AUBURN UNIVERSITY

THERMAL CONDUCTIVITY OF HETEROGENEOUS MIXTURES
 AND
 LUNAR SOILS

Final Report
Contract NAS8-26579
by
R. I. Vachon, A. G. Prakouras, R. Crane, and M. S. Khader
School of Engineering
Department of Mechanical Engineering Thermoscience Group
Under Contract With
George C. Marshall Space Flight Center National Aeronautics \& Space Administration

Administered Through
ENGINEERING EXPERIMENT STATION
Auburn University
Auburn, Alabama 36830

October, 1973
Page
FOREWORD xii
ABSTRACT xiii
NOMENCLATURE XV
CHAPTER I. INTRODUCTION AND OUTLINE OF REPORT 1
CHAPTER II. BACKGROUND 11
Flux Law Mode 1 11
Ohm's Law Model 18
Uniform Heat Flux Model 23
CHAPTER III. COMPARISON OF PUBLISHED MODELS AND CRITIQUE 38
CHAPTER IV. CHARACTERISTICS OF PROBABILISTIC MODELS 63
Ohm's Law Model-Parallel 65
Ohm's Law Model-Uniform Heat Flux 71
Comparison of the Ohm's Law Models 75
CHAPTER V. PARALLEL ISOTHERMS MODEL 80
Results 82
CHAPTER VI . STOCHSTIC MODEL 86
Development of an Effective Conductivity Correlation 94
Comparison of Available Heat Transfer Models 102
CHAPTER VII. MODEL BASED ON NON-LINEAR HEAT FLOW SYSTEM SYNTHESIS 194
Determination of the Average Working Thermal Conductivities 197
Determination of the Actual Temperature Distribution 199
Determination of the Heat Flows and the Effective Thermal Conductivity 204
Comparison of Calculated Effective Conductivity to Experimental Data 207

TABLE OF CONTENTS (Continued)

Page
CHAPTER VIII. LUNAR MODEL 242
Introduction 242
Mathematical Model 243
Conduction Through and Between Solids 245
Radiation Between Surfaces 249
Effective Thermal Conductivity 251
Application of the Model 253
CHAPTER IX. GENERAL COMPARISON AND DISCUSSION 266
CHAPTER X. CONCLUSIONS AND RECOMMENDATIONS 280
REFERENCES 291
BIBLIOGRAPHY 301
APPENDIX A. LOW PRESSURE EFFECTS 304
APPENDIX B. RADIATION HEAT TRANSFER IN GRANULAR MATERIALS 310
APPENDIX C. CONTACT RESISTANCE 322
APPENDIX D. EFFECTIVE PORE SIZE 327
APPENDIX E. COORDINATION NUMBER 322
APPENDIX F. PACKING THEORY 336
APPENDIX G. FORTRAN IV COMPUTER PROGRAMS 339

LIST OF ILLUSTRATIONS

Figure Title Page
2-1. Uniform Heat Flux Models 19
2-2. Parallel Isotherms Models 19
2-3. Cubic Lattice Representation of Granular Material 22
2-4. Parallelopiped Representation of Granular Material 25
2-5. Equivalent Geometries For Linear Isotherms 35
Comparison of Experimental Results with Calculated Conductivity for the Maxwell Equation 43
Comparison of Experimental Results with Calculated Conductivity for the Lord Rayleigh Equation 44
Comparison of Experimental Results With
Calculated Conductivity for the Meridith And Tobias Equation 45
Comparison of Experimental Results With Calculated Conductivity for the Bruggeman Equation 46
Comparison of Experimental Results With Calculated Conductivity for the Son Frey Equation 47
Comparison of Experimental Results With Calculated Conductivity for the Woodside and Messmer Equation 48
Comparison of Experimental Results With Calculated Conductivity for the Kanager Equation 49
Comparison of Experimental Results With Calculated Conductivity for the Goring and Churchill Equation 50
Comparison of Experimental Results With
Calculated Conductivity for the Willhite, Kunii and Smith Equation 51

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
3-10.	Comparison of Experimental Results With Calculated Conductivity for the Schumann and Voss Equation	52
3-11.	Comparison of Experimental Results With Calculated Conductivity for the Preston Equation	53
3-12.	Comparison of Experimental Results With Calculated Conductivity for the Wilhelm et al Equation	54
3-13.	Comparison of Experimental Results With Calculated Conductivity for the Krupiczka Equation	55
3-14.	Comparison of Experimental Results With Calculated Conductivity for the Ressell Equation	56
3-15.	Comparison of Experimental Results With Calculated Conductivity for The Burnstein Equation	57
3-16.	Comparison of Experimental Results With Calculated Conductivity for the Woodside Equation	58
3-17.	Comparison of Experimental Results With Calculated Conductivity for the Lichtenecker 3-D Equation	59
3-18.	Comparison of Experimental Results With Calculated Conductivity for the Lichtenecker 2-D Equation	60
4-1.	Ohm's Model-Linear Isotherms	66
4-2.	Equivalent Geometries for Uniform Flux	74
4-3.	Comparison of Bounding Conductivities With Experimental Data for a Porosity of 0.42.	77
4-4.	Comparison of Bounding Conductivities With Experimental Data For a Porosity of 0.38	78
5-1.	Comparison of Experimental and Model Predicted Thermal Conductivities	84

Figure Title Page
5-2. Comparison Between Model Predicted and Experimental Thermal Conductivities For Basalt in Simulated Lunar Environment. 85
6-1. Bounding Equations for a Cubic Array of Spheres 87
6-2.
Equivalent Geometries For Uniform Heat Flux 90
6-3. Effect of Standard deviation in Area Fraction Upon Effective Conductivity 95
Comparison of Bounding Conductivities With Experimental Data for a Porosity of 0.31. 96
Comparison of Bounding Conductivities With Experimental Data for a Porosity of 0.43 97
6-6. Comparison of Bounding Conductivities With Experimental DAta for a Porosity of 0.58 98
6-7. Comparison of Experimental Results With Calculated Conductivity for Equation 5-2. 190
6-8. Comparison of Experimental Results With
Calculated Conductivity for Equation 6-16. 191
6-10.7-1.
6-9.
6-9. Comparison of Experimental Results With Conductivity for Equation 6-17. 192
7-2. Heat Balance Basic Nodal Orientation. 201Comparison of Experimental Results WithCalculated Conductivity for Equation 6-18.193
7-3. Heat Conducted Through Grains and Tra
ferred By Conduction and Radiation at Boundaries 2067-4.Equivalent Geometries for Unit Cube196
Comparison of Experimental and Model Predicted Thermal Conductivities 235
7-5.Experimental and Calculated Conductivityof Particulate Basalt in Simulated LunarEnvironment236

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
7-6. Experimental and Calculated Conductivity of Particulate Basalt in Simulated Martian Environment 237
Experimental and Calculated Thermal Conduct- ivity of Particulate Glass in Simulated Lunar Environment 238
7-8. Experimental and Calculated Thermal Conduct- ivity of Particulate Basalt in Air 239
Experimental and Calculated Thermal Conduct- ivity of Lead Shot in Air 240
Experimental and Calculated Thermal Conduct- ivity of Glass Beads in Air 241
Possible Modes of Heat Transfer in Lunar Soil 244
Model For the Study of Thermal Conductivity of Lunar Soil 246
Different Arrangements of Six Particles of Two Different Sizes 257
Thermal Conductivity of Apollo 12 Fines Compar- ed with The Theory at a Density of $1.3 \mathrm{GR} / \mathrm{cm}^{3}$ 259
8-5. Thermal Conductivity of Apollo 11 Fines Compar- ed with the Theory at a Density of $1.265 \mathrm{GR} / \mathrm{Cm}^{3}$ 260
8-6.Lunar Conductivity as a Function of Depth atConstant Temperature and Density262
8-7.8-8.
10-1.10-2. Flow Chart For An Approximate Calculation of theEffective Conductivity of Granular Materials290
A-1.
Pressure Dependence of Effective ThermalConductivity304

LIST OF ILLUSTRATIONS (Concluded)

Figure Title Page
A-2. Effect of Pressure On The Thermal Conduct- ivity of CO_{2}. 309
B-1. Comparative Values of Kr 320
B-2. Comparative Values of Kr For An Aluminum Oxide Bed 321
D-1. Equivalent Pore Size of Granular Materials 331
E-1. Co-ordination Number 335

LIST OF TABLES

Table	Title	Page
3-1	Average Error, Average Bias and Error Variance of Calculated Thermal Conductivity at Atmospheric Pressure Based on Selected Models	61
6-1	Comparison of Bounding Conductivities to Experimental Conductivities	108
6-II	Comparison of Selected Flux Law Models	124
6-III	Comparison of Selected Uniform Heat Flux Models	137
6-IV	Comparison of Selected Uniform Heat Flux Models	150
$6-V$	Comparison of Selected Parallel Isotherms Models	163
$6-\mathrm{VI}$	Comparison of Selected Weighted Ohm's Law Models	176
6-VII	Dimensionless Variance of Calculated Thermal Conductivity Based on Selected Models	189
7-1	Comparison of Calculated Conductivities to Experimental Conductivities	214
7-II	Experimental and Predicted Thermal Conductivities for Various Models	223
7-III	Experimental and Predicted Thermal Conductivities for Various Models	225
7-IV	Percentage Error Between Predicted and Experimental Thermal Conductivities	227
7-V	Percentage Error Between Predicted and Experimental Thermal Conductivities	229
7-VI	Average Error, Bias and Variance Between Predicted and Experimental Themal Conductivities	231
7-VII	Conductivity of Particulate Basalt in Simulated Lunar Environment	232
7-VIII	Average Error, Bias and Variance Between Predicted and Experimental Thermal Conductivities	233

LIST OF TABLES (continued)

Table	Title	Page
7-IX	Mechanical Properties and Density of Solid Materials	234
8-I	Comparison of Major and Minor Elements of Apollo 12 Samples and Terrestrial Basalt	254
9-II	Average Error, Average Bias and Error Variance Between Predicted and Experi- mental Thermal Conductivity Values for All Models of This Study	276
	Average Error, Average Bias and Error Variance Between Predicted and Experi- mental Thermal Conductivity Values for Granular Material at Atmospheric Pressure (Table 6-I)	278

This document is the final report for Contract NAS8-26579, "Thermal Conductivity of Heterogeneous Mixtures and Lunar Soils." The work was performed by R. I. Vachon, A. G. Prakouras, R. A. Crane and M. S. Khader of Auburn University, Department of Mechanical Engineering, for the National Aeronautics and Space Administration, George C. Marshall Space Flight Center. The period of performance of this study was from October 1970 to October 1973.

ABSTRACT

The heat transport properties of the lunar soil are important in determining the thermal response of the lunar surface. This information leads toward a wider understanding of the nature of the moon and ultimately of the universe itself. The study to be described in this report concerns itself only with one aspect of the greater problem; the theoretical evaluation of the effective thermal conductivity of granular materials. The basic approarch has been entirely analytical as others have previously undertaken direct heat transfer measurements. This work supplements the experimental results of the thermal probe on the Apollo 17 mission as well as the experiments performed on lunar samples which have been returned from previous Apollo missions. Moreover the results are intended as an aid in future evaluation of the extensive scientific data from both the manned and unmanned exploratory probes. The basic formulation is intended to be as general as possible; this allows application of the final results not only to terrestial bodies which are yet to be explored but also to a wide range of non-space related technological applications. These include such diverse engineering applications as nuclear power generation, petroleum production, food processing, chemical production, underground energy transmission and thermal insulation design. In addition
analogous diffusion type problems are met in work concerning magnetism, electricity and hydrodynamics.

NOMENCLATURE

A. Roman Alphabet

A	Cross-sectional area	m^{2}
$\overline{\mathrm{a}}(\mathrm{T})$	Rosseland mean absorption coefficient	m^{-1}
B	$\left[k_{d} / C\left(k_{c}-k_{d}\right)\right]$	
C	Geometrical constant	
d	Particle diameter	m
0	One dimensional solid fraction	m
D_{a}	Lower truncation point of granules	m
D_{b}	Upper truncation point of granules	m
D_{p}	Effective pore size	m
$\left(D_{p}\right)_{c}$	Effective pore size for conduction	m
$\left(D_{p}\right)_{h}$	Hydraulic diameter	m
e	Emissivity	
E	Young's modulus	N / m^{2}
F	Ratio of constituent temperature gradients	
F_{1}	Force between particles	N
F_{0}	k_{e} / k_{0}	

F_{w}	$\left(k_{e}-k_{\infty}\right) /\left(k_{0}-k_{\infty}\right)$	
F_{∞}	k_{e} / k_{∞}	
f	Frequency function	
f_{i}	Depolarization factor	
g	Gravitational acceleration	$\mathrm{m} / \mathrm{sec}^{2}$
g^{*}	Temperature jump distance	m
h_{r}	Coefficient associated with surface microroughness	
k	Wiener's constant	
${ }^{\text {c }}$	Conductivity of continuous phase	$\mathrm{kcal} / \mathrm{m}-\mathrm{hr}-{ }^{\circ} \mathrm{K}$
${ }^{k_{c}}$	Contact conductivity	$\mathrm{kcal} / \mathrm{m}-\mathrm{hr}-{ }^{\circ} \mathrm{K}$
k_{d}	Conductivity of discontinuous phase	kcal/m-hr- ${ }^{\circ} \mathrm{K}$
k_{e}	Effective conductivity	kcal/m-hr- ${ }^{\circ} \mathrm{K}$
k_{g}	Conductivity of gaseous phase	kcal/m-hr- ${ }^{\circ} \mathrm{K}$
kg^{*}	Conductivity of gaseous phase at reduced pressures	$\mathrm{kcal} / \mathrm{m}-\mathrm{hr}-{ }^{\circ} \mathrm{K}$
k_{k}	Coefficient associated with microgaps at contact areas	
k_{r}	Radiant conductivity	$\mathrm{kcal} / \mathrm{m}-\mathrm{hr}-{ }^{\circ} \mathrm{K}$
k_{5}	Conductivity of solid phase	$\mathrm{kcal} / \mathrm{m}-\mathrm{hr}-{ }^{\circ} \mathrm{K}$
$\mathrm{k}_{\mathrm{c}_{0}}$	Effective conductivity for uniform heat flux	$\mathrm{kcal} / \mathrm{m}-\mathrm{hr}-{ }^{\circ} \mathrm{K}$
$k_{e_{p}}$	Wiener's parallel phase effective conductivity	$\mathrm{kcal} / \mathrm{m}-\mathrm{hr}-{ }^{\circ} \mathrm{K}$

$k_{e_{s}}$	Wiener's series phase effective conductivity	kcal/m-hr- ${ }^{\circ} \mathrm{K}$
${ }^{k^{\text {c }}}$	Effective conductivity for parallel isotherms	kcal/m-hr- ${ }^{\circ} \mathrm{K}$
Kn	Knudsen number	
m	Hamilton's shape factor	
M	Measure of sample size	
n	Coordination number	
N	Grid Size	
N_{c}	Number of contact points per unit volume	
p	Pressure	N / m^{2}
pij	Pressure tensor	$\mathrm{N} / \mathrm{m}^{2}$
P_{b}	Breakaway pressure	N / m^{2}
P	Volume fraction of continuous phase (porosity)	
P_{7}	One dimensional solid fraction	
Pr	Prandtl number	
Q	Total heat transfer	kcal/hr
${ }^{9} r$	Radiation heat flux	$\mathrm{kcal} / \mathrm{hr}-\mathrm{ft}^{2}$
r	Sphere radius	m
r_{c}	Contact area radius	m
R_{C}	Contact resistance	hr- ${ }^{\circ} \mathrm{K} / \mathrm{kcal}$
\bar{R}_{c}	Total conduction thermal resistance	hr- ${ }^{\circ} \mathrm{K} / \mathrm{kcal}$
R_{e}	Effective buik resistance	hr- ${ }^{\circ} \mathrm{K} / \mathrm{kcal}$

R_{i}	Effective element resistance	hr- ${ }^{\circ} \mathrm{K} / \mathrm{kcal}$
R_{L}	Resistance to heat flow due to contraction of heat flow lines	$h r-{ }^{\circ} \mathrm{K} / \mathrm{kcal}$
R_{0}	Resistance due to oxidizing film	hr- ${ }^{\circ} \mathrm{K} / \mathrm{kca} 1$
R_{s}	Resistance of solid sphere with two contact areas	$\mathrm{hr}-{ }^{\circ} \mathrm{K} / \mathrm{kcal}$
$\mathrm{R}_{\mathrm{s}_{\mathrm{p}}}$	Resistance due to microroughness of solid particles	$\mathrm{hr}-{ }^{\circ} \mathrm{K} / \mathrm{kcal}$
R_{7}	Solid particle thermal resistance	hr- ${ }^{\circ} \mathrm{K} / \mathrm{Kcal}$
S	Molecular diameter	m
S	Two-dimensional solid fraction	
T	Temperature	
w	Overrelaxation factor	
x	Sample dimension	m
x_{0}	Radius of deformed particle	m
V_{h}	Mean void equivalent hole volume	m^{3}
z	Depth below the surface	m
	B. Greek Alphabet	
α	Thermal accommodation coefficient	
${ }^{\delta} \mathfrak{i}_{j}$	Kronecker delta	
ε	Local solid fraction	
$\bar{\varepsilon}$	Bulk solid fraction	
λ	Molecular mean free path	m
$\bar{\lambda}$	Effective molecular mean free path	m
μ	Mode of solid or void fraction	
${ }^{\mu}$	Mode of one-dimensional solid fraction	

v	Poisson's ratio	
ρ	Density	$\mathrm{kgr} / \mathrm{m}^{3}$
ρ_{∞}	Solid material density	$\mathrm{kgr} / \mathrm{m}^{3}$
ρ_{0}	Surface material density	$\mathrm{kgr} / \mathrm{m}^{3}$
σ	Standard deviation of solid or void fraction	
σ_{1}	Standard deviation of one-dimensional solid fraction	
σ_{b}	Stefan-Boltzman constant	$\mathrm{kcal} / \mathrm{m}^{2}-{ }^{\circ} \mathrm{K}^{4}$

I. INTRODUCTION AND OUTLINE OF REPORT

Considerable effort has been expended over the past sixty years to find means of calculating the effective thermal conductivity of heterogeneous mixtures from the conductivities of the individual components [1-128], Interests in developing tecfiniques for such calculations have been motivated by the widespread applications of heteror geneous mixtures in such diverse fields as nuclear power generation [21], food processing [76], chemical industry [75], process equipment design [37], geology [23], petroleum production [36], thermal insulation design [26], cryogenics [60] and foundary work [58].

About three years ago researchers at the Marshall Space Flight Center in Huntsville were working on the development of a thermophysical model of the lunar surface. During the course of this development it was found that a method of predicting the effective thermal conductivity of the lunar soil was required. A review of the available literature indicated that application of the proposed correlations to the case of lunar solls resulted in considerable error between analytical and experimental values. As a result, a study was undertaken at Auburn University to determine the causes of failure and develop new correlations. The scope of this study is to extend or develop analytical

[^0]techniques of predicting the constant thermal conductivity of heterogeneous mixtures and include methods for the prediction of variable thermal conductivity. The techniques developed in this report are as generally applicable as possible, but specific enough for the analytical results to be compared with experimental data for many classes of heterogeneous mixtures, and in particular with the experimental results on basalt powders under vacuum conditions.

The term heterogeneous mixtures encompasses a large number of sinqle-phase, two-phase or multi-phase physical systems, an excellent classification of which is given in [70]. The common characteristics of all these systems, with respect to the conduction of heat, is the thermal conductivity and volume fraction of each individual phase. Apart from these characteristics, the conduction of heat in heterogeneous mixtures in general depends on the following parameters.

1. Particle shape and size distribution;
2. Pore shape and size distribution;
3. Coordination number;
4. Contact resistance.

Obviously, all parameters do not enter the problem for each class of heterogeneous mixures. For example, in the determination of the effective thermal conductivity of emulsions and suspensions the last three parameters are not relevant. The relevant parameters in each case can be determined by considering the modes in which heat is transferred through the mixture. It has been generally agreed by the investiqators that the transfer of energy occurs by three mechanisms $[29,30,32]$.

1. Through the voids by conduction, convection and radiation;
2. Through a series path consisting of an effective solid-path length and void-path lenath;
3. Through the solid phase, the eneray flowing from one particle to the next through the area of contact.

The extent to which each mechanism influences the overall heat transfer process depends on the geometry of the system under consideration, together with the environment the heterogeneous mixture is subjected to, as defined by temperature, pressure, and mechanical loading conditions.

The effective thermal conductivity of a heterogeneous mixture may be defined as the ratio of the overall heat flux to the overall temperature aradient. This approach requires that the material be treated as a continuous single phase so that the temperature distribution predicted by such a model coincides with that of the physical system only "in the large" [4]. This concept has proven to be a very effective tool in predicting the transfer of heat through heterogeneous systems, the dimensions of which are much larger than the dimensions of the individual components.

Construction of a model that represents reasonably well heterogeneous materials has proved to be a difficult problem. Calculation of the effective conductivity of this model has proved to be equally complex. The difficulty does not arise from ignorance of the fundamental laws involved but from complications in applying them [20]. A detailed solution of the conduction problem would require knowledge of the shape, size, location and conductivity of each particle in the system, together with the interactions between particles. Furthermore, a complicated numerical method of solution would be required.

To overcome these difficulties, investigators have generally followed two methods of approach.

1. A basic repeated structural unit that represents reasonably well the heterogeneous mixture has been isolated, and equations have been derived from special geometries of this unit cell based on the assumption that heat flows in straicht lines, normal to parallel isothermal planes.
2. Based on the assumption of a reaular or random distribution of spherical particles in such small concentrations that there is no field interaction, the temperature distribution in the system is determined. Subsequently, the effective thermal conductivity of the system is evaluated from the Fourier-Biot law.

In this study both methods have been analyzed and refined, so that they can be applied to many classes of heterogeneous mixtures, over a wide range of pressures and temperatures. In the proposed developments, consideration will be primarily directed to two-phase granular systems and powders for which the following assumptions are valid.

1. The thermal properties of the constituents are both homogeneous and isotropic;
2. All samples are large in comparison with individual particle size;
3. All samples contain a sufficient number of particles so that they can be considered typical of the selected packing;
4. The convective component of heat transfer is sufficiently small to be nealected.

The first three assumptions are consistent with the concept of the effective thermal conductivity of granular materials, and permit one to extend the results obtained from the analysis of a unit cube of the material to the packing as a whole. The fourth assumption is based on the studies of Waddams [6] and Wilhelm et al [37] who concluded that natural convection is negligible for pressures below 10 atmospheres, and
particle diameters less than 3 to 6 mm . Consequently for most granular materials and powders the transfer of heat by natural convection is negligibly small.

In Chapter 2 of this report the background information, consisting of prominent models proposed in the literature, is presented. The available heat transfer models for heterogeneous systems are classified as being either flux law models or Ohm's law models. The Ohm's law models are further classified according to the heat flow assumptions as being either uniform heat flux models or parallel isotherms models.

In Chapter 3 several representative models have been applied to 172 granular materials, and the calculated values have been compared to experimental results. The comparisons are presented in a graphical form. A careful analysis of Figures 3-1 through 3-17 indicates that the discrepancy between the analytical models and the physical granular systems can be attributed to one of the following causes.

1. Failure to account for finite particle contact area;
2. Faflure to utilize a realistic qeometry, or a realistic distribution of the two phases;
3. Idealized heat flow assumptions.

As a result of this analysis, the aim of this study has been focused on an attempt to develop models in which the above three sources of error are partially or totally eliminated.

The effect of the uniform heat flux and parallel isotherms assumptions on the predicted thermal conductivity of randomly packed granular systems has been investigated in Chapter 4. Special attention has been
directed to the idealized heat flow assumptions, because the possibility of utilizing either one simplifies considerably the problem. However, application of the uniform heat flux assumption to a physically realistic probabilistic model results in calculated effective conductivities that are too low, whereas application of the parallel isotherms assumption results in calculated effective conductivities that are too high. The reason for such behavior is that infinite and zero conductivities in the normal to the heat flow direction are associated with the parallel isotherms and uniform heat flux assumptions respectively.

In Chapter 5 a parallel isotherms probabilistic model has been developed. This model is based upon an extension of concepts originally proposed by Tsao [8], on the basis of which the effective thermal conductivity can be expressed in terms of the mode, μ, and the standard deviation, σ, of the one dimensional porosity as introduced by Tsao. The mode, μ, has been approximated by the bulk porosity of the granular system, and the standard deviation, o, has been correlated to the solid volume fraction only, on the basis of experimental evidence. The resulting equation has been used to determine the effective thermal conductivity of packed beds with solid fractions between 0.30 and 0.70 .

The same basic concepts have been applied in the development of the stochastic model of Chapter 6. Noting that the effective conductivity tends to reach a fixed value for o sufficiently large, limiting expressions have been developed for the effective thermal conductivity utilizing both the parallel isotherms and the uniform heat flux assumptions.

Then, rather than assuming both an unrealistic heat flow model and a distorted distribution, an experimentally derived correlation factor has been obtained for each of the limiting expressions. In addition, an experimentally derived weighting factor has been obtained relating both limiting expressions to experimental data.

In Chapter 7, the packing characteristics of random heterogeneous mixtures have been utilized to define the phase distribution in a unit cube of a granular material, by extending the digital simulation technique originally proposed by Baxley and Couper [20]. The temperature distribution in the unit cube was then determined assuming both threedimensional heat transfer, potential field interaction, and contact resistance between particles. Finally, the effective thermal conductivity of the material was determined by summing heat flows in the direction of the mean heat flow only.

All models discussed up to this point are generally applicable to granular materials at interstitial gas pressures ranging from atmospheric to vacuum. In particular, for a vacuum environment, the basic modes of heat transfer are conduction through the granules and contact areas, and radiation. This situation is analyzed in Chapter 8 on the basis of a parallel isotherms model consisting of an array of spheres. The effect of changes in bulk density and mechanical loading with depth are included, and compared to experimental data on lunar fines.

In Chapters 9 and 10 the results obtained by all models are compared and evaluated with respect to the simplifying assumptions introduced in each model. Moreover, recommendations are made concerning
the extent of the applicability of each model and the areas where more work is required in order to improve the dependability of the predicted effective thermal conductivity values.

The dependence of the effective thermal conductivity on pressure and temperature, at reduced interstitial gas pressures, has been generally recognized and treated extensively in the literature. Reduction of pressure to extremely low values decreases the effective thermal conductivity of the system by one or more orders of magnitude [62]. This has been attributed to the decrease of the apparent gas conductivity when the mean free path of the gas molecules is of the same order of magnitude or larger than the effective pore size, as indicated in Appendix A. Also, at very low pressures, experimental evidence shows that the effective thermal conductivity of the system is very sensitive to temperature changes [3], indicating that radiative heat transfer between particle surfaces is a controlling factor. The aspects of radiation heat transfer are treated in Appendix B.

In the case of heat flow in granular svstems "in vacuo", the convergence of the heat flux lines to the contact areas between particles is characterized by the contact resistance, as indicated in Appendix C.

It is evident that for the development of an accurate model for the prediction of the conductivity of granular systems, the geometry of the model should rely heavily on the characteristics of packed beds. A short review of the advances in packing theory is presented in Appendix F. Two of the characteristics of packed beds are of paricuiar
importance to the heat transfer problem. These are the effective pore size and the coordination number, and are treated separately in Appendices D and E respectively.

In summary, the content and results of this report are as fodlows:

1. A critical review and classification of previously published models is presented together with a review of the parameters associated with the flow of heat through granular systems;
2. Previously published models have been compared to a large number of experimental data, the results have been evaluated with respect to the basic assumptions introduced in the development of each model, and the causes of failure have been summarized;
3. A theoretical development is presented about the effect that the assumptions of uniform heat flux and parallel isotherms have on the calculated effective thermal conductivity, and the theory has been substantiated by experimental evidence;
4. Four new models based on recent results of packing theory have been developed, and have been successfully applied to granular materials for a pressure range from atmospheric to vacuum;
5. The sources of error for all models have been analyzed and related to the geometry and modes of heat transfer;
6. Detailed recommendations with respect to the geometric parameters required for the description of a generalized physically realistic model have been presented;
7. The results of all models have been utilized in the construction of a recommended physically realistic model, which cannot be analyzed
at present due to lack of experimental data required for the determination of a number of the parameters.

11. BACKGROUND

Because of the broad occurence of systems involving heat transfer in granular materials, considerable attention has been given to the formulation of a model to allow the prediction of the effective thermal conductivity. Unfortunately, the complexity of the mechanisms contributing toward heat flow is such that no truly satisfactory model has been obtained. The continued proliferation of alternate models attests to these difficulties. Nevertheless progress has been made in developing a representative model and it is now possible to determine the effective thermal conductivity of systems whose constituent conductivities are of similar magnitudes.

Available heat transfer models for heterogeneous systems are generally classified as being either flux-law models or Ohm's law models. The flux law model appears to have received the earliest attention and will be discussed first here.

Flux Law Models

Flux-law models are characterized by their general approach to the determination of the effective thermal conductivity. First a solution is found to the equation describing the temperature field. The heat flow and temperature gradient are also sought. The FourierBiot law of heat conduction is then applied to determine the effective
thermal conductivity. The principal advantage of this approach lies in the fact that the actual curvature of heat flux lines and isotherms may be taken into account. Most of the methods applicable to heat transfer in heterogeneous materials were originally developed for use in electrical theory, magnetism or hydrodynamics. However each case is applicable to heat transfer in heterogeneous systems in that the same mathematical equations apply.

In considering a cube of heterogeneous material containing a single particle, the fundamental heat conduction equation may be written separately in each of the two phases. It is stipulated that the boundary conditions require a continuous temperature distribution and a continuous heat flux within the field. If each phase is itself isotropic and homogeneous the equations reduce to the form of Laplace's equation. Solutions of this equation are well known.

Maxwell [9] used this technique in finding an expression for the effective conductivity of a suspension of spheres

$$
\begin{equation*}
\frac{k_{e}}{k_{c}}=\frac{k_{d}+2 k_{c}-2 \bar{\varepsilon}\left(k_{c}-k_{d}\right)}{k_{d}+2 k_{c}+\bar{\varepsilon}\left(k_{c}-k_{d}\right)} \tag{2-1}
\end{equation*}
$$

In the derivation of this equation, it was assumed that the spheres were at sufficient distances from one another that the disturbance of the flux lines around each particle did not extend to neighboring particles. It follows that the geometry of the array of particles does not influence the effective thermal conductivity wherever Equation (2-l) applies.

Several authors have worked to extend the model for dilute suspensions to include solids of alternate geometries. Burgers [10]
and Fricke [11] developed equations for disperse suspensions with ellipsoidal solid particles. Many particle shapes, including flakes, spheres and needles, may be approximated by ellipsoids by properly selecting the relative size of the semi-principal axes. Burgers' equation was

$$
\begin{equation*}
k_{e}=\frac{(1-\bar{\varepsilon}) k_{c}+\bar{\varepsilon} F k_{d}}{(1-\bar{\varepsilon})+\bar{\varepsilon} F} \tag{2-2}
\end{equation*}
$$

In this relation F represents the ratio of the overall average temperature gradient in the discontinuous phase to that in the continuous phase. This ratio was found to be given by

$$
F=\frac{1}{3} \sum_{i=1}^{3}\left[1+\left(\frac{k_{d}}{k_{c}}-1\right) f_{i}\right]
$$

The factor, $\mathbf{f}_{\boldsymbol{i}}$, referred to as the depolarization factor, depends on the length of the semi-principal axes of the ellipsoid. These factors have been normalized such that $\sum_{i=i}^{3} f_{i}=1$. If the three semiprincipal axes are equal the particles become spheres and Equation (2-2) reduces to Equation (2-1).

DeVries [12] applied Equation (2-2) to granular materials in calculating the thermal conductivity of soils. He found that if $0 \leq k_{d} / k_{c} \leq 10$ then the error obtained from Burgers' equation would be less than 10%. Obviously if the conductivities of the constituent phases are sufficiently close there will be very little disturbance in the flux lines around the particles. Thus the restriction stated by Maxwell is satisfied even though the particles are in close proximity.

Hamilton and Crosser [13] extended Burgers' development to include particles of arbitrary shape. The particle shape was defined in terms of sphericitity, ψ, that is in terms of the ratio of the surface area of a sphere compared to that of a particle having the same volume [66]. An empirical relation was developed giving the ratio of the average temperature gradients, F, as a function of the sphericity and the constituent conductivities. The modified Maxwell equation used by Hamilton and Crosser is

$$
\begin{equation*}
\frac{k_{e}}{k_{c}}=\frac{k_{d}+(m-1) k_{c}-(m-1) \bar{\varepsilon}\left(k_{c}-k_{d}\right)}{k_{d}+(m-1) k_{c}+\bar{\varepsilon}\left(k_{c}-k_{d}\right)} \tag{2-3}
\end{equation*}
$$

where $m=3 / \psi$. It was found that whenever $0 \leq k_{d} / k_{c} \leq 100$ the shape of the solid particles had little influence on the overall conductivity of disperse systems. For spherical particles ($\psi=1$) Equation (2-3) reduces to Maxwell's equation.

Lord Rayleigh [14] considered the case in which the interaction between particles could no longer be neglected. In essence Laplace's equation was solved to find the potential field in and about a single spherical particle. Noting that the Laplace equation is linear it was then possible to utilize the principle of superposition to determine the equivalent field for a given particle distribution. Using a cubic array Lord Rayleigh, with a slight correction given by Runge [15], obtained

$$
\begin{equation*}
\frac{k_{e}}{k_{c}}=\frac{\left(\frac{2 k_{c}+k_{d}}{k_{c}-k_{d}}\right)-2 \bar{\varepsilon}-0.525\left(\frac{3 k_{c}-3 k_{d}}{4 k_{c}+3 k_{d}}\right) \bar{\varepsilon}^{10 / 3}}{\left(\frac{2 k_{c}+k_{d}}{k_{c}-k_{d}}\right)+\bar{\varepsilon}-0.525\left(\frac{3 k_{c}-3 k_{d}}{4 k_{c}+3 k_{d}}\right) \bar{\varepsilon}^{10 / 3}} \tag{2-4}
\end{equation*}
$$

It should be noted that this equation reduces to Maxwell's equation whenever $\bar{\varepsilon}$ is sufficiently small that the last term in the numerator and denominator may be neglected. Meredith and Tobias [16] have followed Lord Rayleigh's development including a larger number of terms from the infinite series defining the temperature field. The equation is

$$
\begin{equation*}
\frac{k_{e}}{k_{c}}=\frac{\frac{2 k_{c}+k_{d}}{k_{c}-k_{d}}-2 \bar{\varepsilon}+0.409\left(\frac{6 k_{c}+3 k_{d}}{4 k_{c}+3 k_{d}}\right)^{\bar{\varepsilon}^{\frac{7}{3}}}-2.133\left(\frac{3 k_{c}-3 k_{d}}{4 k_{c}+3 k_{d}}\right)^{\frac{10}{\varepsilon^{3}}}}{\frac{2 k_{c}+k_{d}}{k_{c}-k_{d}}+\bar{\varepsilon}+0.409\left(\frac{6 k_{c}+3 k_{d}}{4 k_{c}+3 k_{d}}\right) \bar{\varepsilon}^{\frac{7}{3}}-0.906\left(\frac{3 k_{c}-3 k_{d}}{4 k_{c}+3 k_{d}}\right)^{\frac{10}{3}}} \tag{2-5}
\end{equation*}
$$

Both equations compare closely with available experimental results obtained for spheres packed in a cubic geometry. However these equations do not appear applicable to systems with widely differing constituent conductivities [16]. Moreover, results do not compare favorably with those obtained for random packing of spheres. The explanation for this descrepancy is offered by Laubitz [17] that although the mathematics is exact the model is so artificial that it radically departs from real powders.

Bruggeman [18] allowed both for particle size variation and arbitrary particle orientation, by assuming that various elements of the same type have in their neighborhood all possible distributions
of elements of all possible types, in the same frequency in which the different types are encountered in the two-phase mixture. He applied Maxwell's equation to find the effective conductivity of an arbitrary two-phase system, and then using this value as the conductivity of the continuous phase he applied Maxwell's equation again to find the effective conductivity when one more particle is added to the system. If this process is repeated indefinitely, for an infinite particle size range, the effective conductivity approaches a limit given by

$$
\begin{equation*}
1-\bar{\varepsilon}=\frac{k_{e}-k_{d}}{k_{c}-k_{d}}\left(\frac{k_{c}}{k_{e}}\right)^{1 / 3} \tag{2-6}
\end{equation*}
$$

Using the same basic approach but accounting for only two additions of the solid particles, Meredith and Tobias [19] obtained a second relation

$$
\begin{equation*}
\frac{k_{e}}{k_{c}}=\left[\frac{4 k_{c}+2 k_{d}-2 \bar{\varepsilon}\left(k_{c}-k_{d}\right)}{4 k_{c}+2 k_{d}+\bar{\varepsilon}\left(k_{c}-k_{d}\right)}\right]\left[\frac{4 k_{c}+2 k_{d}-\bar{\varepsilon}\left(4 k_{c}-k_{d}\right)}{4 k_{c}+2 k_{d}-\bar{\varepsilon}\left(k_{c}-2 k_{d}\right)}\right] \tag{2-7}
\end{equation*}
$$

Baxley and Cooper [20] utilized a digital simulation technique to describe heat transfer in heterogeneous materials. The model incorporated a random placement technique to arrange solid cubes in a square array. The Laplace equation was then written for the entire two phase region and was solved utilizing a numerical relaxation technique. Once having obtained the proper temperature distribution
for the system, the effective conductivity was obtained by applying the Fourier-Biot law. The resulting equations were given in terms of a computer code. Calculational results obtained from the model appear to correlate data for suspensions with good accuracy. The authors note that solid particles of any shape could be considered by constructing such particles from sufficiently small cubes. The success of this technique has motivated the construction and analysis of a similar model for powders and granular materials, which is one of the subjects of this study.

Summarizing the flux law models it is found that they may be generally categorized as extensions of the Maxwell model or as finite difference models. The models derived from Maxwell's formulation may suffer from one or more of a series of shortcomings as applied to granular systems. Maxwell's original equation failed to account for the interaction of the flux lines around particles. Other equations are restricted to a regular and quite unrealistic array. Each breaks down when applied to systems in which the conductivity of the discontinuous phase is several orders of magnitude larger than that of the continuous phase. Ideally, for systems in which the solid particles touch, k_{e} / k_{c} should approach infinity as k_{d} / k_{c} approaches infinity; however, this condition is not met in these equations [16]. The reason for this discrepancy appears to be explained by Meredith and Tobias. They suggest that it is due to the neglection of higher order terms in the equation defining the temperature distribution. Thus,
these equations do not appear applicable to the case of granular systems in a medium of extremely low conductivity.

Ohm's Law Models

The mathematical complexity of the formulation and solution of the flux law model has precluded consideration of anything but the simplest shaped particles and arrangements. Since these formulations have not proved satisfactory in describing most physical systems of randomly packed powders, attention has more recently centered around alternate approaches. Here the Ohm's law model has been used extensively. This model bypasses the determination of the temperature field and seeks instead to evaluate the equivalent thermal resistance for a given array.

Wiener [7] was among the first to apply the electrical analogy to the problem of heat transfer in heterogeneous systems. While he did not obtain an expression for the effective thermal conductivity, it was shown that the value would lie between those predicted by the following formulas:

$$
\begin{align*}
& k_{e s}=\frac{k_{d} k_{c}}{\bar{\varepsilon} k_{c}+(1-\bar{\varepsilon}) k_{d}} \tag{2-8}\\
& k_{e p}=\bar{\varepsilon} k_{d}+(1-\bar{\varepsilon}) k_{c} \tag{2-9}
\end{align*}
$$

These two equations, referred to as Wiener's bounding formulas (Wiernerschen Grenzformeln), represent the cases in which the component resistances are arranged respectively in series, Figure (2-2a), and in parallel, Figure (2-1a) while Equations (7-8) and (2-9) establish

(a) Parallel Model

(b) Loeb's Model

FIGURE 2-1. UNIFORM HEAT FLUX MODELS

FIGURE 2-2. PARALLEL ISOTHERMS MODELS
upper and lower bounds on the effective conductivity they are not intended to be used to calculate the actual value. This is because the effective conductivity of the system is strongly influenced by the constituent's arrangement [21]. Since neither case corresponds to the actual geometrical arrangement neither formula is satisfactory for such cases.

Several applications have been made of Wiener's results. Note that Equation (2-9) represents the effective thermal conductivity as the weighted arithmetic mean of the constituent conductivities; Equation (2-8) represents the thermal conductivity as the weighted harmonic mean. Lichteneker [22] proposed an equation in which the effective conductivity corresponded to the weighted geometric mean

$$
\begin{equation*}
k_{e}=k_{c}(1-\bar{\varepsilon})_{k_{d}} \bar{\varepsilon} \tag{2-10}
\end{equation*}
$$

Woodside and Messmer [23] report that this equation is generally valid for the range $0<k_{d} / k_{c}<20$. Whenever k_{d} / k_{c} exceeds 20 the Lichteneker equation overestimates the effective conductivity.

Bruggeman [18] states that Equation (2-10) allows for random orientation of particles in two directions only. For a truly threedimensional random dispersion he generalized the Lichteneker equation to obtain

$$
\begin{equation*}
k_{e}=k_{c}[(1-\bar{\varepsilon})(1-k \bar{\varepsilon})] k_{d} \bar{\varepsilon}^{[1+k(1-\bar{\varepsilon})]} \tag{2-11}
\end{equation*}
$$

where

$$
k=\frac{3}{2} \frac{k_{d}-k_{c}}{\left(2 \sqrt{k_{d}}+\sqrt{k_{c}}\right)\left(2 \sqrt{k_{c}}+\sqrt{k_{d}}\right)}
$$

Another method of generalizing Wiener's results involves geometrically rearranging the physical system. It would seem reasonable that, since the parallel and series arrangements represent the limiting cases, an equivalent system composed of elements acting partly in parallel and partly in series could be used to represent the physical system.

Several authors have approximated a granular system by representing the solid particles as cubes arranged in a cubic lattice. The uniform spacing between particles is maintained such that the idealized system retains the proper volume fractions. A typical unit cell of this model is represented in Figure (2-3a). It is assumed that the effective thermal conductivity may be determined by considerina the equivalent electrical resistances in parallel and in series and by applying Ohm's law.

In taking such an approach, certain additional simplifying assumptions are generally required. The assumption of straight and parallel heat flux lines yields the equivalent electrical network for the cubic array shown in Fioure (2-3b). An alternate assumption of straight and parallel isotherms leads to a different equivalent network as shown in Figure (2-3c).

The two networks result in different effective conductivities both of which are approximations to the exact solution. In fact, these two cases represent two boundinq solutions to the simplified model. The exact solution will yield an effective conductivity between those given

(a)

(b)

(c)

FIGURE 2-3. CUBIC LATTICE REPRESENTATION OF GRANULAR MATERIAL
by the two electrical networks. This is more clearly seen when one considers a nodal point representation of the temperature field in the proposed system. If the resistances normal to the direction of heat flow are assumed to be very large, the heat flow will remain uniform in the direction of the temperature gradient. Conversely, if the lateral resistances are taken as zero the potential will be equal in each lateral plane. Therefore, the assumption of linear and parallel heat flux lines is equivalent to the assumption of infinite lateral resistance; the assumption of parallel isotherms is equivalent to that of zero lateral resistance. The actual laterial resistance will, of course, fall somewhere between zero and infinity so that these two cases form the bounding conditions. Whether the two solutions represent the bounding conditions for the physical system depends upon the suitability of the proposed model.

It is generally assumed that either one or the other bounding condition represents a close approximation to the flow of energy in the proposed model. The suitability of this assumption will be discussed after the respective models have been considered. In compensation for this approximation it has been found possible to consider much more complex geometries than those which are possible using the flux-law model.

Uniform Heat Flux
Lichteneker [24] and son Frey [25] developed the uniform heatflux model shown in Figure (2-3b). The effective thermal conductivity is then given as

$$
\begin{equation*}
\frac{k_{e}}{k_{c}}=\frac{\left(1-\bar{\varepsilon}^{\frac{1}{3}}+\bar{\varepsilon}\right)+\frac{k_{c}}{k_{d}}\left(\bar{\varepsilon}^{\frac{1}{3}}-\bar{\varepsilon}\right)}{\left(1-\bar{\varepsilon}^{\frac{1}{3}}\right)+\frac{k_{c}}{k_{d}} \bar{\varepsilon}^{\frac{1}{3}}} \tag{2-12}
\end{equation*}
$$

It should be noted that this geometry results in a definite gap between particles and a complete absence of solid to solid contact. While such a model is suitable for dilute suspensions it is doubtful if it could adequately represent granular materials. In cases where the gas conductivity is much less than the solid conductivity, solid to solid heat conduction may, in fact, be the major mode of heat transfer. In such cases it might be anticipated that the proposed model would yield consistently low results, especially in light of the fact that the assumption of linear heat flux lines should lead to low results.

A number of investigators have continued to develop a similar model using various schemes to overcome the problem of the relatively large gap between particles. One such technique is to distort the solid cube, elongating it in the direction of heat flow. Woodside and Messmer [23], Schotte [26], Smith [27] and Willhite, Kunii and Smith [31] developed models assuming such an arrangement. Woodside and Messmer obtained

$$
\begin{equation*}
\frac{k_{\mathrm{e}}}{\overline{\mathrm{k}}_{\mathrm{c}}}=\frac{(\bar{\varepsilon}+0.03)^{2} \mathrm{k}_{\mathrm{d}}}{0.03 \mathrm{k}_{\mathrm{d}}+\bar{\varepsilon}_{\mathrm{c}}}+0.97-\bar{\varepsilon} \tag{2-13}
\end{equation*}
$$

The equation of Willhite, Kunii and Smith is

$$
\begin{equation*}
\frac{k_{e}}{k_{c}}=1+\bar{\varepsilon}\left(1-\frac{k_{c}}{k_{d}}\right)+\frac{\gamma}{a}\left(1-\frac{k_{c}}{k_{d}}\right)^{2} \bar{\varepsilon} \tag{2-14}
\end{equation*}
$$

DIRECTION OF heat flow

FIGURE 2-4. PARALLELOPIPED REPRESENTATION OF GRANULAR MATERIAL
where

$$
\begin{aligned}
& \alpha=\frac{\sin ^{2} \theta}{2} \frac{\left(\frac{k_{d}-k_{c}}{k_{d}}\right)^{2} \sin ^{2} \theta}{\ln \left[\frac{k_{d}}{k_{c}}-\left(\frac{k_{d}}{k_{c}}-1\right) \cos \theta\right]-\frac{k_{d}-k_{c}}{k_{d}}(7-\cos \theta)} \\
& \theta=\sin ^{-1} \sqrt{\frac{2}{n}}
\end{aligned}
$$

In this relation n is the average number of contact points on the particle. The experimentally derived parameter, γ, represents the ratio of the effective length of the solid particle to the diameter of the physical particle. The authors state that a value $\gamma \approx 2 / 3$ correlates a wide range of data.

A number of investigators have continued to develop similar models using various schemes to overcome the problem of the relatively large gap between particles. Bernstein [44] effectively utilized this approach in arranging rectangular particles in a staggered two dimensional array. For high porosity ($\varepsilon \geq 0.5$) systems the solid cube was distorted by lengthening its dimension in the direction of heat flux while decreasing its lateral dimensions to maintain the proper volume fractions. For low porosity systems ($\varepsilon \leq 0.5$) Bernstein interchanged the solid and void regions of the unit cube so that the effective thermal conductivity is given by the equations

$$
\begin{equation*}
\frac{k_{e}}{k_{c}}=\frac{4 \bar{\varepsilon}}{\left(1+\frac{k_{c}}{k_{d}}\right)}+\frac{k_{d}}{k_{c}}(1-2 \bar{\varepsilon}) \tag{2-15a}
\end{equation*}
$$

$$
\bar{\varepsilon} \leq .50
$$

$$
\begin{equation*}
\frac{k_{e}}{k_{c}}=\frac{4(1-\bar{\varepsilon})}{\left(1+\frac{k_{c}}{k_{d}}\right)}+2 \bar{\varepsilon}-1 \tag{2-15b}
\end{equation*}
$$

$\bar{\varepsilon} \geq .50$
A second scheme of reducing the gap between particles considers a portion of the solid phase to pass entirely through the unit cube. This accounts for the residual conductivity of the system in a pure vacuum. A typical element of this type is shown in Figure (2-4). Several authors [28-34] have used this technique to include contact between particles. However, most of these developments have required the inclusion of one or more parameters which must be experimentally obtained for each sample. Generally this information is not available.

Using the same basic assumption of linear heat flux lines Schumann and Voss [35] developed a model using a somewhat different geometry. It was assumed that a unit cell of the material could be replaced by an equivalent geometry in which the two phases are divided by a rectangular hyperbola. Thus the solid phase appears as a somewhat distorted "cylinder" arranged in a square array oriented normal to the direction of heat flux. The varying fraction of the solld phase seems much more representative of the physical system. The effective thermal conductivity obtained by Schumann and Voss is:

$$
\begin{equation*}
\frac{k_{e}}{k_{c}}=(1-\bar{\varepsilon})^{3}+\frac{1-(1-\bar{\varepsilon})^{3}}{\left(\frac{k_{c}}{k_{d}}+p \frac{c}{k_{d}}-1\right)}\left\{1+\frac{p(1+p)\left(k_{c}-k_{d}\right)}{k_{c}+p\left(k_{c}-k_{d}\right)} \ln \left[\frac{k_{c}}{k_{d}} \frac{(1+p)}{p}\right]\right\} \tag{2-16}
\end{equation*}
$$

where p is implicitly defined by the relation:

$$
1-\bar{\varepsilon}=p(p+1) \ln \frac{1+p}{p}-p
$$

The inclusion of an implicit relation makes the equation somewhat difficult to solve analytically although a graphical tabulation has been given.

In comparison to the Lichteneker and son Frey model, the model of Schumann and Voss is much more realistic in representing granular systems in that the finite gap between particles has been eliminated. Nevertheless the effective thermal conductivity obtained from this equation still tends to fall below experimentally obtained values. This tendency was noted separately by Preston [36] and Wilhelm [37]. Both authors presented correction terms to the Schumann and Voss equation to bring the calculated value closer to the experimental data. Wilhelm's correlation has been widely used, and its predictions are in good agreement with many experimental data for granular materials since it was constructed from these data. This equation is

$$
\begin{equation*}
\log \left(\Delta \times 10^{5}\right)=m+n\left(\frac{k_{d}}{1-\bar{\varepsilon}}\right) \tag{2-17}
\end{equation*}
$$

where \triangle in cal/ $\mathrm{cm}-\mathrm{sec}-{ }^{\circ} \mathrm{K}$ is an error term to be added to calculated conductivities according to Schumann and Voss, and the "least squares"
values of the constants are

$$
\begin{aligned}
& m=0.859 \pm 0.051 \\
& n=3.12 \pm 0.29\left(\text { cun } 1 / \text { cmi-sec- }{ }^{\circ} k\right)^{-1}
\end{aligned}
$$

Gorring and Churchill [4] used a development somewhat analogous to Schumann and Voss' for three dimensional particles. In this case, an equivalent geometry was assumed in which the two phases were separated by a parabola of revolution. The solid particles then appear as distorted "spheres" arranged in a square array. For this geometry the effective conductivity is given by

$$
\begin{align*}
\frac{k_{e}}{k_{c}}= & \frac{\pi}{6\left(1-\frac{R_{c}}{k_{d}}\right) C B}\left\{\ln \left(\frac{\sqrt{B^{2}-B x_{0}+x_{0}^{2}}}{B+x_{0}}\right)+\sqrt{3} \tan ^{-1}\left(\frac{2 x_{0} B}{\sqrt{3 B}}\right)\right. \\
& \left.-\sqrt{3} \tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)\right\}+\left\{\left|1-\frac{\pi x_{0}^{2}}{4}\right|\right. \tag{2-18}
\end{align*}
$$

where:

$$
\begin{aligned}
& B=\left[\frac{k_{c}}{C\left(k_{d}-\overline{k_{c}}\right)}\right]^{\frac{1}{3}} \\
& \text { for } \bar{\varepsilon} \leq \frac{\pi}{10}, x_{0}=1.0 \\
& \qquad C=\frac{10 \bar{\varepsilon}}{\pi} \\
& \text { for } \bar{\varepsilon} \geq \frac{\pi}{10}, x_{0}=\frac{1.0}{C^{\frac{1}{3}}} \quad C=\left[\frac{3 \pi}{5 \pi-20 \bar{\varepsilon}}\right]^{\frac{3}{2}}
\end{aligned}
$$

Systems of spherical particles arranged in a square array were studied by Hengst [38] and later by Lyalikov [39] and Kaganer [40]. Kaganer's expression for the effective conductivity of granular systems assumes the form

$$
\begin{equation*}
\frac{k_{e}}{k_{c}}=\frac{\overline{n E k_{d}}}{2\left(k_{d}-k_{c}\right)}\left[\frac{k_{d}}{k_{d}-k_{c}} \ln \left(\frac{k_{d}}{k_{c}}\right)-1\right] \tag{2-19}
\end{equation*}
$$

In this expression n is taken as the average number of contacts for each particle. Note that the geometry utilized in this model is precisely the same as that assumed by Lord Rayleigh in the case of touching spheres $(\bar{\varepsilon}=0.524)$. Equation $(2-18)$ is suggested for use with packing fractions greater than 0.524 . Fhysically this is difficult to visualize as denser packings are not possible with the prescribed geometry.

Deissler and Eian [41] accounted for variations in packing fractions in a different manner. Two separate models were developed to account for such variations. One model considered spheres in a cubic array with point contact; the second used cylinders in a square array with line contact. Including the cases in which the material is composed of all solid or all gas, the relation between k_{e} / k_{c} and k_{d} / k_{c} is then known for four values of $\bar{\varepsilon}$. For any other packing fraction the effective conductivity could be found by interpolation. Krupiczka [42] used the same approach but introduced solutions for the spherical and cylindrical arrays based on flux-law models. Krupiczka then curve fitted his solutions together with certain experimental data to obtain

$$
\begin{equation*}
\frac{k_{e}}{k_{c}}=\left(\frac{k_{d}}{k_{c}}\right)\left[0.280-0.757 \ln (1-\bar{\varepsilon})-0.057 \ln \left(k_{d} / k_{c}\right)\right] \tag{2-20}
\end{equation*}
$$

Loeb [69] was one of the first to deviate from an assumed rigid geometry and account for the distribution of the two phases. His basic assumption is that if a unit cube of the two-phase material is subdivided into parallel to the heat flow tubes, the dispersed phase may be arranged to lie completely within a set of tubes (Figure 2-1b). An electrical analoug is then writien for each tube, and the conduc-
tance of the unit cube is expressed as the sum of the tube conductances. The final expression for the effective thermal conductivity is

$$
\begin{equation*}
k_{e}=k_{c}\left[\left(1-P_{c}\right)+\frac{P_{c}}{P_{L} \frac{k_{c}}{k_{d}}+\left(1-P_{L}\right)}\right] \tag{2-21}
\end{equation*}
$$

where: $P_{c}=$ fraction of cross-sectional area occupied by the
$P_{L}=\begin{aligned} & \text { fraction of tube length occupied by discontinuous } \\ & \text { phase. }\end{aligned}$

Parallel Isotherms

As previously noted, the development of an Ohm's law model requires first the selection of an equivalent geometry. Then either the assumption of uniform heat flux or parallel isotherms may be used. It is not surprising, then, that frequently models of each type have been developed starting from the same basic configuration.

Russell [43] selected the same cubic array of cubical particles as Lichteneker and son Frey. Assuming parallel isotherms, Russell obtained

$$
\begin{equation*}
\frac{k_{e}}{k_{c}}=\frac{\frac{k^{\frac{2}{3}}+\frac{k_{c}}{k_{d}}\left(1-\bar{\varepsilon}^{\frac{2}{3}}\right)}{\bar{\varepsilon}^{\frac{2}{3}}-\bar{\varepsilon}+\frac{k_{c}}{k_{d}}\left(1-\bar{\varepsilon}^{\frac{2}{3}}+\bar{\varepsilon}\right)}}{\text { 就 }} \tag{2-22}
\end{equation*}
$$

Here again, the model does not consider solid to solid contact so that it might be anticipated that results would tend to fall below experimental values. Laubitz [17] reported that Russell's equation typically gave results which were low by about a factor of two.

Jefferson [78] derived an expression for spherical particles, each enclosed in a unit cube of the continuous phase. His derivation
is based on one-half such unit (Figure 2-2b), and the resulting equations are

$$
\begin{align*}
& k_{e}=k_{c}\left[1-\frac{\pi}{4(1+2 n)^{2}}\right]+\frac{\pi}{4(1+2 n)^{2}}\left[\frac{(0.5+n) k_{a} k_{c}}{0.5 k_{c}+n k_{a}}\right] \tag{2-23}\\
& k_{a}=k_{c} \cdot k_{d}\left[\frac{2 k_{d}}{\left(k_{d}-k_{c}\right)^{2}} \ln \left(\frac{k_{d}}{k_{c}}\right)-\frac{2}{k_{d}-k_{c}}\right] \\
& n=0.403(\bar{\varepsilon})^{-1 / 3} \times 0.5
\end{align*}
$$

Baxley and Couper [20] report that for suspensions and emulsions the average error of Equation (2-22) is 21%.

