THE USE OF THE INNER ZONE ELECTRON MODEL AE-5 AND ASSOCIATED COMPUTER PROGRAMS

NOVEMBER 1972

The Use of the Inner Zone Electron Model AE-5 and Associated Computer Programs

By

Michael J. Teague
Joel Stein The KMS Technology Center
and
James I. Vette
Nationa1 Space Science Data Center

November 1972

National Space Science Data Center
National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771
Page

1. Introduction 1
2. Description, Use, and Limitations of Model AE-5 3
A. Description of the Model 3
B. Limitations of the Model 5
3. Program MODEL 9
A. Program Logic and Restrictions 9
B. Use of Program MODEL 14
4. Program ORP 19
A. Program Logic 20
B. Use of Program ORP 21
Acknowledgments 27
References 29
ILLUSTRATIONS
Table Page
1 Omnidirectional Flux Confidence Limits 31
2 Solar Cycle Parameter Confidence Limits 32
3 Cutoff Times for Starfish Electrons 33
Figure
1-7 AE-5 Omnidirectional Flux Plots 35-45
8-10 B-L Flux Maps 47-49
11-13 R- λ Flux Maps 50-52
14-16 Three-Dimensional Flux Maps 53
17-20 Solar Cycle Parameters 54-57
21 Storage of Flux-B Curves 58
22 Model Grid Points 59
$23 \mathrm{~B} / \mathrm{Ba}_{0}$ and L Interpolation 60
24 MODEL Deck Setup 61
25 MODEL Data Deck Setup 62
26 Sample MODEL Output 63-64
27 Sample ORP Output 65-69
28 ORP Deck Setup 70
29 ORP Data Deck Setup 71
PRECENTNG PAGE BIANTK NOT FILMED

1. INTRODUCTION

This report is intended as a guide to the users of the inner radiation zone electron model AE-5. Section 2 includes a description of the model, the forms in which it is available, directions on how to use the model, and a discussion of its limitations. Computer programs MODEL and ORP are described in Sections 3 and 4, respectively. These are major programs needed to use the electron models $\mathrm{AE}-4$ and $\mathrm{AE}-5$ and the smoothed proton models.

This document is a companion to one published previously by Teague and Vette ("The Inner Zone Electron Mode1 AE-5," NSSDC 72-10, 1972), and the reader is referred to that document for a complete description of the development of the model. Work is currently in progress to improve the high-energy part of model AE-5. In addition, a new proton model is being developed. When both of these models are completed, they will be compatible with the computer programs described in this document.
2. DESCRIPTION, USE, AND LIMITATIONS OF MODEL AE-5
A. Description of the Model

Model AE-5 describes the inner radiation zone electron environment and is based on data from five satellites spanning the period December 1964 to December 1967. The model provides omnidirectional integral flux for energy thresholds E_{T} in the range $4.0>\mathrm{E}_{\mathrm{T}} /(\mathrm{MeV})>0.04$ and for L values in the range $2.8 \geq L /\left(R_{e}\right) \geq 1.2$ for an epoch of October 1967. Confidence codes for certain regions of B-L space and certain energies are given based on data coverage and the assumptions made in the analysis.

Data from satellites $O G O$ 1, OGO 3, 1963-38C, OV3-3, and Explorer 26 were used. The University of Minnesota electron spectrometers were carried on board OGOs 1 and 3 and produced data used for model AE-5 (NSSDC data sets $64-054 \mathrm{~A}-21 \mathrm{~A}$ and $66-049 \mathrm{~A}-22 \mathrm{~A}$ supplied to the Data Center by Prof. John Winckler and Dr. Karl Pfitzer). These measurements extended over the period September 1964 to December 1967. The 1963-38C satellite was launched in September 1963 and provided data through 1967. This spacecraft carried an integral electron spectrometer from the Applied Physics Laboratory (Beall, 1969). Data obtained from mid-1966 to late 1967 were used in developing model AE-5. Explorer 26 data from detectors designed by McIlwain were used for the time interval January to June 1965. OV3-3 data from the Aerospace Corporation differential nine-channel electron spectrometer, supplied by Vampola late in the development of the model, were also incorporated in model AE-5.

The model forms available to a user include a graphical presentation and a variety of computer programs. This section describes the types of graphs and includes examples of each type. Computer programs are discussed in Sections 3 and 4.

$$
\begin{aligned}
& \text { PRECEDING PAGG BLGNK NOT thimed } \\
& 3
\end{aligned}
$$

In previous documentation on trapped particle models, the major display has been in the form of omnidirectional integral flux tables. Model AE-5, however, is presented in the form of two-dimensional carpet plots $J=J(B, L)$ for given energy thresholds. In addition, carpet plots are used for the graphical presentation of the solar cycle variation expressed as a ratio. While the omnidirectional flux data have been presented tabularly in previous model documentation with greater resolution than can be obtained from carpet plots, the error associated with determining a number from the carpet plots is considered insignificant in comparison to the inherent error associated with the model.

Omnidirectional flux plots are presented in Figures 1 through 7 for threshold energies $\mathrm{E}_{\mathrm{T}}=40,100,250$, and 500 keV and 1,2 , and 4 MeV . Fluxes at nongrid B , L , and E points may be obtained simply by interpolation as described in Appendix A of Teague and Vette (1972). $B-L$ and R- λ flux maps are presented in Figures 8 through 13 for threshold energies $E_{T}=40 \mathrm{keV}, 500 \mathrm{keV}$, and 1 MeV . In addition, a physical impression of the model at these energies may be obtained from the three-dimensional plots given in Figures 14 through 16 . While the basic epoch of model AE-5 is October 1967 corresponding approximately to solar maximum, AE-5 contains approximate values of the solar cycle parameter for time T

$$
\mathrm{R}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}, \mathrm{~L}, \mathrm{~T})}=\frac{\mathrm{J}\left(\mathrm{E}_{\mathrm{T}, \mathrm{~L}, \mathrm{~T}}=\right.\text { October 1967) }}{\mathrm{J}\left(\mathrm{E}_{\mathrm{T}}, \mathrm{~L}, \mathrm{~T}\right)}\right.
$$

Plots of $\mathrm{R}_{\mathrm{T}}(\mathrm{L}, \mathrm{T})$ are presented in Figures 17 through 20 for energy thresholds $\mathrm{E}_{\mathrm{T}}=40,100,250$, and 500 keV . In these plots, the time parameter T has units of months from solar minimum taken as September 1964. Values of RT are not presented for higher energies because of magnetic storm effects (Teague and Vette, 1972). While the values of R_{T} presented in Figures 17 through 20 have been determined from data
over the period 1964 to 1967, they may be used to obtain very approximate estimates of the solar cycle effects for epochs later than October 1967. Using as a basis the Zurich Sunspot Number, it may be assumed that the flux is constant until $T=69$ approximately (June 1970) and thereafter decreases approximately as described by Figures 17 through 20, reaching a minimum at approximately $\mathrm{T}=100$ (January 1973). It should be appreciated that extrapolating the model solar cycle dependence in this manner is likely to provide very approximate flux estimates only (Section 2B).

