

é".a“é].""é?

1l. 57224

EFFECTIVE THERHAAL CONDUCTIVITY

RAYLEIGH

12.42641
1 L4296
121, 7hAt 38
18,110 89
112.76%43
2 ,&61C69
19.2° 981
132.1275"
63,4 475
15.84873
13,93198
22, 2165
151, 1283

23581555

(KCAL/ M=HR=-K} X 1.7

MEREDITH
£ TOATAS
12,617 25
17 483927
128.65332
18.841:2
119,75 14
21.,27123
19.3287 6
136481972
86,1776
16,927 72
1545854
2" .9122°
142.63754

2112536

BRUGGEMAN

2R.431ES
24471172
24127253
47493221

215, T59G6

33,7451

43, T3R42
244643 R3S
48, *GTES
22, RET 4B
12,13 58
£1:262567%
283, 67451

$53,2573°

EEL
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TABLE 6-I1l.

CONTINUED

LTA “EFECTIVE

AS5E SXPER [vehTAL M& Xive LL

il 20e¢ QL T69
1Lz 51.7 17,7505

1472 ZTar o7 16,8817
14¢ FCel 212357
L 47, 17.69517
1inm 1177549 17 A, 66857
147 ZT e 154 C18ab
14F 28,5505 Ve TE224
i146¢€ 2B a8 B $Ta16588
is LE,35C4G 1724665
121 T. 8 Ta,6 BTG
182 Tére 22. HT4OR
1E3 27245 1C1le0ab4E
1¢¢ dhlbel 1 165,27722

THERMAL CONDUCTIVITY

RAYLLEIGH

la.55218
1534.8105"

15,9942
32.. 5437
157,6m253
29430 72
18,7634

157 .16527

31434255

4£R,68428

13745737

\

23474248

176, "8Z218

(KCAL/ M=HR=K} X 1%
MEREDITH
£ TOBIAS

12.94813
144,67.79
21442686
1313482
26413341
156468753
23427493
14.26R36
127.94313
25474462
29 .47 B2
325,5G895
227 ,47173

274493749

RRUAGGEMAN

23, 74352
258, 3R12¢%
544 €737 4
24, 50271

64,8G879

284481616

63,2064
4726196
248,747 5N
7451276
B2.,"6227
L1, 92848
2R3, 51667

251e63412

PEL
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TABLE 6-11. CONTINUED

T SEFECTIVE TrmaMal CONIGCTIVITY {KCAL/M*HQ-KJ X 1w
Cisc EXPLp PMENTAL MAXWE LL RAYLEEIGH MEREDITH BRUGGEMAN

5 TOBTAS

120 T2, 1772732157 115. 24449 123464227 175, 52472
{ lésn 15a 72445 14.73523 17.°7623" 164 73€€7

15T 5.5 58177, 5.667938 £.58252 be36967

Tl ace 0 3-e 1 248 57.82986 55 459T24 Gl1.57744
5¢ Lllel e PLRETE G N
C * iR "ot .' o ! AR R 1 .I‘!’f
icl o TZE3 ° Tet IR S A RIERE
1E7 oy Bt " e Tige ® h r a"': = ¢ wﬁl"?'f‘i‘ﬂ‘
&z o 414 5 OL“‘ i * O:D Bt ;’\o“:ﬁr\g*é‘}
€ ERL o ot T AT =t Faiirra

et 15,6 - 7o 84140 2,30758 9,67169 14467451

TR }].a.."‘ - i'fc:_[-;." £ 5‘)1‘28 5DF37468 qu‘illg
e 22,5686 % 1o 2444 B 22735 9,4 897 12.917FET

L T3 o 253,772 5 L.52633 371NN "TE.355%7

6el



TABLE 6-1l.

CREPER ITMEMTAL

CONTINUED

MAXWo LL

RAYLELIGH

49,7727
27474728
49,4659

e 43656

SFEECTIVE THERMAL CCNDUCTIVITY (KCAL/ M=-HR~-K} X 127

MEEEDITH

& TNYIAS
56473577
37 43 7G5
55437567

N,a7197

RRUGGEM AN

74,9573
2R. 56239
72.31624

e53364

9t



TABLE 35-111. COMPARESON OF SELECTED UNTFORM HEAT FLUX MODELS

FAT CEESCTIVE THEFWAL CORDUCTIVITY (KCAL/ M=HR=X) X 17
casy LA DE Ty TaL oM FETY wOrnNSI9E HENGST GNRRING R
: £, MFSSHMEF CHUR CHILL
i 21,3508% 1,214 5 71,8311 27.21955 G hR274
v 1P, T RC AN o3 T- 7 2, LTGT 3¢ ,41765 17.9R8637
3 T L7 AZ3AE 1 TGL2RERS 141,40 97 49,78612
4 Tnbg Vag, 78732 377,461410Q 372.894497 1164,464376
5 272, 1 Ghy, AHLLR 282,13623 T 4t 6.8 T13 123,797 30
¢ to 13 » 204457 W T7475 " 0TT24 " 3LESO
7 23,8655¢ 5 24T743R QL 5, GAN 179.921"7 32.43243
. 28, €, 163534 24, TERS 20,744 17, 55274
= 17.5 P 26420 1.8473" | 270255ra 9, 36445
1 €3, 52 2 31 a7, TES2 112,18112 23,7 ART
L tete 127 41 2% 1Az.52F31 227,493751 63,227 73
1y TG, R EE 2) ., G5TA3 27,32 24 997542
12 17, ' So 366G 22, L 25 27 .4 13R8 993447

L FRC L 3o LY 37 rE L ELRAT 8,0 9% 24,5785

LEL



TABLE 5-111. CONTINUED

CATA CEFSLTIVE THEIWMAL CONOUCTIVITY (KCAL/M-HR-K)} X 177

LASE FEOLRITINTAL SCiy FRE wCODSINE HENGST GRPRING &
. § MESSMER CHURCHILL

ir TiNe o 128.077273 144 ,220R 226466297 63.0642v 3
Is 16 % Sa & SH T PTa378 6 38.783212 16,597¢C%
7 FEads00s Ce 7GAT3 2748275 46,5257 & 24,7771C
LE ER TR TRE, Br437 232455 59 285,.,A123325 112.237578
re PP A SeEFRA 4 2He dT 4 317.15984 16,67 7R
2 1y, E Ts & 753 12, 5321 15424 29 Gel3400
21 2Ee 25U CG 2. 6757 2heTLZ4A 43,597 685 17, £3655
cE ER N Te & L3RG 26 RGT2T AR L2277 l6.543R5
w3 Ry 5¢83 e G242 23424%11 49.1%4?5 2751242
;e iaa,7 1% 4 7=R33 233435476 259,31°83 70,22112
i Tl ,TER0 1. & G ?Re2372A 47422585 25.15863
It Fhu,lohnh 128,046 98 ZrR,550] 391,234546 113.71243
27 5,14 7 34. 1R 4T 4,15015% 652453562 17,3R632

O 2155 £, HL 27 17 .9223% 2°Ca34%6R T7.48856

gel



TABLE 5-111. CONTINUED

SAT ErESr TIVE THAR®4AL ACNJUCTIVITY (KCAL/M=HR-K)} X 177

Casr S o T Th L Siln FOIY WCODS IOE HENGST GNRR ING &
‘ £ MISSmER CHURCHILL

s 374, 7036 145, -51 5 235,77515 12,2271 113,37052
o AR 142,421 5 AL, TTAHLS 377.72271 113,R873%52
B R VL r Tag, &8t R 32R,TTELR 292,.72271 113,87953
Y B R 183,441 5 2TIEL,TTH1H A972,2271 1132,87953

27 ila Ale B4731 157.,14453 122,37791 64s " T443
2. : 3. GEARLY 25426547 15,7837 4 18.77677

2 MBI D W bTETG 18486273 25456157 13.56719

t¢ 4,70 8% 5 . 7725% 174555232 141,5735 47,7506
=7 54, 10550 E . 77744 126,56232 1475726, 67477596
z e IESALEE 652 7 77.25192 119.72414 27,7 8932

€ ToTe 181, 5%~ 34 Fhl.b47 2R 194,77303 114,547R4
& 212,840 66 191,522 24 341.56% 318 I TT323 114.54784
4l P A O A S T 38,3946 17.22¢4

IS
~1
—d
43
1
I
~
D
r
(941
o
-
-~
(3%
wad
-

PAE L 2N249 262075808 4T, 974617

6EL



TABLE 6-111. CONTINUED

LLN

"

b A G I VA

Sity Pl ¥

P

}
¥
-
pa)
r

[
¥
A
L]
-
e
Lt
Ea

-t
Hd

P
)

LY
o
~
-
ry

&

MUTDSINE
[ESSNEPR

2C. 32655
230, LAT4HA

5

Iv¥

. 9BH51

THERYAL COMOUCTIVITY {KCAL/ M=HRP=K) X

HENGST

22.77112
154 .759¢CA
134,667257

39,7 5473

2RJTG A2

(98]

-
T

12701

2

P

A i
27 .,379358
1T .R3958
374864552

T5A .93 4
5 422885

2hEa17 522

IR LBI1TA

Voo

aNRe NG §
CHIRAHILL
beARTE
56,5775
FLy£2605
18.39277
13,7532
17 8447
0,nC627
15.572456
15.52456
15.52456
17 4,8 246
23,3745
P o TLR44

254 579¢5

oL



TABLE 6-I11l. CONTINUED

[ATA

CANE

vF
-]

SXPER IMENTAL

B

=g
a0

8 56¢ 679

2aCG9

SIN FREY

1 et Tay

SebTLZ)

iy
L,

347

™~

36.12347
Hlie RRZA4Z

Bhe RR243

&

EFFECTIVE THERMAL CONJUCTIVITY

WCONSINE
FESSMEF
PG LGR™ T
2 aRGT25
47436348
47,.,356348
AR, 1875
B2,17475
Tl.9LE24
T4a95053
Téa94843
LQH, 72485
127 44174™
127. 76588
242.3562"

29,87333

[KCALS M=HR=K} X 17

HENGST

48 417 9"
22492738
62.62257
62462257
96,57 375
9 57978
12074774
126,45695
126446695
549 4,67188
143.63356
143.98718
266433387

5775116

GORRING &
CHURCHILL
D6, AN
T.11912
17.25584
17.25584

25.53238

25,53238

26H.61925
254 44327
2874327
178,83778
4B, 57255
LR, 62168
Rl,42797

2R+ 37548

vl



TABLE 6-I11.

L A

CasT XDt [MENTAL
71 4345
iz FC,7

- 36,3365
2 17, G€C3
i e 324 ,TRESS
Ty 18, COSG
T7 1 o7
75 72.75¢54
75 17,75¢59
2.7

) 184 ,23€¢€5
r‘_ ?3' ({#C
£ 2habut GG
34 5la7

CONTINUED

SEFFCTIVE THEAMAL CONDUCTIVITY

SCHOFREY

11.2187¢

¢
°
{r
D
]
v

WwOANS 1DF

£ MESSMER
31.52353
27.83°72
2%.85176
2¢,61638
25 5,27 52
37 ,24785
155,75214
24, 75534
16436054
23,27¢5°

2%Ta™ 516

(KCAL/M=-HR-K} X 1L

HEMGST

517 8689
38.6145"
48 ,74476
22.519" 4
43,271
5741994
199 ,47987
4% 477353
26,41212
22,2778"
277 5542
132,3439°
47 421684

51.77874

GNARPING &
CHURCHILL
2716773
16.9352R
26,2594"
Te 3276
116,552R2
29.7 9288
664 69872
19,59247
14,22331

17.67211

- 32.56298

27,73883
17.73R851

29.5657R

el



TABLE 6-1Il. CONTINUED

TXOSR IMONTAL

~J
"1
-
R
Y]
"~
Np]
s]

D
Nq]
-

'

[
e
Y

FEFECTIVE THERMAL CONDUCTIVITY (KCAL/M=-HR-K} X

SCN FREY

WwaansSIng

L MESSMER

2R.1G3221

32,3759

31.26418

1.25879

[FY]

28,62 0
37 .106437
2744 T242
55 444’ &3
287.. 567793
4ue 17615
22435555
3G, 8641
3G, *R44]

3G, R&41T

HENGST

46411787
T2.955832
52.7 5698
52e14407
L5677
£8 ,6H5627
246,7298*
567.11328
33‘.;9585
bHhaT126™
24,1651
64,33781
5443381

b4.33781

1~

GORPING &
CHUP CHILL
?25.56129
65.64183
29, 88379
29,95454
25,8777
26487482
94463379
153, 87983
119,78264
1R."1 235
T 49972
36.52265
Abe 52295

26452295

Evl



TABLE 35-111. CONTINUED

e FREIrTIVE THSRAAL FOMAUCTIVITY (KCAL/ M=HR=K) X 177
(L8t TXe=P IMELTEL SIN FRLY WCONSIDE HENGST GORRING &
. E MCSSNMEFR CHURCHILL
L= hE, R 14,+ 1545 T, T44]) fhe237 8] 36,52265
. 31. SCGS T, LR&E 26, A640 64,33 A1 216,52205
11 2%,3956% 1, 2516 21,38552 23.12411 7.2:229k
vog 1.2 A, 74336 14,52395 17.785¢2" 4,3426G4
v Tife T4, 71269 1G5,44753 236,26527 01.67732
e £3,5 11.52577 22.41974 52475337 3" ,45782
o« 51,7 11.52577 374-1675% 52475337 37, 45782
T g 337,40¢08 LARL1RAGE €71 415042 624 42994] 334,9RR853
17 4e 276529 1), 63527 32,2 559 sa.wlaéa 2°.67331
1o 127, 733, A395E 5334677 * 575453514 188,547 67
iC @iy B9EGG 11.6€9 .3 32.4-115 52,17 158 3774516
13 DE,FE55 12.23542 1 .75471 22,29242 11,76782
11 41,7¢.5¢ 11.78171 21.77673 47 ,2458R 1846544
e Ttw, 140,867 2 - 390,5287 8 527419482 231467704

tl



TABLE 6-111.

NP IE IMENTAL

SEEECTIVF

CONTINUED

SON FREY

V4R, 63765
224,16 1€
23,2754
z77.182%¢%

12,6 728/

165, 549973

&

THZRMAL CONDUCTIVITY

WOpsSIac
MESSMER

6HET G453
6674 G6HR"
E6T . Q458"
T4ha152A3
7645415253
478,7°657
£30,17944
bala™41 14
752465563
34,5151

42-52234

{KCAL/ M=HR=K) X 177

HFENGST

527412482
737,218
737.,271¢6"
815,22581
A15,2268%31
B15.224681
1752257587
1752425757
631.15156
G22.36353

923.86597

1?57.44674

53464485

64,4,33873

GORRING &
CHURCHILL

371471343
325, R27T
325,872
325.87 270
5“2.6647;
5104 £64TS
339,873"5
454459473
455, 61654
5 &4"397S
29.57269

34489153

Skl



TABLE 6-11L

{15

b

il

j—

1)

-

ExP R TR TAL

'Ef'il:‘: "]'IV'_'

CONTINUED

SO FRTY

- -,
Ae 31283

Te 1F&A1

(3%

Bhalae

1241324677

Tl 5 2

t

V4,257CC
17348381
BT, R06%
3N, EE1T7L
1 ,HER26
Y K
12421436
RG, 7282

V2422277

TAFT VAL

CORDUCTIVITY

Wl

L& M

-

1

s

DS ITNF
mSSVER

13422412
CheBT72T3

IZ.42882

1R,894273
24,6328
FS.RraT]

T3.TRE54

{KCAL/M=HR=K) X 177

HFNGST

38,19576
I 4791
256 «HRTMY
51,4627 5
22747 387
34.4T7119
40,6238
243, 2867
7P.18”g8
23.5%A23
219761
52.64G54
216,31229

4C 463637

GNRRING &
CHURCHILL

23,323¢4

27 .9°578

19124127

28423676
B6,223656

N, 779

26413159

e~ 4083
18,27229
Te&b1GH
673471
2t alB2G4
T8el5236

23041”51

otr1



TABLE 5-11l. CONTINUED

e SEEICTIVE THERMAL COMDUCTIVITY (KCAL/M-HR-K} X 1o
gase EXPER IMENTAL €CH FREY WOMDSIDE HENGST GURRING &
L MESSYER CHURCHILL
1413 oL | el 276 2 #8544 3. .27381 17.1255¢%
142 R A G .8 51 : 277.32212 2172775 Th5.56728
ie Z7a : 13,384434 3L,76313 45 484 1% 23455745
1o4 2%.2 o7 437 2le.73615 3T L 41397 17.23967
T4l LG, 16,19478 10,5522% 4T.78439 21.594421
148 1L o 7%65%% Q7,25 7€ 2164°.243" 222.75 18 7463769
147 ZTeS 14435548 35453449 46 ,4,59456] 24,34775
1as 2€,7¢8¢C% %o 32517 22471172 31.17998 | 17.83272
145G fheZ 75.34776 1T ,23277 199.216%4 71.22829
iT DFa3GEGT 18,5 932 ARLRSTLH 55.96614 32.,62RY6
123 T 17 RAGLE . L7 W BT221 47.87154 22466267
195z T6a ) 21l.1815¢ 4h4e51111 57418568 2455772
TE: 27245 . 153,77 651 363451343 423 .,66528 129,13716

184 Zeasq T 144,G1 T2 323.15113 379,1731" 116.45776

il



TABLE 5-111.

™
[
=4
o

CaRt LT T
1TE ‘I?Z‘?
TR A,
IRA Geg

I L1 A
G s 91
Yl LA
1oz LOES
Tel .t
e e
Lt ThLE
1/‘(. "la"‘('
Led PC,ECE
LEE i3

A

CONTINUED

EEFECTIVE

TAL <hi F

52, A

1A, 7

Sa

L6 O

1 .
-1'7_1 o
<2 =
1 .
4 N
.

Ba 6

Gy

5% frg b

4141

SRR

THERMaL CONDUCTIVITY

LY

Wi OSINE
§ vpSSmeR

=7 3246, 71679
RS e TRLA

1245 116,69844
-
‘ el TN
RS
R
L ]

l -

! [ KRR
G5 € 12.% 675
5138 11453297
=2TE 15,722589

111.72425

{KCAL/M=HR-K) X

HENGST

2T72.27515
2’?.55“?‘"5
G, T6EQ4T

154,76541

B G
P R R &
i L B R )

€ H
B .ﬂlxﬂ-ﬁ.e’f
R T T S A

- P
LA TeT
B . {

32473877

21457736

41.7234)

24CQ,32714

17
GNRR ING &
CHURCHILL
Bh. RRLG4E
3.5539
24537R7
51. 78276
N e,
. Ene R
oy
PRl atAS |
norrey
AP Stak
14455421
1. 49382
255772

121.62542

8rlL



TABLE

6-111. CONTINUED

LXPER [N TAL

SEFECTIVFE THF2MAL COMDUCTIVITY

SUN FREEY

WRANBSTINE

£ MESSMEP
1:‘&.3Q92;.
21, 45314
143488419

“e17165

(KCAL/ M=HR=K) X

HENGST

167.68166
42429429
154425796

1.6997"

1~
GNRR ING &
CHYRCHILL
584 ™75"1
15,41226
51,2832¢

b4 TED

6t



TABLE 4-1v. COMPARISON OF SELECTED UNIFORM HEAT FLUX MODELS

CATA

CASE

10

11

12

13

14

EXPERIMENTAL

21439999
22.35999
75.56300
246.0C0C0
272.C0300
1.C1509
£63.55999
25.CC0CN
L7.5CC00
63.5C000
127.CC500
19, CCOGD
17.2C000

30.3%89GS

KLRTI

WILLHTTE,

30.58623
47.55049
163.22572
4C0.29590
432.23387

1.37111
133.91164
46,32814
44,25276
146.5C2C2
224.10444
4% .44478
45,55529

83.85548

& SMITH

SCHUMANN
E VLSS

10.94355

14.85457

55,93527

158.42358

174.36879

0.40426 -

50.24249
12.68302
11.469747
51.59330
112.45572
11.80254
11.84647

19.15C24

EFFCCTIVE THERMAL CONCUCTIVITY (KCAL/M-HR-K)

PRESTCN

18.7C827
25.07813
85.43590
242.,72166
26€.10303
0.79117
BO.6ETES
21.55121
19.94258

83,28252

X 1C0

174.731¢9

20.11423
2C.18€13

31.69532

KRUPICZKA

16.15852
24426138
82.49€126
209.9841C
228.,48171
0.5886¢
£1.53CC3
18.21974
16,9382¢
62.59168
124.0826¢
17.06645
17.12315

31.8688¢

0§51



TABLE 6-1v. CONTINUED

15

16

17

e

23

24

25

26

[\
o

LAPERINENTAL

1128.CC280
36.50000
23.8499%
216.¢C0750
26.75259
11.8202C9)
25.25939
21.89300
34.09999
144.7C000
34,393993
244 .863G9
35, 14000

81.5C00%

EFFELTIVE THERMAL CORCUCTIVITY

WILLHITE,
KUNIT & SMITH
232.31764
74.129¢3
93.£2394
541.22119
72.28%41
21.24489
31.74640
74.93779
102.45132
418.10156
59.40475
572.65503
73.13052

4R, 71387

SCHUMARNN
& VCSS
114.24954
16.92¢€27
27.22313
183.03313
16.30093

7.33154
24.3282%
1581395
21.47T824

123.59857
23.84€60
187.48227
31.21465

95.18149

(KCAL/NM~HR=K]} X

PRESTCHN

177.40428
28.423;1
33.72197

278.77075
27.41541
12.741C0
40.,24960
28.24219
35.716%2

187.44221
34.70860

28%.26¢C11
5l.11766

148.9C€33

1CC

KRUPICZKA

125.47821
26.28242
33,7748¢

217.02795
25.4824C

8.558C4

25.07823

26.2695¢
36.23392
150.56885
34,.,88362
220. 84439
34.42345

136.8903C

161



TABLE 6-1V.

CaTa

case

35

36

37

38

40

41

42

EXPCRIMENT AL

224.85399
217.364%99
218.8%39)
218489599
G1.C3GC00
20.CCCED
15.606000
Y& 35399
S4,.35999
T3.29999
207.00020
21289599
22.25959

T10.8933%

KLAIT &

CONTINUED

WILLHITE,

576.60229
57660229
97660229
576.€0229
345.109348

B2.54218

55.2G848
264432520
264432520

84.76138
592.43018

592.43318

824852497

ZEN 6222

SMITH

SCHUVANN
& VISS

163.C4678

188.04678

1BB.C46T8

188.34678
B4,12848
17.37775
11.40983
65.42412
65.42412
£6.2818%

19G.22243

130432243
17.72032

65494923

EFFLCTIVE TrerValL CCMNCUCTIVITY (¥CAL/M-FHR-K) X 1CO

PRESTON

286.08984
286£.08984
286.08984
28€6.08B3934
132.28313

25.14975

19.472GC5
103.93791
103.937@1
105.24437
289.40918
285,40618

25.7CC62

iCa.73782

KRURPICZKA

221.23124
221.323124
2214323124
221.23124
116.4558¢C

28.26201

esl

15.1€077

88.21062
88.21062
67.93712
223.3C064
223.20064
21.684C7

88.80655



TABLE

NATA

CASE

44
45
40
47
48

49

51
52
53
94
55

56

6-1Y¥. CONTINUED

EXPERIVENTAL

18.5C0Q0
¢1.8C0C0
85.CC000
22,5%659
15, 7G230
22.5%59929
16,2%339
23%.799299
éB.BGQQQ

25. 20000

205450000

44,55599

163.749399

55,35339

EFFECTIVE THERMAL CONDULCTIVITY

wWILLHITE,
®UMIT & SMITH
3E.45332
311.37437
360.78379
H5.55513
5734253
84.3C6173
47.211¢€1
RO.12569
BUL125€3
B0.12569
56034937
114.428170
453.54956

55.36807

SCRUNMANN

& VCSS

10.38729

12.38222

 £5.53532

17.72148
11.64175
17.88850

5.H5118
17.38402
17.38402

17.38402

171.63145

125. 76273

52.36089

{KCAL/M-HR=K} X

PRESTCN

17.79535
114.5165@
134.40306

25.70250

19.85146

26.57C90

1€.513¢€0

29.15685

29.15955

25.15985
262.09570

37.55303
194.51445

83.,94774

KRUPICZKA

13.12635

1C2.0731¢5

118,1753¢€

2R.B4357
19.52393
27.94415%
15.7685¢
26.3432¢
264,34326

264.3432¢€

203.50205

38.8947¢

155.3686¢

54.6024¢

€51



TABLE 6-1V. CONTINUED

Cala

CaSL

57

59

&0

&1

62

EXPERIMENTAL

36.20000

17.09559

34.,20000

35459599

53.26939

55.CC200

71.3%399

71.55999

?1. 36933

358,0500C0

10,7500

71.26999

144,35%97

37. 15959

EFFECT IV

WILLHITZ,

KUNTIT & SMITH

111.82214
41.02556
T6.E1021
T16.87021
85 ., 84062
85.54662
8h, 16227
8B5.866153
85.€6153

1041.736C8
2ile75%482
253.934C8

465.597510

120.64456

TReRMAL CONCLCTIVITY

& VLSS

22.23712

1C.93644

3l.426934

31.62694

52.729563

52.72943

65.51762

70.25794

10.29794

260421729

£7.68022

67.55511

127.91452

23.57863

(KCAL/M-HR=-K)} X 1CC

PRESTON

37.02130
18.€65€62
51.45102
51.451C2
84.51462
84.51462
104.68968
111.3523¢
111.35236
39C.£5063
107.38¢646
107.79C92
157.70503

36.05948

KRUPICZKA

37.47C92
13.68106
34.42252
34,42252
54,E8779C
54.E779C
67.41853
71.5753¢
71,57538
33B.€70C65
90.68391
90.5951¢
157.5113¢

- 4Q0.27136

vsl



TABLE 6-1V.

AT

CASE

11
72
13

14

EXPERIMENTAL

42.5G000
2%.,7CG00CC
35.3559°
17.09799
233.75999
35.06399
1C0.70CaN
22,.35999
17.75939
20.70000
194,85349
T3.09995
24455969

51.7C000

CONTINUED

EFFeCTIVE THERMAL CONCUCTIVITY (KCAL/VM-HR-K) X

WILLHITE,
KUNIT & SMITH
120.251C5
87.76758
115.72844
41.93744
640.26025
124.805C1
405.392323
37.12326
65.19725
65.61769
496.467C4
ET7.70724
96.18216_

132.18263

SCHUMANN
& VCSS

23.76529

18.10¢41

22.74287

10.84972
157.46478
24.05841
Sl.1C527
19.09396
12.56905
15.58228
131.461788
73.14787
15.31223

24.92836

PRESTCN

35.35597
30.320?2
37.73077
18.55441
299.816893
36.82138
142.78535
31.9051%
21.2£546
2€.25514
2C2.5E8BG2
115.678CS
32.25484

41.20128

ICQ

KRUPICZKA

39.88403
28.23933
38.32212
13.5841¢
229.43102

41.22762

124.84547

31.1873¢
21.23581
20,38972
161.05682
74.C0455
3C.1£37S

42.97971

861



TABLE 6-1v " CONTINUED

&6
g9

G0

Ge

G7

"G &

EXPERINMENTAL

32.299949
76£.55999
36, 79999
47.500C0
32.5006070
37.CCGCH
120,£64999
zs8a,claen
176.00002
39.59999
L5.5C00%
53,6000
55.359499

58.5C0000

WILLHITD,

KUnED & SMITH

117.256G1
159.3%3517
136.45222
137.52350
ic2.02280
128.25848
534.,87109
1251.81342
TEQ 24341
£5,96359
47.73401
17037206
110.37206

170.37200

SCHUNMANN
£ viS§S
22.23698
35.51990
25.44284
25.57341
22 8GEDY
23.94914

121.1169¢6

254.91113

162.79938
33.90845
11.975713
31.¢5918
31.65618

31.65918

EFFSCTIVE THERNMAL CCNCUCTIVITY (KCAL/M-FR-K) X 1CO

PRESTCN

16.92557
57.86070
42.01£135
42.22316
37.83456
3G.64790

187.62265

440,46875

249.14752
55.34254
26.39729
51.81555
51.81555

51.81555

KRUPICZKA

37.584312
64,.84431
44,0284C
44 ,29615
39.12225
41.0C87C
174.G8882
3717.€696¢E
226425075
36.56947
14.7589¢
54.68451
54.6€451

54.68451

951



TABLE 6-1Vv. CONTINUED

CATA EFFeCTIVE THERNMAL CGNCUCTIVITY (KCAL/M-FR-K) X 1€C
Case cXPERIMENTAL WILLEITE, SCHUNANN PRESTCN KRbPICZKA
KUunIT E SMITH & VvCSS

SG 59.5L000 170.372C6 31.65918 51.81¢555% S4.68451
1C0 61.05999 170.372C6 A.£5918 51.81£55 54.68451
1c1 23.393993 45.95547 1l.44436 19.52858 l4.16165
102 10.2C000 ZT1.48444 B.535862 14.74131 9.£6818¢
1C3 126.00000 $13.10449 117.28214 181.91917 170.1¢017
1C4 43.5CN00 145.10443 26.51057 43.705%2 46.2367¢€
105 51.,72080 145,10443 26451057 43,76592 46.2367&.
1Cs 327.56985 1715.02881 315.72648 470.24€634 537.74292
107 40.2%999 l4b,38657 26432435 44.35959 47.10522
138 327.CCH00 1271.44189 289.85&45 433.22¢C7 371.82324
1C9 44 ,45599 149.48515 27.06407 44 .,58066 47.39987
11n 26.25999 75.03748 16.80733 28.23152 21.79857
111 41.76399 111.¢235%6 21.44Q38 35.€65605 33.458587
112 318.CC000 Ll407.8E379 265.20239 403.57739 418.94873

LSl



TABLE o6-IV. CONTINUED

CATA EFFECTIVE TRCAMAL CONCLCTIVITY (KCAL/M=FR-K) X 1C0
CASE EXPEXTI¥ENTAL WILLHITE, SCHUMANN PRESTCN KRUPICZKA
KUHTTE & SMITH L VESS

113 342.0C000 14C7.£88374 265.20239 403.57739 418,.54873
114 H33.C0N00 1916.31787 375.79136 555.72754 560.92162
115 595.CC309 1916.31787 3715.73136 £55.72754 560.521¢32
L1lé& 560,L80082 2959,59487 41%.35303 611.70728 611.90381
117 €15.CC3a0 2055 .59487 415.%5303 611.7C728 611.90381
11g 630.CUSCD 20499,59457 415.35303 611.7C7£8 611.90381
119 £29,855490 2494 .58716 540.02R5%6 78¢6.80811 €717.1916¢
120 597,06785 2854.58716 540.12256 T8E.E0811 E17.19165
121 323.03985 1752.4875C0 325.79C04 484.6059& 557.£9434
122 #07.553985 25?f.67017 475.26123 £96,.,02081 783.57446
123 545450030 25E3,86743 477.62915 655 .4C625 TET.371877¢
124 634435990 2956.2C554 548.361238 198.€2909 RGl,6G8CC
125 45.00000 158.02725 23.293233 46.520172 49.08374

126 55.75939 190.22252 34,20032 55.79771 58.7T4028

851



TABLE o-1V. CONTINUED

CATA

CASE

136

137

138

133

140

EXPERINMEMTAL

35,C00060
32.35539
136.C0C000
45,740C0
1C1.CCa00
26435349
35.59699
11¢.0C080
31.04995
13.86000
13.8C0C0
34,20700
35,3695

27.25999

wUNMTI

WILLFITE,

114.50127
59.59148
663.117¢68
151446167
593.08423
84.99678
154.58116
665.15668
1C5.£8724
58.70363
45.93121
183.41157

£68,09253

165.5C456

& SVMITH

EFFECTIVE THERMAL CONCUCTIVITY

SCHUMANN
£ VCSS
20419646
1i7.48831

133.78758
27.138B66

118.452177
18.,23677
2724794

131.65253
36.E815E
12.G8349¢6
13.54369
31.51228

129.,35771

28.85240

(KCAL/M=hR=-K)

PRESTCHN

33.£6580
29.32759
206.4C227
44 ,£98406
183.65854
30.53023
44.871C5
203.24222
59.58622
21.56014
1€.70853
51.58502
199.84351

47.4643%0

X 1CO

KRUPICZKSA

36.33405
31.80312
165.,06731
46,5564
168.,£3543
23.48616
47.1210C
183.8363¢€
38.63994
15.85€6C
12.8133C
57.4449€
175.8568%

50.6494¢

6SL



TABLE 6-1v. CONTINUED

141

142

143

144

145

146

147

148

149

EXPzRIMEdT AL

27.CCCCD

25.2C0D00

4G,LCC0CD

L10. 74599

27.5C0C0

26.359G9

B85.20029

58, 35939

70.CC0C0

[oe)

TH.0C009

248.70500

KU1l

VILLHITE,

113.176%3
bR . 12842
169.2C0659
115.C3€91
179.216606
735.47621
184 EGEE2
125.£8754
642 29EED
Z24.4959¢65
201.0€511
232.15458
355 ,06%923R