Godbee and Ziegler [45] developed a parallel isotherm model analogous to that proposed by Hoodside and Messmer. The solid particies in a heterogeneous system were replaced by a pore free parallelopiped within the representative material cube. The authors have obtained an expression relating the dimensions of the solid region to the material volume fractions and the particle size distribution so that the effective thermal conductivity is given by the relation

$$
\begin{equation*}
\left.\frac{k_{e}}{k_{c}}=\frac{1}{\left(\frac{D / x}{\left(1-\frac{S}{x^{2}}\right)+\frac{k_{d}}{k_{c}}\left(\frac{S}{x^{2}}\right)}+\left(1+\frac{D}{x}\right)\right.}\right\} \tag{2-24}
\end{equation*}
$$

where

$$
\begin{aligned}
& S=\frac{D^{2}}{2} \int_{D_{a}}^{D_{b}} e^{-u^{2} / 2} d u \\
& x=\left(\frac{S D}{1-\bar{c}}\right)^{1 / 3}
\end{aligned}
$$

Topper [46], Webb [47] and Woodside [48] proposed models incorporating spherical particles arranged in a cubic lattice similar to that of Hengst. The introduction of spherical particles will tend to reduce the gap between particles. Unfortunately the method is restricted by the requirement that the spheres do not overlap, i.e. the solid fraction must be less than 0.524 . Most granular materials tend to pack to a higher density so that this model is of restricted application. The formula developed by Woodside is

$$
\begin{equation*}
\frac{k_{e}}{k_{c}}=\frac{1}{1-\left[\frac{6 \bar{\varepsilon}}{\pi}\right]^{\frac{1}{3}}\left[1-\left(\frac{a^{2}-1}{a}\right) \ln \left(\frac{a+1}{a-1}\right)\right]} \tag{2-25}
\end{equation*}
$$

where:

$$
a=\left[1+\frac{4}{\pi\left(\frac{k_{d}}{k_{c}}-1\right)\left(\frac{6 \bar{\varepsilon}}{\pi}\right)^{\frac{2}{3}}}\right]^{\frac{1 / 2}{2}}
$$

$$
0 \leq \bar{\varepsilon} \leq 0.524
$$

Tsao [8] was able to overcome the problem of introducing solid to solid contact while simultaneously introducing a truly randomly packed array. The development of the stochastic model is indicated in Figure (2-5a). Considering a typical unit cube, the heterogeneous material was divided into a large number of laminae oriented normal to the direction of heat flow. By taking the laminae sufficiently thin the area of each phase will remain essentially constant across the element. Thus the two phases may be viewed as acting in parallel across the laminae. The arrangement of the parallel resistances do not affect the overall resistance so that the element may be replaced by one in which the two phases have been segregated as shown in Figure (2-5b). Similarly since each of the laminae may be viewed as a resistance acting in series the order of the laminae may be arbitrarily changed. For simplicity Tsao arranged the elements in order of decreasing solid fraction. This final arrangement is shown in Figure (3c). Probability theory was then used to develop an expression for the shape of the distribution curve. The final expression is given in terms of the experimentally obtained solid distribution parameters μ_{1} and σ_{1}

(a)

(c)

(b)

(d)

FIGURE 2-5. EQUIVALENT GEOMETRIES FOR LINEAR ISOTHERMS

Here μ_{1} represents the mean solid fraction and ${ }_{j}$ represents the standard deviation of the solid fraction in the horizontal laminae of the redistributed element shown in Figure (2-5d); these laminae are chosen parallel to the direction of heat flow as opposed to the vertical laminae used in the redistribution. A considerable amount of theoretical and experimental work has been done on material distributions in packed beds [49-51]. These studies show that the mean solid-area fraction is equal to the bulk solid fraction but thus far no data is given to evaluate the standard deviation in solid area fraction of these redistributed elements. Furthermore, it does not appear possible to evaluate this parameter directly.

Warren and Messmer [52] noted that Tsao failed to normalize the frequency distribution used in Equation (2-26). This is not a serious fault provided that μ_{1} is sufficiently small. Under the conditions ${ }^{3 \sigma_{1}}<\bar{\varepsilon}$ and $3 \sigma_{1}<(7-\bar{\varepsilon})$ the normalized distribution reduces to that used in Tsao's correlation.

One important contribution by Tsao was to show how random distributions could be analyzed without resorting to the regular arrays assumed by each of the previous investigations. Furthermore, this correlation is applicable to granules of any shape and size distribution. Thus Tsao's correlation is one of the most general equations presented thus far.

Summarizing the 0hm's law models, it is found that they are characterized by unrealistic assumptions regarding the lateral conductivity of the mixture. Frequently these models retain the same
unrealistic geometries common to the flux law models. However, more realistic geometries can and have been used with this type of analysis.

Equations have been developed to predict the thermal conductivity for special cases. Very dilute suspensions and emulsions are represented quite adequately by the Maxwell equation. However, each of the proposed models retains one or more approximations which greatly limits their utility and accuracy when applied to granular materials. The purpose of this study is to derive a general set of equations which will predict the effective thermal conductivity of a two phase granular system while overcoming these specific objections.

III. COMPARISON OF PUBLISHED MODELS AND CRITIQUE

Before an attempt can be made to develop models that improve the predicted effective thermal conductivity values, an investigation of when and why already published models fail should be made. To accomplish this, a number of the models presented in Chapter 2 have been applied to the granular systems listed in Table 6-1. The models chosen are those which are most widely used in the current literature and in present engineering practice. In cases where the development of two models is only slightiy different, one of the two is chosen.

The results are presented in Figures (3-1) through (3-18) and summarized in Table 3-1. The figures are classified according to the categories mentioned in Chapter 2 as follows:

1. Figures (3-1) through (3-4) present flux law models;
2. Figures (3-5) through (3-13) present Ohm's Law, uniform heat flux models;
3. Figures (3-13) through (3-16) present Ohm's Law, paralle1 isotherms models;
4. Figures (3-17) and (3-18) present Lichtenecker's weighted equations.

Figures 3-1 through 3-4 indicate that the flux law models are in good agreement with experimental measurements at low constituent
conductivity ratios, but predict considerably lower values at high constituent conductivity ratios. There is a number of reasons to explain this behavior. First, the heat flow path from particle to particle is neglected due to the absence of a finite particle contact area. Thus an important mode of heat transfer at high conductivity ratios is not taken into account. Second, the idealized particle shape and geometry utilized in the models do not provide a sufficiently close approximation to the geometry of most granular materials. Finally, with the exception of Bruggeman's equation, the flux law models have been extrapolated beyond the porosity range for which they are theoretically applicable $\left(\frac{\pi}{6} \leq P \leq 1\right)$.

It should be noted that whereas the conductivities predicted by Lord Rayleigh's and Meredith and Tobias' equations are comparable, Bruggeman's equation represents a considerable improvement of the calculated values. This is probably an indication that the geometry of any future flux law model should not radically depart from the geometry of real granular systems.

Figures 3-5 through 3-13 indicate that in general uniform heat flux models predict low effective thermal conductivities and the discrepancy increases with the ratio of constituent conductivities. As it will be discussed in detail in Chapter 4, the uniform heat flux assumption necessitates that the conductivity of the constituents in the normal to the heat flow direction be zero. Consequently, the low predicted thermal conductivities are an expected result of the linear
heat flow assumption. However, the equation of Woodside and Messmer predicts high values at low constituent conductivity ratios, but when k_{d} / k_{c} increases beyond a certain limit the calculated values become low. The explanation of this behavior lies on the geometry assumptions introduced in the model. In the Woodside and Messmer model the solid phase is elongated in the direction of heat flow, thus rendering the calculated effective conductivity high at low values of k_{d} / k_{c}. However, when k_{d} / k_{c} increases, the absence of finite contact areas between particles and the linear heat flow assumption come into effect, and as a result the calculated effective conductivities are low.

It is seen that the equations of Preston; Wilhelm et al, and Krupiczka, which include correlation terms, are in very good agreement with the experimental data for granular materials and powders at atmospheric pressures.

Figures 3-14 through 3-16 indicate that parallel isotherms models generally predict high values for the effective thermal conductivity. Again, this is due to the introduction of infinite conductivity in the normal to the heat flow direction, necessitated by the heat flow assumption. Russell's model is an exception to this conclusion, since it predicts low values at high ratios of constituent conductivities. This is probably due to the simplified geometry of the model, and to the relatively large gaps between particles. It appears that the influence of the simplified geometry and the absence of contact areas between particles dominate over the influence of the heat flow assumption.

In Figures (3-17) and (3-18) Lichtenecker's weighted equations are compared to experimental data. Evidently the values predicted by these equations are in error, indicating that any such future attempt should rely heavily on experimental evidence.

Summarizing the comparison of published models, it is found that the major sources of error can be attributed to the following causes.

1. Distorted or idealized geometry;
2. Idealized heat flow;
3. Absence of finite particle contact area.

Not all sources of error are applicable to each one of the models discussed. Typically, one or more are applicable in each case. However, it is difficult to isolate a prior source of error for a particular model. It appears that the discrepancy between calculated and experimental values is due to an interaction of all sources, each source dominating over a particular range of k_{d} / k_{c} depending on the geometry and heat flow assumptions. Consequently, in any more refined model the influence of each of the above sources of error should be minimized, especially if it is expected that the model should be applicable to granular materials having large ratios of constituent conductivities. Such an attempt has been undertaken in the models that will be described in the rest of this study. First, however, the effects of the uniform heat flux and parallel isotherms assumptions will be investigated, because if it were possibie to utilize either
assumption, the problem of finding the effective thermal conductivity of granular materials would be simplified considerably.

FIGURE 3-1. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE MAXWELL EQUATION.

FIGURE 3-2. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE LORD RAYLEIGH EQUATION.

FIGURE 3-3. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE MEREDITH AND TOBIAS EQUATION.

FIGURE 3-4. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE BRUGGEMAN EQUATION.

FIGURE 3-5. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE SON FREY EQUATION.

FIGURE 3-6. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE WOODSIDE AND MESSMER EQUATION.

FIGURE 3-7. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE KANAGER EQUATION.

FIGURE 3-8. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE GORRING AND CHURCHILL EQUATION.

FIGURE 3-9. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE WILLHITE, KUNII AND SMITH EQUATION.

FIGURE 3-10. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE SCHUMANN AND VOSS EQUATION.

FIGURE 3-1l. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE PRESTON EQUATION.

FIGURE 3-12. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE WILHELM ET AL EQUATION.

FIGURE 3-13. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE KRUPICZKA EQUATION.

FIGURE 3-14. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE RUSSELL EQUATION.

FIGURE 3-15. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE BERNSTEIN EQUATION.

FIGURE 3-16. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE WOODSIDE EQUATION.

FIGURE 3-17. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE LICHTENECKER 3-D EQUATION.

FIGURE 3-18. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR THE LICHTENECKER 2-D EQUATION.

TABLE 3-I. AVERAGE ERROR, AVERAGE BIAS AND ERROR VARIANCE OF CALCULATED THERMAL CONDUCTIVITY AT ATMOSPHERIC PRESSURE BASED ON SELECTED MODELS

Av. Bias \% Av. Error \% Error Var.

A. Flux Law Models

1. Maxwell
2. Lord Rayleigh
3. Meredith and Tobias
4. Bruggeman
B. Uniform Heat Flux Models

1. son Frey	-43.8	45.1	0.0599
2. Woodside and Messmer	20.9	34.8	0.0992
3. Kanager	-6.7	18.9	0.0286
4. Gorring and Churchill	-10.7	20.0	0.0192
5. Willhite, Kunii and Smith	-3.6	17.8	0.0268
6. Schumann and Voss	-21.1	25.8	0.0260
7. Preston	26.6	30.5	0.0875
8. Wilhelm et al	-2.1	19.7	0.0373
9. Krupiczka	13.2	21.2	0.0693

C. Parallel Isotherm Models

1. Russell
-30.3
35.0
0.0566
2. Bernstein
677.9
686.1
85.05
3. Woodside
670.3
670.4
55.16

TABLE 3-1. Continued
D. Weighted Ohm's Law Models

1. Lichtenecker 3-D
2. Lichtenecker 2-D
701.1
701.2
48.70
194.5
195.0
2.98

IV. CHARACTERISTICS OF PROBABILISTIC MODELS

As indicated in Chapter 2, almost all methods proposed to determine the thermal conductivities of two-phase systems may be grouped into two general classes. The first classification consists of the 0 hm's law model equations derived from some special geometries, usually some orderly array of spheres or cubes distributed in a continuous medium.

The second classification consists of the flux law model equations which account for non-linear heat flow. However, most of these equations are based on the assumption that the concentration of particles is small enough so that the field surrounding one particle is not affected by the presence of other particles.

As indicated in [68], published correlations for the thermal conductivity of granular materials, are not applicable to systems comiposed of different materials for which the thermal conductivities are highly different. This is the case, because the approximations inherent to the assumptions of both classifications mentioned above are no longer valid when the ratio of the component conductivities becomes exceedingly high. The object of this study is the development of a model that will account for non-linear heat flow, that can be extended to a large range of the ratio of thermal conductivities,
and will include the following parameters:

1. Volume fraction of one phase;
2. Particle shape;
3. Particle size distribution;
4. Contact resistance.

The description and analysis of such models is preceded by the development of two Ohm's law models based on the assumption of parallel isotherms and uniform heat flux respectively. Both these models are an outgrowth of Tsao's [8] and Loeb's [69] models supplemented by recent results on the structural properties of packed beds $[49,51]$. It should be noted that apart from the heat flow assumptions, the basic proposition utilized in the development of the models is that a granular material can be considered as a random mixture of two phases, in which all particles of the same size and shape have the same probability to occupy each unit volume of the mixture. The validity of this proposition together with its limitations have been discussed extensively by Debbas and Rumpf [51], and it has been utilized in Tsao's [8] model.

The purpose of these preliminary developments is two-fold. First, to indicate that 0hm's law models with realistic geometries provide an upper and lower bound to the effective conductivity of granular materials. Second, to illustrate the need for a probabilistic flux law model that includes particle interaction, so that the unrealistic assumptions concerning the value of the thermal conductivity in the direction perpendicular to the heat flow can be overcome.

Ohm's Law Model - Parallel Isotherms

Consider a unit cube of a granular material subdivided into N^{3} cubicles by a three-dimensional grid. Assume that the grid is fine enough, and the two phases are arranged in such a manner that each cubicle is occupied either by the continuous or the discontinuous phase. It has been shown [51] that most granular materials can be thought of as a random mixture of the two phases. Accordingly, the probability that a cubicle is occupied by the continuous phase is P, the volume fraction of the continuous phase. It has been also shown $[8,53]$ that due to the parallel isotherms assumption, the conductivity of each lamina perpendicular to the heat flow direction depends on the volume fraction of the continuous phase present in the lamina, but is independent of the manner in which the two phases are arranged. Consequently, the effective thermal conductivity of each lamina does not change if the continuous phase is arranged as indicated in Figure (4-1b). Also, since the laminae can be thought of as series resistances to the flow of heat, the effective conductivity of the unit cube does not chance if the laminae are rearranged according to decreasing height of the continuous phase as indicated in Figure (4-1c), approximated by a continuous distribution curve indicated in Figure (4-1d). Summation of the series resistances yields the following expression for k_{e}, the effective conductivity of the unit cube

FIGURE 4-1. OHM'S MODEL --LINEAR ISOTHERMS

$$
\begin{equation*}
k_{e}=\frac{1}{\int_{0}^{1} \frac{d z}{k_{d}+\left(k_{c}-k_{d}\right) y}} \tag{4-1}
\end{equation*}
$$

A number of attempts have been made to determine a functional relationship between y and z by either expressing y as a function of z, μ, and σ, where μ is the mean value of z and σ is the standard deviation of $z[8,53]$, or by approximating the phase distribution curve by a curve by a parabolic function [70]. The method proposed in this study is based on the initial assumption of randomness.

Consider one of the laminae that is perpendicular to the mean heat flow. The probability that exactly $\mathrm{r} N$ cubicles, out of the N^{2} cubicles present in the lamina, are occupied by the continuous phase is given by the binomial distribution:

$$
\begin{equation*}
\Pi(r N)=\frac{\left(N^{2}\right)!}{\left(N^{2}\right)!\left(N^{2}-r N\right)!} \quad p^{r N} Q^{N^{2}-r N} \tag{4-2}
\end{equation*}
$$

where

$$
\begin{equation*}
Q=1-P \tag{4-3}
\end{equation*}
$$

Suppose that the height of the continuous phase in the $\mathrm{m}^{\text {th }}$ lamina is r / N after the laminae have been rearranaed according to decreasing height of the continuous phase, as indicated in Fiqure 4-1c. It
follows that there are m laminae in which the height of the continuous phase is equal to or greater than r / N, and consequently

$$
\begin{equation*}
m=N \sum_{r N}^{N^{2}} \Pi(r N) \tag{4-4}
\end{equation*}
$$

If N^{2} is large enough, $\Pi(r n)$ can be approximated by the normal distribution [71],

$$
\begin{equation*}
f(r N)=\frac{1}{\sqrt{2 \pi} \sqrt{N^{2} P Q}} \cdot e^{-\frac{\left(r N-P N^{2}\right)^{2}}{2\left(N^{2} P Q\right)}} \tag{4-5}
\end{equation*}
$$

Substitution of Equation (4-5) into Equation (4-4), and noting that and $r / N=y$, it follows that

$$
\begin{equation*}
z=\frac{1}{2}(1-\text { erft }), \quad t=\frac{N^{2}(y-P)}{\sqrt{2 N^{2} P Q}} \tag{4-6}
\end{equation*}
$$

Equation (4-6) is an expression for z as a function of y in terms of the parameters P and N. The continuous phase volume fraction P is assumed to be known since it is reported in all experimental investigations of granular materials. N is a measure of the fineness of the three-dimensional grid. In other words, it is a measure of the sample size. Although, there is no analytical method to determine N if the size of the cubicles is not selected, a lower bound for N
can be found by the constraint that the total number of cubicles in the unit cube occupied by the continuous phase must be equal to $P N^{3}$. In other words

$$
\begin{equation*}
\int_{0}^{1} z d y=p \tag{4-7}
\end{equation*}
$$

Equation (4-7) is satisfied when N^{2} is larger than $8 / P$ and $8 / Q$. It can be also shown that under this condition, the approximation of the binomial distribution by the normal distribution is also valid.

In view of the discussion above, Equations (4-1) and (4-6) constitute a solution for the effective thermal conductivity of granular materials, provided the model and the assumptions associated with it constitute a realistic approximation of the system. However, it should be noted that the additional resistance to the heat flow from one particle to the other, introduced due to the contact surface of two particles, has not been taken into account in the development. This assumption is certainly justified for unconsolidated porous media, but induces large errors in the case of granular materials [34]. To overcome this discrepancy, an additional term will be introduced in Equation (4-1) to account for contact resistance.

Let N_{c} be the total number of contact areas in a unit cube. Assuming that these contact areas are randomly distributed and oriented, the number of contact areas in the z-direction, $N_{c z}$ is $N_{c} / 3$. These contact resistances can be distributed over the
laminae shown in Figure (4-1c) in such a manner that the number of contact resistances in a lamina $\dot{n}_{c z}$ is proportional to the discontinuous phase present in the lamina. That is:

$$
\begin{equation*}
\frac{(1-y)(1 / N)}{(1-P)}=\frac{n_{c z}}{N_{c z}} \tag{4-8}
\end{equation*}
$$

Now, taking into account that each lamina is composed of continuous phase cubicles, discontinuous phase cubicles, and cubicles containing contact areas as given by Equation (4-8), summation over the thermal resistances present in each lamina, and integration over all laminae, yields a modified form of Equation (4-1).

$$
\begin{equation*}
k_{e}=\frac{1}{\int_{0}^{1} \frac{d z}{k_{d}+\left(k_{c}-k_{d}\right) y-\frac{(1-y)}{(1-P)} \frac{N_{c z}}{N^{3}}\left(k_{d}-k_{c r}\right)}} \tag{4-9}
\end{equation*}
$$

In Equation (4-9), $k_{c r}$ is the contact thermal conductivity associated with a contact area. In the calculations, an expression for k_{cr} is taken from Luikov [34].

It is still necessary to find an expression for the total number of contact areas per unit cube, in order to determine $N_{c z}$. This can be accomplished by assigning a characteristic volume to each particle and considering the coordination number n which is the average number of contact points per particle. As indicated in [66] the
characteristic volume of each particle is $\varepsilon_{v} d^{3}$, where ε_{v} is an experimentally determined volumetric parameter that depends on the particle shape, and d is a characteristic particle size obtained from the sieve data. It follows then that the number of particles per unit volume is $\frac{1-p}{\epsilon_{v} d^{3}}$. The coordination number is given in [49] as

$$
\begin{equation*}
n=39.39(0.571-P) \tag{4-10}
\end{equation*}
$$

For spherical particles ε_{v} is equal to $\pi / 6$. Combination of these expressions yields, for spherical particles

$$
\begin{equation*}
N_{c z}=\frac{12.54(0.571-P)}{d^{3}}(1-P) \tag{4-11}
\end{equation*}
$$

Combination of Equations (4-1), (4-9), (4-11) constitute a solution for the effective thermal conductivity of granular materials in terms of the conductivities of the components, the porosity, and the parameters mentioned. The equations have been solved and compared to a number of experimentally determined values. It should be noted that the value of N chosen for each case satisfied the lower bounds mentioned, and was such that the cubicles were smaller than the particles and the voids.

Ohm's Law Model - Uniform Heat Flux

Again, consider a unit cube of a granular material subdivided into N^{3} cubicles by a three-dimensional grid. Looking at the parallel-
to-the-heat-flow rectangular tubes, it can be seen that they include continuous phase and discontinuous phase cubicles. Under the assumption of uniform heat flux, the effective thermal conductivity of the rectangular tubes does not change if the cubicles are rearranged in such a manner that the continuous phase is pushed forward [69], as indicated in Fiqure (4-2b).

The effective thermal resistance of each tube is due to the thermal resistance of the continuous phase and the thermal resistance of the discontinuous phase present in the tube, acting in series. Moreover, since the effective thermal resistances of all tubes are in parallel, summation of all the thermal conductances of the tubes gives the effective thermal conductance of the unit cube. Assumina that the summation can be approximated by integration, the effective thermal conductivity of the unit cube is

$$
\begin{equation*}
k_{e}=\int_{0}^{l} \frac{d x d y}{\frac{1-z}{k_{d}}+\frac{z}{k_{c}}} \tag{4-12}
\end{equation*}
$$

where z is the height of the discontinuous phase at (x, y). To integrate Equation (4-12), it is necessary to know z as a function of x and y. This can be accomplished by a rearrangement of the rectangular tubes that are parallel to the heat flow as follows:

1. In each parallel to the heat flow x-z lamina, the tubes are rearranged according to decreasing height of the continuous phase in the x-direction (Figure 4-2c).
2. The $x-z$ laminae are rearranged according to the total amount of continuous phase present in each lamina. Further, the rearrangement is such that the continuous phase void fraction of each lamina decreases with y (Figure 4-2d).

This rearrangement of the rectangular tubes does not affect the effective thermal conductivity of the unit cube, since the height of the continuous phase in each tube remains the same, but permits one to express the distribution of the phases in the unit cube by continuous functions. The arguments leading to these distribution functions are the same as the ones presented for the development of Equation (4-6), and will not be repeated here. The results are the following. For each lamina at y, and having thickness dy,

$$
\begin{equation*}
x=\frac{1}{2}(1-\text { erft }), \quad t=\frac{N\left(z-P_{y}\right)}{\sqrt{2 N P_{y} Q_{y}}} \tag{4-13}
\end{equation*}
$$

where P_{y} is the ratio of the volume of the continuous phase present in the lamina to the total volume of the lamina, and $Q_{y}=1-P_{y}$. Analysis of Figure (4-2d) gives,

$$
\begin{equation*}
y=\frac{1}{2}(1-\text { erfu }), \quad u=\frac{N^{2}\left(P_{y}-P\right)}{\sqrt{2 N^{2} P Q}} \tag{4-14}
\end{equation*}
$$

Again, the constraint that the total number of cubicles in the unit cube, occupied by the continuous phase, must be equal to PN^{3} is satisfied when N is larger than $8 / P$ and $8 / Q$. Under these conditions

FIGURE 4-2. EQUIVALENT GEOMETRIES FOR UNIFORM HEAT FLUX.
the approximation of the binomial distribution by the normal distribution is also valid.

Combination of Equations (4-12), (4-13) and (4-14) constitutes a solution for the effective thermal conductivity of granular materials in terms of the conductivities of the components and the porosity. The equations have been solved and compared to a number of experimentally determined values. Again, the value of N chosen for each case satisfied the lower bounds mentioned, and was such that the cubicles were smaller than the particles and the voids. It should be noted that in this model the thermal contact resistance, due to the contact areas between particles, has not been introduced. The reason is that the uniform heat flux assumption renders the calculated effective conductivity smaller than the experimental one, and introduction of the contact thermal resistance will increase the discrepancy between calculated and experimental values.

Comparison of the Ohm's Law Models

Equations (4-9) and (4-12) have been obtained to predict the effective thermal conductivity of granular materials as a function of the constituent conductivities, porosity, and the parameters indicated. In both models, a representative unit cube of the granular material has been considered. The basic assumption utilized in order to obtain the distribution of the two phases in the unit cube is that a granular material can be considered a
random mixture of two phases. In view of the evidence given by Debbas and Rumpf [51] and Baxiey and Cooper [20], this assumption is in good agreement with experimental results, and consequently it can be concluded that the assumed geometry of the unit cube is quite accurate for most granular materials.

Equations (4-9) and (4-12) have been solved for a number of cases, and some of the results are presented in Figures (4-3) and (4-4), representing granular systems with porosities 0.42 and 0.38 , respectively. Wiener's upper and lower bounds are also indicated. The experimentally determined values have been obtained from references $[6,21,23$, 36]. It can be seen that the parallel isotherms model grossly overpredicts the effective thermal conductivity of granular materials, while the uniform heat flux model predicts lower values. The discrepancy increases with the ratio of the constituent conductivities. Although, the region between the upper and lower bounds thus defined is smaller than the region defined by Wiener's bounds, the specific values obtained from Equations (4-9) and (4-12) leave much to be desired.

This difference between calculated and true effective thermal conductivity values can be explained by Laubitz's [17] observation that in the uniform heat flux model it is effectively assumed that the thermal conductivity of the medium in the normal to the heat flow directions is infinite, while in the parallel isotherms model it is

FIGURE 4-3. COMPARISON OF BOUNDING CONDUCTIVITIES WITH EXPERIMENTAL DATA FOR A POROSITY OF 0.4 ?

FIGURE 4-4. COMPARISON OF BOUNDING CONDUCTIVITIES WITH EXPERIMENTAL DATA FOR A POROSITY OF 0.38.
vanishingly small. It also provides an explanation as to why previous Ohm's Law models, based upon an assumed regular array, have generally not been successful at higher constituent conductivity ratios. Some of the discrepancy due to the heat flow assumptions has been countered in previous Ohm's law models by assuming a somewhat distorted array. However, at high constituent conductivity ratios, the effect of the heat flow assumptions prevails, and the calculated values continually deviate from the true effective thermal conductivity values.

Since the lateral conductivity of granular materials falls between the limits of zero and infinite lateral conductivity, it can be concluded that Equations (4-9) and (4-12) constitute an upper and lower bound to the true effective thermal conductivity. Numerous correlation forms have been developed in the literature [18] associating the true conductivity of the granular material to the bounding values. However, it does not appear possible to select the correlation which is more consistent with the physical system. Consequently, an aiternate approach is suggested, where the geometry of the granular system is the same, while no assumption is made with respect to the heat flow. This constitutes the basic model of this study, and it differs from the Ohm's law models presented in that both the geometry and the heat flow assumptions are realistic. The Ohm's law models will be utilized in the discussion that follows as a criterion for the selection of a number of parameters such as contact resistance, coordination number, etc.
V PARALLEL ISOTHERMS MODEL

The approach specified in this chapter is based upon an extension of the approach originally proposed by Wiener [7] and later extended, first by Russell [43], and later by Tsao [8]. The effective thermal conductivity of the heterogeneous system is determined using the electrical analogy. Probability techniques are used to describe the random distribution of the particles within the system as introduced in Tsao's model. Two statistical parameters are introduced and are determined based upon bulk physical properties.

Consider a unit cube of the heterogeneous system shown in Figure (2-5a). The system is to be divided into a series of fine laminae oriented normal to the direction of heat flux. These elements are sufficiently thin that the cross-sectional area of the solid particles are essentially constant throughout its width. Assuming parallef isotherms within the unit cube, the discontinuous (solid) and continuous phases will act as resistances in parallel within each lamina. The order of the parallel resistances may be changed arbitrarily without affecting the overall resistance of the parallel circuit. Thus the resistances of the solid elements may be combined into a single solid resistance at the bottom of the laminae as shown in Figure (2-5b).

A simple calculation then shows that the equivalent resistance is given by the equation

$$
\begin{equation*}
k_{e}=\frac{1}{\sum_{m=1}^{h} \frac{k_{c}+\left(k_{d}-k_{c}\right) \overline{\varepsilon_{m}}}{}} \tag{5-1}
\end{equation*}
$$

In this equation the fraction of solid in the $m^{\text {th }}$ lamina is given by $\bar{\varepsilon}_{\mathrm{m}}$ and the width of each lamina is Δx.

Note that the laminae act as resistances in series. Again the order of the resistances does not affect the overall thermal resistance so that the elements may be rearranged in order of decreasing solid fraction as shown in Figure (2-5c). If the width of the laminae is allowed to approach zero then the effective thermal conductivity for Figure (2-5d) becomes

$$
\begin{equation*}
k_{e}=\frac{1}{\int_{0}^{l} \frac{d x}{k_{c}+\left(k_{d}-k_{c}\right) \bar{\varepsilon}}} \tag{5-2}
\end{equation*}
$$

The solution of this equation requires the knowledge of a relationship between the solid area fraction $\bar{\varepsilon}$ and the position x. Such a relationship is given in the form

$$
\begin{equation*}
\bar{\varepsilon}=\frac{\int_{x}^{1} e^{-1 / 2\left(\frac{\rho-\mu}{\sigma}\right)^{2}} d \rho}{\int_{0}^{1} e^{-1 / 2\left(\frac{\rho-\mu}{\sigma}\right)^{2}} d \rho} \tag{5-3}
\end{equation*}
$$

In this expression μ and σ represent the mode and the standard deviation of the one dimensional porosity as introduced by Tsao. For the case at hand the mode, μ, will be very close to the bulk solid fraction. The standard deviation, σ, is unknown. In general, it will be a function of the particle shape, size distribution and volume fraction. By restricting consideration to uniform sized particles which are either spherical or semi-spherical the standard deviation becomes a function of the volume fractions only. Or

$$
\begin{equation*}
\sigma=f(\bar{\varepsilon}) \tag{5-4}
\end{equation*}
$$

Using the experimental data available from the literature, Equations (5-2) and (5-3) may be solved to determine σ for each case. These data have been curve fitted using a least squares technique to obtain the relation

$$
\begin{equation*}
\sigma=0.32248(1-\bar{\varepsilon})-0.092543(1-\bar{\varepsilon})^{2} \tag{5-5}
\end{equation*}
$$

The resulting equations may be used to determine the effective thermal conductivity of packed beds with solid fractions between 0.3 to 0.7. Beyond these limits the assumption of random packing of semi-spherical particles no longer holds.

Results
Data describing the effective thermal conductivity of packed beds have been compiled from the literature. Generally, results obtained from Equation (5-2) fall within $\pm 20 \%$ of the reported values, provided that radiation may be neglected. A representative sample of data
taken from several sources $[6,35,37,58]$ is shown in Figure (5-1). A more extensive comparison between predicted and experimentally determined values for granular materials at atmospheric pressure is included in Chapter 6.

The model has also been extended to the case of particulate basalt in a simulated lunar environment, and the results are shown in Figure (5-2). It is noted that the model predicts a slightly greater dependence of the effective conductivity on packing fraction than is indicated by the experimental data. This could be off-set to some extent by modifying the empirical distribution function used in the correlation; such a modification would be difficult to justify on theoretical grounds and therefore has not been undertaken.

FIGURE 5-1. COMPARISON OF EXPERIMENTAL AND MODEL
PREDICTED THERMAL CONDUCTIVITIES.

FIGURE 5-2. COMPARISON BETWEEN MODEL PREDICTED AND EXPERIMENTAL THERMAL CONDUCTIVITIES FOR BASALT IN SIMULATED LUNAR ENVIRONMENT.

VI. STOCHASTIC MODEL

Over the past sixty years [7] numerous Ohm's law models have been introduced. Most of these models are based upon a rough approximation of granular materials in terms of solid parallelopipeds or cubically arrayed spheres. Neither geometry bears a close relation to the random dispersions commonly found in nature. The approach described herein avoids these unnatural arrays and unrealistic geometries by assuming a random distribution of arbitrarily shaped solid particles.

As noted in the literature survey, those models incorporating Ohm's law almost universally utilize assumptions of zero or infinite lateral conductivity. In any real substance the lateral conductivity will fall bewween these two extremes. Consequently these two assumptions lead toward a set of bounding equations for the effective thermal conductivity of the model. These bounding equations set much narrower limits than those originally proposed by Wiener [7]. A comparison of the two sets of equations is shown in Figure (6-1). The effective conductivity of a square array of uniform spheres $(\bar{\varepsilon}=0.5236)$ is represented. Note that at a constituent conductivity ratio of 10^{6}, these new bounding conditions are approximately one order of magnitude above the lower bound and a factor of five below the upper bound established by Wiener. Therefore, a set of such equations, applicable to any packing geometry would represent a considerable improvement over Wiener's formulation.

FIGURE 6-1. BOUNDING EQUATIONS FOR A CUBIC ARRAY OF SPHERES

Herein will be developed a set of such equations, generally applicable to any shape particle.

Consider a typical unit cell of the heterogeneous system shown in Figure (6-2a). Divide the unit cell into uniform sized channels by passing both vertical and horizontal planes through the element. These planes are to be oriented parallel to the direction of heat flux and are to be equispaced. If the channels are sufficiently small compared to the dimensions of the solid particles, they will appear as consisting of sections of the continuous and discontinuous phases placed in series. Assuming a uniform heat flux in each channel, the order of the series resistances does not influence the overall resistance. Consequently, the two components may be separated as shown in Figure ($6-2 \mathrm{~b}$). The resistance of the channel is then given by

$$
\begin{equation*}
R_{i}=\frac{\varepsilon_{i}}{k_{d} \Delta A}+\frac{\left(1-\varepsilon_{i}\right)}{k_{c} \Delta A} \tag{6-1}
\end{equation*}
$$

The channels behave as resistances in parallel. The overall resistance is then given as:

$$
\begin{equation*}
\frac{1}{R_{e}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots .+\frac{1}{R_{n}} \tag{6-2}
\end{equation*}
$$

The order of these channels and their shape may be altered so long as the individual channel resistances remain unchanged. They may then be distorted to a unit width by changing the vertical dimension while retaining the unit length. They are then arranged in order of decreasing
solid fraction. This geometry is shown in Figure ($6=2 \mathrm{c}$). The effective thermal conductivity for the specified element is

$$
\begin{equation*}
k_{e_{0}}=\frac{k_{c} k_{d} \Delta A}{\sum_{i=1}^{n} k_{c} \varepsilon_{i}+k_{d}\left(l-\varepsilon_{i}\right)} \tag{6-3}
\end{equation*}
$$

If the area of the channels is allowed to approach zero as the number of channels approaches infinity the summation in Equation (26) may be replaced by an integral.

$$
\begin{equation*}
k_{e_{0}}=\int_{A} \frac{k_{c} k_{d}}{k_{c} \varepsilon+k_{d}(1-\varepsilon)} \tag{6-4}
\end{equation*}
$$

or,

$$
k_{e_{0}} \int_{0}^{1} \frac{k_{c} k_{d}}{k_{d}+\varepsilon\left(k_{c}-k_{d}\right)} d x d y
$$

$$
\begin{equation*}
=\int_{0}^{1} \frac{k_{c} k_{d}}{k_{d}+\varepsilon\left(k_{c}-k_{d}\right)} d x \tag{6-5}
\end{equation*}
$$

since the integrand is constant in the horizontal direction. The corresponding geometry is shown in Figure (6-2d).

In a similar manner the effective conductivity has been found assuming infinite lateral conductivity [8,53]:

(c)

(d)

FIGURE 6-2. EQUIVALENT GEOMETRIES FOR UNIFORM HEAT FLUX

Both equations for zero and infinite lateral conductivity require a knowledge of the functional relation between the solid area fraction, ε, and the position, x, to solve the integral. Consider the arbitrary material distribution shown in Figure $(6-2 c)$. The verticle position of each lamina is determined by its solid fraction. The portion of the elements below a particular element is then equal to the portion of elements having larger solid fractions.

$$
\begin{align*}
x & =P\left(\varepsilon_{i}>\varepsilon\right) \\
& =\int_{\varepsilon}^{l} f(\phi) d \phi \tag{6-7}
\end{align*}
$$

Differentiating this equation,

$$
\begin{equation*}
d x=-f(\varepsilon) d \varepsilon \tag{6-8}
\end{equation*}
$$

This relationship may be substituted into Equations (6-5) and (6-6) for the thermal conductivity with uniform heat flux and parallel isotherms. The limits of integration must be changed accordingly

$$
\begin{equation*}
k_{e_{0}}^{0} \frac{k_{c}^{k_{c}^{k} f(c)}}{k_{d}+\varepsilon\left(k_{c}-k_{d}\right)} d \varepsilon \tag{6-9}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{k_{e_{\infty}}}=\int_{1}^{0} \frac{f(\varepsilon)}{k_{c}+\varepsilon\left(k_{d}-k_{c}\right)} d \varepsilon \tag{6-10}
\end{equation*}
$$

Equations ($6-9$) and (6-10) are entirely general in that no assumptions have yet been made regarding the particle shape or size distribution. The effects of these parameters on the solid area fraction were studied by Debbas and Rumph [51] and Haughey and Beveridge [49]. These sources found experimentally that the distribution of the solid area fraction is Gaussian for most packings. A notable exception occurs after prolonged vibration of a sample. This packing produces large regions of ordered distribution and strong anisotropic effects. Similarly large particle size variations tend to allow sifting of smaller particles into the lower regions of a given sample. This produces a definite bulk porosity gradient in the vertical direction. In such cases the radial distribution remains normal. Neglecting all such non-normal distributions the frequency distribution may be taken as Gaussian.

$$
\begin{equation*}
f(t)=\frac{e^{-\frac{1}{2} t^{2}}}{\int_{a}^{b} e^{-\frac{1}{2} t^{2}} d t} \tag{6-11}
\end{equation*}
$$

The integral in the denominator serves to normalize the truncated Gaussian distribution. By replacing the standardized random variable Equation (6-11) may be written in the form:

$$
\begin{equation*}
f(\varepsilon)=\frac{+e^{-\frac{1}{2}\left(\frac{\varepsilon-\mu}{\sigma}\right)^{2}}}{\frac{\sigma \sqrt{\pi}}{\sqrt{2}}\left[\operatorname{erf}\left(\frac{1-\mu}{\sigma \sqrt{2}}\right)-\operatorname{erf}\left(\frac{0-\mu}{\sigma \sqrt{2}}\right)\right]} \tag{0-12}
\end{equation*}
$$

The mode of the distribution, μ, and the standard deviation of the solid area fraction, σ, remain to be evaluated. The mode may be defined implicitly in terms of the standard deviation from the basic geometry of the mixture. The total solid volume is equal to the sum of the elemental solid volumes.

$$
\begin{equation*}
\bar{\varepsilon}=\int_{0}^{1} \varepsilon d x \tag{6-13}
\end{equation*}
$$

Using the results of Equation (6-8) this expression may be written:

$$
\begin{equation*}
\bar{\varepsilon}=\int_{1}^{0}-\varepsilon f(\varepsilon) d \varepsilon \tag{6-14}
\end{equation*}
$$

Determination of an exact expression for the standard deviation is difficult. Stange [50] reports that the standard deviation is given by the relation,

$$
\begin{equation*}
\sigma=\frac{\text { constant }}{\sqrt{M}} \tag{6-15}
\end{equation*}
$$

where M is a measure of the sample size.

The exact value of the standard deviation is difficult to evaluate. However, it may be noted from Figure (6-3) that the effective conductivity tends to reach a fixed value for σ sufficiently large. Consequently a sufficiently large value of σ may be selected for analysis.
Development of an Effective Conductivity Correlation
Equations (6-9) and (6-10) have been obtained to predict the effective thermal conductivity of a two phase mixture as a function of the constituent conductivities and the volume fractions. These expressions are based upon the assumptions of zero and infinite lateral conductivity, respectively. Since the lateral conductivity of the mixture falls between these limits the two equations form a set of bounding limits for the physical case. As noted in the review of literature, numerous authors have proposed correlations which effectively imply that one of these two assumptions is sufficiently close to the physical system that it may be used in obtaining an effective conductivity expression. In spite of arguments presented for proponents of both methods, it does not appear possible to select, a priori, the correlation which is more consistant with physical system. Results from both correlations are then to be compared with experimental results.

Such a comparison has been made and the results are shown graphically in Figures (6-4), (6-5) and (6-6). These figures represent granular systems with: porosities of $0.31,0.43$ and $n .58$ respectively. The selected values renresent a range of packing fractions so that they may be considered as representative of all random packings. The non-dimensionalized effective conductivity is given as a function of the constituent conductivity ratios. The experimental values are taken from a number of independent sources and

FIGURE 6-3. EFFECT OF STANDARD DEVIATION IN AREA FRACTION UPON EFFECTIVE CONDUCTIVITY

FIGURE 6-4. COMPARISON OF BOUNDING CONDUCTIVITIES WITH EXPERIMENTAL DATA FOR A POROSITY OF 0.31

FIGURE 6-5. COMPARISON OF BOUNDING CONDUCTIVITIES WITH EXPERIMENTAL DATA FOR A POROSITY OF 0.43

FIGURE 6-6. COMPARISON OF BOUNDING CONDUCTIVITIES WITH EXPERIMENTAL DATA FOR A POROSITY OF 0.58
are listed in Table $6-1$. Note that the bulk of these data fall between the two bounding curves as would be anticipated. For a constituent conductivity ratio, $k_{d} / k_{c}<10$ either bounding equation gives reasonably accurate results. For $k_{d} / k_{c}>100$ both bounding equations deviate significantly from the experimental data. This indicates the reason why previous Ohm's law models, based upon an assumed regular array, have generally not been successful at higher constituent conductivity ratios. No doubt, some of the discrepancy has been countered by assuming a somewhat distorted array. Uniform heat flux models have been developed such that an inordinate amount of the higher conductivity material is arranged in series with itself. Thus the calculated conductivities have been raised above the lower bounding curve. Similarly for parallel isotherm models an excessive amount of the higher conductivity material is placed in parallel with itself and in series with the low conductivity phase. This distortion tends to result in a lower calculated conductivity than that of the upper bound.

Rather than assuming both an unrealistic heat flow model and a distorted distribution, three alternate approaches are suggested here. A uniform heat flux model and a parallel isotherm model were developed based upon a theoretical distribution of the granular material which has been experimentally verified. Since only the heat flow model is simplified, an experimentally derived correction factor for the heat flow shall be obtained for each correlation. In addition, an experimentally derived weighting factor shall be obtained for the two correlations. The effective thermal conductivity will then by given by:

$$
\begin{align*}
& k_{\text {eff }}=F_{\infty} k_{\infty} \tag{6-16}\\
& k_{\text {eff }}=F_{0} k_{0} \tag{6-17}\\
& k_{e f f}=k_{\infty}-F_{W}\left(k_{\infty}-k_{0}\right) \tag{6-18}
\end{align*}
$$

where:

$$
\begin{aligned}
& F_{\infty}=\text { Correction factor for nonparallel isotherms } \\
& F_{0}=\text { Correction factor for nonuniform heat flux } \\
& F_{W}=\text { Weighting factor for bounding equations }
\end{aligned}
$$

These correction factors are considered to be, in general, functions of the material solid fraction, constituent conductivity ratio, particle shape and particle size distribution. Unfortunately, previous attempts to describe arbitrary particle shapes with a single parameter have been largely unsuccessful [13]. Various statistical techniques have been proposed for accounting for particle size distribution [45, 54] but sufficient experimental data are not yet available to consider this parameter at this time. For this reason the correction factors are treated as functions of the conductivity ratios and the solid fractions only.

Equations (6-16) through 18) may be solved together with available experimental data to obtain the empirical values of the correction factors. This has been done for a wide range of data from the several sources as listed in Table 6-I. The correction factors listed do, of course, include both experimental error and data scatter. To obtain an easily usuable correlation these factors have been correlated into a polynomial function using a leastsquares technique [55]. The fitted correction factors have
been found to be represented by the functional relations:

$$
\begin{array}{rl}
\ln \left(F_{\infty}\right)= & 6.038+0.28697 \ln \left(k_{d} / k_{c}\right)-0.079693\left[\ln \left(k_{c} / k_{d}\right)\right]^{2} \\
& -42.035(1-\bar{\varepsilon})+94.701(1-\bar{\varepsilon})^{2}-0.91135(1-\bar{\varepsilon}) \ln \left(k_{d} / k_{c}\right) \\
& +0.0029629\left[\ln \left(k_{d} / k_{c}\right)\right]^{3}+0.0040281(1-\bar{\varepsilon})\left[\ln \left(k_{d} / k_{c}\right)\right]^{2} \\
& +0180897(1-\bar{\varepsilon})^{2} \ln \left(k_{d} / d_{c}\right)-69.049(1-\bar{\varepsilon})^{3} \\
\ln \left(F_{0}\right)= & -2.4006+0.83611 \ln \left(k_{d} / k_{c}\right)-0.0036959\left[\ln \left(k_{d} / k_{c}\right)\right]^{2} \\
& +12.426(1-\bar{\varepsilon})-16.278(1-\bar{\varepsilon})^{2}-3.0926(1-\bar{\varepsilon}) \ln \left(k_{d} / k_{c}\right) \\
& +0.0019151\left[\ln \left(k_{d} / k_{c}\right)\right]^{3}-0.034069(1-\varepsilon)\left[\ln \left(k_{d} / k_{c}\right)\right]^{2} \\
& +3.3197(1-\bar{\varepsilon})^{2} \ln \left(k_{d} / k_{c}\right)+2.5768(1-\bar{\varepsilon})^{3} \\
F_{W}=1 & 5287+0.064259 \ln \left(k_{d} k_{c}\right)-0.0064623\left[\ln \left(k_{d} / k_{c}\right)\right]^{2} \\
& -6.1759-\bar{\varepsilon}+11.059 \bar{\varepsilon}^{2}+0.22176 \bar{\varepsilon} \ln \left(k_{d} / k_{c}\right) \\
+ & 0.00015041\left[\ln \left(k_{d} / k_{c}\right)\right]^{3}-0.0042453 \bar{\varepsilon}\left[\ln \left(k_{d} / k_{c}\right)\right]^{2} \\
& -0.10921 \bar{\varepsilon}^{2} \ln \left(k_{d} / k_{c}\right)-7.2252 \bar{\varepsilon} 3 \tag{6-21}
\end{array}
$$

In conclusion, three correlations have been proposed for evaluating the effective thermal conductivity of granular systems. There appears to be no theoretical basis for selecting one solution in preference to the others. Thus, selection of the best correlation must be made solely on the basis of a comparison with experimental results.

Comparison of Available Heat Transfer Models

A number of proposed heat transfer models have been presented in the literature survey. No doubt a number of other correlations may be found through a more exhaustive search of the literature. Nevertheless, the equations which have been presented represent those models which are most prominently used in the current literature and in present engineering practice. Moreover, many of the models are somewhat redundant in that they represent only slight variations of the same basic geometrical assumptions.

The approach to be used in making a comparison of these correlations is to select models representing varying basic geometries and varying heat flow assumptions. Where two models of the same type are particularly well known both are included. Certain prominent models require the input of parameters which are generally unknown; these are, of necessity, excluded from the comparison.

Table 6-II includes a representative sample of correlations based on flux law models. Tables 6-III and 6-IV present Ohm's law models utilizinc the assumption of uniform heat flux. Table $6-V$ presents those 0 hm 's law models based upon an assumption of parallel isotherms. Table 6-VI includes those Onm's law models which include a weighting factor or a correction factor to circumvent the simplifying heat flow assumptions. Figure (6-7) presents the results of Equation (5-2) in a graphical form. Figures (6-8) through (6-10) present the results of Equations (6-16) through (6-18)

It should be noted that several of these equations have been extrapolated or extended beyond the range for which they are theoretically applicable. The correlations by Lord Rayleigh, Hengst, and Woodside were derived based on the assumption of a cubical array of uniform sized spheres. The geometrical limits on the solid fraction are then such that $0 \leq \bar{\varepsilon} \leq \pi / 6$. Similarly the equation presented by Schumann and Voss and by Preston are limited to solid fractions of $0.5 \leq \bar{\varepsilon} \leq 1$. In order to compare these correlations with the remaining correlations over the same number of cases it was necessary to extrapolate the derived equation beyond its theoretical limits; where extrapolation was not possible, the closest possible value of the solid fraction was taken.

Initial results indicated that the correlation by Gorring and Churchill [4] was in considerable error. It was suspected that a typographical error may have existed in the correlation as published. Following the approach described by the authors Equation (2-17) was rederived and the corrected form of the equation was found to be:

$$
\begin{align*}
& \frac{k_{e}}{k_{c}}=\frac{\pi}{6\left(1-\frac{k_{c}}{k_{d}}\right) C B}\left[\ln \left(\frac{\sqrt{B^{2}-B x_{0}+x_{0}^{2}}}{B+x_{0}}\right)+\sqrt{3} \tan ^{-1}\left(\frac{2 x_{0}-B}{B \sqrt{3}}\right)\right. \\
& \left.\quad-\sqrt{3} \tan ^{-1}\left(\frac{-1}{\sqrt{3}}\right)\right]+\left[1-\frac{\pi x_{0}}{4}\right] \tag{2-17a}
\end{align*}
$$

This equation was found to fit the experimental data much more closely.

In summarizing the results obtained from each correlation, it is found that the major sources of error can be attributed to the following causes:

1. Distorted particle geometry
2. Idealized heat flow
3. Absence of a finite particle contact area.

Not every source of error applies to each correlation. Typically one source will dominate depending upon the ratio of the constituent conductivities, k_{d} / k_{c}. It is difficult to define an exact range of k_{d} / k_{c} over which one source will dominate as the range will vary between models. However, it is possible to discuss relative ranges.

A system composed of materials of equal conductivities will itself have a conductivity equal to that of the constituents. This is true regardless of the distribution or contact areas. Moreover the assumptions of uniform heat flux and parallel isotherms are both valid for such a system. Consequently each model should be equally valid for $k_{d} / k_{c}=1$. If the ratio k_{d} / k_{c} is increased beyond 1.0 the effects of a distorted particle geometry appear as the dominant source of error. At still higher values of k_{d} / k_{c} the effects of the heat flow assumption become dominant. At yet higher values of k_{d} / k_{c} the effects of the particle contact area predominate.

The tendency of the particle contact area to predominate as a source of error at high constituent conductivity ratios is clearly demonstrated. In granular systems with extremely low gaseous conductivities direct particle to particle conductions will be a major mode of heat
transfer. The effective conductivity of any idealized system having no finite particle contact will approach zero as the conductivity of the gaseous phase approaches zero. An example of such action is shown in the results for a simulated lunar soil. These data are listed in the rables as cases 159 to 164. The bulk of the correlations yield results far below the experimental values. Those correlations based upon an assumed Gaussian distribution of the two phases are the exception. The reason for this action is attributed to the fact that, while the normalized Gaussian distribution allows only point contact, the granules are in close proximity over a larger area.

The assumption of a uniform heat flux tends to yield results somewhat smaller than the experimental value while the assumption of. parallel isotnerms tends to yield values which are overly large. This tendency can be offset by a distortion of the material distribution so that the effects are somewhat self compensating. However, the effects of these two factors are not the same overall ranges of k_{d} / k_{c}. Therefore, calculational results tend to be high or low depending on which factor. predominates:

The results of the comparison between the models is summarized in Table 6-VII. Here a nondimensionalized variance is listed for the results of each model calculated over all 172 cases of Table 6-1. The formula used in determining the variance is:

$$
\text { Variance }=\sum_{n=1}^{172}\left(\frac{k_{\text {eff }}-k_{\text {exp }}}{k_{h}}\right)^{2}
$$

where k_{h} is equal to either $k_{\text {eff }}$ or $k_{\exp }$, whichever is greater. This method of comparing the variance ensures that calculational results which are either high or low by the same factor are penalized equally for the difference.

It should be noted from Table 6-VII that Equation (5-2) equation together with the Equations (6-16), (6-17) and (6-18) result in the least variance. It is therefore concluded that these equations represent the closest estimation of the experimentally derived effective thermal conductivity.

The major source of error in these formulations is expected to be the failure to account for particle size distribution and shape. Additional experimental work in these areas would provide data from which Equations $(6-19),(6-20)$ and $(6-21)$ could be rederived to more closely fit the actual effect of bending of the heat flux lines.

Failure to account for the contact resistance between particles may or may not be an important source of error. If contact resistance were an important parameter it would be anticipated that the effective thermal conductivity of a system would be a definite function of particle size. Systems of small particles would then have a lower conductivity than systems of large particles, all other parameters being equal. While sufficient data of the necessary kind is not available to draw a definite conclusion, comparisons can be made. Waddams [6] lists the thermal conductivity of $1 / 8$ inch steel spheres in air (Case 84, Table $6-\mathrm{I}$) as $0.517 \mathrm{kcal} / \mathrm{m}-\mathrm{hr}-\mathrm{K}$ while that of $7 / 32$ inch steel spheres (Case 107, Table 6-I) is given as only $0.403 \mathrm{kcal} / \mathrm{m}-\mathrm{hr}-\mathrm{K}$; the smaller
diameter, lower density particles are reported to have the larger conductivity in this case. Other data may show similar or opposite trends. Further experimental work will be required before a definite conclusion may be drawn.

The results of Table 6-vI and Table 6-VII indicate that the proposed models each perform well over the range of constituent conductivity ratios of $0 \leq k_{d} / k_{c} \leq 70^{9}$. Further, it is seen that most previous models fail at much lower conductivity ratios. Thus the correlations described herein represent a significart extrapolation of previous models.