B. Limitations of the Model

It should be remembered that model $\mathrm{AE}-5$ is presented for an epoch of October 1967, and temporal variations may result in significant flux changes in certain regions of B-L-E space. These temporal variations include magnetic storm effects, solar cycle effects, and the decay of residual Starfish electrons. These effects are discussed in detail in the paper by Teague and Vette (1972). With the exception of magnetic storm effects, these temporal variations, however, cause the flux to decrease from that given by $\mathrm{AE}-5$ at epoch October 1967, and thus the model provides a conservative estimate of the influence of trapped inner zone electrons on orbital vehicles.

To enable the user to assess the reliability of model AE-5, a system of confidence codes is presented. In developing these codes a number of criteria were used: number of data sets used, data coverage, the degree of data agreement, errors introduced by modeling technique, and uncertainties introduced by temporal variations. A scale of 1 to 10 is used, where 10 corresponds to the highest reliability with an expected error of 2 or less and 1 corresponds to the least reliability with an expected error in excess of a factor of 10 . In general, however, efforts have been made to provide pessimistic flux estimates where low confidence codes are given so that it is more probable that
the flux is lower than the quoted value than higher. Two sets of codes are given -- one for the omnidirectional flux at an epoch of October 1967 (Table 1) and one for the solar cycle parameters (Table 2). In each case, a brief explanation for the confidence code and a section reference to the paper by Teague and Vette (1972) are given.

For example, in Table 1, where the B range is $>B_{0}$, the L range is 1.2 to 1.4 Re , and the E_{T} range is $>3 \mathrm{MeV}$, the confidence code is 1. This code indicates that in these ranges the omnidirectional flux indicated by model AE-5 has low reliability, with an expected error of more than a factor of 10 . The comment column indicates that this error results from extrapolation on both B dependence and spectrum and from a lack of data.

Three temporal variations have been noted in the inner radiation zone: the decay of Starfish electrons, solar cycle effect, and magnetic storm effects. AE-5 attempts to model all three of these, and the reader is referred to Teague and Vette (1972) for a complete description of the modeling techniques used.

Model AE-5 contains a small Starfish residual flux in the energy range $500 \mathrm{keV} \leq \mathrm{E}_{\mathrm{T}} \leq 3 \mathrm{MeV}$ and the L range $1.2<\mathrm{L} /\left(\mathrm{R}_{\mathrm{e}}\right)<1.5$. Because of the lack of Starfish-free data, natural flux levels could not be obtained in these intervals, and corresponding low confidence limits are quoted in Table 1. Estimates have been made of the times at which the Starfish flux component has decayed to the level of the natural flux component, and these are presented in Table 3. For the L and E_{T} region of $\mathrm{AE}-5$ that is influenced by Starfish electrons, it is estimated that a maximum reduction of a factor of 5 will result from the decay of this component.

Some discussion of the solar cycle effect has been given in the previous section. The confidence limits presented in Table 1 are applicable to the model at epoch October 1967. At other epochs the confidence codes are smaller because of the solar cycle effect. If Figures 17 through 20 are used to estimate this solar cycle effect, however, only the higher confidence codes should be reduced. That is, where the model is already associated with a factor of 5 or 6 error, no further error is introduced, whereas errors of a factor of 2 will be increased to 3 or 4 dependent upon the value of R_{T}.

The third temporal variation included in model AE-5 is the effect of magnetic storms. This effect is most noticeable at $L=1.9$ to $2.4 \mathrm{R}_{\mathrm{e}}$, and $\mathrm{E}_{\mathrm{T}}=0.4$ to 2 MeV . Three variables are considered in determining the magnetic storm effect: the frequency of the storm, the intensity in relation to the undisturbed (quiet day) background, and the duration. Assessment of the importance of magnetic storms can be performed in practice with consideration of the first two variables alone because these exhibit much greater variation with E and L than does the third variable.

The frequency of magnetic storms in the inner belt is too low for a statistical approach. However, although the storms are infrequent, their relative intensity is high. In these circumstances the flux varies considerably from quiet to storm conditions in such a way that the changes from one condition to another are upredictable and cannot easily be modeled.

A crude method has been adopted in model AE-5 for including magnetic storm effects. Average fluxes including magnetically disturbed and quiet periods were determined for the period June 1966 to December 1967. Magnetic storm effects were found to influence this average in the region $\mathrm{L} \geq 1.8$ and $0.4 \leq \mathrm{E}_{\mathrm{T}} /(\mathrm{MeV}) \leq 2.0$. The maximum ratio of
average to quiet period flux was found to be 40 approximately at $\mathrm{E}_{\mathrm{T}}=1 \mathrm{MeV}$ at $\mathrm{L}=2.4 \mathrm{R}_{\mathrm{e}}$. At $\mathrm{L}=1.9 \mathrm{R}_{\mathrm{e}}$, this ratio had reduced to 3. It should be appreciated that the average storm flux included in AE-5 provides inaccurate estimates of the instantaneous fluxes and an inaccurate basis for orbit flux integrations because of the low frequency and high intensity of magnetic storm effects. These inaccuracies are incorporated in the confidence limits presented in Table 1. A model is currently being developed to describe the magnetic storm effects in the inner zone with greater accuracy than presently given by $\mathrm{AE}-5$.

Program MODEL is a Fortran program that enables the user to access any of the current trapped radiation models available through the National Space Science Data Center (NSSDC). These models include the Inner Zone Electron Mode1 AE-5 for epoch October 1967 described in brief in Section 2 of this document and described in detail by Teague and Vette (1972), the Outer Zone Electron Model AE-4 for epoch 1967 given by Singley and Vette (1972), and a smoothed version of the proton models AP1, AP5, AP6, and AP7 Coriginally presented by Vette et al. 1966-1970) described by Kluge and Lenhart (1971). A matrix storage technique originally developed at ESRO (Kluge and Lenhart, 1971) is adopted for the containment of these models. A new interpolation scheme has been developed at NSSDC and is described in the following sections.