356.15112

& SMITH

SCrUMANN
& VLSS
19.36455

121.C5€&50
29.34781
18.6RU6Y
21.78C62

141.22476
32.103506
21.58565

121.19438
36.5253¢
36.36180
44,17183

176.60139

157.7244¢

EFFECTIVE TheRNMAL CONCLCTIVITY {(KCAL/¥-FR-K)} X

PRESTON

32.34183
202.35571
48.18216
32.844568
52.CC621
217.36323
52.51523
3s.8876°
lB?.??Oéﬁ
£2.54784
53.17522
71.31412
272.294473

241.£6%21

1C

KRUPICZKA

35.G803¢
178,34126
51.6714¢
36.T€L0E
52.5771¢€
163.585¢8C
58.0733C
41,67722
171,1864C
715.CC72¢
63.78116
£3.45115%
237.1242¢

212.07916

091



TABLE 6-1v. CONTINUED

CATA

CASk

160

lel

162

163

164

1&5

l1e6

1e7

168

EXMPERINZNT AL

172.7CA0U0
16.5C00%0
6£.50000
46,CC2CD
0.1C61LE0
0.08183
0.05598
0.05110
C.C4140
Galalan
15.6C000
11.85C00
39,85999

130.,CC00D

WILLEITE,

KumIl & SMIYHE

252.44057
16.85527
T.48778
121.25€70
C.CCCCO
c.CCCCO
G.CCCCO
0.0CGCO
G.CGCCO
g.cccco
-25-68503
l&.31458
16.58606

b4 ECTES

EFFECTIVE THERMAL CONCUCTIVITY

SCHUVANN
£ VvCss
110.5807¢C
15.46114
4.74239
E2.071175
C.CCL0N
0.C0CC0O
c.CCCa0
0.CCCCO
C.CCCGCC
¢.CCCLCO
12.15C19
7.3CC69
15.84372

97.74&26

{RCAL/VM-HR-K)} X

PRESTCN

171.9372¢
27.67363
£.35C02
98.82504
€.CCCCO
€.0CCCO
€.CCCCO
C.C0CO0
c.cccco
€.CCCC0
2C.£8217
13.68808
26.83890

152.75218

KRUPICZKA

153.71112
16,72668
5.55CSS
87.23781
0.ccccc
0.CCCCC
g.ccccc
0.CCGQC
0.CCCCC
g.CCCCC
18.75803
12.28974
20.C0317

121.11963

9l



TABLE 6-1V. CONTINUED

CATA

CASE

1£9

110

1?1

172

EXPerIMeEMTAL

8l.5C0U0

29.75994

60.CC000

1.02400

ErFeCTLIvE THFERMAL
WILLETITE,
KUNIT & SMITH
53.49624
24.,3224729
4¢.08287

J.5449348

CONCLCTIVITY

SCHUNANN

& Y55

T0.56497

€5.044995

C.B5594

(KCAL/M=FRrR-K)

PRESTCN

111.75750

42.67471

104.,88&356

1.62444

X 1C0

KRUPTICZKA

85.7C0921

2T.£79C2

83.26828

0.85961

291



TABLE 6-V. COMPARISON OF SELECTED PARALLEL ISOTHERMS MODELS

CATE EFFECTIVE THERMAL COMDUCTIVITY (KCAL/M=HR-K) X 177
Cask EXPER [N TAL RUSSELL PFRNSTEIN WOOLS 1DE Equation 5.2
1 21,39999 11.357 34 G.55587 34,11279 13,30r40
2 22.35€65 11.514:25 41477717 1" 7.35464 21,42773
3 7545 57,2576 50,5623 185.24553 68.57611
4 FhEe e 193.47677 12272445 257,73462 173.96°13
6 2724400 215,93658 134,165 4 265.81763 107,36352
& 1,715, Lo R 1479519 1,3951" N, 47514
7 £3.,55969 63,7555 49, 49434 58413519 52.52979
¢ 25400 12441167 3:t,42108 47 ,47348 14454256
¢ 17,50 11,1463 32.36168 30,5686 13, 51701
14 6345030 644 57935 55,65683 58413519 53,69958
11 127, i 137, 75278 1G7. 82751 78.63356 115, 70479
12 1S 11.18736 34.17848 39463994 '13,57578
13 17,2 11,23781 34,1963 39.66876 13,£1926
14 35435659 12, 88216 299,285 279.,97705

32. 71816

€91



TABLE

e

3\,

,,_.
I~
o~
L ]

-

o

FICTIVE

CONTINUED

RUSSELL

THESVAL CCNOLCTIVITY

RERNMSTEIN

8 4,5AG14
177.,9345"
329,34GA4)
273,376%4
21477325

243,71c72

(KCAL/ ¥=HR=-X) X

wOLCS IOk

78,7729
1 4,51554
272,977%5
1R%,82631

173,213%556

354.232&3
163415637
2734377 5
136438631
224323326

3L LR2275

1+

-

Equation 5-2

1N7.15749
2271546
22,64025
186,77 5877
2132721

743614

24,85637

21.,972544
AR, 647273
122,339"°4
24 ,A8524
189.,11176
31, 64061

176,797 E5

val



TABLE 5-v. CONTINUED

i
N

L
fa s

EXPER IMENTAL

E

F

E

3

CTIVE THERMAL CCHMOUCTIVITY (KCAL/M=-HR=-K) X 1%6

RUSSELL

23 e 26461
237 2€49)

3’9264;1

Y]

A%}

3426491
BlabbT51
12.79319
Ta 35292

E6e 42775

232,29762
13,44737

66a TB267

RERNSTEIN

225,11832
275,11832
225411832
225,11832
245,34085
223466454
222,2675%
161,41938
161.719488

56404324
232478342
232,78362
V48,7640

164,81833

WOGOS IDE

1R6.22631
136.88631
186488631
186.83621
2'9.567R4
156 478442
147,323236"
138,11543
138,11543
34,64285
18649863,
186.88631
196,31741

139,11543

Equation 5-2

189,49945
189.48945
159,49945
1R9.472G45

O 458544

25414718

18,7227
£R,85427
6f.B5426
6755347
191.76364
191.026364
22,7235

69.21696

S9lL



TABLE 5-V. CONTINUED

SXRALRIMENTAL

53475650

RUSSELLL

11, ABALA
67425276
82,5343¢

12.227¢¢

p

Te "8TT7
1"?0 oY A
14,77 364

14,7 7364

2" ha TEEL S

13491775

145,22GH€

FEFECTIVE THERMAL CONGUCTIVITY

BERNSTEIN

1775331
c524.65245
257.5'537
236473137
234,64 37
15194125
18,4317

117,47327

138.17%622

5227701

(KCAL/M=HR=K) X 1°™

WOCNS INE

15,117 11
2%2.°733¢
27°0.54784
156,78442
14743326
156431741

73416948

87,597

87,5971

AL 45971
187 .7 38R 2
354,25293
163,17674

25437241

Equation 5-2

1454553
19.%4609
Cl1457244
25447273
18,8R4.04

22487226

13,40702

21491824
27 491824

2‘*-.9] n24

172,356

4% 433775

126437257

$3.,32962

991



TABLE 6-V. CONTINUED

CATA CEFEC TIVE THERMAL CONDUCTIVITY (KCAL/M=HR=K)} X 137

CASE EXPER ITMENTAL RUSSELL BERNSTEIN wnaons 108 Equation 5-2
=7 364 1 f 14, 71232 475.92822 279.977"5 36,25958
5 17.: €665 12, 25793 13,9776 15417392 7« 994G
£ 3eed” 33,47 24R 32.76091 22.13175 31,61661
. 15,5666¢ 33,4 248 32.,76791 22,1375 31.61661
&1 53,2¢559 5G,24610Q 52.73062 29 .37 298 53,66516
tZ G5, 55,2661¢ 52,73062 29437299 €3, 66516
&: 71.23€69 T 25677 bhe 37217 34,26784 67.77533
£4 71le50CHG 73, 81847 7 .82722 3641:42468 71463873
£x 71.4296%9¢ 73, 61848 7 .82122 36.”42%8 71,4382
et asg, 2744261273 64,417 16 449,33862 265, 7836¢
67 Tiie T4 87,9166 17623737 138,13518 77 e36467
£F 7l,26946% £8,7°6229 178.12949 138,13518 7455255
e 144425699 146,720 61 237.27832 163,.17%674 127.825301
7. 37,76¢ 35 14,1529 642499576 354,25293 41,2171

£91



TABLEG-V. CONTINUED

Cavs TERFCTIVE THERUAL CONDUCTIVITY {KCAL/M=HP-K) X 17
SasF TR ER oI TAL RUSSELL FERNSTEIN WC0DS INE Equation 5-2
73 4245 - 14,7848 £G%,03351 281,.79614 37,37573
7 2¢,7 - 13, 47435 162449513 173,21556 22.8°739
72 36,3556¢ 14417447 £59,49072 279.077"5 16, 77461
74 17, vacy 1240 7736 19.69245 15.1°771 L. R497 7
75 23 475458 238, 82430 252457986 185438631 195.36224
3%, °€cGe 14,3113 673,75245 354,25203 £1.81262
77 I S Bh, e 31 3,12254 20,5584 05444 77
75 PR LI 12,7776 2R2.47649 156473642 2670778
75 17.765¢6 T 76557 28147647 147,3336" 27471439
’ 2 W7 15, 9465] 22,35993 27,514" A 15,81551
81 164, F3C59 148,6573)  221,65.:5" 1631674 13,2892
Fz T2s SE33 Tealli24 7T3,89721 3k.96530 Taa" 1ha™
i3 26,5468¢ 14, 15834 182.553647 16,2174 24474616

re 21,7 . V4,51435 727455741 354425203 42,89624

891



TABLE 6-V. CONTINUED

FATA EFFECTIVE THERYAL CONDUCTIVITY (XKCAL/M~HR=K) X 177

Cast SXPEOR IMENTAL RUSSELL BERNSTFEIN WOGDS IDE Equation 5-2
g 312475556 13.35525 567447256 287 4G 65R2 36451816
£ TEL5CCGT 15, 68%7¢ 6366420297 2443,18774 145,432¢€9
27 26476565 14, 78239 758436i11 354.25293 43,53212
“.a 475577 14, 83294 Th6475"29 "354,25293 43, 65395
£ Y 22457000 13455441 597,42969 287 496582 374180913
¢ 270000 14,23°47 679,596£8 284,39167 38.55194
=1 120 4 B36G6G 1i:1e 814712 632, 41574 3T 44 2457 132,7474
52 3960 7 3764 62G3F 691455918 458.49316 293.43774
63 176, 7770 146491357 64646472873 397.59697 177477969
S4 35456688 474 6"11R 3646587 22446728 13, 77589
<y 1545 13,2265 22456546 15.26178 1. 77722
ce 32e2 1844557~ N6 .£5259 416,90780 53,2323
e7 55,42G€29 12.49577 9%%,65259 416,9978" 53.73323
Gn 885" 18,4557¢ G4 a65259 416,9578" 53,M"3323

691



TABLE 6-V. CONTINUED

(Y%

Ly

L8s1

SxLLA TYNITAL

CRRECTIVE

RUSS=LL

13,057,

1R,4G877

15.1472¢
1S.14726
167 4187

1

1T

s 7882
2954 4G 47

15.33]53

18344682

THFERMAL CONOUCTIVITY

BERNSTEIN

A2 ,RTYITS
319,88571
19,3551
72.¢,17923
L47.95T724
T32.27954
AS ab4T22
45 ,565143
212.77842

262241

I~y

G135

{KCAL/ M=HR=K) X

W200S IDF

416,0978"
416 ,9678%
14489°65
7.2787 8
367,777 2
3154,25793
354,25263
3185422442
154.25203
440 V2368
354425293
27.51 96
174451558

127" «5332921

1~"

Equation 5-2

53,3123
£3,732323
11.725847
Rea1R4ET
12700685
L44,AL63"
Ly R4 ED7
4TR,9PA23
45475347
2864157F8
45, 82478
16,68029
254726556

327417575

0Lt



TABLE 6-V. CONTINUED

Il
L

~
v

CAT A

ASE

312

Ile

-
-
e

(3]
[
£

[
AN

EAPES IMENTAL

£5.T¢<9%

EFFECTIVE

KRUSSELL

1C3, 46802

257, 487749
23674 48779
164,11241
2t e 445
35, 33TLT
265 76929

15439252

242255

THERMAL CONDUCTIVITY

RERNSTFIN

20224.12%15
2666418284
266H4183R4
2655472553
2655.72559
2655,72559
T5T75.085%4
T57%." 8594
76 6e42578
7632.61719
T£98,75731
7777.414"6

73 1+ B8ORY

796.55566

(KCAL/ M=HR=-K ) X

Wwooes ICE

1277 493921
1357 .791° 2
135% 479102
1376 ,62456
1376492456
1376492456
3446413713
3446413313
3188454545

3374.64258

 3374.64258

3446,13%13
287487524

318.171571

lf\f‘

Equation 5-2

32717505
410,156T4
419,15674
455,653"8
455, £53%8
455,653 R
T6¢0.10938
Tr1,17938
4R9.92480
63T,7832"0
640 ,"4639
ToTe43576
43,33741

5N,62471

LiL



TABLE 6-V. CONTINUED

TATh ST TIVE THERMAL CONOUCTIVITY (KCAL/M=HR=K) X 177
CASH s AP DaENTAL PUSSE LL PIENSTRIN WOODS INE Equation 5-2
127 LI 1. 87 5% 7L, 42703 295 ,874T7A 35,9271F
oS 22426559 0,12522 756, 578 238 ,82174 22,87917
Ze 1:d, T 7.1 T F1E R 4Gs 47142448 142,295°3
17 fra? 15,7583 5 £E7.5520R 271442334 41.29378
123 Pol. ST, 4 9G8R & 1.65618 3°4,82275 123.51165
L PO 17.327¢8 52.64521 2752713 17.£6586
13 1L, E5Cue HEREEEY S AT LTS15C 210,37628 18,53224
1< V0 AU 111.2313°F £31.55811 291423584 132,75174
13t 21, 40 5T L3, 4 G313 424094 B 22,137 75 35, 75244
126 HEDE 23.2T7LAT 21.,55279 14,79245 12.118"6
137 13,0 11,90147 27 .65315 1r 27389 17.22176
e 14,2 16, THTES ©356,32273 ?R4,8396° 47,1457
s 65, 25c08 11 W33 $5 552,11439 276451463 122422945
14 27,23€5% 16455669 535447754 156478442 26,2037

¢Ll



TABLE 6-V. CONTINUED

TAT 2 CEFECTIVE TAFRYAL COADUCTIVITY [KCAL/M-HR=K} X 177
CASE IXDER INENMTAL QUSSELL RERNSTEIN A0GCS 1DE Equation 5-2
1ed Zhaz Y 1- 215738 Fl4L.41724 147.54781 2T7. 400842
122 61,7 111.41758 £61,22655 2%9,51463 123.414%5
P 2T - 1o, 73 3¢ 44,7443 156, 783447 3L, E4]18C
124 25,7277 17, 26433 543,6G636 147454761 27.82973
las 4G, 7 15,7725 263,958169 174451558 24,289134
14¢& T ,75%gg 117.9534&. 8 El2?.8872°8 2'9,.5146% 137 ,57111
147 27,5 17, 77635 £97425552 1557844 39, 28463
Tat 2h.20C2G 1 .6 832 EChH,2ARC2 147.54761 79, 88478
144 A%, v Qp, BS2HEK A7 Q43785 272 TLRT 113,45471Y
5 58,36950 16,2 45 1154, 18774 284 ,89160 54,952 62
L e T e 21,48741  425,83730 173,21955 38,16228
157 Tee . 24,331 44 491,67358 1" 3.21556 44, 83787
pe 272.5 222, 27977 1°5,6%608 274.77612 107, 92854

1Ee FhRg T O 1S3,4 34 S .:," 9673 251.726481 175.95125

£/1



TABLE 6-v. CONTINUED

T SrrLCTIVE THERMAL CONOUTTIVITY {KCAL/M=HR=K)} X 1%

L

Y
(=
f
]
fi
e
e
il
A
b
it
—d
L=
=

PuUsSoLL RERNSTEIN AOOCS IDE Equation 5-2

it 1T L 174Te 75555 57,3756 22643 69 126.26"56

2t ined lo. 7224 16558503 B.,4698312 1&. 65686

1y £aC e 4270 C2,77421 4436577 4489116
ine GEa v 6541 277 28489358 169.47769 72,52258
15¢ o161 R et TR 14 10°R54
1¢. e 2183 e ol AR ERNE Y 7389
101 L. 2359 T R TR B ' 775266
1o <, g3 FREIE LN SRR PR TR IR Mef 4411
1eT SRS P SRR ST NEERpS £ 13523

P + 144 Ce T Se %42 - Ta¥YING Ha17131

les TieES e 7T 7 QanTiED 15,3668 14.,72751
i 1G4 27CCEG . Te%3.7 Ly 85705 34,1132 294 69447

12, ey £1.17 55 22.32255 2 1,180 175,59871

[
el
re
t.

-

174}



TABLE 6-V. CONTINUED

AT

HUSSELL

FEFZCTIVE THZREMAL CONDUCTIVITY

BEANSTEIN

28.2226h

.31359

{(KCAL/ M=HR-K]} X

wOoCpesSI10E

147 ,487+1
16 43518
124.,2811¢

[ 49547E

Equation 5-2

RlaGH348E
25434375
73.52748

'“090\38

6.1



TABLE 6-VI COMPARISON OF SELECTED WEIGHTED OHM'S LAW MODELS

CATA

CASF

10

11

13

14

EXPrRINMEMTAL

21.4CG00
22.40700
75.5C000
246, 00000
272.C26090
1.3149C5
63.6C3C80
25.20430)
17.501700

653.0C000

4

Teo

(9]

L27.

.

1

ud
L]

3

fe?

[a¥a'
. o oad

17420303

30.48000

ECUATICN 6-16

1R.26808
23.24588
S3.65003
222.27T410Q
252441523
JecELLL
E7.37435
25.38153
16.5€6525
LB, Td8%0
13z2.4901%s
15,1£039
1516223

33.26373

EFFeCTIVE TRefMAL CONCLCTIVITY

EGLATICN 6-17

17.83623
27.50685
81.5904%
241. 86344
264436643
C.e7829
715.83169
21.500933
20.11256
T3.14794
198.073449
20438149
20.45052

40427556

(KCAL/V¥-HR-K}

EQUATICN 6-18

2C.88347
3C.675¢81
107.58758
252.£00923
272.CC554
G.77C75
72.35259
22,970913
22.43553
T4.64435
1258.94¢83¢6
22.6483¢
22.712C21

33.26539

LICHTENKER

59.CC73C
206,3650¢
314.2655¢C
448.36002
464.5€6322
2.260094
107.45101
69.589C5
68.9137¢
110.5C501
155.1718¢C
65.8163C
£9.86C2¢

408.71057

9.1



TABLE 6-Vi.

EATA

Cask

15
16
17
15

19

24
25
26
27

£
Cr

eXPERIMENTAL

118.0C000
36.5C009
23.85200
216.C0000
26. 80000
11.8C080
25.3{300
21.85C0Q00
34, 10000
144,7C0C0
34.4C000

244 ,5C0000

81.528000

CONTINUED

EQUATICHN 6-16

133,97484
30.15223
41.26558

235.54051
29.16821

5.33043
25.78623
30.10430
45.50732

1£5.32420
42.165C4

238.63294
36.77445

152.07631

EFFECTIVE THERNMAL CONCUCTIVITY

EQuaticy 6-17

léle11E42
32.325G0
43.£5939
2793.92522
21.40180
1l1.14216
321.08171L
32.44405
48.14179
192.19444
45,30065
235.40620
44.65680

166.76405

(KCAL/M=-ER-K]) X 1CC

ECGATICN 6-18

137.82734
35.23028
35.344¢61

258.021418
33,574G3
1C.15881
2%.81532
35.05504
31.81C32

18€.853223
36.36?06

2€£1.58245
38.57387

181.94245

LICHVENKER

157.1C994
181.32992
439.4141C
372.71004
180.36430

14,24098

26.3C08C
186.72458
554,84475
326.60048
456.85CCT
380.9152¢5

45.87782

£89.7£435

LLl



TABLE &-VI.

iG4TA

CASE

25
30
21
12
33
34

a5

cXPERIFENTAL

22444523070

21 T.60000

215.350070

218.5C000

591.80000

20.0G000

1568080

94.4C000

G4, 40000

T3,3C000

287.C0G¢

212.500450

22.3C4000

TU.5CA00

CONTINUED

EGUATICN 6-16

242.247¢9
243 ,84827
246.£4020
242.373¢6
129.46813
32.988848
23.07759
937.42206
7442206
£9.88851
£87.2542%
257425429
33.17131

103.,75744

ECLATICN 6-17

281.59€641
280.6E852
217.£3526
282.55591
141.89911
35.18421
24.45273
107.975%47
107.97547
82.74599
267.536CC
267.95680C
31.£6C56

102.17270

EFFECTIVE THURMAL CCNCLCTIVITY (KCAL/M-+R-X} X 1CC

ECUATICN 6-18

2€2.12258
262.E85125
2€3.15639
262.87220
152.538¢€2
34.81148
2C.C1lE€E3
112.73¢14
113.73¢&14
69.85542
265.11636
265.11636
3€.5C808

114.86331

LICHTENKER

381.5492¢
381.5452¢
181.5492¢
381.6492¢
414.1E8045
275.€1702
241.,6365¢C
276, L4474
2764644774
T0.B4716
386.1038E
3E&£.1C28BE
138.39167

272,€E707C

8Ll



TABLE 6-Vl. CONTINUED

CEATA

CASE

46
47
48
49

50

EXPELINMINTAL

18.5C00%

61.50009

§5.00C09

22,6000 35.29034
15.73000 24.7€377
22260000 33,361¢0
16.3ﬁﬁ03 19.C3756 °
23.50000 "_—mﬁiga?zzéff
23.4C000 3117224
31;i?224

25.20900

205.5500)

4460007

163.88000

55.4C0C00

EFFECTIVE TPERFAL‘CCAEUCTIVITY {(«CAL/M=FR-K)} X 1CC

15.£5530

114.E21826

135.23735

50.14001

ECUATICN 6-16

235.,25228

175.51593

60.5C910

EGUATICNG-17

15.40108
120.€138¢&
137.66891

33.5273¢

23.33712

31.75435

“18.1C594

29.72937 -

20.72937

29.72937

242443308

i 47.26500

182.,11988

 64.11924

EQUATICN 6-18

16.37681
133.786G39
154.029€8

35.34213

20.18501

36.€6€610

2C.C6048 -

35.05¢€9¢

35.05£96

35.C5696
| 243,88625

32.668G7

19C.52539

58.35765

LICHT ENKER

30.65555
4C3.1372¢
421.217522
282.2575¢

254,04952

2CC.5¢€221

134.8829C

155.47725
155.47728
155.47725

373.68602

6C1.C3425

338.,4C064

£0.€C93C

61



TABLE A-VI.

CATA

&0

£l

&2

€3

€6

&7

€3

&9

73

SXPERITNVETAL

36.C20700
1718237
34,230970
35.6C7002
53, 30020
%5.C0352090
Tl.40000
71.4C2C0

71..'5":'3‘-‘:57)

358.CC000

70,72002

71.3C090

144.40000

37.5CC00

CONTINUED

EFFECTIve THERNMAL CONCUCTIVITY (KCAL/M-FR-K] X 1CC

SCUATICN 6-16

4644236

15.6R287
32.77132
38,.77i32
60.48748
£0.48743
73.26926

17.41556

FHE.G53G5
104.28630
1C4,287%372
179.21822

50.2975%

EQLATICN 6-17

Gh.454T3
15.8%9289
41.2602C
41.,2602C
t4.27E04
427204
16.86735
80.76813
20.76813
288.27393
1C3.C6313
1032.25560
183.37(59

48.4183¢

cQUATICN £-18

37.65568
1£.8C524
3£.53062
38.53C¢2
58.47467
S8.474€7
10.64043
74.73293

74.73263

425.23792
115.53438
115.£C843

19C.95416

33 .4E287

LICHTENKER

456.56298
31.74458
46,34372
46,34372
60.801872
€0,801872
70.4%6702
13.885¢¢
73.889¢C¢€

934.814271

2ES.EEEEE

266.80486

343,90477

€25.168¢€¢

08l



TABLE -vl. CONTINUED

Cata EFFECTIVE TRERNMAL CCONCLCTIVITY (KCAL/M-tER=K) X 1CO

Case EXPEXIMLATAL cCuaTIcn 6-16 EGUATICN 6=17 “CLATICN 6-18 LICHTERKER

71 42.5C0000 48.44803 46,E6942 4C.578217 512,1383C
12 25.7C800 22.83211 21.63£79 3€6.C6CC0 203.3550¢
73 36.4C0C08 46.52268 45,14173 36.1553% 5C9.276¢¢8
74 17.1CCCO 15.2G3¢8 1£.£61938 1£.48975 32.23E8¢€
5 230.803870 ?57.4€574 2710.459073 266.,565¢8 398.7459¢8
IS 35.10380 E0.43188 49022279 34.06481 £41.71144
71 {00.7CQCHO 138.7¢442 132.£5102 156.23456 448.,62784 .
18 2240000 35.63221 3IH.29717 3¢.380C1 308.2178¢
19 17.,8C080 24.5712C0 24471508 21.,1C048 276.20431
20 20.7C000 272.6745¢6 22.93893 25.0€121 59.335CC
gl 154,520C0 179.21C11 185.36218 191.690¢€95 352.8243]
¥ 73.1C000 18.77325 82.64781 TE.ERZ286 716.1578¢
g3 24.6C000 33.57004 33,.,32753 37.4G713 218,55021
G e 51.70C9230 50.72652 50,707¢&8 3CL.2¢€33 €71.29497

181



TABLE

Cata

ChasStk

ES
Gn
51

G2

-V,

EXPFERIMENTAL

W

2.3

(]

oun
78600070
36,8CCCD
47.5C000
32.50200
37.CCALD
120.6CC00
298.CC000
176.CCCCO
39,6U000
15.50CCDN
53.zC0ul
55.40000

57.5C0090

CONTINUED

fCuATICN 6-16

44 .22812
1014098464
45.60656
“1.£7617
L7 .69164
56.05€73
227.28975
453.E6€6227
2654 .,26019
47.86530
13.33748
T53.5517135
T5.557C5

15.55%7C5

ECLATICN

44 ,29445
1C7.61176
53,10404
51.35718
42.17589
19.322221

157.62872

349.73652

204 ,ETH0T
35.£104C
13.85331
52.95373R%
52.95738

52.55738

6-17

EFFECTIVE THERMAL CONCLCTIVITY {(KCAL/M—HR-K)

314.E858G3
25.£937%
36.21683
36.272170
315.859E4
39.143¢€5
228.19567
471.721746
292.15421
41.92740Q0
18.10140
47.294538
47.29458

47.29458

X 1C0

EQUATICN 6-18

LICHTENKER

539.9473C
3839.377C¢
6EE,B1107
693,21712
557.12542
570.587517
B25.9170¢
1026.5C052
£85.54253
48.82971
34.113G4
825.221365
B25.22173%

825.22135

281



TABLE 4-VI.
CATA
CXPER TN ENTAL

CASE

59

100

ot
[
o

108

54.5C6C0
ELl. 10080
23.40C000
10.2C1200
126.00000
43.55000
51.75000
32760200
40,20000
327.CC0090
44, 60500
26, 30000
41.,.80080

«CEC00

4 4]

31

CONTINUED

cQUATICN 6-16

75.55705
15455783
18.53058
12.7151¢6
13£.07769
25.375323
5.37923
£21.64459
£5.613E82
420.,386C0
55%.£9790
24.,54554
37.21554

462.40528

EGLATICN 6-17

52.935738
52.55738
12,27307
9.34598
172.087932
50.30533
50.320533
568.03C96
51.0C951
382.06988
81.24E74
22.27846
33.64014

£19.48245

FFFECTIVE THEXMAL CENDLCTIVITY (KCAL/M-KA=-K) X 1C0

SCQUATICN 6-18

47.29458
47,25458
17.40321
11.38864
212.10419
37.52660
37.52650
542.5%5222
3.717¢6
440.48C26
3E.GSGCCC
25.864C2
4C,32416

502.86521

LICHT EAKER

825.,22136
825.,22136
33.2546C
15.50991
g822.219C1
124.E4665
T24.646¢€5
6173.54644

738.4232°%

-1C03B.463¢€¢

T43.C712€
63.9C142
23£.51582

2309.23C04

£81



TABLE 6-VI. CONTINUED

CATA

CAstE

113
114
115
116
117
118

119

EXPeRINENTAL

S80.C000D
585,.L0000
550.00000
&15.CC000
630.CCNGD
£27.50700
557.1C2009
323.1C000
607.6CUCO
549.5C009
634,400300

45.C0C0YD

55.8CIC0

EFFECTIVE

ESUATICA

4¢2,40538
6£19.09245
£19.05245
£15.861458
675 .814E8
E15.81458
Y. 7T7173
SEDLTTLT3
E27.L69%3
8E6H.1CC24
BOT.418G2
V14.292616

54.11C49

b4.34CC5

THERMAL CORCLCTIVITY

6-15 LQUATICN 6-17

413.45245
558.49753
558.39753
6CHB.54E45
£38.54645
ECE,.,S4E45
€85.,€60€02
EBG.ECED2Z
53%.42334
799.05327
AC2.21736
8§S7.76815

51.2CC05

E0.76265

(KCAL/¥=FR=K)

5C2.86521
EEC.E4235
680.84265
743.07338
743.07338
743.C7338
1Cl1.0%310
i011.C9310
558.45987
£8C.L3270
282.932717
1020.063510
47.10682

58.9754C

X 1C0

ECUATICN 6-18

LICHTENKER

29C9.23004
3128.,441712
31128.441713
3167.529317
3197.52937
3167.62931
1769.6687¢
T185.6987¢
7C2C.7€531
7612.869712
1655.16CCE
T917.56551

£52,2794¢

727.198732

¥81



TABLE 6-VI

129

137

138

139

140

ExEoRIMENTAL

LER.CCCEA

49.,7C500

101.CONCo

26.4C000

35, 40000

110.0C400

31.C5C00

13.8C0200

27.3C0CH

CONTINUED

CoUATICN 6-16

41.544685
2e.58511
210.03414
51.73973
121.62449
25.17274
LR.45411
191.22C50C
43.0C424
16.63C20
13.6%47239
55.5C633
173.821595

46.5€6551

ESUATICN 6-17

39.44183
35.08021
161.43568
48.54C81
165.2G647¢
22.15147
47,3300
17¢.214938
26,24361
15.22358
12.47190C
57.34G14
156.94868

47,08640

EFFECTIVE ThHoRMAL CONDUCTIVITY (KCAL/M=FR=K} X 1CC

ECUATICA 6-18

24.96846
17.48121
231.26589
45.52C54
198.75¢6¢€3
26.,44550
47.83672
207.79861
4C.232175
16.81157
2,439¢€1
54,8713
178.E5411

51.442C1

LICHTENKER

£51.£5336
631.5769¢€
G&8,3184C
616.69667
737.09531
£8.74687
548,5576C
74$.86525
52.5514C
39.oi517
Z6.49547
T84.5654¢
618.8EE684

480.5542¢

681



TABLE 4VI.