TABLE 6-I. COMPARISON OF BOUNDING CONDUCTIVITIES TO EXPERIMENTAL CONDUCTIVITIES

Case	Conductivity, ($\mathrm{c}_{\mathrm{cal}} / \mathrm{m}-\mathrm{hr}-\mathrm{k}$) $\times 100$					$\left(k_{d} / k_{c}\right)$	$1-\bar{\varepsilon}$	Ref.
	Fluid Phase	Solid Phase	Experiment	Uniform Heat Flux	Parallel Isotherms			
1	$\begin{aligned} & \text { Air } \\ & 2.41 \end{aligned}$	$\begin{aligned} & \text { Calcite } \\ & 310 \end{aligned}$	21.4	12.1	64.8	128.63	. 493	6
2	$\begin{aligned} & \text { Air } \\ & 2.41 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 1650 \end{aligned}$	22.4	16.1	261.1	684.647	. 489	36
3	$\begin{aligned} & \text { Helium } \\ & 11.95 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 1650 \end{aligned}$	75.5	60.48	341.2	138.075	. 489	36
4	Glycerin 45.4	$\begin{aligned} & \text { Steel } \\ & 1650 \end{aligned}$	246	170.6	456.4	36.343	. 489	36
5	Water 51.6	$\begin{aligned} & \text { Steel } \\ & 1650 \end{aligned}$	272	187.4	471.9	31.976	. 489	36
6	CO_{2} .08016	$\begin{aligned} & \text { Basalt } \\ & 10.76 \end{aligned}$	1.015	. 0047	2.259	134.177	. 470	3
7	$\begin{aligned} & \mathrm{EtOH} \\ & 15.7 \end{aligned}$	$\begin{aligned} & \text { Calcite } \\ & 310 \end{aligned}$	63.6	49.9	101	19.745	. 465	56
8	$\begin{aligned} & \text { Air } \\ & 2.47 \end{aligned}$	$\begin{aligned} & \text { Calcite } \\ & 310 \end{aligned}$	25	11.9	65.7	128.63	. 458	6
9	$\begin{aligned} & \text { Air } \\ & 2.13 \end{aligned}$	$\begin{aligned} & \text { Caicite } \\ & 310 \end{aligned}$	17.5	10.6	65.7	145.54	. 454	56

TABLE 6-I. Continued

TABLE 6-1. Continued

22	$\begin{aligned} & \text { Air } \\ & 2.308 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	21.89	13.0	181.7	421.9353	. 437	36
23	$\begin{aligned} & \text { Air } \\ & 2.34 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3950 \end{aligned}$	34.1	15.8	604.7	1645.2996	. 435	6
24	$\begin{aligned} & \mathrm{EtOH} \\ & 29.34 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	144.7	98.4	302.0	33.198	. 434	36
25	$\begin{aligned} & \text { Air } \\ & 2.34 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 2950 \end{aligned}$	34.4	15.4	475.7	1260.6841	. 433	6
26	Water 54.5	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	244.9	154.3	356.1	17.8689	. 431	36
27	$\begin{aligned} & \text { IC8 } \\ & 12.29 \end{aligned}$	$\begin{aligned} & \text { Glass } \\ & 93.96 \end{aligned}$	35.14	26.5	44.6	7.6485	. 431	36
28	$\begin{aligned} & 0 i 1 \\ & 15.4 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 2410 \end{aligned}$	81.5	73.1	533.3	156.4935	. 430	42
29	$\begin{aligned} & \text { Water } \\ & 54.5 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	224.9	154.3	356.1	17.8689	. 430	36
30	Water 54:5	Silica 973.9	217.4	154.3	356.1	17.8689	. 430	36
31	Hater 54.5	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	218.9	154.3	356.1	17.8689	. 430	36
32	Water 54.5	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	218.9	154.3	356.1	17.8689	. 430	36

TABLE 6-I. Continued

33	$\begin{aligned} & \mathrm{H}_{2} \\ & 14.85 \end{aligned}$	$\begin{aligned} & \text { SiC } \\ & 1550 \end{aligned}$	91	65	!	371.3	104.3771	. 429	37
34	$\begin{aligned} & \text { Air } \\ & 2.08 \end{aligned}$	$\begin{aligned} & \operatorname{sic} \\ & 1550 \end{aligned}$	20	12.8		266.2	745.1921	. 429	37
35	$\begin{aligned} & \mathrm{CO}_{2} \\ & 1.26 \end{aligned}$	$\begin{aligned} & \mathrm{SiC} \\ & 1550 \end{aligned}$	15.6	8.3		250.6	1230.1594	. 429	37
36	$\begin{aligned} & \text { I.c8 } \\ & 2.29 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	94.4	50.6		247.0	79.2727	. 428	36
37	$\begin{aligned} & 1 . C 8 \\ & 12.29 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	94.0	50.7		247	79.2727	. 428	36
38	Gipycerin 46.3	Glass 94	73.3	29.1		73.3	2.0289	. 428	36
39	$\begin{aligned} & \text { Vater } \\ & 64.5 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	207.0	156.7		350.5	17.8689	. 426	36
40	Water 54.5	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	212.9	153.4		358.0	17.8689	. 426	36
41	$\begin{aligned} & \text { Air } \\ & 2.31 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	22.3	13		182.6	421.9353	. 426	36
42	$\begin{aligned} & \text { IC8 } \\ & 12.29 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	70.9	50.4		248.4	79.2727	. 426	36
43	$\begin{aligned} & \text { fir } \\ & 2.31 \end{aligned}$	$\begin{aligned} & \text { G1ass } \\ & 94.0 \end{aligned}$	18.5	8.1	1	27.9	40.7097	. 426	36

TABLE 6-I. Continued

44	Helium 11.95	$\begin{aligned} & \mathrm{SiC} \\ & 1550 \end{aligned}$	61.5	54.4	357.5	129.7071	. 425	3
45	Hydrogen 14:85	$\begin{aligned} & \text { SiC } \\ & 1550 \end{aligned}$	85	64.7	373.3	104.3771	. 425	37
46	$\begin{aligned} & \text { Air } \\ & 2.08 \end{aligned}$	$\begin{aligned} & \mathrm{SiC} \\ & 1550 \end{aligned}$	22.6	12.7	267.7	745.1921	. 425	37
47	$\begin{aligned} & \mathrm{CO}_{2} \\ & 1.26 \end{aligned}$	$\begin{aligned} & \text { SiC } \\ & 1550 \end{aligned}$	14.7	8.2	252	1230.1594	. 425	37
48	$\begin{aligned} & \text { Air } \\ & 2.31 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	22.6	13	182.6	421.9353	. 424	36
49	$\begin{aligned} & \mathrm{CO}_{2} \\ & 7.2 \end{aligned}$	$\begin{aligned} & \text { Si0 } \\ & 700 \end{aligned}$	16.3	7.1	125	583.3333	. 424	36
50	$\begin{aligned} & \text { Air } \\ & 2.41 \end{aligned}$	$\begin{aligned} & \text { Sio } \\ & 700 \end{aligned}$	23.8	12.8	139.5	290.4563	. 424	36
51	$\begin{aligned} & \text { Air } \\ & 2.41 \end{aligned}$	$\begin{aligned} & \text { Si0 } \\ & 700 \end{aligned}$	23.4	12.8	139.5	290.4563	. 424	36
52	$\begin{aligned} & \text { Air } \\ & 2.41 \end{aligned}$	$\begin{aligned} & \text { Sio } \\ & 700 \end{aligned}$	25.2	12.8	139.5	290.4563	. 424	36
53	$\begin{aligned} & \text { Glycerin } \\ & 26.3 \end{aligned}$	Silica 973.9	205.5	136.6	342.2	21.0289	. 424	36
54	$\begin{aligned} & \text { Air } \\ & 2.34 \end{aligned}$	$\begin{aligned} & \text { Stee } 1 \\ & 3850 \end{aligned}$	44.6	15.7	608	1645.2996	. 423	6

TABLE 6-I. Continued

55	$\begin{aligned} & \mathrm{EtOH} \\ & 29.3 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	163.8	97.9	303.6	33.1980	. 423	36
56	$\begin{aligned} & \mathrm{EtOH} \\ & 29.3 \end{aligned}$	$\begin{aligned} & \text { Glass } \\ & 94.0 \end{aligned}$	55.4	45.3	61.7	3.2030	. 423	36
57	$\begin{aligned} & \text { Air } \\ & 2.34 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 2950 \end{aligned}$	36	15.3	478.3	1260.6841	. 420	6
58	$\begin{aligned} & \text { Air } \\ & 2.41 \end{aligned}$	$\begin{aligned} & \text { Glass } \\ & 93.5 \end{aligned}$	17.1	8.4	28.1	38.7967	. 420	36
59	Helium 11.95	$\begin{aligned} & \text { Glass } \\ & 93.5 \end{aligned}$	34.2	25.9	44.3	7.8243	. 420	36
60	$\begin{aligned} & \text { Helium } \\ & 11.95 \end{aligned}$	$\begin{aligned} & \text { Glass } \\ & 93.5 \end{aligned}$	35.6	25.9	44.3	7.8243	. 420	36
61	$\begin{aligned} & \text { EtOH } \\ & 29.6 \end{aligned}$	$\begin{aligned} & \text { Glass } \\ & 93.5 \end{aligned}$	53.3	45.5	61.8	3.1588	. 420	36
62	$\begin{aligned} & \mathrm{EtOH} \\ & 29.6 \end{aligned}$	$\begin{aligned} & \text { Glass } \\ & 93.5 \end{aligned}$	55	45.5	61.8	3.1588	. 420	36
63	$\begin{aligned} & \text { Glycerol } \\ & 45.4 \end{aligned}$	$\begin{aligned} & \text { Glass } \\ & 93.5 \end{aligned}$	71.4	58.1	73.8	2.0595	. 420	36
64	$\begin{aligned} & \text { Water } \\ & 51.6 \end{aligned}$	$\begin{aligned} & \text { Glass } \\ & 93.5 \end{aligned}$	71.6	62.3	78.1	1.8120	. 428	36
65	kater 51.6	$\begin{aligned} & \text { Glass } \\ & 93.5 \end{aligned}$	71.4	62.3	78.1	1.8120	. 420	36

TABLE 6-I. Continued

66	Water 51.1	$\begin{aligned} & \text { Lead } \\ & 3000 \end{aligned}$	358	196.1	816.9	58.7084	. 420	42.
67	$\begin{aligned} & \text { IC8 } \\ & 12: 3 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	70.7	50.4	248.4	79.2727	. 420	36
68	$\begin{aligned} & \text { IC8 } \\ & 12.3 \end{aligned}$	Silica 973.9	71.3	50.4	248.4	79.2727	. 419	36
69	$\begin{aligned} & \mathrm{EtOH} \\ & 29.3 \end{aligned}$	Silica 973.9	144.4	97.9	303.6	33.198	. 418	36
70	$\begin{aligned} & \text { Air } \\ & 2.34 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3850 \end{aligned}$	37.8	15.7	608	1645.2996	. 417	6
71	$\begin{aligned} & \text { Air } \\ & 2.48 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 2950 \end{aligned}$	42.5	16.1	481.4	1189.5161	. 417	57.
72	$\begin{aligned} & \text { Air } \\ & 2.25 \end{aligned}$	$\begin{aligned} & \text { Quartz } \\ & 945 \end{aligned}$	29.7	12.7	177.3	420	. 416	35.
73	$\begin{aligned} & \text { Air } \\ & 2.34 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 2950 \end{aligned}$	36.4	15.3	478.3	1260.6841	. 416	6
74	$\begin{aligned} & \text { Air } \\ & 2.308 \end{aligned}$	$\begin{aligned} & \text { Glass } \\ & 94.0 \end{aligned}$	17.1	8.1	27.9	40.7097	. 414	36
75	Water 54.5	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	230.8	153.4	358.0	17.8689	. 414	36
76	$\begin{aligned} & \text { Air } \\ & 2.34 \end{aligned}$	$\begin{aligned} & \text { Stee } \\ & 3850 \end{aligned}$	35.1	15.7	608	1645.2996	. 413	61

TABLE 6-I. Continued

77	Hydrogen 14.85	$\begin{aligned} & \mathrm{SiC} \\ & 1550 \end{aligned}$	100.7	64.7	373.3	104.3771	. 410	37
78	$\begin{aligned} & \text { Air } \\ & 2.08 \end{aligned}$	$\begin{aligned} & \text { SiC } \\ & 1550 \end{aligned}$	22.4	12.7	267.7	745.1921	. 410	37
79	$\begin{aligned} & \mathrm{CO}_{2} \\ & 1.26 \end{aligned}$	$\begin{aligned} & \mathrm{SiC} \\ & 1550 \end{aligned}$	17.8	82.1	252	1230.1594	. 410	37
80	$\begin{aligned} & \text { Air } \\ & 2.86 \end{aligned}$	$\begin{aligned} & \text { Sand } \\ & 187.5 \end{aligned}$	20.7	11.3	49.9	65.6250	. 410	29
81	$\begin{aligned} & \mathrm{EtOH} \\ & 29.3 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	154.9	97.9	303.6	33.1980	. 410	36
82	Vater 54.5	Glass 94	73.1	64.3	80.2	1.7240	. 408	36
83	$\begin{aligned} & \text { Air } \\ & 2.31 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973.9 \end{aligned}$	24.6	13	182.6	421.9353	. 408	36
84	$\begin{aligned} & \text { fir } \\ & 2.34 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3850 \end{aligned}$	51.7	15.7	608	1645.2996	. 406	6
85	$\begin{aligned} & \text { Air } \\ & 2.14 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 3000 \end{aligned}$	32.3	14.1	481.1	1401.8694	. 406	42
86	$\begin{aligned} & \text { Air } \\ & 2.48 \end{aligned}$	$\begin{aligned} & \text { Copper } \\ & 32950 \end{aligned}$	78.6	18.4	4700	13313.2539	. 403	56
87	$\begin{aligned} & \text { Air } \\ & 2.34 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3850 \end{aligned}$	36.8	15.7	608	1645.2996.	. 402	6

TABLE 6-I. Continued

88	$\begin{aligned} & \text { Air } \\ & 2.34 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3850 . \end{aligned}$	47.5	15.7	608.0	1645.3	. 401	6
89	$\begin{aligned} & \text { Air } \\ & 2.14 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 3000 . \end{aligned}$	32.5	14.1	481.1	1401.9	. 401	42
90	$\begin{aligned} & \text { Air } \\ & 2.25 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 3030 . \end{aligned}$	37.0	14.8	487.9	1346.7	. 400	35
91	Hydrogen 16.6	$\begin{aligned} & \text { Lead } \\ & 3030 . \end{aligned}$	120.6	80.8	655.2	182.5	. 400	35
92	Water 54.5	$\begin{aligned} & \text { Lead } \\ & 3030 . \end{aligned}$	298.0	206.5	835.3	55.6	. 400	35
93	Glycerin 24.4	$\begin{aligned} & \text { Lead } \\ & 3030 . \end{aligned}$	176.0	110.1	704.9	124.2	. 400	35
94	Hydrogen 12.6	$\begin{aligned} & \text { G1ass } \\ & 93.5 \end{aligned}$	39.6	26.7	45.1	7.42	. 400	57
95	$\begin{aligned} & \text { Air } \\ & 2.48 \end{aligned}$	$\begin{aligned} & \text { Glass } \\ & 93.5 \end{aligned}$	15.5	8.6	28.3	37.7	. 400	57
96	$\begin{aligned} & \text { Air } \\ & 2.91 \end{aligned}$	$\begin{aligned} & \text { Stee } 1 \\ & 4500 . \end{aligned}$	53.2	19.4	714.8	1546.4	. 400	29
97	$\begin{aligned} & \text { Air } \\ & 291 \end{aligned}$	Steel 4500.	55.4	19.4	714.8	1546.4	. 400	29
98	$\begin{aligned} & \text { Air } \\ & 2.91 \end{aligned}$	Steel $4500 .$	58.5	19.4	714.8	1546.4	. 400	29

TABLE 6-I. Continued

99	$\begin{aligned} & \text { Air } \\ & 2.91 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 4500 \text {. } \end{aligned}$	59.5	19.4	714.8	1546.4	. 400	29
100	$\begin{aligned} & \text { Air } \\ & 2.91 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 4500 . \end{aligned}$	61.1	19.4	714.8	1546.4	. 400	29
101	$\begin{aligned} & \text { Air } \\ & 2.34 \end{aligned}$	$\begin{aligned} & \text { Cellite } \\ & 92.0 \end{aligned}$	23.4	8.2	27.5	39.3	. 400	42
102	$\begin{aligned} & \text { Air } \\ & 2.41 \end{aligned}$	$\begin{aligned} & \text { Coal } \\ & 36.0 \end{aligned}$	10.2	6.4	13.9	14.9	. 400	42
103	$\begin{aligned} & \mathrm{EtOH} \\ & 15.7 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 3000 . \end{aligned}$	126.0	77.0	643.3	191.1	. 397	36
104	$\begin{aligned} & \text { Air } \\ & 2.34 \end{aligned}$	$\begin{aligned} & \text { Stee } 1 \\ & 3850 . \end{aligned}$	43.5	15.7	608.0	1645.3	. 394	6
105	$\begin{aligned} & \text { Air } \\ & 2.34 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3850 . \end{aligned}$	51.7	15.7	608.0	1645.3	. 394	6
106	$\begin{aligned} & \mathrm{EtOH} \\ & 29.3 \end{aligned}$	Copper 33163.	327.6	198.4	5197.1	1130.5	. 392	36
107	$\begin{aligned} & \text { Air } \\ & 2.34 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3850 \text {. } \end{aligned}$	40.3	16.0	597.1	1645.3	. 391	6
108	Water 50.9	$\begin{aligned} & \text { Lead } \\ & 3000 . \end{aligned}$	327.0	193.5	824.8	58.9	. 391	42
809	$\begin{aligned} & \text { Air } \\ & 2.34 \end{aligned}$	Steel 3850 。	44.6	15.6	674.4	1645.3	. 390	6

TABLE 6-I. Continued

110	$\begin{aligned} & \text { Air } \\ & 2.85 \end{aligned}$	$\begin{aligned} & \text { Sand } \\ & 187.6 \end{aligned}$	26.3	11.1	50.4	65.6	. 390	29
111	$\begin{aligned} & \text { Air } \\ & 2.38 \end{aligned}$	Quartz 950.1	41.8	13.2	181.7	398.7	. 390	56
112	$\begin{aligned} & \mathrm{EtOH} \\ & 29.8 \end{aligned}$	Copper 11500.	318.0	163.7	2210.0	385.9	. 388	36
113	$\begin{aligned} & \mathrm{EtOH} \\ & 29.8 \end{aligned}$	$\begin{aligned} & \text { Copper } \\ & 11500 . \end{aligned}$	342.0	163.7	2210.0	385.9	. 388	36
114	$\begin{aligned} & \text { Glycerin } \\ & 45.4 \end{aligned}$	Copper 11500	580.0	232.2	2370.0	253.3	. 388	36
115	$\begin{aligned} & \text { Glycerin } \\ & 45.4 \end{aligned}$	Copper 11500.	595.0	232.2	2370.0	253.3	. 388	36
116	$\begin{aligned} & \text { Water } \\ & 51.6 \end{aligned}$	Copper 11500	550.0	257.8	2424.0	222.9	. 388	36
117	Water 51.6	Copper 11500.	615.0	257.8	2424.0	222.9	. 388	36
118	$\begin{aligned} & \text { Water } \\ & 51.6 \end{aligned}$	$\begin{aligned} & \text { Copper } \\ & 11500 . \end{aligned}$	630.0	257.8	2424.0	222.9	. 388	36
119	Water 54.5	Copper $33163 .$	629.9	321.2	5950.6	608.5	. 387	36
120	Water 54.5	Copper 33163.	597.1	321.2	5950.6	608.5	. 387	36

TABLE 6-I. Continued

121	$\begin{aligned} & \text { EtOH } \\ & 29.33 \end{aligned}$	$\begin{aligned} & \text { Copper } \\ & 33163 . \end{aligned}$	323.1	321.2	5950.6	1130.5	. 386	36
122	$\begin{aligned} & \text { Giycerin } \\ & 46.3 \end{aligned}$	Copper 33163.	607.6	321.2	5950.6	716.1	. 386	36
123	Glycerin 46.3	Copper $33163 .$	549.5	187.5	5499.4	716.1	. 385	36
124	Water 54.5	Copper 33163.	634.4	279.4	5818.1	608.5	. 384	36
125	$\begin{aligned} & \text { Air } \\ & 2.43 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3030 . \end{aligned}$	45.0	15.7	497.1	1246.9	. 380	58
126	Methane 3.0	$\begin{aligned} & \text { Stee } 1 \\ & 3300 \text {. } \end{aligned}$	55.8	19.1	548.9	1100.0	. 380	58
127	$\begin{aligned} & \text { Propane } \\ & 1.6 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3300 \text {. } \end{aligned}$	35.0	10.9	516.5	2062.5	. 380	58
128	$\begin{aligned} & \mathrm{CO}_{2} \\ & 1.35 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3300 . \end{aligned}$	32.4	9.3	509.8	2444.4	. 380	58
129	Hydrogen 16.4	Steel 3300 .	188.0	80.4	708.4	201.2	. 380	58
130	$\begin{aligned} & \text { Air } \\ & 2.34 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 2850 . \end{aligned}$	45.7	15.7	468.7	1217.9	. 380	6
731	$\begin{aligned} & 0 i 1 \\ & 15.4 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 2410 \text {. } \end{aligned}$	101.0	72.0	541.9	156.5	. 380	57

TABLE 6-I. Continued

132	$\begin{aligned} & \text { Air } \\ & 2.86 \end{aligned}$	$\begin{aligned} & \text { Sand } \\ & 187.6 \end{aligned}$	26.4	11.1	50.4	65.6	. 370	29
133	$\begin{aligned} & \text { Air } \\ & 2.25 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 2250 . \end{aligned}$	35.6	14.2	378.4	1000.0	. 365	35
134	Hydrogen 16.6	$\begin{aligned} & \text { Stee } 1 \\ & 2250 . \end{aligned}$	110.0	75.5	520.0	135.5	. 365	35
135	Helium 11.95	$\begin{aligned} & \text { Glass } \\ & 93.5 \end{aligned}$	31.1	25.6	44.8	7.8	. 350	37
136	$\begin{aligned} & \text { Air } \\ & 2.12 \end{aligned}$	$\begin{aligned} & \text { G1ass } \\ & 93.5 \end{aligned}$	13.8	7.5	27.5	44.1	. 350	37
137	$\begin{aligned} & \text { Air } \\ & 2.08 \end{aligned}$	$\begin{aligned} & \text { Glass } \\ & 59.1 \end{aligned}$	13.8	6.61	19.4	28.3	. 349	59 Ñ
138	$\begin{aligned} & \text { Air } \\ & 2.23 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 3030 . \end{aligned}$	34.2	14.5	492.6	1358.7	. 346	12
139	Hydrogen 14.9	$\begin{aligned} & \text { SiC } \\ & 1548.7 \end{aligned}$	95.4	64.1	377.2	104.0	. 328	59
140	$\begin{aligned} & \text { Air } \\ & 2.08 \end{aligned}$	$\begin{aligned} & \mathrm{SiC} \\ & 1548.7 \end{aligned}$	27.3	12.6	270.4	742.8	. 328	59
141	$\begin{aligned} & \mathrm{CO}_{2} \\ & 1.27 \end{aligned}$	$\begin{aligned} & \mathrm{SiC} \\ & 1548.7 \end{aligned}$	26.2	8.2	254.6	1223.5	. 328	59
142	Hydrogen 14.9	$\begin{aligned} & \text { Sic } \\ & 1548.7 \end{aligned}$	61.7	64.1	377.2	104.0	. 325	59

TABLE 6-I. Continued

143	Air	SiC						
	2.08	1548.7	27.0	12.6	270.4	742.9	. 325	59
144	CO_{2}	SiC						
	1.27	1548.7	25.2	8.2	254.6	1223.5	. 325	59
145	Air	Quartz						
	2.38	950.1	49.0	13.4	178.1	398.7	. 310	56
146	Hydrogen	SiC						
	14.9	1548.7	110.8	62.5	386.4	104.0	. 308	59
147	Air	SiC						
	2.08	1548.7	27.5	12.3	277.0	742.9	. 308	59
148	CO_{2}	SiC						$\stackrel{\rightharpoonup}{\sim}$
	1.27	1548.7	26.4	7.97	260.7	1223.5	. 308	59
149	Helium	SiC						
	12.0	1548.7	85.2	52.7	260.7	129.2	. 308	59
150	Air	Lead						
	2.25	3030.	58.4	14.3	505.1	1346.7	. 310	35
151	Air	Quartz						
	2.25	945.0	70.0	12.2	183.5	420.0	. 276	37
152	Air	Quartz				-		
	2.25	945.0	76.0	12.2	183.5	420.0	.241	37
153	Water	S.S.						
	54.5	1795.9	272.5	195.8	496.8	33.0	. 507	36

TABLE 6-I. Continued

154	$\begin{aligned} & \text { G7ycerin } \\ & 46.3 \end{aligned}$	$\begin{aligned} & \text { S.S. } \\ & 1795.9 \end{aligned}$	248.7	172.9	475.5	38.8	. 502	36
155	$\begin{gathered} \text { EtOH } \\ 29.3 \end{gathered}$	$\begin{aligned} & \text { S.S. } \\ & \text { 1795.9 } \end{aligned}$	172.7	120.7	422.3	61.2	. 505	36
156	Hydrogen 14.85	$\begin{aligned} & \left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{NH} \\ & 18.9 \end{aligned}$	16.5	16.7	16.7	1.3	. 513	37
157	$\begin{aligned} & \text { Air } \\ & 2.08 \end{aligned}$	$\begin{aligned} & \left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{NH} \\ & 18.9 \end{aligned}$	6.9	5.1	7.5	9.1	. 513	37
158	Hydrogen 14.85	$\begin{aligned} & \text { SiC } \\ & 1550 . \end{aligned}$	46.	68.3	322.1	104.4	. 518	37
159	$\begin{aligned} & \mathrm{CO}_{2} \\ & .7578 \times 10^{-7} \end{aligned}$	$\begin{aligned} & \text { Basalt } \\ & 90.7 \end{aligned}$. 1061	. 1280×10	10.53	5.75×10	. 540	3
160	$\begin{aligned} & \mathrm{CO}_{2} \\ & .1856 \times 10^{-7} \end{aligned}$	$\begin{aligned} & \text { Basalt } \\ & 90.7 \end{aligned}$. 08183	. 1760×10	9.0	4.89×10	. 600	3
161	$\begin{aligned} & \mathrm{CO}_{2} \\ & .2373 \times 10^{-7} \end{aligned}$	$\begin{aligned} & \text { Basalt } \\ & 90.7 \end{aligned}$. 05598	. 1933×10	10.47	3.82×10	. 654	3
162	$\begin{aligned} & \mathrm{CO}_{2} \\ & .2967 \times 10^{-7} \end{aligned}$	$\begin{aligned} & \text { Basalt } \\ & 90.7 \end{aligned}$. 0511	. 2747×10	8.90	3.16×10	. 683	3
163	$\begin{aligned} & \mathrm{CO}_{2} \\ & .4764 \times 10^{-7} \end{aligned}$	$\begin{aligned} & \text { Basalt } \\ & 90.7 \end{aligned}$. 0414	. 181×10	19.15	2.23×10	. 721	3
164	$\begin{aligned} & \mathrm{CO}_{2} \\ & .1464 \times 10^{-7} \end{aligned}$	Basalt 90.7	$\text { . } 1404$. 652×10	19.15	6.19×10	. 470	37

TABLE 6-I Continued

165	$\begin{aligned} & \text { Air } \\ & 2.08 \end{aligned}$	$\begin{aligned} & \text { SiC } \\ & 1550 . \end{aligned}$	15.6	12.7	218.9	745.2	. 518	37
166	$\begin{aligned} & \mathrm{CO}_{2} \\ & 1.26 \end{aligned}$	$\begin{aligned} & \text { SiC } \\ & 1550 . \end{aligned}$	11.85	8.1	205.6	1230.2	. 518	37
167	$\begin{aligned} & \text { Air } \\ & 2.47 \end{aligned}$	$\begin{aligned} & \text { Iron } \\ & 5628.9 \end{aligned}$	39.9	13.2	584.0	2277.1	. 575	56
168	$\begin{aligned} & 0 i 1 \\ & 15.4 \end{aligned}$	Copper 32000.	130.	80.6	3365.	2077.9	. 580	57
169	$\begin{aligned} & 0 i 1 \\ & 15.4 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3500 . \end{aligned}$	81.5	62.2	512.8	227.3	. 580	42
170	$\begin{aligned} & 0 i 1 \\ & 15.4 \end{aligned}$	$\begin{aligned} & \text { G1ass } \\ & 61.2 \end{aligned}$	29.8	25.2	31.2	3.974	. 580	42
171	$\begin{aligned} & 0 i 1 \\ & 15.4 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 2410 . \end{aligned}$	60.	58.7	381.7	156.5	. 580	42
172	$\begin{aligned} & \mathrm{CO}_{2} \\ & .2013 \end{aligned}$	$\begin{aligned} & \text { Basalt } \\ & 96.8 \end{aligned}$	1.024	. 602	18.28	480.7	. 720	3

TABLE S-II COMPARISON OF SELECTED FLUX LAW MODELS

C: $5:$		EFFECTIVE Treg	vouctivity	$(M-H R-x)$	
CAS	YXPG2 TMENTAL	MA XEVELL	FAYLEIGH	$\begin{aligned} & \text { YEEEDITH } \\ & \text { \& TOPIAS } \end{aligned}$	BPUGGEMAN
1	22.30458	9.5604	10.32832	11.9257	17.31554
2	$\therefore 2.05500$	S08037	10.85322	12.4794	19.95783
$=$	75.5.	47.9:758	52.14: ${ }^{\text {' }}$	-". 15023	8R. $51.4 / 8$
4	226	106.57621	173.89758	268.61994	254.9:924
3	272.	180.62283	199.79781	233.31593	278.58374
0	is 15%	- 53804	$\because 3763 ?$	$\because 42272$	$\because 654.5$
7	03.55699	50.1492	6.14163	7.91235	77. 23344
$=$	25....	1.54 .335	11.85223	13.50271	2.33421
\bigcirc	27.5	9.47802	$1 \cdot 723{ }^{3}$	12.25495	19.18465
1	63.5 \%	57.55\%30	62.29413	73.55556	$8 \% 1877$
11	!こ?.....	130.42792	134.33577	158.94153	143.49553
\because	$i 5$.	3.5229%	1 -91323	$12.341 \% 7$	$19.422 \% 4$
' $=$	17.2	$9.566 \geq 8$	$1 \cdot n 62 \%$	12.39723	17.5:473
$\therefore 4$; . $=3595$	10.87432	12.47522	14.11478	25.77587

TABLE G－II CONTINUED

		EFFACTIVE TAEAMAL CCNDUCTIVITY（KCAL／M－HR－K）X y＊			
Cくらこ		MAXV：$=\mathrm{L}$	RAYLFIGH	$\begin{aligned} & \text { MERFDITH } \\ & \varepsilon_{1} T O B I A S \end{aligned}$	RRUGGEMAN
\because	1230	122．23： 25	136.36444	161.73436	145.45194
$\therefore \mathrm{ic}$	36.5	$11.394 \bar{c}^{\circ}$	13.12904	14.79332	25.900 .7
：． 7	$230+49$	13．2624c	13.12744	14.74412	26．96009
18	E10．${ }^{\text {\％}}$	$2 \cdot 3 \cdot 245$	221．369．6	262.35938	270．5：317
10	26.76595	1.771 .95	12.53937	1．4．111：4	24.39319
\therefore	11．0	8.21585	8.71648	15.59934	$1 \because 98189$
$\therefore 1$	25.29639	25.9233	26.1422	28.5918	26．13719
$3 ?$	\％10．9．	11． 8524	12.92428	14.53338	25．7322
2	340955	ii．4I 34	13．3¢832	14.99745	27.84776
24	i＜4．7	123．84．36	137.1313.	151.94435	198．32986
25	34.3545	11.48218	$13.59^{2} 69$	15．1．2 1	28． 5673
－t	$244.85 c 95$	27.3 .269	227 22255	20\％．5．562	285.59214
27	35.14 .1	350.0357	37.77673	45036514	49.25337
2E	$\bar{c} 105^{\cdots}$	740119	86.59778	97.54688	16% 52133

TABLE ס－II CONTINUED

ciata		ESFECTIVE THER	nouctivity	（KCAL／M－HR－K）$\times 1$－	
C43：	＝xockimfotal	NAXPELL	FAYLEIGH	MEPEDITH \＆TOSIAS	RRUGGEMAV
29	$224.85 c 95$	2：7．823：4	228．4282	$27 \% .41699$	286．4．747
3	A17．3ccss	2．7．82314	229．4282	27＊．41690	286． 252 ～ 5
31	218．8ccse	2 2．7．82314	228．4282	27\％．41699	286．36499
$こ ゙$	218.80999	2．7．82314	228．4282	276．41699	286.36499
23	$\mathrm{m}_{0} 0 \therefore \therefore \%$	7.38313	82．1788	92.81613	144.37750
34	$2 \cdots$	$1038: 3$	12.19856	12．6＊151	25.16855 ふু
25	1506	5.26272	7.41735	8．26378	15.52164
$3 t$	44.30593	57.51353	$66.765 \% 3$	75．87：54	$112.611^{\text {a }} 5$
27	54.35959	57.51353	66.765 .3	75．87＂ 54	112．61195
2 x	72．2csso	$7 \times * 8798$	7.25729	76.85907	7：51149
34		2：9．92188	231．12563	274．1）35？	299．76667
4	こう2．esccs	2：9．92139	23！．12．563．	274．19352	289．84961
41	22.20053	11.49383	$13.64: 46$	15．2118＊	27.59543
＜	7．8．8999	57．8671．	67.37192	76.45379	113.76636

TABLE 6-II. CONTINUED

TABLE 6-II. CONTINUED

Cos:	EXPERTVENTAL	MAXWELL	RAYLEIGH	$\begin{aligned} & \text { MFREDITH } \\ & \varepsilon \text { TOEIAS } \end{aligned}$	RRIJGGEMAN
57	35.1.	11.97062	-4.417\%	15.9213°	3.67448
58	17ascos	1.8.734	12.42:18	14.31834	18.3:139
5.	34.2.	36.13373	38.07352	$45.94 \% 64$	41.58cm
6	35.53099	36.13033	30.7352	45.94964	41.59145
C:	52.25950	580.6 .36	58.721 .7	67.75724	59.6"211
6	Es。	53. $\mathrm{s}^{\text {^ }} 36$	$58.7 ? 1 \% 7$	67.75734	59.6-846
$\therefore 3$	7ioscres	60.59447	69.89546	76.79613	7.1371n
64	71,5599	73.42126	73.53889	79.453 .15	73.66144
$=5$	71.2565	73.42120	73.53290	70.45915	73.692:7
t.	$35 \varepsilon \therefore$	230.40676	279.155:3	317.83447	447.21973
67	7: 7	58.09115	69.3`759	78.34<39	117.33720
6	7.2005	59.17295	69.63153	78.64911	117.93212
$t s$	144.25c39	120.4.219	$149.14{ }^{\prime \prime}$	171.56953	210.78?99
7.	37.7559	12.1117?	24.65577	16.1357%	31.52958

TABLE 6－1I．CONTINUED

Cata		三日rsctive themmal conouctivity（KCAL／M－Hf－K）x 1 ¢			
Cos：	Expremmedtal	NAXWELL	RAYLEICH	$\begin{aligned} & \text { MFPFRITH } \\ & \varepsilon \text { TOSIAS } \end{aligned}$	BRIJGGEMAN
71	42.5	$18.81{ }^{\text {cid }} 3$	15.51392	17．：7914	33．9207
$7 ?$	$2 \bigcirc .7$	11． 5 ¢5bi	23.07301	15．42．64	26.57444
$7 ?$	$36.25 c 55$	12.13545	14．72．：55	16.18491	31.54257
74	17．6500	1－59676	12.30149	14.11691	18．3＾182
75	？ 3 －7565	210.39337	$24 \cdot 9,4163$	285.57251	3＊＊．02358
7 c	35，cosm	12.27368	14.07375	$16.4 \div 41.9$	32.44335
77	$\because \quad .7$	74．7279	39.82299	1：9．99573	159．95567
75	22．345c	1.972 .8	13．44718	14．7 ${ }^{15}$	28.6317
75	17．7c59	万， 66732	8.18226	8.93278	17．7～522
S	$2.7 \cdot$	13．94672	16．5717．	18．67726	27.15118
8.	：34085499	232.39192	153．15465	17n． 77412	217．64229
52	73.0955	75.78594	75.89779	81.73867	75.99522
$\varepsilon \pm$	24056599	12019252	14.9553.	16.36278	940.0295
厸	51.7%	320．56428	85055835	360.32957	34009098

TABLE 6-II. CONTINUED

TABLE 6－11．CONTINUED

SATH		EFFECTIVE THERMAL CONDUCTIVITY（KCAL／M－HP－K）X I			
CLSE	－XPEPJMENAL	Naximell	FAYLEIGH	NERECITH \＆tobias	RRUGGEMAN
S：	5505	$15.9<177$	2\％＊313	？ 2.55320.	44.97 76
	E1．cosa	15．94177	2 －0． 213	21．5329	44.2268°
		11.14026	$13.19: 73$	150：31：6	19．4：2＂5
$i=$	$1 \cdot 2$	$9.46 \cdot d ?$	1．0544：5	12.59192	12.64756
		$84.5 .438$	1：5．37512	114.45631	2． 5.92 .126
？	126．	13． 18748	16．6591：	17.76472	37.21918 37.22695
1． 5	51.7	13.6748	16.65913	17．7647？	37．22635
	$32705 \leq 545$	564．718＂3	21．052751	223.961 .3	466.13599
$1 \pm$		$13.223: 7$	16．552．2	17．9933．0	37．98：53
	4： 20.85	26：024 7	319.54712	255082183	511.55884
${ }^{\text {® }}$	三27。	13.25980	$170 \times 0 \times 20$	130：7039	38.34334
16	44055690				
	26.27595	2406\％	19.24736	2＂．16972	29.88664
S：			i70ッ4iv3	88.85583	35099596
112	I190．．．	2480． 2566			
			$2: 5.88791$	220．29046	45803.823

TABLE 6－II．CONTINUED

Ents		CFFECTIVE THER4AL COADUCTIVITY（KCAL／M－HR－K）\times l			
625	ExOERINETTAL	Ma MEELL	RAYLEIGH	$\begin{aligned} & \text { MERENITH } \\ & \text { \& TOBIAS } \end{aligned}$	BRUGGEMAN
－1	ミム2．\quad.	250． 3545	225.74771	229.27545	454．04434
114	55.	252．84285	324.5 mm	345．4：3．8	658． $2944^{\circ} 4$
11：	555.	253．94235	$324.5 \% \%$	346．4＇3：9	659．9126r
115	55.4%	287.546 .14	366．958：1	$397.414: 6$	733．746＂9
217	615.	287054614	366．958．1	392.414 －6	734．41235
118	E3：	297．54614	366.958 .1	$302.414^{\prime \prime} 6$	734．46．753
$1: 5$	t25． $5 ¢ 5$	$21 \cdot 2174$	40.585	423.5835°	87：687：1
12	5：7． 59.85	31.2174	47.587^{-8}	423.5835°	$869.520 r 5$
121	ミ？3．cses	163．33691	$218.5 \cdot 092$	23＊ 2142	489．93589
122	6.705595	265.3631	342．4202＊	362.18555	754．622－7
125	E4c．5．	265.95825	345.538 .9	363.74438	759． 3125
124	634.365	313.45 .44	4：7．99486	$429 .: 7178$	880.40552
125	45.0	14．2403：	18.82113	$19.563^{\prime \prime} 4$	$42.4566 ?$
1.26	25．75ces	17.5794	23．108：9	24.14169	52．1／484

TABLE 6-II. CONTINUED

TABLE 6-II. CONTINUED

TABLE 6－11．CONTINUED

$\begin{aligned} & B+r: \\ & \text { COSE } \end{aligned}$	－Practive theanal conjuctivity（KCALIM－HE－K）x l				
		MA XWELL	FAYLEIGH	$\begin{aligned} & \text { MERFOITH } \\ & \varepsilon \text { TOBTAS } \end{aligned}$	RRUGGEYAN
i E ：	272.7	】7．7シ1．57	115．24449	133.54227	175．574＊2
isi	10．3	25.7345	15．73523	17．767．	16．736t ${ }^{\circ}$
：57	6.5	5.5177	5.66798	6.58252	6.36967
E 5	400.1		57．62099	66．59724	91.57744
15.	． $1: 61$.	$\cdots \cdots$	＂．ans	\therefore Onn：	\therefore－mas？
$\therefore 0$	－$\cdot 815^{2}$	＂•＊＊＊	\cdots	1－90．an	，－rame
ic：	－5Eç	\cdots－	$\cdots \cdots$	5.8408	nosibume
162	－51．	－＇		\cdots－ 0 － 0	\cdots－ 5 500
165	－ 414.	\cdots－${ }^{\circ}$		$\because 0.4 i^{\infty}$	is arars
$1 \in 4$	．0144	\therefore	$\cdots \cdots$	＂。＂ヶ．0．	Cotren
It 5	1504	7084949	8．39758	9.67169	1409゙451
！ど	13．65	$4075 \cdot 6$	501×28	5.87668	8.92115
	$2 \because 5 \operatorname{sccc}$	？ 23.344	8.23735	90.980%	12.98767
\therefore ：	$\because 2$	亿307：25	$\therefore \quad 59893$	53.2800	72.35507

TABLE 6-II. CONTINUED

C.ins		EFFECTIVE THERMAL CCNDUCTIVITY (KCAL/M-HR-K) \times l			
$\therefore \therefore=5$	Experimental	NA XWELL	RAYLEIG4	$\begin{aligned} & \text { MFEENITH } \\ & \text { E TNGIAS } \end{aligned}$	RRIJGCEMAN
16s	81.5"	48.1748	40.7762\%	56.79507	74.95**3
17	$2 ¢ .75699$	27.61348	27.74-28	$3 \cdot 3 \cdot 795$	28.56239
171	6	47.778 ¢	49.40659	56.37567	73.31424
172	1."24	. 43413	$\therefore .43655$	8.47197	.53364

TABLE j－III．COMPARISON OF SELECTED UNIFORM HEAT FLUX MODELS

UT		FFFECTIVE THEGAL ETROUCTIVITY（KCAL／イ－H2－K）\times（			
casc		SEMFF゙Y	$\begin{aligned} & \text { wornsion } \\ & \text { s.ssut } \end{aligned}$	HFNGST	GIRRING E C．HIJPRHILL
i	21．350\％	3.2155	21．5913！	27.21955	9.68224
\％	$\because 203068$	$\therefore \quad \therefore 77$	24.94747	30.61765	17.98637
$=$	7n 5	$4] .3334$	1－9．24625	$141.4 i 97$	49．78612
		146078.30	372.41919	372.84497	11.4 .44376
			252.13627	$4 \cdot 6.9 \cdot 713$	$123.70{ }^{\circ}$
5	27 ．	164．46112	352.13627	$4 \cdot 6.913$	
t．	¿． 5	． 29.447	． 77575	． 97724	． 3465
7	43.20596	5.47438	Q4．h．929	$1 \% 0.92107$	32.43243
5	2%	c． 20534	2．4．757．5	20．74－94	1.552774
	＝	2.26423	21．84＊9．	27.2890 .4	9． 36445
			97：‘¢82	12？．18112	33． 687
				2769751	63.2 ？ 73
$!$	1－7。	12304924	162051	22.040751	
12	1400	20343	21：¢¢アス3	27－32：34	9．9＊542
			2203425	27048988	9.93447
－	$170-$				
4.4	3－2cese	90438	26×3037	－20\％ 29	

TABLE S-II. CONTINUED

CATA		GFFECTIVE THEAWAL CRNOUCTIVITY (KCAL/A-HP-K) x $\mathrm{I}^{\text {am }}$			
6,		Scin Frey	werosine \& NESSMED	hengest	$\begin{aligned} & \text { GJOOING } \varepsilon \\ & \text { CHIJRCHILL } \end{aligned}$
i.	! - .	125.6.772.	1人L. 3 ? 05	226.6629	63.64213
15	$3+05$	Soces6t	77.358:6	38.78313	16.59796
: 7	25.34095	9.79673	27.0275	$46.325^{\circ} 4$	24.77゙14
18	21 -	184.0.430	332.55 50	385.93325	112. 27578
\because		0.5504	$26.33^{\prime \prime}+6$	37.15984	16. 6^{-78}
2	11.2	7.5.753	12.532:	15.2429	4.43400 ¢ ${ }_{\text {cos }}$
27	25.29ces	25.674.7	24.91245	43.9 .685	1. 63655
9	21, RS	9.64385	26.34.93	28.2292	16.54385
33	: 4.5 , 5cas	964242	28.24511	49.18425	27.51242
?	144,7	1.2.75433	233.354 .6	250.31.55	70.22112
3	24.3cesj	$? . \cdots 40$	23.33? 20	47.32585	25.15863
$\therefore r$	24, 0.6555	129.9695	220. 5901	301.33496	113.71243
$\therefore 7$	55.14	34.230	47.156 .13	62.53562	17.3963?
$\because 6$	31.5	649323	$17 \cdot 05239$	2'c.34*68	77.48956

TABLE j－III．CONTINUED

二日T＊		TIVE T－frk	Crajustivity	／M－HR－K）X	
CLS＇		Sun FoEy	$\begin{aligned} & \text { wros Ire } \\ & \text { E } B S S=0 \end{aligned}$	HENGST	$\begin{aligned} & \text { CORRING } \\ & \text { CHURCHILL } \end{aligned}$
≤ 0	こ？4．2ご言	189．－9！ 5	235.77595	302． 2271	113.87052
\because	ここフ．こc¢ç	130.429	234.77515	3？？－？271	113.87953
\ddagger ミ	21．3．3\％	1990491．5	33P．775：5	$392 \cdot 2271$	113.97953
$=\%$	\therefore ？09\％coc	189．42！．5	235．775！5	372． 2271	$112 \cdot 87953$
こ？	$\because 0$	41.94331	257.14453	123.37791	64.7443
$\because 4$	2.	3.9043	$25 \cdot 74947$	38.783 .4	18．7＊
$=:$	$\therefore 5.9$	3.46259	i． 5,4423	25.561 .57	13.56719
$\cdots t$		5 －7 245	124055232	141．5739：	$47 \cdot 7^{*} 506$
$\because 7$		$5.77 ? 46$	1．24056732	14305739．	4.7 7＊596
Ξ	73.294%	05537	$72 \cdot 2.5192$	118.72414	27．9932．
$\therefore 5$	$? 70$	191．54 94	24806430	294.77393	114.5478 .4
4	$21208 \div 65$	121058 34	341.5438	344.77303	114.54784
$4 \pm$	$220 ; 6=7$	$\because 0.75$	27．76A？	39.0046	17．：ソ？${ }^{\text {a }}$
4	7.05500	53081237	？250252：9	人 4203890	47.92487

TABLE 6－III．CONTINUED

UATS		（TIVE TH： $\mathrm{C}^{\text {P }}$	Cringurtivity	（KCAL／M－HP－K）\times（	
6s：		Sils Frit	$\begin{array}{r} \text { 4COSICE } \\ \& \quad \text { OSSNEF } \end{array}$	HFNGST	RORQTVGE CHIRCHILL
4	10．9：	0.437	$2 \cdot 2107$	22．＊7112	6.28269
44	$\div 3.5$	5.04376	13！．740？5	156．75906	56．577／9
$-\dot{3}$	5t．	62.0797 .4	158．03035	134.56257	64．62605
$4 E$	$\therefore 2.56900$	¢． 2393	$25.5+296$	39.5473	19．3027＂
47	23， 7	505435	13．6340：	25.7462	13．7 ${ }^{\prime} 532$
－\cdot c	22,50560	1． 121 ！	27.55563	39.12001	17．${ }^{3} 44 \%$
4%	1t． 2 ccos	5.2734	1．4．60425	21．65．397	0.79677
$=$	$3: 7309$	1.5796	29．62151	37.27958	15.57456
$\therefore i$	ごッロッ：	2.5765	20.62161	37.89558	15．52456
$\therefore=$	25.2	$\because \because 703$	$28.623=1$	37.80558	15.52456
55	35.5	169．7114	214．54698	$355.98 \mathrm{mr}^{4}$	1×4.8246
$\because 4$	4 ¢，5 ¢cco	9．$-7 ? 3!$	29．32655	5.22985	28.37459
$\therefore{ }^{5}$		11．4．6752	$239 \cdot 46548$	264．1\％522	P． 71844
56	54．59690	36.55273	52.95401	98.81178	25.57965

TABLE 6-III. CONTINUED

TABLE 6－III．CONTINUED

C．its		TIVE Tili 5	Cromuctivity	（KCAL／M－HR－K）$\times 1$	
cose	EXPGTMENTAL	SOT；FGEY	wounside \＆MESSMNㅡㅇ	HENGST	GORPIVG \＆ CHIRCHILL
73	42.5	11．21875	31.52397	51．＊＊8989	27．10\％3
7%	26．7	1．$: 4$.	27．80：7？	38.6145^{\prime}	16．93539
$7 \equiv$	$36.33<99$	？-6.259.	29.85176	49.74478	26． $2594 \wedge$
74	17．Scej	9.4287	2r．61633	$22.519 * 4$	7.93776
75	23.78595	133．10493	$35: 27 \cdot 2$	4030271%	116.55283
76	25.596	1.75×2	$3 \cdot 24: 95$	51． 9744°	29． 9288
77	1： $7 \cdot \cdots \cdot$	$6 \leq 1.1$－ 3	165．75214	199.47987	66.69872
75	230069	$9.626 ? 8$	3 －．75634	4.7353	10．592．47
75	17.75009	5.84026	16.36054	26.41212	14.22331
\because	2.7	120459	27.2765°	$32.2778{ }^{\text {r }}$	$1 \cdot .67211$
$\because ?$	154．0．jcc：	119．19090	$2 \div 70516$	27＊＊5542	82．56238
${ }_{2}$	73．caco	75.4455	77．041＂	$132.3439{ }^{\circ}$	27．33883
42	24.5959	1 $\therefore 7: 463$	29.33125	4.21684	17.73851
＋4	51．7	12． 2 － $7 \div 5$	ご・タラ＊	51.7×874	29．59578

TABLE 6-III. CONTINUED

Cita		GFFECTIVE THFPMAL CONDUSTIVITY (KCAL/A-HR-K) $\times 1$ (ar			
cas.	Exasemental	SON FRFY	wonnsing \&. MESSNFR	HFNGSt	GORPING \& CHIJCHILL
$5:$	E2.2csc9	1. - 7\%	28.19320	46.1178^{*}	25.56129
56	7esscss	11.84763	$33.375^{\prime \prime} 9$	72.95583	65.64183
\&7	35.79690	11.19	31.26419	52.*5698	29.883*9
58	+7.5*	11.23129	31.358:9	52.144 ${ }^{\circ}$	29.95494
4	22,5:	1. 265208	28.6.9.	$46.5 \% 6^{-5}$	25.97-47
c	37.	1-83176	3.10437	49.64629	$26.87482 \quad \stackrel{\rightharpoonup}{\omega}$
91	12. 50569	70. 5263	$2 \% 4.1724 ?$? 46.7298 ?	$94.633 \% 9$
c_{2}	968... -	241.48158	$55^{\circ} \cdot 44 * 43$	597.11328	193.85983
¢	175..	113.29866	237.6.77	33.49585	11.9 .78264
¢ 4	$39.55 c 89$	36.8632	44.77415	66.7125°	18.4.235
55	1.3.5. ${ }^{\text {a }}$	1.57512	22.35555	24.1951	7.49970
st	$53.2 \cdots \cdots$	14. 3 !35	39.98441	64.33"81	36.52295
C 7	55.25css	14.1335	39. 8441	54.33:81	36.52295
ce	54.5 $\quad \therefore$	14. 1.385	39.8441	64.33081	36.52295

TABLE j-III. CONTINUED

TABLE 6－III．CONTINUED

OT：		CIVE The：	conolictivity	／M－HP－K） X	
ctss	\therefore OUC ISENTAL	SOM FREY	whoosion ε MESSMER	HFNGST	GORRINT \＆ CHIPCHILL
$\because:$	34.3	14．55 2	ミ99．528＂9	527.10492	231．65004
1！ 4	EE．0＇	224.7233	$5 ¢ 3.5537$	737．2＊19	2n1． 11343
115	5950：	721．72．30	593.5537	$737.2^{9} 19^{9}$	311.1343
110	55.	$254.6055 ?$	6， $7.9453^{\prime \prime}$	815.22581	325．83\％
217	E15	254．606：52	667．9458．	915．2268？	325．9＂2r0
ile	53.	254．645シ2	6067．9458．	815.22681	325．8\％ 200 家
117	675.8590	274．：537i	745.15283	1\％52．25757	592.66479
！＂	$5 c 7.5565$	2740－5371	745．15283	1.52 .25757	5\％2．t．6479
121		？4 \％． 6.374	$4 \cdot 8 \cdot 7 \cdot 557$	631.10156	339.87305
122	－7．ecces	234.1519	630.17944	c． 22.36353	454.59473
123	54.5	235．3＇55	641.74514	923.86597	455.61594
！	634．20cs：	277．1525．	75？．6556．3	1657．4．674	5．6．＂3079
$2 ? 5$	45.	12．678	$34.515 \% 1$	53.64485	29．57269
$\therefore \mathrm{Ic}$	$55.75 c 99$	150．540？	42.52 .98	64.93973	34.80153

TABLE 6-III. CONTINUED

$\because 9$		Tive Ther	comouctivity	(Y-HR-K) x	
C.SE	EXPGIMOMTAL	Son frey	$\varepsilon \begin{gathered} \text { wroside } \\ \text { NFSSNFR } \end{gathered}$	HFNGST	GORRING ε CHURCHILL
127	35.	2.31253	22.96577	38.19576	23.32364
129	23.7500\%	7. 1×6	19.32559	33.4791	2".9:578
120	130,	83.1682.	215.10414	256.687:	161.24123
12	45.7 : ${ }^{\text {a }}$	12.13477	33.22412	$51.462 \% 5$	28.23676
131	: 1.:	77.5.c2?	106.97273	227.7-387	86.22366
3	$2+.30000$	14.24706	32.42883	34.47119	11.5079 南
133	35.59559	12.34282	32.23314	49.16239	26.13159
$1: 4$	11	97.8060	217.? 74 "	243.2967	c).48-93
125	$3 \therefore .4680$	30.40 .171	52.69141	7. 18 -48	18.27229
$13 t$	13.p	1.80926	22.5916	23.54623	7.46199
1 ± 7	$\therefore 3$	1.5478	12.89433	20.19761	6.93471
15	32.2	13.21836	34.9328.	52.64954	2*.15294
120	95. 36.95	$95.729 ?$	2\%500-371	216.31729	78.15236
≥ 4	27.25059	13.23277	33.73544	45.63637	$23.41^{n} 51$

TABLE 5-Ill. CONTINUED

TABLE S-III. CONTINUED

C.IT		\#FFECTIVE THERMAL CONDUCTIVITY (KCAL/M-HR-K) \times a**			
Cas?		compy	$\begin{aligned} & \text { herosine } \\ & \text { \& xessmed } \end{aligned}$	HENSST	GORRING \& Chidrchill
2re	172.7	5.3.6"57	$226.15{ }^{\prime} 9$	272.27515	86.98446
? Sa	16,5	16.71394	16.7914	24.55\%5	3.555.39
: 57	6,6	5.667	7.55523	9.76947	2.93787
$\because 5$	40.1	46.57545	110.69944	154.79541	51.782\%6
$2: 5$	- $!6$	\because	-	\% ¢nam	
3\%	- 3143	-	\cdots	F-nman	$\because \cos 2 \infty$
1+:	-4.5c3	\because	-•":	asome	
162	- 5i?		*•**	$\because 909!$	$\cdots \mathrm{cmag} 1$
20	- 404	- " \quad "	-"..."	\cdots	r.mpror
1t	- 344		remosa	- mane	の.mare 3
$\because 65$	$\because 5.6$	60.054	18.3675	$32.738^{\circ} 7$	14.55421.
$1+4$	$\therefore \therefore 0.5$	4. 5198	11.43297	21.57736	17.49382
167	? ¢.8ccse	f. 6.578	13.29589	41.234 ?	$2 \cdot 5572$
$: 85$	i3.t	41020	111.72423	240.32゙! 4	121.63942

TAELE 6-III. CONTINUED

$\because 2 T 4$		EFFECTIVF THFQAAL CONOUCTIVITY (KCAL/A-HR-K) $\times 1$ (May			
cose	EXPEFIMEMTAL	SLIN FREY	wondsine \& NESSMEP	HENGST	GORRING E CHURCHILL
1.6	4.5	4.71108	! $: 6.3982:$	167.631.66	58. $75 \% 1$
17	? ¢.7ces9	25.4223	31.45914	42.29420	15.41379
1.71	5. ...:	$4 \cdot 51416$	1.3 .88419	154.25996	51.28328
172	! : ? 4	.36333	. 77145	$1.6997^{\text {r }}$. 44762

TABLE 6-IV. COMPARISON OF SELECTED UNIFORM HEAT FLUX MODELS

TABLE S-IV. CONTINUED

CATA		Effective thernal conclectivity (kCal/n-hr-k) x 1CC			
CAS	EXPERINEATAL	willhite. KUNII \& SNITH	SCHUNANN E VESS	PRESTCIN	KRUPICZKA
15	118.00000	232.31764	114.24954	177.40428	125.47821
16	36.50000	74.12903	16.92627	28.42311	26.28243
17	23.84997	93.82394	20.22913	33.72197	33.77486
18	216.00030	541.22119	183.03313	278.77075	217.02795
17	26.75993	72.28341	10.30093	27.41541	25.49240
20	11.80000	21.24489	7.33154	12.74100	8.59804
21	25.25999	31.74640	24.32825	40.24960	25.07823
22	21.89000	74.93779	15.81395	28.24219	26.2995t
23	34.09999	102.45132	21.47824	35.71642	36.33392
24	144.70000	418.10156	120.99857	187.44221	150.96895
25	34.39989	99.40473	20.84660	34.70860	34.88362
26	244.85999	572.65503	187.48227	285.26611	220.84439
27	35.14000	73.13052	31.21465	51.11766	34.42345
28	81.50000	408.71387	95.13149	148.90633	136.8903C

TABLE G-IV. CONTINUED

cata		EFFECTIVE THERN	ccriclectivity	$(\because C A L / N-H K-K) \times 100$	
CASE	EXPERIMENTAL	Willhite, KもはII \& SMITH	schuivand \& VC.SS	PRESTCN	KRUPICLKA
29	224.89999	570.60229	183.04678	286.C8984	221.33124
30	217.39499	576.60229	188.04678	286.08984	221.33124
31	218.95993	576.60229	188.04678	286.C8984	221.33124
32	218.8599\%	576.60229	188.04678	286.08984	221.33124
33	91. 00000	349.10938	84.12898	132.28313	116.4958 C
34	$20 . \operatorname{cccos}$	82.54218	17.37775	29.14975	28.26201 ¢
35	15.60000	55.29848	11.40983	19.47205	19.10077
36	44.35998	264.32520	65.42412	103.93791	88.21062
37	94.39999	264.32520	65.42412	103.93791	88.21062
38	73.29999	84.76138	66.28185	105.24437	67.93712
39	207.00000	592.43018	190.32243	289.40918	223.30064
40	212.2989	592.43018	190.32243	289.40918	223.30064
41	22.29999	82.85257	17.72032	25.70062	27.68407
42	70.89730	268.62220	65.94923	104.73782	88.80655

TAELE ó-IV. CONTINUED

DATA		EFFECTIVE THERMAL CONDLCTIVITY (KCAL/N-HR-K) $\times 10$			
CASE	Exptrinental	$\begin{aligned} & \text { WILLHITE, } \\ & \text { KUHI \& SMITH } \end{aligned}$	$\begin{gathered} \text { schunania } \\ \text { \& vCss } \end{gathered}$	PRESTCN	Krupiczika
43	18.50000	38.453 .2	10.38729	17.79535	13.12635
44	61.5000	311.97437	72.38222	114.51656	1C2.07315
45	85.c0000	360.78979	85.53532	134.40306	118.17538
40	22.59599	85.55513	17.72148	29.70250	28.84357
47	15.70030	57.34253	11.64175	19.85146	19.52393
48	22.59909	$84.3 \mathrm{CG73}$	17.88850	29.97070	27.94415 ¢
49	16.25397	47.21161	9.85118	16.91360	15.76856
50	23.79909	80.12569	17.38402	29.15985	$26.3432 t$
51	23.39999	80.12569	17.38402	29.15985	26.34326
52	25.20000	80.12569	17.38402	29.15985	26.34326
53	205.50000	560.34937	171.63145	262.09570	203.90205
54	44.59997	114.48170	22.88257	37.95 .303	$38.8947 t$
55	163.79999	453.54356	125.76273	194.51445	155.36868
56	55.35979	85.36807	52.36089	83.94774	54.6024ϵ