The matrix storage scheme and interpolation routines are completely general, and, as new models become available, these can be easily incorporated into Program MODEL. Work is currently in progress on developing new'proton and inner zone high-energy electron models.
A. Program Logic and Restrictions

Flux versus B / B_{0} curves are stored in Program MODEL at discrete energies and L values using the scheme indicated in Figure 21. Using the decadic logarithm of the omnidirectional integral flux, equal increments in the ordinate are chosen and the B / B_{0} intervals $\delta\left(B / B_{0}\right)$ i are determined. Each flux versus B / B_{0} curve is represented in the stored matrix by the variable F_{0}, equal to the logarithm of the flux at the equator, and the B / B_{0} intervals $\delta\left(B / B_{0}\right)_{i}$. Using equal increments in the ordinate as opposed to the abscissa has the advantage that a fixed accuracy is maintained for the flux versus B / B_{0} curve even in the region of the atmospheric cutoff, where the slope of the curve becomes very large. Linear interpolation on the logarithm is used
between the grid points defined by $\delta\left(B / B_{0}\right)_{i}$, and the accuracy of the interpolated flux is essentially determined by the ordinate increment. Four points per decadic cycle are stored in the present matrix for the electron models and two per cycle for the proton model. Flux versus B / B_{0} curves are stored in this manner at a variety of energies and L values. Linear interpolation on the logarithm is performed to obtain fluxes at intermediate energies and L values. Sufficient energies and L values are stored such that an exponential assumption between grid points provides sufficient accuracy. This is determined by the radial profiles and spectra of the models and is therefore model dependent. The energy and L value grid points used for the three models are shown in Figure 22. Linear logarithmic interpolation between these grid points introduces less than 10% error in the flux, i.e., considerably less error than is presently associated with the models.

Program MODEL performs the interpolation between grid points in the following order: (1) B / B_{0} interpolation, (2) L interpolation, and (3) energy interpolation. The interpolation scheme adopted for B / B_{0} and L is presented in Figure 23. In this figure, the flux is required at some nongrid point $P\left(B / B_{0}, L\right)$ for which the nearest surrounding grid L values are L_{1} and L_{2}. A number of rays are drawn from the origin 0 , taken as $B / B_{0}=1, \log _{10}(f 1 u x)=0$, to the four grid points surrounding P, A_{1}, A_{2} for $L=L_{1}$ and B_{1}, B_{2} for $L=L_{2}$. The intermediate points B^{-}and A^{-}are determined by linear interpolation on the $\log _{10}$ (flux) and B / B_{0} between points B_{1} and B_{2} and A_{1} and A_{2}, respectively. Further linear interpolation is performed to obtain C_{1} and C_{2} at the required L value. A final interpolation between C_{1} and C_{2} is performed to obtain the correct B / B_{0} value at point P. In the event that the grid L flux- $\mathrm{B} / \mathrm{B}_{0}$ distributions cross (as occurs, for instance, in $\mathrm{AE}-5$ at low L values and intermediate energies), a number of additional rays
are drawn. For nongrid energies, the interpolation scheme described above and shown in Figure 23 is used at the two surrounding grid energies, and linear interpolation on $\log _{10}(f l u x)$ and E is performed to obtain the flux at the correct energy.

The Kluge and Lenhart (1971) scheme stores the flux using B as grid points and interpolates between grid L and E values at constant B. The present storage and interpolation scheme has a number of advantages over the Kluge and Lenhart method. For $L_{2}>L_{1}$ in Figure 23 at the equator $B_{0}\left(L_{2}\right)$ is less than $B_{0}\left(L_{1}\right)$ and, at atmospheric cutoff, $B_{C}\left(L_{2}\right)$ is greater than $B_{C}\left(L_{1}\right)$. Thus there are two regions for $B<B_{0}\left(L_{1}\right)$ and $B>B_{C}\left(L_{1}\right)$ for which flux values can be determined for $L=L_{2}$ only. Interpolation at constant B / B_{0} removes the region $B<B_{0}\left(L_{1}\right)$, but the problem remains at the cutoff. With the technique described in the previous paragraph, however, the interpolation is performed in a completely general fashion without restriction on B / B_{0} or B. In addition, the Kluge and Lenhart scheme is inaccurate for low L values where the equatorial B value is quite different from one L grid point to the next.

In the following paragraphs, a brief description of the main program and subroutines of Program MODEL and their restrictions is given in the order in which they are called.

MAIN

MAIN performs the $1 / 0$ function of Program MODEL and offers a variety of options to the user for inputting B, L, and E. These options are described fully in Section 3B. The variable retrieved by the interpolation subroutines is omnidirectional integral flux with units particles $/ \mathrm{cm}^{2}-\mathrm{sec}$.

The radial profile and spectra for each model have been smoothed at grid points, and each model provides fluxes down to 1 particle/cm ${ }^{2}-\mathrm{sec}$. Smaller fluxes are defined as zero. MAIN is able to determine average differential flux in particles/cm ${ }^{2}$-sec-MeV for limited energy ranges. An infinite number of grid energies would be required to determine smooth point differential fluxes, and practical limits on the energy bandwidth result from the finite number of grid energies stored (Figure 22). These practical limits are determined by imposing the restrictions that the resulting differential spectra and radial profiles must remain smooth. They are determined to be:

Protons: | E | $<1 \mathrm{MeV}$ | | $\Delta \mathrm{E} \geq 250 \mathrm{keV}$ |
| ---: | :--- | ---: | :--- |
| 1 | $\leq \mathrm{E} /(\mathrm{MeV}) \leq 20$ | | $\Delta \mathrm{E} \geq 1 \mathrm{MeV}$ |
| | $20<\mathrm{M} /(\mathrm{MeV}) \leq 50$ | $\Delta \mathrm{E} \geq 5 \mathrm{MeV}$ | |
| $\mathrm{E}>50 \mathrm{MeV}$ | | $\Delta \mathrm{E} \geq 10 \mathrm{MeV}$ | |

Inner Zone Electrons:	$\mathrm{E}<100 \mathrm{keV}$	$\Delta \mathrm{E} \geq 50 \mathrm{keV}$
	$100 \leq \mathrm{E} /(\mathrm{keV}) \leq 250$	$\Delta \mathrm{E} \geq 100 \mathrm{keV}$
	$\mathrm{E}>250 \mathrm{keV}$	$\Delta \mathrm{E} \geq 200 \mathrm{keV}$

Outer Zone Electrons: same as inner zone electrons except

$$
E>4 \mathrm{MeV} \quad \Delta \mathrm{E} \geq 100 \mathrm{keV}
$$

An additional restriction is given for $A E-5$ as $L \geq 1.2$ Re. MAIN tests that these conditions are satisfied and disallows smaller energy intervals than those shown above.

Program MAIN supplies the interpolation routines with the particle type, a single B and L value, and an array of energies. Multiple B and L values are obtained by looping within MAIN.

Subroutine TYPE

Subroutine TYPE is primarily a buffer routine between MAIN and the interpolation subroutines that facilitates the incorporation of program MODEL into existing programs (Section 3B). In addition, TYPE determines the model to be accessed and converts from logarithm of the flux to flux.