CATA

Cast

141
147
143
144
145
146
147

148

152
153

154

EXPERINVENTAL

26.2CC00
61.7C00C0
27.CCC00

2%.2CG0L0

110.8C3C0
27.500CH
26.4CCC0
85.20C00
58.4C0CGC0
TC.CCO0D
76.£C0C80
272.50000

248,70CCC

CONTINUED

ECUATICN 6-16

23.16844
175.5C4C8
4£7.21751
I3.64510
47.85173
150.25043
£1.£77C8
36.53366
165542468
6. TG942
56.07241
El.74598
262.ClE89

2364 ,7G526

EQLATICN

EFFECTIVE TRERFMAL CONCLCTIVITY

34.€8392
15£,08702
47.79587
15,27914
45.75384
Le4. 78573
52.16730C
38.57573
145.43751
71.02535
51.£6107
bl.£2668
267.1069¢6

237.011759

6-17

{KCAL/M=FR=-K) X 1CO

ECUATICN £-18

35.04215
17G.52768
52.25597
35.859?1
52.193E8
186.60226
57.£9110
41.C0819
165.60185
73.34132
56.01CCH5
7C.87885
28C.C1228

252.82CC6

LICHTENKER

449,828132
€25.TE5¢&S
487.51€52
457.152017
347.1€632
£€65,64385
53C.74884
5C0.1159C
649.41845
956.51045
398,32455
459.77048
480.93223

457.1813¢

981



TABLE 6-vi. CONTINUED

CATA EFFECTIVE THERMAL CONCLOTIVITY [KCAL/M-hHR-K) X 1CC

CASE EXPERINENTAL ECUATICK 6-16 ECLATICN 6-17 EQUATICMN 6-18 LICKTENKER

155 172,.7C000 171.021732 16B.C8EDT7 L88.14C54 396.€£801¢
156 16.5C0C 18.0G448 17.80534 1€.71334 16,74108
157 6.52000 6.07512 6£.30359 E.CCCT 7.36559
158 46,CCCCC GT7T.87945 S1.63375 105.2C750 217.4423¢
155 0.1C610 0.CE1CY 0.08228 C.C3170 0.032072
1€0 0.Ce183 0.C6274 C.04555 C.042C023 0.CC772
1&£1 J.085598 C.C8051 0.C3174 C.C8234 C.CC207
162 0.05110C C.C2654% C.Co470 C.04489 C.CClCE
163 0s04140 0.C31¢0 C.02755 €C.Cz220 0.LCO4¢
1&4 Ge14040 0.10873¢C 0.13498 c.17819 0.1530C
1€£5 15,0000 23.C5515 20.32¢€62 23.63661 156.30005
164 11.850040 15.,54G27 13.75262 12.68524 134.58651
167 39.8CH00 2% .58G27 22.82285 1€£.35257 253.52111
1&£8 130.CCa00 181.5943C1 137.55627 11C.58691 1428.90516

£81



TABLE 6-VI. CONTINUED

CETA EFFECTIVE THLRNMAL CCACULCTIVITY (KCAL/M-FR-K) X 1CC

CASE EXPERIMENTAL EQUATICON 6-16 EQUATICN 6-17 - ECUATICN g-18 LICHTENKER
165 81.50000 103.5€177 B5.07619 116.02943 349.55322
L7¢ 25.8C000 29.54646 25.51770 2e.ciels 29.6411¢
171 60.CCOND 54.491779 78.11311 104.96805 275.CE8724
172 1.02400 1.08123 C.G7622 © £.97847 2.€145¢

881



TABLE 6-VII. DIMENSIONLESS VARIANCE OF CALCULATED
THERMAL CONDUCTIVITY BASED ON SELECTED

MODELS
Flux Law Models
1. Maxwell 42.9
2. Lord Rayleigh 32.1
3. Meredith and Tobias 29.8
4, Bruggemen 17.8
Uniform Heat Flux Models
1. son Frey 50.2
2. Woodside and Messmer 19.2
3. Kanager 13.1
4. Gorring and Churchilil 14.8
5. Willhite, Kunii and Smith 13.3
6. Schumann and Voss 20.1
7. Preston 16.4
8. Wilhelm et al 13.8
9. Krupiczka 13.1 -
Parallel Isotherm Models
1. Russell 35.2
2. Bernstein 87.4
3. MWoodside 70.7
4, Equation 5-2 7.0
Weighted Ohm's Law Models
1. Eguation 6-16 10.6
2. Equation 6-17 9.7
3. Equation 6-18 13.0
4. Lichtenecker 3-D 98.4
5. Lichtenecker 2-D 56.8

189



190

(=

o

e

"
> —_
~ -
=, e
— — — o, -!_,T.d_. 4
g ; iy ‘-'.“ &:___‘ﬁ?j’]:
0= IR S
Zlo gy -+
oD L
oo -, 2L

z 2. Foa
W o s
=l ] e
5 _
b I _H‘H_r_"';_ i"
a e N e,
O o :Il:_':l: '
= = R
s Ke] &
i g - -
D | = i
= L
<LiO ]
-t*‘t -
-~
| | I T T 17171 I I UL T TITT1
1 5 10 50 100

EXPERIMENTAL EFFECTIVE CONDUCTIVITY
CONTINUQUS PHASE CONDUCTIVITY

FIGURE 6-7. COMPARISON OF EXPER IMENTAL RESULTS WITH
CALCULATED CONDUCTIVITY FOR EQUATION 5-2.



CALCULATED EFFECTIVE CONDUCTIVITY
CONTINUOUS PHASE CONDUCTIVITY
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FIGURE 6-8. COMPARISON OF EXPERIMENTAL RESULTS WITH

CALCULATED CONDUCTIVITY FOR EQUATION 6-16.
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VII. MODEL BASED ON MNON-LINEAR HEAT FLOW

Consider a representative unit cube of the granular material,
subdivided by a three-dimensional grid into N3 cubicles, as indicated
in Figure (7-1a). Assume that the two faces normal to the z-direction
are isothermal, and the other'four faces are insulated, so that
application of a constant temperature potential gives rise to a net
conduction heat transfer in the z-direction. In order to determine
the effective thermal conductivity of such a system, without any
additional simplifving assumptions regarding the flow of heat, it
is first necessary to find the temperature distribution in the unit
cube. Once this has been accomplished, the heat flow rate in the
Zz-direction can be determined, and an effective thermal conductivity

can be assigned to the material by the Fourier-Biot law.

The solution proposed in this study consists of the following
steps:

1. System synthesis;

2. Determination of the average working thermal conductivities;

3. Computation of the actual temperature distribution;

4. Determination of the heat flows and the effective thermal
conductivity.

The above four steps will now be discussed in detail.

194
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System Synthesis

A representative unit cube of a granular material is shown in Figure
(7-1a) and in Figure (7-1b). The distribution of the continuous and
discontinuous phases is modified is such a manner that each cubicle
is occupied either by the continuous or the discontinuous phase.
Effectively, any irregular shaped particle can be built to any degree
of approximation by arranging a number of cubicles according to a
predetermined format, as indicated in [20]. These particles can
then be placed in the unit cube according to a specified statistical
distribution. This way, the basic assumption of a regularly repeated
elementary cell of spatial configuration, common to most previous
models, is avoided. )

The method of placing continuous phase cubicles in the unit
cube, is based on the assumption that the granular material can be
considered as a random mixture of the two phases. Then, in order to
place a continuous phase cubicle in the system, tﬁree random
numbers are generated by the 0-1.0 constant density function random
number generator, and these random numbers are associated with three
coordinates, defining the position of a cubicle in the system. If
the cubicle thus defined, is already occupied by the continuous
phase, another triplet of random numbers is generated. This process
continues until the total number of continuous phase cubicles is
equal to the continuous phase solid fraction of the granular system

times the total number of cubicles in the unit cube. The geometry



"

g

'
=Il

FIGURE 7-1. EQUVALENT GEOMETRIES FOR UNIT CUBE.
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of the system thus defined, represents a randqm mixture of two phases,
and, effectively, in this system the probability thatia particular
cubicle is occupied by the continuous phase is equal to the volume

fraction of the continuous phase.

Determination of the Average Working Thermal Conductivities

As illustrated by Trezek and Witwer [72], there are a number of
choices in selecting the average working conductivities between
adjacent cubicles, but the series model yields the most accurate

results on each side of the interface. According to [72] then,

- I (7-1)
is = kiks/(0.5 ki + 0.5 k)

where kij is the average working thermal conductivity between the

adjacent cubicles i and j. ki and kj are the conductivities of the

cubicles. A scanning process can now be defined such that looking at
a particular cubicle the composition of its neighbors can be deter-
mined, and consequently it is possible to assign an average working
thermal conductivity between any two adjacent cubicles.

At this point, it should be noted that the working thermal
conductivities thus defined, require that the adjacent cubicles are
in perfect contact with each other. However, physical granular systems
coentain randomly distributed and oriented contact areas between
neighboring particles that provide additional resistance to the heat
flow from one particle to the other. Further, when the voids between

navtirlac ava ovaciatod
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of heat transfer, other than radiation heat transfer, from one parti-
cle to the other. Consequently, as indicated in [34], failure to
account for these contact areas induces large errors in the calcu-
lation of the effective thermal conductivity of granular materials,
especially when the ratio of the constituent conductivities is high.

In order to incorporate the effect that these contact areas have
on the flow of heat in the physical model presented, it is necessary
to associate a contact conductivity with each contact area, and to know
the number of contact points in the unit cube. As indicated in the
Literature Review, a number of expressions have been developed
relating the contact resistance to the contact area between two
particles. In the calculations, the expre;sions given in reference
[34] have been used because they are in good agreement with Kanager's
[73] analytical development. The number of contact points in the
cube, N.,can be determined, as indicated in the Ohm's Law Models
section, as a function of the unit cube size, a characteristic par-
ticle size obtained from sieve analysis of the granular material,
and the coordination number.

To complete the determination of the working thermal conducti-
vities, it is necessary to randomly distribute Nccontact conductivities
between adjacent cubicles occupied by the discontinuous phase.

Again a triplet of random numbers is generated, and is associated
with three coordinates, defining the position of a cubicle in the

system. If the cubicle is occupied by the discontinuous phase, the
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compqsition of its neighbors is determined, and the working con-
ductivity between the first pair of solid cubicles is replaced by
kcr‘ The process is repeated until Nksuch replacements have been
executed. A point of importance is that since contact points at the
boundaries of the unit cube should also be included, it is necessary

to determine the composition of the cubicles surrounding the six

faces of the unit cube.

Determination of the Actual Temperature Distribution

When a steady-state temperature field is desired for a region
in which the thermal conductivity is dependent upon the spatial loca-

tion, a solution must be obtained for the following eguation

v{kvT) = 0 (7-2)

When each cubicle is considered separately, the condition which must

be met is the Laplace equation

t Lt L= (7-3)

Also, each temperature in the unit cube must be bounded by the
temperatures applied at the two opposite faces of the unit cube.
Laplace's equation requires that the temperature at every cubicle
remain constant. That is the net heat accumulation in each cubicle

should be equal to zero. In order to write a conduction heat
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jsothermal and is lumped into a single node, and all the nodes are
connected by the average working thermal conductivities described in
the previous paragraph. The basic system unit around which each
heat balance is written is shown in Figure (7-2). Under the assumption
that heat flow to the center cube is positive, the resulting heat

balance is

6
> ki (T, - T) ML= Ry (7-4)

i=1

Application of Equation (7-4) to all cubicles results in N = m
simultaneous, linear equations. The coefficients of this system of
linear equations are functions of the average working conductjvities,
and the unknowns are the node temperatures. As indicated in [74]

one of the most efficient methods of solving such a system of equations
is a successive overrelaxation technique in conjunction with an
iterative scheme. The stens involved in this method are the

following. |

Consider the system of linear equations

bH xT'+ b]2 X, R 2 bTm X = Uy
b21 Xq + b22 Xo + . . . e e .. + b2m X = U

: (7-5)
bml X * brn2 X2 T * bmm Xm = U



(i—1,j.k)
Tl
(i,;+1, k)

,—\(i,J,k—l) Y’j’k) (i,j, k+1)
(i:j_]-: k)

;
@ (Gi+1,,k)

FIGURE 7-2. HEAT BALANCE BASIC NODAL ORIENTATION
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Jj=i+1

(7-6)

(7-7)

Then, the (n+1) approximation of the ith component of the solution

vector for the successive overrelaxation method is defined from

M. 1. n
- X 1= (1-w) Xi WX

(7-8)

The quantity w is called the overre]axatioﬁ factor, and 1 < w < 2,

It is seen from Equation (7-8) that ximT is a weighted mean of xin

and x' n+l
i

Equations (7-7) and {7-8) into a single equation yields

m
n+1 :E: n
bij xj

» the weights depending only on w.

j-1

n+l _ n
bii X byy x; " +w |- zbij X5
3=

Combination of

(7-9)

Then, from Equation (7-9) the (n+1) approximation of the ith component

of the solutign vector is

n+
i1
n
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-
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It is seen that in the iterations, the newly-computed components of
the X vector are always used in the righthand sides as soon as they
are obtained.

Comparison of Equation (7-10) with the heat balance equation for

each cubicle indicates that the term in brackets 1s equal to the

negative of the thermal residue. Also, b.. is the negative of the

ii
sum of the average working conductivities between the node at which
heat balance is executed and the surrounding nodes. As a result, for

the particular problem in question, Egquation (7-10) takes the form

1=6
™ E kiz (T4 - T7) (7-1)
i=1

Equation (7-11) gives a better estimate of the temperature at each
node in terms of previous estimates. It can be seen that a positive
thermal residue, resulting from T7 being too Tow, will increase the
new value of T7.

Exactly the same iterative scheme can be obtained by writing the
finite-difference representation of Equation (7-2), and treating the
conductivity variation according to Equation (7-1).

The steady—state temperature field in the unit cube can now be
obtained, provided that an initial temperature field is defined. A

reasonable selection for the initial temperature field is to assume
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that planes of nodes normal to the direction of the heat flow are
Aisotherma1, and the temperature of each plane is proportional to its
distance from the surface of the cube. Also, the imposed boundary
conditions dictate that the temperatures of the nodes on the front
and back faces, which are normal to the direction of the heat flow,
remain constant, and the heat flow away from nodes associated with
the other four faces is zero. Application of Equation (7-11) coupled
with the assumed initial temperature distribution and the boundary
conditions, gives the actual temperature distribution in the unit
cube. In the calculations, the iteration process cut-off point is

when tne sum of the absolute values of the thermal residues becomes

less than or equal to 1.0.

vetermination of the Heat Flows and the Effective Thermal
Lonductivity

After the steady-state temperature field has been determined,
three orthogonal heat flux vectors can be defined at each node.
%owever, since the net heat flow is in the z-direction only, this
is the rate of heat flow on which the effective therma] conductivity
should be based. To find the rate of heat flow 0 in the z-
direction, the heat flows in the z-direction between all nodes in
any two successive planes are summed. This process is repeated
for all successive planes, and Q is the average value of these

sums., The effective thermal conductivity of the granular material,
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as defined by the Fourier-Biot Taw, is given by:

= _Q_ ) ’ -
ke NAT (7-12)

where AT is the difference between the temperatures of {the back and
front faces of the unit cube that are normal to the net heat flow

direction,

The method of solution described in the preceding paragraphs can
be applied to any granular system for which the fluid in the voids is
at atmospheric pressure. In this case, the solid particles and the
voids are approximated by the arrangement of a number of cubicles
éccording to the statistical distribution chosen; heat balances
at each node should give the temperature distribution since both
phases are in the domain of a continuum. However, when the medium
in the voids is a rarefied gas, which is the case for both lunar and
martian environments, a dominant mode of heat transfer in the voids
may be radiation between particle surfaces [1], as shown in Fig. (7-3).
Also, when the molecular mean free path is greater than the void
diameter, conduction in the voids takes place by direct exchange of
energy between particle surfaces. Consequently, for extremely rarefied
gases it is not possible to determine a working effective conductivity
between nodes that belong to gaseous cubicles located in the same void.

However, if the chosen grid size is coarse ehough so that the volume

....... | e | -

ngan void equivaient nole volume, then

each void is approximated by a cubicie and the working effective con-
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FIGURE 7-3. HEAT CONDUCTED THROUGH GRAINS AND TRANSFERRED
BY CONDUCTION AND RADIATION AT BOUNDRIES,
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ductivity of each cubicle occupied by the continuous phase can be ap-
proximated by the effective radiative and gaseous conductivities dis-
cussed in the literature survey.

Comparison of Calculated Effective Conductivity to Experimenfé] Data.

The effective thermal conductivity has been calculated and com-
pared to experimentally determined values for a number of granular
materials at atmDSpheric pressures, as indicated on Table 7-I1. The
range of porosities and constituent conductivities is 0.31 - 0.59
and 1.67 - 2444.4 respeétively. For all these cases the conductivi-
ties of the constituents were assumed to be constant, independent of
temperature distribution in the unit cube. The mechanical properties
of the solid phase, required for the calculation of the contact re-
sistance, are shown on Table 7-IX.

In addition to the model presented in this study, the effective
conductivity predicted by a number of selected models was also deter-
mined, and the calculated values are presented in Tables 7-II and 7-111.
The column "Case" in these Tables refers to the granular system de-
scribed in Table 7-I1. It should be noted that a number of these models,
such as the Maxwell, Rayleigh and Jefferson models, have been ex-
tended to porosities beyond the range for which they are theoreti-
cally applicable.

The percentage error between experimental thermal conductivi-
ties and those predicted by all selected models is shown on Tables
7-1V and 7-V. Table 7-VI summarizes the mean error, mean bias and the

variance of percentage error between the experimental and model
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predicted thermal conductivities. From this Table it is seen that the
model of this study predicts the experimental thermal conductivities
with a mean of 15.8%, an error variance of 1.63, and is biased below
the experimental values by 5.8%. This is slightly better than the
Krupiczka model, for which a mean error of 17.5% has been calculated.
The mean error of all other models is in the range of 30.1% - 42.2%.
A graphical representation of the effective thermal conductivity pre-
dicted by the model described in this study is shown in Figure (7-4).
It is interesting to observe the performance of some of the
models as compared to the assumptions introduced in their develop-
ments. It would be expected that models utilizing the parallel iso-
therm assumption would overpredict the effective thermal conductiv-
ity. Jefferson's model (6 in Table 7-VI) generally conforms to this
expectation. However Russel's model (5 in Table 7-VI) predicts Tower con-
ductivities than the experimental ones, and the discrepancy increases
with the ratio of constituent conductivities. The most probably ex-
planation for this behavior is that the effects of the assumed simplified
geometry, and the absence of contact areas between particles, domi-
nate over the assumption of infinite conductivity in the lateral-to-
the-heat-flow direction, thus rendering the calculated conductivities
low.

On the other hand, it would be expected that models utilizing
the uniform heat flux assumption would predict low values for the

effective thermal conductivity. This is the case for Lichtenecker's
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model {8 in Table 7-VI) which, as expected, predicts lower values than
Russell's model. However, the Krupiczka and Woodside and Messmer mod-
els {7 and 9 in Table 7-VI) are generally biased above the experimenta1
effective thermal conductivity, thus strengthening the indication that
the effects of particle shape and spatial distribution, and the bend-
ing of the heat flow lines in granular materials are too complex to
be analyzed separately, and should be incorporated in a single unified
model. Therefore, an analysis of a simplified geometrical configura-
tion or an unrealistic heat flow assumption do not provide sufficient
information to deduce whether a particular model will predict high or
Tow conductivities for real granular materials.

Models based dn non-linear heat flow are generally biased below
the experimental thermal conductivity, as seen from Tables 7-1V, 7-V and
7-VI. A surprisfng result is that the conductivities predicted by Max-
well's and Rayleigh's equations are very close for the total range of
porosities and ratios of constituent conductivities. This is probably
due to Rayleigh's failure to include a larger number of terms in his
solution, and for this reason Meredith and Tobias' equation provides
a marked improvement of the predicted values.

ror the model described in this study, the effective conductiv-
ity in each case was determined by considering five or more random
placements of the continuous phase in a unit cube, and finding the
average of the calculated values. The variance of the calculated

values was less than 0.1 for 78 cases and its highest value vas 0.587.
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Whenever the variance was exceedingly high, more random placements
were considered, so that a more representative average could be ob-
tained for the effective thermal conductivity.
In Fiq.(7-5) the calculated effective thermal conductivity shown

1n Table 7-VII, is compared to experimental data obtained by Fountain

and West [3] for particulate basalt in a simulated lunar environment.
The thermal conductivity of solid basalt was assumed to be a function

of temperature given by:

6

k{Basalt)=0,01091+9.09x10"°T Watt/cm-K (7-13)

where T is in 9K. Equation (7-13) is a least squares fit of the data
given in Reference [64]. The effective thermal conductivity of the
gaseous phase was calculated according to Equation {A-1), and the ef-
fective radiant conductivity for the transfer of heat between particle
surfaces was calculated according to Equation (B-13). In both cases the
effective pore size was assumed to be given by Eguation {D-6). Then,
the effective conductivity of the continuous phase is the sum of the
gaseous conductivity and the radiant conductivity.

As indicated in Fig. (7-5), the calculated conductivities are ]ower
than the experimental. Probably the source of error is due to two
factors. First, the semi-empirical equation for the contact resistance
used in this study probably predicts Tow values for the contact conduc-
tivity. Evidence to this effect is that calculated conductivities at
Tow pressures, in which case heat transfer from particle to particle

is a dominant mode, are generally low. A second source of error is
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failure to include radiation heat transfer as a photon diffusion
process. Evidence to this effect is that the discrepancy between
calculated and experimental values generally increases with tempe-
rature. Nevertheless, it is seen that the model predicts fairly well
the increase in slope with decreasing porosity, and the increase in
slope with temperature, due to the increase of the relative influence
of radiant heat transfer with decreasing porosity and increasing tem-
perature. The maximum error of the calculated thermal conductivities
is 23.6% and the mean error is 15.9%.

In Fig. (7-6) the calculated effective thermal conductivity is com-
pared to experimental data obtained by Fountain and West [3] for par-
ticulate basalt in a simulated martian environment. In this case the
gaseous conductivity and the radiant conductivity are of the order of

5 7 Watt/cm®K respectively. Consequently, radi-

magnitude 3x10 "~ and 10~
ation can be neglected. Again the predicted values are Tower than the
experimental, and the maximum error and mean error are 25.2% and 20.8%
respectively. The slight increase of the effective thermal conductiv-
ity with temperature is due to the simultaneous increase of the con-
ductivity of the solid and gaseous phases with temperature, and not
to radiation heat transfer.

A case in which the calculated values are not in good agreement
with experimental values is shown in Fig. (7-7). The experimental data
in this Figure were obtained from Reference [93]. Here, experimental

and calculated thermal conductivities are compared for glass spheres
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in a simulated lunar environment, and the maximum and mean errors are
48.3% and 39.4% respectively. The discrepancy increases with increasing
temperature. The most probable explanation for the low predicted ther-
mal conductivities is that this case does not satisfy the assumptions
stated in the development of the model. Radiation heat transfer has

been incorporated in the model through the effective radiant conductiv-
ity of the voids, which accounts for the radiation heat transfer between
particle surfaces. It has been necessary to make this assumption because
of the lack of information about the extinction coefficient of granular
materials and powders, which is required for the complete description

of the radiation heat transfer process. Consequently, it has been ef-
fectively assumed that the solid particles are opaque to thermal radia-
tion, and that the pure radiation heat transfer process can be neglected.
However, there exists evidence [2,85] that this is not always the case,
and for very small particles the pure radiation process is generally
more effective than the conduction-radiation process. It appears that
failure to account for the pure radiation process has rendered the
calculated values much lower than the experimental values is this case
of glass spheres.

The experimental and calculated thermal conductivities of partic-
ulate basalt in air, lead shot in air, aﬁd glass beads in air are com-
pared in Figures (7-8), (7-9) and (7-10) respectively, as a function of
pressure. It is observed that the model nredicted values are generally in

good agreement with the experimental values, although somewhat lower crn-
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ductivities are predicted at low pressures. This relatively good agree-
ment is attributed to the choice of Equation (D-6) for the effective
pore size associated with the conduction heat transfer in the voids.
The maximum and mean errors corresponding to Figures (7-8),(7-9) and (7-10)
are 28.4 and 19.4, 37 and 18.5, 23 and 17.6 respectively.

Table 7-VIII summarizes the mean error and the variance of per-
centage error for all low pressure cases.

Summarizing the comparisons between calculated and experimental
thermal conductivities, it is seen that the performance of the model
described in this study is sufficiently good for granular materials
at atmospheric pressures. For granular materials at Tow pressures,
the predicted thermal conductivities are generally low, but the change
of the thermal conductivity with temperature and pressure is in good
agreement with the changes observed in the experimental values.

The major sources of error in the calculated effective thermal
conductivity values are as follows:

1. Low values for the contact conductivity predicted by Equation (C-7);

2. Failure to account for the pure radiation process:

3. Incomplete description of the particle and pore size and shape
distribution by the random placement method.

The first factor is of particular importance in cases where the
ratio of the constituent conductivities is large, and could explain
the low calculated values at low pressures. The third factor is a mani-
festation'of the lack of information associated with the generalized

geometry of granular materials.



TABLE 7-1  COMPARISON OF CALCULATED CONDUCTIVITIES TO EXPERINMENTAL CONDUCTIVITIES

1 contuctivity, (6 mwe - 20 x 100
Case Eag;g gﬁ;;g Experimental | Calculated kd/kc P Ref.
(1) (2) (3) (4) (5) (6) (7) (8)
1 h-Heptane Joartz 57.6 61.6 65.5 0.590 23
2 el Tum Jartz 63 61.7 62.6 0.590 23
3 Hydrogen Ptz 74 73.8 49 0.590 23
4 Ezter gggrtz 180 152.6 13.3 0.590 23
> ELoH Yoy 172.7 181.2 61.2 0.505 36
6 o Sl 22 24.2 779.6 0.502 36
7 Elycerine > ootee! 248.3 2119 38.7 0.502 36
8 Hater Dgyree! 272 228.3 32.9 0.501 36
9 Hel Tun Dsgnree] 117.4 114.4 114.5 0.500 21

bL2




TABLE 7-1 Continued

() (2) (3) (4) (5) (6) (7) (8)
10 Hel fun §é7gtee‘ 122 133.5 90.3 0.500 21
1 Argon ﬁégthE] 38.7 30.6 1162.3 0.500 21
12 gfg?” > otee] 41.6 48.7 855.7 0.500 21
13 [so-0ctane | 5. Steel 80.5 73.3 145.8 0.476 36
14 Air Lead 30.4 27.0 1224.1 0.450 6

2.41 2950

' e oy e 216 191.9 17.9 0.439 36
16 A aarte 26.8 34.5 420.9 0.438 35
17 Air s 21.9 16.9 423.0 0.437 36
18 gf;5 gga1 1.8 8.9 16.0 0.437 35
19 ?ﬁﬁgogen gga1 25.3 22.1 2.17 0.437 35
20 gg?g g;;‘ca 144.6 122.3 33.2 0.434 36

yle



TABLE 7-1

Continucd

m @y

21 Et0H
29.3

22 Air
2.3

23 Iso-Cctane
12.3

24 tater
54.5

25 Glycerine
46.3

26 Iso-Octane
12.3

27 Iso-Octane
12.3

28 Air
2.3

29 Water
54.5

30 Air
2.3

31 Glycerine

46.3

G

Silica
973
Silica
973
Glass
93.9
Silica
973
Glass
93.9
Silica
973
Silica
973
Silica
973
Silica
g73
Silica
973
Silica
973

35.1

218.5

73.2

94.1

70.9

22.3

210

22.6

205.5

42.2

177.5

61.1

78.9

25.9

159.1

26.3

180.3

(6) (7) (8)
33.2 0.433 36
423.0 (.433 36
7.63 0.431 36
17.9 0.430 36
2.03 0.428 36
79.1 0.428 36
79.1 0.426 36
423.0 0.426 36
17.9 0.426 36
423.0 0.424 36
21.0 0.424 36

9



Table 7-1 Continued

(1) (2) (3) (4) (5) (6) (7) (8)
32 2?21 25281 44.6 53.2 1597.5 0.423 6
33 gg?g g;?gs 55.4 .1 3.2 0.423 36
34 g;?g gggfca 163.8 134.5 33.2 0.423 36
35 {E%Octane S;;ica 74 & 77.7 79 .1 0.423 36
36 gfz} 5823 36 41.2 1224.1 0.420 6
37 {g?;OCta"e ggéica 70.6 66.9 79.1 0.420 36
38 ?g?;um ?320 132.5 151.7 176.3 0.420 21
39 ?g?éum heo 152 127.2 116.1 0.420 21
40 A e 33.5 30.5 1052.2 0.420 21
41 gf;o gggo 40.2 52.7 687.5 0.420 21
* gf?gn 7350 26.8 19.5 1273.2 0.420 21

L2



Table 7-1 Continued

(1) (2) (3

43 Argon MaO
2.23 2200

44 Air Al1.04
2.74 2600

45 Iso-0Octane Silica
12.3 973

46 EtOH Silica
29.3 973

47 Air Quartz
2.25 947

48 Air Glass
2.3 83.9

49 Hater Silica
54.5 973

50 Air Steel
2.41 3850

51 Air Steel
2.41 3850

52 EtOH Silica
29.3 973

53 Air Sand
3.0 160

29.8

36.1

144 .2

29.7

17.1

230.5

35.1

33.6

154.9

23.1

(5)

24.1

69.3

114.2

19.4

13.9

157.7

29.8

29.8

115.6

16.7

(6) (7) (8)
986.6 0.420 21
948.9 0.420 45
79.1 0.419 36
34.2 0.418 36
420.9 0.416 35
40.8 0.414 36
17.9 0.414 36
1597.5 0.413 6

1597.5 0.413 6

33.2 0.410 36
53.3 0.410 56

8le



Table 7-1 Continued
(1) (2) (3) (4) (5) (6) (7) (8)
54 fater s 73.1 69.7 1.72 0.408 36
55 QTEI 3;28] 36.7 41.6 1597.5 0.402 6
56 2?55 5823 37.1 42.8 1351.1 0.400 35
57 ?g?goge” ESZS 120.7 128.7 183.1 0.400 35
%8 hater Lead 299.5 273.1 55.3 0.400 35
59 gl{gerfne( gggg 176 204.9 1241 0.400 35
60 gle §§§S1 42.5 40.9 1597.5 0.394 6
61 gg?g gggggr 327.5 251.3 {133.1 0.392 36
62 gfg] gggg‘ 40.3 45,9 1597.5 0.391 6
63 2?21 gggg’ 45.6 48.2 1597.5 0.390 6
64 éfg fggd 29.4 22.4 53.3 0.390 56

612



Table 7-1 Continued
W @)
65 Water
54.5

66 Glycerine
46.3

67 Glycerine
46.3

68 Water
54.5

69 Argon
1.46

70 Aip
2.18

71 Helqium
11.5

72 Hydrogen
14.7

73 Water
54

74 Air
2.43

75 Methane
3.0

(3)

Copper
33200

Copper
33200

Copper
33200

Copper
33200

Lead
2950

Lead
2950

Lead
2950

Lead
2950

Lead
2950

Stee]
3030

Steel
3300

(4)

613

607

549

635

25

36

162

183

470

45

55.8

639.0

529.1

463.2

553.2

29.4

205.8

214.3

377.7

59.1

72.5

NCI.

~(s) (7} (8)
609.2 0.387 36
717.1 0.386 36

7170 0.385 36
609.2 0.384 36
2020.6 0.380 23
1353.2 0.380 23
256.5 0.380 23
200.7 0.380 23
54.6 0.380 23
1246.9 0.380 58
1100.0 0.380 58




Table 7-1 Continued

(1) (2) (3) (4) (5) (6) (7) (8)

76 %?ﬁs gggg‘ 32.4 42.1 2444 .4 0.380 58
77 ?gfgoge” g;ggl 188 191.2 201.2 0.380 53
78 gfgg”"‘Z géass 3.96 3.19 115.4 0.379 23
79 ?fgg” géass 13.3 1.2 61.6 0.379 23
80 gf?s géass 18 16.2 41.3 0.379 23
81 ggter géass 75.5 66.2 1.67 0.379 23
82 gf£4 $$§gt2 35.7 41.8 524..6 0.377 34
83 Air 2and 29.4 22.2 53.3 0.370 56
84 ?g?;um gg%rtz 94.5 72.6 51.9 0.369 60
85 ?g?;“m gggrtz 91.5 72.6 51.9 0.369 60
86 ?g?;um gggrtz 97.8 78.0 68.0 0.369 60

“lee



Table 7-1 Continued
() (2) (3) (@) (5)  (6) (7) (8)
87 Heltun guartz 94 78.0 68.0 0.369 60
88 Alr Snee] 35.6 29.6 1000.0 0.365 35
89 Hydrogen Steel 10 106.3 135.5 0.365 | 35
90 gfgg %;gz 25 20.2 66.7 0.360 45
91 gfgq artz 37.8 42.8 524.6 0.354 34
92 gf;S‘ Lead 58.3 62.7 1351.1 0.310 35

22
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TARLE 711 EXPLRINMENTAL AND PRECICTED THERMAL CONDUCTIVITIES
FOR VARI[LCUS MUEELS

CASE

19
20
21
2z
23
24
25
26
27
ZH
25
kX!