TABLE 6-IV. CONTINUED

CAIA		fective trurna	cuctivity	$(N-H R-K) X$	
CASL	EXPERIMEATAL	$\begin{aligned} & \text { NILLHITE, } \\ & \text { KUNII ESITH } \end{aligned}$	$\begin{aligned} & \text { SCHUNAAN } \\ & \text { E VESS } \end{aligned}$	Presten	KRUPICZKA
57	36.00000	111.92214	22.29712	37.02130	37.47093
58	17.09999	41.02596	10.93644	18.6ste2	13.88105
59	34.20000	76.67021	31.42694	51.45102	34.42252
60	35.59999	76.87021	31.42694	51.45102	34.42252
61	53.25999	85.84062	52.72963	84.51462	54.8779C
62	55.00000	85.84662	52.72963	84.51462	54.8779 C जे
63	71.39397	85.76227	65.91762	104.68968	67.41853
64	71.59799	85.66153	70.29794	111.35236	71.57538
65	71.39979	85.66153	70.29794	111.35236	71.57538
66	358.00000	1041.73608	260.21729	$39 C .65063$	338.67065
$\epsilon 7$	70.70900	201.75488	67.68922	107.38646	90.68391
68	71.25997	283.93408	67.55511	107.79092	90.99518
69	144.35997	469.97510	127.91432	197.70503	157.51135
70	37.79990	120.64456	23.57863	39.05948	40.27135

TABLE 6-IV. CONTINUED

DATA		EFHECTIVE THERNA	cencletivity	(KCAL/N-HR-K) X 1 CO	
CASE	EXPERIMENTAL	$\begin{aligned} & \text { WILLHITE, } \\ & \text { KUNII } \varepsilon \text { SMITH } \end{aligned}$	$\begin{aligned} & \text { SCHUNANAN } \\ & \& \text { VCSS } \end{aligned}$	PRESTCN	KRUPICZKA
71	42.30000	120.25105	23.76529	35.35597	39.88403
72	22.70000	87.76758	18.10641	30.32092	28.23933
7.3	35.39999	115.72844	22.74287	37.73077	38.32212
74	17.09999	41.33744	10.84972	18.55441	13.58416
75	230.75999	640.26025	157.46478	299.81689	229.43102
76	35.03997	124.80501	24.05841	39.82138	41.22763
77	100.70000	405.39233	S1.10527	142.78535	124.84547
78	22.39997	97.12326	19.09396	31.90515	31.18739
79	17.75739	65.19725	12.56905	21.36546	21.23581
80	20.70000	65.61769	15.58228	26.25514	20.38972
81	154.85399	496.46704	131.46788	202.96852	161.05682
$\varepsilon 2$	73.09999	c7.70724	73.14787	115.67809	74.00459
83	24.59999	96.18216	19.31223	32.25484	3 C .16379
84	51.70000	132.18263	24.92836	41.20128	42.97977

TABLE 6-IV CONTINUED

CATA		cctive thern	Cuctivity	(N-HR-K)	
CASE	EXPERINLSTAL	$\begin{aligned} & \text { WILLHITE, } \\ & \text { KUMII \& SNITH } \end{aligned}$	$\begin{gathered} \text { SCHUNANA } \\ \varepsilon \text { vCSS } \end{gathered}$	Presticn	KRUPICZKA
85	32.24949	117.29651	22.23698	36.92557	37.98433
Eó	78.59993	159.33517	35.51990	57.86070	64.84431
e 7	36.79999	136.45222	25.44284	42.016 .39	44.02840
88	47.50000	137.52350	25.57341	42.22316	44.29615
89	32.5000)	122.02280	22.80809	37.83456	39.12225
so	37.ccoco	128.29848	23.94914	35.64790	41.00870 Gু
91	120.55994	584.87109	121.11996	187.62265	174.98882
92	258.00000	1251.81348	294.91113	440.46875	377.66968
¢ 3	176.06000	760.24341	162.79938	249.14752	226.2507s
94	39.59997	85.96399	33.90945	55.34254	36.56947
95	15.50000	47.73401	11.97573	20.39729	$14.7589 t$
56	53.20000	170.37206	31.65918	51.81555	54.68451
¢ 7	55.35999	170.37206	31.65918	51.81555	54.68451
-98	58.50000	170.37206	31.65918	51.81555	54.68451

TABLE 6-IV. CONTINUED

DATA		EFFECTIVE THERNA	ONCUCTIVITY	KCAL/M-RR-K) $\times 1$ (${ }^{\text {a }}$	
case	EXPERINENTAL	willtite, KUNII \& SNITH	scilinann ε vess	PRESTCN	krupiczka
93	57.50000	170.37206	31.65918	51.81555	54.68451
100	61.09979	170.37206	31.65918	51.81555	54.68451
101	23.39997	45.95647	11.44436	19.52858	14.16165
102	10.20000	27.48444	6.53562	14.74131	9.68186
1 C 3	126.00000	573.10449	117.28314	181.91917	170.16017
104	43.50000	145.104ヶ3	26.51057	43.70592	46.2367 t जे
10\%	51.70000	145.10443	26.51057	43.70592	46.23676
105	327.59785	1715.02881	315.729.38	470.24634	537.74292
107	40.29999	148.38657	26.92435	44.35989	47.10522
1 Ca	327.C0000	1271.44189	284.85645	433.22 ¢ 77	371.82324
109	44.59959	143.48515	27.06407	44.58066	47.39987
110	26.25999	75.03748	16.80733	28.23152	21.79857
111.	41.75399	111.42056	21.44038	35.65605	33.45587
112	318.6000	1407.88379	269.20239	403.57739	418.94873

TABLE Ó-IV. CONTINUED

CATA		E.FFECTIVE THCRNAL CCNCLCTIVITY (KCAL/M-FR-K) $\times 100$			
CASE	EXPERINENTAL	WILLHite, KUNII \& SNITH	$\begin{gathered} \text { scrunann } \\ \text { evess } \end{gathered}$	PRESTCN	KRUPICZKA
113	342.60000	1407.8837s	265.20239	403.57739	418.94873
114	580.60003	1915.31787	375.79136	555.72754	560.92163
115	595.00000	1916.31797	375.79736	555.72754	560.s2l63
116	559.00000	2099.59497	415.35303	611.70728	611.90381
117	615.60200	2059.59497	415.35303	611.74728	611.90381
118	630.00300	2099.59497	415.35303	611.70728	611.90381
119	627.95930	2894.58716	540.02856	786.80811	ع77.19165
120	597.09785	2054.58716	540.132256	786.80811	877.19165
121	323.03985	1792.87500	325.79004	484.60596	557.69434
122	607.59985	2570.67017	475.26123	696.c8081	783.57446
123	549.50000	258, 86.743	477.62915	659.40625	787.9787¢
124	634.35990	2956.2C654	548.06123	798.C2905	891.6980 C
125	45.00000	158.02725	28.29333	46.52072	49.08374
126	55.79979	190.22292	34.20032	55.79771	58.74028

TABLE o-IV. CONTINUED

cata		EFFECIIVE thermal concletivity (KCAL/n-hr-K) $\times 100$			
CASE	EXPERINENTAL	$\begin{aligned} & \text { WILLFITE, } \\ & \text { KUNII \& SMITH } \end{aligned}$	scrumann \& vess	Presticn	KRUPICZKA
127	35.00000	114.50127	20.19646	33.66580	36.33409
128	32.39378	59.59148	17.48831	29.32759	31.80313
129	138.00000	683.11768	133.78758	206.4C227	195.06731
130	45.70000	151.40167	27.13866	44.69846	46.99364
131	101.00000	593.08423	118.45277	183.65854	168.C9543
132	26.35797	84.99678	18.23677	30.53023	23.48619 ज斤
133	35.59999	154.58116	27.24744	44.87105	47.1210 C
134	110.60000	669.15698	131.65253	203.24222	183.83636
135	31.04999	105.88724	36.68158	59.94622	38.93994
136	13.80000	58.70363	12.93406	21.96014	15.8569C
137	13.80000	45.93121	10.94369	18.70853	12.81330
138	34.20700	183.41197	31.51228	51.58502	57.44498
139	95.39997	668.07253	129.35771	199.84351	175.85689
140	27.25999	165.5C456	28.89240	47.46490	50.6494ϵ

TABLE G-IV. CONTINUED

Cita		EfFECTIVE THERNAL CONCLCTIVITY (KCAL/M-HR-K) $\times 100$			
CASE	Experimedtal	$\begin{aligned} & \text { UILLHITE, } \\ & \text { KUNII E SNITH } \end{aligned}$	SCtiUNANAN \& VCSS	PRESTCN	KRUPICZKA
141	20.20000	113.1755	19.36655	32.34183	35.9803t
142	61.70000	678.12842	131.05650	202.35571	178.34129
143	27.cccoo	169.206.99	29.34781	48.18216	$51.6714 t$
144	25.20000	115.0.3691	19.68065	32.84458	$36.7610 t$
145	49.ccoco	179.21606	31.78002	$52 . \cos 21$	52.57718
146	110.79999	735.47627	141.22476	217.39323	193.5858C 응
147	27.50000	1c4.69882	32.10506	52.51523	58.0733C
148	26.39997	125.68794	21.58565	35.8876?	41.67722
149	85.20000	642.29883	121.19238	187.73024	171.1864C
150	58.35929	224.59965	38.52536	62.54784	75.CO726
151	70.cccos	201.06511	36.36180	59.17522	63.78119
152	76.LC00)	232.15458	44.1718 .3	71.31412	83.49115
153	272.50000	395.69238	178.60139	272.29443	237.12428
154	248.70000	356.15112	157.72446	241.65421	212.07919

TABLE б-IV. CONTINUED

data		Lffective trernal concletivity (hCal/n-hr-k) x 1co			
CASt	experinental	willfite, KUNII \& SNITH	SCHUNANN ¿ vess	PRESTCN	KRUPICZKA
155	172.70000	252.44057	110.58070	171.93726	153.71112
156	16.50000	16.85527	15.46114	27.67363	16.72668
157	6.50000	7.48778	4.74239	$\varepsilon .39002$	5.55095
158	46.00000	121.25670	62.07175	98.82504	87.33781
153	0.10610	O.cccco	$0 . \operatorname{cocos}$	C.cccoo	$0 . \operatorname{cccco}$
160	0.08183	c.cccoo	$0.60 C 00$	c.occco	$0 . \operatorname{ccoc}$
lci	0.05598	c. ccoco	0.10000	C.CCCOO	$0 . \operatorname{cocc}$
162	0.05110	0.00000	0.60000	c. 00000	$0 . C C O O C$
163	0.04140	c. ccoco	C.COCOC	C. cccco	$0 . C C O O C$
164	0.14040	0.00000	$0 . \operatorname{cccos}$	C. cccoo	0.60000
165	15.60000	25.68503	12.15019	2C.t8 217	18.75803
166	11.85000	16.91458	7.90669	13.68808	12.28974
167	39.89990	10.58609	15.94372	26.83890	20.C0317
168	130.00000	$64.8 \cos 4$	97.74626	152.75218	121.11963

TABLE 6-IV. CONTINUED

DATA	ErHECTIVE THERNAL CONCUCTIVITY (KCAL/N-HR-K) $\times 1$ Co				
cast	Experivental	$\begin{aligned} & \text { VILL-HITE, } \\ & \text { KUNII \& SNITH } \end{aligned}$	$\begin{gathered} \text { Surunann } \\ \text { \& vos's } \end{gathered}$	presica	KRUPIC2KA
$1 \in 9$	81.50000	50.49634	77.56497	111.75790	89.70921
170	29.75990	24.32439	25.85866	42.67471	27.67903
171	60.60000	48.08287	66.04495	104.88356	83.26828
172	1.02400	0.54938	0.85596	1.62444	0.85991

TABLE 6-V. COMPARISON OF SELECTED PARALLEL ISOTHERMS MODELS

cata		EFFECTIVE THER	NDUCTIVITY	($4-H R-K)$	
CASE	EXPERIMENTAL	RUSSELL	PFRISSTEIN	wocos IDE	Equation 5-2
1.	21.3099	11. $35 i \% 34$	5.55587	34.11279	$13.30 \times 4 n$
2	22.35959	11.91:25	41.0717	1-7.35464	23.42773
3	75.5\%	57.2579	59.50623	185.24553	68.57611
4	24 ¢0**	193.6767°	122.72449	257.7346?	173.96913
5	272.006	215.93659	$134.169^{\prime \prime} 4$	265.81763	109.39352
6	1.15 \%	0.4 .1	. 69519	1.39510	12.47514
7	63.59599	63.855.15	49.49434	58.13519	52.52979
ε	25.0氏\%	12.4119\%	$3: 42108$	40.47348	14.54256
\bigcirc	17.5%	$11.145 \% 3$	32.36168	$30.568^{\prime \prime} 6$	13.51mal
15	$63.5 \cdots$	54.579:39	55.65683	58.13519	53.69958
11.	127.0\%	137.792\%	107.82751	78.63356	115.76479
12	19000.3	11.18736	34.17848	39.63994	13.57578
13	17.20.6	11.23781	34.1963 ${ }^{\circ}$	39.668~6	13.61926
14	30.35999	12.88216	299.2985	279.97705	32.74816

TABLE s-l. CONTINUED

\#. 4 T		EFFESTIVE THEQ	WDLCTIVITV	$(K C A L / U-H R-K) \times$,	
C4S	$\therefore x_{r} \therefore$ OnTAL	RUSSELL	LEEMSTEIA	WOCOSISF	Equation 5-2
'	$\because \mathrm{B}$	139040902	$\pm 1.9 .159$	78.77"30	117.15749
16	36.5	13.31256	$\pm 28.10 \cdots 25$	$1 \cdot 4.51558$	22. 1546
:7	$\therefore 30540=0$	13.27931	364. -584	$279.077 \cdot 5$	22.94025
!	236	225,700.7	29.44612	126.98631	186.597%
$\therefore \div$	\therefore - 78.95	32064572	121.11266	1:3.21755	21.32×31
\because	$\therefore 2,0$	9.7018	9.23765	7.99:29	7.4361 .4
$\therefore 1$	$25.2 c c s$	26.: 4	24.30537	12.03435	24.85637
22	22.	13. 255	225.736.24	1"6.340"	21.972 .54
$2 \div$	¢ $4.5 c 5$	13.44579	54.56934	354.25203	38.64723
24	144.7	14.56415	1.77.9965:.	1.63 .15637	123.339:4
25	24.3565	13.54.8	329.34951	$? 79.977 .5$	34.65524
20	24iseccgc	220.76244	223.37694	185.39631	189.11176
77	35.14	38.36927	31.7'35'	22.33326	31.64961
25	Mis.	$85.25 \cdot 27$	363.79973	3.4 .92775	1:5.70:95

TABLE s-V. CONTINUED

TABLE 5-V. CONTINUED

TABLE 6-V. CONTINUED

rata		EFFECTIVE THFRMAL CONUUCTIVITY (KCAL/M-HR-K) $\times 1$ (30			
CASE	PXPERIVENTAL	RUSSELL	BCRNSTEIN	WOODS IDE	Equation 5-2
5.7	36.: 1 !	14." 232	475.92822	$279.977^{\prime \prime} 5$	36. 2.5958
59	17.7:599	12.25793	18.9:7"6	25.17392	17.99469
¢¢	$34.20:$	33.4748	32.7A:91	$22.13: 175$	31.61661
\therefore	$35.5 ¢ ¢ ¢ ¢$	33.4248	32.76791	22.1375	31.61661
$6:$	55.25959	59.26610	52.731 .62	29.3^298	53.66516
t. ${ }^{\text {c }}$	$55 . \cdots \cdots:$	59.26619	52.73562	29.3:299	53.66516
$6:$	$71.30 ¢ 59$	$7 \cdot 25677$	66.3 - 217	34.26784	67.77533
$t 4$	71.50099	73.81848	$7.82 \cdot 22$	36:\%4248	$71.438^{\wedge} 3$
ES	71.35980	73.81848	7*-82: 22	36.4248	$71.438 \cdot 3$
$t \in$	355. $\%$	274.26123	$504.41 \% 16$	449.33862	265.78369
67	7\%07\%	67.916 .6	176.23?3\%	138.13518	75.36467
68	71.2caco	68.09929	178.12949	138.13518	70.55255
cs	144.35909	140.261	257.27832	$163.1 \geqslant 674$	127.853 Cl
7.	37.74595	14.15291	642.09976	354.25293	41.21910

TABLEG-V. CONTINUED

$\begin{aligned} & E \Delta T \\ & E \Delta s \% \end{aligned}$	FFFFCTIVE THCOMAL CONOUCTIVITY (KCAL/M-HD-K) X IP				
		RUSS:LL	RERNSTEIN	NSODSITE	Equation 5-2
$7:$	$42.5 \because$	14.97444	4¢ $5 \cdot 233^{\text {¢ }}$	281.77614	37.97573
72	25.7	13.47435	262.40513	123.21956	2?.9.739
73	$36 . \therefore$ Sccs	14.1.74.77	499.49572	270.077 .5	36.77461
74	?7. 2000	12."73c	19.89245	15.1:771	$\cdots .949 r 7$
75	二3. 75459	238.52490	252.97906	196.38631	155.99224
$7:$	3 scccc	14.31813	673.76245	354.75203	41.91262
77	! : $7 \times$	Ph.:-	3'3.1225n	2:0.55:84	$05.44 \cdot 77$
78	$\because 2.3 c c s c$	12.77 .30	$29.2 .4 * 649$	155.73442	26.78778
75	17.75909	7.765:57	291.*647"	147.3336°	20.1439
.	$2 \cdot 7$? 5.94659	28.30203	$27.514^{\circ 8}$	15.91591
41	154.6959	14\%.05731	221.95:5"	163.: $: 674$	$13^{30} \cdot 28031$
2	7ミ.96\%	76.11324	73.59721	34.06530	74.1547
$\because \because$	24.56550	14.159.34	185.55847	126.21741	24.4.46
¢	51.7	14.6! 4 ¢5	727.59741	354.25?03	42.99624

TABLE 6－V．CONTINUED

PATA		CTIVE THER	Onductivity	L／M－HR－K）X	
cost	Experimantal	RUSSELL	BERNSTEIN	whoos ine	Equation 5－2
$\varepsilon 5$	こ2．2¢¢¢9	13.35525	567.47256	28：．96582．	36.51816
Fe	$78.5 c c g o ~$	15.68976	6256.20297	2443.18774	1.45 .43269
≥ 7	36.7595	14．78439	753．36：11	354.252 .93	43.53 .212
$5 \cdot$	$47.5 \cdots$	14.83294	766．＂5m 29	354.25293	43.69395
89	22．5\％？	13.55441	507．42969	287.06582	37.189
$\stackrel{\text { ci}}{ }$	37．${ }^{\text {an }}$	14．29．＂47	60．9．59668	284．8916 ${ }^{\circ}$	38.55194 \％
$=1$	$12.55 c 99$	161． $51 / 12$	$632.415: 4$	$374.1249^{\text {a }}$	132．：7474
52.	そうの．．．．．．！	320.62998	691.55018	458.49316	293.43774
9	1760：＂0．	146.91357	644．728．3	397.89697	$17 \times .77969$
94	$35.5 c 909$	$4^{\prime} \cdot 8^{*} 118$	36.46587	22.46728	33.77589
55	15．5\％＂	13．21395	22.56546	15.26178	11.77522
ct	53．2＂：	18.4957°	$9: 4.65259$	416.99780	53.63223
97	55．29099	12.4957	9．4．65259	416．9978	53.33323
cos	$5 \mathrm{c}, 5 \ldots$	10.4957	9.4 .65259	416.9978 f	53．n3323

TABLE 6-V. CONTINUED

CATA		PFFCCTIVE THFK	Opuluctivaty	(KCAL/ M-HR-K) $\times 1$.	
$6 \therefore s!$	ニxuters:	RUSSELL	BEMNSTEIN	W3OOSIDF	Equation 5-2
c	5	13. -5. 7.	9.4 .65259	416.0078*	53.\3373
1.	610 0600	18.4957	94.65259	$416.9978{ }^{\circ}$	53.93323
11	$23.3 \operatorname{ccs}$	12.55250	22.*5112	$14.89{ }^{\prime} 9$	$11.7584{ }^{\circ}$
32	I $\because \cdot \cdots$	1.3"cyo	1. 9146	7.298\%8	8.38497
$\because 2$	lito: :	97.3.679	$64+2.8=176$	$367.7 \cdot 7 * 3$	127.00695
12	42.5	15.24726	810.895'1	354.25293	44. $4463{ }^{\circ}$
± 5	$\because 1.7$	15.14726	129.835.1	$354.25 ? 53$	44.3463%
$1+$	227.55c5	$19 * 41: 57$	$72 \therefore 0.1 \sim 928$	3185.29442	478.98633
17	$\therefore 20500$	15. 28532	847.05729	354.25203	45.35347
1. 8	$\because 27$.	295.4997	732.27954	440.72368	286.15198
1. 9	44,56509	15.33?80	$25 \cdot 6 \prime+722$	354.25293	45.52478
1;	26.3045	15.72286	45.65143	27.51.ax	15.65029
$1: 3$		15.26 .900	212.7?542	1*4.51558	25.72656
$1: 2$	ミ12.	193.468:2	26?2.12915	127. 93921	$32^{\circ} \cdot 17505$

TABLE 6-V. CONTINUED

$\begin{aligned} & \text { CATA } \\ & \text { CASE } \end{aligned}$	EFFECTIVE THERMAL CONOUCTIVITY (KCAL/M-HR-K) X lan				
	EXPEPIMEATAL	RUSSELL	RERNSTFIN	whocs iof	Equation 5-2
313	$2420 \cdot \cdots$	193.46.2	2622.12915	127\%.93921	32\%.175\%. 5
114	¢6.0.! "	$291.720: 3$	2646.18384	135.701?	419.15674
115	595.0"\%	291.728 ${ }^{12}$	2645.18384	135*.791:2	419.15674
1.6	550%	33*.22462	2653.72559	1376.92456	455.653*8
117	615.	33*.22461	2655.72559	1376.72456	455.653\%8
115	E 3	330.22461	2655.72559	1376.92456	$455.653^{\circ} \mathrm{F}$
115	E2C.PGGc	357.48779	7579.08594	$3446.13^{\text {N }} 13$	7¢\%.10938
12	5¢7. ¢¢ ¢5	357.49770	7579. 8594	3446.13:1.3	7na.1r938
$12 ?$	ミ22.ccs5	194.1124!	$76: 6.42578$	3188.54545	489.92489
122	6:7.5cc85	$3.5 \cdot 4.5$	7632.61719	3374.64258	637.7832n
123	$645.5 \cdots$	$3 \% 3374 \%$	7¢9.9.75781.	3374.64258	64.94639
124	$434.305 c$.	三6. $709 ? 9$	$7777.414^{* 6}$	$3446.13^{4} 1.3$	7"7.43506
125	45.	16.30? 52	73.88989	287.87524	43.33^41
122.	$55.7 ¢=9$	$2 \% 22055$	796.55566	318.11571	5..62471

table 6-V. CONTINUED

Case		RJSSELL	RTENSTFIN	WOODS IDE	Equation 5-2
127	35	1. 62.55	704.42r. 0^{3}	295.8747 h	35.92"1.8
$\therefore \therefore i$	$\because 2.35950$	0.12523	794.578	290.32194	32.87917
25	1: P	? 7.: $07 ?$	916.8.444	4 $\times 1.24649$	142.29593
13		15.783:	E87.55298	271.423334	41.293 .78
	? ?	50.49886	< 1.65918	3-4.82275	123.51195
122	2 te 2506	17.82768	52.945521	27.52713	17.66586
$1 \because 3$		15. 3 9542	611.75140	210.37629	38.53224
130	$\therefore 1$.	111.323.35	631.558:1	271.23534	132.75174
$1 \div 5$	21.469	43.4 c3 3	42.3948	2?, !3:75	35.75244
136	12.5	こE.27157	2-952:9	14.79249	$12.118^{\prime \prime} 6$
137	12.	11.9014?	2゙.05315	? 5.72989	1).22176
ISe	3.40	15.78769	035.32373	?84.83980	47.14357
$!=c$	55.30600	11.3305	552.11409	29.51443	122.22945
14	27.2.cc9	16.55069	535.47754	256.73442	36.2037%

TABLE 6-V. CONTINUED

		EFFECTIVE THFPYAL CCADUCTIVITY (KCAL/M-HR-K) \times y			
c.55	EXOEAMFSTAL	QUSSELL	bernstein	WOCCSIDE	Equation 5-2
14	2t:oz....	1.15738	534.41724	147.54761	27.48963
$1<?$	61.7	111.41758	561.22098	2*0.5146?	$123.414 \% 5$
$4 \square^{4}$	$27 .{ }^{\circ}$.	10.73 3:	544.74463	156.78442	36.64189
144	25.2.":	$1 \because 25433$	543.69434	147.54761	27.82973
145	450	19.5725	363.95169	$1 \because 4.51558$	34.28934
14 ¢	$\therefore i \cdot 75009$	117.935 .8	t12.882:8	2.9.51463	$13 \mathrm{r} \cdot 50111$
147	27.5\%	17.77635	597.25552	156.78447	39.28493
146	2302009	1.9.993	555.26392	147.54761	$79.884 \sim 8$
140	35.21	96.59235	6.9.37-85	2. 2. 2.7487	113.45471
33	59.3caso	19.2.45	1154.18774	284.99164	54.952 .62
$\because=$	$7 \cdots$	21.48741	425.83789	193.21955	38.16228
! ここ	76...'.	24.32144	491.67358	13.21 .956	44.83087
$15:$	29.5	222.07977	:"5.69693	274.77612	197.92854
2i4	$245.7 \ldots$	153.434.	9.9673	261.72681	175.95125

TABLE 6-V. CONTINUED

TABLE 6-V. CONTINUED

$\begin{aligned} & \text { LAT: } \\ & \operatorname{cas}= \end{aligned}$	LXPGMMETAL	EFFEGTIVE THESMAL CONDUCTIVITY (KCAL/M-HR-K) X			
		HUSSELL	EERNStEIN	WOCCSIDE	Equation 5-2
		59.92954	29.22266	$14.487^{\prime 1}$	81.95348
1t,	O10			16.43518	25.34375
i7	29.7cs 95	28.55757	23.13457	16.43518	25.34375
171	E., - \%	59.32135	$2 \mathrm{s.17171}$	124.2811:	73.52748
172	1. 24.9	.57086	. 31350	. .9547 E	9.90038

TABLE 6-VI COMPARISON OF SELECTED WEIGHTED OHM'S LAW MODELS

data		EFFECTIVE THERN	conclctivity	AL/N-HR-K) \times	
CAS	ExpERINEMTAL	EQIATIOU 6-16	EqLaticn 6-17	EGUATICA 6-18	LICHTENKER
1	21.40000	18.26809	17.93623	2C.88347	59.co73C
2	22.40900	27.24880	27.50689	3C.67581	206.3650t
3	75.50000	93.6500 .3	91.990 ¢	107.58758	314.2959 C
4	246.00:00	232.27410	241.86344	252.00923	448.36002
5	272.0000	252.41523	264.36643	272.c0594	464.56322
6	1.01500	U.etl11	0.67829	0.77075	2.26094
7	63.80000	67.37435	75.83169	72.35299	107.45101
8	25.00003	20.38193	21.50933	23.97093	69.58905
9	17.50700	18.96525	20.11296	22.43993	$68.9137 t$
10	63.30000	68.72850	79.14794	74.64435	110.5c501
11	127.croos	132.901:0	158.07349	135.94636	155.1718C
12	19.60000	19.10030	20.38149	22.64830	69.8163 C
13	17.20303	19.16223	20.45052	22.72027	$69.8502 t$
14	30.40000	39.26373	40.27656	33.26539	408.71057

TABLE 6-VI. CONTINUED

cara CASt	EXPERINENTAL	effective trernal EGリATICN 6-16	CONCUCTIVITY (XCAL/N-HR-K) X 1CC		
			EQUATICN 6-17	equaticn 6-18	Lichtenker
15	118.00000	133.97484	161.11842	137.83734	157.10994
16	36.50000	$3 C .15233$	32.32900	35.23028	181.32992
17	23.85000	41.26558	43.65939	35.34461	439.41416
18	216.00000	235.94051	279.92522	258.C2148	372.71004
19	26.80000	29.16821	31.40180	33.97453	180.36430
20	11.80000	9.33043	11.14216	10.15881	14.24098
21	25.3000	25.78623	31.08171	25.81932	26.30080
22	21.85000	30.10430	32.44405	35.05504	186.72458
23	34.10000	45.50702	48.14179	31.81032	554.84475
24	144.70000	165.32420	192.19444	186.89323	326.60048
25	34.40000	42.16504	45.30069	36.36206	456.85CC7
26	244.90000	238.63294	285.40920	261.98245	380.91525
27	35.1400	36.77445	44.65680	38.57387	45.87782
28	81.50000	152.07631	166.76405	181.94245	589.76435

TABLE 6-VI. CONTINUED

Cista		Effective ther	concletivity	L/V-トR-K) X	
CASE	Experimental	EQUATICN 6-16	eqlaticn 6-17	EGLATICN 6-18	LICHIENKER
29	224.95000	242.94768	281.59641	262.72258	381.9492t
30	217.40000	243.84827	280.68852	262.89725	381.94926
31	218.90390	246.64020	277.63526	263.15639	381.94926
32	219.50000	242.37366	282.55591	262.87220	381.9492t
33	$91 . c 0000$	129.46913	141.89911	152.53862	414.18049
34	20.00000	32.98888	35.18421	34.81148	275.61703
35	15.60000	23.07759	24.45273	20.01663	247.6395 C
36	94.40000	97.42200	107.97547	113.73614	276.64474
37	94.40000	97.42206	107.97547	113.73614	276.64474
38	73.30000	69.88831	82.74999	69.85542	70.84715
39	207.0000.	257.25429	267.99600	265.11636	386.10388
40	212.90000	257.25429	267.99600	265.11636	366.10388
41	22.30000	33.17131	31.66056	36.50808	198.39167
42	70.90000	103.75744	102.17270	114.86331	279.8707C

TABLE 6-VI. CONTINUED

CAIA		EFFECTIVE THERMAL	($/ \mathrm{N}-+\mathrm{R}-\mathrm{K}) \times 1(\mathrm{C}$		
	EXFERINLSTAL	equaticn 6-16	Equaticn6-17	EQLATICN 6-18	LICHTENKER
43	18.50009	15.25530	15.40108	16.37681	30.95555
44	61.5000	114.81826	120.61396	133.78939	$403.1372 t$
45	85.00000	135.23735	137.66891	154.02988	421.27522
46	22.60000	35.39034	33.52736	35.34213	282.25755
47.	15.70000	24.76377	23.33712	20.18501	254.04953
48	22.6000	33.36160	31.75435	$36 . t \in 610$	2cc.56221 - -
47	16.30000	19.03756	18.10594	20.06048	134.8929C
50	23.56000	-31.17224	29.72937	35.05696	155.4772s
51	23.40000	31.17224	29.72937	35.05696	155.47729
52	25.20000	31.17224	29.72937	35.05696	155.47729
53	205.5000 .7	235.25226	242.43308	243.88625	373.68603
54	44.60000	50.1 .4001	47.26900	32.66897	6C1.0342S
55	163.80000	179.51593	182.11988	190.52539	338.40064
56	55.40000	60.50910	. 64.11924	58.35769	60.6093C

TABLE h-VI. CONTINUED

CATA		fective thernal ccacuctivity (kCal/n-FR-K) x icc			
CASF	mperingital	equaticn 6-16	erlaticn 6-17	cguntica 6-18	lichtenker
57	36.00000	46.42386	44.45473	37.65998	496.56298
58	17.10007	15.68087	15.89289	16.80524	31.74458
59	34.20000	32.77132	41.26020	38.53062	46.34372
60	35.60000	38.77132	41.26020	38.53062	46.34372
$\epsilon 1$	53.30000	60.48748	64.27804	58.47467	60.80183
62	55.00000	60.48743	64.27804	58.47467	60.80183
63	71.40000	73.26926	76.86735	70.64043	70.45702
64	71.6cJ00	77.41596	80.76813	74.73293	73.889tt
65	71.40000	77.41595	30.76813	74.7329 .3	73.88966
66	$358 . \cos 0$	388.55095	388.27393	425.23792	934.81427
67	70.75000	104.28630	103.06313	115.53438	285.tє\&と
63	71.30000	104.28372	103.25560	115.60843	286.80489
69	144.40000	179. 31922	183.37059	190.95476	343.90477
7.	37. 56000	50.29759	48.41836	33.46267	625.198t

TABLE :-VI. CONTINUED

CATA		erfective thernal concletivity (kCal/n-hr-k) x 1 Co			
case	EXPERIVEMTAL	EGUATIC: 6-16	ESunticiv 6-17	EGLATICN 6-18	Lichtenker
71	42.50000	48.44803	45.88942	40.97?17	512.1383 C
72	29.70000	32.53211	31.63679	$36.06 C C O$	203.35508
73	36.40000	46.52268	45.14170	38.15535	509.27668
74	17.10000	15.29368	15.61938	16.48975	32.23886
75	$\angle 30.80009$	257.46974	270.49073	266.56968	398.74598
76	35.10007	50.43160	49.22279	34.06481	641.71144 -వ
77	100.70000	138.76442	138.65102	156.33456	448.62784
78	22.40000	35.63231	35.29717	36.38001	$308.2178 t$
79	17.80000	24.57200	24.71508	21.10048	279.20431
80	20.70000	22.67450	22.93893	25.06121	59.335CC
81	154.90000	179.21011	185.36218	191.69065	352.83431
$8 i$	73.10000	78.77325	82.64781	$7 \epsilon . \varepsilon 9286$	$76.1578 t$
83	24.60000	33.57004	33.32753	37.49713	218.55021
84	51.70000	50.72652	50.70768	35.2t633	671.39497

TABLE j-VI. CONTINUED

CATA		ECtIVE thern	CONCLCTIVITY	($/$ (M-HR-K) \times	
cast	EXPERIMIMTAL	EGuATICN 6-16	ECLATICN 6-17	EGUATICN 6-18	LICHTENKER
85	32.30000	44.22812	44.29447	34.89893	539.9473 C
86	72.60000	101.09844	107.61176	25.89379	$3839.3770 t$
87	36.90000	45.60256	53.10404	36.21583	688.81107
88	47.50000	¢1.67617	51.35218	36.27270	693.21712
89	32.50000	47.59164	42.17589	35.85984	557.12542
90	37.0000	56.05673	39.32221	39.14365	570.58757
51	120.6.000	227.28975	157.62972	228.19567	$825.9170 t$
92	298.c0000	453.66227	349.73652	471.72746	1026.50052
53	$176 . \operatorname{cocco}$	254.26019	204.87509	292.15431	825.54253
94	39.60000	47.26933	35.61040	41.92740	48.82971
53	15.50000	17.33748	13.85331	18.10140	34.11394
96	53.20000	75.55105	52.95738	47.29458	825.22135
57	53.40000	75.55705	52.95738	47.29458	825.22139
58	58.50000	15.55705	52.95733	47.29458	825.22139

TABLE g-VI. CONTINUED

TABLE 6-VI. CONTINUED

TABLE 6-VI. CONTINUED

Ceta		ECTIVE TrERNAL CCNELCTIVITY (KCAL/n-rR-K) X ICC			
CLSE	Experineital	rount leiv 6-16	EOUNTICN 6-17	eglatich 6-18	LICHTENKER
127	35.60000	41.54685	39.44183	24.98846	651.05339
123	32.40000	36.96911	35.08021	17.48121	631.5769 ع
129	188.ccooo	210.03414	191.43568	231.29589	Ster.3184C
130	45.70000	51.73973	48.94C81	45.52054	616.5966?
121	101.00700	121.62449	165.25476	198.75t63	737.09537
132	26.40000	25.17274	23.15143	26.44550	68.74687
133	35.60000	48.45411	47.23C02	47.83672	548.5576C
134	119.0000	191.22050	176.21498	207.79861	749.89525
135	31.05000	43.00424	39.24361	4C. 23275	52.9514C
136	13.80000	1.6 .63020	15.22358	16.81157	39.01617
1.37	13.80000	13.63439	12.47190	13.43961	26.49543
138	34.20000	55.96693	57.34914	54.08713	784.56546
139	95.40000	173.82155	156.94868	178.85411	618.9tt84
140	27.30000	46.56551	47.08640	51.44201	480.5942ϵ

table gvi. CONTINUED

EATA		EFFECTIVE THERMAL	ccinclctivity	AL/N-HR-K) \times	
CASE	EXPERINENTAL	ECUATICN 6-16	EQLATICN 6-17	EGUATICN 6-18	Lichtenker
141	26.20000	33.16844	34.68392	35.04215	449.82873
14 ?	61.7000	175.50408	158.08702	179.92768	t25.755ts
143	27.6000	47.21751	47.79587	52.25997	487.91652
144	25.20000	23.64318	35.27914	35.85971	457.15207
145	$4 \mathrm{3} \cdot 0 \cos 0$	47.89173	45.75384	52.19388	347.16632
146	110.80000	190.2504 .3	164.78573	186.60326	665.64385
147	27.5000.	51.67708	52.16730	57.69110	530.74884
148	26.40000	36.53366	38.57573	41.00819	50.1159 C
149	25.20000	165.94268	145.43751	165.60189	649.41845
150	59.40000	66.74942	71.02533	73.34132	956.5104S
151	70.00000	58.07241	51.68107	55.01005	398.324S5
152	76. 60000	81.74598	61.62668	70.87885	459.77048
153	272.50000	262.01689	267.10596	280.C1228	480.93223
154	248.70000	234.70536	237.01759	252.82006	457.18135

TABLE 6-VI. CONTINUED

costa		EFFECTIVE THERN	concletivity	($/$ N-hR-K) \times	
CASE	EXPERINENTAL	EGUATICN 6-16	EGLATICN 6-17	equaticn 6-18	LICHTENKER
155	172.70000	171.02733	168.c8607	188.14054	396.68016
156	16.50000	18.05448	17.80534	16.71334	16.74108
157	6.50000	6.07512	6.30359	t. $\operatorname{Coc97}$	7.36559
158	46.00000	97.87946	51.63 .375	109.30790	277.44236
159	0.10610	$0 . \operatorname{ces} 101$	0.08228	c.03170	0.03203
$1 \in 0$	0.08183	0.06274	C.04555	C.04203	$0 . C 0773$
16.1	0.05598	0.06051	0.03174	0.C8234	c. 00207
162	0.05110	0.02694	0.05470	C. 04489	O.ccles
163	0.04140	0.03160	c. 02755	C. 02220	$0 . \cos 4 \epsilon$
$1 \in 4$	0.14040	0.10330	0.13498	0.17819	0.1530 C
165	15.60000	23.09515	20.32662	23.63961	156.3C005
166	11.85000	15.54027	13.75262	13.68524	134.58651
167	39.90000	29.58027	22.82285	16.35257	253.52111
168	130.60000	181.54301	137.55627	110.98691	1428.90515

TABLE 6-VI. CONTINUED

DEtA		EPFECTIVE THERN	concletivity	(4 ($/ N-F R-K) \times$	
CASE	Experimental	Equation 6-16	Equation 6-17	EGUATICN 6-18	LICHTENKER
169	81.50000	103.56177	85.07619	116.02943	349.59322
170	29.80000	29.54646	25.51770	28.03818	29.64116
171	60.60000	94.51779	78.11311	104.96805	275.c8724
172	1.02400	1.08128	0.97622	C. 97847	2.61458

TABLE 6-VII. DIMENSIONLESS VARIANCE OF CALCULATED THERMAL CONDUCTIVITY BASED ON SELECTED
 MODELS

A. Flux Law Models

1. Maxwell 42.9
2. Lord Rayleigh
32.1
3. Meredith and Tobias 29.8
4. Bruggemen 17.8
B. Uniform Heat Flux Models
5. son Frey 50.2
6. Woodside and Messmer 19.2
7. Kanager 13.1
8. Gorring and Churchill 14.8
9. Willhite, Kunii and Smith 13.3
10. Schumann and Voss 20.1
11. Preston 16.4
12. Wilhelm et al 13.8
13. Krupiczka 13.1
C. Parallel Isotherm Models
14. Russell 35.2
15. Bernstein 87.4
16. Woodside 70.7
17. Equation $5-2 \quad 7.0$
D. Weighted Ohm's Law Models
18. Equation 6-16 10.6
19. Equation 6-17 9.7
20. Equation 6-18 13.0
21. Lichtenecker 3-D 98.4
22. Lichtenecker 2-D 56.8

FIGURE 6-7. COMPARISON OF EXPER IMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR EQUATION 5-2.

FIGURE 6-8. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR EQUATION 6-16.

FIGURE 6-9. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR EQUATION 6-17.

FIGURE6-10.COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED CONDUCTIVITY FOR EQUATION 6-18.

VII. MODEL BASED ON NON-LINEAR HEAT FLOW

Consider a representative unit cube of the granular material, subdivided by a three-dimensional grid into N^{3} cubicles, as indicated in Figure (7-1a). Assume that the two faces normal to the z-direction are isothermal, and the other four faces are insulated, so that application of a constant temperature potential gives rise to a net conduction heat transfer in the z-direction. In order to determine the effective thermal conductivity of such a system, without any additional simplifying assumptions regarding the flow of heat, it is first necessary to find the temperature distribution in the unit cube. Once this has been accomplished, the heat flow rate in the z-direction can be determined, and an effective thermal conductivity can be assigned to the material by the Fourier-Biot law.

The solution proposed in this study consists of the following steps:

1. System synthesis;
2. Determination of the average working thermal conductivities;
3. Computation of the actual temperature distribution;
4. Determination of the heat flows and the effective thermal conductivity.

The above four steps will now be discussed in detail.

Sys tem Synthesis

A representative unit cube of a granular material is shown in Figure (7-1a) and in Figure (7-1b). The distribution of the continuous and discontinuous phases is modified is such a manner that each cubicle is occupied either by the continuous or the discontinuous phase. Effectively, any irregular shaped particle can be built to any degree of approximation by arranging a number of cubicles according to a predetermined format, as indicated in [20]. These particles can then be placed in the unit cube according to a specified statistical distribution. This way, the basic assumption of a regularly repeated elementary cell of spatial configuration, common to most previous models, is avoided.

The method of placing continuous phase cubicles in the unit cube, is based on the assumption that the granular material can be considered as a random mixture of the two phases. Then, in order to place a continuous phase cubicle in the system, three random numbers are generated by the 0-1.0 constant density function random number generator, and these random numbers are associated with three coordinates, defining the position of a cubicle in the system. If the cubicle thus defined, is already occupied by the continuous phase, another triplet of random numbers is generated. This process continues until the total number of continuous phase cubicles is equal to the continuous phase solid fraction of the granular system times the total number of cubicles in the unit cube. The geometry

FIGURE 7-l. EQUVALENT GEOMETRIES FOR UNIT CUBE.
of the system thus defined, represents a random mixture of two phases, and, effectively, in this system the probability that a particular cubicle is occupied by the continuous phase is equal to the volume fraction of the continuous phase.

Determination of the Average Working. Thermal Conductivities

As illustrated by Trezek and Witwer [72], there are a number of choices in selecting the average working conductivities between adjacent cubicles, but the series model yields the most accurate results on each side of the interface. According to [72] then,

$$
\begin{equation*}
k_{i j}=k_{i} k_{j} /\left(0.5 k_{i}+0.5 k_{j}\right) \tag{7-1}
\end{equation*}
$$

where $k_{i j}$ is the average working thermal conductivity between the adjacent cubicles i and $j . \quad k_{i}$ and k_{j} are the conductivities of the cubicles. A scanning process can now be defined such that looking at a particular cubicle the composition of its neighbors can de determined, and consequently it is possible to assign an average working thermal conductivity between any two adjacent cubicles.

At this point, it should be noted that the working thermal conductivities thus defined, require that the adjacent cubicles are in perfect contact with each other. However, physical granular systems contain randomly distributed and oriented contact areas between neighboring particles that provide additional resistance to the heat flow from one particle to the other. Further, when the voids between particles are evacuated, these contact areas provide the only path
of heat transfer, other than radiation heat transfer, from one particle to the other. Consequently, as indicated in [34], failure to account for these contact areas induces large errors in the calculation of the effective thermal conductivity of granular materials, especially when the ratio of the constituent conductivities is high.

In order to incorporate the effect that these contact areas have on the flow of heat in the physical model presented, it is necessary to associate a contact conductivity with each contact area, and to know the number of contact points in the unit cube. As indicated in the Literature Review, a number of expressions have been developed relating the contact resistance to the contact area between two particles. In the calculations, the expressions given in reference [34] have been used because they are in good agreement with Kanager's [73] analytical development. The number of contact points in the cube, N_{c}, can be determined, as indicated in the Ohm's Law Models section, as a function of the unit cube size, a characteristic particle size obtained from sieve analysis of the granular material, and the coordination number.

To complete the determination of the working thermal conductivities, it is necessary to randomly distribute N_{c} contact conductivities between adjacent cubicles occupied by the discontinuous phase. Again a triplet of random numbers is generated, and is associated with three coordinates, defining the position of a cubicle in the system. If the cubicle is occupied by the discontinuous phase, the
composition of its neighbors is determined, and the working conductivity between the first pair of solid cubicles is replaced by k_{cr}. The process is repeated until N_{c} such replacements have been executed. A point of importance is that since contact points at the boundaries of the unit cube should also be included, it is necessary to determine the composition of the cubicles surrounding the six faces of the unit cube.

Determination of the Actual Temperature Distribution
When a steady-state temperature field is desired for a region in which the thermal conductivity is dependent upon the spatial location, a solution must be obtained for the following equation

$$
\begin{equation*}
\nabla(k \nabla T)=0 \tag{7-2}
\end{equation*}
$$

When each cubicle is considered separately, the condition which must be met is the Laplace equation

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}=0 \tag{7-3}
\end{equation*}
$$

Also, each temperature in the unit cube must be bounded by the temperatures applied at the two opposite faces of the unit cube. Laplace's equation requires that the temperature at every cubicle remain constant. That is the net heat accumulation in each cubicle should be equal to zero. In order to write a conduction heat balance for each cubicle, it is first assumed that the cubicle is
isothermal and is lumped into a single node, and all the nodes are connected by the average working thermal conductivities described in the previous paragraph. The basic system unit around which each heat balance is written is shown in Figure (7-2). Under the assumption that heat flow to the center cube is positive, the resulting heat balance is

$$
\begin{equation*}
\sum_{i=1}^{6} k_{i 7}\left(T_{i}-T_{7}\right) N / L=R_{7} \tag{7-4}
\end{equation*}
$$

Application of Equation (7-4) to all cubicles results in $N^{3}=m$ sinultaneous, linear equations. The coefficients of this system of linear equations are functions of the average working conductivities, and the unknowns are the node temperatures. As indicated in [74] one of the migst efficient methods of solving such a system of equations is a successive overrelaxation technique in conjunction with an iterative scheme. The steps involved in this method are the following.

Consider the system of linear equations

$$
\begin{gather*}
b_{11} x_{1}+b_{12} x_{2}+\ldots . .+b_{1 m} x_{m}=u_{1} \\
b_{21} x_{1}+b_{22} x_{2}+\ldots .+b_{2 m} x_{m}=u_{2} \\
\cdot \tag{7-5}\\
\cdot \\
b_{m 1} x_{1}+b_{m 2} x_{2}+\ldots . \cdot+b_{m m} x_{m}=u_{m}
\end{gather*}
$$

FIGURE 7-2. HEAT BALANCE BASIC NODAL ORIENTATION
or

$$
\begin{equation*}
[B] \bar{x}=\bar{u} \tag{7-6}
\end{equation*}
$$

First define the i th component of an auxilliary vector iterate $\bar{x}^{1}{ }^{n}$ by

$$
\begin{equation*}
b_{i i} x_{i}{ }^{n+1}=-\sum_{j=1}^{i-1} b_{i j} x_{j}{ }^{n+1}-\sum_{j=i+1}^{m} b_{i j} x_{j}{ }^{n}+u_{i} \tag{7-7}
\end{equation*}
$$

Then, the ($n+1$) approximation of the i th component of the solution vector for the successive overrelaxation method is defined from

$$
\begin{equation*}
x_{i}^{n+1}=x_{i}^{n}+w\left[x_{i}^{\prime}{ }^{n+1}-x_{i}^{n}\right]=(1-w) x_{i}^{n}+w x_{i}^{n+1} \tag{7-8}
\end{equation*}
$$

The quantity w is called the overrelaxation factor, and $1<w<2$. It is seen from Equation (7-8) that $x_{i}{ }^{n+1}$ is a weighted mean of $x_{i}{ }^{n}$ and $x^{\prime}{ }_{i}{ }^{n+1}$, the weights depending only on w. Combination of Equations (7-7) and (7-8) into a single equation yields

$$
\begin{align*}
& b_{i i} x_{i}^{n+1}=b_{i i} x_{i}^{n}+w\left[-\sum_{j=1}^{i-1} b_{i j} x_{j}^{n+1}-\sum_{j+1}^{m} b_{i j} x_{j}^{n}\right. \\
& \left.\quad+u_{i}-b_{i i} x_{i}^{n}\right] \tag{7-9}
\end{align*}
$$

Then, from Equation (7-9) the ($n+1$) approximation of the i th component of the solution vector is

$$
\begin{align*}
& x_{i}^{n+1}=x_{i}^{n}+\frac{w}{b_{i i}}\left[-\sum_{j=1}^{i-1} b_{i j} x_{j}^{n+1}-\sum_{j+1}^{m} b_{i j} x_{j}^{n}\right. \tag{7-10}\\
& \left.\quad+u_{i}-b_{i i} x_{i}^{n}\right]
\end{align*}
$$

It is seen that in the iterations, the newly-computed components of the \bar{x} vector are always used in the righthand sides as soon as they are obtained.

Comparison of Equation (7-10) with the heat balance equation for each cubicle indicates that the term in brackets is equal to the negative of the thermal residue. Also, $b_{i j}$ is the negative of the sum of the average working conductivities between the node at which heat balance is executed and the surrounding nodes. As a result, for the particular problem in question, Equation (7-10) takes the form

$$
\begin{equation*}
T^{n+7}=T^{n}+\sum_{\sum_{i=1}^{i=6} k_{i 7}}^{w}\left[\sum_{i=1}^{i=6} k_{i 7}\left(T_{-i}-T_{7}\right)\right] \tag{7-11}
\end{equation*}
$$

Equation (7-11) gives a better estimate of the temperature at each node in termis of previous estimates. It can be seen that a positive thermal residue, resulting from T_{7} being too low, will increase the new value of T_{7}.

Exactly the same iterative scheme can be obtained by writing the finite-difference representation of Equation (7-2), and treating the conductivity variation according to Equation (7-1).

The steady-state temperature field in the unit cube can now be obtained, provided that an initial temperature field is defined. A reasonable selection for the initial temperature field is to assume
that planes of nodes normal to the direction of the heat flow are isothermal, and the temperature of each plane is proportional to its distance from the surface of the cube. Also, the imposed boundary conditions dictate that the temperatures of the nodes on the front and back faces, which are normal to the direction of the heat flow, remain constant, and the heat flow away from nodes associated with the other four faces is zero. Application of Equation (7-11) coupled with the assumed initial temperature distribution and the boundary conditions, gives the actual temperature distribution in the unit cube. In the calculations, the iteration process cut-off point is when the sum of the absolute values of the thermal residues becones less than or equal to 1.0 .

Letcrmination of the Heat Flows and the Effective Thermal Conductivity

After the steady-state temperature field has been determined, three orthogonal heat flux vectors can be defined at each node. However, since the net heat flow is in the z-direction only, this is the rate of heat flow on which the effective thermal conductivity should be based. To find the rate of heat flow ? in the z direction, the heat flows in the z-direction between all nodes in any two successive planes are summed. This process is repeated for all successive planes, and Q is the average value of these sums. The effective thermal conductivity of the granular material,
as defined by the Fourier-Biot law, is given by:

$$
\begin{equation*}
k_{e}=\frac{Q}{N \Delta T} \tag{7-12}
\end{equation*}
$$

where ΔT is the difference between the temperatures of the back and front faces of the unit cube that are normal to the net heat flow direction.

The method of solution described in the preceding paragraphs can be applied to any granular system for which the fluid in the voids is at atmospheric pressure. In this case, the solid particles and the voids are approximated by the arrangement of a number of cubicles according to the statistical distribution chosen; heat balances at each node should give the temperature distribution since both phases are in the domain of a continuum. However, when the medium in the voids is a rarefied gas, which is the case for both lunar and martian environments, a dominant mode of heat transfer in the voids may be radiation between particle surfaces [1], as shown in Fig. (7-3). Also, when the molecular mean free path is greater than the void diameter, conduction in the voids takes place by direct exchange of energy between particle surfaces. Consequently, for extremely rarefied gases it is not possible to determine a working effective conductivity between nodes that belong to gaseous cubicles located in the same void. However, if the chosen grid size is coarse enough so that the volume of each cibicle is equal to the mean void equivalent hole volume, then each void is approximated by a cubicle and the working effective con-

FIGURE 7-3. HEAT CONDUCTED THROUGH GRAINS AND TRANSFERRED BY CONDUCTION AND RADIATION AT BOUNDRIES.
ductivity of each cubicle occupied by the continuous phase can be approximated by the effective radiative and gaseous conductivities discussed in the literature survey.

Comparison of Calculated Effective Conductivitv to Experimental Data.
The effective thermal conductivity has been calculated and compared to experimentally determined values for a number of granular materials at atmospheric pressures, as indicated on Table 7-I. The range of porosities and constituent conductivities is $0.31-0.59$ and $1.67-2444.4$ respectively. For all these cases the conductivities of the constituents were assumed to be constant, independent of temperature distribution in the unit cube. The mechanical properties of the solid phase, required for the calculation of the contact resistance, are shown on Table 7-IX.

In addition to the model presented in this study, the effective conductivity predicted by a number of selected models was also determined, and the calculated values are presented in Tables 7-II and 7-III. The colum "Case" in these Tables refers to the granular system described in Table 7-I. It should be noted that a number of these models, such as the Maxwell, Rayleigh and Jefferson models, have been extended to porosities beyond the range for which they are theoretically applicable.

The percentage error between experimental thermal conductivities and those predicted by all selected models is shown on Tables 7-IV and 7-V. Table 7-VI summarizes the mean error, mean bias and the variance of percentage error between the experimental and model
predicted thermal conductivities. From this Table it is seen that the model of this study predicts the experimental thermal conductivities with a mean of 15.8%, an error variance of 1.63 , and is biased below the experimental values by 5.8%. This is slightly better than the Krupiczka model, for which a mean error of 17.5% has been calculated. The mean error of all other models is in the range of $30.1 \%-42.2 \%$. A graphical representation of the effective thermal conductivity predicted by the model described in this study is shown in Figure (7-4).

It is interestina to observe the performance of some of the models as compared to the assumptions introduced in their developments. It would be expected that models utilizing the parallel isotherm assumption would overpredict the effective thermal conductivity. Jefferson's model (6 in Table 7-VI) generally conforms to this expectation. However Russel's model (5 in Table 7-VI) predicts lower conductivities than the experimental ones, and the discrepancy increases with the ratio of constituent conductivities. The most probably explanation for this behavior is that the effects of the assumed simplified geometry, and the absence of contact areas between particles, dominate over the assumption of infinite conductivity in the lateral-to-the-heat-flow direction, thus rendering the calculated conductivities low.

On the other hand, it would be expected that models utilizing the uniform heat flux assumption would predict low values for the effective thermal conductivity. This is the case for Lichtenecker's
model (8 in Table 7-VI) which, as expected, predicts lower values than Russell's model. However, the Krupiczka and Woodside and Messmer models (7 and 9 in Table 7-VI) are generally biased above the experimental effective thermal conductivity, thus strengthening the indication that the effects of particle shape and spatial distribution, and the bending of the heat flow lines in granular materials are too complex to be analyzed separately, and should be incorporated in a single unified model. Therefore, an analysis of a simplified geometrical configuration or an unrealistic heat flow assumption do not provide sufficient information to deduce whether a particular model will predict high or low conductivities for real granular materials.

Models based on non-linear heat flow are generally biased below the experimental thermal conductivity, as seen from Tables $7-I V, 7-V$ and 7-VI. A surprising result is that the conductivities predicted by Maxwell's and Rayleigh's equations are very close for the total range of porosities and ratios of constituent conductivities. This is probably due to Rayleigh's failure to include a larger number of terms in his solution, and for this reason Meredith and Tobias' equation provides a marked improvement of the predicted values.

For the model described in this study, the effective conductivity in each case was determined by considering five or more random placements of the continuous phase in a unit cube, and finding the average of the calculated values. The variance of the calculated values was less than 0.1 for 78 cases and its highest value vas 0.587 .

Whenever the variance was exceedingly high, more random placements were considered, so that a more representative average could be obtained for the effective thermal conductivity.