Subroutine TRARAI
Subroutine TRARA1 determines the grid energies to be retrieved and performs the energy interpolation.

Subroutine TRARA2
Subroutine TRARA2 determines the grid L values to be retrieved and performs the $B / B_{0}-L$ interpolation shown in Figure 23.

BLOCK DATA Statements

The BLOCK DATA statements contain the grid $B / B_{0}, L$, and E points stored for each model and shown in Figure 22. Three BLOCK DATA statements are included, one for each model (see Section 3B for removal of umneeded models). The format of the BLOCK DATA statements is shown in Figure 21 for an arbitrary grid energy E. The format is repeated for each grid energy. The variables E, L, F_{0}, and $\delta\left(B / B_{0}\right)$ are scaled such that they can be stored in the BLOCK DATA statements with an I6 format. The first number N of each grid energy E_{i} is the total number of points in the BLOCK DATA statement corresponding to that energy. A general f1ux versus B / B_{0} curve, J_{j} versus $\left(B / B_{0}\right)_{j}$, corresponding to $L=L_{j}$ is represented by the number of elements N_{j} at L_{j}, the L value L_{j}, the decadic logarithm of the equatorial flux, F_{0}, and $n_{j} B / B_{0}$ increments where $N_{j}=n_{j}+3$. This format is repeated for each grid L value. The first two and the last L values stored are end points having $F_{0}=0$.

Subroutine DIFF
Subroutine DIFF accumulates the average differential flux for writing out by MAIN.
B. Use of Program MODEL

Versions of the Fortran program MODEL that are suitable for operation on IBM 360 series or UNIVAC 1108 computers can be supplied to a user. Source deck setups for operation on these machines are shown in Figure 24. For operation with source decks, approximate CPU times are 6 minutes (IBM $360 / 75$) and (UNIVAC 1108) for 2.5×10^{4} points in B-L-E space. Reductions in CPU compile time are obtained if Program MODEL is executed with object BLOCK DATA statements. Because of variations in compiler speed, the actual savings are machine dependent. For the Fortran G compiler on the IBM 360/75 at the Goddard Space Flight Center, a reduction of a factor of 7 in CPU compile time is obtained for 2.5×10^{4} B-L-E points. In general, however, a factor of 2 reduction may be more typical. Combined object and source deck setups are shown in Figure 24.

Program MODEL offers the user a number of options determined by the data cards described in the following paragraphs.

Card Number	Variable Name	Columns	Format	Function
a		1-18	613	
	NE	1-3	13	Number of energies. Maximum NE $=9$ for line printer output (IPUN $=0$) and $N E=5$ for card output (IPUN = 1). Program terminates for $\mathrm{NE}=0$.
	NL	4-6	I3	Number of L values. Maximum NL $=100$ 1imited by DIMENSION statements only.

Card Number	Variable Name	Columns	Format	Function
	MTYPE	7-9	I3	Particle type. MTYPE $=2$ for electrons. MTYPE = 1 for protons.
	IDIFF	9-12	13	Determines type of tabular output. IDIFF $=0$ for integral flux output, IDIFF = 1 for average differential flux, and IDIFF $=2$ for both. For IDIFF $=1$ or 2 , NDELB (card e) is restricted to 50 by DIMENSION statements.
	IDEF	13-15	13	Determines type of B / B_{0} range used. For IDEF $=0$, program defau1ts to 25 to 30 linear B / B_{0} increments over the range B_{0} to atmospheric cutoff. IDEF $=1$ for user input (card e).
	IPUN	15-18	13	Determines type of output. IPUN = 0 for line printer; IPUN $=1$ for card output (see also variable NE). For IPUN $=1$, output variables are $\mathrm{L}, \mathrm{B}, \mathrm{B} / \mathrm{B}_{0}$, and integral flux for each input energy with format (F6.2, F8.4, F8.3, 5 (1PE10.3) .
b		1-63	9F7.3	
	E		F7. 3	Energy (MeV) array of length NE (card a). Energies can be input in any order (see final paragraph, Section 3B). If average differential flux is required (IDIFF $=1$ or 2 , card a), this is determined in the interval $E(I 1)$ to $E(I+1)$ after the E array has been sorted into ascending order.

Card Number	$\begin{gathered} \text { Variable } \\ \text { Name } \\ \hline \end{gathered}$	Columns	Format	Function
c to d		1-77	11F7.3	Number of cards determined by NL (card a).
	XL	$\begin{aligned} & 1-7 \\ & 8-14 \\ & \text { etc. } \end{aligned}$	F7. 3	L value array of length NL (card a). L values can be input in any order.
e to f		1-23	2E10.3,13	These cards are omitted for IDEF $=0$ (card a). For IDEF $=1$, one card is required for each L value.
	B01	1-10	E10.3	Lower limit of B / B_{0} required.
	B02	11-20	E10.3	Upper limit of B / B_{0} required for NDELB $\neq 1$. For NDELB $=1$, B 02 is the required B / B_{0} increment, and the upper limit of $\mathrm{B} / \mathrm{B}_{0}$ corresponds approximately to atmospheric cutoff.
	NDELB	21-23	I3	Number of B / B_{0} intervals required between B 01 and B 02 for NDELB $\neq 1$. For NDELB $=0$, program defaults to $\mathrm{NDELB}=20$.
g		1-18	6 I 3	As card a. Program terminates for $N E=0$.

A summary of the data setup is shown in Figure 25.

Sample integral and differential flux tables are shown in Figure 26 obtained with the variables $\mathrm{NE}=9$, $\mathrm{NL}=1$, MTYPE $=2$, $\operatorname{IDIFF}=2$, IDEF $=0, \mathrm{E}=0.05,0.1,0.25,0.5,1.00,1.25,1.5,1.75,2.0$, and $\mathrm{XL}=1.7$. In addition to the output shown, a number of messages may be printed in association with the model restrictions described in Section 3A. If at a given L value no flux is found greater than 1 particle $/ \mathrm{cm}^{2}-\mathrm{sec}$ or $\mathrm{cm}^{2}-\mathrm{sec}-\mathrm{MeV}$, a message is written to that effect.

In addition, messages are given if the average differential flux cannot be accurately determined because the L value is less than 1.2 or because the energy interval input is too small.

If all BLOCK DATA statements are not required for regular usage of Program MODEL, the unneeded models can be removed by removal of (a) the appropriate BLOCK DATA statement in which the model is identified by the variable NAME, (b) the associated COMMON blocks from MAIN, and (c) the associated calls to subroutine TRARAl made from subroutine TYPE and identified by comment cards. The operation of Program MODEL remains as described above.