N
31

37
3
EES
35
36
" hr
37
EXH
2

ﬂrc
41
L2
43
4
45
G 6
47
48

L XKL
U760
UeO3LC
J«74CC
L «BOCO
L7270
L2200
G E20
27200
Lel74C
L.22CC
Ue30870
Cetl&C
veB0CoC
e 3040
L. lELC
UeldBHG
Je2iS0
wellEd
0.2532C
Ledhtl
Lafhtan
Ve 2HG
J.3510
AelHsl
D.732¢C
ISR Y
Ga70%0
Jed2 30
£ bCLT
Ja22t8
Za7950
Wbt
Uaeubdl
L6380
e M A6
Ce JELD
e 1CHEC
132490
Le520G0
e300
VeaCPC
J.2GED
DedGHO
Ve dlel
L4020
DeZ51G
d.1710

MOCEL

Cet 180
C.E170
0.7380
1.560
1.8120
D.25820
2.11490
2.2830
i.14490
1.3350
Ue JUED
et 70
J.713320
G.27C0
1e21%90
03450
Ua.lo9Q
U UbS0
62710
iel2 30
Pe2t6l
O.ld%0
LDeb220
a7 750
U1 L0
Q8190
e 189D
Jadb0
Le54910
0.20140
L5030
0.5220
C.4110
1L.3450)
VI Y
Jek 120
Ces&US90
L5170
127120
03050
Ga2 70
D191
De24l0
3140
Jats30
L.1420
O«l940
G.13590

KRUPIC.
C0.aT752
D914
3.5900
1.4804
lLao3e4
0.1G56G4
2.1167
2.3%7C0
0.5959%5
1.1C2%
Del701
D.2C06
0.90C56
D.3264
2+16499
Jar951
De2é¢23
V.0860
Q.25CH
l.5079
1.5119
2671
Je3bisd
2.2125
GebBT56
0.9821%
JeHEED
0.2759
2.2321
Q.278%
2.0382
Oe3983
D.9457
l1.5931
S 6973
D.34635
L.9Ce5
L4965
1.5¢1l6
D.al2?
0.44686
J«34E6
J.4385
D.4l23
0.90097
L.5745
0.28B26
D.11355

RUSSELL
0.39¢65
Q.n132
C.5114
1.5%4C
L.27732
£.0558
1.9333
2.2294
0.7184
0.8B4C3
C.00781
C.CUET
C.60¢1
C.1327
22576
C.1267
0.1266
C.0908
Cel&1G
l.4039
1.4073
Cal3l3
0.3838
2.302¢2
0.7060
C.6648
C.6683
0.1339
2.322¢4
C.1347
2.C673
J0.1433
0.58568
lodi4 22
0.6737
D« 14473
.o792
0.9027
10944
C.l603
0.19C7
D.12%4
G.1333
G.16328
C.681C
le4sCl
Da1348
£.1197

LICHT.
0.32873
U.3424
Ua4313
la34068
l.09C0
0.6802
1.£6498
1.49349
0.6082
0.7L36
Ca654
J.C8H19
0.5180
0.1131
o391
C.108H
Jallly
CaCB24
Ge2bdd
L2450
l.2484
C.1129
U.3582
2.C844
0.65984
0.5802
0.5838
Jell9H
2.1056
O.1162
l.H&49
O.1l234
UeB5578
la2835
Ua5491
Qu.l244
Dab945
O 7835
0.%190
Jal383
Ue 1646
1116
Uallb0
Qalalyd
0.9363
L.301H
01166
0.1063

JEFFEHSUON
C.3731
0.38713
Caa 151
l.3232
1.373%
C.1550
19570
2.2114
0.8620
U.9693
C.1319
J.1569
0.809%
C.2G86
Z2.2112
C.2442
0.2519
€.C8a79
0.2543
L9260
1.9316
C.2603
Ue 3851
2.2721
C.6d84
0.8855
0.8948
J3.2762
22594
C.2810
2.1LCG
C.h247
J.5591
L.5392%9
C.9091
C.4104
C.9238
1.5197
1.5869
D.4380
0.4645
C.3718
{1. 35480

Fa B W~ |
L T G R

0.9288
l.6241
C.2948
C.i402
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TABLE 7-]] EXPERIMENTAL AND PRECICTED THERMAL CCONDUCTIVITIES
FOR VARIOLS MOCELS

{: ‘..' \‘.) E
Hiy
5C
51
b2
513
54
55
4é
H ¢

()

SN

G0

AL

s

.'_,fg
[}
Tt

o

(3]
Ias

(&
f
[
)
{o
{1l
I8

EXKL
23046
T«351GC
Jel3EC
L2450
Ue/ 210
G P3G
e B 1L
vedllT
H RNV
G550

H.L3C0
Foad IO
I NI
TN
e AL
e 6L
i HALG
Vet 0
TR AV TR
uo"‘j\:c:
P B HL
Jah2N
PR ol
Lieo 35L
tedi 330
NI TR
e dHuG
I LTI A
WP ATE/SY
SRR
et Ll
S teG
[ER ‘1\: '..*
Jedt:d
LeilC0
edBLC
Je 378G
vae 830

MLLrL

1.97170
Qa29R30
Je248uU
Le 1260
D.10170
C.05%10
wabh il
Ut dE
2T
31T}
£ae o)
[ AVAFIY
25130
et
welis )
Ueddtll
6o 3500
5.2910)
ol 320
be0 320
el hl
J.3120
el
2. 1f30
2.71010
Ca891L10
Caelont
Datrd L0
La5i29
Ge3A19
Voe l L?J
Cat&d)
Ceb bl
Ceft 18D
el 2l
Culenl
Uafdll
Colull
I
Je 2160
l.L630
0.2020
Vet 20
C.e270

KRUPIC,
2934
N.4221
D.4221
1.61CC
N.1981
UJeT3G6
Oeab0&
D.41C4
1.7518
J.8028
2.2712
O.47%1
H5.3749
}a4R20
JaH B
0.2165
B.7746
T.m404
7T.8784
B.91G7
0.35%C0
O.4492
lean )8
LeT409
1.9764%
D.4908
03180
4007
Q0787
Dallid2
Oain?d?
DaT288
D.3651
el22606
Q.818
0.9618
1.0204
l.0204
Deta 1}2
LeB3EYG
0.2215
O.4156
0.7508

RUSSELL
2e3048
C.l147Y
Cald 5
le48S4
C.1£35%
C.14C6
Ca1522
C.14249
1.0183
1.0925%
lee752
CGalbeU
190473
C.l574
O 1279
Calb2o
3.5753
3.0024
1.0617
3.6081
CaGIBS
CelfhTl
Ga1573
0.56AC0
J.20217
GCelbiv
N.20G22
QG.G914
1.0717
CalOfia?
D088
CellZbts
Qa¥ae?
Celwiz
Oell24
Ca7960
O0.7960
0.7058
e TESH
D.14989
Loll36
C.165%Y9
C.l626
0.1920

LICHT.,
QD.12175
OG.1275
L.3312
Ja 1446
J. 7052
1322
Q.1242
0.8901
2al420
142935
. 1358
L6555
U.1372
G. L377
O. 1627
3.1246
2.E6TH
26769
Jul5es
C.CHES
0.1284
Ce.6H95
JeB448
28600
e 1435
0.1779)
0.07397
De 9420
Ga473)
C.078%
DJelli?@
Qa2
Ue 1327
01635
Qe714?
O.T142
GebUH3Y
O.6839
O0.1367
0.98483
C.la87
D.143%9
0.1724

JEFFERSCN
2.3857
CetEa]
C.4841
le764
C.20%9
Ce.7487
G.5688
C.5165
1.893G
4,0181
2a4lBh
D.6492
7T.1256
C.6b4hY
C.&0T7
0.239%

li.1C84%
le.2277
1C.3734
lE.5%58¢
U0.58%6
Coll%t
1.7757
2.0476
443443
C.7599
o.H827
C.6022
2.2¢870
C.0HEH
GalZlba
0.1%60
071383
Ceffyl
C.2491l6
10911
1.04%11
l. 1454
Iel454
D.4521
2069
Ca.254¢
C.7013
-2.9H97
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[ARLE 7T EXPLRINENTAL AND PREDICTED THERMAL CONDUCTIVITIES
£OR VARIGCUS MODELS

CASL tXKL MAXWLLL RAYLEIGH W ANC M ¥ ANC T
1 Ge5760 (.3226 0.3213 C.6489 0.3771
2 C.u3C0 C.323061 G.3352 0.6736 0.3933
3 C.7400C U424l D.4226 0.5240 Qa%G51
4 1.8CCU 1.3371 1.2339 2.0223 1.5349
5 1.7270 1.0772 ©1.073%3 2.2594 1.3363
& C.22CC C.0791 C.0786 0.1919 0.0987
[ 2+0t30 l1.£525 1.6469 3.23C2 2.04G0
B 2.12C0 l.7161 1.9094 3,6333 23742
G 11740 C.6207 £.5963 l.34%6 Q.74%4

10 1.22CC C.7C50 C.7021 1.5462 Q.87G1
il c.387¢C (J.C0646 Q.CH4T C.1572 0.6807
12 C.4le0 C.v800 0.C196 G.1941 0.1CC0
13 L.8C50C C.5123 U.5007 1.1786 J.6511
L4 C.30aC C.112C ga1115 C.2764 Da.l454
[ 21600 2.0716 2.0142 3.3220 2.6230
l& Ve LB Catutld C.1062 Ca.260H U.1411
L7 Ced 1492 C.L109% €.1089 C.2615 O.1448
LH O.1L80 Ce.Cthee C.C680 0.13C5 0.1C60
19 G.2930 C.2593 0.2554 C.2691 0.2859
240 leftt &0 l.23648 l.2231 2.33¢C7 Le6LT3
21 Lea€9d 1+2403 L2204 2.33¢4 1.6233
27 GeZ3E0 Ca.llls C.110G73 G.27C8 0.1472
23 C.3510 C.3607 C.34217 G.4715 N.4537
24 2eiB50 2017718 2.0587 2.38¢e2 Z.T7C35
25 DaT320 RO RVE] 0.6968 C.T7220 J.7610
26 LaeS413 Ce5755 C.5617 1.2462 N.75%2
21 Ge 7050 D.5751 0.5711 1.2531 D.7652
2 Leld2d3C C.ll44 g.1127 C.27&1 Jel1514
24 21000 2.2984 2.0788 3.4149 2.17404
30 Ca.dehi C.llbu? C.1134 0.2784 0.1526
21 2.05%50 L8571 1.8379 3.1442 2.4365
32 Ceathbld G.1223 O.12i8 G.3019 J.1e21
33 0.5540 GenT (3 C.S5CTT . Ca6291 0.£738
34 LeU3RED 1.217156 1.2602 2.3539 . 1.6840
35 0.74460 0.584%4 f.5761 1.2635 DaT142
A6 Le3&ECC Gael234 O.1227 C.3037 Ue1640
37 CeTCED GaeD859 0.58i13 127446 J.7834
38 Le3250 C.7770 Q.7726 1.8045% 1.0325
349 -52C0 6.9116 0.9093 2.05C3 le2lll
40 Ce3390 Cal371 Ga1363 O.33€Y Je.l822
4] CettC2U S.1632 Ual620 0,34985 0.2169
47 Ga26hU C.110¢ 0. L1099 C.2727% 01470
43 0.2580 CellsC 0.1132 - 0.28CC Dai515
44 C.3810 Nal1431 J.139< 03428 J.186¢2
45 de 120 C.9917 3.5830 1.2774 D.7864
bt l.402C 1.2938 1.2775 2.4228 l.7155
AT Gad2G 1) Gal157 0.1137 0.278G D.1%42

42 el 1D C.1056 G.0927 0.2056 0.140C7
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ranle 7J0 EXPLRIMENTAL AND PRECICTED THERMAL CONCUCTIVITIES
FOR VARICLS FCLCELS

Casc EAK Y MAX#WELL RAYLEIGH W AND M M ANG T
45 £43C50 2.16%4 2.1607 3.5C11 2.8550
5C Ue3510 C.lZ2064 0.1258 C.3114 0.1689
51 5.3360 S.17264 0.1258 C.3114 0.1689
2¢ PCYED) 1.3237 1.3058 2.4692 1.7675
53 Ca2110 Colt3e 0.1317 (.2922 0.1922
G4 w7310 Cal9T4 G.7546 C.77C4 0.8167
b5 . L3610 G.1312 C.1305 C.3219 0.1769
56 Ge3TIG 0.1232 D.1224 0.3017 Oelt64
57 . l.2071¢ L8R5 0.R781 2.0414 1.1536
b 8 IUDTN 2.7245 27160 5.5666 3.6763
5 17600 1.284 2 1.27¢6 2.8821 1.7350
60 Cehint C.l345 N.1261 0.3257 0.1829
3 2,2150 1.6472 1et462 440117 2.2356
62 Lahin Col362 O.l354 G.3326 S LY
[ Goants C.l36¢ G.1359 C.3335 0.1861
e TP D.i6l8 0.1403 0.3221 0.2203
b el 200 101022 3.1C02 7.4618 442359
6 o 26481 2064610 6.3880 3.6196
w7 504730y 26573 2.6562 6.4066 3.6391
it TR DAY 1.1345 3.1325 7.5270 4.,2508
it L5000 C.CE5Y 0.0551 C.2086 N.1178
. SRE TN C.12/9 Gel269 C.31C0 0.1796
9! Let20) T.E6L0 0.6561 1.5391 0.9082
12 Laidu D 0.8392 0.R329 1.9284 1.1531
7 4.7uCH TR £.8255 5.7G66 3.9CH7
74 ST Leld2o Uelbl4 0.3452 0.1957
75 Lensr ColT50 0.1746 C.6252 0.2414
16 PRIy C.0T794 CoOTER 0.1923 0.1C50

; PennCU (.7363 0.63G1 2.1519 L.2865
T Gen 2l CoTh3T C.C356 0.09€¢1 0.060!
' Lol 230 LL0TAL C.C64 C.1555 0.1074
49 Galeun Gollla V0932 C.2127 0.15%1
¢ C.1550 C.ltb2 Gal634 Go7569 2.8C73
¥ e ST Lol3ny J.l2492 C.3140 D.1H15
58 SIOTYY Col627 0.1444 C.3227 0.2256
h YRy S.7LaY O.Caih 1.4021 0.5563
5 NRTERYS £.7105 068G 1.4021 0.9¢63
4 Ly L NN 0.6628 1.3986 3.54473
. NPT Cocrid C.t623 1.3566 Ge9443
s Cotunn G.139U 0.1374 0.31323 0.1933
55 LeitCo Ca4525 0.5720 2.1721 1.36462
41 Le2300 Oalat 0.1305 0.3010 0.2C70
1 L3RG Golé3l 3.1397 0.335C 0.2C09

12 Us9E3IQ G. L7177 Uslb93 0.388¢6 0.2%05
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TABLE 7-IV PCRCENTAGE ERRCR BETWEEN PRECICTED AND EXPERIMENTAL
THERMAL CONDUCTIVITIES

CASE MOCEL KRUPIC. RUSSELL LICHT. JEFFERSCN
} CoSah -17.497 -31.1%6 ~43,005 -35.217
2 -2.064 -22.,003 ~34.411 -45,648 -38,520
3 -G.2170 -20.265 -30.C82 -41.717 ~35.802
4 -15.222 -17.755 —14.823 -2%.180 -26.487
5 4.522 -it.C39 -26.001 -356.886 -20.470
o 10.CCO -3, 349 ~56.450 -63.551 -25.558
7 -14.€60 -14.6%2 -22.120 -32.749 -21.1¢€3
B -16.086 -12.869 -18.037 -28.863 -18.697
9 ~Z2.555 -15.201 -38.807 -48.198 ~26,578

10 Y426 - 632 -3%l.120 -41,506+  =20.550
11 ~20G+5732 -5h.042 -79.813 -23,G9¢8 -65.923
12 17.0667 -51.777 76,743 -80.519 -562.283
13 544 12.467 -24.45¢ -35.650 0.561
14 -1t.144 7.365 ~56.360 -£2.780 -1.770
15 -11.157 0.438 4.517 -5,547 2+372
16 28.741 -4.828 -52.734 ~-59.421 -R8.894
L7 -22.831 19.750 -4G.704 -49,075 15.039
18 -24.5 16 -27.135 -23.054 ~30.181 ~25.482
19 ~12.648 -0 877 2.%20 -3.299 Ceb47
20 -15.422 4,240 ~2.910 -13.500 54534
21 ~14.%949 3,201 -3,936 -14.787 4,568
22 -9 .462 12.223 —-h4 . H28 “52.547 9.384
23 20.228 -1.913 G.337 2.C48 1.173
24 ~18,764 1257 Se364 -4,585 3.987
25 -14.530 -7.261 ~3.548 -1C.059 -5.959
26 -12.565 ~he238 -29.354 -38.338 -5.901
27 1l.283 25.283 -5.736 -17.€6% 264,210
23 1641044 23,717 -35.951 -48,218 23.853
29 -24.238 5,293 10593 . 266 $.517
30 16,372 23.222 -40.412 -48.578 24.7345
31 ~12.243 ~0.815 U.&00 -9.248 2.168
32 17.28% -10.70% -671.878 -72.336 -4,712
33 -25.812 -1.493 Hatb1 0.678 0.919
34 -17.889 -5.181 -11.956 -2leb41 ~2.717%
35 4.1%5 20.285 -5.690 -21.035 21.868
EY) l4.444 6.531 -59.91¢& -65.431 14.011
37 -5.241 28,406 -3.801 -15.796 310.848
38 14 .471 12.947 ‘=31.872 -40.867 14.695
39 -l&6.316 2.737 -30.597 -39.540 44,401
40 ~8,9%5 23191 -52.144 -58,721 30,738
41 31.095% 11.CS5 -52.5%4 -59.046 15.645
42 ~27e2739 29.331 -51.730 -58.373 38,737
43 ~19.128 13,4599 -55.256 ~61.402 20.151
44 ~134296 144217 -54,630 ~50. 860 204570
45 -2 .6469 27.761 -4,355 ~16.251 30.4473
rib _Zt]-&o"‘l ‘J.l‘]Z . 1-253 "'9¢73U 120628
41 =34 660 -4, 804 ~94 4624 -£0.727 -0.736
48 -18.713 -20.762 -2G.99% -37.832 -18.003
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TAULE 7-IV PERCENTAGL FRRCR BETWLeN PRECICTED AND EXPERIMENTAL
THEAMAL CONDLCTIVITIES

CASk MICelL Kt tC. RUSSELL LICHT. JEFFERSCN
44 =31ewi3 =J49073 3.461 -5.874 3.46G7
LG -15.1C0 202414 ~97.98% -63.689 37.913
bl ~11.310 254611 =-56.114 ~6£2.063 44,070
5 254371 3.5%6 -3.H846 ~14.C59 B.22%
@3 ~21.1ib ~1l4.273%9 =2%+205 =37.402 -13J.851L
54 =4.651 l.178 4.0%53 -3.53% 2slh
9 134751 22781 -5H,9C0 -63.579 54 .9498
26 19.3¢&4 1Ge617 =6LleH 17 ~£6.934 39.244
bt Catdd 154133 ~{%.632 ~Z26.256 56.913
9 —aals 2h.GTS 1.256 ~B8.4406 34,159
PR ihobzd 230} -l6.11 -26.502 37.983
Ha —3.7465 11.322 ~63.295 -tu.Ca7 52.760
Gl 2% b Ed o240 ~hl.H54% -49,4327 11v.577
fhe L4.7490 19,5495 -465.938 ~E9.9%0 69,961
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TABLE 7-V PERCENTAGE ERRCR BETWEEN PREDICTEC ANC EXPERIMENTAL

THERMAL CONDULCTIVITIES

MAXWELL
-44.,001
~42.650
-25.715%
—370620
-64.033

-2%9.955
-48.835
"’42-2(;9
~83.420
~8C.174
=36.3¢5
-6hl. 162
~5.%45
~53.8C6
49,554

~30.374

24903
-1ha. 408
~15.341]
-52.986

21T}

=4,907

-4,311
~-18.325
-48.619

~0.059
-49.0%1

=J.62%9
-72- 582
4«21.‘}
=22.122
-21.657
~-65.732
=-16.448
~414360
~h(.,0¢%9
-5%9.041
=-594,401
~54.737
-6l.738
-6i.2c01
-—lblagb
~10.274
'61-057
-38.2217

RAYLEIGH
-44,211
~46.792
_420897
~-25.854
~37.849
"33-674
-29.7¢88
-49,029
~42.453
-83.384
-50.860
-36.689
-63.315

“h.T48
-60.372
-50.254
~424345

0.544
=15.414
-16.285
-53,659
~2.359

-5,.,782

-4.809
=39.673
~19.456
-43,461

-1.C09
-49,821
-10.5¢6
-12.694

2ebth
=-23.0¢8
~-22.170
-65.,919
~1l7.666
-41.687
=40.442
~59.314
-59.€696
-58.918
-62.014
-18.118
-11.410
—45.792

W AND M
12.648
£.914
11.352
12.4C5
30.829
~12.76%
jo.091
33.571
14.9€1
2649E3
~53.352
46.4C6
-S.087
53.768
—Z2«676
22,149
10.620
€«373
61.185
99.485
13.794
34.333
54.977
~-1.3¢66
32.437
Ta.T47
24,080
£2.613
23.180
23.0C1
=-32.3C1
13.559
464141
£9.373
~15.647
- 8C.4486
36,191
34.888
C.5596
-0.8€3
l.€15
=6.049
-4.775
19.415
68.015
-5.,084
20.236

M AND T
-34,526
~37.568

. =33.095

-14.727
-22.625
~558.117
~17.481
~12.712
-3&.166
—-271.942
-790154
«~75.8773
-19.123
-52.187
" 21.435
-47.345
=23.865
-10.175
13.008
L1.85C
10.803
-3B.165
29.266
23.732
-19.316
1.922
-32.122
30.495
1B.564
~63.648
214626
2.806
3.779
~54,457
L1C.957
=22.017
—20.325
45,617
~46.043
-45.160
~49.149
-48.435
[0.455
14.9673
-48.077
-17.706
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ThtLe 7-V PERCENTACE ERRCR BETWEEN PRECICTEC ANC EXPERIMENTAL

fHERMAL CONGUCTIVITIES

MPAXwLLL
—6Hal43
-63.%G0
-6z 382
-14.542
-31ett2%
3.007
-hHG . 204
-6H6.795
-Z26.nC6
-9.,032
~ZT.uldb
-6tk
-4 7. T04
-06.210
~T0.035
44,9013
=4Y. 5
—t e 3LH
-9 L.98¢C
-Sl.e 3!
-hha. 0P
L AT
55196
-4, 144
~3d.hGu
~hiet35
a6
-149.5%Ch
=HJel%wd
lyazshe
-h1e2%e
-F2e133
~l.180
&3, U8
A {I O
~2hablD
22435
A R
-2 T b4
~ et
1.l L
e B A N
-62.149
—T0a9%4

RAYLLICHK
-T.128
~64,.191
-62.55%0
-1%.6G9
-42,59¢8
3.2063
64,440
-67.C0C5
~2T.246
-2.516
~27.484
-6 .455
-a%. T35
~£6H.3973
-70.198
-5 252
-4 3 420
-56,492
-Sletly
-SU.670
-65,95%2
-H4,751
—59.502
=54 J4H4G
-2 ).682
-bH.nT3
-6f. 713
~T75%.674
~-570.%28
~10.087
-91.47A
4. 154
-l.5931
~063.507
-50.8489
—-27.047
—2h LS5
~37.2722
-29.45%3
-H1la4114
~11.A4Q0
-47.979/
-63.04¢
-T0.956

Wi AND M
51.8G2
-11.296
-7+.3236
59.40Y
26.511
5.73E8
-12.2G4
-l8.E61
£49,.,121
£5.196
63.7%4
—22+423
22.4G%
-1/7.468
-26.045
J.5¢4
2l 726
5.21%8
1A.6G5
18.535
-l6.542
-137.881
-4.98%
5377
Zl1.418
-23.3C0
-23.798
-4G. 353
lfra4 69
la2. k02
19.9213
LELLEC
Ca2Z5l
-12.035
Ge175
48,375
53,240
43.003
hE T84
—£L 040
97.461
20.392
-11.372
=-33.346

MoAND T
23.863
-51.871
-49,727%
14,195
-16.7%5
11.71l#8
-51.810
-55.14%
-l.111
22.H1l5
-la&Zl
-56.955
-3l.614
~-54.0271
-56.191
~-25.063
-30.6899
-40.370
-33,.786
-32.429
=527 .FB1
=51l.211
~43.939
-36£.970
~lé&.830
-56.519
-56.73%5
664363
-3l.967
51.674
-19.231
~l4.544
Ge931
-45,168
-22.251
4.374
Te 737
~-3.444
Oo{fﬁq
~-4%.794
24381
-17.180
-4 6.845
=57.041



TABLE 7-VI AVERAGE ERROR, BIAS AND VARIANCE BETWEEN PREDICTED AND
EXPERIMENTAL THERMAL CONDUCTIVITIES

Average Average Variance of

Model Error Bias % Ervor
% %

1. This Study -5.78 15.8 1.63
2. Maxwell [9] -40.59 41.1 4.99
3. Rayleigh [14] -42.05 42.2 4,96
4. Meredith & Tobias [16] -22.46 31.34 3.56
5. Russell [43] -32.65 34.37 4.90
6. Jefferson [78] 13.80 37.59 38.58
7. Krupiczka [42] 6.76 17.48 2.63
8. Lichtenecker [24] -40.52 40.82 4.93
9. Woodside & Messmer [23] 19.10 30.12 6.68
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TABLE 7-VH CONDUCTIVITY OF PARTICULATE BASALT IN SIMULATED
LUNAR ENVIRONMENT

Conductivity {Kcal/m-hr-9K)

Solid Experimental Calculated T{O%K) P Ref.
Phase x103 x103

1.078 1.50 1.46 180 0.470 A 3
1.125 1.82 1.67 240 0.470 3
1.156 2.09 1.86 280 0.470 3
1.188 2.42 2.12 320 0.470 3
1.219 2.84 2.28 360 0.470 3
1.078 1.17 1.04 180 0.540 3
1.125 1.36 1.20 240 0.540 3
1.156 1.53 1.37 280 0.540 3
1.188 1.78 1.46 320 0.540 3
1.219 2.06 1.63 360 0.540 3
1.078 0.86 0.69 180 0.600 3
1.125 1.01 0.86 240 0.600 3
1.156 1.14 1.00 280 0.600 3
1.168 1.31 1.12 320 0.600 3
1.219 1.50 1.24 360 0.600 3
1.078 0.51 0.43 180 0.721 3
1.125 0.63 0.57 240 0.721 3
1.1%6 0.77 0.62 280 0.721 3
1.188 0.93 0.71 320 0.72] 3
1.219 1.10 (.86 360 0.721 3
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TABLE 7-VJ| AVERAGE ERROR, BIAS AND VARIANCE BETWEEN PREDICTED
AND EXPERIMENTAL THERMAL CONDUCTIVITIES

Average Average Variance of
Case Error Bias % Error
% %
Figure 17 -15.9 15.9 8.7
Figure 18 ~20.8 20.8 2.1
Figure 19 -39.4 39.4 7.5
Figure 20 -9.4 19.4 2.4
Figure 21 1.8 18.5 1.2
Figure 22 -17.6 17.6 1.1
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TABLE 7-1X MECHANICAL PROPERTIES AND DENSITY OF SOLID MATERIALS

Solid

Aluminum
Basalt

Coal

Copper

Glass

Iron

Lead

Mgl

Quartz {Si0y)
Sand

Silica
Stainless Steel

Steel

Young's Modulus
New-.rtons/mzw('l0]0
6.90
5.73
5.00
10.80
6,90
8.96
1.57
21.00
7.00
7.00
7.00
20.70
20.70

234

Poisson's Ratio

.25
.25
.33

o o O o

.24
.23
.43
.25

o o o o

.14

0.14
0.31

Specific weignt

Newtons/m3x104
2.52
2.78
1.36
8.72
2.52
6.95
11.10
3.51
2.60
2.70
2.45
7.86
7.65
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VIII. LUNAR MODEL

Introduction

Interest in the thermal conductivity of lunar soils under lunar
environmental conditions has stimulated analytical and experimental
research on thermal conductivity. A problem of particular interest is
the effect of lunar soil depth on the effective thermal conductivity
of tunar soil samples. This section presents a model for the thermal
conductivity of lunar soil as a function of soil depth as measured from
the lunar surface and compares values calculated using the model with
experimental data.
Before a study of thermal conductivity can be undertaken on any
material the character of the material must be known. The character
of the lunar surface and soil has been a mystery to man until recent
years when Luna 9, Ranger 7, 8 and 9, [94] Surveyor flights [95-98]
microwave and radar studies [99] and the Apollo flights have in successive
steps established the character of lunar soil to some degree. The
results of lunar studies to date indicate:
1. the density of the Tunar outermost layer is a function of
depth [100, 101].

2. the soil has a particulate structure with a mean particle
size of 0.1 to 1000 m {102, 103 and 119].

3. the effective thermal conductivity as determined experimen-

tally [105] is a function of temperature and density and below
242
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3 torr there is negligible gaseous conduction or conduction in the

107
voids of the soil mixture. 7

The papers cited above suggest the lunar soil is a heterogeneous
mixture and several studies on conductivity of mixtures germane to
this paper can be found in the literature. The studies [45, 106 and
1071 to date, however, invoiQe the case where conduction in the gaseous
voids in the mixture is not negligible whereas conduction through the
points of particuldte contact is neglected. The model presented herein
neglects conduction in the gaseous voids and accounts for conduction
at the points of particulate contact as well as radiant interchange
between particles, and conduction in the particles. The model yields
effective thermal conductivity values as a function of depth, temperature,

porosity, particle dimension and mechanical-thermal properties of the

particles.

Mathematical Model

The model accounts for conductive and radiative transfer in the mix-
ture. Figure (8-1) depicts these modes [85] and it is seen that conduction
occurs in the solid particles and at the points of particulate contact
which give rise to contact resistance. Radiative transfer occurs
between adjacent particles as well as between particles viewing each
other through the voids.

Consider a unit cell taken from the bed at a depth Z, which has
the same average bed porosity P. The unit cell has an effective

area A, and neignht AZ as shown in rigure (8-2). If the system is regarded
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as hoﬁogeneous, the heat flux can be expressed by Fourier-Biot relation

o

AT
i ke AZ

%. - (8-1)

where ke is the effective thermal conductivity. This effective thermal
conductivity is a function of

particle size

porosity

depth below the surface

solid particle mechanical-thermal properties

a0 oo
A = 2 =

- The heat flux equation must account for the heat transfer modes shown
in Figure (8-1) and therefore the effective conductivity is the equivalent
of two conduétances in parallel. These two parallel conductances
are
1. Conduction through aﬁd between solids consisting of
a. conduction in the solid and
b. conqupﬁion at the points of "particulate contact in
series _
2. Radiation between surfaces.
Each of these conductances in terms of their reciprocals will be
developed and then synthesized to yield the effective thermal
conductivity. In order to obtain é simplified system which will

permit calculations of these conductances the particles will be simulated

- by spheres with an effective diameter d.

. Conduction Through and Detween Solids

Conduction in the Solid.
The resistance in the solid is obtained from the integration of

“the resistance through a disk of thickness dZ, as seen in Figure (8-2).
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FIGURE 8-2. MODEL FOR THE STUDY OF THE THERMAL
CONDUCTIVITY OF LUNAR SOIL.
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Thus

R .}r i7 A 1 —4(2rc/d)2
1° 2 7. tk.d
% kgt (¢74 - 2°)  ™s 1- 1 -4(2rc/d)2

(8-2)

where Z is measured normal to the contact surface from the center of

the sphere and Z] = % #1 - (ErC/d)z, when deformation of the particle
is neglected.

Conduction at the Points of Particulate Contact

The expression for thermal resistance at the point of particulate
contact can be determined from the solution of the temperature dis-
tribution using the Hankel transformation and the analysis yields the
same result as that appearing in the classical work of electric
contacts [108] and will not be elaborated here. The contact resistance

can be written as

Re = 51 (8-3)

where re is the radius of the contact area and an expression for e will
be developed later. Equation (8-3) will give erroneous results if

the ratio, ZrC/d is large since equation (8-3) is derived based on the
assumption of a semi-infinite body. This problem can be overcome by
considering the analogous case of electrostatic capacitance [109]

and one can write the equation for thermal contact resistance as
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The radius of the contact area must be determined. This radius is

a function of the depth of the particles below the surface of the
material for the case of lunar soils. The analysis to determine the
radius of the contact area was made by assuming the area of contact to
be small compared with the size of the spheres. This assumption is
reflected in Equation (8-4) and allows one to consider the contact

area to be that of the contact between two semi-infinite solids.

Also, it was assumed that the spheres had smooth surfaces. Considering
material deformations to be elastic under small applied loads, Hertz's

equation [110],

gives the radius of the contact area. F1 is due to the weight of the
particles above the contact plane. However, studies of the lunar soil
density by Jones [101] show that the density is also a function of depth
due to the change in material, packing and porosity. Accordingly

F1, will be given as

Z
Fpo= A f o(2) g dz | (8-6)
0

where A is the effective area depending on the porosity of the material
and will be determined. Substituting this relation into Equation

(8-5) gives the radius of contact area as
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1/3

7
2
ro= [ig-(EllLAfp(Z)dz] (8-7)

c
0
with the -contact area as an implicit function of the depth Z.
However for paactical calculations the density function for relatively
small depths of soil can be replaced by an average density, o, to

give

r 3g A 5(1-v%) 3 173
Fe . [3¢Ap(0-v _
d . [ -8 d° ] ‘ (8-8)

Cohﬁiniﬁé Eﬁdation (8-8) with Equation (8-4) yields the expression for

contact resistance as

Re="x 4 '[3‘ - ‘] (8-9)
ot s )
where
, - > ]/3
- [39 5 A é]“’ )] /3 (8-10)
8E d

Radiation Between Surfaces

For beds of small sized particles in a vacuum the solid conductivity
is small, however the relative contribution of radiation to the heat
transfer may be quite significant even at low temperature ranges
(100°K - 500°K). When radiant energy impinges on particulate media,

e PR NSO ade [P SR | e
1L lliay PbE rerigcied, urd

el o o Y U WL
el LLed Lhirouygn Lne pdruic

absorbed by the particles and later re-radiated or scattered by the
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particle surface. In the case of small particles, scattering of radiation
is 1ikely to occur. The phenomenon of absorption is intimately tied
to the physical properties of the material and is influenced by the
emissivity of the particle and the "absorption cross section".
Similary, the transmission of energy depends on the physical charac-
teristics of the material. The complexity of the geometry over which
these transmission processes take place is one of significant diffi-
culty in evaluating the contribution of the radiant mechanisms.
However, many investigators have analyzed radiation through porous
and particulate media and obtained the effective contribution of
radiation made without considering the phenomena of abosrption and
scattering in detail [111]. Instead an approximate analysis is considered
for evaluating the radiative transport by using the "discrete model”
of Wesselink [1]

q_ = ffﬁLff:El_I_ p &t (8-11)

To[2-e(m] P

where Dp is the mean spacing between particles and is related to the
pore size. The size of a pore is difficult to specify in a system of
particles in general because of the complex shapes of these particles.
Even in the simplest system comprised of uniform regularly packed
spheres, there is no single dimension which will characterize the cross-
section of the pore. However based on Reference [1] L can be related

to the porosity of the material by
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b - d (8-12)

which yields a radiative thermal conductivity component kr’ as

I T 10 0 0 (8-13)

k =
" (1-p) [2 - e(T)]

Effective Thermal Conductivity

The effective thermal conductivity compatible with Equation (8-1)
can now be written remembering that the expressions for the resistance
in each particle and the contact resistance are summed and the result
is then taken in parallel with the resistance accounting for radiative
transfer between particles. First the sum of the conductive resistances

is written using Equation (8-2) and (8-9) to give
_ I PP RS 1B 1. i
Rc’R1+Rc'ksd [NLN +(s 1)] (8-14)

Equation {8-14) must be summed from 0 to Z to account for the inter-

action of all particles from the surface to the point in question.