III Fiq.(7-5) the calculated effective thermal conductivity shown in Table 7-VII, is compared to experimental data obtained by Fountain and West [3] for particulate basalt in a simulated lunar environment. The thermal conductivity of solid basalt was assumed to be a function of temperature given by:
$k($ Basalt $)=0.01091+9.09 \times 10^{-6} \mathrm{~T} \quad \mathrm{Watt} / \mathrm{cm}-\mathrm{K}$
where T is in ${ }^{0}$. Equation (7-13) is a least squares fit of the data given in Reference [64]. The effective thermal conductivity of the gaseous phase was calculated according to Equation ($A-1$), and the effective radiant conductivity for the transfer of heat between particle surfaces was calculated according to Equation (B-13). In both cases the effective pore size was assumed to be given by Equation ($D-6$). Then, the effective conductivity of the continuous phase is the sum of the gaseous conductivity and the radiant conductivity.

As indicated in Fig. (7-5), the calculated conductivities are lower than the experimental. Probably the source of error is due to two factors. First, the semi-empirical equation for the contact resistance used in this study probably predicts low values for the contact conductivity. Evidence to this effect is that calculated conductivities at low pressures, in which case heat transfer from particle to particle is a dominant mode, are generally low. A second source of error is
failure to include radiation heat transfer as a photon diffusion process. Evidence to this effect is that the discrepancy between calculated and experimental values generally increases with temperature. Nevertheless, it is seen that the model predicts fairly well the increase in slope with decreasing porosity, and the increase in slope with temperature, due to the increase of the relative influence of radiant heat transfer with decreasing porosity and increasing temperature. The maximum error of the calculated thermal conductivities is 23.6% and the mean error is 15.9%.

In Fig. (7-6) the calculated effective thermal conductivity is compared to experimental data obtained by Fountain and West [3] for particulate basalt in a simulated martian environment. In this case the gaseous conductivity and the radiant conductivity are of the order of magnitude 3×10^{-5} and 10^{-7} Watt $/ \mathrm{cm}^{0} \mathrm{~K}$ respectively. Consequently, radiation can be neglected. Again the predicted values are lower than the experimental, and the maximum error and mean error are 25.2% and 20.8% respectively. The slight increase of the effective thermal conductivity with temperature is due to the simultaneous increase of the conductivity of the solid and gaseous phases with temperature, and not to radiation heat transfer.

A case in which the calculated values are not in good agreement with experimental values is shown in Fig. (7-7). The experimental data in this Figure were obtained from Reference [93]. Here, experimental and calculated thermal conductivities are compared for glass spheres
in a simulated lunar environment, and the maximum and mean errors are 48.3\% and 39.4% respectively. The discrepancy increases with increasing temperature. The most probable explanation for the low predicted thermal conductivities is that this case does not satisfy the assumptions stated in the development of the model. Radiation heat transfer has been incorporated in the model through the effective radiant conductivity of the voids, which accounts for the radiation heat transfer between particle surfaces. It has been necessary to make this assumption because of the lack of information about the extinction coefficient of granular materials and powders, which is required for the complete description of the radiation heat transfer process. Consequently, it has been effectively assumed that the solid particles are opaque to thermal radiation, and that the pure radiation heat transfer process can be neglected. However, there exists evidence $[2,85]$ that this is not always the case, and for very small particles the pure radiation process is generally more effective than the conduction-radiation process. It appears that failure to account for the pure radiation process has rendered the calculated values much lower than the experimental values is this case of glass spheres.

The experimental and calculated thermal conductivities of particulate basalt in air, lead shot in air, and glass beads in air are compared in Figures (7-8), (7-9) and (7-10) respectively, as a function of pressure. It is observed that the mondel nredicted values are generally in good agreement with the experimental values, although somewhat lower crn.
ductivities are predicted at low pressures. This relatively good agreement is attributed to the choice of Equation (D-6) for the effective pore size associated with the conduction heat transfer in the voids. The maximum and mean errors corresponding to Figures (7-8), (7-9) and (7-10) are 28.4 and $19.4,37$ and $18.5,23$ and 17.6 respectively.

Table 7-VIII summarizes the mean error and the variance of percentage error for all low pressure cases.

Summarizing the comparisons between calculated and experimental thermal conductivities, it is seen that the performance of the model described in this study is sufficiently good for granular materials at atmospheric pressures. For granular materials at low pressures, the predicted thermal conductivities are generally low, but the change of the thermal conductivity with temperature and pressure is in good agreement with the changes observed in the experimental values.

The major sources of error in the calculated effective thermal conductivity values are as follows:

1. Low values for the contact conductivity predicted by Equation (C-7);
2. Failure to account for the pure radiation process;
3. Incomplete description of the particle and pore size and shape
distribution by the random placement method.
The first factor is of particular importance in cases where the ratio of the constituent conductivities is large, and could explain the low calculated values at low pressures. The third factor is a manifestation of the lack of information associated with the generalized geometry of granular materials.

TABLE 7-1 comparisnin or calculated comductivities to experinertal conductivities

Case (1)	Conductivity, ($\left.\mathrm{ccal}^{\text {/m-hr }}{ }^{\circ} \mathrm{k}\right) \times 100$				k_{d} / k_{c} (6)	$\begin{gathered} P \\ (7) \end{gathered}$	Ref. (8)
	Fluid Phase (2)	Solid Phase (3)	Experimental (4)	Calculated (5)			
1	h-Heptane 11	$\begin{aligned} & \text { Quartz } \end{aligned}$	57.6	61.6	65.5	0.590	23
2	$\begin{aligned} & \text { Hel ium } \\ & 11.5 \end{aligned}$	$\begin{aligned} & \text { Quartz } \\ & 720 \end{aligned}$	63	61.7	62.6	0.590	23
3	Hydrogen 14.7	$\begin{aligned} & \text { Quartz } \\ & 720 \end{aligned}$	74	73.8	49	0.590	23
4	Water 54	$\begin{aligned} & \text { Quartz } \\ & 720 \end{aligned}$	180	152.6	13.3	0.590	23
5	$\begin{aligned} & \mathrm{EtOH} \\ & 29.3 \end{aligned}$	$\begin{aligned} & \text { S. Steel } \\ & 1793 \end{aligned}$	172.7	181.2	61.2	0.505	36
6	$\begin{aligned} & \text { Air } \\ & 2.3 \end{aligned}$	$\begin{aligned} & \text { S. Steel } \\ & 1793 \end{aligned}$	22	24.2	779.6	0.502	36
7	Glycerine 46.3	$\begin{aligned} & \text { S. Steel } \\ & 1793 \end{aligned}$	248.3	211.9	38.7	0.502	36
8	Water 54.5	$\begin{aligned} & \text { S. Steel } \\ & 1793 \end{aligned}$	272	228.3	32.9	0.501	36
9	$\begin{aligned} & \text { Hel ium } \\ & 15.6 \end{aligned}$	$\begin{aligned} & \text { S. Steel } \\ & 1785 \end{aligned}$	117.4	114.4	114.5	0.500	21

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
10	Hel ium 18.5	$\begin{aligned} & \text { S. Steel } \\ & 1670 \end{aligned}$	122	133.5	90.3	0.500	21
11	$\begin{aligned} & \text { Argon } \\ & 1.62 \end{aligned}$	$\begin{aligned} & \text { S. Stee } 1 \\ & 1883 \end{aligned}$	38.7	30.6	1162.3	0.500	21
12	$\begin{aligned} & \text { Argon } \\ & 2.01 \end{aligned}$	$\begin{aligned} & \text { S. Steel } \\ & 1720 \end{aligned}$	41.6	48.7	855.7	0.500	21
13	Iso-Octane 12.3	$\begin{aligned} & \text { S. Steel } \\ & 1793 \end{aligned}$	80.5	73.3	145.8	0.476	36
14	$\begin{aligned} & \text { Air } \\ & 2.41 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 2950 \end{aligned}$	30.4	27.0	1224.1	0.450	6
15	$\begin{aligned} & \text { Water } \\ & 54.5 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973 \end{aligned}$	216	197.9	17.9	0.439	36
16	$\begin{aligned} & \text { Air } \\ & 2.25 \end{aligned}$	$\begin{aligned} & \text { Quartz } \\ & 947 \end{aligned}$	26.8	34.5	420.9	0.438	35
17	$\begin{aligned} & \text { Air } \\ & 2.3 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973 \end{aligned}$	21.9	16.9	423.0	0.437	36
18	$\begin{aligned} & \text { Air } \\ & 2.25 \end{aligned}$	$\begin{aligned} & \text { Coal } \\ & 36 \end{aligned}$	11.8	8.9	16.0	0.437	35
19	Hydrogen 16.6	$\begin{aligned} & \text { Coal } \\ & 36 \end{aligned}$	25.3	22.1	2.17	0.437	35
20	$\begin{aligned} & \text { EtOH } \\ & 29.3 \end{aligned}$	Silica 973	144.6	122.3	33.2	0.434	36

TABLE 7-1 Conionucd

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
21	$\begin{aligned} & \text { EtoH } \\ & 29.3 \end{aligned}$	Silica 973	146.5	124.6	33.2	0.433	36
22	$\begin{aligned} & \text { Air } \\ & 2.3 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973 \end{aligned}$	23.8	22.5	423.0	0.433	36
23	$\begin{aligned} & \text { Iso-Octane } \\ & 12.3 \end{aligned}$	$\begin{aligned} & \text { Glass } \\ & 93.9 \end{aligned}$	35.1	42.2	7.63	0.431	36
24	Water 54.5	$\begin{aligned} & \text { Silica } \\ & 973 \end{aligned}$	218.5	177.5	17.9	0.430	36
25	Glycerine 46.3	$\begin{aligned} & \text { Glass } \\ & 93.9 \end{aligned}$	73.2	61.1	2.03	0.428	36
26	$\begin{aligned} & \text { Iso-0ctane } \\ & 12.3 \end{aligned}$	Silica 973	94.1	81.9	79.1	0.428	36
27	$\begin{aligned} & \text { Iso-Octane } \\ & 12.3 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973 \end{aligned}$	70.9	78.9	79.1	0.426	36
28	$\begin{aligned} & \text { Air } \\ & 2.3 \end{aligned}$	Silica 973	22.3	25.9	423.0	0.426	36
29	$\begin{aligned} & \text { Water } \\ & 54.5 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973 \end{aligned}$	210	159.1	17.9	0.426	36
30	$\begin{aligned} & \text { Air } \\ & 2.3 \end{aligned}$	Silica 973	22.6	26.3	423.0	0.424	36
31	Glycerine 46.3	Silica 973	205.5	180.3	21.0	0.424	36

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
32	$\begin{aligned} & \text { Air } \\ & 2.41 \end{aligned}$	$\begin{aligned} & \text { Stee } \\ & 3850 \end{aligned}$	44.6	53.2	1597.5	0.423	6
33	$\begin{aligned} & \text { EtOH } \\ & 29.3 \end{aligned}$	$\begin{aligned} & \text { Glass } \\ & 93.9 \end{aligned}$	55.4	41.1	3.2	0.423	36
34	$\begin{aligned} & \mathrm{EtOH} \\ & 29.3 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973 \end{aligned}$	163.8	134.5	33.2	0.423	36
35	$\begin{aligned} & \text { Iso-0ctane } \\ & 12.3 \end{aligned}$	Silica 973	74.6	77.7	79.1	0.423	36
36	$\begin{aligned} & \text { Air } \\ & 2.41 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 2950 \end{aligned}$	36	41.2	1224.1	0.420	6
37	$\begin{aligned} & \text { Iso-0ctane } \\ & 12.3 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973 \end{aligned}$	70.6	66.9	79.1	0.420	36
38	$\begin{aligned} & \text { Hel ium } \\ & 15.6 \end{aligned}$	$\begin{aligned} & \mathrm{MaO} \\ & 2750 \end{aligned}$	132.5	151.7	176.3	0.420	21
39	Helium 18.6	$\begin{aligned} & \operatorname{Mg0} \\ & 2160 \end{aligned}$	152	127.2	116.1	0.420	21
40	$\begin{aligned} & \text { Air } \\ & 2.68 \end{aligned}$	$\begin{aligned} & \mathrm{MgO} \\ & 2820 \end{aligned}$	33.5	30.5	1052.2	0.420	21
41	$\begin{aligned} & \text { Air } \\ & 3.20 \end{aligned}$	$\begin{aligned} & \mathrm{MgO} \\ & 2200 \end{aligned}$	40.2	52.7	687.5	0.420	21
42	$\begin{aligned} & \text { Argon } \\ & 2.16 \end{aligned}$	$\begin{aligned} & \mathrm{MgO} \\ & 2750 \end{aligned}$	26.8	19.5	1273.2	0.420	21

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
43	$\begin{aligned} & \text { Argon } \\ & 2.23 \end{aligned}$	$\begin{aligned} & \mathrm{MyO} \\ & 2200 \end{aligned}$	29.8	24.1	986.6	0.420	21
44	$\begin{aligned} & \text { Air } \\ & 2.74 \end{aligned}$	$\begin{aligned} & \mathrm{Al}_{2} \mathrm{O}_{3} \\ & 2600 \end{aligned}$	36.1	31.3	948.9	0.420	45
45	$\begin{aligned} & \text { I so-Octane } \\ & 12.3 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973 \end{aligned}$	71.2	69.3	79.1	0.419	36
46	$\begin{aligned} & \text { EtOH } \\ & 29.3 \end{aligned}$	$\begin{aligned} & \text { Silica } \\ & 973 \end{aligned}$	144.2	114.2	34.2	0.418	36
47	$\begin{aligned} & \text { Air } \\ & 2.25 \end{aligned}$	$\begin{aligned} & \text { Quartz } \\ & 947 \end{aligned}$	29.7	19.4	420.9	0.416	35
48	$\begin{aligned} & \text { Air } \\ & 2.3 \end{aligned}$	$\begin{aligned} & \text { Glass } \\ & 93.9 \end{aligned}$	17.1	13.9	40.8	0.414	36
49	Water 54.5	$\begin{aligned} & \text { Silica } \\ & 973 \end{aligned}$	230.5	157.7	17.9	0.414	36
50	$\begin{aligned} & \text { Air } \\ & 2.41 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3850 \end{aligned}$	35.1	29.8	1597.5	0.413	6
51	$\begin{aligned} & \text { Air } \\ & 2.41 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3850 \end{aligned}$	33.6	29.8	1597.5	0.413	6
52	$\begin{aligned} & \text { EtOH } \\ & 29.3 \end{aligned}$	Silica 973	154.9	115.6	33.2	0.410	36
53	$\begin{gathered} \text { Air } \\ 3.0 \end{gathered}$	$\begin{aligned} & \text { Sand } \\ & 160 \end{aligned}$	23.1	16.7	53.3	0.410	56

Table 7-1. Continued

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
54	$\begin{aligned} & \text { Water } \\ & 54.5 \end{aligned}$	$\begin{aligned} & \text { Glass } \\ & 93.9 \end{aligned}$	73.1	69.7	1.72	0.408	36
55	$\begin{aligned} & \text { Air } \\ & 2.41 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3850 \end{aligned}$	36.7	41.6	1597.5	0.402	6
56	$\begin{aligned} & \text { Air } \\ & 2.25 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 3040 \end{aligned}$	37.1	42.8	1351.1	0.400	35
57	Hydrogen 16.6	$\begin{aligned} & \text { Lead } \\ & 3040 \end{aligned}$	120.7	128.7	183.1	0.400	35
58	$\begin{aligned} & \text { Water } \\ & 55 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 3040 \end{aligned}$	299.5	273.1	55.3	0.400	35
59	Glycerine 24.5	$\begin{aligned} & \text { Lead } \\ & 3040 \end{aligned}$	176	204.9	124.1	0.400	35
60	$\begin{aligned} & \text { Air } \\ & 2.41 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3850 \end{aligned}$	42.5	40.9	1597.5	0.394	6
61	$\begin{aligned} & \mathrm{EtOH} \\ & 29.3 \end{aligned}$	Copper 33200	327.5	251.3	1133.1	0.392	36
62	$\begin{aligned} & \text { Air } \\ & 2.41 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3850 \end{aligned}$	40.3	45.9	1597.5	0.391	6
63	$\begin{aligned} & \text { Air } \\ & 2.41 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3850 \end{aligned}$	45.6	48.2	1597.5	0.390	6
64	$\begin{aligned} & \text { Air } \\ & 3.0 \end{aligned}$	$\begin{aligned} & \text { Sand } \\ & 160 \end{aligned}$	29.4	22.4	53.3	0.390	56

(1)	(2)	(3)	(1)	(5)	(6)	(7)	(8)
65	Water 54.5	Copper 33200	613	639.0	609.2	0.387	36
66	Glycerine 46.3	Copper 33200	607	529.1	717.1	0.386	36
67	Glycerine 46.3	$\begin{aligned} & \text { Copper } \\ & 33200 \end{aligned}$	549	463.2	717.1	0.385	36
68	water 54.5	Copper 33200	635	553.2	609.2	0.384	36
69	Argon 1.46	$\begin{aligned} & \text { Lead } \\ & 2950 \end{aligned}$	25	29.4	2020.6	0.380	23
70	$\begin{aligned} & \text { Air } \\ & 2.18 \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & 2950 \end{aligned}$	36	31.2	1353.2	0.380	23
71	Helium 11.5	$\begin{aligned} & \text { Lead } \\ & 2950 \end{aligned}$	162	205.8	256.5	0.380	23
72	Hydrogen 14.7	$\begin{aligned} & \text { Lead } \\ & 2950 \end{aligned}$	183	214.3	200.7	0.380	23
73	Water 54	$\begin{aligned} & \text { Lead } \\ & 2950 \end{aligned}$	470	377.7	54.6	0.380	23
74	$\begin{aligned} & \text { Air } \\ & 2.43 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3030 \end{aligned}$	45	59.1	1246.9	0.380	58
75	Methane 3.0	$\begin{aligned} & \text { Steel } \\ & 3300 \end{aligned}$	55.8	72.5	1100.0	0.380	58

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
76	$\begin{aligned} & \mathrm{CO}_{2} \\ & 1.35 \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & 3300 \end{aligned}$	32.4	42.1	2444.4	0.380	58
77	Hydrogen 16.4	$\begin{aligned} & \text { Steel } \\ & 33000 \end{aligned}$	188	191.2	201.2	0.380	58
78	$\begin{aligned} & \text { Freon-12 } \\ & 078 \end{aligned}$	$\begin{aligned} & \text { Glass } \\ & 90 \end{aligned}$	3.96	3.19	115.4	0.379	23
79	Argon 1.46	$\begin{aligned} & \text { Glass } \\ & 90 \end{aligned}$	13.3	11.2	61.6	0.379	23
80	$\begin{aligned} & \text { Air } \\ & 2.18 \end{aligned}$	Glass 90	18	16.2	41.3	0.379	23
81	Water 54	$\begin{aligned} & \text { Glass } \\ & 90 \end{aligned}$	75.5	66.2	1.67	0.379	23
82	$\begin{aligned} & \text { Air } \\ & 2.24 \end{aligned}$	Quartz 1175	35.7	41.8	524.6	0.377	34
83	$\begin{gathered} \text { Air } \\ 3.0 \end{gathered}$	$\begin{aligned} & \text { Sand } \\ & 160 \end{aligned}$	29.4	22.2	53.3	0.370	56
84	Hel ium 13.1	$\begin{aligned} & \text { Quartz } \\ & 680 \end{aligned}$	94.5	72.6	51.9	0.369	60
85	Helium 13.1	$\begin{aligned} & \text { Quartz } \\ & 680 \end{aligned}$	91.5	72.6	51.9	0.369	60
86	Helium 12.2	$\begin{aligned} & \text { Quartz } \\ & 830 \end{aligned}$	97.8	78.0	68.0	0.369	60

Table 7-1 Continued

fable 7-il experinental and pkecicted fhernal conductivities fur varicus nceels

CASE	t×kt	NOLEL	KRUPIC.	RUSSELL	LICHT.	JEFFEKSUN
1	0.5760	0.6160	0.4752	0.3965	0.3283	C. 3731
2	0.6360	0.6170	0.4314	0.4132	0.3424	0.3873
3	0.14 CC	0.7380	0.5900	C. 5174	0.4313	C. 4751
4	1.80CO	1.5260	1.4804	1.5310	1.3468	1.3232
5	1.7270	1.8120	1.5364	1.2773	1.0900	1.3735
6	©.2200	0.2420	0.1994	0.0558	0.0802	C. 1550
7	2.4830	2.1190	2.1197	1.9338	1.6898	1.9570
¢	2.7200	2.2830	2.3700	2.2294	1.9349	2.2114
9	1.1740	1.1440	0.9955	0.7184	0.6082	0.8620
10	1.2200	1.3350	1.1025	0.84 C 3	0.7136	0.9693
11	0.3870	1.3060	0.1701	0.0781	0.0654	C. 1319
12	0.4160	0.4870	0.2006	0.0967	0.0810	0.1569
13	U.805C	0.7330	0.7056	0.6081	0.5180	0.8095
14	3.3040	0.2700	0.3264	0.1327	0.1131	C. 2986
15	2.1600\%	1.7190	2.1695	2.2576	2.0391	2.2112
16	0.2680	0.3450	0.2551	0.1267	0.1088	0.2442
17	U.2150	6.1690	0.2623	0.1299	0.1115	0.2519
18	U.1180	0.6090	-. 0.0860	c.0908	0.0824	C.0879
19	0.2530	0.2710	0.2508	0.2619	0.2447	0.2543
20	1.4460	1.2230	1.5079	1.4039	1.2450	1.5260
21	1.4650	1.2460	1.5119	1.4073	1.2484	1.5319
22	U.大3ec	0.2250	0.2671	C. 1313	0.1129	C. 2603
23	9.3510	0.4220). 3443	0.3838	0.3582	0.3551
24	2.1456	1.7750	2.2125	2.3022	2.0848	2.2721
2b	0.7320	0.6110	0.6796	0.7060	0.6584	0.6384
26	- . 7410	0.8180	0.93823	0.6648	0.5802	0.8855
27	0.705	0.7830	0.8883	0.6683	0.5838	0.8948
23	J.2230	3.2590	0.2759	0.1339	0.1155	0.2702
29	$\therefore .1060$	1.5910	2.2321	2.3224	2.1056	2.2598
30	i).2260	0.2030	0.2785	0.1347	0.1162	0.2810
31	6.0550	1.9030	2.0382	2.0673	1.8647	2.1600
12	U.44t0	0.5320	0.3983	0.1433	0.1234	0.4247
33	U. - 」45	0.4110	0.5457	0.5898	0.5578	0.5541
34	1.6380	1.3450	1.5531	1.4422	1.2835	1.5925
35	0.1460	i. 1710	0.8973	0.6737	0.5891	C.9091
36	- . 3600	0.4120	0.3835	0.1443	0.1244	0.4104
37	0.7000	C.6090	0.9065	0.6792	0.3745	0.9238
38	1.3250	1.5170	1.4965	0.9027	0.7835	1.5197
39	1.5200	1.2720	1.3616	1.0549	0.5140	1.5869
40	1, 3.350	0.3050	0.4127	0.1603	0.1383	0.4380
41	0.4020	0.5270	0.4466	0.1907	- 11646	0.4649
42	U. 2680	0.1950	0.34 t. 6	0.12 .94	0.1116	C. 3718
43	0.2990	0.2410	0.3385	0.1333	0.1150	0.3580
44	$3=3610$	$0=3130$	2.4123	0.1638	0.141^{3}	0.4353
45	3. 1120	9.6:30	0.9097	0.6810	0.5963	0.9288
46	1.4420	1.1420	1.5745	1.4601	1.3016	1.6241
47	3.2510	0.1940	0.2826	0.1348	0.1166	c. 2948
48	0.1710	0.1390	0.1355	0.1197	0.1063	C. 1402

tablé 7－II Experimental and precicted thermal ccinductivities

 for variols mocfls| Cisf． | Exke | NGEEL | KRUPIC． | RUSSELL | LICHT． | JEFFERSCN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 45 | $<.30 \pm 0$ | 1．2770 | 2.2934 | 2.3848 | 2.1696 | 2.3857 |
| 50 | 3.3510 | 0.2980 | 0.4221 | C． 1475 | 0.1275 | 0.4841 |
| 51 | U．3360 | 0.2980 | 9．4221 | c． 1475 | 0.1275 | 0.4841 |
| b？ | i．34， 0 | 1.1260 | 1．6．106 | 1.4854 | 1.3312 | 1.6764 |
| 53 | 0.1210 | 0.1010 | 0.1981 | 0.1635 | 0.1446 | C． 2059 |
| 54 | 2．7310 | 0.06510 | U． 7396 | C．7606 | 0．70́52 | C． 7487 |
| 55 | －．36に | 0.4160 | 0.4506 | 0.1523 | 0.1322 | 0.5688 |
| his | －．3710 | （0．4\％89） | 0.4164 | 0.1629 | 0.1242 | 0.5165 |
| 57 | 1.1010 | 1.2870 | 1.7518 | 1.0183 | 0.8901 | 1.8939 |
| $r_{\text {r }}$ ：${ }^{\text {a }}$ | ¢．955c | 1．731\％ | 3.9028 | $3 . C 025$ | 2.7420 | 4.0181 |
| i， | －7tご | 2．04\％ | 2.2712 | 1.4752 | 1.2936 | 2.4285 |
| （i） | い，スヒく | C．40＇0 | 0.4731 | 0.1500 | 0.1358 | 0． 6492 |
| ti | 3.2756 | 2.6130 | 5.3749 | 1．9043 | 1.659% | 7.1256 |
| 6.2 | －．4030 | 0．4．090 | 0．4820 | c． 1574 | 0.1372 | C．6849 |
| ¢ 8 | ． 456 | $\therefore .4020$ | 0.4850 | 0.1579 | 0.1377 | C．6977 |
| \％ 4 | 1．194C | 0.2240 | 0.219% | 0.1520 | 0.1627 | 0.2359 |
| （1） | 6.1300 | 6.3100 | 8.7746 | 3.5753 | 3.1240 | 11.1084 |
| 4i： | もいつい | 5.2910 | 7.83 .344 | 3.0524 | 2．E67\％ | 10.2277 |
| 61 | －•价心 | 4.6320 | 7.8784 | 3.0617 | 2.6769 | 1C． 3734 |
| 6： | 6．35こ6 | 3.9320 | 8.9197 | 3.608 i | 3.1569 | 11.5586 |
| $6)$ | －． 360 | 6．ノリタ | 0.3300 | C．0981 | C．0864 | 0.5856 |
| 70 | \therefore－36し | 9，3120 | 0.4492 | 0.1471 | 0.1283 | C．70s＇s |
| $1:$ | －62しく | 2．csdo | 1.4818 | 0.7573 | 0.6655 | 1.7757 |
| 12 | －． 300 | 2．1430 | i． 7409 | 0.9600 | 0.8448 | 2.0476 |
| 13 | －．100 | 3.7110 | 3.9764 | 3.2027 | 2.8600 | 4.3447 |
| 11 | －．4．ら60 | 0.5910 | 0.4908 | 0.1634 | 0.1435 | 0.7598 |
| 15 | －33＊4 | C． 7260 | 0．9374 | 0.2022 | $0.177{ }^{\text {a }}$ | 0.882 .7 |
| 10 | $\therefore .3740$ | C．4210 | 0.3190 | 0.0914 | 0.0790 | 0.6022 |
| 11 | 1．4ets | 1.5120 | 1.9507 | 1.0712 | 0.9426 | 2.2470 |
| 74 | 1．0356 | 0.6319 | 0.0767 | C．04．97 | （0．043） | 0.0460 |
| 7% | －Di3C | 0.1120 | 0.1132 | 0.0381 | C． 3785 | － .1244 |
| 10 | －incor | L．ites | 0.1437 | 0.1246 | 0.1119 | 0.1260 |
| \％ 1 | i．15， 0 | c．toco | 0.7296 | 0.74 é 7 | 0.6 .902 | 0.7383 |
| 32 | a．3510 | －4180 | 0.3651 | C．1512 | 0.1327 | 0.4891 |
| ＜． 3 | U， 2940 | －－220 | 0.2260 | 0.1824 | 0.1635 | 0．2916 |
| 134 | 9．9450 | C． $1<60$ | 0.9818 | 0.7960 | 0.714 ？ | 1.0911 |
| ！ | U．＇ioc | 0.7200 | 0.9818 | 0.7960 | 0.7142 | 1.0911 |
| 66 | | 0． 1800 | 1.0204 | 0.7658 | 0.6834 | 1.1434 |
| －1 | | $\because .7300$ | 1.0204 | 0.7658 | 0.6 ± 39 | 1.1494 |
| Mi： | ．1．300 | 2． 2360 | 0.4112 | 0.1507 | 0.1357 | 0.3521 |
| 0% | －． 1600 | 1.0030 | 1.8384 | 1.1135 | 0.9883 | 2.2065 |
| 90 | －．2500 | 0.2020 | 0.2215 | 0.165% | 0.1487 | c． 2546 |
| ， 1 | J．378i | －．4c20 | 0.4156 | 0.1626 | 0.143% | C．7013 |
| －2 | U．と830 | 0.6270 | 0.7508 | 0.1920 | 0.1724 | －2．5897 |

rable 7-III EXPLRINENTAL AND PREDICTEO THERMAL CONDUCTIVITIES for varicus models

	EXKL	MAXBLLL	RAYLEICH	W AND M	
casl	0.5760	0.3226	0.3213	0.6489	0.3771
1	C. 0.6300	C. 3305	0.3352	0.6736	0.3933
3	C. 7400	0.4241	0.4226	0.8240	0.4951
4	1.8000	1.3371	1.3339	2.0233	1.3363
5	1.7270	1.0772	1.0733	2.2594 0.1919	0.0987
6	C. 2200	C.0791	0.0788 1.6469	3.23 Cz	2.0490
7	2.4830	1.6525	1.6469 1.9098	3.6333	2.3742
$\stackrel{8}{*}$	2.7200	1.7161 0.6007	1.9 .9983	1.3496	0.7494
9	1.1740	c. 0.70 .90		1.5492	0.8791
10	1.2200	0.7650 0.0646	0.0643	c. 1572	0.0807
11	0.3870	0.0646 0.0800	0.0796	0.1941	0.1000
12	- 4160	C. .5123	0.5097	1.1786	0.6511
1.5	0.8050	C. 5123 C. 112 C	0.1115	C. 2764	0.1454
14	C.3040	C.1120	2.0142	3.3220	2.6230
15	2.1600	2.0316	0.1062	0.2608	0.1411
16	- 2 2680	C. 1077	0.1082	0.2675	0.1448
17	0.2190	C. 1105	C. 1089	0.2675	0.1660
1 H	0.1180	C.0822	C. 0680	0.1365	0.2859
19	0.2530	C. 2593	0.2554	2.3307	1.6173
20	1.4460	1.2368	1.2231	2.3364	1.6233
21	1.4650	1.2403	$1.220{ }^{\text {c }}$	0.27C8	0.1472
22	0.2380	C.1119	C. 3427	0.4715	0.4537
23	C.3ヶ10	c. 36,07	C. 3427	- 3.4818	2.7035
24	2.1850	2.0778	2.0587	3.3862	2.7675
25	0.7320	0.7004	0.6968	0.7220	0.7592
26	6.9410	C. 575	C. 5677	1.2462	0.7652
27	0.7050	0.5791	0.5711	1.2531	0.1514
28	0.2230	C. 1144	0.1127	C. 2767	0.1514
29	2.1000	2.0988	2.0788	3.4149	2.1404
30	c. 2260	C.1152	0.1134	0.2784	2.4526
31	2.0550	1.3571	1.8379	3.1442	2.4365
32	0.4460	0.1223	0.1218	0.3019	0.6738
33	0.5540	0.5713	0.5677	C.6291	1.6840
34	1.0340	1.2756	1.2602	2.3739 1.2635	0.7742
3b	0.7460	0.5844	0.5761	1.2635 $c .3037$	0.7742
36	1. 3600	0.1234	0.1227	C. 3037	0.7834
37	C.7cto	(1.58,9	0.5813	1.2740	1.0325
38	1.3550	C. 7770	0.7726	1.8045	-.0325
39	1.5200	0.9116	0.7053	2.0503	1.2111
40	0.3350	0.1371	0.1363	0.3369	0.1022
41	6.14020	0.1632	0.1620	0.3985	0.2169
42	0.2680	6.1106	0.1059	0.2723	0.1470
43	0.2580	0.114 C	0.1132	0.2800	0.1515
4 \%	0.3610	0.1401	0.1392	0.3438	0.1862
45	0.7120	C.5917	0.5830	1.2774	0.7864
46	1.4420	1.2938	1.2775	2.4228	1.7155
47	0.2570	C. 1157	0.1137	0.2789	0.1542
48	10	C. 1056	0.0927	0.2056	0.1407

TARLE 7－III EXPERINEATAL ANO precicted thermal concuctivities for variclis necels

Casi	EイK：	Maxaitl	RAYLEIGH	W AND M	N Anc T
45	C．3C50	2.1634	2.1407	3.5011	2.8550
20	U．3ヶ10	C． 1264	0.1258	c． 3114	0.1689
51	0.3360	0.1264	0.1258	0.3114	0.1689
21	1.3450	1.3237	1.3058	2.4672	1.7675
53	0.2310	C． 14.36	0.1311	C． 2922	0.1922
44	0.7310	C． 7 ， 74	0.7548	C． 7704	0.8167
bs	6.3670	0.1312	C． 1305	c． 3219	0.1769
¢	0.3710	0.1232	0.1224	0.3017	0.1664
$\mathrm{r}_{2} 7$	1．2じく	c． 2.4835	0.8781	2.0414	1.1936
59	2．9ック	2.7245	2.7100	5.54 .66	3.6783
53	1．760．）	1.28342	1.2766	2.4821	1.7350
60	こ．4くり0	0.1348	0.1341	0.3297	0.1829
61	？．<750	1.6472	1.6462	4.0117	2.2396
6is	（．4．43）	C． 1362	0.1354	0.3326	0.1853
is）	0．4．26：	C． 1366	0.1359	C． 3336	0.1861
is／	U．20行	0.1618	0.1403	0.3221	0.2203
ib	6.1100	$\therefore 1022$	3.1002	7.4618	4.2359
ios	ナいいい	2.6481	2.6410	6.3880	3.6196
6）	ら．ィ30．	2.6579	2.6562	6.4006	3.6351
i，\％	i． 36.50	3.1345	3.1325	7.5270	4.2508
θ	C．jeco	C．0．53	0.0851	c． 2086	0.1178
10	－jeしり	C． 1219	0.1269	C． 3100	0.1756
11	1．060）	2.6610	0.6561	1.5391	0.9082
12	1.820	0.8392	0.9327	1.4284	1.1531
73	4．705	1.3440	＜．8255	5.7066	3.9087
$\%$	6．406，	0.1425	0.1414	0.3452	0.1957
75	\therefore－5s	c． 1750	0.1746	C． 4252	0.2414
16	$\therefore .3840$	0.0794	C．0768	0.1933	0.1090
$1:$	－\because OCU	c． 9363	0.9301	2.1519	1.2565
78	－．39	C． 2437	C．0356	0.0961	0.0601
\％＇	－1230	－． 0781	C．064，	C． 1595	0.1074
31	－1\％い	0.1114	0.0932	C． 2127	0.1531
\％	6.7550	c． 1462	0.7434	0.7569	－． 8073
12	－．35\％	6.1318	0.1292	0.3140	0.1815
$\because 3$	6． 294%	C． 1627	0.1444	c． 3227	0.2250
4	C．94ン0	0.1103	0.6834	1.4021	0.9863
：${ }^{\text {a }}$	こ．「！\％	0.7105	0.68894	1.4021	0.9863
\％	－－リ6	C．0．0．02	0.6623	1.398 n	0.9443
$\because 1$	$\therefore .946$	c．ersue	0.6023	1.3986	0.9443
\％	0．9ヵ）	9．1390	0.1374	0.3323	0.1733
\because	1．icco	0.9525	0.5720	2.1721	1.3682
$\rightarrow 6$	6．2503	6.1479	0.1305	0.3010	0.2070
11	－． 3740	0.1431	0.1397	0.3350	0.2009
32	0.5830	0.1717	0.1693	0.3886	0.2505

TABLE 7-IV PERCENTAGE ERROR BETWEEN PRECICTED AND EXPERIMENTAL ThERMAL CONDUCTIVITIES

CASE	MOCEL	KRUPIC.	RUSSELL	LICHT.	JEFFERSCN
1	6.544	-17.497	-31.156	-43.005	-35.217
2	-2.064	-22.003	-34.411	-45.648	-38.520
3	-0.270	-20.265	-30.082	-41.717	-35.802
4	-15.222	-17.755	-14.833	-25.180	-26.487
5	4.522	-i1.039	-26.0121	-36.886	-20.470
0	10.000	-9.349	-56.450	-63.551	-29.558
7	-14.660	-14.632	-22.120	-32.749	-21.183
8	-16.066	-12.869	-18.037	-28.863	-18.697
9	-2.655	-15.201	-38.807	-48.198	-26.578
10	9.496	-6.0.32	-32.120	-41.505.	-20.550
11	-20.930	-56.042	-74.813	-83.098	-65.923
12	17.067	-51.777	-76.743	-80.519	-62.283
13	-8.544	12.457	-24.456	-35.650	0.561
14	-11.184	7.365	-5t.360	-62.780	-1.770
15	-11.157	0.438	4.517	-5.597	2.372
16	28.711	-4.828	-52.734	-59.421	-8.894
17	-22.831	19.750	-40.704	-47.075	15.039
19	-24.516	-27.135	-23.054	-30.181	-25.482
19	-12.648	-0.877	3.520	-3.259	0.497
20	-15.422	4.280	-2.910	-13.900	5.534
21	-14.949	3.201	-3.936	-14.782	4.568
2.2	-5.462	12.223	-44.828	-52.547	9.384
23	20.228	-1.413	9.337	2.048	1.173
24	-18.764	1.257	5.364	-4.585	3.987
25	-16.530	-\%.241	-3.548	-10.059	-5.959
26	-12.965	-6. 238	-29.354	-38.338	-5.901
27	11.283	25.283	-5.736	-17.665	26.210
23	16.141	23.717	-39.951	-48.218	23.853
29	-24.233	6.293	10.593	0.266	9.517
30	16.372	23.222	-40.412	-48.578	24.345
31	-12.263	-0.815	0.600	-9.248	2.188
32	13.283	-10.703	-6\%.878	-72.336	-4.772
33	-25.812	-1.493	6.461	0.678	0.919
$3 / 4$	-17.68d	-5.181	-11.956	-21.641	-2.775
35	4.155	20.285	-5.690	-21.035	21.868
36	14.444	6.531	-59.916	-65.431	14.011
37	-5.241	28.406	-3.801	-15.796	30.848
38	14.491	12.947	- -31.872	-40.867	14.695
39	-16.316	2.737	-30.597	-39.540	4.401
40	-8.955	23.197	-52.144	-58.721	30.738
41	31.095	11.055	- 52.554	-59.046	15.645
42	-27.239	29.331	-51.730	-58.373	38.737
43	-19.128	13.594	-55.256	-61.402	20.151
44	-13.290	14.217	-54.630	-60.860	20.570
45	-2.t.69	27.761	-4.355	-16.251	30.443
40	-20.804	4.192	1.253	-9.738	12.628
47	-34.680	-4.264	-54.624	-60.727	-0.736
48	-18.713	-20.762	-29.995	-37.832	-18.003

rable 7－IV percentagl ERRCR betwetin precicted and experinental treirnal condlctivities

CASE	NCCel	Kizup IC．	RUSSELL	LICHT．	JEFFERSCN
49	－31．533	－0． 203	3.461	－5．874	3.459
50	－15．100	20.243	－5\％．989	－63．685	37.913
51	－11．310	25．611	-56.114	－62．063	44.070
52	－25．371	3.536	－3．846	－14．059	8.225
31	－27．ios	-14.234	-29.205	－37．402	－10．851
54	－4．0．51	1.178	4.653	－3．535	2.415
り）	13.351	22.781	－54．500	－63．979	54.948
56	15.364	10.611	－61．477	－66．534	39.226
51	t．tcis	45.133	-15.632	－26．256	56.913
53	－－－ 15	26．975	3.256	－8．440	34.159
\％	16.420	2．7．043	－16．141	－26．502	37.983
Su	－3．765	11.322	－63．293	－6．8．047	52.760
61	－23．247	64.240	－42．854	－49．127	117.577
b2	13.596	19.595	－60．938	－62．956	69.961
i）${ }^{\text {a }}$	2．13\％	6.353	－t． 2.374	－69．812	52.996
6,4	－2．310	-26.196	－37．908	－44．650	－19．776
（i）	4.241	43.142	－4．1．676	－49．027	81.213
Q\％	－12．334	29.067	－4．9．713	－56．030	08.496
is 1	－15．6えd	43.205	－44．231	-51.240	68.952
6s		40.463	-43.1930	－50．287	82.026
63	1.65	32.019	－60．505	-65.446	134.239
10	－13．331	24.774	－29．126	－64．228	97.181
11	27.631	－8．532	－53．251	－58．920	9.610
1	17．16＇t	－4．541	－4．7．538	－53．437	12.893
13	－1\％．63	-15.395	－31．857	－34．149	－7．556
$1 \cdot$	31.535	2．075	－63．569	－68．114	68.862
\％	9 9．18	＇）． 869	－63．759	－68．276	58.193
$i 6$	＜9．53	－1．842	－71．892	－75．333	85.873
11	1．1．ic	3．75＇s	-43.022	－49．204	21.650
7	－15．0ヶ4	93．7く0	25.407	10．956	119.219
7%	-17.10%	－14．890	－33．762	-40.953	－6．454
\％	－10．c00	－23．160	－30．719	－31．819	－13．344
$\therefore 1$	－12．313	－3．341	－ 0.836	－7．793	－2．214
4.	1 $7 \times 8 \%$	2． 268	－57．645	－62．834	36.997
$\therefore 3$	－24．4．30	－22．739	－37．951	－44．375	－14．405
\because	－ 23.175	3.996	-15.770	－24．428	15.459
（；）	－20．50	1．302	－13．003s	－21．950	19.244
呺	－20．6\％	4.393	－ 21.102	－30．069	$17.5<4$
0.3	－17．0．1	3．550	－ 23.536	－27．242	22.275
a 4	－16．054	32.362	－5，5．3\％	－ 6.114	139．360
H	-3.364	67.124	1． $2 \cdot \cdots$	－－：． 152	100.628
$\%$	－： 9.1000	－11．413	－33．646	－10．532	1．t，10
2	27．213	9.952	－56．973	－61．927	85.528
92	7．547	28.788	－67．042	－70．424	－544．204

rable 7-V percentage errgr between preoictec and experimental thermal condlctivities

CASE	Maxbiell	RAYLEIGH	W AND M	M AND T
l	-44.001	-44.211	12.648	-34.526
2	-46.593	-46.792	6.914	-3\%.568
3	-42.690	-42.897	11.352	-33.095
4	-25.715	-25.894	12.405	-14.727
5	-.37.626	-37.849	30.829	-22.625
6	-64.033	-64.184	-12.765	-55.117
7	-33.447	-33.674	30.091	-17.481
d	-29.555	-29.788	33.577	-12.712
9	-48.835	-49.0.29	14.961	-36.166
10	-42.269	-42.453	26.983	-27.942
11	-83.320	-83.388	-58.391	-77.154
12	-80.774	-80.860	-53.352	-75.973
13	-30.365	-36.689	46.406	-19.123
14	-63.162	-63.315	-9.087	-52.187
25	-5.945	-6.748	53.798	21.435
10	-59.806	-60.372	-2.676	-47.345
11	-49.550	-50.254	22.149	-33.865
18	-30.374	-42.345	10.620	-10.175
1.7	2.503	0.944	6.373	13.008
20	-14.468	-15.414	61.185	11.850
21	-15.341	-16.285	59.485	10.803
22	-52.986	-53.659	13.794	-38.165
23	2.771	-2.359	34.333	29.266
24	-4.907	-5.782	54.977	23.732
< 5	-4.311	-4.809	-1.366	4.906
26	-38.838	-39.670	32.437	-19.316
27	-18.325	-19.456	76.747	7.922
28	-48.679	-49.461	24.080	-32.122
29	-0.059	-1.009	62.613	30.495
30	-49.031	-49.821	23.180	-32.480
31	-9.629	-10.566	53.001	18.564
32.	-72.582	-72.694	-32.301	-63.648
33	4.214	2.466	13.559	21.626
34	-22.122	-23.068	46.147	2.806
35	-21.657	-22.770	69.373	3.779
36	-65.932	-65.919	-15.647	-54.457
37	-16.448	-17.666	80.446	10.957
38	-41.360	-41.687	36.191	-22.077
39	-40.029	-40.442	34.888	-20.325
40	-59.081	-59.314	0.556	-45.617
41	-59.401	-59.696	-0.863	-46.043
42	-58.737	-58.978	1.615	-45.160
43	-61.738	-62.016	-6.049	-49.149
44	-6i.20i	-61.440	-4.778	-48.435
45	-16.896	-18.118	79.415	10.455
46	-10.274	-11.410	68.015	18.963
47	-61.057	-61.722	-6.083	-48.077
48	-34.227	-45.792	20.236	-17.706

TABLF 7－V PERCENTACE EKRCR BETHEEN PRECICTEC ANC EXPERINENTAL fherival conductibi：ies

Cast．	maxitill	RGYLEIGH	V ANC M	\cdots Ano 1
$4)$	－6．143	－7．128	51.852	23.863
． 0	－63．590	－64．151	－11．296	－51．871
¢：	－62．382	－62．550	－7．336	－49．723
bic	－14．542	－15．654	59.409	14.105
53	－ 31.025	－4．2．998	26．511	－16．795
54	3.607	3.263	5.388	11.718
5 5	－6， 4.264	－64．440	－12．254	－51．8i0
； 6	－66．75	－67．005	－12．6s	－55．143
51	－2t．0．co	－27．24t	64.127	－1．111
3	－7．132	－9．516	85.196	22.015
－$\%$	－27．03b	－27．164	63.754	－1．421
$6)$	－63．28t	－68．45s	－22．433	－56．955
81	－4．）．78．4	－4\％．735	22.494	－31．614
e：	－66． 210	－66．393	－11．468	－54．021
＊；	－70．035	－79．198	－26．645	－59．191
c：${ }^{\text {c }}$	－44．913	－5i． 252	9.564	－25．063
（i）	－ヶり．うぐ	－49．42t	21.726	－30．899
\＆	－56．364	－56．372	5.238	－40．370
61	－91．586	－51．t．1is	16.695	－33．736
0%	－5：3．t．31	－50．670	18.535	－32．429
i）	－5リ．1，46	－6，5．952	－16．542	－52．981
\because	－64．470	－64．751	－13．881	－51．211
7 i	－55．196	－59．502	－4．995	－43．939
：	－34．144	－54．484	5.377	－36．770
$7:$	－j3．trij	－33．882	21.418	－16．830
14	－68． 3 3\％	－68．273	-23.300	－56．515
15	－8： 0.456	－69．713	－23．798	－56．735
7 i	－15．」ぐ	－75．675	－4i．353	－66．363
11	－りう．198	－5\％．528	14.463	－31．26．7
1	19．2ら」	－10．087	142.802	51.674
$1 \cdot$	－41．298	－51．47h	19.923	－17．231
3	－30．133	－4\％．194	18.18 C	－14．944
8	－1．itco	－1．531	c． 251	6.931
\because	－63．083，	－63．502	－12．035	－49．168
4	$-44.6+5$	－50．889	9.775	－23．251
：／	－24．615	－27．C47	42.375	4.374
い5	-22.350	－21．65	53.240	7.797
\because	－30．423	－32．233	43.003	－3．444
$: 7$	－1．7．6．41	-29.453	42.784	0.459
\because	－ij．j63	－61．411	－ 6.648	-45.708
\because	－\％\％6el	－11．6．40	97.461	24.381
40	－40．838	－47．792	20.392	－17．180
i	－62．149	－63．04	－11．373	－46．845
42	－76．」ら4	－70．556	－33．346	－57．041

TABLE 7-VI AVERAGE ERROR, BIAS AND VARIANCE BETWEEN PREDICTED AND EXPERIMENTAL THERMAL CONDUCTIVITIES

Model	Average Error \%	Average Bias \%	Variance of \% Error
1. This Study	-5.78	15.8	1.63
2. Maxwell [9]	-40.59	41.1	4.99
3. Rayleigh [14]	-42.05	42.2	4.96
4. Meredith \& Tobias [16]	-22.46	37.34	3.56
5. Russell [43]	-32.65	34.37	4.90
6. Jefferson [78]	13.80	37.59	38.58
7. Krupiczka [42]	6.76	17.48	2.63
8. Lichtenecker [24]	-40.52	40.82	4.93
9. Woodside \& Messmer [23]	19.10	30.12	6.68

TABLE 7-VII CONDUCTIVITY OF PARTICULATE BASALT IN SIMULATED LUNAR ENVIRONMENT

Conductivity (Kcal/m-hr-0K)

Solid Phase	Experimental $\times 10^{3}$	Calculated $\times 10^{3}$	$T\left({ }^{\circ} \mathrm{K}\right)$	P	Ref.
1.078	1.50	1.46	180	0.470	3
1.125	1.82	1.67	240	0.470	3
1.156	2.09	1.86	280	0.470	3
1.188	2.42	2.12	320	0.470	3
1.219	2.84	2.28	360	0.470	3
1.078	1.17	1.04	180	0.540	3
1.125	1.36	1.20	240	0.540	3
1.156	1.53	1.37	280	0.540	3
1.188	1.78	1.46	320	0.540	3
1.219	2.06	1.63	360	0.540	3
1.078	0.86	0.69	180	0.600	3
1.125	1.01	0.86	240	0.600	3
1.156	1.14	1.00	280	0.600	3
1.188	1.31	1.12	320	0.600	3
1.219	1.50	1.24	360	0.600	3
1.073	0.51	0.43	180	0.721	3
1.125	0.63	0.57	240	0.721	3
1.156	0.77	0.62	280	0.721	3
1.188	0.93	0.71	320	0.721	3
1.219	1.10	0.86	360	0.721	3

TABLE 7-VIII AVERAGE ERROR, BIAS AND VARIANCE BETWEEN PREDICTED AND EXPERIMENTAL THERMAL CONDUCTIVITIES

Case	Average Error $\%$	Average Bias $\%$	Variance of \% Error
Figure 17	-15.9	15.9	8.7
Figure 18	-20.8	20.8	2.1
Figure 19	-39.4	39.4	7.5
Figure 20	-9.4	19.4	2.4
Figure 21	11.8	18.5	1.2
Figure 22	-17.6	17.6	1.1

TABLE 7-IX MECHANICAL PROPERTIES AND DENSITY OF SOLID MATERIALS

Solid	Young's Modulus Newtons $/ m^{2} \times 10^{10}$	Poisson's Ratio	Specific wei Newtons $/ \mathrm{m}^{3} \times 1$
Aluni num	6.90	0.33	2.52
Basalt	5.73	0.25	2.78
Coal	5.00	0.25	1.36
Copper	10.80	0.33	8.72
Glass	6.90	0.24	2.52
Iron	8.96	0.28	6.95
Lead	1.57	0.43	11.10
1190	21.00	0.25	3.51
Quartz $\left(\mathrm{SiO}_{2}\right)$	7.00	0.14	2.60
Sand	7.00	0.14	2.70
Silica	7.00	0.14	2.45
Stainless Steel	20.70	0.31	7.86
Steel	20.70	0.3	7.65

FIGURE 7-4. COMFARISON OF EXPERIMENTAL AND MODEL PREDICTED THERMAL CONDUCTIVITIES.

FIGURE 7-5. EXPERIMENTAL AND CALCULARED CONDUCTIVITY OF PARTICULATE BASALT IN SIMULATED LUNAR ENVIRONMENT.

FIGURE 7-6. EXPERIMENTAL AND CALCULATED CONDUCTIVITY OF PARTICULATE BASALT IN SIMULATED MARTIAN ENVIRONMENT.

FIGURE 7-7. EXPERIMENTAL AND CALCULATED THERMAL CONDUCTIVITY OF PARTICULATE GLASS IN SIMULATED LUNAR ENVIRONMENT.

FIGURE 7-8. EXPERIMENTAL AND CALCULATED THERMAL CONDUCTIVITY OF PARTICULATE BASALT IN AIR.

FIGURE 7-9. EXPERIMENTAL AND CALCULATED THERMAL CONDUCTIVITY OF LEAD SHOT IN AIR.

FIGURE 7-10. EXPERIMENTAL AND CALCULATED THERMAL CONDUCTIVITY OF GLASS BEADS IN AIR.
VIII. LUNAR MODEL

Introduction

Interest in the thermal conductivity of lunar soils under lunar environmental conditions has stimulated analytical and experimental research on thermal conductivity. A problem of particular interest is the effect of lunar soil depth on the effective thermal conductivity of lunar soil samples. This section presents a model for the thermal conductivity of lunar soil as a function of soil depth as measured from the lunar surface and compares values calculated using the model with experimental data.

Before a study of thermal conductivity can be undertaken on any material the character of the material must be known. The character of the lunar surface and soil has been a mystery to man until recent years when Luna 9, Ranger 7, 8 and 9, [94] Surveyor flights [95-98] microw'ave and radar studies [99] and the Apollo flights have in successive steps established the character of lunar soil to some degree. The results of lunar studies to date indicate:

1. the density of the lunar outermost layer is a function of depth [100, 101].
2. the soil has a particulate structure with a mean particle size of 0.1 to $1000 \mathrm{~m}[102,103$ and 119].
3. the effective thermal conductivity as determined experimentally [105] is a function of temperature and density and below
10^{-3} torr there is negligible gaseous conduction or conduction in the voids of the soil mixture.

The papers cited above suggest the lunar soil is a heterogeneous mixture and several studies on conductivity of mixtures germane to this paper can be found in the literature. The studies [45, 106 and 107] to date, however, involve the case where conduction in the gaseous voids in the mixture is not negligible whereas conduction through the points of particulate contact is neglected. The model presented herein neglects conduction in the gaseous voids and accounts for conduction at the points of particulate contact as well as radiant interchange between particles, and conduction in the particles. The model yields effective thermal conductivity values as a function of depth, temperature, porosity, particle dimension and mechanical-thermal properties of the particles.

Mathematical Model

The model accounts for conductive and radiative transfer in the mixture. Figure ($8-1$) depicts these modes [85] and it is seen that conduction occurs in the solid particles and at the points of particulate contact which give rise to contact resistance. Radiative transfer occurs between adjacent particles as well as between particles viewing each other through the voids.

Consider a unit cell taken from the bed at a depth Z, which has the same average bed porosity P. The unit cell has an effective area A, and heignt ΔZ as shown inin figure ($0-2$). If the system is regarded

FIGURE 8-1. POSSIBLE MODES OF HEAT TRANSFER IN
LUNAR SOIL.
as homogeneous, the heat flux can be expressed by Fourier-Biot relation

$$
\begin{equation*}
\frac{\eta}{A}=-k_{e} \frac{\Delta t}{\Delta Z} \tag{8-1}
\end{equation*}
$$

where k_{e} is the effective thermal conductivity. This effective thermal conductivity is a function of
a. particle size
b. porosity
c. depth below the surface
d. solid particle mechanical-thermal properties

The heat flux equation must account for the heat transfer modes shown in Figure (8-1) and therefore the effective conductivity is the equivalent of two conductances in parallel. These two parallel conductances are

1. Conduction through and between solids consisting of
a. conduction in the solid and
b. conduction at the points of "particulate contact in series"
2. Radiation between surfaces.

Each of these conductances in terms of their reciprocals will be developed and then synthesized to yield the effective thermal conductivity. In order to obtain a simplified system which will permit calculations of these conductances the particles will be simulated by spheres with an effective diameter d.
\therefore Conduction Through and Between Solids
Conduction in the Solid.
The resistance in the solid is obtained from the integration of the resistance through a disk of thickness $d Z$, as seen in Figure (8-2).

FIGURE 8-2. MODEL FOR THE STUDY OF THE THERMAL CONDUCTIVITY OF LUNAR SOIL.

Thus

$$
\begin{equation*}
R_{1}=\int_{-Z_{1}}^{Z_{1}} \frac{d Z}{k_{s} \pi\left(d^{2} / 4-Z^{2}\right)}=\frac{4}{\pi k_{s} d} L N\left(\frac{1+1-\sqrt{\left(2 r_{c} / d\right)^{2}}}{1-1-\sqrt{\left(2 r_{c} / d\right)^{2}}}\right) \tag{8-2}
\end{equation*}
$$

where Z is measured normal to the contact surface from the center of the sphere and $Z_{1}=\frac{d}{2} \sqrt{1-\left(2 r_{c} / d\right)^{2}}$, when deformation of the particle is neglected.