Program MODEL is designed to be easily incorporated into existing programs. A single call to subroutine TYPE is required in the existing program:

CALL TYPE (MTYPE, B, FL, NE, E, FLUX)
where E, the energy array in MeV , and FLUX, the integral omnidirectional flux array returned by TYPE for these energies, must be dimensioned to NE in the existing program. In the calling argument for TYPE, MTYPE is the particle type as described in card a, and B and FL are, respectively, the required magnetic field strength in gauss and the L value in earth radii. The variable FLUX has units of particles $/ \mathrm{cm}^{2}-\mathrm{sec}$ and has been equated to zero for fluxes of less than 1 particle $/ \mathrm{cm}^{2}-s e c$. A single additional restriction is imposed upon the user as a consequence of the interpolation algorithm used in subroutine TRARA. The energy E must be supplied to subroutine TYPE as an ascending array.

4. PROGRAM ORP

The Orbital Radiation Program (ORP) is a Fortran program designed to calculate the average geomagnetically trapped radiation accumulated by an orbiting vehicle. ORP is a substitute for Program TRECO, previously issued by NSSDC (Lucero, 1968), and differs from that program in three respects. First, ORP requires B and L coordinates for the satellite orbit. Programs for the calculation of the B and L coordinates from latitude, longitude, and altitude can be supplied by NSSDC (King, 1971). Second1y, ORP uses Program MODEL, described in Section 3, for determining the particle omnidirectional integral flux along the orbit. As noted in Section 3, Program MODEL is general and will be able to contain new particle models, as they become available, with only minor modification. Finally, ORP does include an orbit generation facility.

ORP is able to generate the following tabular output.

Table 1 Intermediate Printout - a point by point printout of the omnidirectional integral f1ux at each point of the orbit for a given threshold energy.

Table 2 L-Band Summary - a summary of the omnidirectional partic1e flux (particles $/ \mathrm{cm}^{2}$-day) accumulated in arbitrary energy and L bands.

Table 3 Integrated Flux - a summary of the integrated flux accumulated in arbitrary energy bands.

Table 4 Intensity Summary - a summary of the omnidirectional particle flux accumulated in arbitrary energy and intensity bands.

Table 5 Peak Flux per Orbit - a table of peak omidirectional integral flux encountered for each revolution for a given energy threshold.

Table 6 Standard Circular Orbits - a summary of omnidirectional fluxes (particles $/ \mathrm{cm}^{2}$-day) to be used only for standard circular orbits for four inclinations at a given altitude. This information may also be written on tape.

Any combination of the above tables may be obtained for a given program run with the restriction that the arbitrary energy bands are fixed for a given run. Examples of these tables are shown in Figure 27.

A. Program Logic

MAIN

ORP uses inputted logical controls to determine the types of tabular output to be presented. A search on the input tape (Section 4B) is initiated to locate the first of the orbits needed. ORP loops to determine the flux for each point along this orbit. The Intermediate Printout table is written out in this loop. At the end of each orbit, the sumnary tables described in Section 4 are written out and the program proceeds to the next orbit or terminates. Each new orbit data set must follow the previous set on the tape. For the special case of standard circular orbits at $0^{\circ}, 30^{\circ}, 60^{\circ}$, and 90° inclination, MAIN writes the Standard Circular Orbits table at the end of each fourth orbit. This last output table is primarily used for presenting exposures along standard orbits for inclusion in model documentation. Examples of this table are presented by Singley and Vette (1972) in the documentation for the outer zone electron environment AE-4.

Subroutines TYPE, TRARA1, TRARA2, and BLOCK DATA Statements
These subroutines are identical to the ones previously described in Section 3A and are the interpolation subroutines and model matrices providing omnidirectional integral flux at the B-L-E points supplied to TYPE by MAIN.

Subroutine STORE
Subroutine STORE accumulates integral fluxes in L bins for the L-Band Summary table. The L-bins are specified by the IF statements in subroutine STORE.

Subroutine FLITAB

Subroutine FLITAB accumulates integral fluxes in intensity ranges for the Intensity Summary table. The intensity ranges are specified by DATA statement FLXBIN in subroutine FLITAB.

Subroutine DECACC

Subroutine DECACC determines the peak integral omnidirectional flux in each revolution for a given threshold energy. This energy is user input and is the same energy as used for the Intermediate Printout table. For nonequatorial orbits, the south-north crossing of the equatorial plane is used to denote the start of each orbit. For equatorial orbits, a local time of zero is used. Subroutine DECACC is not accessed if altitude is zero.

Subroutine DEPRNT
Subroutine DEPRNT computes the flux accumulated per day in the user input energy bands for the L-Band Summary, Integrated Flux, and Intensity Summary tables. DEPRNT writes these tables and the Peak Flux per Orbit table.

Subroutine STAND

Subroutine STAND accumulates the omnidirectional flux per day in energy bands for the Standard Circular Orbits table and writes this table on the line printer and on tape.

B. Use of Program ORP

When Program ORP is run on an IBM 360/75 computer under MVT with the Fortran IV H, opt=2 compiler, the run time for four standard (0°, $30^{\circ}, 60^{\circ}$, and 90° inclination) orbits of 1440 data points each is approximately 2 minutes CPU and 0.5 minutes I / O time using object BLOCK

DATA statements. As noted in Section 3B, significant savings in CPU time are obtained by using object rather than source decks on a 360/75. The execution step used approximately 150 K bytes of storage with the two electron models included. A sample deck setup is shown in Figure 28 for combined object and source decks.

The orbit information is input to Program ORP using tape input with data set reference unit number 10 (see Figure 28). Each orbit is preceded by an alphanumeric header record of up to 76 characters in length that describes the orbit and is written out in Tables 1 through 5 (Section 4A). The header record is followed by data records giving standard geocentric and B and L coordinates for each time. Each record contains the following data in E format: longitude, latitude, altitude, B, L, and time in hours since start of orbit. An altitude of -100 denotes the end of an orbit. The B and L coordinates are mandatory, but the latitude, longitude, and altitude information is optional unless the Peak Flux per Orbit table is required. These variables should be set to zero or left blank if actual values are not to be supplied. The input tape format is as follows:

Header Record (one per orbit)

Variable Name	Format	Function
HEAD	Alphanumeric Orbit Description	

Data Record (one per point on orbit)

Variable Name	Format	Function
ORBVAL (3)	E18.8	Set equal to -100 to signal end of orbit. Other ORBVAL variables are not important for this final record.

The various options of Program ORP may be obtained by use of the data deck setup described in the following paragraphs.