Thus,
Z
= _ 1
R, = 7[ R(Z) dz (8-15)
0
gives the mean conduction resistance which yields
¥ 4V - §°
k, = —2b—-o1 (8-16)
A RC(Z) A RC(Z)
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for the conduction component of the thermal conductivity ke‘
The area A is determined from the unit cube shown in Figure (8-2).
The porosity by definition is 1 - Vs/V where Vs is the volume of solid

material and V is the composite volume. Since aZ is taken as

d V1 - 82, the area of this cube is related to the porosity by

a d
P='|-€ (8-17)
A §1-5°
where
2
1 T d
A= (8-18)
6
(1-P)J1-52
Equations (8-16) and {8-18) result in
3(1-p) (1-¢% 7 &3y ke
k, = (8-19)
. 3 2 _2/3
T S1) + (4-1.2¢2 7 )]
[2 2¢ 7173
where
=L 1/3
- dp 1-v
¢=2 [ T8E (1) ] (8-20)

Combining this result with that for the expression for the radiative
thermal conductivity component, Equation (8-13) yields the effective

thermal conductivity ke as
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3(1-p) (1-¢2 z%/3) ke

ke

v, 3 2 .2/3
T3 1)+ (412622 ﬂ
[2 2c 7173

(1-P) [2 . e(Tﬂ

+

(8-21)

Application of the Model

Equation (8-21) was compared with experimental data taken with
lunar soil samples from the Apollo 11 and 12 flights. Application
of the model is dependent on knowing the values of certain physical
properties and characteristics of the sample to be evaluated. The
only property or characteristic of the lunar soil directly measured
in the Apollo experiments applicable in Equation (8-21) was the sample
density. Thus the values of the other properties and characteristics
had to be approximated. The approximation process was based on the
similarity of lunar soil to terrestrial basalt. This similarity has
been demonstrated by Shoddy et al. [112], the Surveyor alpha-scattering
experiments [113] and as a result of Apollo 12 [114] studies. Table
8-1 compares the major and minor elements of Apolic 12 samples and ter-
restrial basalt and shows that there is substantive evidence to support
the approximations. The properties and characteristics selected for
inclusion in Equation (8-21) were

1. Solid particles density, modulus of elasticity, solid thermal

conductivity and Poisson's ratio .

e

E

2830 dg/m° Reference [64]

2.2 x 10" N/m3 calculated from data given in Reference sl
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TABLE 8-I. COMPARISON OF MAJOR AND MINOR
ELEMENTS OF APOLLO 12 SAMPLES
AND TERRESTRIAL BASALT.

Element Oxide Lunar Fines % Basalt %
5,0, 47.2 51
A1203 14.3 14
Fe,0, 0.0 3.4
Fe O 14.2 8.8
Ma O 9.28 4.4
Cal 10.6 8.
Na,0 0.66 3.4
K50 0.41 1.7
H,0 0.0 0.86
1.0, 2.48 2.7
P205 0.52 1.4
MnO 0.19 0.25
Cr,04 0.32

CO2 0.03

S 0.004
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-~
It

1.324 watt/m K Reference [64)

<
1}

0.2 Reference [116]

2. Emissivity
The hemispherical emittance as function of the temperature
given by Reference [121] was used. It shows that the emissivity

changes from approximately 0.98 at 80 K to 0.92 at 440 K.

3. Depth-density relationship
Matveev [100] proposed a model for the relation between

the density of the outermost lTunar layer and the depth as

o
p=p[1+(-—0--'|)exp-%—] (8-22)
-] pm 0
while Jones [101] modified this model to an approximate similar

equation as

o=o 1+ (=21 0 - L] (8-23)
0 0
where p_, p and Z_ are given constants [101]. Each model seems to
satisfy the known physical requirements indicated by the presently
available experimental data. These models together with the experi-
mental data of Jaffe [94], Christensen et al. [97], Campbell et al.

[122] were used to approximate the depth Z, for a given density.
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4; Particle Diameter
Unfortunately, there is no method developed in the literature

to specify the particle diameter to be used in conjunction with any
theoretical model for the thermal conductivity of a natural sample of
granular material with a diverse randge of particle sizes. As an example,
Figure {8-3) shows different arranaements A and B of six particles of
two different sizes which will give different porosities and thermal
conductivities while they give the same particle size distributions. It
is an important fact that when the system of granular material is
modeled theoretically, the size of the particle should be based on
~an experimental simulation of the natural sample. If, for example, one
needs a representative particle diameter to calculate the thermal con-
ductivity of a lunar sample of particle sizes from 0.1 to 1000 um [119],
one should conduct the following experiment: 1) Determine experimentally
the conductivity of the lunar sample; 2) Separate the lunar sample into
n samples with each of the n samples having the same particle size;

3) Determine experimentally the conductivity of each of the n samples:
4) Compare the conductivity value of the original lunar sample with

each of the n samples and 5) Select a representative particle diameter
for the original sample on the basis of the closest agreement of the
original sample conductivity with the conductivity of one of the n samples.
This diameter is then correlated to one of the statistically defined
particle sizes obtained from the natural sample size-distribution data
(the median, the mean, the mode, etc.). In this way, a correlation will

specify the particle diameter to be used in the theoretical equation



N

/

FIGURE 8-3. DIFFERENT ARANGEMENTS OF S1X PARTICLES OF TWO

DIFFERENT SIZES,

AT



258
for determining the thermal conductivity of any other natural sample
or material in site without the necessity of performing the previously
described experiment again. The experimental values of Fountain and
West [123] for basalt samples of particle sizes from 37 to 62 um diameter

3, showed fairly good agreement with Tunar sample

and density of 1.3 g/cm
data of Apollo 11 [105] at a density of 1.265 g/cm3. Since the range

of the particle sizes of [123] is very narrow compared to the lunar
material range, an average diameter of 50 um was used in the theore-
tical model. It is noted that the diameter chosen is approximately in
the range of the median diameter (50%) based on a weight distribution

of lunar samples analyzed by [124], [125] and [126].

Values of conductivity from equation (8-21) using the aforementioned
physical properties and characteristics are compared with the data from
Apollo 12 lunar soil samples in Figure (8-4). The Apollo 12 data are for
sample 12001/9 having a density of 1.3 gr/cm3 as determined by Cremers
and Birkebak [105]. The depth at which this density most probably
would occur was calculated to be 1.02 cm. This depth was based on the
average value for the depth obtained using Equation (8-22) and (8-23).
The data for Apollo 11 are shown in Figure (8-5) with the results of
Equation (8-21). The Apollo 17 sample had a density of 1.265 gr/cm3
as determined by Cremers et al. [127] and this density corresponds
to a lunar soil depth of .96 c¢m. The model is seen to give satis-
factory results.

A critical evaluation of the model requires considerable
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additional data. However the model can be examined from a number
of viewpoints. Figures (8-6), (8-7), and (8-8) display thermal con-
ductivity for lunar soils as a function of the variables. Figure (8-6)
represents the behavior of the effective thermal conductivity at constant
temperature as the depth and density increase. As oné expects as the
depth increases the contact area between particles increases due to
the increase in the loadina and consequently smaller thermal contact
resistance results and in turn thermal conductivity increases. For
fixed temperature, the effective thermal conductivity is plotted
against the density for various depths in Figure (8-7). For high values
of z and the density, the effective loading increases and in turn
increases the effective conductivity of the soil. Figure (8-7) shows
the thermal conductivity as a function of the temperature with the
density as a parameter. As one notices from Equation (8-21) the de-
pendance on the temperature is a consequence of radiation effects,
which result in higher values of conductivity at high values of tem-
perature. As seen from Figure (8-8) curves of different densities cross
each other at different temperature. This is explained by the fact
that the radiation in a system of small density (high porosity)
is more effective than for a system of high density. Also the model
indicates that radiation is a strong function of the particle diameter
which was indicated by Watson [128]. Additionally Equation {8-21)
shows that the effective thermal conductivity is dependent on the
gravitational constant, g. Accordingly a Tunmar sample will possess
higher values of thermal conductivity under the gravitational in-
fluence of earth, than it will under the lunar gravitational environ-

ment.
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The theory assumed that the particles are arranged in a simple
square lattice which results in two contact areas in the direction of
the heat flow, however by knowing the nature of packing of the soil,
a more realistic approximation of the number of contacts can be
found. With a complete analysis of the forces between particles, a

more accurate estimation of the contact area can be obtained.



IX. GENERAL COMPARISON AND DISCUSSION

Four models have been developed in this study, each utilizing
different propositions. The parallel isotherms model, the stochastic
model, and the nodular model have been applied to a wide range of
granular materials at pressures ranging from atmospheric to vacuum.

The Junar model has been developed and applied specifically to granular
materials at a simulated lunar environment and to Tunar fines. Each

of these models will now be evﬁluated with respect to the assumptions
introduced in its development and with respect to the discrepancy
between experimental and predicted thermal conductivities.

A careful review of the previously published correlations showed
that the discrepancy between the analytical model and the physical
granular system could be attributed to one of the following causes:

1. Failure to account for solid to solid contact;

2. Failure to utilize a realistic distribution of the two phases;

3. Failure to utilize realistic heat flow assumptions.

It is thus expected that for any new model to constitute an imorovement
over existing ones, these causes of failure should be eliminated.
Consequently, the models presented on this study will be discussed on

this basis.

266
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The parallel isotherms model has utitized results of the packing
theory to the problem of heat transfer in granular materials so that
an accurate distribution of the two phases may be obtained. The des-
cription of heterogeneous materials as random mixtures of the two
phases has been verified experimentally [5, 51], and has been applied
by Tsao [8] to the problem of heat transfer. Two statistical parameters
are introduced in the final expression for the effective conductivity,
namely the mode, u, and the standard deviation,o, of the one dimensional
porosity. The mode p is set equal to the bulk solid fraction on the
basis of physical arquments. In order to determine o, the experimental
data on the effective conductivity available from the literature have
- been used, and have been curve fitted to obtain o as a function of the
bulk solid fraction. Consequently in this model a realistic material
distribution, as outlined in the packing theory has been introduced.

In addition, good agreement between calculated and experimental thermal
conductivities indicates that the unrealistic heat flow assumption has
been countered by the experimentally based selection of o.

This model has been applied to granular materials at atmospheric
pressures and to basalt fines in a simulated lunar environment. For
the granular materials listed in Table 6-1 the average error, bias, and
variance of the calculated values is 17.8%, -3.7% and 0.0236, respectively.
For the data on basalt fines given by Fountain and West {3] the average
error, bias and variance of the calculated values is 11.3%, -8.5% and

0.0061 respectively, as indicated in Table 9-I.
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Finally, it should be noted that for granular materials at
atmospheric pressures the only data required by this model is the con-
ductivities of the constituents, and the bulk porosity of the material.
At reduced pressures, tne average particle diameter, the gas pressure,
the gas Prandt]l number, the solid emissivity and the temperature are
additional required data.

The stochastic model utilizes essentially the same expressions for
the distribution of the two phases in granular materials. Moreover,
it is noted that the parallel isotherms and uniform heat flux assumptions
are analogous to that of assuming zero and infinite resistances, res-
pectively, normal to the direction of the bulk temperature gradient.

It is then argued that since the transverse thermal conductivity of
granular materials lies somewhere between the limits of zero and
infinity, it follows that the true effective thermal conductivity of
such materials can be represented as a weighted average of the con-
ductivities calculated utilizing the parallel isotherms and uniform heat
flux assumptions.

The standard deviation ¢ is still an unknown. However it has been
demonstrated that as ¢ increases, both Timiting conductivities approach
a constant value which depends on the constituent conductivities and
the bulk solid fraction only. As a result three correlations have
been developed relating calculated conductivities to experimental data.
The first is expressed as a correction factor for nonparallel isotherms,
the second as a correction factor for nonuniform heat flux, and the

third is a weighting factor for the bounding equations.
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Consequently, the stochastic model introduces (1) at least point
contact between particles, (2) a realistic material distribution as
outlined by packing theory and (3) it overcomes the previous unrealistic
heat flow assumptions. The model has been applied to granular materials
at atmospheric pressures and to basalt fines in a simulated Tunar
environment. The comparison between predicted and experimental thermal
conductivity values is summarized in Table 9-1. The input data required
for the calculation of the effective conductivities are exactly the
same as the data required for the parallel isotherms model.

In the nodular model developed in Chapter 7, the geometry of a
unit cube of the heterogeneous mixture was characterized by the random
distribution of the two phases. It was effectively assumed that no
cubicle is more 1ikely to be occupied by the solid phase than another.
Further, it was noted that application of the three-dimensional Fourier
conduction equation to each cubicle simply requires that the temperature
of each cubicle remain constant. The cubicles were then lumped into
nodes, connected with the neighboring nodes by resistances, the value
of which depends on the conductivity of the neighboring nodes. Contact
resistance was included in all cases, and radiant conductivity was
included only for granular materials at reduced pressures. A heat balance
equation was then written for each node, and this system of equations
was solved by a successive overrelaxation technique, superimposing on
it an iterative scheme, to determine the temperature of each node.
Finally, the heat flow in each lamina perpendicular to the mean heat

flow direction was determined, and the mean heat flow value in conjunction
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with the Fourier-Biot law were used to find the effective thermal
conductivity of the heterogeneous mixture.

It is evident that in this manner all causes contributing to the
failure of previously published models have been eliminated since this
model introduces (1) solid to solid contact resistance, (2) realistic
distribution of the two phases based on the packing theory and (3) realistic
three-dimensional heat flow as defined by the Fourier equation for
steady-state heat conduction. The model has been applied to granular
materials for pressures ranging from atmospheric to vacuum, and the
comparison between predicted and experimental thermal conductivity values
are summarized in Table 9-I. In addition to the input data required
by the previous models, knowledge of the depth, density of the solid
phase, Young's modulus and Poisson's ratio of the solid particles is
required.

As is has already been mentioned, for granular materials "in
vacuo" the modes of heat transfer are

1. Conduction in the solid particles;

2. Conduction at the contact areas between particles:

3. Radiation between particle surfaces.

The Tunar model developed in Chapter 8 has synthesized these modes to
yield the effective thermal conductivity. For the mathematical analysis
of the model a regular array of spherical particles was assumed, and

the calculation of the conduction in the solid particles was based on
parallel isotherms. Further, the effect of depth on the effective thermal

conductivity of granular materials was included both in the calculation
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of the contact resistance, and through published expressions correlating
the density of lunar fines to the depth from the surface of the moon.
Thus, the final expressions include both the effect of lunar s0il

depth and the effect of temperature on the effective thermal conductivity
of lunar fines.

The lunar model has been applied to Apollo 11 and 12 Tunar fines.
Comparisons between predicted and experimental conductivity values are
summarized in Table 9-I.

Although the models presented in this study are applicable, and
have been applied to granular materials over a wide range of environ-
ments, there exists a number of limitations due to the assumptions
introduced in the development of the models. The causes of these
Timitations will now be discussed.

1. Phase distribution - The geometry of three of the models has

been based on the assumption that irregular packed beds can be con-
sidered as a random mixture of the two phases. It has been shown

[49, 50, 51] that for granular materials in which the particle sizes
are not much different, and in which the particles can be approximated
by spheres, this is a valid assumption. That is, for such beds,

the distribution of the local bed properties can be approximated by

a normal distribution. For packed beds consisting of irregularly
shaped particles no generalized conclusions have been reached in the
Titerature concerning the distribution of the local properties. It

has been shown, however, that the geometry of packed beds of irregularly
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shaped particles does not satisfy the randomness criteria when the
particle size distribution is narrow [51]. It is therefore possible
that the geometry of certain classes of granular materials is different
than the assumed geometry.

2. Particle size distribution - Calculations for the unit cube

size, pore size, etc. have been based on a characteristic particle
size. For packed beds in which the particle size distribution is
narrow, it has been assumed by all models in this study that the
characteristic particle size is equal to the mean volume diameter [66].
However, no set method exists in the literature for calculating the
characteristic particle size for beds having a broad particle size
distribution. Further, as indicated in Chapter 8 and in Appendix F
the mean volume diameter is not a satisfactory description of the
characteristic particle size for such beds.

3. Particle shape - The geometrical parameters utilized in the

development of the models such as pore size, coordination number, etc.,
and the equations for contact resistance have been based on equations
given in the Titerature for randomly packed beds of equal sized spheres.
It follows that none of the models presented in this study is applicable
in the case of heterogeneous mixtures containing highly irreqular

shaped particles such as Rashing rings, Berl saddles, etc.

4. Solid-liquid heterogeneous mixtures at high temperatures - The

equations for the radiant conductivity used by all models have been

based on the assumption that the medium in the voids is transparent.
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Consequently, when the continuous phase in the voids is a liquid
these equations are not valid, and radiant conductivity cannot be
taken into account.

5. Convection - As indicated in the Introduction, convection
heat transfer in the voids has been neglected. Consequently, the models
of this study are only applicable on stagnant packed beds.

6. Anisotropy - In all models of this study, granular materials
have been treated as equivalent homogenecus and isotropic single
phases, so that no change in the thermal conductivity with direction
is predicted. The assumption of random mixtures of the two phases
justifies this treatment. It appears that for such systems, the only
factor contributing to the variation of the thermal conductivity with
direction is the pressure tensor, and consequently the different values
of the contact resistance in the vertical and horizontal directions.
This case has not been examined in this study.

7. Wall effects - As indicated in [49] and [120] both the local

property variation, and the thermal conductivity of heterogeneous
mixtures change at short distances from the walls of the container.
Again, this case has not been examined in this study.

It can be seen that all Timitations are basically due to two
factors: {1) Insufficient knowledge of the geometric configuration
of packed beds and (2) insufficient knowledge of the parameters
associated with radiation heat transfer in packed beds. All1 assumptions
introduced in the development of the models is an attempt to circumvent

these difficulties in such a manner that the models constitute a
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realistic approximation to the actual physical phencmena.

A comparison between Tables 9-1 and 9-1I indicates that for granular
materials at atmospheric pressures the models presented in this study
are generally more accurate than previously published models. This
is probably due to the attempt undertaken in this study to combine a
realistic geometry with realistic heat flow. It is also a strong
indication that the flexible random phase distribution constitutes a
better approximation to the actual geometry of granular systems than
the fixed arrangement of spherical or near spherical particles utilized
by previously published models.

Table 9-1 also indicates that for granular materials at reduced
interstitial gas pressure, thermal conductivities predicted by the
models of this study are generally low. The sources of error are as
follows:

1. Exclusion of pure radiation heat transfer at very low pressures;

2. Llow calculated values for the contact resistance;

3. Deviation of the actual distribution of the two phases from

the assumed random phase distribution.

As indicated in Appendix B, lack of experimental data on the
éxtinction coefficient of granular materials prohibits an exact analysis
of the radiation heat transfer process. As a result, only radiation
heat transfer between particle surfaces has been included in the models.
As indicated in [84, 85] this is a sufficiently accurate approximation
when the solid particles are opaque to thermal radiation, but results

in Tow calculated values for packed beds of particles having small
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diameters. Consequently, since at very low pressures radiation-is
a dominant mode of heat transfer, exclusion of pure radiation heat
transfer results in low calculated values for the effective thermal
conductivity of packed beds.

For all models, the calculated thermal conductivities at Tow
pressures and low temperatures are consistantly lower than the experi-
mentally determined thermal conductivities. Since under these conditions
the dominant mode of heat transfer is through contact areas between
particles, the only explanation for this behavior is that the calculated
values for the contact conductances are low. It should be ncted that Tow
calculated contact conductances influence the effective thermal conduc-
tivity only at low pressures and temperatures. At higher pressures and
temperatures, and in particular at atmospheric pressures, the calculated
effective thermal conductivity is relatively insensitive to the contact
conductance.

Finally, it is noted that although at reduced pressures the calcu-
lated effective thermal conductivities are generally low, the slope of
the calculated thermal conductivity versus pressure curves is in very
good agreement with experimental data. Since for a major portion of these
curves the only variable is the thermal conductivity of the interstitial
gas, it can be concluded that Kennard's Equation {A-1) combined with the
experimentally determined effective pore size given by Equation (D-6)
yield accurate results for the variation of the gas conductivity with
pressure. Consequently, as indicated in Appendix D, the conduction

effective pore size is much smaller than the geometric pore size.



TABLE 9-1
AVERAGE ERROR, AVERAGE BIAS AND ERROR VARIANCE
BETWEEN PREDICTED AND EXPERIMENTAL THERMAL
CONDUCTIVITY VALUES FOR ALL MODELS OF THIS STUDY

Average Average Error
Error Bias Yariance
% %
1. Parallel Isotherms Model
a. Granular Materials at
Atmospheric Pressures
(Table 6-1) 17.8 -3.7 0.0236
b. Simulated Lunar Data 11.3 ~-8.5 0.0061
2. Stochastic Model
i. Equation (6-16)
a. Granular Materials at
Atmospheric Pressures
(Table 6-1) 30.1 25.3 0.0707
b. Simulated Lunar Data 24.8 -22.1 0.0131
ii. Equation (6-17)
a. Granular Materijals at
Atmospheric Pressures
(Table 6-1) 27.7 "20.9 (.0558
b. Simulated Lunar Data 25.8 -23.4 0.0260
iii. Equation {6-18)
a. Granular Materials at
Atmospheric Pressures
(Table 6-1) 32.3 23.1 (.0956
b. Simulated Lunar Data 41.8 -17.2 0.0333
3. HNodular Model
a. Granular Materials at
Atmospheric Pressures
(Table 7-1) 15.8 -5.8 0.0163
b. Granular Materials at
Reduced Pressures 18.5 -5.1 0.0157
¢. Simulated Lunar Data 15.9 -15.9 0.0870
Simulated Martian Data 20.8 -20.8 0.0210
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TABLE 9-I. Continued

4. Lunar Model
a. Apollo 11 Lunar Fines 13.7 -6.8 0.0044

b. Apolio 12 Lunar Fines 12.8 5.1 0.009%0



TABLE 9-1II

AVERAGE ERROR, AVERAGE BIAS AND ERROR VARIANCE BETWEEN

PREDICTED AND EXPERIMENTAL THERMAL CONDUCTIVITY VALUES

FOR GRANULAR MATERIALS AT ATMOSPHERIC PRESSURE (TABLE 6-1)

Flux Law Models

Maxwell

Lord Rayleigh
Meredith and Tobias
Bruggeman

Modular Model

(this study)

NP wh —
- e a e s

Uniform Heat Flux Models

son Frey

Woodside and Messmer
Kanager

Gorring and Churchill
Willhite, Kunii & Smith
Schumann and Yoss
Preston

WiThelm et al
Krupiczka

Equation (6-16)

(this study}

11. Bernstein

QWS LW —

o

Parallel Isotherm Models

1. Russell

2. ‘Ynordsids

3. Equation (5-2)
(this studvy)
Feuation (6-17)
(this study)

Average

Error

%

40.
33.
34.
32.

15.

35.
670.

17

27.

—~ N~ OT0 00O W0 oo —

o Wb~

—_—

~O

Average
Bias
%

~-37.9
-24.8
-18.7

23.8

-5.8

-43.8
20.9

-6.7

-10.7

-21.1
26.6

-2.1
13.2
25.3

677.9

Error
Variance

0.0606
0.0594
0.0416
0.1540

0.0163

.0599
.0992
.0286
.0192
.0268
.0260
.0875
.0373
.0693
.0707

Lo Jam I e B B oo B e B o i ) e e

85.05

0.0566
55.16

0.0236
1.0558
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TABLE 9-11. Continued

D. Weighted Ohm's Law Models

1. Lichtenecker 3-D 701.2 701.1 48.70
2. Lichtenecker 2-D 195.0 194.5 2.98
3. Equation (6-18) '

(this study) 32.3 23.1 0.0956



X. CONCLUSIONS AND RECOMMENDATIONS

The problem of nredicting the effective thermal conductivity of
heterogeneous mixtures has received the attention of numerous inves-
tigators over the past sixty years. Unfortunately, the complexity of
the mechanisms contributing toward heat flow is such that no truly
satisfactory model has been obtained. The continued proliferation of
alternate models attests to these difficulties. The scope of this
study has been to utilize all availabie information on the subject and
extend the analytical techniques of predicting the variable thermal
conductivity of heterogeneous mixtures over as wide a range of environ-
ments as possible.

Initially a study was made of the published models with respect
to the geometry and heat flow assumptions utilized by each one, Further,
a2 number of published equations for the effective thermal conductivity
were applied to a large group of granular materials, and the results
were evaluated in relation to the geometry and heat flow assumptions
utilized in the development of each equation. The results of this
analysis can be summarized in that the sources of error in the predicted
thermal conductivities can be attributed to one or more of the

following causes:
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1. Failure to account for solid to solid contact;

2. Failure to utilize a realistic distribution of the two
phases;

3. Failure to utilize realistic heat flow assumptions.
It was therefore concluded that for any new model to constitute an
improvement over existing ones, these causes of failure should be
eliminated.

Since the possibility of assuming that the heat flow process
in granular materials is approximately linear simplifies considerably
the problem of heat transfer, this possibility was examined separately
for random heterogeneous mixtures having a realistic phase distri-
bution. The analysis presented in Chapter 4 resulted in the conclu-
sion that a parallel isotherms assumption yields too high values for
the effective thermal conductivity whereas a uniform heat flux
assumption yields values that are too low. Also, the error in the
predicted thermal conductivity increases rapidly with the ratio of the
constituent conductivities. Consequently, either no assumption should
be made regarding the flow of heat in granular materials, or weighting
factors should be associated with the linear heat flow assumptions.

Four models have been developed in this study, each utilizing
different approximations regarding the geometry and the flow of heat
in granular materials. In the development of the models the most
recent results of the packing theory have been used regarding the
distribution of the phases, effective pore size, coordination number

etc. The resulting equations enable one to calculate the effective
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thermal conductivity as a function of interstitial gas pressure,
temperature and loading conditions. These models have been success-
fully applied to large groups of granular materials and the results
are summarized in Tab]g 9-1. Comparison between Tables 9-1 and
6-VII indicates that these models constitute a considerable improve-
ment over previously published models. The error in the effective
thermal conductivity values predicted by the equations developed in

this study can be attributed to the following causes:

1. Exclusion of pure radiation heat transfer at very low pressures;
2. Low calculated values for the contact resistance;

3. Deviation of the actual distribution of the two phases from
the assumed random phase distribution;

4. Uncertainty regarding the mean particle size in cases of
granular materials having broad particle size range.

The reason it is not possible to eliminate these sources of error

at this time is lack of experimental evidence. However, once more
accurate expressions are found, they can be readily incorporated in
the models. 1In spite of the above mentioned limitations to the
accuracy of the models, it is now possible to predict the effective
thermal conductivity of granular materials over a wide range of
environments with a high degree of confidence, as attested by the
successful application of the models to large groups of heterogeneous
mixtures. It is evident from the discussion of the previously published
models, and from the models presented in this study that the most
serious drawbacks in the analysis of the thermal conductivity of

heterogeneous mixtures are (a) a sufficiently accurate description
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of the geometry of granular materials and (b) the radiation heat
transfer process. Since the effective thermal conductivity of granular
systems is very sensitive to the conductivity of the gaseous phase, it
is expected that knowledge of the mean void volume and void volume
distribution should provide accurate calculated thermal conductivi-
ties. Towards this end, an analysis is presented in Figure 10-1.

This analysis is based on a unit cube of a heterogeneous mixture, and
is similar to the analysis of the nodular model.

The geometry of a representative unit cube can be defined from
the sectioned void area distribution and the void volume distribution.
The mean sectioned void area and the sectioned void area distribution
are required to determine the distribution of the two phases on the
six faces of the unit cube. The mean void volume and void volume
distribution are required so that the number of voids in the unit
cube can be calculated and distributed in such a manner that the
porosity of the unit cube is equal to the bulk porosity of the
granular material. The size of the unit cube will be determined from
the particle size distribution. As a result, each cubicle in the unit
cube will be occupied either by the continuous or the discontinuous
phase.

The next step is to define the resistance between nodes. This
can be done first in terms of the conductivity of the two phases.
Then, to account for contact resistance between particles, a number

of resistances equal to the contact resistance replaces an equal number
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of already determined resistances between solid cubicles. These
resistances are randomly distributed and oriented, and their number

is given by the unit cube size and the coordination number. It is
important to note at this point that the geometric parameters such

as coordination number, etc. published in the literature have been
determined for packed beds constructed of equally sized particles.
Consequently a mean particle size must be determined from the particle
size distribution of the granular material in question. However, as
indicated in Appendix F, no such procedure has been found up to now
for packed beds containing broad particle size distribution.

Once the geometry of the unit cube and the resistance between
nodes have thus been defined, it is possible to determine the tempera-
ture distribution in a manner similar to the nodular model. Then,
the conduction heat flux in the mean heat flow direction can be
determined from the summation of individual heat fluxes between cubicles.

As indicated in the Introduction, the concept of an effective
thermal conductivity consistent with the Fourier-Biot Law necessitates
that the granular materials be considered as pseudo-homogeneous systems,
in which case the volume of the granular material is assumed large
with respect to the volume of individual grains. For such granular
systems the photon mean free path is expected to be small compared
to a linear dimension of the system, and consequently only thermal
radiation in the optically thick 1imit need to be considered. In this
case, according to the analysis presented in Appendix B, first the

conduction heat transfer and radiation heat transfer processes can be
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separated, and second the radiative heat flux can be related to the
effective extinction coefficient by a simple equation. Finally, the
total heat flux in granular materials is the sum of the conduction
heat flux and radiation heat flux, and the effective thermal conduc-
tivity of the system can be determined from the Fourier-Biot Law.

An approximate method, similar to the one described in Fiqure
10-1, is presented in Figure 10-2. The only difference between the
two methods is the inclusion of the radiation heat transfer process.
That is, recognizing that the determination of the extinction coeffi-
cient of granular materials is an extensive and difficult task, in
the method of Figure 10-2 only radiation heat transfer between particle
surfaces and radiation heat transfer in solid particles are considered.

Summarizing, it has been shown that any future attempt to develop
more refined models for the calculation of the effective thermal con-
ductivity of granular materials should be based on a realistic
approximation of the geometry and radiation heat transfer. In parti-
cular, it is suggested that the following experimental program be
undertaken.

1. Determination of the void volume distribution and the sectioned
void area distribution in terms of the particle size distribution, par-
ticle shape and porosity. The work of Debbas and Rumpf [51] is a
step in the right direction, but the number of cases examined is not
sufficient to justify any generalized conclusions. It is therefore
suggested that experimental work, similar to the one described in

Reference [51] be undertaken and extended to granular systems composed
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of equal sized particies, narrow particle size distribution and

broad particle size distribution.

2. Experimental work to determine the extinction coefficient of
specific granular systems similar to the one described by Bastin
et al [85], or experimental work to determine the radiation heat
transfer in solid particles of various sizes similar to the one des-

cribed by Merrill [1318].

3. It is evident from Figure E-1 that the range of porosities
for which the coordination number of spherical particles has been
experimentally determined is too narrow to Justify any of the correla-
tions suggested in the literature. Consequently, further experimental
work is required for the determination of the coordination number
over a wider range of porosities. Also the coordination number of
irregularly shaped particles should be determined and compared to
that of spheres, so that more accurate expressions can be found for
the number and distribution of contact areas in granular materials.

Experimental work on the areas mentioned above is not only
essential for the analysis of the thermal conductivity of stagnant
packed beds, but will also be a tremendous contribution to analytical
work on fluid flow through packed beds and heat transfer in packed

heds with fluid flow.