Conduction at the Points of Particulate Contact
The expression for thermal resistance at the point of particulate contact can be determined from the solution of the temperature distribution using the Hankel transformation and the analysis yields the same result as that appearing in the classical work of electric contacts [108] and will not be elaborated here. The contact resistance can be written as

$$
\begin{equation*}
R_{c}=\frac{1}{2 k_{s} r_{c}} \tag{8-3}
\end{equation*}
$$

Where r_{c} is the radius of the contact area and an expression for r_{c} will be developed later. Equation ($8-3$) will give erroneous results if the ratio, $2 r_{c} / d$ is large since equation $(8-3)$ is derived based on the assumption of a semi-infinite body. This problem can be overcome by considering the analogous case of electrostatic capacitance [109] and one can write the equation for thermal contact resistance as

$$
\begin{equation*}
R_{c}=\frac{1}{2 k_{s} r_{c}}\left(1-\frac{2 r_{c}}{d}\right) \tag{8-4}
\end{equation*}
$$

The radius of the contact area must be determined. This radius is a function of the depth of the particles below the surface of the material for the case of lunar soils. The analysis to determine the radius of the contact area was made by assuming the area of contact to be small compared with the size of the spheres. This assumption is reflected in Equation ($8-4$) and allows one to consider the contact area to be that of the contact between two semi-infinite solids. Also, it was assumed that the spheres had smooth surfaces. Considering material deformations to be elastic under small applied loads, Hertz's equation [110],

$$
\begin{equation*}
r_{c}=\left[\frac{3}{3} \frac{F_{1}\left(1-v^{2}\right) d}{E}\right]^{1 / 3} \tag{3-5}
\end{equation*}
$$

gives the radius of the contact area. F_{p} is due to the weight of the particles above the contact plane. However, studies of the lunar soil density by Jones [101] show that the density is also a function of depth due to the change in material, packing and porosity. Accordingly F_{1}, will be given as

$$
\begin{equation*}
F_{1}=A \int_{0}^{Z} \rho(Z) g d Z \tag{8-6}
\end{equation*}
$$

where A is the effective area depending on the porosity of the material and will be determined. Substituting this relation into Equation (8-5) gives the radius of contact area as

$$
\begin{equation*}
r_{c}=\left[\frac{3 d g\left(1-v^{2}\right)}{8 E} A \int_{0}^{z} \rho(z) d z\right]^{1 / 3} \tag{8-7}
\end{equation*}
$$

with the contact area as an implicit function of the depth Z. However for paactical calculations the density function for relatively small depths of soil can be replaced by an average density, $\bar{\rho}$, to give

$$
\begin{equation*}
\frac{r_{c}}{d}=\left[\frac{3 g A \bar{\rho}\left(1-v^{2}\right)}{8 E d^{2}}\right]^{1 / 3} z^{1 / 3} \tag{8-8}
\end{equation*}
$$

Combining Equation (8-8) with Equation (8-4) yields the expression for contact resistance as

$$
R_{c}=\frac{1}{k_{s} d}\left[\begin{array}{ll}
\frac{1}{s} & -1 \tag{8-9}
\end{array}\right]
$$

where

$$
\begin{equation*}
S=2\left[\frac{3 g \bar{\rho} A\left(1-\nu^{2}\right)}{8 E d^{2}}\right]^{1 / 3} z^{1 / 3} \tag{8-10}
\end{equation*}
$$

Radiation Between Surfaces

For beds of small sized particles in a vacuum the solid conductivity is small, however the relative contribution of radiation to the heat transfer may be quite significant even at low temperature ranges $\left(100^{\circ} \mathrm{K}-500^{\circ} \mathrm{K}\right)$. When radiant energy impinges on particulate media, it miay de reffected, trañiniitted through the pariticies or void space, absorbed by the particles and later re-radiated or scattered by the
particle surface. In the case of small particles, scattering of radiation is likely to occur. The phenomenon of absorption is intimately tied to the physical properties of the material and is influenced by the emissivity of the particle and the "absorption cross section". Similary, the transmission of energy depends on the physical characteristics of the material. The complexity of the geometry over which these transmission processes take place is one of significant difficulty in evaluating the contribution of the radiant mechanisms. However, many investigators have analyzed radiation through porous and particulate media and obtained the effective contribution of radiation made without considering the phenomena of abosrption and scattering in detail [111]. Instead an approximate analysis is considered for evaluating the radiative transport by using the "discrete model" of Wesselink [1]

$$
\begin{equation*}
q_{r}=\frac{4 \sigma_{b} e(T) T^{3}}{[2-e(T)]} D_{p} \frac{\Delta t}{\Delta Z} \tag{8-11}
\end{equation*}
$$

where D_{p} is the mean spacing between particles and is related to the pore size. The size of a pore is difficult to specify in a system of particles in general because of the complex shapes of these particles. Even in the simplest system comprised of uniform regularly packed spheres, there is no single dimension which will characterize the crosssection of the pore. However based on Reference [1] L can be related to the porosity of the material by

$$
\begin{equation*}
D_{p}=\frac{d}{(7-P)} \tag{8-12}
\end{equation*}
$$

which yields a radiative thermal conductivity component k_{r}, as

$$
\begin{equation*}
k_{r}=\frac{4 \sigma_{b} d}{(1-P)} \frac{e(T) T^{3}}{[2-e(T)]} \tag{8-13}
\end{equation*}
$$

Effective Thermal Conductivity

The effective thermal conductivity compatible with Equation (8-1) can now be written remembering that the expressions for the resistance in each particle and the contact resistance are summed and the result is then taken in parallel with the resistance accounting for radiative transfer between particles. First the sum of the conductive resistances is written using Equation (8-2) and (8-9) to give

$$
\begin{equation*}
R_{c}=R_{1}+R_{c}=\frac{1}{k_{s} d}\left[\frac{4}{\pi} L N\left(\frac{1+\sqrt{1-s^{2}}}{1-\sqrt{1-s^{2}}}\right)+\left(\frac{1}{s}-1\right)\right] \tag{8-14}
\end{equation*}
$$

Equation (8-14) must be summed from 0 to Z to account for the interaction of all particles from the surface to the point in question. Thus,

$$
\begin{equation*}
\bar{R}_{c}=\frac{1}{Z} \int_{0}^{Z} R_{c}(Z) d Z \tag{8-15}
\end{equation*}
$$

gives the mean conduction resistance which yields

$$
\begin{equation*}
k_{c}=\frac{\Delta Z}{A \bar{R}_{c}(Z)}=\frac{d \sqrt{1-s^{2}}}{A \bar{R}_{c}(Z)} \tag{8-16}
\end{equation*}
$$

for the conduction component of the thermal conductivity k_{e}.
The area A is determined from the unit cube shown in Figure (8-2). The porosity by definition is $1-V_{s} / V$ where V_{S} is the volume of solid material and V is the composite volume. Since ΔZ is taken as $d \sqrt{1-S^{2}}$, the area of this cube is related to the porosity by

$$
\begin{equation*}
P=1-\frac{\pi}{6} \frac{d^{2}}{A \sqrt{1-S^{2}}} \tag{8-17}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\frac{1}{6} \frac{\pi d^{2}}{(1-P) \sqrt{1-s^{2}}} \tag{8-18}
\end{equation*}
$$

Equations (8-16) and (8-18) result in

$$
\begin{equation*}
k_{c}=\frac{3(1-p)\left(1-c^{2} z^{2 / 3}\right) k_{s}}{\left[\frac{\pi}{2}\left(\frac{3}{2 c z^{1 / 3}}-1\right)+\left(4-1.2 c^{2} z^{2 / 3}\right)\right]} \tag{8-19}
\end{equation*}
$$

where

$$
\begin{equation*}
c=2\left[\frac{q \bar{\rho}}{16 E\left(1-v^{2}\right)}\right]^{1 / 3} \tag{8-20}
\end{equation*}
$$

Combining this result with that for the expression for the radiative thermal conductivity component, Equation (8-13) yields the effective thermal conductivity k_{e} as

$$
\begin{align*}
k_{e}= & \frac{3(1-P)\left(1-C^{2} z^{2 / 3}\right) k_{s}}{\left[\frac{\pi}{2}\left(\frac{3}{2 C z^{1 / 3}}-1\right)+\left(4-1.2 c^{2} z^{2 / 3}\right)\right]} \\
& +\frac{4 \sigma_{b} d}{(1-P)} \frac{e(T) T^{3}}{[2-e(T)]}
\end{align*}
$$

Application of the Model

Equation (8-21) was compared with experimental data taken with lunar soil samples from the Apolio 11 and 12 flights. Application of the model is dependent on knowing the values of certain physical properties and characteristics of the sample to be evaluated. The only property or characteristic of the lunar soil directly measured in the Apollo experiments applicable in Equation (8-21) was the sample density. Thus the values of the other properties and characteristics had to be approximated. The approximation process was based on the similarity of lunar soil to terrestrial basalt. This similarity has been demonstrated by Snoddy et al. [112], the Surveyor alpha-scattering experiments [113] and as a result of Apollo 12 [114] studies. Table 8-I compares the major and minor elements of Apollo 12 samples and terrestrial basalt and shows that there is substantive evidence to support the approximations. The properties and characteristics selected for inclusion in Equation (8-21) were

1. Solid particles density, modulus of elasticity, solid thermal conductivity and Poisson's ratio
$\rho=2830 \mathrm{dg} / \mathrm{m}^{3}$ Reference [64]
$E=2.2 \times 10^{\prime \prime} \mathrm{N} / \mathrm{m}^{3}$ calculated from data given in Reference [115]

TABLE 8-I. COMPARISON OF MAJOR AND MINOR ELEMENTS OF APOLLO 12 SAMPLES AND TERRESTRIAL BASALT.

Element 0xide	Lunar Fines \%	Basalt \%
$\mathrm{Si}_{\mathrm{i}} \mathrm{O}_{2}$	47.2	51
$\mathrm{Al}_{2} \mathrm{O}_{3}$	14.3	14
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	0.0	3.4
Fe 0	14.2	8.8
Ma 0	9.28	4.4
CaO	10.6	8.
$\mathrm{Na}_{2} \mathrm{O}$	0.66	3.4
$\mathrm{K}_{2} \mathrm{O}$	0.41	1.7
$\mathrm{H}_{2} \mathrm{O}$	0.0	0.86
$\mathrm{T}_{\mathrm{i}} \mathrm{O}_{2}$	2.48	2.7
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.52	1.4
Mn^{0}	0.19	0.25
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	0.32	
CO_{2}		0.03
S		0.004

$$
\begin{aligned}
\mathrm{K}_{\mathrm{s}} & =1.324 \text { watt } / \mathrm{m} \quad \mathrm{~K} \text { Reference [64] } \\
\boldsymbol{v} & =0.2 \text { Reference }[116]
\end{aligned}
$$

2. Emissivity

The hemispherical emittance as function of the temperature given by Reference [121] was used. It shows that the emissivity changes from approximately 0.98 at 80 K to 0.92 at 440 K .
3. Depth-density relationship

Matveev [100] proposed a model for the relation between the density of the outermost lunar layer and the depth as

$$
\begin{equation*}
\rho=\rho_{\infty}\left[1+\left(\frac{\rho_{0}}{\rho_{\infty}}-1\right) \exp -\frac{Z}{Z_{0}}\right] \tag{8-22}
\end{equation*}
$$

while Jones [101] modified this model to an approximate similar equation as

$$
\begin{equation*}
\rho=\rho_{\infty} /\left[1+\left(\frac{\rho_{\infty}}{\rho_{0}}-1\right) \exp -\frac{Z}{Z_{0}}\right] \tag{8-23}
\end{equation*}
$$

where ρ_{∞}, ρ_{0} and Z_{0} are given constants [101]. Each model seems to satisfy the known physical requirements indicated by the presently available experimental data. These models together with the experimental data of Jaffe [94], Christensen et a1. [97], Campbell et al. [122] were used to approximate the depth Z, for a given density.

4. Particle Diameter

Unfortunately, there is no method developed in the literature to specify the particle diameter to be used in conjunction with any theoretical model for the thermal conductivity of a natural sample of granular material with a diverse range of particle sizes. As an example, Figure (8-3) shows different arrangements A and B of six particles of two different sizes which will aive different porosities and thermal conductivities while they give the same particle size distributions. It is an important fact that when the system of granular material is modeled theoretically, the size of the particle should be based on an experimental simulation of the natural sample. If, for example, one needs a representative particle diameter to calculate the thermal conductivity of a lunar sample of particle sizes from 0.1 to $1000 \mu \mathrm{~m}$ [119], one should conduct the following experiment: 1) Determine experimentally the conductivity of the lunar sample; 2) Separate the lunar sample into n samples with each of the n samples having the same particle size;
3) Determine experimentally the conductivity of each of the n samples; 4) Compare the conductivity value of the original lunar sample with each of the n samples and 5) Select a representative particle diameter for the original sample on the basis of the closest agreement of the original sample conductivity with the conductivity of one of the n samples. This diameter is then correlated to one of the statistically defined particle sizes obtained from the natural sample size-distribution data (the median, the mean, the mode, etc.). In this way, a correlation will specify the particle diameter to be used in the theoretical equation

FIGURE 8.3. DIFFERENT ARANGEMENTS OF SIX PARTICLES OF TWO DIFFERENT SIZES.
for determining the thermal conductivity of any other natural sample or material in site without the necessity of performing the previously described experiment again. The experimental values of Fountain and West [123] for basalt samples of particle sizes from 37 to $62 \mu \mathrm{~m}$ diameter and density of $1.3 \mathrm{~g} / \mathrm{cm}^{3}$, showed fairly good agreement with lunar sample data of Apollo 11 [105] at a density of $1.265 \mathrm{~g} / \mathrm{cm}^{3}$. Since the range of the particle sizes of [123] is very narrow compared to the lunar material range, an average diameter of $50 \mu \mathrm{~m}$ was used in the theoretical model. It is noted that the diameter chosen is approximately in the range of the median diameter (50%) based on a weight distribution of lunar samples analyzed by [124], [125] and [126].

Values of conductivity from equation (8-21) using the aforementioned physical properties and characteristics are compared with the data from Apollo 12 lunar soil samples in Figure (8-4). The Apollo 12 data are for sample $12001 / 9$ having a density of $1.3 \mathrm{gr} / \mathrm{cm}^{3}$ as determined by Cremers and Birkebak [105]. The depth at which this density most probably would occur was calculated to be 1.02 cm . This depth was based on the average value for the depth obtained using Equation (8-22) and (8-23). The data for Apollo 11 are shown in Fiaure (8-5) with the results of Equation (8-21). The Apollo 11 sample had a density of $1.265 \mathrm{gr} / \mathrm{cm}^{3}$ as determined by Cremers et al. [127] and this density corresponds to a lunar soil depth of .96 cm . The model is seen to give satisfactory results.

A critical evaluation of the model requires considerable

> FIGURE 8-4. THERMAL CONDUCTIVITY OF APPOLO 12 FINES COMPARED WITH THE THEORY AT A DENSITY OF $1.3 \mathrm{GR} / \mathrm{CM}^{3}$.

FIGURE 8-5. THERMAL CONDUCTIVITY OF APPOLO 11 FINES COMPARED WITH THE THEORY AT A DENSITY OF 1.265 GR/CM.
additional data. However the model can be examined from a number of viewpoints. Figures $(8-6),(8-7)$, and ($8-8$) display thermal conductivity for lunar soils as a function of the variables. Figure (8-6) represents the behavior of the effective thermal conductivity at constant temperature as the depth and density increase. As one expects as the depth increases the contact area between particles increases due to the increase in the loading and consequently smaller thermal contact resistance results and in turn thermal conductivity increases. For fixed temperature, the effective thermal conductivity is plotted against the density for various depths in Figure (8-7). For high values of z and the density, the effective loading increases and in turn increases the effective conductivity of the soil. Figure (8-7) shows the thermal conductivity as a function of the temperature with the density as a parameter. As one notices from Equation (8-21) the dependance on the temperature is a consequence of radiation effects, which result in higher values of conductivity at high values of temperature. As seen from Figure (8-8) curves of different densities cross each other at different temperature. This is explained by the fact that the radiation in a system of small density (high porosity) is more effective than for a system of high density. Also the model indicates that radiation is a strong function of the particle diameter which was indicated by Watson [128]. Additionally Equation (8-21) shows that the effective thermal conductivity is dependent on the gravitational constant, g. Accordingly a lunar sample will possess higher values of thermal conductivity under the gravitational influence of earth, than it will under the lunar gravitational environment.

FIGURE 8-6. LUNAR CONDUCTIVITY AS A FUNCTION OF DEPTH AT CONSTANT TEMPERATURE AND DENSITY.

FIGURE 8-7. LUNAR THERMAL CONDUCTIVITY AS A FUNCTION OF DENSITY AT CONSTANT TEMPERATURE OF 250 K .

FIGURE 8-8. LUNAR THERMAL CONDUCTIVITY AS A FUNCTION OF TEMPERATURE AT CONSTANT DEPTH AND DENSITY.

The theory assumed that the particles are arranged in a simple square lattice which results in two contact areas in the direction of the heat flow, however by knowing the nature of packing of the soil, a more realistic approximation of the number of contacts can be found. With a complete analysis of the forces between particles, a more accurate estimation of the contact area can be obtained.

IX. GENERAL COMPARISON AND DISCUSSION

Four models have been developed in this study, each utilizing different propositions. The parallel isotherms model, the stochastic model, and the nodular model have been applied to a wide range of granular materials at pressures ranging from atmospheric to vacuum. The lunar model has been developed and applied specifically to granular materials at a simulated lunar environment and to lunar fines. Each of these models will now be evaluated with respect to the assumptions introduced in its development and with respect to the discrepancy between experimental and predicted thermal conductivities.

A careful review of the previously published correlations showed that the discrepancy between the analytical model and the physical granular system could be attributed to one of the following causes:

1. Failure to account for solid to solid contact;
2. Failure to utilize a realistic distribution of the two phases;
3. Failure to utilize realistic heat flow assumptions.

It is thus expected that for any new model to constitute an imorovement over existing ones, these causes of failure should be eliminated. Consequently, the models presented on this study will be discussed on this basis.

The parallel isotherms model has utilized results of the packing theory to the problem of heat transfer in granular materials so that an accurate distribution of the two phases may be obtained. The description of heterogeneous materials as random mixtures of the two phases has been verified experimentally [5, 51], and has been applied by Tsao [8] to the problem of heat transfer. Two statistical parameters are introduced in the final expression for the effective conductivity, namely the mode, μ, and the standard deviation, σ, of the one dimensional porosity. The mode μ is set equal to the bulk solid fraction on the basis of physical arguments. In order to determine σ, the experimental data on the effective conductivity available from the literature have been used, and have been curve fitted to obtain σ as a function of the bulk solid fraction. Consequently in this model a realistic material distribution, as outlined in the packing theory has been introduced. In addition, good agreement between calculated and experimental thermal conductivities indicates that the unrealistic heat flow assumption has been countered by the experimentally based selection of σ.

This model has been applied to granular materials at atmospheric pressures and to basalt fines in a simulated lunar environment. For the granular materials listed in Table 6-I the average error, bias, and variance of the calculated values is $17.8 \%,-3.7 \%$ and 0.0236 , respectively. For the data on basalt fines given by Fountain and West [3] the average error, bias and variance of the calculated values is $11.3 \%,-8.5 \%$ and 0.0061 respectively, as indicated in Table 9-I.

Finally, it should be noted that for granular materials at atmospheric pressures the only data required by this model is the conductivities of the constituents, and the bulk porosity of the material. At reduced pressures, the average particle diameter, the gas pressure, the gas Prandtl number, the solid emissivity and the temperature are additional required data.

The stochastic model utilizes essentially the same expressions for the distribution of the two phases in granular materials. Moreover, it is noted that the parallel isotherms and uniform heat flux assumptions are analogous to that of assuming zero and infinite resistances, respectively, normal to the direction of the bulk temperature gradient. It is then argued that since the transverse thermal conductivity of granular materials lies somewhere between the limits of zero and infinity, it follows that the true effective thermal conductivity of such materials can be represented as a weighted average of the conductivities calculated utilizing the parallel isotherms and uniform heat flux assumptions.

The standard deviation o is still an unknown. However it has been demonstrated that as o increases, both limiting conductivities approach a constant value which depends on the constituent conductivities and the bulk solid fraction only. As a result three correlations have been developed relating calculated conductivities to experimental data. The first is expressed as a correction factor for nonparallel isotherms, the second as a correction factor for nonuniform heat flux, and the third is a weighting factor for the bounding equations.

Consequently, the stochastic model introduces (1) at least point contact between particles, (2) a realistic material distribution as outlined by packing theory and (3) it overcomes the previous unrealistic heat flow assumptions. The model has been applied to granular materials at atmospheric pressures and to basalt fines in a simulated lunar environment. The comparison between predicted and experimental thermal conductivity values is summarized in Table $9-I$. The input data required for the calculation of the effective conductivities are exactly the same as the data required for the parallel isotherms model.

In the nodular model developed in Chapter 7 , the geometry of a unit cube of the heterogeneous mixture was characterized by the random distribution of the two phases. It was effectively assumed that no cubicle is more likely to be occupied by the solid phase than another. Further, it was noted that application of the three-dimensional Fourier conduction equation to each cubicle simply requires that the temperature of each cubicle remain constant. The cubicles were then lumped into nodes, connected with the neighboring nodes by resistances, the value of which depends on the conductivity of the neighboring nodes. Contact resistance was included in all cases, and radiant conductivity was included only for granular materials at reduced pressures. A heat balance equation was then written for each node, and this system of equations was solved by a successive overrelaxation technique, superimposing on it an iterative scheme, to determine the temperature of each node. Finally, the heat flow in each lamina perpendicular to the mean heat flow direction was determined, and the mean heat flow value in conjunction
with the Fourier-Biot law were used to find the effective thermal conductivity of the heterogeneous mixture.

It is evident that in this manner all causes contributing to the failure of previously published models have been eliminated since this model introduces (1) solid to solid contact resistance, (2) realistic distribution of the two phases based on the packing theory and (3) realistic three-dimensional heat flow as defined by the Fourier equation for steady-state heat conduction. The model has been applied to granular materials for pressures ranging from atmospheric to vacuum, and the comparison between predicted and experimental thermal conductivity values are summarized in Table $9-1$. In addition to the input data required by the previous models, knowledge of the depth, density of the solid phase, Young's modulus and Poisson's ratio of the solid particles is required.

As is has already been mentioned, for granular materials "in vacuo" the modes of heat transfer are

1. Conduction in the solid particles;
2. Conduction at the contact areas between particles;
3. Radiation between particle surfaces.

The lunar model developed in Chapter 8 has synthesized these modes to yield the effective thermal conductivity. For the mathematical analysis of the model a regular array of spherical particles was assumed, and the calculation of the conduction in the solid particles was based on parallel isotherms. Further, the effect of depth on the effective thermal conductivity of granular materials was included both in the calculation
of the contact resistance, and through published expressions correlating the density of lunar fines to the depth from the surface of the moon. Thus, the final expressions include both the effect of lunar soil depth and the effect of temperature on the effective thermal conductivity of lunar fines.

The lunar model has been applied to Apollo 11 and 12 lunar fines. Comparisons between predicted and experimental conductivity values are summarized in Table 9-I.

Although the models presented in this study are applicable, and have been applied to granular materials over a wide range of environments, there exists a number of limitations due to the assumptions introduced in the development of the models. The causes of these limitations will now be discussed.

1. Phase distribution - The geometry of three of the models has been based on the assumption that irregular packed beds can be considered as a random mixture of the two phases. It has been shown $[49,50,51]$ that for granular materials in which the particle sizes are not much different, and in which the particles can be approximated by spheres, this is a valid assumption. That is, for such beds, the distribution of the local bed properties can be approximated by a normal distribution. For packed beds consisting of irregularly shaped particles no generalized conclusions have been reached in the literature concerning the distribution of the local properties. It has been shown, however, that the geometry of packed beds of irregularly
shaped particles does not satisfy the randomness criteria when the particle size distribution is narrow [51]. It is therefore possible that the geometry of certain classes of granular materials is different than the assumed geometry.
2. Particle size distribution - Calculations for the unit cube size, pore size, etc. have been based on a characteristic particle size. For packed beds in which the particle size distribution is narrow, it has been assumed by all models in this study that the characteristic particle size is equal to the mean volume diameter [66]. However, no set method exists in the literature for calculating the characteristic particle size for beds having a broad particle size distribution. Further, as indicated in Chapter 8 and in Appendix F the mean volume diameter is not a satisfactory description of the characteristic particle size for such beds.
3. Particle shape - The geometrical parameters utilized in the development of the models such as pore size, coordination number, etc., and the equations for contact resistance have been based on equations given in the literature for randomly packed beds of equal sized spheres. It follows that none of the models presented in this study is applicable in the case of heterogeneous mixtures containing highly irregular shaped particles such as Rashing rings, Berl saddles, etc.
4. Solid-liquid heterogeneous mixtures at high temperatures - The equations for the radiant conductivity used by all models have been based on the assumption that the medium in the voids is transparent.

Consequently, when the continuous phase in the voids is a liquid these equations are not valid, and radiant conductivity cannot be taken into account.
5. Convection - As indicated in the Introduction, convection heat transfer in the voids has been neglected. Consequently, the models of this study are only applicable on stagnant packed beds.
6. Anisotropy - In all models of this study, granular materials have been treated as equivalent homogeneous and isotropic single phases, so that no change in the thermal conductivity with direction is predicted. The assumption of random mixtures of the two phases justifies this treatment. It appears that for such systems, the only factor contributing to the variation of the thermal conductivity with direction is the pressure tensor, and consequently the different values of the contact resistance in the vertical and horizontal directions. This case has not been examined in this study.
7. Wall effects - As indicated in [49] and [120] both the local property variation, and the thermal conductivity of heterogeneous mixtures change at short distances from the walls of the container. Again, this case has not been examined in this study.

It can be seen that all limitations are basically due to two factors: (1) Insufficient knowledge of the geometric configuration of packed beds and (2) insufficient knowledge of the parameters associated with radiation heat transfer in packed beds. All assumptions introduced in the development of the models is an attempt to circumvent these difficulties in such a manner that the models constitute a
realistic approximation to the actual physical phenomena.
A comparison between Tables 9-1 and 9-II indicates that for granular materials at atmospheric pressures the models presented in this study are generally more accurate than previously published models. This is probably due to the attempt undertaken in this study to combine a realistic geometry with realistic heat flow. It is also a strong indication that the flexible random phase distribution constitutes a better approximation to the actual geometry of granular systems than the fixed arrangement of spherical or near spherical particles utilized by previously published models.

Table 9-I also indicates that for granular materials at reduced interstitial gas pressure, thermal conductivities predicted by the models of this study are generally low. The sources of error are as follows:

1. Exclusion of pure radiation heat transfer at very low pressures;
2. Low calculated values for the contact resistance;
3. Deviation of the actual distribution of the two phases from the assumed random phase distribution.

As indicated in Appendix B, lack of experimental data on the extinction coefficient of granular materials prohibits an exact analysis of the radiation heat transfer process. As a result, only radiation heat transfer between particle surfaces has been included in the models. As indicated in $[84,85]$ this is a sufficiently accurate approximation when the solid particles are opaque to thermal radiation, but results in low calculated values for packed beds of particles having small
diameters. Consequently, since at very low pressures radiation is a dominant mode of heat transfer, exclusion of pure radiation heat transfer results in low calculated values for the effective thermal conductivity of packed beds.

For all models, the calculated thermal conductivities at low pressures and low temperatures are consistantly lower than the experimentally determined thermal conductivities. Since under these conditions the dominant mode of heat transfer is through contact areas between particles, the only explanation for this behavior is that the calculated values for the contact conductances are low. It should be noted that low calculated contact conductances influence the effective thermal conductivity only at low pressures and temperatures. At higher pressures and temperatures, and in particular at atmospheric pressures, the calculated effective thermal conductivity is relatively insensitive to the contact conductance.

Finally, it is noted that although at reduced pressures the calculated effective thermal conductivities are generally low, the slope of the calculated thermal conductivity versus pressure curves is in very good agreement with experimental data. Since for a major portion of these curves the only variable is the thermal conductivity of the interstitial gas, it can be concluded that Kennard's Equation (A-1) combined with the experimentally determined effective pore size given by Equation (D-6) yield accurate results for the variation of the gas conductivity with pressure. Consequently, as indicated in Appendix D, the conduction effective pore size is much smaller than the geometric pore size.

TABLE 9-I

AVERAGE ERROR, AVERAGE BIAS AND ERROR VARIANCE BETWEEN PREDICTED AND EXPERIMENTAL THERMAL CONDUCTIVITY VALUES FOR ALL MODELS OF THIS STUDY

1. Paralle1 Isotherms Mode1
a. Granular Materials at Atmospheric Pressures (Table 6-I)
b. Simulated Lunar Data
2. Stochastic Mode1
i. Equation (6-16)
a. Granular Materials at Atmospheric Pressures (Table 6-I)
b. Simulated Lunar Data
ii. Equation (6-17)
a. Granular Materials at
a. Atmospheric Pressures (Table 6-I)
27.7
20.9
0.0558
b. Simulated Lunar Data
25.8
-23.4
0.0260
iii. Equation (6-18)
a. Granular Materials at

Atmospheric Pressures (Table 6-I)
32.3
b. Simulated Lunar Data
41.8
-17.2
0.0956
.
0.0333

Average	Average	Error
Error	Bias	Variance
$\%$	$\%$	

17.8
-3.7
0.0236
11.3
-8.5
0.0061
30.1
25.3
0.0707
24.8
-22.1
0.0131
23.1
3. Nodular Model
a. Granular Materials at

Atmospheric Pressures
(Table 7-I)
15.8
-5.8
0.0163
b. Granular Materials at Reduced Pressures
18.5
-5.1
0.0157
c. Simulated Lunar Data
15.9
d. Simulated Martian Data
20.8
-15.9 0.0870
-20.8
0.0210

TABLE 9-I. Continued
4. Lunar Mode?
a. Apollo 11 Lunar Fines
13.7
-6.8
0.0044
b. Apollo 12 Lunar Fines
12.8
5.1
0.0090

TABLE 9-II
AVERAGE ERROR, AVERAGE BIAS AND ERROR VARIANCE BETWEEN
PREDICTED AND EXPERIMENTAL THERMAL CONDUCTIVITY VALUES FOR GRANULAR MATERIALS AT ATMOSPHERIC PRESSURE (TABLE 6-I)
A. Flux Law Models

1. Maxwell
2. Lord Rayleigh
3. Meredith and Tobias
4. Bruggeman
5. Nodular Model
(this study)
niform Heat Flux Models
6. son Frey
7. Woodside and Messmer
8. Kanager
9. Gorring and Churchill
10. Willhite, Kunii \& Smith
11. Schumann and Voss
12. Preston
13. Wilhelm et al
14. Krupiczka
15. Equation (6-16)
(this study)
16. Bernstein
\therefore Parallel Isotherm Models

1. Russell	35.0	-30.3	0.0566
2.	Coodsids	670.4	670.3
3.	55.16		
(thation (5-2)	178	-3.7	0.0236
	Enuation (6-17)	27.7	20.9

TABLE 9-II. Continued
D. Weighted Ohm's Law Models

1. Lichtenecker 3-D
2. Lichtenecker 2-D
701.2
701.1
48.70
195.0
194.5
2.98
3. Equation (6-18)
(this study)
32.3
23.1
0.0956

X. CONCLUSIONS AND RECOMMENDATIONS

The problem of predicting the effective thermal conductivity of heterogeneous mixtures has received the attention of numerous investigators over the past sixty years. Unfortunately, the complexity of the mechanisms contributing toward heat flow is such that no truly satisfactory model has been obtained. The continued proliferation of alternate models attests to these difficulties. The scope of this study has been to utilize all available information on the subject and extend the analytical techniques of predicting the variable thermal conductivity of heterogeneous mixtures over as wide a range of environments as possible.

Initially a study was made of the published models with respect to the geometry and heat flow assumptions utilized by each one. Further, a number of published equations for the effective thermal conductivity were applied to a large group of granular materials, and the results were evaluated in relation to the geometry and heat flow assumptions utilized in the development of each equation. The results of this analysis can be summarized in that the sources of error in the predicted thermal conductivities can be attributed to one or more of the following causes:

1. Failure to account for solid to solid contact;
2. Failure to utilize a realistic distribution of the two phases;
3. Failure to utilize realistic heat flow assumptions.

It was therefore concluded that for any new model to constitute an improvement over existing ones, these causes of failure should be eliminated.

Since the possibility of assuming that the heat flow process in granular materials is approximately linear simplifies considerably the problem of heat transfer, this possibility was examined separately for random heterogeneous mixtures having a realistic phase distribution. The analysis presented in Chapter 4 resulted in the conclusion that a parallel isotherms assumption yields too high values for the effective thermal conductivity whereas a uniform heat flux assumption yields values that are too low. Also, the error in the predicted thermal conductivity increases rapidly with the ratio of the constituent conductivities. Consequently, either no assumption should be made regarding the flow of heat in granular materials, or weighting factors should be associated with the linear heat flow assumptions.

Four models have been developed in this study, each utilizing different approximations regarding the geometry and the flow of heat in granular materials. In the development of the models the most recent results of the packing theory have been used regarding the distribution of the phases, effective pore size, coordination number etc. The resulting equations enable one to calculate the effective
thermal conductivity as a function of interstitial gas pressure, temperature and loading conditions. These models have been successfully applied to large groups of granular materials and the results are summarized in Table 9-I. Comparison between Tables 9-I and 6-VII indicates that these models constitute a considerable improvement over previously published models. The error in the effective thermal conductivity values predicted by the equations developed in this study can be attributed to the following causes:

1. Exclusion of pure radiation heat transfer at very low pressures;
2. Low calculated values for the contact resistance;
3. Deviation of the actual distribution of the two phases from the assumed random phase distribution;
4. Uncertainty regarding the mean particle size in cases of granular materials having broad particle size range.

The reason it is not possible to eliminate these sources of error at this time is lack of experimental evidence. However, once more accurate expressions are found, they can be readily incorporated in the models. In spite of the above mentioned limitations to the accuracy of the models, it is now possible to predict the effective thermal conductivity of granular materials over a wide range of environments with a high degree of confidence, as attested by the successful application of the models to large groups of heterogeneous mixtures. It is evident from the discussion of the previously published models, and from the models presented in this study that the most serious drawbacks in the analysis of the thermal conductivity of heterogeneous mixtures are (a) a sufficiently accurate description
of the geometry of granular materials and (b) the radiation heat transfer process. Since the effective thermal conductivity of granular systems is very sensitive to the conductivity of the gaseous phase, it is expected that knowledge of the mean void volume and void volume distribution should provide accurate calculated thermal conductivities. Towards this end, an analysis is presented in Figure 10-1. This analysis is based on a unit cube of a heterogeneous mixture, and is similar to the analysis of the nodular model.

The geometry of a representative unit cube can be defined from the sectioned void area distribution and the void volume distribution. The mean sectioned void area and the sectioned void area distribution are required to determine the distribution of the two phases on the six faces of the unit cube. The mean void volume and void volume distribution are required so that the number of voids in the unit cube can be calculated and distributed in such a manner that the porosity of the unit cube is equal to the bulk porosity of the granular material. The size of the unit cube will be determined from the particle size distribution. As a result, each cubicle in the unit cube will be occupied either by the continuous or the discontinuous phase.

The next step is to define the resistance between nodes. This can be done first in terms of the conductivity of the two phases. Then, to account for contact resistance between particles, a number of resistances equal to the contact resistance replaces an equal number
of already determined resistances between solid cubicles. These resistances are randomly distributed and oriented, and their number is given by the unit cube size and the coordination number. It is important to note at this point that the geometric parameters such as coordination number, etc. published in the literature have been determined for packed beds constructed of equally sized particles. Consequently a mean particle size must be determined from the particle size distribution of the granular material in question. However, as indicated in Appendix F, no such procedure has been found up to now for packed beds containing broad particle size distribution.

Once the geometry of the unit cube and the resistance between nodes have thus been defined, it is possible to determine the temperature distribution in a manner similar to the nodular model. Then, the conduction heat flux in the mean heat flow direction can be determined from the summation of individual heat fluxes between cubicles.

As indicated in the Introduction, the concept of an effective thermal conductivity consistent with the Fourier-Biot Law necessitates that the granular materials be considered as pseudo-homogeneous systems, in which case the volume of the granular material is assumed large with respect to the volume of individual grains. For such granular systems the photon mean free path is expected to be small compared to a linear dimension of the system, and consequently only thermal radiation in the optically thick limit need to be considered. In this case, according to the analysis presented in Appendix B, first the conduction heat transfer and radiation heat transfer processes can be
separated, and second the radiative heat flux can be related to the effective extinction coefficient by a simple equation. Finally, the total heat flux in granular materials is the sum of the conduction heat flux and radiation heat flux, and the effective thermal conductivity of the system can be determined from the Fourier-Biot Law. An approximate method, similar to the one described in Figure 10-1, is presented in Figure 10-2. The only difference between the two methods is the inclusion of the radiation heat transfer process. That is, recognizing that the determination of the extinction coefficient of granular materials is an extensive and difficult task, in the method of Figure $10-2$ only radiation heat transfer between particle surfaces and radiation heat transfer in solid particles are considered.

Summarizing, it has been shown that any future attempt to develop more refined models for the calculation of the effective thermal conductivity of granular materials should be based on a realistic approximation of the geometry and radiation heat transfer. In particular, it is suggested that the following experimental program be undertaken.

1. Determination of the void volume distribution and the sectioned void area distribution in terms of the particle size distribution, particle shape and porosity. The work of Debbas and Rumpf [51] is a step in the right direction, but the number of cases examined is not sufficient to justify any generalized conclusions. It is therefore suggested that experimental work, similar to the one described in Reference [51] be undertaken and extended to granular systems composed
of equal sized particles, narrow particle size distribution and broad particle size distribution.
2. Experimental work to determine the extinction coefficient of specific granular systems similar to the one described by Bastin et al [85], or experimental work to determine the radiation heat transfer in solid particles of various sizes similar to the one described by Merrill [118].
3. It is evident from Figure $\mathrm{E}-1$ that the range of porosities for which the coordination number of spherical particles has been experimentally determined is too narrow to justify any of the correlations suggested in the literature. Consequently, further experimental work is required for the determination of the coordination number over a wider range of porosities. Also the coordination number of irregularly shaped particles should be determined and compared to that of spheres, so that more accurate expressions can be found for the number and distribution of contact areas in granular materials.

Experimental work on the areas mentioned above is not only essential for the analysis of the thermal conductivity of stagnant packed beds, but will also be a tremendous contribution to analytical work on fluid flow through packed beds and heat transfer in packed beds with fluid flow.

A problem that has been identified in this study is the selection of a mean particle diameter for packed beds consisting of a broad
particle size distribution. As indicated in Chapter 8 and Appendix F, the solution of this problem is solely based on experimental evidence. However, due to this problem, the majority of the models of this study have been applied to random packings of equal size spheres, and to granular materials composed of narrow particle distribution only.

Finally, it should be noted that no anisotropy of thermal conductivity has been considered in this study. However, it is possible to include the variation of the thermal conductivity in granular materials in the horizontal and vertical directions by considering the change of the contact pressure between particles in the horizontal and vertical directions. As indicated in Reference [86] the pressure tensor in a granular material can be written as

$$
\begin{equation*}
p_{i_{j}}=p_{0} \delta_{i}+p_{j} z_{i} z_{j} \tag{10-1}
\end{equation*}
$$

where p_{0}, p_{1} are constants and z_{i} are the components of a unit vector in the direction of the applied load. It follows that the pressure in the direction of the applied load is

$$
\begin{equation*}
p_{v}=p_{0}+p_{1} \tag{10-2}
\end{equation*}
$$

while in the horizontal direction it is

$$
\begin{equation*}
r_{n}=p_{0} \tag{10-3}
\end{equation*}
$$

When the granular material is loaded under its own weight

$$
\begin{equation*}
p_{v}=g \int_{0}^{D} \rho(z) d z \tag{10-4}
\end{equation*}
$$

Assuming that the expansion of the granular material is constrained in the horizontal direction it follows that

$$
\begin{equation*}
p_{n}=\frac{\nu}{1-v} p_{v} \tag{10-5}
\end{equation*}
$$

Combination of Equations (10-2) through (10-5) determines p_{v} and P_{n} in terms of density and depth. Then, P_{v} can be used in the determination of the contact resistance in the direction of the applied load and p_{n} in the determination of the contact resistance in the horizontal direction. As a result, the temperature distribution and consequently the effective thermal conductivity will be different when the mean heat flow direction is the direction of the applied load and when the mean heat flow direction is the horizontal.

It is evident that the variation of the thermal conductivity in the two directions will be significant only in the case of granular materials at low pressures because only in this case variation of the contact resistance will affect detectably the calculated effective thermal conductivity of the granular system.

FIGURE 10-1. FLOW CHART FOR THE CALCULATION OF THE EFFECTIVE THERMAL CONDUCTIVITY OF GRANULAR MATERIALS.

FIGURE 10-2. FLOW CHART FOR AN APPROXIMATE CALCULATION OF THE EFFECTIVE CONDUCTIVITY OF GRANULAR MATERIALS.

REFERENCES

1. Wesselink, A. F., "Heat Conductivity and Nature of the Lunar Surface Material," Bulletin of the Astronomical Institutes of the Netherlands, Vol. 10, No. 390, 351, (1948).
2. Clegg, P. E., Bastin, J. A. and Gear, A. E., "Heat Transfer in Lunar Rock," Monthly Notices of the Royal Astronomical Society, Vol. 133, 63, (1966).
3. Fountain, J. A. and West, E. A., "Thermal Conductivity of Particulate Basalt as a Function of Density in Simulated Lunar and Martian Environments," Journal of Geophysical Research, Vol. 75, No. 20, 4063, (1970).
4. Gorring, R. L. and Churchill, S. W., "Thermal Conductivity of Heterogeneous Materials," Chemical Engineering Progress, Vol 57, No. 7, 53, (1961).
5. Haughey, D. P. and Beveridge, G. S. G. "Local Voidage Variation in a Randomly Packed Bed of Equal Sized Spheres," Journal of Engineering Science, Vol 21, 905, (1966).
6. Waddams, A., "The Flow of Heat Through Granular Materials," Journal of the Society of Chemical Industry, Vol 63, 337, (1944).
7. Wiener, 0., "The Theory of Mixtures for Fields with Constant Currents," Akademie der Wissenschaften. Leipsiz, Math-Phys. Kl. Abhandlungen, Vol. 32, 507, (1912).
8. Tsao, G. T., "Thermal Conductivity of Two-Phase Materials," Industrial and Engineering Chemistry, Vol. 53, No. 5, 395, (1961).
9. Maxwell, J. C., A Treatise on Electricity and Magnetism, Vol. 1, 3rd ed., Oxford University Press, London, 1892, p. 440.
10. Burgers, H. C., "The Conductivity of Diluted Air Crystal Mixtures," Physikalische Zeitschrift, Vol. 20, 73, (1919).
11. Fricke, H., "The Electrical Conductivity of a Suspension of Homogeneous Spheroids," Physical Review, Vol. 24, 515, (1924).
12. DeVries, D. A., Physics of Plant Environment, 2nd ed., North Holland Publishing Co., Amsterdam, 1966, p. 210.
13. Hamilton, R. L. and Crosser, 0. K., "Thermal Conductivity of Heterogeneous Two-Component Systems," Industrial and Engineering Chemistry Fundamentals, Vol. 2, 187, (1962).
14. Rayleigh, Lord, "On the Influence of Obstacles Arranged in Rectangular Order Upon the Properties of a Medium," Philosophical Magazine and Journal of Science, Vol. 34, 481, (1892).
15. Runge, I., "On the Electrical Conductivity of Metallic Aggregates," Zeitschrift fur Technische Physik-Leipzig, Vol. 6, 61, (1925).
16. Meredith, R. E. and Tobias, C. W., "Resistance to Potential Flow Through a Cubical Array of Spheres," Journal of Applied Physics, Vol. 31, 1270, (1960).
17. Laubitz, M. J., "Thermal Conductivity of Powders," Canadian Journal of Physics, Vol. 37, 798, (1959).
18. Bruagenan, D. A. G., "Dielectric Constant and Conductivity of 'ifitures of Isotropic Materials," Annalen Physik, Vol. 24, 636, (1935).
19. Meredith, R. E. and Tobias, C. W., "Conductivities in Emulsions," Electrochemical Society Journal, Vol. 108, 286, (1961).
20. Baxley, A. L. and Cooper, J. R., "Thermal Conductivity of Two Phase Systems-Part IV; Thermal Conductivity of Suspensions," University of Arkansas Experimental Station, Fayetteville, Arkansas, (1966).
21. Deissler, R. G. and Boegli, J. S., "An Investigation of Effective Thermal Conductivities of Powders in Various Gases," Transactions of the ASME, Vol. 80, 1417, (1958).
22. Lichteneker, K., "The Electrical Conductivity of Periodic and Random Aggregates," Physikalische Zeitschrift, Vol. 27, 115, (1926).
23. !oodside, W. and Messmer, J. H., "Thermal Conductivity of Porous Media in Unconsolidated Sands," Journal of Anplied Physics, Vol. 32, 1688, (1961).
24. Lichteneker, K., "The Electrical Conductivity of Periodic and Random Aggregates," Physikalische Zeitschrift, Vol. 25, 169, (1924).
25. Son Frey, G. S., "The Electrical Conductivity of Binary Aggregates," Zeitschrift fur Electrochemie, Vol. 38, 260, (1932).
26. Schotte, W., "Thermal Conductivity of Packed Beds," American Institute of Chemical Engineers Journal, Vol. 6, 63, (1960).
27. Smith, W. O., "The Thermal Conductivity of Dry Soil," Soil Science, Vol. 53, 435, (1942).
28. Sauer, M. C., Southwick, P. F., Spiegler, K. S., and Wyllie, M. R. J., "Electrical Conductance of Porous Plugs," Industrial and Engineering Chemistry, Vol. 47, No. 10, 2187, (1955).
29. Yagi, S. and Kunii, D., "Studies on Effective Thermal Conductivities in Packed Beds," American Institute of Chemical Engineers Journal, Vol. 3, 373, (1957).
30. Kunii, D. and Smith, J. M., "Heat Transfer Characteristics of Porous Rocks," American Institute of Chemical Engineers Journal, Vol. 6, 71, (1960).
31. Willhite, G. P., Kunii, D., and Smith, J. M., "Heat Transfer in Beds of Fine Particles," American Institute of Chemical Engineers Journal, Vol. 8, No. 3, 340, (1962).
32. Masamune, S. and Smith, J. M. "Thermal Conductivity of Beds of Spherical Particles," Industrial and Engineering Chemistry, Vol. 2, iNo. 2, 136, (1963).
33. Dul'nev, G. N., "Heat Transfer Through Solid Disperse Systems," Journal of Engineering Physics, Vol. 9, No. 3, 399, (1965).
34. Luikov, A. V., Shashkov, A. G., Vasiliev, L. L. and Fraiman, Yu.E., "Thermal Conductivity of Porous Systems," International Journal of Heat and Mass Transfer, Vol. 11, 117, (1968).
35. Schumann, T. E. W. and Voss, V., "Heat Flow Through Granulated Material," Fuel in Science and Practice, Vol. 13, 249, (1934).
36. Preston, F. W., "Mechanism of Heat Transfer in Unconsolidated Porous Media at Low Flow Rates," Ph.D. Dissertation, Pennsylvania State University, (1957).
37. Wilhelm, R. H., Johnson, W. C., Wynkoop, R., and Collier, D. W., "Reaction Rate, Heat Transfer and Temperature Distribution in FixedBed Catalytic Converters," Chemical Engineering Progress, Vol. 44, No. 2, p. 105, (1948).
38. Hengst, G., "The Thermal Conductivity of Powdered Thermal Insulators at. High Pressure," Ph.D. Dissertation, Technische Huchischule Munchen, (1934).
39. Lyalikov, A. S., "Thermal Conductivity of Granular Materials," Ph.D. Dissertation, Tomsk Polytechnic Institute, U.S.S.R., (1956).
40. Kaganer, M. G., "Thermal Insulation in Low Temperature Engineering," Izd. Mashinostroenie, (1966).
41. Deissler, R. G. and Eian, C. S., "Investigation of Effective Thermal Conductivities of Powders," National Advisory Committee for Aeronautics Research Memorandum, E52C05, (1952).
42. Krupiczka, R., "Analysis of Thermal Conductivity in Granular Materials," CHEMIA STOSOWANA, Vo1. $2 \mathrm{~B}, 183$, (1966).
43. Russell, H. W., "Principles of Heat Flow in Porous Insulators," Journal of the American Ceramic Society, Vol. 18, 1, (1935).
44. Bernstein, R. S., "Investigation of Natural Fuel Combustion Processes," Gesenergoizdat, (1948).
45. Godbee, H. W., and Ziegler, W. T., "Thermal Conductivity of $\mathrm{MgO}, \mathrm{Al}_{2} \mathrm{O}_{3}$, and ZrO_{2} Powders to $850^{\circ} \mathrm{C}$," Journal of Applied Physics, Vol. 37, No. 1, 56, (1965).
46. Topper, L., "Analysis of Porous Thermal Insulating Materials," Industrial and Engineering Chemistry, Vol. 47, No. 7, (1955).
47. Webb, J., "Thermal Conductivity of Soil," Nature, No. 4517, 989, (1956).
48. Woodside, W., "Calculation of the Thermal Conductivity of Porous Media," Canadian Journal of Physics, Vol. 36, 815, (1958).
49. Haughey, D. P. and Beveridge, G. S. G., "Structural Properties of Packed Beds - A Review," Canadian Journal of Chemical Engineering, Vol. 47, 130, (1969).
50. Stange, K., "The Mixing of Random Systems as a Basis for Estimating Mixing Data," Chemic Ing. Tech. Vol. 6, 331, (1954).
51. Debbas, S. and Rumpf, H., "On the Randomness of Beds Packed with Spheres or Irregular Shaped Particles," Chemical Engineering Science Vol. 21, 583, (1966).
52. Warren, J. E. and Messmer, J. H., "Correspondence-Thermal Conductivity of Two Phase Materials," Industrial and Engineering Chemistry, Vol. 1, No. 3, 222, (1962).
53. Crane, R. A. and Vachon, R. I., "Effective Thermal Conductivity of Granular Materials," XII International Conference on Thermal Conductivity, Birmingham, Alabama, p. 99, (1972).
54. Somerton, W. H., University of California, Berkeley, California, Personal Communication.
55. Miller, I. and Freund, J. E., Probability and Statistics for Engineers, lst ed., Prentice Hall, Englewood Cliffs, New Jersey, 1965, p. 245.
56. Gorring, R. L. and Churchill, S. W., "Thermal Conductivity of Heterogeneous Materials," Document 6754, American Documentation Institute, Library of Congress, Washington, D. C.
57. Verschoor, H. and Schuit, G. C. A., "Heat Transfer to Fluids Flowing Through a Bed of Granular Solids," Applied Scientific Research, Vol. 42, 97, (1950).
58. Kling, G., "The Heat Conduction of Spherical Aggragates in Still Gases," Forschung, Vol. 9, 28, (1938).
59. Kannuluik, W. G. and Martin, L. H., "Conduction of Heat in Powders," Proceedings of the Royal Society of London, A141, 144, (1933).
60. DeNee, P. B., "Thermal Conductivity of Granular Materials at Low Temperatures," Ph.D. Dissertation, Lehigh University, (1964).
61. Dul'nev, G. N., Platunov, E. S., Muratova, B. L., Sigalova, Z. V., "A Method of Determing the Thermal Conductivity of Powdered and Fibrous Insulation as a Function of Filler Gas Pressure, "Inzhenerno-Fizicheskii Zhurnal, Vol. 9, No. 6, 757, (1965).
62. Prins, J. A., Schenk, J., and Schram, A. J. G. L., "Heat Conduction by Powdero in Various Gaseous Atmospheres at Low Pressure," Physica, XVI, 4, 379, (1950).
63. Wechsler, A. E., "Thermal and Mechanical Properties of Evacuated Powders," Powder Technology, 3, 163, (1969-1970).
64. Wechsler, A. E. and Glaser, P. E., "Pressure Effects on Postulated Lunar Materials, " Icarus, 4, 335, (1965).
65. Bernett, E. C., Wood, H. L., Jaffe, L. D., Martens, H. E., "Thermal Properties of a Simulated Lunar Material in Air and in Vacuum," AIAA Journal, Vol. 1, No. 6, 1402, (1963).
66. Dallavalle, J. M., "Micromeritics", $2^{\text {nd }}$ ed., Pitman Publishing Corporation, New York, (1948).
67. Hilsenrath, J. et. al., "Tables of Thermodynamic and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, Oxygen and Steam", Pergamon Press, New York, (1960).
68. Crane, R. A., "Thermal Conductivity of Randomly Packed Granular Materials," Ph.D. Dissertation, Auburn University, (1973).
69. Loeb, A. L., "Thermal Conductivity: VIII, A Theory of Thermal Conductivity of Porous Materials," Journal of The American Ceramic Society, Vol. 37, No. 2, 96, (1954).
70. Cheng, S. C. and Vachon, R. I., "The Prediction of the Thermal Conductivity of Two and Three Phase Solid Heterogeneous Mixtures," Int. J. Heat Mass Transfer, Vol. 12, 249, (1969).
71. Neville, A. M. and Kennedy, J. B., "Basic Statistical Methods for Engineers and Scientists," International Textbook Company, Scranton, Pennsylvania, (1964).
72. Trezek, G. J. and Witwer, J. G., "Finite-Difference Methods for Inhonogeneous Regions," Trans. of the ASME, Vol. 94, Series C, No 3, 321, (1972).
73. Kanager, M. G., "Contact Heat Transfer Heat Transfer in Granular Material Under Vacuum," Inzhenerno-Fizicheskii Zhurnal, Vol. 11, No. 1, 30, (1966).
74. Westlake, J. R., "A Handbook of Numerical Matrix Inversion and Solution of Linear Equations, "John Wiley and Sons, Inc., (1968).
75. Argo, W. B. and J. M. Smith, "Heat Transfer in Packed Beds," Chemical Engineering Progress, Vol. 49, No. 8, 443, (1953).
76. Dul'nev, G. N. and Sigalova, Z. V., "Effective Thermal Conductivity of Granular Materials", Inzhenerno-Fizicheskii Zhurnal, Vol. 13, No. 5, (1967).
77. Jacob, Max. "Heat Transfer," Vol. I, p.85, Eighth Printing, John Wiley and Sons, Inc., (1962).
78. Jefferson, T. B. et a7, "Thermal Conductivity of Graphite-Silicone $0 i 1$ and Graphite-Water Suspensions," Ind. Eng. Chem., 50, 1589, (1958).
79. Kennard, E. H., "Kinetic Theory of Gases," McGraw - Hill Book Company, Inc., (1938).
80. Wachman, H. Y., "The Thermal Axxommodation Coefficient: A Critical Survey," ARS Journal, Vol. 32, No. 1, 2, (1962).
81. Chen, J. C. and Churchill, S. W., "Radiant Heat Transfer in Packed Beds," A.I.Ch.E. Journal, Vol. 9, No. 1, 35, (1963).
82. Rosseland, S., "Theoretical Astrophysics," Oxford University Press, Clarendon, England, (1936).
83. Van der Held, E. F. M., "The Contribution of Radiation to the Conduction of Heat," Appl. Sci. Research, Section A, Vol. 3, 237, (1952) ; Section A, Vol. 4, 77, (1953).
84. Troitsky, V. S., "Thermal Conductivity of Lunite as Dependent on Temperature," Nature, February 18, page 688, (1967).
85. Bastin, J. A., Clegg, P. E. and Fiedler, G., "Infrared and Thermal Properties of Lunar Rock," Science, Vol. 167, No. 3918, 728, (1970).
86. Sex1, R. U. et al "Radiative Aspects of Lunar Materiais,", NAS825585.
87. Cooper M. G., Mikic, B. B. and Yovanovich, M. M., "Thermal Contact Conductance," Int. J. Heat Mass Transfer, Vol. 12, 279, (1969).
88. Carslaw, H. S. and Jaeger, J. C., "Conduction of Heat in Solids," Clarendon Press, 0xford, (1948).
89. Shlykov, Y. P. and Ganin, Y. A., "Thermal Resistance of Metallic Contacts," Int. J. Heat Mass Transfer, Vol. 7, 921, (1964).
90. Smith, W. 0., Foote, P. D. and Busang, P. F., Phys. Rev., 34, 1271, (1929).
91. Scott, G. D., Nature, 188, 908, (1960).
92. Bernat, J. D. and Mason, J., Nature, 188, 910, (1960).
93. Fountain, J. A. and Scott, R. W., "Thermal Conductivity of a Particulate Sample in an Environment that Simulates the Planet Mars," NASA Internal Note IN-SSL-T-68-15, (1968).
94. Jaffe, L. D., "Lunar Surface Strength," Icarus, Vol. 6, 75, (1967).
95. Jaffe, L. D., "Lunar Surface Exploration by Surveyor Spacecraft," Journal of Geophysical Research, Vol. 72, No. 2, 773, (1967).
96. Verbalovich, T., and Jaffe, L. D., "Surveyor 3, A Preliminary Report - Summary of Result," NASA sp-146, 1967.
97. Christensen, E. M., "Surveyor 5, A Preliminary Report - Lunar Surface Mechanical Properties," NASA sp-163, 1967.
98. Christensen, E. M. et al., "Surveyor 6, A Preliminary Report Lunar Surface Mechanical Properties," NASA sp-166, 1968.
99. Hapke, B. W., "Lunar Surface Composition Inferred from Optical Properties," Science, Vol. 159, No. 3810, 76, (1968).
100. Matveev, Y. G., Suchkin, G. L., and Troitskii, V. S., "Change of Lunite Density with Depth in the Surface Layer," Soviet Astronomy - AJ, Vol. 9, No. 4, 626, (1966).
101. Jones, B. P., "Density - Depth Mode1 for the Lunar Outermost Layer," Journal of Geophysical Research, Vol. 73, No. 3, 7631, (1968).
102. Hapke, B. H., "On the Particle Size Distribution of Lunar Soil," Planetary Space Science, Vol. 16, 101, (1968).
103. Gorz, H. et al., "Particle Size and Shape Distributions of Lunar Fines By CESEMI," Proceedinas of the Second Lunar Science Conference, Houston, Vol. 3, 2021, (1971).
104. Sparrow, E. M., and Cess, R. D.,"Radiation Heat Transfer," Brooks/ Cole Publishing Company, Belmont, California, 254, (1966).
105. Cremers, C. J., and Birkebak, R. C., "Thermal Conductivity of Fines from Apollo 12," Proceedings of the Second Lunar Science Conference, Houston, VoT. 3, 2311, (1971).
106. Cheng, S. C., and Vachon, R. I., "Thermal Conductivity of Packed Beds and Powder Beds," International Journal of Heat and Mass Transfer, Vol. 33, 1201, (1969).
107. Beveridge, G. S. G., and Haughely, D. P., "Axial Heat Transfer in Packed Beds," International Journal of Heat and Mass Transfer, Vol. 14, No. 8, 1093, (1971).
108. Holm, R., "Electric Contacts Handbook," Cambridge University Press, 1911.
109. Jean, J. H., "Electricity and Magnetism," Cambridge University Press, 1911.
110. See e.g. Lamb, H., "Treatise on the Mathematical Theory of Elasticity," Dover, 1957.
111. Hill, F. B., and Wi.helm, R. H., "Radiative and Conductive Heat Transfer in Quiescent Gas Solid Bed of Particles," AICHE Journal, Vol. 5, 1959.
112. Snoddy, W. E., and et al., "Infrared Emission During Simulated Lunar Eclipses," AIAA Progress in Astronautics and Aeronautics, 5469, (1967).
113. Turkevich, A. L., Franzgrote, E. J., and Paterson, J. H., "Chemical Analysis of the Moon at Surveyor 6 Landina Site," NASA sp-166, 1968.
114. Cuttitta, F. and et al., "Elemental Composition of Some Apollo 12 Lunar Rocks and Soils," Proceedings of the Second Lunar Science Conference, Houston, Vol. 2, 1217, (1971).
115. Tittmann, B. R., Housley, R. M., "Surface Elastic Wave Propagation Studies in Lunar Rocks," Proceedings of the Second Lunar Science Conference, Vol. 3, 2337, (1971).
116. Kanamori, H. et al., "Elastic Wave Velocities of Apollo 12 Rocks at High Pressures," Proceedings of the Second Lunar Science Conference, Vol. 3, $2323,(1971)$.
117. Chandrasekhar, S., "Radiative Transfer," Dover Publications, Inc., (1960).
118. Merrill, R. B., "Thermal Conduction Through an Evacuated Idealized Powder Over the Temperature Range of 100 to 500 K, " Ph.D. Dissertation, Briaham Young University, (1968).
119. Gold, T. et al., "Some Physical Properties of Lunar Samples," Proceedings of the Second Lunar Science Conference, Houston, Vol. 3, 2173, (1971).
120. Yagi, S., and Kunii, D., "Studies of Heat Transfer Near Wall Surface in Packed Beds," AICHE Journāt, Vol. 5 , No. 1, $97,(1960$).
121. Cremers, C. J. et al., "Thermal Characteristics of the Lunar Surface Layer," International Journal of Heat and Mass Transfer, Vol. 15, 1045, (1972).
122. Campbell, K. J., Ulrichs, J., and Gold, T., "Density of Lunar Surface," Science, Vol. 189, 973, (1968).
123. Fountain, J. A., West, E. A., "Thermal Conductivity of Particulate Basalt as a Function of Density in Simulated Lunar and Martian Environments," Journal of Geophysical Research, Vol. 75, No. 20, 4063, (1970).
124. Heywood, H., "Particle Size and Shape Distribution for Lunar Fines Sample 12057,72," Proceedings of the Second Lunar Science Conference, Houston, Vol. 3, 1989, (1971).
125. Sellers, G. A. et al., "Composition and Grain-Size Characteristics of Fines from the Apollo 12 Double-Core Tube," Proceedings of the Second Lunar Science Conference, Vol. 1, 665, (1971).
126. Quaide, W. et al., "Investigations of the Natural History of the Regolith at the Apollo 12 Site," Proceedings of the Second Lunar Science Conference, Vol. 1, 701, (1971).
127. Cremers, C. J., Birkebak, R. C., and Dawson, J. P., "Thermal Conductivity of Fines from Apollo 11," Proceedings of Apollo 11 Lunar Science Conference, Vol. 3, 2045, (1970).
128. Watson, K., "The Thermal Conductivity Measurements of Selected Silicate Powders in Vacuum from $150-350 \mathrm{~K}$, " Ph. D. Thesis, California Inst. of Technology, Pasadena, Calif., 1964.