Card
Number

Variable Name	Columns	Format
	70	
		I3, F6.2,
		10X, I1

TABCON(1)	1	L1	TABCON(1) $=\mathrm{T}$ for Intermediate Printout table, F for no table.
TABCON(2)	2	L1	TABCON(2) $=T$ for L-Band Summary table, F for no table.
TABCON(3)	3	L1	TABCON(3) $=T$ for Integrated Flux table, F for no table.
TABCON(4)	4	L1	TABCON(4) $=T$ for Intensity Summary table, F for no table.
TABCON(5)	5	L1	TABCON(5) $=T$ for Peak Flux per Orbit table, F for no table.
TABCON(6)	6	L1	TABCON(6) $=T$ for Standard Circular Orbit table, F for no table.
TABCON(7)	7	L1	TABCON(7) $=T$ for tape output of Standard Circular Orbit table, F for no table.
TITLE	$11-50$	$10 A 4$	Alphanumeric array for writ- ing at top of first page.

Card Number	Variable Name	Columns	Format	Function
	NE	51-33	13	The number of integral energy values input. Maximum NE $=30$.
	ET	54-59	F6. 2	The threshold energy (MeV) used for the Intermediate Printout and Peak Flux per Orbit tables. ET may be omitted if these tables are not required.
	MODEL	70	I1	Particle Type. MODEL $=2$ for electrons, 1 for protons. Appropriate BLOCK DATA statements must be included (Section 3).
b to c		1-80	$10(\mathrm{~F} 6.2,2 \mathrm{X})$	Number of cards determined by NE. Ten values per card.
e		1-6	F6. 2	Energy threshold array of length NE.
		$\begin{aligned} & 9-14, \\ & \text { etc. } \end{aligned}$		Must be in ascending order. For tabular output Tables $2,3,4$, and 6 (Section 4A) the energy intervals $\mathrm{E}(\mathrm{I}+1)$ to $E(1)$ are subject to the restrictions given in Section 3A under MAIN. This function is not performed automatically by ORP.
d		1-4	212	
	IORB (1)	1-2		Index number for the first orbit required on the input tape. The first orbit is $\operatorname{IORB}(1)=1$.

Card Number	Variable Name	Columns	Format	Function
$\underset{\left(\operatorname{con}^{\prime} d\right)}{d}$	IORB (2)	3-4	I2	Index number for last orbit required on the input tape. If this tape contains a sing1e orbit, IORB(2) may be left blank.

A sumnary of the data setup is given in Figure 29.

ACKNOWLEDGMENTS

Our thanks are due to Professor Winckler and Dr. Pfitzer for providing data from the OGO 1 and OGO 3 satellites, to Dr. Bostrom for the 1963-38C data, to Dr. Vampola for the OV3-3 data, and to Professor McIlwain for the Explorer 26 data. In addition, we express our appreciation to Dr. Vampola and Dr. Pfitzer, who provided valuable assistance in incorporating their data into $\mathrm{AE}-5$ and who reviewed this document and recommended several improvements. Our thanks are also due to Mrs. Susan Smith, who acted as Technical Writer for the first section of this document and Editor for the remaining sections.

1. Beall, D. S., "Graphs of Selected Data from Sate1lite 1963-38C," The Johns Hopkins University, App1ied Physics Laboratory T6-1050, 1969.
2. King, J. H., ed., "Handbook of Corre1ative Data," NSSDC 71-05, February 1971.
3. Kluge, G., and K. G. Lenhart, "A Unified Computing Procedure for Trapped Radiation Models," ESOC Internal Note. 78, March 1971.
4. Lucero, A. B., "TRECO, An Orbital Integration Computer Program for Trapped Radiation," Data Users' Note, NSSDC 68-02, 1968.
5. Singley, G. W., and J. I. Vette, "The AE-4 Model of the Outer Radiation Zone Electron Environment," NSSDC 72-06, 1972.
6. Teague, M. J., and J. I. Vette, "The Inner Zone Electron Model AE-5," NSSDC 72-10, 1972.
7. Vette, J. I., et al., Models of the Trapped Radiation Environment, Vols. I to VI, NASA SP-3024, 1966 to 1970.

Table 1. Omnidirectional Flux Confidence Limits

Code	B Range	1 Range	E- Range	Section	Corment
1	>80	1.2-1.4	>3 MeV	4	Extrapolation on both B dependence and spectrum, no data
2	$\sim B_{0}$	1.2-1.4	>3 MeV	4	Extrapofation on spectrum, no data
4	28_{0}	1.2-1.7	>250 keV	6 B	Possible presence of Starfish electrons
5	$2 B_{0}$	1.9-7.4	4-2 MeV	4	Magnetic storm effects, single data set, 8 extrapolation
6	>B ${ }_{0}$	1.7-1.9	>500 keV	4	Single data set, B extrapolation
6	28_{0}	<1.25	all energies	5	L extrapolation
6	$\sim B_{0}$	>1.5	all energies	3	Poor data
7	$2 \mathrm{~B}_{0}$	1.3	all energies	3	Poor OGO data
8	$\gg B_{0}$	>2	all energies	3	Poor pitch angle coverage
10	$\geq \mathrm{B}_{0}$	1.4-1.9	$<250 \mathrm{keV}$	3	Agreement between three data sets

PRECEDING PAGE BLANK NCT FILMED

Table 2. Solar Cycle Parameter Confidence Limits

Code	L Range	E_{T}	I Range	Section	Comment
3	<1.8	250,500	>22	6B	Significant Starfish flux at $\mathrm{T}=22$ resuiting in iteration
4	>1.9	all	all	3	Poor OGO data at high L values
4	all	40	all	6A	Small R_{T} values; data standard deviation becomes significant.
5	<1.4	250,500	all	6B	Hardening of spectrum; assumed constancy of $\mathrm{j}(>690)$ term in equation 16
5	>1.8	500	all	6A	Storm effects term in equation 17 becomes significant
7	1.6-2.0	250,500	all	6A	Two data sets avallable (i.e., OGO and 1963-38C)

Note that these confidence codes are low because integral flux values of R_{T} are detemined from the OGO data using an approximate expression, and B independence has been assumed. Further, if R_{T} is used to extrapolate beyond the epoch of October 1967, as described in Section 7, the above confl-' dence codes will be reduced because of asymmetries in the solar cycle.