A problem that has been identified in this study is the selection

of a mean particle diameter for packed beds consisting of a broad
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particle size distribution. As indicated in Chapter 8 and Appendix F,
the solution of this problem is solely based on experimental evidence.
However, due to this problem, the majority of the models of this study
have been applied to random packings of equal size spheres, and to
granular materials composed of narrow particle distribution only.
Finally, it should be noted that no anisotropy of thermal con-
ductivity has been considered in this study. However, it is possible
to include the variation of the thermal conductivity in granular
materials in the horizontal and vertical directions by considering
the change of the contact pressure between particles in the horizontal
and vertical directions. As indicated in Reference [86] the pressure

tensor in a granular material can be written as
Py =Py 83 t Py 7y (10-1)
where Py> Py are constants and z, are the components of a unit

vector in the direction of the applied load. It follows that the

pressure in the direction of the applied load is

P, = Pyt Py (10-2)

while in the horizontal direction it is

=2
n
3
-
—
L]
1
(W)
——
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When the granular material is loaded under its own weight

v

D
p. = 9[ o{z) dz (10-4)
0

Assuming that the expansion of the granular material is constrained

in the horizontal direction it follows that

—

P =75 P (10-5)

v

Combination of Equations (10-2) through (10-5) determines p, and

Py in terms of density and depth. Then, p, can be used in the deter-
mination of the contact resistance in the direction of the applied
load and P in the determination of the contact resistance in the
horizontal direction. As a result, the temperature distribution and
consequently the effective thermal conductivity will be different
when the mean heat flow direction is the direction of the applied
Toad and when the meén heat flow direction is the horizontal.

It is evident that the variation of the thermal conductivity in
the two directions will be significant only in the case of granular
materials at low pressures because only in this case variation of the
contact resistance will affect detectably the calculated effective

thermal conductivity of the granular system.
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APPENDIX A
LOW PRESSURE EFFECTS

Figure (A-1) shows a typical pressure dependence curve of the
effective thermal conductivity of a gas-powder mixture. For higher
pressures (10 atm or higher depending on the nature of the gas
and the particle size [37]) a large rise in the effective conductivity
is noted, due to convection. When the mean free path of the gas
molecules approaches the characteristic length of the gas space,
the effective conductivity becomes pressure dependent, as indicated
by the portion between A and B of Figure (A-1). Further reduction

of the pressure does not result in any appreciable changes

~10h3mmHg

Effective Thermal Conductivity

log Pressure

Fia. A-1. Pressure Dependence of Effective Thermal Conductivity
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in the effective conductivity, since at this region the dominant
modes of heat transfer are conduction through the contact areas
between particles and radiation.

Thermal conduction in rarefied gases was first analyzed in
the pioneer works of Smoluchowski and Knudsen, as indicated by
Kennard [79]. Kennard's equation for the effective conductivity,
k *, of a gas between two parallel plates of the same material,

g

separated by a relative small distance, Dp, is:

D

1+298 (A-1a)
_ A

*
where g is the temperature jump distance at one of the plates, given

by:
* 2-a 2 1 A A
9= §%T' Pr (A-1b)

where o is the thermal accommodation coefficient, v is the ratio

of the specific heats of the gas, Pr is the Prandtl number and

» is the mean free path of the gas molecules. Equation (A-1)

indicates that kg* decreases with respect to kg when A/Dp increases.
The principal difficulty in applying this equation lies in

evaluating the thermal accommodation coefficient, a, and the

effective pore length, Dp.- As indicated in [80], several atteﬁpts

have been made to predict the accommodation coefficient analytically,

but they have not proved particularly successful. Furthermore, the



396
accommodatior coefficient is strongly influenced by parameters
describing the solid surface (i.e. smoothness, impurities, etc.
not reported in experimental work on the conductivity of granular
materials), and experimentally determined values of a are not
available for solids other than pure metals and alloys [80]. For
this reason, most investigators of the effective conductivity of
heterogeneous mixtures have either set o = 1, effectively assuming
that the solid surface is so irregular that most of the molecules
struck it a number of times before escaping, or they have included
o in an experimentally determined coefficient.

Dulnev and Sigalova [76] and Luikov et al [34] have used

Equation (A-1) in the same form given by Kennard. Deissler and
Boegli [21] found from their experimental data on magnesium oxide
in air that the pressure at which the effective conductivity begins
to vary with pressure (breakaway pressure) is 15 psia at 340°F.
From this they evaluated the Knudsen number (Kn = 1/d), based on
the mean particle size, to be 0.00072. Finally, arguing that Kn
at the breakaway pressure must be independent of the gas, powder,
temperature and pressure, they found from Equation {A-1) that the
breakaway pressure in the English system of units is given by:
= -24 T

Py = 1770 x 10 ;@rz; (A-2)

where T is the temperature and s is the molecular diameter of the

gas. Equation (A-2) seems to correlate their experimental data with
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good accuracy. It is of particular importance that the value of
the Knudsen number corresponding to the breakaway pressure is
much less than unity, indicating that most of the heat transfer through
a powder takes place in the immediate vicinity of the contact
areas. Effectively,. this means that the dimensions effective in
transferring heat in the voids are much less than the effective
geometric length of the void.
Schotte [26] and Masamune and Smith [32] found expressions for
Dp in terms of the porosity of the system, based on geometric
considerations. They then substituted the expressions in Equation (A-1).
Woodside and Messmer [23] arguing that when the normal mean
free path, A, of the gas molecules is much larger than a charac-
teristic pore size, then the effective mean free path, A Must

depend on . as well as on D_, have shown that:

p

* pD
k =k « =P (A-3)
g g pD_+B

p
where
A
B

= D
W2 52

I is the Boltzman constant. Equation (A-3) predicts higher values
-
for kg than Equation (A-1) by a factor of roughly 2.5. It is

interesting to note that also in this case the characteristic dimension
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of the void space, with respect to heat conduction in the gas
occupying this space, is amaller than the mean particle diameter by
a factor of roughly 100.

Summarizing, it is seen that almost all investigators, with
the exception of [23], have used Kennard's equation to predict the
effect of pressure on the conductivity of the gaseous phase. The
principal difficulty in applying this equation lies in the determin-
ation of the thermal accommodation coefficient and Dp. The value
of o is assumed by all investigators to be unity. The determination
of Dp is postponed until a later section. In Figure (A-2) the dependence
of the thermal conductivity of 002 on pressure is indicated,

according to Equations {A-1) and (A-3).
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APPENDIX B
RADIATION HEAT TRANSFER IN GRANULAR MATERIALS

Thermal radiation is known to be a dominant mode of heat transfer
in evacuated granular materials, or in powders at elevated temperatures.
Consequently it is no wonder that it has received considerable attention
in the literature. However, due to the scarcity of information about
absorption and scattering of radiation in granular materials, only
approximate methods have been developed for the inclusion of radiation
as a mode of heat transfer in granular materials.

According to Van der Held [83] the complete equation of Fourier,

including radiant heat flux, is

o0

aT
C o —"‘*0"""" d'lV(ke gY‘ad TO) + 4] n-|2 3] (\J'I - I'I T )d]dvo (3_1)
¢ s
0

p at 0
where dn 2 g I, o dldV, is the radiation emitted by a volume element
*'n
dvo between the wavelengths 1 and 1 + d1, having an absorption
coefficient at these wavelengths N and a refractive index ny-
Simitarly 4n 2 B, J, d1 dV_ is the radiation absorbed by dV_. 1 dl
1 717 0 0 1,7
and J1 dl are the black body radiation and mean irradiance respectively
of a plane surface between the wavelengths 1 and 1 + d1 at dVO.

In Equation (B-1) ke is the effective thermal conductivity of the
c

medium due to conduction heat transfer only.
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A second equation is required relating J] and Il,T' This can
be cbtained by letting the mean jrradiance of dVo be the sum of the
radiation emitted and scattered by all volume elements dV, and reaching
dVO, plus the irradiance of dV0 from the bounding walls. According to
Van der Held [83], assuming diffuse radiation, this equation is

. -T1r

& =f (By1y g *+ o9 9y) Sg— v +
°  Jiy) wr

-t1r
f [e]’Y Lot (1-e] Y) J1] € cos vy dS (B-2)
(s)

?TI"'2

where o is the monochromatic scattering coefficient, € = By * oy

is the monochromatic scattering coefficient, r is the distance between
v, and dV or dS {surface element on bounding walls), ®1 .y is the
monochromatic spectral emissivity of the walls, and y is the angle the
distance between dV0 and dS makes with the normal on dS.

Combination of Equations (B-1) and (B-2) together with the boundary
conditions determines the solutions of the heat transfer problem in
granular materials. Although this system of equations appears to be
quite formidable, it should be noted that the equations are very general
in nature. The complexity of these equations has been reduced con-
siderably in a number of specific situations, and these situations will
now be discussed. First, however, it should be noted that the integral
term in Equation (B-1) represents the net radiation heat transfer to
v, or if a-r' is the radiant heat flux, the integral term is equal
to -div E}. Consequently, an alternate form of Equation (B-1) is
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3T

¢ p—a—%=div (k

0 o grad To) - div q, (B-3)

c
Also, the total heat flux vector within the medium will consist of
the sum of the conduction and radiation contributions, and consequently

is given by

q= - ke grad T = E} (B-4}
¢

Assuming one-dimensional steady-state combined conduction and
radiation for a medium bounded by two parallel surfaces, Equations

(B-3) and (B-4) reduce to

2 dg
d°T r
k, —== 35— (B-5)
e. de dx _
q = - ke %% + g, = constant (B-6)
o

where x is the distance normal to one surface. Further assuming that
the absorption and scattering coefficients are both independent of the
wavelength, and that the distance between the bounding surfaces is
large compared to the photon mean free path (optically thick 1imit),
it has been shown in detail by Sparrow and Cess [104, 117] that the

radiation flux can be written as

3
160bT dT

qr - - 3e dx (B-7)
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Combination of Equations {B-6) and (B-7) yields

166,74

q= - (kec g ) gx = constant (B-8)
It is seen that in this specific case the conduction and radiation
processes can be separated, and the total heat flux is represented
as the sum of heat transfer by pure conduction and heat transfer by
pure radiation. Consequently the effective conductivity of the granular
material is the sum of an effective conductivity due to pure conduction
and a radiant conductivity which is related to the cube of the abso-
lute temperature. Unfortunately, no experimental data have been
reported on the extinction coefficient of granular materials and
powders, and consequently Equation (B-8) cannot be applied due to
lack of experimental information. However, the result that the effective
conductivity can be represented as the sum of two terms, one being a
constant and the second related to the cube of the absolute temperature,
has been extensively used in the correlation of data on evaluated
granular materials.

Clegg et al [2] following a similar procedure assumed that
scattering of radiation may be neglected, and using the Rosseland
equation for the optically thick limit, they obtained the fol]owing

equation for the radiant conductivity.

(B-9)



314
where a(T) is the Roselland mean absorption coefficient.
Chen and Churchill [81] on the other hand represented the radiant
intensity in packed beds by forward and backward fluxes, and derived
the following expression for the radiant conductivity:

3
) 8 o T

kr T a+2b

(8-10)

where a is the absorption volumetric coefficient and b is the back
scattering volumetric coefficient. They also determined experimentally
the values of a and b for borosilicate glass, aluminum oxide, carbon
steel, and silicon carbide beds.

Another approximation is to assume one-dimensional steady-state
combined conduction and radiation for a medium bounded by two parallel
diffuse surfaces, where the distance between the bounding surfaces is
small compared to the photon mean free path (optically thin limit).

In this case, it has been shown by both Van der Held [83] and Sparrow

and Cess [117] that the radiation heat flux is

4

- 1 2 (B-11)

q
To(/e) + (17e,) - T

4
ob(T -T,7)

where T] and T2 are the absolute temperatures of the bounding surfaces,
and e and e, are the emissivities of the bounding surfaces. If

ey = & and T] - T2 = AT is small, one can write

4

T

4 02, .2 !
- T2 = (T] + T2 ) (T] + T2) (T1 - T2) = 4T AT
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Combination of Equations (B-6) and (B-11) yields
4o, e T3 dx
b dT

q=- (ke * 2-e ) dx (B-12)
o

Again it is seen that the conduction and radiation processes are
separable. Further, this is the result for radiation transfer through
a nonparticipating medium,

Equation (B-12) has been used extensively by investigators that
have utilized models based on regular geometric arrangements which
permit an algebraic formulation of the heat transfer processes.

Russell [43], Wesselink [1], Jacob [77] and Argo and Smith [75] assumed
that with respect to radiation a mixture can be treated as alternating
solid and gas layers perpendicular to the heat flow. Inh this case,

the radiant conductivity of the gas phase is given by

3
4o, e D_ T
SRR LE L 13

Some investigators have assumed that Dp is equal to the particle
diameter d. Others have set Dp = d/(1-P).

Schotte [26] assumed spherical particles and considered that the
radiation from a plane located on one side of a particle to a plane
located on the far side of the particle consists of two parts. First,

the radiation across the void space surrounding the particle. Second,
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there is radiation from the particle surface in series with conduction
through the particle. Combining these two modes, he derived the

following equation for the radiant conductivity

k= P

. + P kr (B-14a)

1 -
1 1 0
kR

0

where k  is the radiant conductivity between particle surfaces which
0

Schotte expressed as

3

kro = 4ob edT (B-14b)
It should be noted that when ks is much larger than kr » Equation
0
(B-14a) reduces to
k =4o e dT° (B-14c)
r h

Laubitz, on the other hand, assumed the granular material to be
cubic obstacles randomly distributed in cubical volumes, and considering
the probability that radiation will pass a cube without hitting an
obstacle, he developed the following expression for the radiant con-

ductivity

k. = 4o, e d 0 - a-p)3 4 a-m¥3y,0-p) (B-15)
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It should be noted that in all the above developments for which
specific geometric configurations have been considered, it has been
assumed that the particles are opaque to thermal radiation. The
validity of this assumption depends on both the material of the solid
phase and the size of the particles compared to the wavelength of
radiation. It has been shown by Merrill [118] that glass beads less
than 100: in diameter cannot be assumed opaque to thermal radiation
even at relatively low temperatures. For the case of transparent
particles Merrill assumed that the radiant conductivity is equal to
the conductivity of the photon gas transmitted through the particles

given be
k.= 3 Cva (B-16)

where C is the specific heat capacity of the photon gas, 1is the

average velocity and »_ is the photon mean free path. The energy

p
density of a photon gas is given by

4

_4
V= < 9 T (B-17)
Consequently
_av _ 1 3
C-—a—f—“EchT and
- 16 -3 o
Kn =3 0 Ap (B-18)
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It is easily seen that Equation (B-18) is the same as the radiative
component of Equation (B-8), with the exception that for the develop-
ment of Equation (B-8) the heterogeneous mixture has been assumed to
be a pseudo-homogeneous material whereas in Equation (B-18) only the

solid phase is considered.

Rosseland [82] treated the radiation heat transfer as a diffusion
of photons, and considering a random walk process, he obtained the

following expression for the radiant conductivity

d T (B-19)

Troitsky [84] and Bastin et al [85] have suggested that the con-
duction radiation in the voids and pure radiation processes should be
considered acting in parallel, and consequently the effective radiant

conductivity should be expressed as

(B-20)

Loeb [69] considered the case of the radiant conductivity of
pores in consolidated porous media. Assuming that linear heat flow
is not distrubed in the solid surrounding the pores, he derived the

following expression for pores having perfect geometric shapes

- 3
kr = 4y Dp e oy T (B-21)
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where y is a shape factor that depends on the geometry of the pore.
Summarizing the equations for radiant conductivity, it is seen
that they can be classified into three groups.
1. Those assuming the heterogeneous mixture to be a
pseudohomogenecus material;
2. Those based on regular geometric arrangements that permit
an algebraic formulation of the radiative heat transfer
processes;
3. Those based on random walk processes.
Although the first class provides the best approximation to the in-
teraction between pure conduction heat transfer and pure radiation heat
transfer, lack of experimental work on the radtative properties of
heterogeneous mixtures necessitates the application of the second
class of equations. Moreover, the experimentally determined values of
a and b by Chen and Churchill [81], indicate on one hand that both
a and b depend on the type of bed, the solid material and the tempera-
ture, and on the other hand that is is perhaps easier to determine the
effective thermal conductivity of granular materials experimentally
than to determine a and b. For these reasons, at this point it is
only possible to include quantitatively the conduction-radiation pro-
cess in the voids in models of heterogeneous mixtures, while the pure
radiation process can only be discussed qualitatively.
In Figure B-1 the values of kr predicted by various models are
plotted verous temperature. In Figure B-2 models of the second and
third classifications are compared to Chen and Churchill's model for

an aluminum oxide bed at high temperatures.
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APPENDIX C
CONTACT RESISTANCE

In accordance with [34] the heat flow from one particle to another
contracts in the neighborhood of the contact area between two
particles. This contraction of the heat flow lines is amplified
in the case of powders uynder vacuum or in the case of granular
materials with a high ratio of constituent conductivities, in which
cases the heat flow through contact areas is a major mode of heat
transfer. The importance of the contact resistance in the flow of
heat in granular materials can be illustrated by the fact that it
offers the only explanation as to why the heat flow through perlite
at high vacuum at boundary temperatures 76 - 20°K is greater than at
temperatures 70 - 4°K, as indicated in [34].

The general procedure followed in the literature is to express
the action of the contact areas as a resistance to the heat flow
acting between the particle temperatures. Evidently, the heat flow
through the contact points depends on the contact area between
particles. The expression used by almost al] investigators for the

radius of this area is Hertz's relation:
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where d, v and E are the diameter, Poisson's ratio and elastic
constant respectively of the solid particles, and F] is the force
acting on the contact area. In the case of packed beds in which
pressures between particles are due to the layers above the layer
under consideration, an expression has been derived for the pressure

tensor in [86], the corrected form of which is:

D
pij = TE—Lv [ p(x) dx v oy, + (1-2¥) 232, (-2)
0

Multiplication of Equation (C-2} with the unit normal vector to the
contact area gives the average pressure.

As indicated in [87] contact resistance in general depends on
the following parameters: apparent contact pressure, solid thermal
conductivities, surface roughness, surface waviness, interstitial
£luid thermal conductivity, solid hardness, solid modulus of elasticity
and mean contact temperature level. However, due to the complexity
at which these parameters interact, and the difficulty to express
a number of these parameters analytically, the procedure taken by
many investigators is to examine the contact résistance in the case
of smooth spheres, and correlate the derived expressions by experi-

mentally determined coefficients.
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Carslaw and Jaeger [88] examined the thermal resistance of a

circular contact area on a semi-infinite body, and found it to be:

T .

R, = 1/4 r kg (C-3)
under the candition of constant temperature on the area having
radius oo and:

RS = 8/3 +° r_ k (5-4)

® c s “

under the condition of constant heat flux at the area. The values
of Rl and Ri differ by 8 percent.

Kanager [73], considered the case of a smooth sphere, thermally
insulated everywhere except at two diametrically opposite contact
areas. He solved Laplace's equation for this problem, and under
the assumption that the temperature of the contact area is equal to
the arithetic mean of the temperatures at the center and at the
periphery, he found an expression for the equivalent thermal resis-
tance of the sphere, RS. Then comparing the ratio RS/2 Ri, he

found that it increases almost linearly from 1 to 1.05 for values of

rC/r from 0 to 0.1, where r is the radius of the sphere. His
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conclusion was that Equations (C-3) and (C-4) provide a sufficiently
accurate approximation for the contact resistance.

Luikov [34] states that in addition to the contraction of the
heat flow lines, the effect of the microroughness of real particles
should be included in the estimation of the contact resistance,
together with the effect of any oxidizing film covering the particles.
Thus, the contact resistance of granular systems can be represented
as the sum of three components:

R. =R+ R, +R. (C-5)

L p

where RL is twice the expression given in Equation (C-3), RO is the

resistance due to any oxidizing film, and RS is given by:
p

R, = — | (C-6),

where h_ and kk are experimentally determined coefficients depending
on the height of the microroughnesses and on the thermal con-
ductivity of the micrographs respectivgly. Luikov lists the re-
commended values for hr and kk for a number of granular material
classes. Finally, he indicates that the thermal conductivity at the

contact areas can be represented by:

crm R, d (0;7)
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In the case of granular materials under externally applied
Toads, and in cases when particle deformations cannot be assumed
elastic, the contact resistance is given in terms of the applied
load, the porgsity and the solid conductivity by experimentally
derived correlations (34, 61, 89]. Wilhelm et al [37], have de-
velgoped the following empirical equation for the effect of contact

areas:

-

Togyg (ke X 10%) = 0.859 + 3.12 ) (C-8)

where kcr and kS are in cal/cm sec. °C. In general the values
predicted by Equation (C-8) are much higher than those predicted

by Equation (C-7).



APPENDIX D
EFFECTIVE PORE SIZE

The equation for kg* and kr have been expressed in terms of
an effective distance between particle surfaces DD, called the
effective pore size. In the case of kg*, this is the mean distance
gas molecules travel from the surface of one particle to that of
another, when the molecular mean free path is large. It follows
that this parameter is significant both for the geometric charac-
terization of the granular material, as well as for the heat transfer
process.

The initial investigations on the characteristics of packings
were concerned with systematic arrangements of spheres [66].
By this method, in order to determine the effective pare size for
a range of porosities, it was assumed that the spacing of spheres
in rhombohedral array is increased by assuming a halo of thick-
ness § around each sphere, and & is adjusted to the observed
porosity. Du]lnev et al [61] considered this case, and found that

the effective pore size is given by:

Dp =4.2d (A -2/3) | (D-1)
where: A = [0.74/(1-P)]1/3
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Haughey and Beveridge [5] investigated both analytically and

experimentally the case of randomly packed beds of equal-sized

spheres for loose packed (P = 0.3812 - 0.4), poured packed

(P = 0.364) and close packed {P = 0.3587) beds. Then, they generalized
their results for a wide range of porositieé. The reported ex-
pressions for the mean void hydraulic diameter and for the mean

void equivalent hole volume are respectively as follows:
(0.), =% dp/(1-P) (0-2)
h 3 .

=T
Vh il d

P/(1-P) -(D-3)
Debbas and Rumpf [51] studied the randomness of beds packed with
spheres or irregular shaped particles by means of a statistical
approach. Their results are similar to those of Haughey and
Beveridge, however the range of porosities examined is not wide
enough to allow extrapolation to a wider range of porosities.
Mevertheless, an important conclusion that can be reached by the
results of both papers is that the local mean voidage is normally
distributed, and that beds packed with spheres or irregular
particles are in general subject to a statistical analysis. Effective-
ly, it has been shown that in such beds all particles of the same
size and shape have the same probability to occupy each unit volume

of the mixture. The approach taken by Debbas and Rumpf appears to

H

[ P L P
W | =)

= VErY promising with respeci to the yeometric characterization of
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granular materials, but the limited number of experimental data
prohibits any generalized conclusions.

The equations presented up to this point have been obtained
from geometric considerations. However, as indicated in a previous
section, for powders under reduced pressures, most of the heat
transfer thfough the voids takes place in the vicinity of the
contact areas. This means that the dimensions effective in con-
ducting heat through the voids are much less than the effective
geometric length of the void. To account for this phenomenon,
Masamune and Smith [32] considered the volume ozcupied by pendular

rings around the contact points between particles, and derived the

following expression for the conduction effective pore size:

(Dp)c =nd[(sec o - 1)2 1 - (%—- 6) tan 8)] (D-4)
_ P - 0.260
n=16.93-5.51 5370260
0 = cos_T a - %—)

Dul'nev et al [61] have reported the following equation for

(Dp)C based on the kinetic theory of gases:

_y L14P-0.14
Bple = ¢ r—py — | (0-5)
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Another approach is to correlate the experimentally determined
values for the breakaway pressure to Equation (A-1). Effectively,
the pressure at which the effective thermal conductivity of a gran-
ular material is reduced by 5 percent was determined from a number
of experimental data in the region A of Figure A-1. Subsequently,
the value of kg*/kg required to attain this decrease in ke was cal-
culated, and from Equation (A-1) the corresponding value of (Dp)C
was determined. The experimental data were taken from References
[21, 32, 58, 59, 61, 62, 63]. The least squares fit of (Dp)c/d as

a function of P is:

(D)

p’c _ 0.2177 P - 0.051 (D-6)

d TP

for

0.3 <P <0.7

The values of Dp/d predicted by the equations discussed in

this section are plotted in Figure D-1 as a function of P.
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FIGURE D-1. EQUIVALENT PORE SIZE OF GRANULAR MATERIALS.



APPENDIX E
COORDINATION NUMBER

It is evident that the heat flux through contact areas depends
on the number of caontacts each particle has with its neighbors, or
the coordination number n [5]. This number is known for regular
packings of spheres and is 6 for cubic packing ( P = 0.476), 8 for
orthorhombic packing ( P = 0.3954), 10 for tetragonal-sphenoidal
packing { P = 0.3019), and 12 for rhombohedral packing ( P = 0.2595).
In addition to these fixed values, extensive experimental work has
been done [49, 90, 91, 92] to find the coordination number for
random packed beds of spheres, as indicated in Figure E-1. However,
almost all of the experimental work has been carried out for loose
random and close random beds, and consequently in order to find
a relation between n and P extrapolation beyond the experimental
data is required.

Dul'nev et al [61] have proposed the following equation:

n=11.6(1-P) (E-1)
represented by curve 5 in Figure E-1. However it is seen that the
predicted values of n are too high at large pcrosities.

Willhite et al [31] used the results of Smith et al [90] and

proposed the following equation:

_ . . 5.01 - 8.42 P
n=06 " oI TTeTP (E-2)
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However, as noted in [49], this equation is in good agreement with
the experimental results of Smith et al, but not with recent
experimental data.

Kunii and Smith [30] considered the packed bed to be composed
of spheres in the most open packed state and in the closest packed
state, and taking into account the frequency and orientation of each
cell, they derived the following semi-empirical relationship for the

coordination number:

n=13.86 - 51.0 (P - 0.26) (E-3)
This equation is represented by curve 2 in Figure E-1, and it is seen
that it overpredicts n for low values of P.

Haughey and Beveridge [5, 49] examined the distribution of the
number of sphere centers found in spherical shells at varying distances
from a given sphere, and for a random bed of spheres they developed

the following expression for the coordination number:

n=22.47 - 39.39 P (E-4)

This equation is represented by curve 3 in Figure E-1, and it is
seen that it provides the best fit to experimental data.
It should be noted that all equations and experimental data

presented in Figure 8 are based on randomly or reqularly packed

[
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beds of spheres. However, all heat transfer models, in which contact
resistance has been included, have utilized one of these equations
for the coordination number. In this study Equation (E-4) has been
used, with the reservation that although its application has been
extended to mixtures of non-uniform particles, no better expression

has been found for real physical systems.
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APPENDIX F
PACKING THEORY

One of the most significant complications in the development of
a model that predicts reasonably well the effective thermal conductivity
of heterogeneous materials is the construction of the geometry of such
a model. This complication arises from the large number of parameters
associated with the structural properties of packed beds, as indicated
in an excellent review of the subject by Haughey and Beveridge [49].

In general, the structural properties of packed beds are charac-
terized either by a single representative dimension, or through a
distribution described by mean, variance, skewness, etc. In this study
the first approach has been utilized. Moreover, the equations presented
for the effective pore size and coordination number are based on
random packings of equal sized spheres. This approach has been
necessitated by the fact that most experimental and statistical work
in the literature is referred to this type of packings. Even for this
simplified case, it can be seen from Figures D-1 and E-1 that the effec-
tive pore size and coordination number suggested by various investigators
differ greatly.

Most practical applications involve a particle size variation

betwaen 2 and 100 fold. The mixing of smaller particles into a bed
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of larger particles produces two opposing effects. On one hand, the
smaller particles tend to increase the voidage by forcing the larger
particles apart thus increasing the size of voids between particles,
on the other hand the smaller particles tend to decrease the voidage
-fbyffi111ng the voids between larger particles. The characteristics
of such packed beds do not depend only on the particie shape, and size
ratio but also on the amount of each size fraction present. Conse-
quently, from the same particle size distributions, packed beds having
a wide range of voidages can be obtained. As indicated in [49, 50,
51, 66] very little information exists about the characteristics of
packed beds involving large particle size variations. Consequently,
a great degree of ambiguity exists whether a volume mean particle size
together with the associated effective pore size calculated from the
expressions given in Appendix D provide a sufficiently accurate des-
cription of the packed bed. This is especially important in the case
of evacuated powders, in which case both particle size and effective
pore size are primary parameters in the calculation of the effective
thermal conductivity. In particular, for lunar fines the particle
size range is from 0.lum to approximately 800um [119], with most of
the particles in the lower size range, and the porosity is assumed to
be approximately 0.5. At present, the selection of a particular mean
volumetric particle size for the calculation of the effective conductivity
is highly speaclative, since no experimental data exist on the local

voidage variation for similar packings to compare calculated values.
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Evidently, description of packed beds utilizing the local property
variations provides a much better approximation to the geometry than
characterization of the beds by a single representative dimension.
At present, the mean and variance of local properties has been deter-
mined in the Titerature with a satisfactory degree of confidence only
for loose packed, poured packed, and close packed random beds of
equal sized spheres [5]. UtiTlization of these data in any future
model will probably provide a further refinement to the predicted

effective thermal conductivity values of heterogeneous mixtures.
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FORTRAN IV COMPUTER

PROGRAMS

339



340

THERMAL CONCUCTIVITIES PREDICTED BY FOLLOWING MDDELSO
1. RUSSELL 2. BERNSTIEN 3. WOODSIDE 4. CRANE AND VACHON
{EQUATION 5-2)
IMPLICIT REAL%*4(A-2)
INTEGER®*4 I, INDEX
CCMMCN KCy KDy Ly MU, PD, SIGMA, T KE,Q CK
DIMENSICN SUM(10),PLOTL(173},PLOT2{173},PLET3(173),PLOTA4{173),
#¥Y{173),XLABI(5)YLAB(5),GLAB{5),0ATLAB(S)
DATA SUM,INDEX/10%0.0,0/
EXTERNAL F
SUMIBI=0.
SUM2B1=0.
S5UMaABE=0,
SUM4BI=0.
SUMSQL=0.
SUM34G2=0.
SUM5Q3=0.
SUMSQ4=0,
SUMK1E=Q.
SUMK 2E=0.
SUMK4E=0.
PI=3.,14159
READ(S5+5)XLAB,YLAB,GLAB,DATLAB
5 FORMAT(20A4)
1 WRITE(6,1CC)
100 FURMATUCLRL /2777777777777 7325X,'DATAY , 17X, EFFECTIVE THERMAL CCNDU
$CTIVITY (KCAL/M=HR=-K} X 100 *,//,25X,*CASE*,1X ,

B' EXPLRIMENTAL *,* RUSSELL e BERNSTEIN ¢,
5 WOEDSICE 'yt CRANE & 'y /430X,

5. l'l l" C'
o ', VACHCN /)

2 READU5434END=6) KC,KD,PDyEXKELCASE,CASEL1,CASE2, MV, MR
3 FCORMAT(4F1C.5,3A4,2(F5.0))
INDEX=INDEX+1
YUINDGEX )=ALOGLO(EXKE/KL)
E=1.0-PD
MU=1.0-PD
IF {Mv.GEL1) CALL VACUUM
SIGMA=0.32248%P0~-0,092543%PD%%?
CALL QGl0(C.ylesFINTF)
KE=1./INTF
IF (MR.GE.1) CALL RAD
CE=K£/KC
CXKE=EXKE/KC
DIF=(CE-CXKE)/CXKE
Ka=KF
PLUTA{INDEX)=ALOG10(K&4/KC)



44
46

%

BERNSTEIN
EP=t
IF{PD.GE.Q.5) GC TO 44
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K2=KC*(4,0*PD/(1.0+KCIKD)+KD/KC*(l.O«Z.O*PDl)

GC T 46

KZ2=KC%(4.0%EP/ (1.C+KC/KD)+(2.0%P0D=-1.0))

COGNT INUE

PLOT2(INDEX)=ALCGLO(K2/KC)

WGODSIDE
RATIG=PI/6.0 .
IF{EP.GELRATIO) EP=RATIO

A=SQRT{1.0+4.0/(Pl*lKD/KC-l-OI*lb.O#LP/P!)**lZ./B.)))