BIBLIOGRAPHY

1. Staple, W. J., "Boundary Conditions and Conductivities Used in the Isothermal Model of Evaporation from Soil," Soil Science Society of America Proceedings, Vol. 35, No. 6, (1971).
2. Wierenga, P. G. and DeWit, C. T., "Simulation of Heat Transfer in Soils," Soil Science Society of America Proceedings, Vol. 34, (1970).
3. Hisakado, Terumasa, "On the Mechanism of Contact Between Solid Surfaces, (1st Report)," Bulletin of JSME, Vol. 12, No. 54, (1969).
4. Hisakado, Terumasa, "On the Mechanism of Contact Between Solid Surfaces, (2nd Report)," Bulletin of JSME, Vol. 12, No. 54, (1969).
5. Hisakado, Terumasa, "On the Mechanism of Contact Between Solid Surfaces, (3rd Report)," Bulletin of JSMA, Vol. 12, No. 54, (1969).
6. Clausing, A. M. and Chao, B. T., "Thermal Contact Resistance in a Vacuum Environment," Journal of Heat Transfer, (1965).
7. Aberdeen, J., and Laby, T. H., "Conduction of Heat through Powders and its Dependence on the Pressure and Conductivity of the Gaseous Phase," Proceedings of Royal Society of London, Vol. 113, (1927).
8. Agrawal, M. P., and Bhandari, R. C., "Effect of Particle Shape on the Formation Resistivity Factor of Unconsolidated Porous Media," Indian J. Pure Appl. Phys., Vol. 7, (1969).
9. Aksel'rud, G. A., "Solution of a Generalized Problem of Heat or Mass Transfer in a Bed," Inzhenerno-Fizicheskii Zhurnal, Vol. 11, No. 1, (1966).
10. Archie, G. E., "The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics," Petroleum Technology Proceedings, T.P. 1422, (1941).
11. Ben-Amoz, M. "The Effective Thermal Properties of two Phase Solids," Int. J. Engng. Sci., Vol. 8, (1970).
12. Fritz, W., and Kuster, W., "A Contribution to the Knowledge of Heat Conductivity of Porous Materials," Warme-Und Stoffubertragung, Bd. 3, (1970).
13. Kumar, I. J., "An Extended Variational Formulation of the NonLinear Heat and Mass Transfer in a Porous Medium," International Journal of Heat and Mass Transfer, Vol. 14, (1971).
14. Wyllie, M. R. J., and Southwick, P. F., "An Experimental Investigation of the S. P. and Resistivity Phenomena in Dirty Sands," Journal of Petroleum Technology, Vol. 44, (1954).
15. Berg, T. G., Owe, Medonald, R. L., and Trainer, R. J., Jr., "The Packing of Spheres," Power Technology, Vol. 3, (1969/70).
16. Blum, E. H., and Wilhelm, R. H., "A Statistical Geometrical Approach to Random-Packed Beds," A.I.Ch.E. - I Chem. E. Symposium Series, No. 4, (1965).
17. Bridgwater, J., Bagster, D. F. Chen, and Hallam, J. H., "Geometric and Dynamic Similarity in Particle Mixing," Powder Technology, Vol. 2, (1968/69).
18. Cahn, D. S., and D. W. Fuerstenav, "Simulation of Diffusional Mixing of Particulate Solids by Monte Carlo Techniques," Powder Technology, Vol. 1, (1967).
19. Cahn, David S., and Fuerstenav, Douglas H., "A Probabilistic Model of the Diffusional Mixing of Particulate Solids," Powder Technology, Vol. 2, (1968/69).
20. Dullien, F. A. L., Rhodes, E., and Schroeter, S. R., "Comparative Testing of Some Statistical Methods for Obtaining Particle Size Distributions," Powder Technolocy, Vol. 3, (1969/70).
21. McAdams, H. T., "Probability Foundations of Particle Statistics," Powder Technology, Vol. 2, (1968/69).
22. Prager, S., "Interphase Transfer in Stationary Two-Phase Media," Chemical Engineering Science, Vol. 18, (1963).
23. Roblee, L. H. S., Baird, R. M. and Tierney, J. W., "Radial Porosity Variations in Packed Beds," A.I. Ch.E. Journal, Vol. 4, No. 4, (1958).
24. Thadani, Mohan C., and Peebles, Fred N., "Variation of Local Void Fraction in Randomly Packed Beds of Equal Spheres," I \& E.C. Process Design and Development, Vol. 5, No. 3, (1966).
25. Williams, J. C., "The Properties of Non-Random Mixtures of Solid Particles," Powder Technology, Vol. 3, (1969/70).
26. Horia, Ki-iti and Simmons, G., "Thermal Conductivity of Rock-Forming Minerals," Earth and Planetary'Science Letters 6, (1969).
27. Kinger, W. D., Francl, J., Coble, R. L., and T. Vasilos, "Thermal Conductivity: X, Data for Several Pure Oxide Materials Corrected to Zero Porosity, " Journal of American Ceramic Society, Vol. 37,
No. 2, (1954).

APPENDIX A

LOW PRESSURE EFFECTS

Figure (A-1) shows a typical pressure dependence curve of the effective thermal conductivity of a gas-powder mixture. For higher pressures (10 atm or higher depending on the nature of the gas and the particle size [37]) a large rise in the effective conductivity is noted, due to convection. When the mean free path of the gas molecules approaches the characteristic length of the gas space, the effective conductivity becomes pressure dependent, as indicated by the portion between A and B of Figure $(A-1)$. Further reduction of the pressure does not result in any appreciable changes

Fig. A-1. Pressure Dependence of Effective Thermal Conductivity
in the effective conductivity, since at this region the dominant modes of heat transfer are conduction through the contact areas between particles and radiation.

Thermal conduction in rarefied gases was first analyzed in the pioneer works of Smoluchowski and Knudsen, as indicated by Kennard [79]. Kennard's equation for the effective conductivity, k_{g}^{*}, of a gas between two parallel plates of the same material, separated by a relative small distance, D_{p}, is:

$$
\begin{equation*}
k_{g}^{*}=\frac{k_{g}}{1+2 \frac{g^{*}}{D_{p}}} \tag{A-1a}
\end{equation*}
$$

where g^{*} is the temperature jump distance at one of the plates, given by:

$$
\begin{equation*}
g^{*}=\frac{2-\alpha}{\alpha} \frac{2 \gamma}{\gamma+1} \frac{1}{\operatorname{Pr}} \lambda \tag{A-1b}
\end{equation*}
$$

where α is the thermal accommodation coefficient, γ is the ratio of the specific heats of the gas, Pr is the Prandtl number and λ is the mean free path of the gas molecules. Equation (A-1) indicates that $k_{g}{ }^{*}$ decreases with respect to k_{g} when λ / D_{p} increases.

The principal difficulty in applying this equation lies in evaluating the thermal accommodation coefficient, α, and the effective pore length, D_{p}. As indicated in [80], several attempts have been made to predict the accommodation coefficient analytically, but they have not proved particularly successful. Furthermore, the
accommodation coefficient is strongly influenced by parameters describing the solid surface (i.e. smoothness, impurities, etc. not reported in experimental work on the conductivity of granular materials), and experimentally determined values of α are not available for solids other than pure metals and alloys [80]. For this reason, most investigators of the effective conductivity of heterogeneous mixtures have either set $\alpha=1$, effectively assuming that the solid surface is so irregular that most of the molecules struck it a number of times before escaping, or they have included α in an experimentally determined coefficient.

Dulnev and Sigalova [76] and Luikov et al [34] have used Equation (A-1) in the same form given by Kennard. Deissler and Boegli [21] found from their experimental data on magnesium oxide in air that the pressure at which the effective conductivity begins to vary lith pressure (breakamay pressure) is 15 psia at $340^{\circ} \mathrm{F}$. From this they evaluated the Knudsen number ($K n=\lambda / d$), based on the mean particle size, to be 0.00072 . Finally, arguing that Kn at the breakaway pressure must be independent of the gas, powder, temperature and pressure, they found from Equation $(A-1)$ that the breakaway pressure in the English system of units is given by:

$$
\begin{equation*}
p_{b}=1770 \times 10^{-24} \frac{T}{s^{2} d} \tag{A-2}
\end{equation*}
$$

where T is the temperature and s is the molecular diameter of the gas. Equation (A-2) seems to correlate their experimental data with
good accuracy. It is of particular importance that the value of the Knudsen number corresponding to the breakaway pressure is much less than unity, indicating that most of the heat transfer through a powder takes place in the immediate vicinity of the contact areas. Effectively, this means that the dimensions effective in transferring heat in the voids are much less than the effective geometric length of the void.

Schotte [26] and Masamune and Smith [32] found expressions for D_{p} in terms of the porosity of the system, based on geometric considerations. They then substituted the expressions in Equation ($A-1$).

Woodside and Messmer [23] arguing that when the normal mean free path, λ, of the gas molecules is much larger than a characteristic pore size, then the effective mean free path, $\bar{\lambda}$, must depend on \therefore as well as on D_{p}, have shown that:

$$
\begin{equation*}
k_{g}^{*}=k_{g} \cdot \frac{p D_{p}}{p D_{p}+B} \tag{A-3}
\end{equation*}
$$

where

$$
B=\frac{\sigma_{D} T}{\pi \sqrt{2} s^{2}}
$$

σ_{b} is the Boltzman constant. Equation ($\mathrm{A}-3$) predicts higher values for k_{g}^{*} than Equation $(A-1)$ by a factor of roughly 2.5. It is interesting to note that also in this case the characteristic dimension
of the void space, with respect to heat conduction in the gas occupying this space, is amaller than the mean particle diameter by a factor of roughly 100.

Summarizing, it is seen that almost all investigators, with the exception of [23], have used Kennard's equation to predict the effect of pressure on the conductivity of the gaseous phase. The principal difficulty in applying this equation lies in the determination of the thermal accommodation coefficient and D_{p}. The value of α is assumed by all investigators to be unity. The determination of D_{p} is postponed until a later section. In Figure (A-2) the dependence of the thermal conductivity of CO_{2} on pressure is indicated, according to Equations ($A-1$) and ($A-3$).

FIGURE A-2. EFFECT OF PRESSURE ON THE THERMAL CONDUCTIVITY OF CO_{2}.

APPENDIX B
 RADIATION HEAT TRANSFER IN GRANULAR MATERIALS

Thermal radiation is known to be a dominant mode of heat transfer in evacuated granular materials, or in powders at elevated temperatures. Consequently it is no wonder that it has received considerable attention in the literature. However, due to the scarcity of information about absorption and scattering of radiation in granular materials, only approximate methods have been developed for the inclusion of radiation as a mode of heat transfer in granular materials.

According to Van der Held [83] the complete equation of Fourier, including radiant heat flux, is

$$
\begin{equation*}
C_{p} \rho \frac{\partial T_{0}}{\partial t}=\operatorname{div}\left(k_{e_{c}} \operatorname{grad} T_{0}\right)+4 \int_{0}^{\infty} n_{1}^{2} \beta_{1}\left(J_{1}-I_{1, T_{0}}\right) d l d v_{0} \tag{B-1}
\end{equation*}
$$

where $4 n_{1}^{2}{ }^{B_{1}} I_{1, T_{0}}$ dldV V_{0} is the radiation emitted by a volume element $d V_{0}$ between the wavelengths 1 and $1+d l$, having an absorption coefficient at these wavelengths β_{λ} and a refractive index n_{1}. Similarly $4 n_{1}{ }^{2} \beta_{1} J_{1} d 1 d V_{0}$ is the radiation absorbed by $d V_{0} . I_{1, T} d 1$ and $J_{1} d l$ are the black body radiation and mean irradiance respectively of a plane surface between the wavelengths 1 and $1+d 1$ at $d V_{0}$. In Equation $(B-1) k_{e_{c}}$ is the effective thermal conductivity of the medium due to conduction heat transfer only.

A second equation is required relating J_{1} and $I_{1, T}$. This can be obtained by letting the mean irradiance of $d V_{0}$ be the sum of the radiation emitted and scattered by all volume elements $d V$, and reaching $\mathrm{d} \mathrm{V}_{0}$, plus the irradiance of $\mathrm{d} V_{0}$ from the bounding walls. According to Van der Held [83], assuming diffuse radiation, this equation is

$$
\begin{align*}
4 J_{1}= & \int_{(V)}\left(\beta_{1} I_{1, T}+\sigma_{1} J_{1}\right) \frac{e^{-T} r}{\pi r^{2}} d V+ \\
& \int_{(S)}\left[e_{1, \gamma} I_{1, T}+\left(1-e_{1, \gamma}\right) J_{1}\right] \frac{e^{-t_{1} r}}{\pi r^{2}} \cos \gamma d S \tag{B-2}
\end{align*}
$$

where σ_{1} is the monochromatic scattering coefficient, $\varepsilon_{1}=\beta_{1}+\sigma_{1}$ is the monochromatic scattering coefficient, r is the distance between $d V_{0}$ and $d V$ or $d S$ (surface element on bounding walls), $e_{1, \gamma}$ is the monochromatic spectral emissivity of the walls, and γ is the angle the distance between $d V_{0}$ and $d S$ makes with the normal on $d S$.

Combination of Equations $(B-1)$ and ($B-2$) together with the boundary conditions determines the solutions of the heat transfer problem in granular materials. Although this system of equations appears to be quite formidable, it should be noted that the equations are very general in nature. The complexity of these equations has been reduced considerably in a number of specific situations, and these situations will now be discussed. First, however, it should be noted that the integral term in Equation ($B-1$) represents the net radiation heat transfer to $d V_{o}$, or if \bar{q}_{r} is the radiant neat fiux, the integrai term is equal to - div \bar{q}_{r}. Consequently, an alternate form of Equation ($B-1$) is

$$
\begin{equation*}
C_{p} \rho \frac{\partial T_{0}}{\partial t}=\operatorname{div}\left(k_{e_{c}} \operatorname{grad} T_{0}\right)-\operatorname{div} \vec{q}_{r} \tag{B-3}
\end{equation*}
$$

Also, the total heat flux vector within the medium will consist of the sum of the conduction and radiation contributions, and consequently is given by

$$
\begin{equation*}
\bar{q}=-k_{e_{c}} \operatorname{grad} T=\bar{q}_{r} \tag{B-4}
\end{equation*}
$$

Assuming one-dimensional steady-state combined conduction and radiation for a medium bounded by two parallel surfaces, Equations $(B-3)$ and ($B-4$) reduce to

$$
\begin{align*}
& k_{e_{c}} \frac{d^{2} T}{d x^{2}}=\frac{d q}{d x} \tag{B-5}\\
& q=-k_{e_{c}} \frac{d T}{d x}+q_{r}=\text { constant } \tag{B-6}
\end{align*}
$$

where x is the distance normal to one surface. Further assuming that the absorption and scattering coefficients are both independent of the wavelength, and that the distance between the bounding surfaces is large compared to the photon mean free path (optically thick limit), it has been shown in detail by Sparrow and Cess [104, 117] that the radiation flux can be written as

$$
\begin{equation*}
q_{r}=-\frac{16 \sigma_{b} T^{3}}{3 \varepsilon} \frac{d T}{d x} \tag{B-7}
\end{equation*}
$$

Combination of Equations ($B-6$) and ($B-7$) yields

$$
\begin{equation*}
q=-\left(k_{e_{c}}+\frac{16 \sigma_{b} T^{3}}{3 \varepsilon}\right) \frac{d T}{d x}=\text { constant } \tag{B-8}
\end{equation*}
$$

It is seen that in this specific case the conduction and radiation processes can be separated, and the total heat flux is represented as the sum of heat transfer by pure conduction and heat transfer by pure radiation. Consequently the effective conductivity of the granular material is the sum of an effective conductivity due to pure conduction and a radiant conductivity which is related to the cube of the absolute temperature. Unfortunately, no experimental data have been reported on the extinction coefficient of granular materials and powders, and consequently Equation ($B-8$) cannot be applied due to lack of experimental information. However, the result that the effective conductivity can be represented as the sum of two terms, one being a constant and the second related to the cube of the absolute temperature, has been extensively used in the correlation of data on evaluated granular materials.

Clegg et al [2] following a similar procedure assumed that scattering of radiation may be neglected, and using the Rosseland equation for the optically thick limit, they obtained the following equation for the radiant conductivity.

$$
\begin{equation*}
k_{r}=\frac{16}{3} \pi_{b} \frac{T^{3}}{a(T)} \tag{B-9}
\end{equation*}
$$

where $\bar{a}(T)$ is the Roselland mean absorption coefficient.
Chen and Churchill [81] on the other hand represented the radiant intensity in packed beds by forward and backward fluxes, and derived the following expression for the radiant conductivity:

$$
\begin{equation*}
k_{r}=\frac{8 \sigma_{b} T^{3}}{a+2 b} \tag{B-10}
\end{equation*}
$$

where a is the absorption volumetric coefficient and b is the back scattering volumetric coefficient. They also determined experimentally the values of a and b for borosilicate glass, aluminum oxide, carbon steel, and silicon carbide beds.

Another approximation is to assume one-dimensional steady-state combined conduction and radiation for a medium bounded by two parallel diffuse surfaces, where the distance between the bounding surfaces is small compared to the photon mean free path (optically thin limit). In this case, it has been shown by both Van der Held [83] and Sparrow and Cess [117] that the radiation heat flux is

$$
\begin{equation*}
q_{r}=\frac{v_{b}\left(T_{1}^{4}-T_{2}^{4}\right)}{\left(1 / e_{1}\right)+\left(1 / e_{2}\right)-1} \tag{B-11}
\end{equation*}
$$

where T_{1} and T_{2} are the absolute temperatures of the bounding surfaces, and e_{1} and e_{2} are the emissivities of the bounding surfaces. If $e_{1}=e_{2}$ and $T_{1}-T_{2}=\Delta T$ is small, one can write

$$
T_{1}^{4}-T_{2}^{4}=\left(T_{1}^{2}+T_{2}^{2}\right)\left(T_{1}+T_{2}\right)\left(T_{1}-T_{2}\right) \simeq 4 T^{3} \Delta T
$$

Combination of Equations ($B-6$) and ($B-11$) yields

$$
\begin{equation*}
q=-\left(k_{e_{c}}+\frac{4 \sigma_{b} e T^{3} d x}{2-e}\right) \frac{d T}{d x} \tag{B-12}
\end{equation*}
$$

Again it is seen that the conduction and radiation processes are separable. Further, this is the result for radiation transfer through a nonparticipating medium.

Equation ($\mathrm{B}-12$) has been used extensively by investigators that have utilized models based on regular geometric arrangements which permit an algebraic formulation of the heat transfer processes. Russell [43], Wesselink [1], Jacob [77] and Argo and Smith [75] assumed that with respect to radiation a mixture can be treated as alternating solid and gas layers perpendicular to the heat flow. In this case, the radiant conductivity of the gas phase is given by

$$
\begin{equation*}
k_{r}=\frac{4 \sigma_{b} e D_{p} T^{3}}{2-e} \tag{B-13}
\end{equation*}
$$

Some investigators have assumed that D_{p} is equal to the particle diameter d. Others have set $D_{D}=d /(1-P)$.

Schotte [26] assumed spherical particles and considered that the radiation from a plane located on one side of a particle to a plane located on the far side of the particle consists of two parts. First, the radiation across the void space surrounding the particle. Second,
there is radiation from the particle surface in series with conduction through the particle. Combining these two modes, he derived the following equation for the radiant conductivity

$$
\begin{equation*}
k_{r}=\frac{1-p}{\frac{1}{k_{s}}+\frac{1}{k_{r_{0}}}}+P k_{r_{0}} \tag{B-14a}
\end{equation*}
$$

where $k_{r_{0}}$ is the radiant conductivity between particle surfaces which Schotte expressed as

$$
\begin{equation*}
k_{r_{0}}=4 a_{b} e d T^{3} \tag{B-14b}
\end{equation*}
$$

It should be noted that when k_{s} is much larger than $k_{r_{0}}$, Equation ($B-14 a$) reduces to

$$
\begin{equation*}
k_{r} \simeq 4_{o_{b}} \text { ed } T^{3} \tag{B-14c}
\end{equation*}
$$

Laubitz, on the other hand, assumed the granular material to be cubic obstacles randomly distributed in cubical volumes, and considering the probability that radiation will pass a cube without hitting an obstacle, he developed the following expression for the radiant conductivity

$$
\begin{equation*}
k_{r}=4 \sigma_{b} e d T^{3}\left[1-(1-P)^{2 / 3}+(1-P)^{4 / 3}\right] /(1-P) \tag{B-15}
\end{equation*}
$$

It should be noted that in all the above developments for which specific geometric configurations have been considered, it has been assumed that the particles are opaque to thermal radiation. The validity of this assumption depends on both the material of the solid phase and the size of the particles compared to the wavelength of radiation. It has been shown by Merrill [118] that glass beads less than 100μ in diameter cannot be assumed opaque to thermal radiation even at relatively low temperatures. For the case of transparent particles Merrill assumed that the radiant conductivity is equal to the conductivity of the photon gas transmitted through the particles given be

$$
\begin{equation*}
k_{r}=\frac{1}{3} c \vee \lambda_{p} \tag{B-16}
\end{equation*}
$$

where C is the specific heat capacity of the photon gas, is the average velocity and λ_{p} is the photon mean free path. The energy density of a photon gas is given by

$$
\begin{equation*}
V=\frac{4}{c} \sigma_{b} T^{4} \tag{B-17}
\end{equation*}
$$

Consequently

$$
\begin{align*}
& C=\frac{\partial V}{\partial T}=\frac{16}{c} \sigma_{b} T^{3} \text { and } \\
& \dot{k}_{r}=\frac{16}{3} \sigma_{b} T^{3} \lambda_{p} \tag{B}
\end{align*}
$$

It is easily seen that Equation ($B-18$) is the same as the radiative component of Equation ($B-8$), with the exception that for the development of Equation ($B-8$) the heterogeneous mixture has been assumed to be a pseudo-homogeneous material whereas in Equation ($B-18$) only the solid phase is considered.

Rosseland [82] treated the radiation heat transfer as a diffusion of photons, and considering a random walk process, he obtained the following expression for the radiant conductivity

$$
\begin{equation*}
k_{r}=\frac{4}{3} \sigma_{b} d T^{3} \tag{B-19}
\end{equation*}
$$

Troitsky [84] and Bastin et al [85] have suggested that the conduction radiation in the voids and pure radiation processes should be considered acting in parallel, and consequently the effective radiant conductivity should be expressed as

$$
\begin{equation*}
k_{r}=\frac{4 \sigma_{b} P D_{p} e T^{3}}{2-e}+\frac{16}{3} \sigma_{b} \frac{T^{3}}{\bar{a}(T)} \tag{B-20}
\end{equation*}
$$

Loeb [69] considered the case of the radiant conductivity of pores in consolidated porous media. Assuming that linear heat flow is not distrubed in the solid surrounding the pores, he derived the following expression for pores having perfect geometric shapes

$$
\begin{equation*}
k_{r}=4_{\gamma} D_{p} \text { e } \sigma_{b} T^{3} \tag{B-21}
\end{equation*}
$$

where γ is a shape factor that depends on the geometry of the pore.
Summarizing the equations for radiant conductivity, it is seen that they can be classified into three groups.

1. Those assuming the heterogeneous mixture to be a pseudohomogeneous material;
2. Those based on regular geometric arrangements that permit an algebraic formulation of the radiative heat transfer processes;
3. Those based on random walk processes. Although the first class provides the best approximation to the interaction between pure conduction heat transfer and pure radiation heat transfer, lack of experimental work on the radiative properties of heterogeneous mixtures necessitates the application of the second class of equations. Moreover, the experimentally determined values of a and b by Chen and Churchill [81], indicate on one hand that both a and b depend on the type of bed, the solid material and the temperature, and on the other hand that is is perhaps easier to determine the effective thermal conductivity of granular materials experimentally than to determine a and b. For these reasons, at this point it is only possible to include quantitatively the conduction-radiation process in the voids in models of heterogeneous mixtures, while the pure radiation process can only be discussed qualitatively.

In Figure $B-1$ the values of k_{r} predicted by various models are plotted verous temperature. In Figure B-2 models of the second and third classifications are compared to Chen and Churchill's model for an aluminum oxide bed at high temperatures.

FIGURE B-l. COMPARATIVE VALUES OF Kr.

FIGURE B-2. COMPARATIVE VALUES OF Kr FOR AN ALUMINUM OXIDE BED.

APPENDIX C

CONTACT RESISTANCE

In accordance with [34] the heat flow from one particle to another contracts in the neighborhood of the contact area between two particles. This contraction of the heat flow lines is amplified in the case of powders under vacuum or in the case of granular materials with a high ratio of constituent conductivities, in which cases the heat flow through contact areas is a major mode of heat transfer. The importance of the contact resistance in the flow of heat in granular materials can be illustrated by the fact that it offers the only explanation as to why the heat flow through perlite at high vacuum at boundary temperatures $76-20^{\circ} \mathrm{K}$ is greater than at temperatures $70-4^{\circ} \mathrm{K}$, as indicated in [34].

The general procedure followed in the literature is to express the action of the contact areas as a resistance to the heat flow acting between the particle temperatures. Evidently, the heat flow through the contact points depends on the contact area between particles. The expression used by almost all investigators for the radius of this area is Hertz's relation:

$$
\begin{equation*}
r_{c}=\left[\frac{3}{4} \cdot \frac{1-v^{2}}{E} F_{1} \cdot \frac{d}{2}\right]^{1 / 3} \tag{C-1}
\end{equation*}
$$

where d, v and E are the diameter, Poisson's ratio and elastic constant respectively of the solid particles, and F_{1} is the force acting on the contact area. In the case of packed beds in which pressures between particles are due to the layers above the layer under consideration, an expression has been derived for the pressure tensor in [86], the corrected form of which is:

$$
\begin{equation*}
p_{i j}=\frac{g}{1-\nu}\left(\int_{0}^{D} \rho(x) d x\right)\left[\nu \delta_{i j}+(1-2 \nu) z_{i} z_{j}\right] \tag{C-2}
\end{equation*}
$$

Multiplication of Equation (C-2) with the unit normal vector to the contact area gives the average pressure.

As indicated in [87] contact resistance in general depends on the following parameters: apparent contact pressure, solid thermal conductivities, surface roughness, surface waviness, interstitial fluid thermal conductivity, solid hardness, solid modulus of elasticity and mean contact temperature leve1. However, due to the complexity at which these parameters interact, and the difficulty to express a number of these parameters analytically, the procedure taken by many investigators is to examine the contact resistance in the case of smooth spheres, and correlate the derived expressions by experimentally determined coefficients.

Carslaw and Jaeger [88] examined the thermal resistance of a circular contact area on a semi-infinite body, and found it to be:

$$
R_{\infty}^{\top}=1 / 4 r_{c} k_{s}
$$

under the condition of constant temperature on the area having radius r_{c}, and:

$$
\begin{equation*}
R_{\infty}^{q}=8 / 3 \pi^{2} r_{c} k_{s} \tag{0-4}
\end{equation*}
$$

under the condition of constant heat flux at the area. The values of R_{∞}^{\top} and R_{∞}^{q} differ by 8 percent.

Kanager [73], considered the case of a smooth sphere, thermally insulated everywhere except at two diametrically opposite contact areas. He solved Laplace's equation for this problem, and under the assumption that the temperature of the contact area is equal to the arithetic mean of the temperatures at the center and at the periphery, he found an expression for the equivalent thermal resistance of the sphere, R_{s}. Then comparing the ratio $R_{S} / 2 R_{\omega}^{Q}$, he found that it increases almost linearly from 1 to 1.05 for values of r_{c} / r from 0 to 0.1 , where r is the radius of the sphere. His
conclusion was that Equations (C-3) and (C-4) provide a sufficiently accurate approximation for the contact resistance.

Luikov [34] states that in addition to the contraction of the heat flow lines, the effect of the microroughness of real particles should be included in the estimation of the contact resistance, together with the effect of any oxidizing film covering the particles. Thus, the contact resistance of granular systems can be represented as the sum of three components:

$$
\begin{equation*}
R_{c}=R_{L}+R_{o}+R_{s p} \tag{C-5}
\end{equation*}
$$

where R_{L} is twice the expression given in Equation ($C-3$), R_{0} is the resistance due to any oxidizing film, and $R_{s_{p}}$ is given by:

$$
\begin{equation*}
R_{s p}=\frac{h_{r} k_{k}}{\pi r_{c}^{2} k_{s}} \tag{C-6}
\end{equation*}
$$

where h_{r} and k_{k} are experimentally determined coefficients depending on the height of the microroughnesses and on the thermal conductivity of the micrographs respectively, Luikov lists the recommended values for h_{r} and k_{k} for a number of granular material classes. Finally, he indicates that the thermal conductivity at the contact areas can be represented by:

$$
\begin{equation*}
k_{c r}=\frac{1}{R_{c} d} \tag{C-7}
\end{equation*}
$$

In the case of granular materials under externally applied loads, and in cases when particle deformations cannot be assumed elastic, the contact resistance is given in terms of the applied load, the porosity and the solid conductivity by experimentally derived correlations [34, 61, 89]. Wilhelm et al [37], have developed the following empirical equation for the effect of contact areas:

$$
\begin{equation*}
\log _{10}\left(k_{c r} \times 10^{5}\right)=0.859+3.12\left(\frac{k_{s}}{p}\right) \tag{C-8}
\end{equation*}
$$

where $k_{c r}$ and k_{s} are in $\mathrm{cal} / \mathrm{cm}$ sec. ${ }^{\circ} \mathrm{C}$. In general the values predicted by Equation ($\mathrm{C}-8$) are much higher than those predicted by Equation (C-7).

The equation for k_{g}^{*} and k_{r} have been expressed in terms of an effective distance between particle surfaces D_{D}, called the effective pore size. In the case of $k_{g}{ }^{*}$, this is the mean distance gas molecules travel from the surface of one particle to that of another, when the molecular mean free path is large. It follows that this parameter is significant both for the geometric characterization of the granular material, as well as for the heat transfer process.

The initial investigations on the characteristics of packings were concerned with systematic arrangements of spheres [66]. By this method, in order to determine the effective pore size for a range of porosities, it was assumed that the spacing of spheres in rhombohedral array is increased by assuming a halo of thickness δ around each sphere, and δ is adjusted to the observed porosity. Dul'nev et al [61] considered this case, and found that the effective pore size is given by:

$$
\begin{equation*}
D_{p}=4.2 \mathrm{~d}(\mathrm{~A}-2 / 3) \tag{D-1}
\end{equation*}
$$

where: $A=[0.74 /(1-P)]^{1 / 3}$

Haughey and Beveridge [5] investigated both analytically and experimentally the case of randomly packed beds of equal-sized spheres for loose packed ($P=0.3812-0.4$), poured packed $(P=0.364)$ and close packed $(P=0.3587)$ beds. Then, they generalized their results for a wide range of porosities. The reported expressions for the mean void hydraulic diameter and for the mean void equivalent hole volume are respectively as follows:

$$
\begin{align*}
& \left(D_{p}\right)_{h}=\frac{2}{3} d P /(1-P) \tag{D-2}\\
& V_{h}=\frac{\pi}{6} d^{3} P /(1-P) \tag{D-3}
\end{align*}
$$

Debbas and Rumpf [51] studied the randomness of beds packed with spheres or irregular shaped particles by means of a statistical approach. Their results are similar to those of Haughey and Beveridge, however the range of porosities examined is not wide enough to allow extrapolation to a wider range of porosities. Nevertheless, an important conclusion that can be reached by the results of both papers is that the local mean voidage is normally distributed, and that beds packed with spheres or irregular particles are in general subject to a statistical analysis. Effectively, it has been shown that in such beds all particles of the same size and shape have the same probability to occupy each unit volume of the mixture. The approach taken by Debbas and Rumpf appears to be very promising with respect to the geometric characterization of
granular materials, but the limited number of experimental data prohibits any generalized conclusions.

The equations presented up to this point have been obtained from geometric considerations. However, as indicated in a previous section, for powders under reduced pressures, most of the heat transfer through the voids takes place in the vicinity of the contact areas. This means that the dimensions effective in conducting heat through the voids are much less than the effective geometric length of the void. To account for this phenomenon, Masamune and Smith [32] considered the volume occupied by pendular rings around the contact points between particles, and derived the following expression for the conduction effective pore size:

$$
\begin{align*}
& \left(D_{p}\right)_{c}=n d\left[(\sec \theta-1)^{2}\left(1-\left(\frac{\pi}{2}-\theta\right) \tan \theta\right)\right] \tag{D-4}\\
& n=6.93-5.51 \frac{P-0.260}{0.476-0.260} \\
& \theta=\cos ^{-1}\left(1-\frac{1}{n}\right)
\end{align*}
$$

Dul'nev et al [61] have reported the following equation for $\left(D_{p}\right)_{C}$ based on the kinetic theory of gases:

$$
\begin{equation*}
\left(D_{p}\right)_{c}=d \frac{1.14 P-0.14}{\sigma(1-P)} \tag{D-5}
\end{equation*}
$$

Another approach is to correlate the experimentally determined values for the breakaway pressure to Equation (A-T). Effectively, the pressure at which the effective thermal conductivity of a granular material is reduced by 5 percent was determined from a number of experimental data in the region A of Figure A-T. Subsequently, the value of $k_{g}{ }^{*} / k_{g}$ required to attain this decrease in k_{e} was calculated, and from Equation $(A-T)$ the corresponding value of $\left(D_{p}\right)_{c}$ was determined. The experimental data were taken from References $[21,32,58,59,61,62,63]$. The least squares fit of $\left(D_{p}\right)_{c} / d$ as a function of P is:

$$
\begin{equation*}
\frac{\left(D_{p}\right)_{c}}{d}=\frac{0.2177 P-0.051}{1-P} \tag{D-6}
\end{equation*}
$$

for

$$
0.3<P<0.7
$$

The values of D_{p} / d predicted by the equations discussed in this section are plotted in Figure $D-1$ as a function of P.

FIGURE D-1. EQUIVALENT PORE SIZE OF GRANULAR MATERIALS.

APPENDIX E

 COORDINATION NUMBERIt is evident that the heat flux through contact areas depends on the number of contacts each particle has with its neighbors, or the coordination number n [5]. This number is known for regular packings of spheres and is 6 for cubic packing ($P=0.476$), 8 for orthorhombic packing ($P=0.3954$), 10 for tetragonal-sphenoidal packing ($P=0.3019$), and 12 for rhombohedra1 packing ($P=0.2595$). In addition to these fixed values, extensive experimental work has been done $[49,90,91,92]$ to find the coordination number for random packed beds of spheres, as indicated in Figure E-1. However, almost all of the experimental work has been carried out for loose random and close random beds, and consequently in order to find a relation between n and P extrapolation beyond the experimental data is required.

Dul'nev et al [61] have proposed the following equation:

$$
\begin{equation*}
n=11.6(1-P) \tag{E-1}
\end{equation*}
$$

represented by curve 5 in Figure E-1. However it is seen that the predicted values of n are too high at large perosities.

Willhite et al [31] used the results of Smith et al [90] and proposed the following equation:

$$
\begin{equation*}
n=6 \cdot \frac{5.01-8.42 p}{1.91-1.91 p} \tag{E-2}
\end{equation*}
$$

However, as noted in [49], this equation is in good agreement with the experimental results of Smith et al, but not with recent experimental data.

Kunii and Smith [30] considered the packed bed to be composed of spheres in the most open packed state and in the closest packed state, and taking into account the frequency and orientation of each cell, they derived the following semi-empirical relationship for the coordination number:

$$
\begin{equation*}
n=13.86-51.0(P-0.26) \tag{E-3}
\end{equation*}
$$

This equation is represented by curve 2 in Figure $E-1$, and it is seen that it overpredicts n for low values of P.

Haughey and Beveridge [5, 49] examined the distribution of the number of sphere centers found in spherical shells at varying distances from a given sphere, and for a random bed of spheres they developed the following expression for the coordination number:

$$
\begin{equation*}
n=22.47-39.39 p \tag{E-4}
\end{equation*}
$$

This equation is represented by curve 3 in Figure $E-1$, and it is seen that it provides the best fit to experimental data.

It should be noted that all equations and experimental data presented in Figure 8 are based on randomly or regularly packed
beds of spheres. However, all heat transfer models, in which contact resistance has been included, have utilized one of these equations for the coordination number. In this study Equation (E-4) has been used, with the reservation that although its application has been extended to mixtures of non-uniform particles, no better expression has been found for real physical systems.

FIGURE E-1. CO-ORDINATION NUMBER.

APPENDIX F

PACKING THEORY

One of the most significant complications in the development of a model that predicts reasonably well the effective thermal conductivity of heterogeneous materials is the construction of the geometry of such a model. This complication arises from the large number of parameters associated with the structural properties of packed beds, as indicated in an excellent review of the subject by Haughey and Beveridge [49].

In general, the structural properties of packed beds are characterized either by a single representative dimension, or through a distribution described by mean, variance, skewness, etc. In this study the first approach has been utilized. Moreover, the equations presented for the effective pore size and coordination number are based on random packings of equal sized spperes. This approach has been necessitated by the fact that most experimental and statistical work in the literature is referred to this type of packings. Even for this simplified case, it can be seen from Figures D-1 and E-1 that the effective pore size and coordination number suggested by various investigators differ greatly.

Most practical applications involve a particle size variation between 2 and 100 fold. The mixing of smaller particles into a bed
of larger particles produces two opposing effects. On one hand, the smaller particles tend to increase the voidage by forcing the larger particles apart thus increasing the size of voids between particles, on the other hand the smaller particles tend to decrease the voidage by filling the voids between larger particles. The characteristics of such packed beds do not depend only on the particle shape, and size ratio but also on the amount of each size fraction present. Consequently, from the same particle size distributions, packed beds haying a wide range of voidages can be obtained. As indicated in [49, 50, 51, 66] very little information exists about the characteristics of packed beds involving large particle size variations. Consequently, a great degree of ambiguity exists whether a volume mean particle size together with the associated effective pore size calculated from the expressions given in Appendix D provide a sufficiently accurate description of the packed bed. This is especially important in the case of evacuated powders, in which case both particle size and effective pore size are primary parameters in the calculation of the effective thermal conductivity. In particular, for lunar fines the particle size range is from $0.1 \mu \mathrm{~m}$ to approximately $800 \mu \mathrm{~m}$ [119], with most of the particles in the lower size range, and the porosity is assumed to be approximately 0.5 . At present, the selection of a particular mean volumetric particle size for the calculation of the effective conductivity is highly speaclative, since no experimental data exist on the local voidage variation for similar packings to compare calculated values.

Evidently, description of packed beds utilizing the local property variations provides a much better approximation to the geometry than characterization of the beds by a single representative dimension. At present, the mean and variance of local properties has been determined in the literature with a satisfactory degree of confidence only for loose packed, poured packed, and close packed random beds of equal sized spheres [5]. Utilization of these data in any future model will probably provide a further refinement to the predicted effective thermal conductivity values of heterogeneous mixtures.

APPENDIX G

FORTRAN IV COMPUTER

PROGRAMS

 IMPLICIT REAL*4(A-Z)
 INTEGER*4 I, INDEX
 CCMMCN KC, KD, L, MU, PD, SIGMA, I ,KE,Q ,CK
 DIMENSICN SUM(10), PLOT1(173), PLOT2(173), PLCT3(173), PLOT4(173),
 *Y(173), XLAB(5),YLAB(5), GLAB(5), DATLAB(5)
 DATA SUM,INDEX/10*0.0.01
 EXTERNAL F
 SUMIBI \(=0\).
 Sum28I=0.
 \(\operatorname{sum} 3 \mathrm{BI}=0\).
 SUM4BI \(=0\).
 SUMSQ1=0.
 SUMSQ2=0.
 SUMSQ3=0.
 SUMSG4 \(=0\).
 SUMKIE=0.
 SUMK 2E \(=0\).
 SUMK 3E=0.
 SUNK4E=0.
 PI=3.14159
 READ (5,5) XLAB, YLAB,GLAB, DATLAB
 5 FORMAT(20A4)
 1 WRITE(6,100)
100 FURMAT(IHI,///////////////,25X,'DATA',17X,'EFFECTIVE THERMAL CCNDU
SCTIVITY (KCAL/M-HR-K) X $100 \cdot, / /, 25 \mathrm{X},{ }^{\circ}$ CASE', 1 X .

\$" \quad, VACHCN., 11
2 READ (5,3,END=6) KC,KD,PD,EXKE,CASE,CASE1,CASF2,MV,MR
3 FCRMAT(4F1C.5,3A4,2(F5.0))
INDEX = INDEX+1
$Y($ INDEX $)=A L O G I O(E X K E / K C)$
$E=1.0-P D$
$M L=1.0-P D$
If (MV.GE. I) CALL VACUUM
SIGMA $=0.32248 * P D-0.092543 * P D * *$?
CALL QGIO(C., I.,FINTF)
$K E=1 . /$ INTF
IF (MR.GE.I) CALL RAD
$C E=K E / K C$
CXKE =EXKE/KC
DIF=(CE-CXKE)/CXKE
$K 4=K F$
PLUT4(INDEX) $=A L O G 10(K 4 / K C)$

```
C BERNSTFIN
    とP=と
    IF(PD.GE.O.5) GU TO 44
    K2=KC*(4.0*PD/(1.0+KC/KD)+KD/KC*(1.0-2.0*PD))
    GC T0 46
    44 K2=KC*(4.0*EP/(1.0+KC/KD)+(2.0*PD-1.0))
    46 CONTINUE
        PLUT2(INDEX)=ALOG1O(K2/KC)
    WUODSIDE
    RATIU=PI/6.O
    IF(EP.GE.RATIO) EP=RATIO
    A=SQRT(1.0+4.0/(PI*(KD/KC-1.0)*(6.0*LP/PI)**(2./3.)))
    IF(A.LE.1.COOO1)A=1.00001
    K3=KC/(1.0-(6.O*EP/PI)**(1.13.)*(1.O-(A-1.O/A)*ALOG((A+1.)/(A-1.))
    * !)
        K3=K3*2.0
    PLOT3(INDEX)=ALCGIO(K3/KC)
    KUSSELL
    R1=2.0/3.0
        K1=KC*(E**R1+KC/KD*(1.O-E**R1))/(E**R1-EE+KC/Kח*(1.C-E**R1+E))
    PLOT1(INDEX)=ALOG1O(K1/KC)
    WRITt(6,200)INDEX, EXKE,K1,K2,K3,K4
200 FGKMAT(/, 25X,14,4x,5(F10.5,6X))
    BKl=((KL-EXK[)/EXKE)*1CO.
    AK2=((K2-EXKE)/EXKE)*100.
    BK3=((K3-FXKE)/EXKE)*100.
    PK4=((K4-EXKE)/EXKE)*100.
    K1OFF=ABS(BK1)
    K2OFF=AES(EK2)
    K3OFF=AES(EK3)
    K4UFF=A!S(PK4)
    SUN1:SI=SUM1EI+BKI
    SUN2BI=SUN2EI+EK2
    SUN3BI=SUM3RI+GK3
    SUM4HI=SUM4PI + HK4
    SGKlGR=K1GFF**2
    SGK2ER=K2CFF%*2
    SGK3ER=K3CFF**2
    SOK4ER=K4CFF**2
    SUMSiJI=SUMSN1+SUK1LR
    SUNSN2=SUNSG2+SLKR2ER
    SUNSG3=SUMSS.3+SCKKFR
    SUMSU4=SUMSG4+5UK4ER
    SUMKIE=SUNKIE+K1OFF
    SUNK2t=SUNK2E+K2CFF
    SUNK 3E=SUNK 3E+KSUFF
    SUMK4E=SUNK4E+K4UFF
    GO TO 2
```

```
    6 BOCASE=FLOAT {INCEX)
        AVBII=SUM1BI/BOCASE
        AVBI2=SUM2BI/BOCASE
        AVBI 3=SUM3BI/BOCASE
        AVBI4=SUM4EI/BOCASE
        T1ERAV=SUMK1E/BOCASE
        T2ERAV=SUMK2E/BOCASE
        T3ERAV=SUNK3E/BOCASE
        T4ERAV=SUMK4E/BOCASE
        TlERVA=((SUMSQ1/RCCASE)-T1ERAV**2)/10000.
        12ERVA=((SUMSQ2/BOCASE)-T 2ERAV**2)/10000.
        T3ERVA=((SLNSQ3/BOCASE)-T3ERAV**2)/10000.
    T4ERVA=((SUNSQ4/80CASE)-T4ERAV**2)/10000.
    WRITE(6,573)AVBII,AVBI2,AVRI3,AVBI4,T1ERAV,T2ERAV,T3ERAV,T4ERAV,TI
    *ERVA,T2ERVA,T3ERVA,T4ERVA
573 FORMAT( 3X,8F8.2.4F12.4)
    GC IO 621
    CALL ORIGIN(2.5,3.5,1)
        CALL GRAPH(173,Y,PLOT1,3,-7,-5.,-5.,2.,0.,2.,0.,XLAH,YLAB,GLAE,
    *DATLAB)
    CALL ORIGIN(8.5,0.,1)
        CALL GRAPH(173,Y,PLOT2.3,-7,-5.,-5.,2.,0.,2.,0.,XLAB,YLAB,GLAB,
    *OATLAE)
    CALL OKIGIN(8.5.0.,1)
    CALL GRAPH(173,Y,PLOT 3, 3,-7,-5.,-5.,2.,0.,2.,0.,XLAB,YLAB,GLAB.
    * DATLAB)
    CALL ORIGIN(8.5,0.,1)
        CALL GRAPH(173,Y,PLOT4,3,-7,-5.,-5.,2.,0.,2.,0.,XLAB,YLAB,GLAE,
    *DATLAB)
    CALL ORIGIN(8.5,0.,1)
621 CONTINUE
    STUP
    END
    FUNCTION F(P)
    REAL MU,KC,KD,INTF,KE,LAMMA,KBOLTZ,K,KNUDSN,L,KK
    CONMON KC, KD, L, MU, PD, SIGMA, T ,KE,Q ,CK
    X=SIGMA*SQRT(2.0)
    FNORM=ERF((1.0-MU)/X)-ERF{(O.-MU)/X)
    \mu}2=(ERF((1.O-MU)/X)-ERF((P-MU)/X))/FNOR
    F=1.O/(KC+(KD-KC)*P2)
    RETURN
    END
```

```
    SUBROUTINL VACLUM
    REAL MU,KC,KD,INTF,KE,LAMMA,KBOLTZ,K,KNUDSN,L,K&
    CONMON KC, KD, L, NU, PD, SIGMA, T ,KE,O,CK
    READ(5,4)T,PRESS,DIAG,K,PR,L,A
4FOKMAT(7E10.0)
    KBILLTZ=2.3804E-23
    PI=3.14159
    CI=.495
    CH=PRESS*1.373224E+7
    CH=PRESS
    WRITE(G,IOC) CH,OIAS, A, PR, K, L
100 FOKNAT(6Ë11.4)
    LANMA=KUCLTL*T/(SGRT(2.)*CH*PI*LIAG**2)*1C.0)**5
    G=((2.-A)/A)*4.*C1*K/(K+1.)*LANNA/PK
    KNUOSN=LANNA/L
    PONF= L*(0.74/MU)*%2/43.
```



```
    WRITE(t,lU1) LANNA,G,KNUDSN,KC
101 FUHMAT(4EI1.4)
    RET|jR N
    LVO
```