Table 3. Cutoff Times for Starfish Electrons

	$p=0.5$				$p=0.25$			
L	Ch 2	Ch 3	Ch 4	Ch 5	Ch 2	Ch 3	Ch 4	Ch 5
1.4	$2 / 65$ (31) ± 3	7/66 (48) ± 6	3/68 (68) ± 8	1/68 (66) ± 7	8/65 (37)	11/66 (52)	7/69 (84)	12/68 (77)
1.5	$3 / 65$ (32) ± 3	$7 / 66$ (48) ± 6	9/67 (62) ± 7	4/67 (57) 56	9/65 (38)	11/66 (52)	10/68 (75)	3/68 (68)
1.6	$3 / 65$ (32) ± 2	7/66 (48). 44	9/66 (50) ± 2	3/66 (44) ± 2	10/65 (39)	11/66 (52)	8/67 (61)	2/67 (55)
1.7	4/65 (33) ± 2	2/66 (43) ± 3	$2 / 66$ (43) ± 2	$\sim 10 / 65$ (39) ± 2	12/65 (41)	8/66 (49)	8/66 (49)	~4/66 (45)
1.8	$3 / 65$ (32) ± 2	$2 / 66$ (43) ± 3	ND	< 12/64 (29)	10/65 (39)	6/66 (47)	ND	<12/64 (<29)
1.9	1/65 (30). ± 2 -	11/65 (40) ± 3	ND	<12/64 (29)	9/65 (38)	4/66 (45)	ND	<12/64 (29)
2.0	1/65 (30) ± 2	ND	ND	<12/64 (<29)	7/65 (36)	ND	ND	<12/64 (29)
2.2	10/64 (27) ± 2	ND	ND	<12/64 < 29)	2/65 (31)	ND	ND	<12/64 (29)

$\mathrm{p}=\mathrm{j}_{\mathbf{s t}} /_{\mathrm{j}}$

ND denotes no data because of magnetic storm effects or no measurements.
Figures in parentheses represent months from Starfish injection.

Channel	Energy Range
2	$133-292$
3	$292-690$
4	$690-1970$
5	$1970-4740$

Figures 1-7. These computer-generated plots present carpet plots of the AE-5 omnidirectional flux as functions of B and L for threshold energies $E_{T}=0.04,0.1,0.25,0.5,1.0,2.0$, and 4.0 MeV . A description of the use of these carpet plots is given in Appendix A of NSSDC 72-10 (Teague and Vette, 1972). In general, lines of constant B are presented in 0.02 -gauss increments from the equator to 0.28 gauss, and lines of constant L are presented in increments of 0.05 earth radii for $1.2 \leq L \leq 1.6$ and increments of 0.1 earth radii for $1.6<L \leq 2.4$. In some cases, lines are omitted for clarity. For the energies 1.0, 2.0, and 4.0 MeV , the plots are subdivided into two L ranges because of steep gradients in the radial profiles at these energies. In each figure the ordinate scale increments are shown as error bars on the left-hand side of the plot and the abscissa scale is shown as powers of ten.

FIGURE 1.
AE5 OMNIDIRECTIONAL INTEGRAL FLUX, ET=40 KEV EPOCH OCTOBER 1967

FIGURE 2
 AE5 OMNIDIRECTIONAL INTEGRAL FLUX, ET=100 KEV EPOCH OCTOBER 1967

FIGURE 3
 AE5 OMNIDIRECTIONAL INTEGRAL FLUX, ET=250 KEV EPOCH OCTOBER 1967

FIGURE 4
AE5 OMNIDIRECTIONAL INTEGRAL FLUX, ET=500 KEV EPOCH OCTOBER 1967

FIGURE 5

AE5 OMNIDIRECTIONAL INTEGRAL FLUX, ET=1 MEV EPOCH OCTOBER 1967

ELGURE 5 CONT

AE5 OMNIDIRECTIONAL INTEGRAL FLUX, ET=1 MEV EPOCH OCTOBER 1967

FIGURE 6
AE5 OMNIDIRECTIONAL INTEGRAL FLUX, ET=2 MEV EPOCH OCTOBER 1967

1. 30
2. 25
3. 20

FIGURE 6 CONT
AE5 OMNIDIRECTIONAL INTEGRAL FLUX, ET=2 MEV

$$
\text { EPOCH OCTOBER } 1967
$$

2.40
2.30
2.30
2.20
2.10
2.00

1

FIGURE 7
AE5 OMNIDIRECTIONAL INTEGRAL FLUX, ET=4 MEV EPOCH OCTOBER 1967
L Values (EARTH RADII)
1.60
1.50
1.45
1.40
1.35
1.30

1:25
1.20

FIGURE 7 CONT

AE5 OMNIDIRECTIONAL INTEGRAL FLUX, ET=4 MEV EPOCH OCTOBER 1967

Figure 8. AE-5 B-L Flux Map

Figure 9. AE-5 B-L Flux Map

Figure 10. AE-5 B-L Flux Map

Figure 11. AE-5 R- λ Flux Map (electrons $/ \mathrm{cm}^{2}-\mathrm{sec}$)

Figure 12. AE-5 R- λ Flux Map (electrons $/ \mathrm{cm}^{2}-\mathrm{sec}$)

Figure 13. AE-5 R- λ Flux Map (electrons $/ \mathrm{cm}^{2}-\mathrm{sec}$)

PIGURE 15

ABS OMNI-DJRECTIONAL INTEGRAL FLUX OREATER THAN 500 KEV EPOCH OCTOBER 1907

plux ymita - blectionatao em bec

FIOURE 18
ABE DNNI-DIRECTIDNAL INTRGRAL PLIX
GREATER TMAN 1 MEV
EPOCH OCTDEER 1047

Figures 14-16. Three-Dimensional Flux Maps

Figure 17. Integral Flux Solar Cycle Ratios RT, E > 40 keV

Figure 18. Integral Flux Solar Cycle Ratios $R_{T}, E>100 \mathrm{keV}$

Figure 19. Integral Flux Solar Cycle Ratios $R_{T}, E>250 \mathrm{keV}$

Figure 20. Integral Flux Solar Cycle Ratios $\mathrm{R}_{\mathrm{T}}, \mathrm{E}>500 \mathrm{keV}$

FORMAT OF BLOCK DATA STATEMENT:

Figure 21. Storage of Flux-B Curves

Protons

Energies: $0.375,0.78,4.1,8.0,16.0,50.0,100.0 \mathrm{MeV}$
L values: 1.2 by 0.1 increments to 6.6

Inner Zone Electrons

Energies: $0.04,0.1,0.25$ by 0.25 increments to 2.0 , 2.0 by 0.5 increments to 4.5 MeV

L values: 1.2 by 0.05 increments to $1.5,1.5$ by 0.1 increments to $2.0,2.0$ by 0.2 increments to 2.8

Outer Zone Electrons

Energies: $0.04,0.1,0.3,0.5,1.0,2.0,2.5,3.0,3.5$, $4.0,4.1,4.25,4.35,4.5,4.65,4.85 \mathrm{MeV}$
L values: 2.8 by 0.2 increments to $4.0,4.0$ by 0.5 increments to $6.0,6.6,7.0$ by 1.0 increments to 11.0