[F{A.LE.1.CCCOLIA=1.000D1

K3=KC/{1.0-(6.0¥EP/PIV®=*{1./3

1)
K3=K3%2.0

PLOT3(INDEX)=ALCGLOIRI/KE)

RUSSELL
R1=2.0/3.0

)E(1.0-(A=1.0/A)%ALOGILA+L.)/ (A-14))

K1=KC*(E**R1+KC/KD*1I-O—E**Rl}l/(E**Rl-E+KC/KD*(1.G-E**Rl+tl)

PLOTLUINDEX)=ALGGLOIKL/ZKC)

WRITE(6y200) INDEXyEXKE ¢R14K24K34k4
FORMATU/ 325X, 16,34X45(F10.5,6X))

BKL=({(KLI-EXKL)/EXKE)*1CO.
AK2= (R 2-EXKEY/EXKED®1CO0.
B3z (LK 3=FXKEY/EXREI*1CO.
PK4=( (K4—-tXKE)/EXKEDI*¥1C0.
KIOFF=ABS(BKL)
K2OFF=ABS{BEZ)
KIOFF=AELSITEK3)
KaUFF=ABSTRBK &)
SuMldl=SUMIE+BK1
SUMZBT=SUNMZET+ER2
SUMIBI=SUMABI+bBK3
SUMARTI=SUMART+HKA
SQKLER=KICFF¥%x2
SGKZTR=K2CFF*22
SCRIER=RACFFE*X?
SURAGER=K4CFF*%2
SUMSII=SUMST1+SUKLER
SUMSIZ=SUNMSEZ+4SuKZ2ER
SUMSE3=SUMSLA+SGK3IER
SUMSU4=SUMSL4+5UKAER
SUMKLE=SUNKLE+KLUFF
SUMK2L=SUNKZ2L+K2CFE

SUMK 3E=SUMK 3L+K 3OFF

SUMK 4E=SUMKAL+KAUFF

Go T 2
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6 BOCASE=FLCAT{INGEX)
AvBl 1=5UM1BI/BOCASE
AVBIZ2=SUM2B1/B0CASE
Avel3=SUyM3BI/BOCASE
AVBI 4=SUM4BT/BOCASE
T1ERAV=SUMKLE/BOCASE
TZERAV=SUMKZE/BOCASE
T3ERAV=SUNKIE/BUGCASE
T4ERAV=SUMK4E/BCCASE
TlERVA= {(SUNSQI/RCCASE)-TIERAV**Z}/10000.
T2ERYA={ (SUMSQ2/BOCASE)-T2LRAVY*%2)1/10000.
T3ERVA=[(SLMSQI/BACASEY-T3ERAVE%2} /10000
T4ERVA=( (SUMSQ4/BOCASE)-T4ERAV®%2)/10000.
WRITE(6,5T3)AVBLI1,AVBIZ,AVRI3,AVBI4,TIERAV,TZ2ERAY, T3ERAV TGERAV,T1
¥ERVASTZERVA,TIERVA, T4ERVA
573 FORMAT(3X,BF8.244F12.4)
GC TC 621
CALL ORIGIN(Z2.5+3.5+1)
CALL GRAPH(173|YQPLGT1'3'_7'-5.'-5.'2.'0.,2-'00'XLAB'YLAB'GLAE'
*DATLAB)
CALL ORIGIN{B.5,04+s1)
CALL GRAPHI(173,Y4PL0T243s=T1=5e1= 5222490012+ 0.9yXLAB,YLAB,GLAD,
=DATLADL}
CALL OKIGIN{(B.5,0.,1)
CALL GRAPHULT 3 Y oPLOT3433=7T9=50975e12e900¢2¢¢0+9XLABsYLAByGLAB,
=DATLAR)
CALL ORIGINIB«5,0.,1
CALL GRAPH{LT3, Y, PLOT 433 3=Tr=5¢1=5e12+00e02.¢04+XLAB,YLAB,GLAB,
*DATLAB)
CALL 0RIGI“(8.)!0.!1)
621 CONTINUE
STUP
END
FUNCTION F{P)
REAL MUZKC KDy INTEFoKELLAMMAKBOLTZ Ky KNUDSNe Ly KR
COMMCN KC, KD, Ly MUy PDy SIGMA, T +KLsQ 4CK
X=STGMA*SQRTI(2.0)
FNORM=ERFI{(1.,0-MU)/X)-ERF{(0.-MU)/X)]
P2=(ERF{{L.O=MUI/X)-ERFI{P-MUI/X))/FNORM
F=la 0/ {KC+ (KD=KC ) %P2)
RETURN
END
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SUBROUTINL VACLUM
REAL MUGKC KDy INTF KE LAMMA L KBULTZ gk o KNUDSNy LK<
COMMON KCy KDy Le MUy PDy SIGMA, T SKEYQ LCK
READID 4} T+ PRESS,LTAGKsPRyLy A
4 FORMAT(TELC. Q)
KBiLTZ=1.3804-213
PI=3.14159
Cl=.49%
CH=PRESS*].333224E+7
CH=PRESS
WRITEL6,,12C) CHYODIASY Ay PRy Ky L
100 FORMAT(G6ELL . 4)
CAMMASKUOLTZ AT/ (SURTLZ2 e VRCHAPIXDTALH22) %10, 0%%5
G=(12.-A)Y/A)V%4  2CL%K/IK+L,)LANNA/PR
KNUNSHN=LANNMA /L
PORE=L&{0.T7T4 /MUY R$2/43,
KC=CK/{]1l.+2.%5/P0RE)
WRITE(ALUL)Y LAMMAZ G KNUDSNLKE
121 FURMAT(4EL L. 4)
R TN

LAND
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SUBROUTINE RAD

REAL MUSKC KDy INTFoKEy LAMMA ,KBOLTZ 4Ky KNUDSNy L, KR
COmMMON KC’ K01 L' MU’ pD' SIGMA, T 9KE'Q 'CK
READ(S,1)1T,EP

FOQRMAT {2F10C.5)

£EP=0,95

SIGMAR=5.,668t-8

D=L

KR=4 OXEP%SIGMARXC*T*%3/((2,0-EP))

KE=KE+KR

RETURN

END
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CUMpULR PROGRAM FUR THE NODULAR MODEL
INTEGER CASE
RKEAL KS4KG4KE,KC,KD
DIMENSTION N{NL+2yNL#2,NL#2) R{NL+2,N142,N1+2),TINL+2,NL+2,NL+2},TK
F{HNL+2,NL+2,N1+2)
DIMENSTON DIU3}4CL6)
Ni
N2Z=N1+2
N3=N1+1
Na=N1-1
Iy=3
ITEST=0
READ{S43,END=10001KS,KG+P,EXKE,CASE
3 FORMAT(4F10.5,4A%)
READ(S415F)DIAMPOISON YOUNG,DENSDEPTH,,COEF1,COEF?2
159 FURMAT(EB.34F4.342E8.3,F4e3,F5.4,F4%,.2)
WRITE{G+4)
4 FORMAT(///)
ITeST=1TEST+]
Ml=N]L%%3
M2 =N2%¥x3
M=Q
PORES=P*FLOAT(MZ)
LPERLS=PORES
Co 2 [""1.1N2 \
DO 2 J=Ll N2
DIJ 2 K=1le¢N2
N(IyJeK)I=0
2 CONTINUE
20 TA=D
21 TA=1A+]
IX=1Y
CALL RANDUCUIXsIY,YFL)
DIIA)=YRFLEFLDATINZ)
TF(IA=3)21422,22
22 CONTTINUE
I1=011)
1¢=012)
13=01(3)
[=T1+1
JE12+1
k=[3+1
LA=N{I,JsK}
[FILA-1)23,20,20
23 NiT+JaK)=1
M=M+1
IFIM-LPORES)Z204+24,24

p—
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24 CONTINUE
WRITELG6+340)M
340 FORMAT(3X,"M=?,14&)
A=0.5
BO 5 K=24N3
DO 6 I=1,4N2
DO 6 J=1,N2
6 T(IyJyKI)=A
A=A+1.
5 CONTINUE
DO 38 K=2,N3
DO 38 I=2,N3
DO 38 J4=2,N3
TF{IN{T s J,K))T747,48
7 le.
GO TC 9
8 B=0D.
9 IF(1-2)202+202,160
160 TF(N{I-1,J,K))202,11,12
11 C(1)=1.0
GO TO 203
12 Cii)=0,
203 TKUL3LeJeK)={(B¥KS+(La=BI*KGI*(CILI®KS#{1oa=COL))I®KG)} /(0. 50{BOKSH(
#la=BYEKG) 4055 (CL{L)#KS+{1.~C{1))%KG).)}
GO.TO 13
202 TK-H.l,J.KhO.
13 IF({I-N3)161,204,204
161 IFIN(I+1,9,4K))1204,14,15
14 C(2)=1.0
GO TD 205
15 C{2)=0.
205 TK{(2451, J’K}—(lB*KS+lla'Bl*KGI*(C(2!¥K5+|lo-CIZ),*KG’)f(O 5*(B¢KS*(
#1l.-B)RKG)40.5%(C2)2KS+({1.~-C(2) 1 %KG))
GO 70 le
204 TK(Z'I!J!K)=0.
16 IF{J-2)206,206,162
162 IFIN(T4J=14K))206,17418
17 C(3)=1.0
GO TD 207
18 C(3)=0.
207 TK{3 919 JeK)=({BRKS+[1e-BIBKGI®(C{3)RKS+{La=ClINIOKG)I I/ {050 (BOKS{
#1e=B)*KGI+0.5%(CUIVAKS+(1e=CI3))I%KG))
GO0 TO 19
206 TK(3,I'J,KJ=0¢
19 IF{J=N3)163,208,208
163 TF{N(I,J+1,K)}208,30,31
30 Ci{%i=1.0

GO T0 209
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31 Ct4)=0,
209 TK(#:I.J,K}=((B*KS+(l.-BJ*KGl*(C[4)*KS*(1.-C!4]I*KGJ)/[O.E*(B*KS+(
¥lo=BI#KG)+05%{C{4)=KS+[1.~C(4))2KG).)
GO 10 32
208 TK{4,1,J,K)=0,
32 IF(K~2)2104210,350
350 IF[N(I.J,K-I))ZIO:33:34
33 C(5)=1.0
GO 1D 211
34 C(s5)=0,
211 TK[b:[.J.KI=t(B*KS+{1-—BJ*KG)*IC(5}*KS+1l--C(SJl*KG))/lO.S*(H#KS+(
#lo-B)®KG)I+0.5% (C(5)%KS+{1e~C15))%KG))
GO TO 35
210 TK(5,],J4K)=0.
35 TF{<-N3)351,212,212
351 TFIN(E,d,K+1)0212,36,37
36 Cle)=1.0
GO TH 213
37 C(6)=0.
213 TKIﬁ.I.JoKl=((B*K5+t1.—8)*KG)*(C!6)*KS+{1.—C(6}I*KG))/(0-5*(3*KS+(
Fla=B)*KGI+0.5%(C{6) €K+ (1.-C(6))%KG))
GG FO 38
/12 TK(6,I,44K)=0.
38 CONTINUE
PRES=DEPTHE(]1.-P)*DENS
RSP=0.93*(DIAM/2.)*({(!1--(POISUN**2))*PRES}/(YUUNG#(Ila*Pi**Zl)!*
¥*%0.3333)
HR=COEF1%DIAM
KQ=RSP/((0.5+((HR*COEFZ)/(3.14*RSP]))*DIAM)
CONTR=KC*KS
185 IF{ITEST-1)186,186,187
186 CONTAC=95.%(22,47-(39.39%P))
GO TO 121
187 TF{ITEST-3)188,188,189
188 CONTAC=100.%(22.47=-(39.39%p))
GO TO 1921
LAY TF{ITELT-6)1904190,4191
190 CONTAC=110.%{22.47-(39,39%p}))
191 ZONTINUE
I+H{CONTAC) 158,157,157
158 CONTAC=U.
157 CONTIMNUE
LCONT=CONTAC
WRITE(L,325)LCONT,CONTR
325 FDRMAH%X,'LLONT:'.HH' CUNTR=.'E10.5j
NUM=J .
NTEST=0
Jcz 1a=0



300

101

303
305
306
330

70

71
304
309
331
308

72

73
307
311
13z

80

76

75
310
314
315

81

76
17

313
318

348

NTEST=NTEST+]

TA=TA+1

IX=1Y

CALL RANDULIX,IY.YFL)
D(IA)=YFLAFLOAT{NL)
IF(1A-3)300,301,301

CONT INUE

[1=D{1)

12=D1(2)

I3=D(3}

[=11+2

J=12+2

K=13+2

IF{N(I,J,K}}302,303,302
IF‘N(I*l,J,K,)304.305'304
IF{TRKEL,1,J,K)Y-CONTR)1306,304,306
IF1I-2}330,330,70
TK{1+19JsK)=CONTR

50 10 71

TK(Z,I—I,J,K1=CONTR
TKil,I,JsK)=CONTR

NUM=NUM+1
TRIN{I+L,J,K}Y)307,309,30T7
[FITK(2,1,4J,K}-CONTR) 331,307,331
IF(I-N3}72,308,308
TKI2+14JsK)=CONTR

GO TO 73

TK(ltl"’l,J.K,:CDNTR
TK(2+T3JsK)=CONTR

NUM=NUM+1

TF{TKE3, 140, K)I-CONTR}33243104332
IF{3-2180,80,74
TK(33T9JeK)=CONTR

GO TG 75

TKi4,F4J-1,K)}=CONTR
TK(3,1,J,K)=CDONTR

NUM=NUM+1
IFIN(T,,J+1,K))313,314,313
TFITK{4,1,JK)-CONTRI315+313+315
IF(I-N3)T6,81,81
YK{4914JsK)=CONTR

GO TO 77

TRI341,4J%1,K)I=CONTR
TK{4,14J9K)=CONTR

NUM=NIIM+1

IFIN{T JeK-1))316,318,3146
IFITEKL{Sy I+ JoKI~-CONTR}IZ19,3164+319



319

83
84
316
322
86
8
323
85

321
324

g8

89

90
500
02
501

101

349

IF(x-2182,82,83
TK(5,14JsK}=CONTR

GO YD 84

TK(S,I|J|K)=CONIR
TK'b,I.J,K‘l’:CDNTR
NUM=NUM+L
IF{N(TsJsK+1))321,322,321
IF‘TK(&’I'J'K}—CONTR,86'321.86
IF(K-N3)323,87,87
TK{6¢19JseK)=CONTR

GO 10O BS

TK{6'['J'K’=CONTR ]
TKi5,I4J,K41)=CONTR
NUM=NUM+]
IFINTEST~150001321,+321,1Q0
IFINUM=-LCONT 302,324,324
CONT INUE

DO BA J=2,N3

DO 88 K=2,N3
rh(1'29J|K1=0-
IK(Z’NB'J’K}=0’

CUONTINUE

DO 89 [=2,N3

Dk B K=2,N3
TKI3,1,2,K}=0,
T4l ¢ NIJKY=0,

CONTINUE

G0 930 I=24N3

D 90 J=2,N3
TK{SyI1:+ds2)=0.
TE{OHsTsJeN3)=Do

CONT INUE

WRITE(6,500)NUM
FORMATI3X 3 YNUM=?, [4)
WRITE(6S0LINTEST
FUORMAT (33X, *NTEST=%,15)
L1=0.

L1=L1+1

SR=D.

N0 10 K=3,N1

0 10 I=2,N3

A0 10 J=2,4,N3

ROLIs oK =TI Ly T Jy K[ T{I=1adgKI=T{IlodsKII#TKIZ2, [, JsK)®IT{I+14J4K)
*-r(IQJ'K]}+TK131IQJ,K)*‘I‘I'J“l'K)-T([1J|K’,+TK(4717J’K}*‘T{I|J*IU
AK)=TUl g KII4TKAS s ToJo KIX[TITpdoK=1)=TUIyJsKII4+TR{EsT9JoKIX(TLIyJ,
eK+1)-TUI,J,K))

STk=d.

DO 40 L=1.6
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TIK=TK{LyToJsK}
STK=S5TK+TTK
40 CONTINUE
TUToJoKI=TIT s JsKI+1 2% (RUI,J,KI/STK)
SR=SR+ABS{R{I,J+,K}/5TK}
10 CONTINUE
WRITE{6,103)5R
103 FORMAT{3X,*SR=*,E10D.4)
IF{Lt1-50)150,150,100
150 IF{SR-5.1102,102,101
102 CONTINUE
WRITE(6,104)L1
104 FORMAT{3X,'L1l=",14)
AVHEAT=0,
DO 44 K=2,N1
THEAT=0.
DD 45 I=2,N3
DD 45 J=2+N3
51 HEAT={TK{6+sT9dsKI)EUTIIJsK+1)}=TlLeIK))
THEAT=THEAT+HEAT
4% CONTINUE
WRITE(6452)K,THEAT
52 FORMAT{3X,'K=",]12," THEAT='4,ELO.%)
AVHEAT=AVHEAT*THEAT
44 CONTINUE
KE=AVHEAT/900.
RATIO=KS/KG
DFF={ (KE-EXKE)/EXKE)*100,
WRITE{6+105)CASE4KS,KG P+ RATID,KE4EXKE ,OFF
105 FORMAT(3Xy CASE=*,A5,' KS5=',F10.5," KG='",F10.5,* P=*,F5.3,% RA
tTIO=',FB.2q' KE"'FIO-sg' EXKE'-'"FIOOB" 0FF="F7¢2,
100 CONTINUE
GO TO 1
1000 STOP
END
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CALCULATION OF EFFECTIVE THERMAL CCNDULCTIVITY OF GRANULAR MATEL -
TALS AT ATMOUSPHERIC PRESSURES EXK=EXPERIMENTAL COMND,, XC=CUnDa. C#
CONTINUGUS(GAS OR LIQUIDY PHASE, KDsCOCNC. OF DISCONTINLOULS (SCLID)
PHAST , P=PCROSITY, F=VOLUME FRACTION GF SCLIN PHASE, KLl=EFF. CUNRD.
BY MUODEL, KZ2=BY KRUPICZKA, K3=BY RUSStLLy KA=RBY LICFTENECKL®R AL
SCN FREY,y K5=BY JEFFERSCN, K&6=BY MAXWELL, K7=8BY RAYLi-IGH, k3= 1y
WOUDSIOE AND MESSMER, KY=BY MEREDITH AND TOBIAS.

INFEGER CASE

HEAL KL K2 4K3 g KA KS 4 KA 4 KT 4 KS 3 Ko KC KNy KS s KGyKIPX1ATAS,K2HTAS,KIRT
HASyKABIAS,KSBIAS K6BTAS,KTRIAS,KBHRIAS,KIBIAS

UIMERSTON BRICIVO) «BEZ2U120) ,BKICICI 2 BKGLI0D) 4 AKSTLICO) ,BKFE(1DC ), 0K
FICLIO) yBRBUIECO) ybRI(LOC )y WOLF (100} yKCLICC Y 4K B LODY yEXKLICO) 44K (LUD
%) ,REK10100)yRKZ2ZTUL00) yRK3(100)yRKE(L100} yRKS (100 yRKOTL100) yRKTULID D}y R
FRA(LICOYyRKG{LI00), PORCLCO) 4KLBTIAST{LO0) yK2ZBIASTLICO) JKIBIASILICO Y, KaH]
BASGTL00) JKSBIASILICS)Y yKOBTASIICD) dKTRTAS{ICO )4k BRIASIIOS ), KOTAS(LDE
Yl LOLUT) 98201 C0) o KIULICO) yRATLICO) yKSTLICO) s KOE(ICO) yKTCLCOY pKHBELLLCY
#KG{LC0)

NOCASE=Y Y

SLLIYI=0G,.

cuM2irl=9.

r:br"”%”l:Oo

SutiarT=0.

S5LF94T=0.

sUMe =0,

SUMTRI=Q,

SuMBATI=0,

SuMILl=0.

SulMbsnl=J.

SuM5(2=0.

SukSd3=C.

SUMS 4=,

SUMSUWUE=0.

SursnT=3.

SLMSWHED,

SLMSGI=0.

SUMK LE=0,

SUMKZE=D.

SUMKAR =0,

SUMK4E= .

SUMKAE=0,

SUMKTE=J.

SUMERE=U.

SUMKIe=G.

PC 35 1=1,NCCASE

READ(S5 44 KSyKG4P,EXKE,ZCASELK1P

¢ FLRMAT(4FLlC.5,45,F10.9)
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READ(5+159)CIAM,POISON,YOUNG,DENS,DEPTH,CCEF1,CUEF2
FORMAT(EBa34F4e392E843yF4.3,F5.44F%.2)
KL(I)=Kk1P/1CO.

EXK{F)=EXKE

VOLF(l)=1.-P

POR(T) =P
F=1l.-P
C=KG
D=KS
KCI{I)=KG
KC(I)=KS

K2T ) =KGx( (KS/KGI*%{,280~{.757T*ALOGLO(PM)I—-{.05T*ALOGIG(KS/KGID )
FP=(l.-Pl*&,6667

FG={le-P)%%,33333

R=KG/KS

K3(T)=KG*(FP4RF(La~FP) I/ (FP-1.#P+R¥{2,~P=FFP}}
KG(I)=kG%(La=FQ+FP+R*(1.=FQ))/{1.~FQ+R)
H=2.*KG+KS-2-*(l-—P}*iKG*KS)

I=2#KG+KS+F*{KG—KS)

K&{L)1=C*W/2

B=F%*%3,3333%]1.569%(C-0)/({4.%C+3,.%0)

KT({I)=C*(Ww-B1/(2-8)
KBLI)=CH{{({F+0.03)=x2%0)/(0,032D+F2C))+0.,97=F}
X={B/C-1.)/(C/C+2.)

KO(I)={ 242 %F X)) (2e+F2{2.%X=1a )/ ({2e~X%F}2{2.,-F2{X+1.})}%C
XN=.403/FG-.5

XKK=C*D%(2,%C/{D~-C %222 AL0GID/C)=-2./7(D-C) )
XP=a7B54/ {142 %XN)*%2

KS{T)=Cx(le=XPI+XPR{  S+XN)RXKEC/{ S5*C+XNEXK)
KIBIAS(I)}=(((KL(I}-EXKE}/EXKE)*100.)

K2BTAS(D)=({(KZ2{I)-EXKE}/EXKE)*100.}
K3BIAS{I)=(({K3(I)-EXKE)/EXKE]I*1030.)
KaBTAS(II=( (K4 {I}-EXKE)/EXKE)®1004)
KSBITASUI)={{{(KS{I-EXKE)/EXKE)*]10C.)
KEBIAS{TI=({{K6(I)-EXKE)/EXKE}*10C.)
KTBTAS(I =0 ((KT{I)-EXKE)/EXKE}I*100.)
KEBIAS(I)={{(K8(I)-EXKE)/EXKE)}*100.)

KIBIAS{I}={((KIUI)-EXKE}/EXKE)*100.)
BKLUI)=ABS{KIBIAS{I})
BK2(TI1=ARS(KZ2BTAS(I))
BK3(I1)=ABS{K3BIAS(I))
BRK&([)=ABS({K4BIAS(I))
BK5( 1)1 =ABS5(K5B1AS(1))
BKO(I)=ABS(K6BIASIT))
BKT(I)=ARS{XKTBIAS(T))
BKE(TI=ABS{(KBBTAS(T}))
BKIEI)=ABSIKIBIAS{I)])
RKL(I)I=K1(E}/C
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1

REK2{I1=K2(1)/C
RK3{I)Y=K3(1)/C
REK4{T)=K4l{ 1) /C
RKS{1)y=K5(1)/C
RK6{[)=K6(1I)/C
RET(IV=KT(I)/C
RKE(I)=KBI(I)/C
REKI( [ )=KI¢{ 1) /C
RK(I)=D/C
SUMLBI=SUMIBRI+K1IBIASI(I
SUMZBT=5UMZBI+K2BTAS(]
SUM3HRI=SUM3IBI+K3BIASI(I
SUMGRTI =SUM4GBT+K4BTAS( ]
SUMSRI=SUMSHTI+KSBIASII
SUMAERT=SUMEET+KeBTASITI
SUMZBTI=SUMTAT+K7BIASLI
SUMBHETI=SUMEBRT+KHERTAS( ]
SUMIBI=S5UMIRT+K9BIAS(]
SOKIER=BKL( )%%2
SOKZ2ER=BKZ2 (1 )%=2
SUKIER=BKI(I)*%x%2
SWKRGER=pKA ([ Y&x&p
SGKSER=BKS (I 1%%:p
SQOKOEER=BKA( T )%*2
SQKTER=BKT{T)%%2
SwkBER=BKB{[)1%%2
SUKFER=BKIF([)#%2
SUMSQL=SUMSGL+SOKLIER
SUMSQ2=SUMSL2+SCRZLR
SUMS U 4=SUMSC3+SGR 3ER
SUMSQ4=5UMSU4+5QK4ER
SUMSE5=SUMSLO+SLCKSELR
SUMSLGH=SUMSCE+SLEKEER
SUMSLT=SUMSE7+S5GKTLR
SUMSQH=SUNMSCH+SOKEER
SUMSRI=SUMSCO+SUIKSER
SUMK L E=SUMKLE+SKLIT)
SUMKZE=SUMK2E+BKZ(T})
SUMK3E=SUMKIE+RBK3I{])
SUMKGE=SUMKLE+3K4E{T)
SUMKSE=SUMKSE+BKS( ]}
SUMKAE=SUMKAE+BKGI )
SUMKTF=SUMETc+BKT(1)
SUMKAE=S5URKEL+0OKB(])
SUMKDL=SUNMKSE+HKI( 1)
CONT INUE

WRITE{DH,1)

}
)
)
)
)
)
}
)
)

FURMAT ("1, ////7 /15K, " TARLE

if.

353

EXPERIMENTAL AND PRrCICTED TrRERNMAL
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#CONDUCTIVITIESY)
WRITE(6,60)
60 FORMAT{35X%,'FOR VARIOUS MODELS*) i
WRITE(6,43)
3 FORMATU//15Xs?CASE" p4X o "EXKE? 94Xy *MODEL ' 33Xy *KRUPIC. y2X,YRUSSELL?
%93X, "LICHT o' 91X, "JEFFERSON")
DO 36 I=1,48
WRITELOsTIIJEXKIIIZKLILI) K201, K3{T),K&(I)K5¢(1)
T FORMAT (16X 3123 1X46F9.4)
36 CONTINUE
WRITE(641)
WRITE(6460)
WRITE(6,3)
DG 37 1249,92
WRITE(OG2) T4 EXKAT) KL{T},K2(I)4KI(E) KT} K5(1)
2 FORMAT(16X,12,1X46F9.4)
37 CONTINUL
WRITE(Gs6L)
61 FORMAT(Y1Y,///777/14Xs " TABLE T1I. EXPERIMENTAL ANO PREDICTED THERMAL
* CONDUCTIVITIESY)
WRITE(6,60)
WRITE(6,33)
33 FORMAT(//15X s "CASE 35X g YEXKEY g4 X g "MAXWELLY y2X, "RAYLETIGH? ;3X,'Ww AND
& MUS3X,'M AND T}
DO 38 [=1,48
WRITE{Ge30)I4EXKII) yKE{T)yKTETYoKB(T) oK)
30 FORMAT(16X,12,1%X,5F10.4)
38 CONTINUE
WRITE(G,461)
WRITE(A,60)
WRITE(6,33)
DO 39 1=49,92
WRITE(E AL 4EXKITY yKOTT) JKTIT)4KBLTY KG(1]}
31 FORMAT(16X,1241X%Xy5F10.4)
39 CONTINUE
WRITE(6,40)
40 FORMAT{'1',///7/715X " TABLE [V. PERCENTAGE FRROR LETWEEN PHRECDICTED
*AND EXPERIMENTALY)
WRITE(6441)
41 FORMAT{31X,'THLRMAL CONCUCTIVITIES?®)
WRITE(6442)
42 FORMAT(//15X "CASEY ,5X, "MODEL 95Xy "KRUPTIC " o 4X s "RUSSELLY 34X, *LICHT
%% ,3X, " JEFFERSON®)
o0 43 I=1|48
WRITE(O 144 ) ToK IBTASUTI ) 4K2BIASITI) oK3BIASII) 4K4BIASTI) 4KSBIASTT)
44 FORMAT(16X,1241X,5F11.3)
43 CONTINUE
WRITE{6,40)



355

WRITE(6y4al)

WATTeloyhd)

045 [=49,92

WRITE {46 ) ToKIBITASL{T ) yK28TASII)KIBEAS(T) ;K4BTIAS(I)KBB1A5(T)
L6 PUORMAT(LEX 41231 K95F11,3)
45 CONFINUE

WRITL(6,62)

H2 FORMAT(YLY W/ /777 15K TARLE V. PFRCFNTAGE ERRCR BETWELN PREDICTEL A
*ND EXPEHRIMENTALY)

WRITL(6,41)
Wk ITL (G 41)

GT FORMATC/ ALK s "CASEY 35X g "MAXWELL " 34Xy "RAYLEIGHY 35X, tiW AND MY, 0% 4tV

FAND TV

LU 48 [=1,43

WRRITE(OH,4F) I KOBTASIT) KTBTAS(T) yKABTIASIT ) KIBTAS(I)
4 FURMAT(Z2OXKy1241XK04rl2.3)
48 CUKRTINUE

WRETE(6H,02)

WkITe(byeal)

WRITE(LyaT)

ng v 1=49,52

WhITElG,9L) I, KAHTASIL) KTBIAS(T) ,KB8BIAS(T) ,K98LAS{I)
Sl FORMATIZ2OX s 12, 1X04F12.3)
52 CONT INUC

WRITE(E12)

12 FIIRMATLY LY, 2X,115H MEAN AND VARIAWNCE CF PERCENTAL
FeRRUR HBETWEEN MUTEL PREDICTED AND FXPeRIMUINTAL THORMAL CONCUCTIVIT
%Y

Wik ITElGy13)

13 FORMAT (24X 5HMOLEL ¢ 9X 3 THKRUPIC o+ 45%y THRUSSELL y6 X 6HLICHT o 93Xy 9 JEFE

SRS Xy TENVAXWELL ¢4 X BRRAYLEIGH 3X 3 9hW0G AND MS,yHX, 7uM AND T)
SGCASE=NNCASL

AVl l=5UMLIEBI/BUCASE
AVl 2=5uMZel /BCCASE
AviT 3=SuM3EI/BCCASE
AVET4=5UM4Lgl JROCASE
AVHEI S=5UMsBT /BLCCASE
AVbhl 6=SumMaBI/800ASE
AVRI 7=SUMTRI/80CASE
AVBI B=5UMERT/BCCASE
AVBTII=5UMIR T /BLCASE
TleRAV=SUMKLE/ECQCASE
TZ2eRAV=SUNMKZ2E/BLCASE
T3LAV=SUMKIE/HLCASE
T4 AV=SUMKLGE/BLCASE
TS5ERAV=SUMKSE/BCCASE
THERAV=SUMKEE/BOCASE
T7ERAV=HUMKTE/BLCASE
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TBERAV=SUMKBE/BOCASE
TOERAV=SUMKSE/BUCASE
T1ERVA={ (SUMSQ1/BCCASE)-T1ERAV*%2)}/10C00.
T2ERVA={ (SUMSQ2/BCCASE)-T2ERAV*%2}/10CC0,.
T3ERVA={(SUMSQ3/BOCASE)-T3ERAV*%*2)/10C00.
T4ERVA={ (SUMSQ4/BOCASE)-T4ERAVE%2)/1GCCU.
TSERVA=({SUMSQS/BCCASE ) -TSLERAV%%2)/10C00.
TOERVA=({SUMSQ6/BOCASE }-THERAV*%2)}/1CCCO0,
TTERVA=({SUMSQT/BCCASEI-TTERAVS%2)/1CCOC.
TRERVA=( (SUMSQB/BCCASE)-TBERAV*%2)/10CC0.
TOERVA={ (SLFSQY/RCCASE}-TI9ERAV*%2)/1C0CAO,.
WRITE(OH,L6)AVBILAVRIZAVBI 3, AVBI4,AVBIS5+AVBT16,AVBIT7,AVBI8,AVRIY
16 FORMAT (66X, 6FRAVGERR,6X,y9F1245)
WRITL(6414)TIERAV,,T2ERAV, T3ERAV,,T4ERAV,TSERAV,, TOERAVy TTERAV TBERAY
%, TFERAV
14 FORMAT(6X,6HAVBIAS+16Xy3F12.5)
WRITELO,15)TLERVA, T2ERVA, TIERVA, T4ERVA,TS5ERVA, T6ERVA, TTERVA, TBERVA
%, TOERVA
15 FORMAT(6X,6hVARERR, TX,9F12.5)
WRITE{6y17)
17 FORMAT(/Z7/745X,34H DIMENSTONLESS CONDUCTIVITY RATIOS)
WRITE(6,18)

18 FORMAT{//131H KC KD P KO/KC MaDEL
*KRUPIC. RUSSELL LICHT. JEFFERSON MAXWELL RAYLEIGH WG AND
®*MS M AND T }

DO 20 I=1.MNCCASE
19 FORMAT(13F10.4)
20 WRITE(62L1IKCL{ Y yKD{T) yPORLTIZRK{E) oRKLI(T)yRK2(T)4RKIC(E),RK&L{T ) RK
#5(1) yRKE{L)RKTIL)4RKBL{I),RKI{])
STOP
END
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THERMAL CONDUCTEIVITIES PREDICTED BY FOLLOWING
MODELSD 1. SON FREY 2, WOODSIDE AND MESSMER
3. HENGST &, GORRING AND CHURCHILL
IMPLICIT REAL®4(A=/)
INTEGER®*4 T, INDEX,TERD,TERRYIER
DIMENSION SUMELO}PLOTLILT3N,PLOT2(173),PLOTI{(LT3),PLOTA4(173),
HY{LT3) o XLABES) o YLABIS ) GLABIS),,DATLABLIS)
DATA SUMyINDEX/Z10%0.9,0/
SUMIBT=0. ‘ '
SUMZKI=0D. :
SUM3IBT =0,
Sumael=o,
SUMSQL=0,
SuUms2=q,
SUMS2=0,
SUMSO4=0.
SUMK LE=D..
SUMK ¢L=8),
SUMK3F=0,
SUMK&4i-=0,
PI=3.14154
READ ISy 9 P XLAB,YLAByOLABSDATLAR
S FORMATL20A4)
1 KRITEL641001
100 FORMATULHL /2277877727777 7025X o "DATAY W1 TXy"EFFECTIVE THERMAL CONDU
BITIVITY {KCAL/M=HR=K) X 100 *4//429X%X+'CASE ", IX ,

b CXPLRIMENTAL 9,0 SON FRFY ', WOODS!IDE 'y
B HENGSY LI GORRING & /930X,

L R *+' & MESSMER ',
! 1yt CHURCHILL Ya/)

3 FURMAT(4F10.5,3A4) .
INDEX=IMDEX+]
YUINDOFR)=ALUGIO(EXKF/KD)
Fzl,0=p0}
SUNFRrEY L
R7=1.0/3%.D
REB=KC /KD
1=K [ L O-L&*RT+E+RAM{E#BRT=F) )/ {1 Q-CH*R 7+RE*EEXRT)
PLOTICINDEX)=ALOGII(KL/KE)
pOMDSTRE & MESSMER  EW
K=k LR [E+J. 03V 28KN/ 10, 03XKD+ESKC 1 +0.97-L)
PLOF2CINDEX)IFALOGLO(K2/KE)
HENGST
Nzll.b6%F
KI=KCx(AN*EXKDA 2, 0¥ {KD-KC) ) *(KO/ (KN=-KCI*ALOGIKD/KCI=1,.0))
PLOTICINDER ) =ALOGIOIKI/KE )
GUOHRING & CHURCHILL
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X=1.0

C=10.%pD/PI

IF{PD.LE.D.314159} GO TO 4
C=(3.0%PI/(5.,0%P1-20.0%PD))*%}.5
leth’C**‘ch/EloO)d ) N
B=(KC/(C*[KD~KC)}}**{1.0/3.0}

K&G=KC2(PI/{6.0%(1.0-KC/KD) *C*B)*{ALD

. f
i

G(SQRT{Bx#2-BAX+X¥%2)}/{B+X})

& +SQRT(3.0}*ATANi(Z.O*X-B)/!SQRTIB.OI*B)l-SQRT(S.)#ATAN
*{—-1.0/5QRT(3.0)) J+1.0~-PIxX2%2/4,) !