SUBROUTINE RAD
REAL MU,KC, KD, INTF,KE, LAMMA,KBOLTZ,K,KNUDSN,L,KR COMMON KC, KD, L, MU, PD, SIGMA, T ,KE,Q ,CK $\operatorname{READ}(5,1) \mathrm{T}, \mathrm{EP}$
1 FOKMAT (2F10.5)
$E P=0.95$
SIGMAR $=5.668 t-8$
$\mathrm{D}=\mathrm{L}$
$K R=4.0 * E P * S I G M A R * D * T * 3 /(2.0-E P))$
$K E=K E+K R$
RETURN
END

```
C COMPULR PROGRAM FOR THE NODULAR MODEL
    INTEGER CASE
    KEAL KS,KG,KE,KC,KD
    DIMENSION N(NI+2,N1+2,N1+2),R(N1+2,N1+2,N1+2),T(Nl+2,N1+2,N1+2),TK
    * (6,Nl+2,Nl+2,N1+2)
    DIMENSION D(3),C(6)
    NI
    N2=N1+2
    N3=N1+1
    N4=N1-1
    I Y=3
    YFL=0.0
    ITEST=0
    1 READ(5,3,END=1000)KS,KG,P,EXKE,CASE
    3 FORMAT(4F10.5,A5)
    READ(5,159)DIAM,POISON, YOUNG,DENS,DEPTH,COEF1,COEF2
159 FORMAT(E8.3,F4.3,2E8.3,F4.3,F5.4,F4.2)
    WRITE(6,4)
    4 FORMAT(///)
        ITEST=1TEST+1
        M1=N1**3
        M2=N2**3
        M=0
        PORES=P*FLOAT(M2)
        LPORt:S = PORES
    cO 2 I=1,N2
    00 2 J=1,N2
    OD 2 K=1,N2
    N(I,J,K)=0
    2. CONTINUE
20 1 A =0
21 I A = IA +1
    IX=IY
    CALL RANDU(IX,IY,YFL)
    O(IA)=YFL*FLGAT(N2)
    IF(1A-3)21,22,22
22 cONIINUE
    11=011)
    12=0(2)
    I 3=0(3)
    I=11+1
    J=12+1
    k= 1 3+1
    LA=N(I,J,K)
    IF(LA-1)23,20,20
23 N(I,J,K)=1
    M=M+1
    IF(M-LPORES)20,24,24
```

```
    24 CONTINUE
    WRITE(6,340)M
340 FORMAT(3X,0M=0,14)
    A=0.5
    DO 5 K=2,N3
    006 I=1,N2
    DO 6 J=1,N2
    6 T(I,J,K)=A
        A=A+1.
    5 CONTINUE
        DO 38 K=2,N3
        DO 38 I =2,N3
        DO 38 J=2,N3
        IF(N(I,J,K))7,7,8
    7 B=1.
        GO TO 9
    8 B=0.
    9 IF(1-2)202,202,160
160 IF(NII-1,J,K))202,11,12
    11 C(1)=1.0
        GO TO 203
    12c(1)=0.
203 TK(1,I,J,K)={(B*KS+(1.-B)*KG)*(C(1)*KS*(1.-C(1))*KG))/(0.5*(B*KS*1
    *1.-B)*KG)+0.5*(C(1)*KS+(1.-C(1))*KG ).)
        GOTO 13
202 TK(1,I,J,K)=0.
    13 IF(I-N3)161, 204,204
161 IF(N(I+1,J,K))204,14,15
    14.[(2)=1.0
        GO TO 205
    15C(2)=0.
205 TK(2,I,J,K)=((B*KS+(1.-B)*KG)*(C(2)*KS+(1.-C(2))*KG))/(0.5*(B*KS+1
    *1.-B)*KG)+0.5*(C(2)*KS+(1.-C(2))*KG%)
        GO TO 16
204 TK(2,I,J,K)=0.
    16 IF(J-2)206,206,162
162 IF(N(I,J-1,K))206,17,18
    17C(3)=1.0
        GO TO 207
    18C(3)=0.
207TK(3,1,J,K)=((B*KS+(1.-B)*KG)*(C(3)*KS+(1.-C(3)/*KG))/(0.5*(B*KS*(
        *(.-B)*KG)+0.5*(C(3)*KS+(1.-C(3))*KG))
        GO TO 19
206 TK(3,I,J,K)=0.
    1 9 \text { IF(J-N3)163,208,208}
163 IF(N(I,J+1,K))208,30,31
    30 Ci4)=1.00
        GO T0 209
```

```
    31 C(4)=0.
    209 TK(4,[I,J,K)=((B*KS+(1.-8)*KG)*(C(4)*KS+(1.-C(4))*KG))/(0.5*(B*KS+(
        *1.-8)*KG)+0.5*(C(4)*KS+(1.-C(4))*K(G).)
        G0 TO 32
    2OB TK(4,I,J,K)=0.
    32 IF(K-2)210,210,350
    350 IF(N(I,J,K-1))210,33,34
    33C(5)=1.0
        00 10 211
    34C(5)=0.
    211 TK(5,I,J,K)=((B*KS +(1.-B)*KG)*(C(5)*KS+(1.-C(5))*KG))/(0.5*(B#KS*(
        *1.-B)*KG)+0.5*(C(5)*KS+(1.-C(5))*KG):)
        GO TO 35
    210 TK(5:I,J,K)=0.
    35 IF(K-N3)351,212,212
    351 IF(N(I,J,K+1))212,36,37
    36C(6)=1.0
        GO TO 213
    37c(6)=0.
    213 TK(6,I,J,K)=((B*KS (1.-B)*KG)*(C(6)*KS+(1.-C(6))*KG))/(0.5#(B*KS+1
        *1.-B)*KG)+0.5*(C(6)*KS+(1.-C(6))*KG).)
        G0 TO 38
212 TK(6,1,J,K)=0.
    3% CONTINUE
        PRES=OEPTH*(1.-P)*DENS
        RSP=0.93*(DIAM/2.)*(()(1.-(POISUN**2))*PRES)/(YOUNG*((1.-P)**2)))*
        **0.33331
            HR=COEF1*OIAM
            KG=RSP/((0.5+((HR*COEF2)/(3.14*RSP)))*DIAM)
            CONTR=KC*KS
185 IF(ITEST-1)186,186,187
186 CONTAC = 45.*(22.47-(39.39*P))
        g0 ro lol
187 IF(ITEST-3)188,188,189
188 こONTAC=100.*(22.47-(39.39*P))
    GU TO 1.1
189 IF(ITEST-6)190,190,191
190 CCNTAC=110.*(22.47-(39.39*P))
191 SONTIVUE
        IF(CONTAC)15B,157,157
LS& CONTAC=U.
157 CONIIAUE
    LCONT=CONTAC
    WRITE(G,325)LCONT,CINTR
325 FORMAT(3X,'LCONT=',I4.' CONTR=',E10.5)
    NUM=0
    VTLST=0
302 1A=0
```

```
    NTEST=NTEST+1
300 IA =I A +1
    IX=IY
    CALL RANDU(IX,IY,YFL)
    D(IA)=YFL*FLOAT(NI)
    IF(1A-3)300,301,301
301 CONTINUE
    I1=D(1)
    12=0(2)
    I 3 =0(3)
    I=I l +2
    J=12+2
    K=13+2
    IF(N(I,J,K))302,303,302
303 IF(N(I-1,J,K))304,305,304
305 IF(TK(1,I,J,K)-CONTR)306,304,306
306 IF(I-2)330,330,70
330 TK(1,I,J,K)=CONTR
    GO TO 71
    70 TK(2,I-1,J,K)=CONTR
    TK(1,I,J,K)=CONTR
    71 NUM=NUM+1
304 IF(N(I+1,J,K))307,309,307
309 IF(TK(2,I,J,K)-CONTR)331,307,331
331 IF(I-N3)72,308,308
308 TK(2,I,J,K)=CONTR
    GO TO 73
    72 TK(1,I+1,J,K)=CONTR
    TK(2,I,J,K)=CONTR
    73 NUM=NUM+1
307 IF(N(I,J-1,K)) 310,311,310
311 IF(TK(3,I,J,K)-CONTR)332,310.332
332 IF(J-2)80,80,74
    80 TK(3,I,J,K)=CONTR
    GO TO 75
    74 TK(4,I,J-1,K)=CONTR
    TK(3,I,J,K)=CONTR
    75 NUM=NUM+1
310 IF(N(I,J+1,K)I313,314,313
314 IF(TK{4,I,J,K)-CONTR)315,313,315
315 IF(J-N3)76,81,81
    81 TK(4,I,J,K)=CONTK
    GO TO 77
    76 TK(3,I,J+1,K)=CONTR
        TK(4,I,J,K)=CONTR
    77 NUM=NUMM+1
313 [F(N(I,J,K-1))316,318,316
318 IF(TK(5,I,J,K)-CONTR)319,316,319
```

```
319 IF(K-2)82,82,83
    82 TK(5,I,J,K)=CONTR
        G0 10 84
    83 TK(5,I,J,K)=CONTR
        TK(6,I,J,K-l)=CONTR
    8 4 ~ N U M = N U M + 1
316 [F(N(I,J,K+1))321,322,321
322 IF(TK(G,I,J,K)-CONTR)86,321,86
    86 IF(K-N3)323,87,87
    87 TK(6,I,J,K)=CONTK
    GO TO 85
323 TK(6,1,J,K)=CONTR
    TK(5,I,J,K+1)=CONTR
    85 NUM=NUM+1
        IF(NTEST-150001321,321,100
321 IF(NUM-LCONT)302,324,324
324 CONT INUE
    OO &8 J=2,N3
    D0 88 K=2,N3
    lk(1,2,J,k)=0.
    TK(2,N3,J,K)=0.
    8% CONTINUE
    DO 89 I=2,N3
    D0 89 K=2,N3
    TK(3,I,2,K)=0.
    TK(4,I,N3,K)=0.
    89 CONTINUE
    DO 90 I=2,N3
    100 90 J=2,N3
    TK(5,I,J,2)=0.
    TK(G,T,J,N3)=0.
    go CONIINUE
    WRITF(6,500)NUM
500 f0RMAT(3x,0'NUM=0,14)
502 WRITE(6,501)NTEST
501 FOKMAT(3X, 'NTEST=',I5)
    Ll=0.
101 L1=LI+1
    SR=0.
    (10) 10 K=3,N1
    D0 10 I=2,N3
    00 10 J=2,N3
    R(I,J,K)=TK(I,I,J,K)*(T(I-I,J,K)-T(I,J,K)I+TK(2,I,J,K)*(T(I+I,J,K)
    *-T(I,J,K))+TK(3,I,J,K)*(T(I,J-1,K)-T(I,J,K))+TK(4,I,J,K)*(T(I,J+1,
    *K)-T(I,J,K) +TK(5,I,J,K)*(TII,J,K-1)-T(I,J,K))+TK(6,I,J,K)*(T{I,J,
    *K+1)-T(I,J,K))
    STK=0.
    DO 40 L=1.6
```

```
    TTK=TK(L,I,J,K)
    STK=STK+TTK
    40 CONTINUE
    T(I,J,K)=T(I,J,K)+1.2*(R(I,J,K)/STK).
    SR=SR+ABS(R(I,J,K)/STK)
    10 CONTINUE
    WRITE(6,103)SR
103 FURMAT(3X,'SR=1,E10.4)
    IF(LI-50)150,150,100
150 1F(SR-5.)102,102,101
102 CONTINUE
    WRITE(6,104)LI
104 FORMAT(3X,'Ll=',14)
    AVHEAT=0.
    DO 44 K=2,N1
    THEAT=0.
    DO 45 I=2,N3
    DO 45 J=2,N3
    51 HEAT=(TK(6,I,J,K))*(T(I,J,K+I)-T(I,J,K))
    THEAT = THEAT + HEAT
    45 CONTINUE
    WRITE(6,52)K,THEAT
    52 FORMAT(3X,'K=',I2,' THEAT=',E10.4)
        AVHEAT = AVHEAT +THEAT
    44 CONTINUE
    KE=A VHEAT/900.
    RATIO=KS/KG
    DFF=((KE-EXKE)/EXKE)*100.
    WRITE(6,105)CASE,KS,KG,P,RATIO,KE,EXKE,OFF
    105 FORMAT( 3X, 'CASE=',A5,' KS=',F10.5,' KG=0,F10.5,' P=0.F5.3,' RA
    *IIO=',FB.2.' KE=',F10.5,' EXKE=',F10.5,' OFF=*,F7.21
100 CONTINUE
    GO TO L
1000 STOP
    END
```

```
    calculation of effective thermal cendlctivity of granular mater-
    IALS AT ATMCSPHERIC PRESSURES EXK=EXPERINENTAL COND., KC=COND. CF
    CCNIINUGUS(gAS DR LIGUID) Phase, KDFCCND. OF DISCCNTINLOLS (SCLIC)
    PHASf: P=PCROSITY, F=VOLUME FRACTION GF SOLID PHASE, Kl=EFF. CGIVE.
    BY M(H)EL, K2=BY KRUPICZKA, K3=8Y KUSSELL, K4=RY LICHTENECKEK A":O
    SO:% FREY, K5=BY JEFFFRSGN, KG=BY MAXWELL, K7=BY KAYLIEIGH, KR= !!Y
    WCUDSIUE ANC MESSMER, KY=BY MEREDITH AND TOBIAS.
    INItGER CASE
    KFAL KI,K2,K3,K4,K5,KG,K7,KS,K9,KC,KD,KS,KG,K1P,K1BIAS,K2HIASS,K3EI
    *AS,K4BIAS,K5BIAS,K6BIAS,K7BIAS,KBHIAS,K9BIAS
    UINTNSIUN BKI(100), BK2(100), BK3(102),BK4(100), BKS(1C0),GFG(10C),DK
    *7(1J0), BK8(100), DK9(100),VOLF(100),KC(100),KD(100),EXK(100),:<K(100
    *),RK1(100),RK2(100),RK3(100),RK4(100),RK5(100),RKG(100),RK7(100),*
    *K8(ICO),RKG(100), POR(1CO),KIEIAS(100),K2BIAS(ICO),K3EIAS(1CO),K4HI
    *AS(100),K5EIAS(100),K6BIAS(100),K73IAS(100),kgBIAS(100),kgHIAS(100
    *),k1(100),k2(100),k3(1C0),K4(1C0),k5(1C0),k6(1CD),K7(100),k8(1:C),
    *K9(100)
    ivecasem= S2
    St:14I=0.
    SuM2EI=0.
    Sin 3BI=0.
    3:044HI=C.
    SUF5yI=0.
    suntci=0.
    StM7EI=0.
    SUMB3I=0.
    S!n-mi=0.
    SuM゙ら\1=J.
    SumMj2=0.
    Sums:3 3=0.
    suitsix4=0.
    sums-5 =0.
    SumSN6=0.
    sumsor=0.
    SLNSinH=0.
    sumscoz=0.
    SUMK1r=0.
    Sunk2t=0.
    SuNk3r=0.
    SUNK&t=U.
    SuNK5e=0.
    SLNKGE=O.
    SLNK7E=0.
    SUMkre=0.
    Sumkje=0.
    UC 35 1=1,NCCASE
    REAO(5,4)KS,KG,P,EXKE,CASE,K1P
4 FCRNAT(4F1C.5,AJ,F10.5)
```

READ (5, 159)LIAM, POISON, YOUNG, DENS, DEPTH, CCEF1, CUEF2
159 FORMAT(E8.3,F4.3,2t8.3,F4.3,F5.4,F4.2)
KI(I) =K1P/ICO.
EXK(I)=EXKE
$\operatorname{VOLF}(I)=1 .-p$
POR(I) $=P$
$F=1 .-P$
$C=K G$
$D=K S$
$K C(I)=K G$
$K D(I)=K S$
K2(I)=KG*((KS/KG)**(.280~1.757*ALQG10(P))-1.057*ALOG10(KS/KG))!)
$F P=(1 .-P) \neq * .6667$
$F G=(1 .-P) * * .33333$
$R=K G / K S$
$K 3(I)=K G *(F P+R *(1 .-F P)) /(F P-1 .+P+R *(2 .-P-F P))$
$K 4(I)=K G *(1 .-F Q+F P+R *(1,-F Q)) /(1,-F Q+R)$
$W=2 . * K G+K S-2 . *(1 .-P) *(K G-K S)$
$Z=2 . * K G+K S+F *(K G-K S)$
$K 6(1)=C * W / 2$
8=F**3.3333*1.569*(C-D)/(4.*C+3.*D)
$K 7(I)=C *(W-B) /(z-B)$
$K 8(I)=C *(((F+0.03) * * 2 * 0) /(0.03 * D+F * C))+0.97-F)$
$6 \quad x=(D / C-1) /.(C / C+2$.
$K 9(1)=(2 .+2 . * F * x) *(2 .+F *(2 . * x-1)) /.((2 .-x * f) *(2 .-F *(x+1.1)) * C$
$X N=.403 / F Q-.5$
$X K=C * D *(2 . * C /(D-C) * * 2 * A L O G(D / C)-2 . /(D-C))$
$X P=.7854 /(1 .+2 . * X N) * * 2$
$K 5(I)=C *(1 .-X P)+X P *(.5+X N) * X K * C /(.5 * C+X N * X K)$
KLBIAS(I) $=(()$ KI(I)-EXKE)/EXKE)*100.)
K2BIAS(I) $=((($ K2 $(I)-E X K E) / E X K E) * 100$.
K3BIAS(I)=(($K 3(I)$-EXKE)/EXKE)*100.)
K4BIAS(I)=((K4(I)-EXKE)/EXKE)*100.)
K58IAS(I) $=(($ (K5 (I)-EXKE)/EXKE)*100.)
K6BIAS(I)=(()K6(I)-EXKE)/EXKE)*100.)
K7BIAS(I) $=(($ (K7(I)-EXKE)/EXKE)*100.)
K8BIAS(I) $=(($ (K8 (I)-EXKE)/EXKE) $* 100)$.
KgBIAS(I) $=(()(K 9(I)$-EXKE $) / E X K E) * 100$.
BKIII) $=A B S(K 1 B I A S(I))$
BK2(I)=ABS(K2BIAS(I))
BK3(I) $=A B S(K 3 B I A S(I))$
BK4(I) $=A B S(K 4 B I A S(I))$
BK5(I)=ABS(K5BIAS(I))
BKG(I)=ABS(KGBIAS(I))
BK7(I)=ABS(K7BIAS(I))
HK8(I)=ABS(K8BIAS(I))
BK9(I)=ABS(K9BIAS(I))
RK1(I)=Kl(I)/C

```
    KK2(I)=K2(I)/C
    KK3(I)=K3(I)/C
    KK4(I)=K4(I)/C
    KKう(I)=K5(I)/C
    RK6(I)=K6(I)/C
    RK7(I)=K7(I)/C
    RK&(I)=K8(I)/C
    RKG(I)=K9(I)/C
    RK(I)=0/C
    SUMI[SI=SUMIEI+K1BIAS(I)
    SUM2BI=SUM2BI+K2BIAS(I)
    SUM3FSI=SUM3BI+K3BIAS(I)
    SUM4RI = SUM4BI +K4HIAS(I)
    SUMSBI=SUM5EI+K5BIASII)
    SUMGBI = SUMGEI+KGHIAS(I)
    SUM7BI = SUN7BI +K7BIAS(I)
    SUM&HI=SUN&BI+K&PIAS(I)
    SUN'EI = SUMgeI +KgBIAS(I)
    SOK1ER=BK1(I)**2
    SQK2FR=BKC(I)**2
    SGK3FR=BK3(I)**2
    SWK4FR=6K4(I)**2
    SOK5tR=BK5(1)**2
    SOKGER=6KG(I)**2
    SOK7FR=BK7(I)**2
    S@K8FR= BK8(I)##2
    SQK9ER=BK9(I)##2
    SUMSQ1=SUMSQ1+SQK1LR
    SUNSO2=SUNSG2+SEK2LR
    SUMSO }5=\mathrm{ SUMSG3+SUK 3ER
    SUMSQ4 = SUMSO4+SOK4ER
    SUMSO5 = SUN:SG5+SOKKLRK
    SUNSGG=SUMSGG+SGKGER
    SUMSLT SUNSG7+SCKKER
    SUMSQK=SUNSGB+SEKKER
    SUNSOO =SUMSG9+SGKGER
    SUNK1F=SUNKIE+BK1(1)
    SUNK2F=SUNK2F+BK2(I)
    SUMK 3E=SUNK3E+BK3(I)
    SUNK4r=SUNK4t+BK4(I)
    SUNKK5r=SUNK5t+UKS(I)
    SUMK大E=SUMKGE+BKG(I)
    SUNKK7F=SUNK7L+BK7(I)
    SUMK8E=SUPK8I:+OKB(I)
    SUNKHL=SUNKgE+HKO(I)
35 CONIINUE
    WRITE(0,1)
I FORMAT('I',/////LSX,'TARLE II. EXPERIMENIAL AND PRECICTHC TH:RNAL
```

```
    *CONDUCTIVITIES')
        WRITE(O.60)
60 FORMAT (35X, 'FOR VARIJJUS MODELS*)
    WRITE(6,3)
    3 FORMAT(//15X,'CASE',4X,'EXKE',4X, 'MODEL', 3X, 'KRUPIC.', 2X, "RUSSELL'
    *, 3X,'LICHT.',1X,'JEFFERSON')
        DO 36 I=1.48
        WRITE(6,7)I,EXK(I),K1(I),K2(1),K3(I),K4(I),K5(1)
    7 FGRMAT(16X,I2,1X,6F9.4)
36 CONT INUE
    WRITE(6,1)
    WRITE(6,60)
    WRITE (6,3)
    DO 37 I=49,92
    WRITE(6,2)I,EXK(I),KI(I),K2(I),K3(I),K4(I),K5(I)
    2 FOKMAT(16X,I2,1X,6F9.4)
37 CONTINUE
    WRITE(0,61)
61 FORMAT('I',/////14x,"TABLE III. EXPERIMENTAL ANO PREDICTED THEKNAL
    * CONDUCTIVITIES'I
        WRITE(6.60)
        WRITE(6,33)
33 FORMATI//L5X,'CASE', 5X,'EXKE', 4X,'MAXWELL', 2X,'RAYLEIGH', 3X,'W AND
    * M', 3X,*M AND T')
        DD 38 l=1,48
        WRITE(E,30)I,EXK(I),K6(I),K7(I),K8(I), K9(I)
30 FORMAT(16X,I2,1X,5F10.4)
38 CONTINUE
    WRITE(6,61)
    WRITE(6,60)
    WRITE(6,33)
    DO 39 I=49.92
    WRITE(6,31)I,EXK(I),K6(I),K7(I),K8\I),KG(I)
31 FORMAT(16X,I2,1X,5F10.4)
39 CONTINUE
    WRITE(6,40)
40 FORMAT(*I',/////15x."TABLE IV. PERCENTAGE FRROR GETWEEN PREDICTEO
    #AND EXPERIMENTAL*)
        WRITE{6,41)
41 FORMAT(31X,'THERMAL CONDUCTIVITIES')
    WRITE(6,42)
42 FORMAT(//LI5X,'CASE',5X,'MODEL',5X,'KRUPIC.'.4X,'RUSSELL',4X,*LICHI
    *.'. 3X,'JEFFERSON')
    DO 43 I = 1.48
        WRITE(O,44)I,KIBIAS(I),K2BIAS(I),K3BIAS(I),K4BIAS(IJ,K5BIASII)
44 FOKMAT(16X,I 2,1X,5F11.3)
4 CONTINUE
    WRITE(6,40)
```

```
    WiरITE(0,41)
    WरITr(0,42)
    OO45 1=49.92
    WRITE(O,4G)I,KIBIAS(I),K2\sigmaIAS(I),K3BIAS(I),K4BIAS(I),K5BIAS(I)
4E FGRMAAT(16X,12,1X,5F11.3)
45 CGNIINUL
    WRIT!(6,62)
62 FCKNATI'1',/////15X,'TABLE V. PFRCFNTAGE ERROR BETWEEN PREUICILC A
    * *D ExPEKIMENTAL'I
        WKITL(6,41)
        んkIT:(6,41)
47 FGKMAT(//19X,'CASE',5X,'MAXWELL',4X,'RAYLEIGH',5X,'W AND M','5X,'N
    *AND T'1
        (凉 4 & 1=1,4日
        Wi\ITt(0,4%)I,KGUIAS(I),K7BIAS(I),KBEIAS(I),KQRIAS(I)
4. F GRMAT(2.)X,I2,1X,4+12.3)
4% CONTINUE
    WRITr(6,02)
    wRITt.(t,41)
    WKITF(0,47)
    TU 50 1=49,92
    WKITE(6,51)I,KGBIASII),K7BIAS(I),K8EIAS(I),KGBIAS(I)
51 FUKMAT(20X,12,1x,4+12.3)
50 CCNIINUE
    WRITE(t,gl2)
12 HGKMATI'l',2X,115t, MEAN AND VARIANEE CF PERCENTAGE
    #tKKUR BETGEEN MLDEL PREDICTEO AND FXPERIMLNTAL THERNAL CCNOUCTIVIT
    *Y)
        WKITE(0,13)
```



```
    *rKSUN,GX,7HNAXWELL, 4X, BHRAYLFIGH, 3X,GHWO AND MS, DX,7HN AN') I)
        BCCASE=NOCASL
        AVaIl=\zetaLMIEI/BLCASE
        AVBI2=SUM20I/BCCASE
        AVBI 3=SLM3EI/BCCASE
        AVOI4=SUM4EI/BCCASE
        AVHI5=SUMつEI/RCCASE
        AVOIG=SUMGBI/BOC.ASt
        AVHI7=SUM7EI/BOCASE
        AVBI }=SUM8&I/BCCASE
        AVHIG=SUMGEI/BCCASt
        T1LRAV=SUMK1E/EOCASE
        T2EKAV=SUNK2E/BCCASE
        T\zetaLKAV= JUNK3E/HCCASE
        T4ERAV=SUNK4E/BCCASE
        T5tRAV=SUNK5E/JCCASE
        ThERAV=SUNKGE/BOCASE
        T7ERAV=SUMK7E/UCCASE
```

T8ERAV=SUMK8E/BOCASE
T9ERAV=SUNKGE/BOCASE
T1ERVA $=(($ SUMSQ1/ACCASE)-T1ERAV**2)/10000.
T2ERVA $=1($ SUMSQ2/BCCASE $)-$ T2ERAV**2)/10000.
T3ERVA $=(($ SUMSQ3/BOCASE)-T3ERAV**2)/10000.
T4ERVA $=(($ SUNSO4/BGCASE)-T4ERAV**2)/10CGC. TSERVA $=(($ SLUNSQ5/BCCASE)-TSERAV**2)/10000. TGERVA $=(($ SUMSQ6/BOCASE)-TGEKAV $* * 2) / 10000$. TTERVA $=(($ SUMSQ7/BCCASE)-T7ERAV $\# * 2) / 1 C C O C$. TRERVA $=(($ SLMSQ8/BCCASE) - T8ERAV $* * 2) / 10000$. T9ERVA $=((\operatorname{SLNSQ9/BCCASE)}-$ T9ERAV**2)/1COCO. WRITE $(6,16)$ AVBII, AVBI2, AVBI 3, AVBI 4 , AVBI5, AVBIG, AVBIT, AVBI8, AVBIG
16 FORMAT(6 X, , 6 HAVGERR, 6 X , 9F 12.5)
WRITE $(6,14)$ TIERAV, T2ERAV, T3ERAV, T4ERAV, TSERAV, TGERAV, T7ERAV, I8ERAV
*, TGERAV
14 FORMAT 16 X, GHAVBIAS, $6 \mathrm{X}, 9 \mathrm{~F} 12.51$
WRITE(O,15)TIERVA,T2ERVA,T3ERVA,T4ERVA,TSERVA,TGERVA,T7ERVA, T8ERVA *, T9ERVA
15 fORMAT ($6 X, 6$ HVARERR, $7 \mathrm{X}, 9 \mathrm{~F} 12.5$)
WRITE(6,17)
17 FORMATI///45X,34H DIMENSIONLESS CONDUCIIVITY RATIOS)
WRITE(6,18)
 DO $20 \quad 1=1$. ACCASE
19 FORMAT(13F10.4)
20 WRITE(6,19)KC(I), KD(I), POR(I),RK(I),RKI(I),RK2(I),RK3(I), RK4(I), RK *5(I), RK6(I), RK7(I),RK8(I),RK9(I) STOP
END

```
C THERMAL CUNDUCTIVITIES PREDICTED BY FOLLOWING
C MODELSO 1. SON FREY 2. WOODSIDE AND MESSMER
C 3. HENGST 4. GORRING ANO CHURCHILL
        IMPLICIT REAL*4(A-L)
        INTEGER*4 I, INDEX, IERO, IERRI,IER
        O(MENSION SUM(10), PLOT1(173), PLOT2(173), PLOT3(173), PLOT4(173),
        *Y(173), XLAB(5), YLAB(5),GLAB(5), OATLAB(5)
            DATA SUM, INDEX/10*0.0.0/
        SUM1 \(\mathrm{BI}=0\).
        SumzBI=0.
        SUM3BI \(=0\).
        SUM4 EI \(=0\).
        SUMSOL=0.
        SUMSS:2=0.
        SUMS:3 \(3=0\).
        SUMSO \({ }^{2}=0\).
        SUMK 1E=0.
        Sumk 2E =0.
        SUMK \(3 F=0\).
        SUMK \(4 i=0\).
            PI \(=3.14154\)
        REAO(b, 力)XLAB,YLAB,GLAB,DATLAB
        5 FORMAT(20A4)
    1 WRITE(6.100)
    loJ formatilhl.///////////////,2bX, DATA',17X,'EFFECTIVE THEKMAL CONDU
    BETIVITY (KCAL/M-HK-K) x 100 , ,//,2bX, CASE•, IX.
    \&' EXPERIMENTAL •, SON FRFY •, WOODSIDE \(\quad\).
```



```
    \$' \(\cdot\).' \(\cdot\).' \& MESSMER •,
    \&' \(\cdot\), CHURCHILL •, 11
    2 KEAO(b, 3, KND=6) KC,KD,PD,EXKE,CASE,CASE1,CASE2
    3 FURMAT(4F10.5.3A4)
        INVEX = 1 NDEX +1
        Y(INDFX) \(=A L U G 10(E X K F / K C)\)
        \(F=1.0-\mu 0\)
C SUNFREA LG
    R \(7=1.0 / 3.0\)
        \(R 8=K C / K D\)
```



```
    PLuTl(INEX) =ALOGlO(KI/KC)
    w OGOSICE E MESSMLR EQ
    \(K 2=K C *((E+J .03) * * 2 * K C /(0.03 * K D+E * K C)+0.97-E)\)
    PLO(Z(INDEX)=ALOGIO(K2/KC)
    HENGST
    \(\mathrm{N}=11.6 \div \mathrm{F}\)
    \(K 3=K C *(N * E * K) /(2.0 *(K D-K C)) *(K C /(K \cap-K C) * A L O G(K D / K C)-1.0))\)
```



```
    GORKING \& CHURCHILL
```

```
    x=1.0
    C=10.*PD/PI
    IFIPD.LE.0.314159) GO TO 4
    C=(3.0*PI / (5.0*PI-20.0*PD))** 1.5
    x=1.0/C**(1.0/3.0)
4
    B=(KC/(C*(KD-KC)))**(1.0/3.0)
        K4=KC*(PI/(6.0*(1.0-KC/KD)*C*B)*(ALOG(SQRT(B**2-B*X*X**2)/(B+X))
    * +SQRT(3.0)*ATAN((2.0*X-B)/(SQRT(3.0)*B))-SQRT(3.)*ATAN
    *{-1.0/SQRT(3.0)) 1+1.0-PI*X**2/4.1
    KH=EXKE
    IF(K4.OT.EXKE) KH=K4
    SUM(4)=SUM(4) + ((K4-EXKE)/KH)*# 2
    PLOT4(INDEX)=ALOG10(K4/KC)
    WRITE(G,200)INDEX,EXKE,K1,K2,K3,K4
200 FOKMAT(/,25X,[4,4X,5(F10.5,6X))
    BK1=((K1-EXKE)/EXKE)*100.
    BK2=((K2-EXKE)/EXKE)*100.
    BK3=((K3-EXKE)/EXKE)*100.
    BK4=((K4-EXKE)/EXKE)*100.
    K10FF=ABS(BK1)
    K20FF=ABS(BK2)
    K30FF=ABS(BK3)
    K4OFF=ABS(BK4)
    SUM1BI=SUM1BI+BKI
    SUM2BI =SUM2BI+BK2
    SUM3BI=SUM3BI+BK3
    SUM4BI=SUM4BI+BK4
    SQK1ER=K1OFF**2
    SQK2FR=K2OFF***2
    SOK3ER=K30FF***2
    SQK4ER=K4OFF**2
    SUMSQL = SUMSQ1+SOK1ER
    SUMSO2=SUMSO2+SQK2FR
    SUMS03=SUMSO3+SQK3ER
    SUMSO4=SUMSQ4+SQK4ER
    SUMK 1E=SUMK1E+K1OFF
    SUMK 2F=SUMK2E+K2OFF
    SUMK 3E=SUMK 3t+K30FF
    SUMK4E=SUMK4L+K4OFF
    If(INDEX.EQ.14) GO TO I
    IF(INDEX.EO.28) GO TO I
    IF(INDEX.EQ.42) GO TO I
    IF{INDEX.EQ.56) GO TO I
    IF(INDEX.EQ.7O) GO TO I
    IF(INDEX.FQ.84) ('0 TO l
    If!INDEX.EQ.Og) GO TO I
    IF(INDEX.EQ.112) GU TO I
    IF(INDEX.EQ.126) GO TO I
```

```
    IF(INDEX.EQ.140) GO TO I
    IF(INDEX.EQ.154) GO TO I
    GO TO 2
    6 BOCASE=FLOAT(INOEX)
    AVBII=SUMIBI/RUCASE
    AVBI 2=SUM2BI/BOCASE
    AVBI 3=SUM3EI/BOCASE
    AVGI4=SUM4BI/BDCASE
    T1ERAV = SUMK1E/BOCASE
    T2tRAV=SUMK2E/BOCASE
    T 3ERAV = SUMK 3E/BUICASE
    T4FRAV=SUMK4E/BUCASE
    TltrVA=((SUMSQ1/BOCASE)-TILRAV**2)/10000.
    T2FRVA=((SUMSU2/BIICASE)-I2FHAV**2)/10000.
    F3ERVA=((SUMSU3/OOCASE)- अ3ERAV**2)/10000.
    T4ERVA=((SUMSU4/EOCASE)- T4ERAV**2)/10000.
    WRITE(6,573)AVBII, AVBI2,AVBI3,AVBI4,TIERAV,T2ERAV,T3ERAV,T4ERAV,TI
    *ERVA,TZERVA,I3ERVA,T4ERVA
573 FJRMAT(3X,8F8.2,4F12.4)
    GO T0 62L
    CALL (OKIGIN(2.5,3.5,1)
        CALL GRAPHI173,Y,PLOT1,3,-7,-5.0-5.,2.00.,2.,0.,XLAB,YLAB,GLAB,
    *!ATLAB)
    CALL UKIGIN(8.5.0..1)
        CALL GRAPH(173,Y,PLGT2.3,-7.-5.0-5.,2.0.0.,2.,0.,XLAB,YLAB,GLAB,
    * JA (LAB)
    CALL OKIGIN(R,5p,1,1)
        CALL GRAPH(173,Y,PLGY 3,3,-7,-5..-5..2.0.0.,2..0.,XLAB,YLAB,GLAB,
    *)ATLABI
    CALL ORIGIN(9.5..1.1)
        CALL GRAPHIL73,Y,PLOT4,3,-7,-5.,-5.,2.,0.,2.,0.,XLAB,YLAB,GLAB,
    *DATLAB)
    SALL ORIGIN(8.5..1,1)
621 CONTI!NUE
    STUP
    ENO
```

```
C THERMAL CONDUCTIVITY PREDICTED BY FOLLOWING
C MODELSO 1.WILLHITE, KUNII AND SMITH 2. SCHUMANN
C AND VOSS 3. PRESTON 4 KRUPICZKA
    IMPLICIT REAL*4(A-Z)
        INTEGER*4 I,INDEX
        DIMENSION SUM(10), PLOT1(173),PLOT2(173), PLOT3(173),PLOT4(173),
        *Y(173),XLAB(5),YLAB(5),GLAB(5),DATLAB(5)
            DATA SUM,INDEX/10*0.0.0/
        SUM1BI=0.
        SUM28I=0.
        SUM3BI=0.
        SUM4BI =0.
        SUMSQ1=0.
        SUMSQ2=0.
        SUMSQ3=0.
        SUMSQ4=0.
        SUMK 1E=0.
        SUMK 2E =0.
        SUMK 3E =0.
        SUMK4E=0.
            PI=3.14159
        READ(5,5)XLAB,YLAB,GLAB,DATLAB
        5 FORMAT(20A4)
    1 WRITE(6,100)
    100 FORMAT(IHI,//////////////////,25X, OATA', 17X, EFFECTIVE THERMAL CONDU
    $CTIVITY (KCAL/M-HR-K) X 100 ',//.25X, 'CASE',1X .
    $* EXPERIMENTAL **'WILLHITE. ** SCHUMANN * ,
    $* PRESTON '." KRUPICZKA *,/.30X,
    $: "," KUNII & SMITH "," & VOSS . ",
    $. ', % |,/%
    2 READ(5,3,END=6) KC,KD,PD,EXKE,CASE,CASE1,CASE2
    3 FORMAT (4F10.5,3A4)
        INDEX=INDEX+1
        Y(INDEX)=ALOGIO(EXKE/KC)
        E=1.0-PD
C WILLHITE, KUNII,& SMITH
        N=3.0*(5.01-8.42*PD)/(1.91-1.91*PO)
        IF(N.LE.1.0) N=1.0
        THETA=ARSIN(SQRT(1.O/N))
        GAMMA =0.5
        ALPHA=1.0/(2.0*N)*(1.0-KC/KD)**2/(ALOG(KD/KC-
        * (KD/KC-1.0)*COS(THETA))-(1.0-KC/KD)*(1.0-COS(THETA)))
        Kl=KC*(1.0+E*(1.O-KC/KD)+GAMMA/ALPHA*(1.0-KC/KD)**2*E)
        KH=EXKE
        IF(KI.GT.EXKE) KH=KI
        SUM(1)=SUM{1) + ({KI-FXKE!/KH!**?
        PLOT I(INDEX)=ALGG10(K1/KC)
    SHUMANN
```

```
        IF(PD.GE.0.5) GO TO 31
        KE=KEXP
        M=.2
    30 Y 1=M*(M+1.)*ALOG(11.*M)/M)-M-DD
        IF(ABS(YL).LT..0005)GO ro 40
        YP={2.0*M+1.0)*ALOG((1.0+M)/M)-2.0
        M=M-Y1/YP
        GO TO 30
        31 M=10000.
    40 K2=KC*PD** 3+KC*(1.-PD**3) कKD/(KC*M*(KC->RD)|*(1.0*M*(1.0*M)*(KC-KD)
        */(KC+M*(KC-KD))*ALUG(KC*{1.O*M)/(M*KO))}
        PLOT2({NDEX)=ALOG1O(K2/KC)
C PRESTON
    K3=1.88574*K2**0.959
    PLOT3(INDEX)=ALOG1O{K3/KC)
C KRUPICLKA
    K4=KC*(KD/KC)**(0.280-0.757*ALOG10(PD)-0.057*ALOGlO(KD/KC))
    PLOT4(INDEX)=ALOG1O(K4/KC)
    WRITE(6,200)INDEX,EXKE,KI,K2,K3,K4
200 FURMAT(/, 25X,I4,4X,5(F10.5.6X))
    BK1=((K1-EXKE)/EXKE)*100.
    BK2=((K2-EXKE)/EXKE)*100.
    BK3=((K3-EXKE)/EXKE)*100.
    BK4=((K4-EXKE)/EXKE)*100.
    K1OFF=ABS(BK1)
    K2OFF=ABS(BK2)
    K3OFF=A8S(8K3)
    K4OFF=ABS(BK4)
    SUMIBI=SUMIBI +BKI
    SUM2BI=SUM2BI+BK2
    SUM3BI=SUM3BI + BK 3
    SUM4BI=SUM4BI + BK4
    SGK1ER=K1OFF**2
    SOKLER=K2OFF**2
    SOK3ER=K3UFF%%2
    SQK4ER=K4OFF**2
    SUMSQL = SUMSQL + SOK1ER
    SUMSQ2=SUMSQL+SQK2ER
    SUMSQ3 = SUMSQ3+SUK 3ER
    SUMSQ4 = SUMSQ4+SQK4ER
    SUMKLE=SUMKLE+K1OFF
    SUMK2E=SUMK2E+K2UFF
    SUMK 3E=SUMK 3E+K 3UFF
    SUMK4E=SUMK4t+K4UFF
    IF(INDEX.EQ.14) GO TO l
    IF(INDEX.EG.28) GO TO I
    IF(INDEX.tQ.42) GO TO 1
    IF(INOEX.EQ.56) GO TO I
```

```
    IF(INDEX.EQ.70) GO TO I
    IF(INDEX.EQ.84) GO TO 1
    IF(INDEX.EG.98) GO TO I
    IF(INDEX.EG.112) GO TO I
    IF(INDEX.EQ.126) GO TO 1
    IF(INDEX.EQ.140) GO TO I
    IF(INDEX.EQ.154) GO TO I
    IF(INDEX.EQ.168) GO TO I
    GO TO 2
    6 \text { BOCASE=FLOAT(INDEX)}
    AVBII=SUM1BI/BUCASE
    AVBI2=SUM2BI/BOCASE
    AVBI 3=SUM3BI/BOCASE
    AVBI4=SUM4BI/BOCASE
    TIERAV=SUMKIE/BOCASE
    T2ERAV=SUMK2E/BOCASE
    T3ERAV=SUMK3E/BOCASE
    T4ERAV=SUMK4E/BOCASE
    T1ERVA=((SUMSQ1/BOCASE)-T 1ERAV**2)/10000.
    T2ERVA=((SUMSO2/BOCASE)-T2ERAV**2)/10000.
    T3ERVA=((SUMSQ 3/BOCASE)-T 3ERAV**2)/10000.
    T4ERVA=((SUMSQ4/80CASE)-T4ERAV**2)/10000.
    WRITE(6,573)AVBI1,AVBI2,AVBI3,AVBI4,T1ERAV,T2ERAV,T3ERAV,T4ERAV,TI
    #ERVA,T2ERVA,T3ERVA,T4ERVA
573 FORMAT(3X,8F8.2,4F12.4)
    GO TO 621
    CALL ORIGIN(2.5,3.5,1)
        CALL GRAPHI173,Y,PLOT1,3,-7,-5.,-5.,2.,0.,2.,O.,XLAB,YLAB,GLAB.
    *DATLAB)
    CALL ORIGIN(8.5,0.,1)
    CALL GRAPH(173,Y,PLOT 2,3,-7,-5.,-5.,2.,0.,2.,O.,XLAB,YLAB,GLAU,
    *DATLAB)
    CALL ORIGIN(8.5,0.,1)
        CALL GRAPHI173,Y,PLOT 3,3,-7,-5.,-5.,2.,0.,2.,0.,XLAB,YLAB,GLAB,
    *DATLAB)
    CALL ORIGIN(8.5,0.,1)
        CALL GRAPH(173,Y,PLOT4,3,-7,-5.,-5.,2.,0.,2..0.,XLAB,YLAB,GLAB,
    *DATLAB)
    CALL ORIGIN(8.5,0..1)
621 CGNTINUE
    STOP
    END
```

```
C THERMAL CONCUCTIVITIES PREOICTED BY FOLLOWING
C MODELS O 1. EQUATION 6-16 2. EQUATION 6-17
C 3. EQUATION 6-18 4. LICHTENECKEH 3-D
    IMPLICIT REAL*8 (A-Z)
        INTEGER*4 I,INDEX
            COMMUN NU,SIGMA,KC,KD
        DIMENSICN SUM(10),PLOT1(173),PLOT2(173).PLOT3(173),PLCT4(173),
        *Y(173),XLAB(5),YLAB(5),GLAB(5),DATLAB(5),PLOT5(173),PLOT6(173)
        DATA SUM,INDEX/10*0.0.0/
        MU=0.499
            PI=3.141592653589793
        SIGMA=10.0C0
        SUM4BI=0.
        SUMSO4=0.
        SUNK4E=0.
        REAO(5,190) xLAB, YLAB,GLAB, CA!LAG
190 FORMAT(20A4)
    l WRITE(6,100)
    100 FORMAT(1HI,///////////////,25X,'DATA',17X,'EFFECTIVE THERMAL CCNDU
    $CTIVITY (KCAL/M-HR-K) X 100 './/.25X.'CASE',1X ,
    $4 EXPERIMENTAL ',' EQUATICN 6-16 '," EQUATICN 6-17.',
    $" EQUATION 6-18 ',' LICHTENKER *,/)
    5 READ(5,3,END=6) KC,KD,PD,EXKF,CASE,CASE1,CASE2
    3 FCRMAT(4F10.5,3A4)
        INDEX=INOEX+1
        Y(INDEX)=CLCGIO(EXKE/KC)
        E=1.0-PD
        IF(PD.GE.0.51 MU=0.51
        EPSI=1.0JO-PO
            X=SIGMA*CSURT(2.ODO)
        FN1=X*OSQRT(PI)/2.0DO
            IF(PE.LT.O.5)GC TG 12
            IF(PD.GT.0.5)GO TO 21
    x 1=(1.0D0-M()/X
    XZ=(0.0DO-NL)/X
    FN=FN1*(DERF(X1)-DERF(X2))
    CALL DUG32(C.ODO,1.000,F,INTF)
        KEI=INTF/FN
    CALL DUG32(C.OUO,1.000.F2.REMN)
    12 DO 11 I=1,6
    50 CALL OOG32(0.000,1.0DO,F1,ANSW)
    XI=(1.000-NU)/X
    X2=(0.vDO-MU)/X
    FN=FNI*(DERF(X1)-CERF(X2))
        BNSW=1.CU-ANSW/FN
    IF(BNSW.LE.PO) GO TO 1l
    MU=MU+10.00C**(-1)
    GO TO 50
```

$11 M U=M U-10.0 C 0 * *(-1)$
GO TO 7
$21 \mathrm{DO} 22 \mathrm{I}=1.6$
9 CALL DQG32（0．000，1．ODO，F1，ANSW）
$X 1=(1 . O D O-M U) / X$
$\times 2=(0.000-M(\mathrm{U}) / X$
$F N=F N 1 *\{D E R F(X 1)-\operatorname{CERF}(\times 2))$
$B N S W=1 \cdot D O-A N S W / F N$
IF（BNSW．GE．PD）GO TO． 22
$M U=M U-10.000$ 立章 (-1)
GOTO 9
$22 \mathrm{MU}=\mathrm{MU}+10.0 \mathrm{OO}+\boldsymbol{(- I)}$
GO TO 7
$K E 2=F N / R E M N$
PLOT5（INDEX）＝DLOG10（KEI／KC）
PLOTG（INDEX）$=$ OLOG1O（KE2／KC）
$R K=K D / K C$
$F O=0 E X P(-2.4006+0.83611 * D L O G(R K)-0.0036959 * D L O G(R K) * * 2+12.426 * P D$
$* \quad-16.278 * P D * 2-3.0926 * D L O G(R K) * P D+0.0019151 * D L O G(R K) * * 3$
＊$-0.034069 * \operatorname{DLOG}(R K) * * 2 \star P D+3.3197 * D L O G(R K) * P D \neq 2$
＊$\quad+2.5768$ 女 PD 후후 3$)$
$F I N F=D E X P(6.038+0.28697 * D L O G(R K)-0.0796930$ 立DLOG（RK）＊＊2－42．035＊PD $+94.701 * P C * * 2-0.91135 * D L O G(R K) * P D+0.0029629 * D L O G(R K) * * 3$ $+0.0040281 * D L O G(R K) * * 2 * P D+0.80897 * D L O G(R K) * P D * * 2$ $-69.049 \% \mathrm{PD}$＊＊ 31
$F W=1.5287+0.064259 * D L O G(R K)-0.0064623 * D L O G(R K) * * 2-6.1759 * E P S I$ $+11.059 * E P S I * * 2+0.22176 * D L C G(R K) * F P S I+0.00015041 * D L O G(R K)$
 -7.2252 ＊EPSI＊＊3
IFIFW．GE．1．0）FW＝1．0
IFIFW．LE．O．C）FW＝0．O
K $3=K E 2-F W *(K E 2-K E 1)$
PLOT3（INDEX）＝DLDG1O（K3／KC）
$\mathrm{K} 2=\mathrm{KE} 1$＊FO
PLOT $2(1$ NOEX $)=$ DLOG1O（K2／KC）
K1＝KE2＊FINF
PLOT1（INDEX）＝DLOG10（K1／KC）
LICHTENKER EO $K=1.5 *(K D-K C) /((2.0 * D S Q R T(K O)+D S Q R T(K C)) *(2.0 * O S Q R T(K C)+$
＊ OSORT（KE）））
$K 4=(K C * *(P D *(1.0-K * E))) *(K D * *(E *(1.0+K * P D)))$
PLOT4（INOEX）＝DLOG10（K4／KC）
BK4 $=($（K4－EXKE）／EXKE） 100 ．
K4OFF＝DABS（BK4）
SUM4BI＝SUM4BI + BK 4
SQK4ER＝K4OFF＊ 2
SUMSG4＝SUMSG4＋SOK4LR
SUMK $4 E=\operatorname{SUMK} 4 E+K 4 O F F$

```
        GO TG 5
    6 ROCASE=FLOAT(INDEX)
    AVEI4=SUM4EI/BOCASE
    T4ERAV=SUMK4E/BOCASE
    T4ERVA=({SUNSQ4/B0CASE}-T4ERAV**2)/10000.
    WRITE(6,576)AVBI4,T4ERAV,T4ERVA
576 FORMAT( 3X,3F20.5)
    WRITE(6,200)INOEX,EXKE,K1,K2,K3,K4
200 FOKMAT(/, 25X,I4,4X,5(F10.5,6X))
    WKITF(6,572) BK 1,BK2,BK3
572 FORMAT(3X,'BK1=',F7.2,' BK2=',F7.2.' BK3=`,F7.2)
    WRITE(6,573)AVBII,AVBI2,AVBI 3,TIERAV,T2ERAV,T3E゙RAV,FIERVA,T2ERVA,T
    *3LRVA
573 FORMAT(3X,YF12.4)
    CALL OKIGIN(2.5,3.5,1)
        CALL GRAPH{-173,Y,PLUT1,3,-7.-5.,-5.,2.,0.,2.,0.,XLAB,YLAB,GLAB,
    * DATLAB)
    CALL ORIGIN(8.5,0.,1)
    CALL GRAPH{-173,Y,PLOT2,3,-7,-5.,-5.,2.,0.,2.,0.,XLAB,YLAB,GLAB,
#DATLAB)
    CALL URIGIN(8.5,.1,1)
    CALL (;RAPH(-173,Y,PLOT3,3,-7,-5.,-5.,2.,0.,2.,0.,XLAB,YLAB,GLAB,
*DATLAB)
    CALL UKIGIN(8.5,.1,1)
    CALL GRAPH{-173,Y,PLOT4,3,-7,-5.,-5.,2.,0.,2.,0., XLAB,YLAB,GLAB,
*DATLAB)
    CALL OKIGIN(8.5,.1,1)
    STUP
    tNO
    DOUMLE PRECISION FUNCTION F(P)
    {MPLICIT REAL*8 (A-Z)
        COMMUN ML,SIGMA,KC,KD
        F=OFXP(-C.5DO*((P-MU)/SIGPA)**2)*KO*KC/(P* (KC-KC)+KD)
        RETURN
        ENO
    DOUBLE PKECISIUN FUNCTIUN +I(P)
    \MPLICIT KEEAL*8 (A-Z)
        CONN[NN NIJ,SIGMA,KC,KC
        FI=P*DEXP(-0.5CO*({P-MU)/SIGMA)**2)
        RETURN
        END
    DOUBLE PRECISION FUNCTION F2(P)
    IMPLICIT REAL*& (A-Z)
    COMPAON MU,SIGMA,KC,KD
    F2=?)
    RETURN
    ENO
```

C THERMAL CONDUCTIVITY PREDICTED BY THE FOLLOWING
C MODELSO 1. MAXWELL 2. RAYLEIGH 3. MEREDITH
C AND TOBIAS 4. BRUGGEMAN
IMPLICIT REAL*4(A-Z)
INTEGER*4 I, INDEX
OIMENSION SUM(10), PLOT1(173), PLOT2(173), PLOT3(173), PLOT4 (173),
*Y(173), XLAB(5),YLAB(5),GLAB(5), DATLAB(5)
DATA SUM, INDEX/10*0.0.0/
SUMIBI $=0$.
SUM2BI=0.
SUM3BI $=0$.
SUM4BI = 0 .
SUMSQ1=0.
SUMSQ2=0.
SUMSQ3=0.
SUMSW4 $=0$.
SUMK LF $=0$.
SUMK $2 E=0$.
SUMK $3 E=0$.
SUNK4L=0.
$\mathrm{PI}=3.14159$
READ (5,5)XLAB, YLAB,GLAB, DATLAB
5 FORMAT (20A4)
1 WRITE(6.100)

\$CTIVITY (KCAL/M-HR-K) X 100 , ///, $25 \times$, ${ }^{\circ} \mathrm{CASE}, 1 X$.
\$" EXPERIMENTAL *" MAXWELL * " RAYLEIGH *

\$* ETOBIAS ** *, /1
2 READ (5,3,ENC=6) KC,KD,PD,EXKE,CASE,CASE1,CASE2
3 FORMAT (4F10.5.3A4)
I NDEX $=$ I NDE $X+1$
$Y(I N D E X)=A L O G 10(E X K E / K C)$
$E=1.0-P D$
C MAXWELL EQ
$K 1=K C *(K D+2.0 * K C-2.0 * E *(K C-K D)) /(K D+2.0 * K C+E *(K C-K D))$
PLOT1(INDEX)=ALOG10(K1/KC)
C RAYLEIGH EQ
$R L=(2.0 * K C+K D) /(K C-K D)$
$R 2=(3.0 * K C-3.0$ *KD $) /(4.0 * K C+3.0 * K D)$
$R 3=10.0 / 3.0$

PLOT $2(I N D E X)=A L O G 10(K 2 / K C)$
C MEREDITH \& TOBIAS
$K 3=K C * 14.0 * K C+2.0 * K D-2.0 * E *\{K C-K D)) /(4.0 * K C+2.0 * K D+E \neq(K C-K \cap))$

PLOT $3(I N D E X)=A L O G 10(K 3 / K C)$

```
C BRUGGEMAN
    10 Y1=(KEFF-KD)/(KC-KD)*(KC/KEFF)**(1./3.1-PD
    IF(ABS(Y1).LT..0005)GO TO 20
    YP=1./(KC-KC)*(KC/KEFF)**(1./3.)-(1./3.)*(KEFF-KD)/(KC-KD)*(KC**(1
    *./3.))/(KEFF**(4.13.1)
    KLFF=KEFF-(Y1/YP)
    IF(KEFF.LE.0.0) KEFF=1.OE-8
    GO TO 10
    K4=KEFF
    PLOT4(INDEX)=ALOGIO(K4/KC)
    WRITE(6,200)INDEX,EXKE,K1,K2,K3,K4
200 FORMAT(/,25X,14,4X,5(F10.5,6X))
    BK1=((K1-EXKE)/EXKE)*100.
    BK2=((K2-EXKE)/EXKE)*1CO.
    BK 3=((K3-tXKE)/EXKE)*100.
    EK4=((K4-EXKE)/EXKE)*100.
    K1OFF=ABS(BK1)
    K2OFF=ABS(BK2)
    K30FF=ABS(BK3)
    K40FF=ABS(BK4)
    SUM1BI=SUM1BI+BKI
    SUM2BI =SUM2BI +BK2
    SUM3BI=SUM3BI+BK3
    SUM4FII=SUM4BI+BK4
    SQK1ER=K1OFF**2
    SQK2ER=K2OFF**2
    SGK3ER=K3OFF**2
    SGK4ER=K4OFF#*2
    SUMSOL=SUMSQ1+SQKLER
    SUMS:J2=SUMSQ2+SOK2ER
    SUMSU3=SUNS63+SGK3ER
    SUMSO4=SUMSG4+SQK4ER
    SUMK1E=SUMKIE+KIUFF
    SUMK 2L=SUNK2E+K2OLF
    SUMK 3E=SUNK3F+K301FF
    SUMK4F=SUMK4E+K40FF
    GU TO 2
6 BOCASE=FLUAT(INDEX)
    AVHIL=SUMIBI/BOCASE
    AVBI2=SUM2EI/BOCASE
    AVBI 3=SUM3BI/BOCASt
    AVEI4=SUM4BI/BOCASE
    TLERAV=SUMKIE/BOCASE
    I2FRAV=SUMK2E/BOCASE
    I 3ERAV=SUMK 3E/BOCASE
    T4ERAV=SUMK4E/BOCASE
    T1ERVA=((SUMSQ1/BCCASE)-T1ERAV**2)/1CCOO.
```

T2ERVA=((SUMSQ2/BOCASE)-T2ERAV**2)/10000. T3ERVA $=($ (SUMSQ3/BOCASE)-T 3ERAV**2)/10000. T4ERVA $=(($ SUMSQ4/BOCASE)-T4ERAV**2)/10000.
WRITE(6,573)AVBII, AVBI 2, AVBI 3, AVBI4, TIERAV,T2ERAV, T3ERAV, T4ERAV,TI
*ERVA,T2ERVA,T3ERVA,T4ERVA
573 FORMAT(3X,8F8.2,4F12.4)
GO TO 621
CALL ORIGIN(2.5,3.5,1)
CALL GRAPH $(173, Y, P L O T 1,3,-7,-5 \ldots-5 \ldots, 2 \ldots 0 \ldots 2 \ldots 0 \ldots$ XLAB, YLAB,GLAB, *DATLAB)
CALL ORIGIN(8.5,0.,1)
CALL GRAPH $1173, \mathrm{Y}$, PLOT $2,3,-7,-5 \ldots,-5 \ldots 2 \ldots 0 ., 2 \ldots 0$, XLAB, YLAB, GLAB, *DATLAB)
CALL ORIGIN(8.5,0., 1)
CALL GRAPH $(173, Y, P L O T 3,3,-7,-5 \ldots, 5,2 \ldots, 0 ., 2 \ldots, 0 ., \times L A B, Y L A B, G L A E$, *DATLAB)
CALL OKIGIN(8.5,0.,1)
CALL GRAPH(173,Y,PLOT4,3,-7,-5.,-5.,2.,0..2.,0., XLAB,YLAB,GLAE, *DATLAB)
CALL ORIGIN(8.5.0.,1)
621 CONTINUE
STOP
END


```
        =3_.JNIV; MJJELS 1. NILHELMET A. 2. LIこt-
    「三vミこくミマ 2-D 3. <avajez
    IMJ.Iこ「「 २EAL**(A-Z)
        IVTミこミマ** I,IV)Ex
        IMEVSIJN SJY(1J),PLJT(172),Y(172),XLAB(5),YLA3(5),GLAB(5),DATLAB(
        *j),دLJr1(172),口LJT2(172),PLJT3(172)
            jaTA SJM,INJEx/10*0.0.01
        j」43112=3.
        j丁4312=3.
        j)43[3=0.
        3J4S21=3.
        う」リラ22=3.
        うノリら23=3.
        うノMく1ミ=つ。
        らJMくつミこう.
        う」Mくろこ=う.
            PI=3.1+1%9
            REA)(5,5)XLA3,Y_4B,5_43,)AT:43
            5 =J2\4T(2)04)
```



```
            IV)ミk=IV)Ex+1
            ((IV)ミx)=ALJラ1)(ミxくミ/くこ)
            #=1.3-3)
= NI_ナシーツ ミr nL
        I=(3).jE.0.5) is TJ 31
        n=.?
    3) rl=4*(4+1.)*4_J3((1.+4)/4)-4-p)
        IF(A35(rl).LT...JOOS)j) rJ & Ј
        r=(2.)*\eta+1. ) ** _33((1.0+4)/v)-2.0
        n=y-y1/r3
        ;) 「〕 j)
        31 n=13)J).
```



```
        */(Kこ+M*(<に-K)))*ALJG(<C*(1.J+M)/(M*KD)))
        <8=(1).**.859)*(10.**(3.12*(KD/(100.*360.*P)))))*.0036
        < l=1) 0.*<8+K7
    OLJT1(IVJEX)=ALJSIO(<1/Kこ)
    -IこHTとVrこくとR
    < 2=(<こ**つ)) &(<)***)
```



```
= <AVAJミマ
    v=11.5*E
    \imath=く)-くこ
    (3=((V*E*くこ*く))/(2.*&))*(((<)/A)*A_Jう(<J/Kこ))-1.)
    3.)r3([V)上x)=4.3う1)(<3/くこ)
    3<1=((<1-Exくミ)f=xKミ)*10).
```

```
    3<2=((<2-Ex<E)/Ex<E)*10).
    3<3=((<3-EX人E)/EX< () * 100.
    <1)= == А3S(BK1)
    <2〕=F=ABS(BK2)
    (3)=F=43う(B<3)
    5J413I=5J41B1+3<1
    5JM?3I=SJ423I+3<2
    jJ433I=SJ43BI+3<3
    う2く1Eマ=<1JFF**2
    うこくここマ=く2JFF**2
    5)く3Eマ=<3JFF**?
    SJ4j21=5J4S21+52<1E?
    う」45\l=5」4S22+52< 2Eマ
    5J4523=SJ4SO3+52<3Eマ
    うJप<1E=SJMK1E+<1 JFF
    うJMくつE=5JMく2E+く2JFF
    jJ4<3E=5J4<3E+(3)FF
    NरIT三(5,2)3)IV)Ex.ミx<E,B<1,3<2,3<3
```



```
    *7.2,' JFF3=0.F7.2)
        3] 13 ?
        S 3JこASE=F_JAT(IV)EX)
        AV3IL=5JM1BI/3JこASE
        AV3I2=5J42BI/3JこASE
        AV3I3=5J43BI/3)こASE
        11EマAV=SJUK1E13JこASE
```



```
        T3E{AV=SJUK3E/3JこASE
        「1ER\checkmark䘖1EマVA
        「1三2VA=((SJMS21/3):ASE)- 「1E2AV**2)/10000.
        「2E{VA=((SJYS22/3JこASE)- 「2EマAV**2)/1000).
        「3E2VA=((SUMS\3/BJこASE)-r3E{AV**2)/1 JOOJ.
        N2ITE(6,573)AV3I1,AV3I2,AV3I3,T1E{AV,T2E{AV,T3ERAV,TIERVA,T2ERVADT
    *3EマVA
573=丁2YAT(3x,6F1).2,3F14.4)
    う「コ)
    ミソつ
```


[^0]: ${ }^{\star}$ Numbers in brackets refer to references cited.