KH=EXKE

IF(K4.0TLEXKEY KH=K4

SUM{4] = SUML4) + ((K&—EXKE)/KH)**2
PLOT4(INDEX)=ALOGL1O(K4/KC)
WRITE(6,200) INDEX,EXKE yK14K24sK3 K4
FORMAT (/425X 1444Xe5(F10,546X))
BK1=({K1-EXKE}/EXKE]*100.
BKZ={{K2-EXKE}/EXKE)}*100,
BK3=({(K3-EXKE)}/EXKE)}*100.
BK&4=({K&-EXKE) /EXKE)*100.
KLOFE=ABS{BK1)

KZOFF=ABS [BKZ}
K30FF=ABS(BK3)
K&QFF=ABS{BK&)
SUMLBI=SUMIBI+BKL
SUMZBTI=SuUM2B1+BKZ
SUM3BT=SUM3BT+BK?
SUM&3I=SuMaBl+BK4
SQKLER=K1OFF*%2

SQK2ER=K20FF*%2 ‘ | ' .x

SOKIER=KIOFF*%2
SOKGER=K4DFF*x%2
SUMSG1=SUMSQI+SQKL1ER
SUMS02=SUMSA2+SUK2FR
SUMSDI=SUMSY I+SUKIER
SUMSQ4=SUMSGn% SUK4ER
SUMK1E=SUMK1IE+KL1OFF
SUMK 2E=SUMKZ2E+K 20FF
SUMK 3E=SUMK 3t +K 3(FF
SUMK4E=SUMK4L+K&40FF
TF(ENDEX.EG.14) GO TO
IF(INDEX.EQ.28) GO TO
IF{INDEX.EQ.%42) GO TO
IF({INDEX.EQ.56) GO 7O
IF{INDEX.£C.72) GO TO
IF{INDEX.EQ.B4) GO TO
TELINDEX.EQ.98) GO TO
IF(INDEX.EQeLl12) GU TO 1
IF{INDLXLEQ.L128) GO TO 1

e el p— e e s
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IFIINDEX.EQ.140) GO TO L
IH(INDLX.EWe154) GO TQ }
50 TO 2 '
6 BOCASE=FLDAT(INDEX)
AVBI 1=SUM1BT/RUCASE
AVBI2=SuMZBI/BOCASE
AvBI3=SUM3BI/BUCASE
AVBI4=5UM4B T /RDCASE
T1ERAV=SUMK1E/BOCASE
T2ERAV=SUMK2E/BOCASE
T3ERAV=SUMK3E/BUCASE
T4ERAV=SUMK4E/BUOCASE
TleRVA=((SUMSQL/BOCASE)}-T1ERAV$$2)} /10000,
FZERVA=( (SUMSQ2/BOCASE)-T2ERAVS$2}/]10000,
TIERVA=({SUMSQ3/DOCASE)-TIERAVSS2)/10000.
TA4ERVA={ (SUMSN4/BOCASE)-T4ERAVS2) /10000,
WRITE(O,5T3)AVBILAVBI2,AVBI3,AVBI44T1ERAVT2ERAV,, TIERAV,T4ERAV,TI1
FERVA,T2ERVALTIERVA,, T4ERVA
573 TORMAT(3X,BFB.244F12.4)
G} TO 621
CALL UORIGIN(2.943.9,1)
CALL ljRAPHl175|Y|p|.0[10‘p'71‘5o.'5-Q2.!0.gZaQOo!KLAB.YLABQGLAB'
*NDATLAR)
CALL URIGINIRB«Ss0ayl) .
CALL GRAPH(1?3'Y,PL07213,"7|'5..‘50'2"0-!2-10.'XLAB'YLAB'GLA81
FIATLAD)
CALL UKIGINtaosvoltl’
CALL GRAPH'173;Y’pLUT3|3|"T|"5."5.|2-|0.QZOUOQ'XLABQYLABpGLAB!
*JATLAR)
CaLtL GRAPH(173|Y.pLOT4'3"7|*50"50,2.'0-'2-'OQUXLABQYLAB'GLAB!
®DATLAH) : '
CALL ORXIGIN(B.5441,1)
621 CONTINUE
STLP
END
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T

THERMAL CONDUCTIVITY PREDICTED 8Y FUOLLOWING

c .
C MODELSO 1. WILLHITE, KUNIT AND SMITH 2. SCHUMANN
C AND V0SS 3. PRESTON &4 KRUPICZKA . : :
IMPLICIT REAL*4(A-Z)
INTEGER*®4 1, INDEX
DIMENSION SUM(IO),PLOT1(173} PLUTZI173).PLDT3!1?3!;PLOT4(173),
&Y(173),XLAB(5) ,YLAB{5)GLAB{S),DATLAB{S) :
DATA SUM,INDEX/10%0.0,0/
SUMLBI=0.
sumM281=0.
SuUM3Bi=0. 3
SuUmM4BI=0. - ‘ e
SUMSQ1=0. - .
SUMSQ2=0. : ' .
SUMSQ3=0. £ :
SUMSQ4=0.
SUMK1E=0.
SUMKZ2E=0.
SUMK3E=0.
SUMK4E=0.,
PI=3.14159 -
READ(5+5)XLAB,YLAB, GLAB!DATLAB
S FORMAT(20A4)
1 WRITE{6,100) '
100 FORMAT{1lH1, ///I//II///////,ZSX"DATA’vl?Xo'EFFECTIVt THERMAL CONDU
$CTIVITY {(KCAL/M=-HR-K) X 100 '4//+25X,*CASE"y1X ,
$t* EXPERIMENTAL ', WILLHITE, Uyt SCHUMANN 'y
$ PRESTON 'yt KRUPICZKA /930X,
' *,' KUNIT & SMITH *,1? & vOSS - %,
$ 1,0 : ﬂ"/)' .
2 READ(543,END=6) KC,KD,PD,EXKE,CASE,CASELl,CASE2
3 FORMAT(4F10e543A4)
INDEX=INDEX+1
Y(INDEX)=ALOGLO{EXKE/KC)
E=1.,0-PD
C WILLHITE, KUNII,& SMITH

N=3,0%{5.01-8.42%PD)/(1.91-1.91%PD)

IF(N.LE.1.0) N=1,0

THETA=ARSINI(SQRT(1.0/N})

GAMMA=0.5
ALPHA=1,0/(¢2,0%N}%(1.,0-KC/KD}=»%2/(ALOG{KD/KC~
*  (KD/KC—-1.0}*COSITHETA))-(1.0-KC/KD}#*{1.0-COS{THETA)))
K1=sKC* (1. 04E% (1. 0~KC/KD)+GAMMA/ALPHA®(1.0-KC /KD ) ®%2%E)
KH=E XKE

SUMIL) = SUMIL} + {IK1-FXKE)/KH)%%2>
PLOTL(INDEX)=ALOG10(X1/KC)

C SHUMANN
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IF(PD.GE.0.5) GD FO 31
KE=KEXP
M=.2 ’
30 Y1l=ME(M+l.)*ALOG((l.4+M)/MI-MH=PD
FFLABS{Y1}.LT.,.0005)G0 TOD &0
YP=(2,0%M+1,0)SALOGI(1,Q¢#M)/N}=2.0
M=M=-Yl/YP
GO TO 30
31 M=}0000.
40 KZ2=KC*PD%%I+KC*{] ,~PD*#*I)SKD/ (KCo+ME(KC~-KD) }#( L O¢M*{ 1, 0+M)* [KC-KD)
€/ {KC+HME(KC—KD) ) SALOG{KC*{ 1.0¢M) /{M&EKD)))
PLOT2(INDEX)=ALOGIQ{K2/KC)
PRESTON
K3=1.,B5574%K2%%0,959
PLOT3(INDEX}=ALOGLO({KI/KG)
KRUPICZKA
Ka=KCx (KD/KCI&&(0,280-0.757*ALOGLO{(PD}=0.05T*ALOGLO(KD/KL))
PLOT4{ INDEX)=ALOGLO{K&/KC)
WRITE{6,y200) INDEXJEXKESKL,K2,KI, K4
200 FURMAT(/,25Xs[4,4X45({F10.9,6X))
BK1=((K1-EXKE)/EXKE}®100,
BK2={{K2-EXKt) /EXKE ) %100,
BK3= ((KI-EXKE)}/EXKE } %100,
BK&4={ {K4—EXKE) /EXKE}#*100.
KLOFF=ABS(BK])
K2UFF=ABS{BK2)
K30FF=ABS(BK3}
KGOFF=ABS(BK4)
SUMLBI=SUM]1BI+BK1
SUMZ2BI=SUMZ2BI+BK2
SUMIBI=SUM3BI+BK3
SUMGBI=SUM4BI+BK4
SCUKLER=KIOFF*%2
SQKZ2ER=KZOFF %2
SGKIER=KIUFF#%2
SUKGER=K&GOFF®%2
SUMSR1=SUMSQL+SUKLER
SUMSU2=SUMSQZ+SOK2ZER
SUMSO3I=SUMSGI+SUK3ER
SUMSUG=SUMSGa+SQK4ER
SUMK LE=SUMKLE+K1O0FF
SUMKZE=SUMKZ2E+K2UFF
SUMK3E=SUMK3E+K3UFF
SUMK4E=SUMK&4E+K4UFF
IF(INDEX.EQLLS) GO TO
IF(INDEX.EQ.28) GO TD
IF(INDEX.ERe42) GO TOD
[FINDEX.EJe56) GO TO

— et et it
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IF{INDEX.EQ.70)} GO TG 1
IF{INDEX.EQ.B4) GO 7O 1
IF{INDEX.EQ.98) GO TO 1
IF(INDEX.EG.112) GO TO
IF{INDEX.EQ.126) GO TO
IF(INDEX.EQ.140) GO YO
IF(INDEX.EQ.154) GO TO
[F(INDEX-EQ.lel GO TO
GO T2 o4 s T .
& BOCASE= FLOAT({NDEX} 2 T e
AVBI1=SUM1BI/BOCASE
AVBI 2=SUM2B1/B0CASE
AVHBI 3=SUM3BI/BOCASE
AVBI4=5UM4BI /BOCASE
T1ERAV=SUMKLE/BOCASE
T2ERAV=SUMK2E/BOCASE
T3ERAV=SUMK3E/BOCASE
T4ERAV=SUMK4E/BOCASE
T1ERVA=({SUMSQL/BOCASE)- T1ERAV*¢2)IIOOOO.
T2ERVA={ (SUMSQ2/BOCASE)}-TZ2ERAV*%2) /10000,
T3IERVA={ ({SUMSQ3/BOCASE}-T3ERAV*%2) /10000,
T4ERVA={(SUMSQ4/BOCASE }-T4ERAVE%2) /10000,
WRITE(6+573)AVBI1,AVBI2,AVBI3,AVvBI4, TLERAV, TZERAV,T3ERAV'T4&RAV.71
*ERVA,T2ERVA, T3ERVA, T4ERVA
573 FORMATI(3X,BFB.2,4F12.4)
GO TO 621
CALL ORIGIN(Z245¢3.5,1)
CALL GRAPH(173,Y4PLOT143y~T9~5e¢9=5092¢40¢92¢10.¢+XLAB,YLAR,GLAB,
EDATLAB)Y
CALL ORIGIN{8.540.91)
CALL GRAPH(173|Y'PLDT2'3""7|—5¢'_5&|20,0-'2.'0.'KLAB'YLAB.GLAB'
*DATLAB)
CALL ORIGIN(B8+5,04,1)
CALL GRAPH‘173'Y'pLDT3I3’_7'_5.’-6..2"0.'ZO’OD’XLAB'YLAB'GLAB.
*DATLAB)
CALL ORIGIN{B.5,0.,1)
CALL GRAPH[1731Y'PLOT"931"77"5- =5, 32-|0-|2o'Oo'XLAB!YLAB'GLAB’
*DATLAB)
CALL ORIGIN(Be%404y1)
621 CONTINUE
STOP
END

st P et
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THERMAL CONCUCTIVITIES PREDICTED BY FOLLOWING
MODELS O L. EQUATICON 6-16 2. EQUATION 6-17
3. EQUATION 6-i8 4. LICHTENECKER 13I-D
IMPLICIT REAL*8 (A-2)
INTEGER*4 1, INDEX
COMMCUN MUSIGMALKC,KD
DIMENSICN SUMCL0),PLOTL(LT73),PLOT2¢1T73),PLOTI(L73),PLCOTS4(L1T3),
*Y{173) 4 XLAB(S5) , YLAB{S),GLAB{5) 4DATLAB(S),PLOTS(173),PLOTE(173)
DATA SUM, INDEX/i0%0.0,0/
MU=0.499
PI=3.141592653589793
SIGMA=10.0CO
SUM4BI=0,
SuMsSRae=0Q,
READ(S5,190)XLAB,YLAB,GLAB,CAFLAB
FORMAT{20A4)
WRITELG6,10C)
FURMAT(lng///////f////f//'ZSXg'DATA'|ITX,'EFFECTIVE THERMAL CCNDU
$SCTIVITY (KCAL/M=~HR=K) X 100 ',//7225Xs 'CASE ' ¢1X ,
$' EXPERIMENTAL '4* EQUATICN 6-~16 *,¢ LEQUATION 6-17 'y
$' EGUATION 6-18 *,¢ LICHTENKER t,/)
READ[5|31&ND=6) KC,KD.PG,EXKE'CASE'CASEI'CASEZ
FCERMAT(4F10.5,4344)
INDEX=INDEX+1
YUINDEX)}=CLCGLO(EXKE/KC)
E=1.0-PD
IF{PC.GE-0.5} MU=0,51
EPSI=1.000-PD
X=5TGMA%*CSYRT(Z2.0D0)
FN1=X*¥DSQRT{PI)/2.0D0
[F(PE.LT.0.51GC TO 12
IF{PD.GT.0.5)GC TO 21
X1={ 1. 000-ML) /X
X2={0.0D0=-FL)/X
FN=FNL*{DERF{X1)~DERF(X2))
CALL DRG32(C.0D0y1.000,F,INTF)
Kcl=INTF/FN
NC 11 I=l46
CALL DOG32(0.00041.0N0,F1ANSKH)
Xi=(1.000-MU) /X :
X2={0.0D0=-ML) /X
FN=FNI#{DERFIXLI-CERF(X2))
BNSW=1.00-ANSW/FN
FFrIBNSKh.LELPD) GD TO 11
MU=MU+10.00C%*%(-1)
GO TO 54
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11 MU=MU-10.0C0%*(=1)

GO TO 7

21 D022 1I=146
9 CALL NQG32(0.0D0,1.0D04F1,ANSW)

22

X1=(1.000-MU)/X
X2={0.000-MLU)/X
FN=FNI1*{DERFIXL)-CERF{X2)})
ANSW=1.DO-ANSW/FN
IF(BNSW.GELPD) GD TO .22
MU=MU-10.0D0%%(~1)
GO 1O 9
MU=MU+10.0C0%*(~-1)
GO 70 7
KE2=FN/REMN
PLOTS{INDEX)=DLOG1O{KEL/KC)
PLOT6&(INDEX)=DLOGLOIKEZ2/KT)

RK = KND/KC
FO=DEXP(-2.4006+0,83611%DL0OG(RK)-0.0036959%DLOGIRK ) 2#2+412,426%PD

* ~16.278%PD%%2-3,0926%DLAGIRK)I%PD+0.0019151*DLOG(RK)*%3

* ~04034069*DLOG(RK) ¥%2%PD+3.3197#DLOG(RK}*pD %52

* +2.5768%PD%%x3)
FINF=DEXP(6.038+0,2B697*DLNGIRK}~0,0796330%DLOGIRK ) *%2~42,035%PD
* +94, 701 %PC*%2-0.91135*DLOG{RKI*PD+0,0029629%DLOG{RK } %3

-3

+0.0040281%DLOGIRK ) *%2%PD+0.BOBIT#DLOGIRK) ®*PLx%2
" —69.049%pPD%%3)
FW=1.5287+0.0642%59%DLOG{RK}-0.0064623%DLOGIRK ) *¥2-6,1759%EPSI

b H11.U59%EPST*%2+40.22176*%DLOGIRK)%#EPSTI+0.00015041%DLOGH{RK)
* F%3-0.0042453%DLOG(RK ) %% 2%EPST-0. L09TI#*DLOGI{RK}*EPST #%2
L% ~T.2252%EPS]%%3

[FIFW.GE.L1.0}FW=1.0
IF{FW.LE.Q.CIFW=0.0
K3=KEZ-FW*{KE2-KEl)
PLOT3(INDEX)=DLOGLIO(K3/KC)
K2=KE1%FC
PLOTZ2{INDcX)y=DLOGLO(K2/KC)
K1=KEZ*FINF
PLOTLI{INDEXY=DLOGLO(KL/KC)
LICHTENKER €0 _
K=1.9% (KD-KC) /({2 0%DSCRTIKD}I+DSQRTIKCIVI#[2.0%DSQRTI{KC}+
¥ DSCRT(KEC)))
KO=(KCER(PDR(LO-K*E) } )= (KO**(E*x{1.0+K2PD} )}
PLOTA&LINDEX)=DLAGLO(KEG/KC)
BEK4= ({K4—EXKE)Y /EXKE %100
K4UGFF=DABS LBK4)
SUMART=SUM4BI+K4
SUKLER=KAOFF»#*2
SUMSG4=SUMSG4+SUKALER
SUMK4E=SUMK4E+K4OFF
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GO TU 5
& BROCASE=FLOAT(INDEX)
AVBI4=5SUM4RI/BOCASE
T4ERAV=SUMK4E/BUCASE
T4ERVA={(SUMSQ4/BOCASE}-TA4ERAV*%2)/10000.
WRITE{G&,5TOYAVBI4, TA4ERAY ¢ T4ERVA
576 FORMAT(3X,3F20.5)
WRITE(6,20C) INDEXEXKE KL K2,K3 K4
200 FORMAT(/+25%314,4%,5(F10.5,46X))
WRITF(6,57T2)8K1,BK2,8BK3
572 FURMATU3Xy BK1=*,F7,2," BK2=%4FT7.24" BK3=',F7,.2])
WRITL(G6yST3)AVBIL2AVBIZ AVBI32TIERAV,, T2ERAV,TIERAV,T1ERVAT2ERVA,T
*¥3ILRVA
973 FORMAT{3X,9F12.4)
CALL ORIGIN{Z2.543.5,11)
CALL GRAPh[‘173|Y'PLUT1'3,‘71'5.’“50'2..0.'20100'XLA31YLAB'GLﬂB'
*DATLAR)
CoaLl ORIGIN{B.9,04.,1)
CALL GRAPH("I?‘}gY,PLOIZ' 3""7!—5- !’5. 12- 30-120 ’OcQXLAB|YLﬁB'GLAB.
*DATLAG)
CALL ORIGIN[BeSyal,1l)
CALL (,RAPH(—173,Y,PLUT3.3.—7.—5. "“'5. 025 lO.'Z.109'XLAB'YLAB'GLAB,
*DATLAR) :
CALL URIGIN(B.594101)
CALL GRAPH{-=173,Y4PLOT4434=74=529=9e222900924+0.¢XLAB,YLAB,GLAB,
*DATLAB)
CALL MRIGINIB8,S441+1)
STUP
(=8
DOUMLE PRECISIGN FUNCTION Fi{p)
IMBLICIT REAL%8 (A-7)
COMMUN ML ,STIGMALKC KD
F=DEXP(-C.BD0%{ (P=MU)/STGMA) 252 ) KCKC/(PE{KC-KD1+KD)
RETURN
END
NOUVBLE PRECISION FUNCTION F1I(P)
IMPLICTT REAL*8 (A-2)
COMMIEN ML,STGMA,KC,KC
FL=PRREXP(=0.5CU%L{P-MU)/SIGMA)2:%2)
ReTURN
£ND
QUUBLE PRECISION FUNCTION F2(P)
IMPLICITF REAL=8 (A=-2)
CUMMON MU, STGMA,KC,KD
F2=DEXPi-0.5%{ (P-MUY/SIGMA} %52} / (KC+KD-KC I %P)
RETURN
END
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THERMAL CONCUCTIVITY PREDICTED BY THE FOLLOWING
MODELSD 1. MAXWELL 2. RAYLEIGH 3. MEREDITH
AND TOBIAS 4. BRUGGEMAN
IMPLICIT REAL®4(A-Z)
INTEGER®4 I, INDEX
DIMENSION SUM(10),PLOT1(1733,PLOT2(173),PLOT3(173),PLOT4(173),
#Y(173),XLAB{5) ,YLAB(5) +GLAB{5),DATLABI5)
DATA SUM,INDEX/10%0.0,0/
SUMLBI=0.
SUM2B1=0.
SUM3B1=0.
SUM&BT=0.
SUMSG1=0.
SUMSQ2=0.
SUMSQ3=0.
SUMSQ4=0.
SUMK1F=0.
SUMK 2E=0.
SUMK 3E=0.
SUMK&E=0.
PI=3.14159
READ(5,5)XLAB, YLAB, GLAB,DATLAB
5 FORMAT(20A4)
1 WRITE(6,100C)
100 FORMATALHL e/ 7/ /17477727777 425X,SDATA® , 17X, VEFFECTIVE THERMAL.CCNDU
$SCTIVITY (KCAL/M=HR=K)} X 100 *,//y25X, 'CASE*,1X ,

$' EXPERIMENTAL %! MAXWELL ¢, RAYLEIGH ',
%" MEREDITH t,t BRUGGEMAN * /30X,

$0 ', ‘ ' |'| ',
% E TOBIAS L 1, /)

2 READ{543,eNC=6) KL, KDyPDyEXKE,CASE,CASEL,CASEZ
3 FORMAT(4F10.5,344).
INDEX=INDEX+1
Y{INDEX)=ALOGIO(EXKE/KC)
E=1.0-PD
MAXWELL EQ
KL=KC* (KD+2 0%KL—2,0%E*(KC—KD) ) /(KD+2. 0%KC+E* (KC-KD))
PLOTL{INDEX)=ALOGI0(KL1/KC)
RAYLEIGH EQ
RlI=(2.0%KC+KD) /(KLC-KD)
R2=(3.0%KC~3.0%KD1/(4.0%KC+3.,0%KD}
R3=10.0/3.0
K2=KC#{R1~2,0%E~0.525%R2¥E*%R3} /{R1+E-0.525%R22[%%R13)
PLOTZ2(INDEX)=ALOGLO(KZ/KC) -
MEREDITH & TOBIAS
K3=KC*{4,0%KC+20%KD-2 . 0%EX{KC~KDY) /{4 . 0%KC+ 2, O%KD+*{ KC=-KD) )
% ®{4,0%KC+2.0%KD-E*{4,0*%KC-KD) )/ (4.02KC+2., 0%KD-EA(KC+2.0%KD))
PLOT3{INDEX)=ALOG1QO(K3/KC)
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C BRUGGEMAN
KEFF=EXKE
10 Y1=(KEFF-KD)/({XC-KD)*(KC/KEFF)$&(1.,/3.)=PC
IF(ABSIY1}.LT..0005)G0 TO 20
YP=1 ./ (KC—KC)YR{KC/KEFF )22 (1a/3.)=()a/3)*(KEFF-KD)/(KC-KD}E{KC*% (]
¥o/3.) Y/ IKEFF%2{4,./3,.))
KEFF=KEFF=(Y1/YP)
GO 10 10
20 K4=KEFF
PLOT4(INDEX}=ALOGLO(K4/KC)
WRITE(6,200) INDEXJEXKE »KLK2,K39K4
200 FORMAT(/425X%X214,44%X,5(F10.5,6X})
BKLI=((KI-EXKE)FEXKEDI*100,
BK2={(K2-EXKE)/EXKE)*1CO,
BK3=((K3-EXKE) /EXKE)*]1CO0.
B4a={ (K4-EXKE)/EXKE) %100,
K10FF=ABS(BK1)
K2O0FF=ABS(BKZ)
K3UFF=ABS{BK3}
K4(OF F=AES{BK4)
SUMLBI=SUMIBI+BK1
SUMZBI=S5UMZBI+BK2
SUM3IBI=SUM3BI+BK3
S5UMGBI=SUM4BI+Ek4
SGKIER=K1OFF*%2
SGKZ2ER=K2CFF#*%x2
SERIER=KIOFF *%2
SQK4ER=K4OFF%%2
SUMSQL1=SUMSQ1+5QKI1ER
SUMSHZ=5UMEQ2+5QK2ER
SUMSQI=SUMSLI+SUKIER
SUMSQa=5UMSC4+SUKAER
SUMKIE=SUMKLE+K1UFF
SUMKZL=SUMKZ2E+KZALF
SUMK3E=SUNMKAE+K3UFF
SUMK&4F=SUMK&4E+K40OFF
GU 7O 2
6 BOCASE=FLUAT{INLEX)
AVHT 1=SUMLIBI/B0OCASE
AVBI2=5UMZBI/BOCASE
AVRI3=SUM3BI/B0CASE
AVBI 4=5UM4B] /80OCASE
TLERAV=SUMKLE/BOCASE
TZERAV=SUMKZE/BOCASE
F3ERAV=S5UMK3E/BUCASE
T4ERAV=SUMK4E/BOCASE
TILRVA={ (SUMSQL/BCCASE)-TIERAV*%2)/1CCGO.
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T2ERVA={ (SUMSQ2/BOCASE)-T2ERAV*%*2}/10000.
TAERVA={{SUMSQ3/BOCASE)-T3ERAV*%2)/10000.
I#ERVA-({SUFSQ4IBUCASE)—T4ERAV#*2)/10000-
WRITE(E,5731AVBI 1 AVBIZ,AVBI3,AVBI 4, T1ERAV,T2ERAV s T3ERAV,TA4ERAV,T]
XERVA ,T2ERVA, TIERVA, T4ERVA

573 FORMAT(3Xs8FBa2,4F12.4)

GO TO 621

CALL ORIGIN{2.543.5+1)

CALL GRAPH(l?3gY|PLOT1,3|—7""5a.‘5&92.:0o'2.yO-,XLAB.YLAB,GLAB,
®DATLAB)

CALL ORIGIN{8.5,04+1)

CALL ()RAPH‘173'Y1PLDT2'3!"7|"5.|_5-'20’0-'2-|0¢'XLAB YLAB GLAF’
¥DATLASB)

CALL ORIGIN{B845404y1l)

CALL GRAPH(LT3,Y, PL0T3,3'—7'-5.,-5.,2.,0.12.,0..XLAB YLAB,GLAR,
*DATLAB)

CALL ORIGIN(B.540.41)

CALL GRAPH{L173,YsPL0T413y-73-5e1=5412+90e92490.4XLAB,YLAB,GLAR,
*DATLAB)

CALL ORIGIN{8.540.41)

621 CONTINUE
STOP
END
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THZAL ZINDUSTIVITIES SA.>JLATED 3¢ TH=

SJLDAING M3DEUS 1. NILHZLM ET &L 2. LIo4-

F2NZZ<2 2-D 3. <ANA3ER

IM2_121T REALESG(A-7)

[NT=322%5 I, T922X

JIMINSIIN SINCLI) 9 PLIT(LT2) ¥ (LT2) ¢ XLABIS)oYLA3(5) yGLABIS5),DATLABY

3042 0T1(0072),2L0T2(172),PLIT3(172)

JATA SUM,INIEX/10#%2.2,0/
SJ\‘I311=3-
5J313=3,
5J4531=2.
5JM532=).
3J45231=)2,
5JMC1z=1,
5JM¢C2z=),
5JMC3s =),

PI=3.14%139
1ZAI(5,5)KLA3, Y _AB,3.43,04AT.A3
SIAMAT(20A4)

Re A3, 3,2ND2=3) oDy PIy ZKKEYZASE,ZASEL,245E2
SJ34AT (471043, 344}

INDZK=INDEX+]

TUINDIZX)=ALDSLD1ZXLE/<2)

z=1.3-2)

dal 4z =T AL

[#022.52.0.5) 32 T2 31

4= ,2

Fl=ME(Mel )24 _J5({1.¥M}/M)-M=-P)

TFEA3SIYL)WLT. 2009130 T 4D
'f)-'-(2.)*‘1*1.3)*&-33((1-3“\4}/“)"203

Mzv-¥] /Y2

21 T2 3

1=1133J).,
(T=(:*33**3+(:*fl.-“)“*3)*(J/((:*“*[(:-()’l*(l.)*“*(I-U*Ml*((:-KD)

“OOKCHEME{ (=KD Y RALIG(KCEI 1. 0+M)/ (MEKD) })

<3={13.**.859)*(lO-**!3.12*[KD/(103.*360.*PJ!)’)*.0036
£1=120,%<B+K7

PLITLOINDEX)Y=ALD510(€1/K2)

LIZ2ATENEZKER

C2a(K2FxID) (K Jkat)

FLIT20INIEXY=A_035120¢2/43)

CANAGER

N=ll.5%2

A=¢)-<.

(3= (NEEE(TEC)) /U260 )5 (L 0L(KI/8)V %A _IS3{<D/K2) =14
PUOT3INDEX)=A_0512¢(43/4<2) '
ICL=(UCL=EXXE)FoXKZI®1D).
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3¢2=((C2-EXCE)/EXCE)&LOD,
3¢3=(((3-2XK3)/2XC2)&LDD,
C123-==A3S(BK1}
(21=F=ABS{BK?2}
€3J)3F=435(8¢3)
3J4131=5J9181+3<1
544231=5J4231+3¢2
5JM331=5J1381+3<3
SACLEA=CLIFF%K2
3I4223=K2DFF k2
$ICIZT={3DFFaE -
3IM3L=5JMS1#52<1z2R
5JM332=5JM522F52¢2521
$5J4523=25)9SQ3+59<3:R
SIMCLZ=S JMK1 2k <L IJFF
3IMC22=5 M2 62 IFF
S3IMC3IZS=5IMKI S (3IFF
WAITZ(54223) 18D X,5%X€2,8¢L,342,+3¢3
233 TIIMATU3K,'CASZ=¢,13,! EXCE=*,F1).5," JZFL=t,FT.2," IFF2=1,F
“?-Zl' JFF3=.'F7-2) .
3 1y 2 '
5 3J2ASZ=F_JAT({INDZX)
Av3I1=5JM1BI/3D2452
AV3[2=3)M28173]2ASE
AV3I3=3J43B1/7/3)245%3
FL23AV=5JMKLZ/3DCASC
T223Av=5J4K2273D2AS8=
T323AV=5IMK3=/33A5¢
F133/A=T123vA
FLZAvA={(SJMSAL/ADICASTI-TLEAAVEE2)/1000).
F2Z3vA=((SJMSI2/3ICA52)-T2-AV%%2)/71000).
T3ZAvA=((SUMSI3/BICA52)-T3E2AVEE2)/1000)D.,
ARITE(H,573)80311,Ay312,AV313,TIEAIAV,T2EAAVT3ERAV,TIERVA,T2ERVA,T
€3ICIVA '
573 ZJAIMAT(3IX,6F1I.2,3F1%.4)
3122
IND

e