Figure 22. Model Grid Points

Figure 23. B / B_{0} añ L Interpolation

Job Card	Job Card
// EXEC FORTRANG,PARM='ID,MAP, XREF',REGION=250K ${ }^{+}$	@ FOR,SIA .MAIN, MAIN/R Main Program
//SOURCE.SYSIN DD *	© FOR,SIA .SUB1, .SUBI/R Subroutine Type
Source Deck	© FOR,SIA .SUB2,.SUB2/R Subroutine DIFF
/*	
//STEPG EXEC LINKGO,REGION=160K	@ FOR,SIA .SUB3,.SUB3/R Subroutine TRARA1
//LINK.OBJECT DD *	@ FOR,SIA .SUB4,.SUB4/R Function TRARÁ2
Object Deck if used /* if Object Deck used	© FOR,SIA .SUB8,.SUB8/R AE5 Block Data
//GO.SYSUDUMP DD SYSOUT=A	(0) FOR,SIA .SUB9, .SUB9/R AE4 Block Data
$\begin{aligned} & / / \text { GO. GSFCDUMP DD SYSOUT=A } \\ & \text { (GSFC only) } \end{aligned}$	© FOR,SIA .S010,.S010/R
//GO.DATA5 DD *	@ MAP, I . MAIN/R, .MJTP/A
Data Deck (Figure 25)	© XQT .MJTP/A Data Deck
/*	(0) FIN
//	

+Source block data statements only.

Figure 24. MODEL Deck Setup

Figure 25. MODEL Data Deck Setup

TNTEGRAL FLUX UNITS－ELECTPONS／SOCM．SEC
L VALUE $=1.7 \mathrm{P}$ EO B $=0.0634$ GAUSS

ENERGIES（MEV）．

－	3／90	r．ns．		0.10 n		0．250		0.500		1.000		1.250		500		50		2.000
34	1．900	3.913 E	$n 3$	2．510．	38	C．9．33E	07	9．3＾日E		1．36日E	06	1.129 E	06	$6.994 E$		． 352 E		2.738 E
n．ntas	2．11n	？．275	A ${ }^{\text {a }}$	2.45	ne	A． 32	07	7．758F	06	1．557E	06	9．417E	05	5．827E	－5	3．R27E	05	2．282E
．r．774	1.223	2.9435	ne	2.13	3 A	R．siat	C7	A．465	06	$1.258 E$	06	7.844 E	05	4.859 E	ce	$3.023 E$	05	1．902E
． 8944	1.330	2.453 E	98	1.8345	08	5． 858 E	07	5．3a8c	06	1．082E	08	6.538 E	ก5	4.050 E	c®	2．520t	05	1.586 F
－ 317	1．44）	2．115	Cs	1.5685	ก9	4．A18E	07	4.375 f	08	A．785	05	5.3 cbe	$n 5$	3．289E	－	2．046E	05	1．287E
－¢¢¢7	$1.55 n$	1.910	AB	1.329 E	－9	3.93 FE	07	3．535F	95	7．097E	On	$4.289 E$	05	2.657 E	\cdots	1.653	05	1.
9．1n53	$1.56 n$	1．549F	n9	1－127E	99	3． 2155	$n 7$	2．8A3．	＋ 6	$5.750 E$	05	$3.474 E$	95	2.152 E	0 \％	1.339	05	－．425E
－ 1123	1.770	1.3258	70	． 5538	n7	2．668E	$n 7$	2．3535	On	4.735	05	2．861F	98	1．772E	0 0	． 103	05	6．
－1152	1.880	1.133 E	n9	167	07	$2.21{ }^{18}$	07	1.0425	ns	3．899E	05	2.355 E	$n 5$	1．460E	05	． 082	04	5．715E
．125	1.900	0．935F	37	$6.999 E$	97	1． 2458	07	1．602E	Os	3．216F	05	1.943 E	$n 5$	1．204E	¢5	．490E	04	4.71 3E
．1332	2.100	2．497\％	97	5.999 E	17	1．541E	07	1．3BDE	06	2．671E	OS	1.614 F	os	9．996E	ก	．2201	04	3.914 E
－ 1403	2.210	7.31 으	67	5.140	C7	290	07	1．104E	06	2.213	05	1.340 E	n5	6． 301 E	04	． 165	04	$3.250 E$
．147？	2.320	6．7＾1三	37	4.3035	07	078	07	9．171F	05	1.841 E	05	1.113 E	05	6.892	04	－2	0	2．6995
．1541	$2.43{ }^{\text {n }}$	5.439	37	75	ar	9．no9E	06	7．6n5F	05	1．527E	05	9.228 E	04	5．716E	04	－ 5 STE	04	2.238 E
2．16：1	2．54\％	4.541 E	07	3.2098	07	T．507e	16	5．3075	05	1．265f	05	$7.653 E$	04	4．740E	04	50 E	04	E
． 1681	2.655	3．779E	57	2.7268	$n 7$	A． 243 se	06	5．33n9	05	1.050 E	05	6．346\％：	94	1	${ }^{4}$	$2.446 E$	04	1.
0.1751	2.78	3.3	97	292	07	1	26	A． 293	05	B．800E	04	5.197 E	04	3.219	$n 4$	． 0	04	1．280F
0.1931	2.8	2.8345	07	928	07	4.2475	Os	3．5089	${ }^{0} 5$	7.043 E	04	4.258 E	04	2.636 E	C4	1．640E	04	．032E
0.1 gen	3.890	2．793E	07	1.518	07	3.492	06	$2.864 E$	05	5.750°	04	3.475 E	04	2．252F	04	1.339 E	04	8．427E
－ 1 －6＊	3.50	$1.978{ }^{\text {c }}$	n7	1.317	$n 7$	2.912	06	2．295E	¢5	4．507E	04	2．772E	04	1．717E	04	1 －068E	04	6．723F
の．3n3	$3.2 c c$	1．570E	07	1．072E	－7	2．234E	06	1．323E	05	3．580E	04	$2.212 E$	04	1.370 E	04	8． 524 E	03	5．354E
\cdots－2109	3.310	1.2018	$n 7$	$8.611 E$	26	1．776E	CS	$1.417 E$	05	2．845E	04	1.7195	04	1．065E	04	$6.627 E$	03	$4.170 E$
． 2165	3．42n	1．）3xE	57	6．638	06	1．34．cE	06	1．9B1E	05	2.170 E	04	1.311 E	${ }^{0} 4$	6．123E	03	5.054 E	03	．180E
． 2339	3． 5 50	7.647 C	56	5．099E	76	1．711：	06	7．9A25	04	1．803E	$n 4$	9．8．05E	03	$5.993 E$	ก2	3．733E	03	2．349E
0.2380	$3.64{ }^{\text {P }}$	5.5145	06	3．8DEC	06	7．049E	95	5．RATE	04	1.138 E	04	$6.876 E$	03	4.259 E	c3	2．650E	03	1．668E
O．？ 27%	3.750	3．774F	56	$2.430 E$	$n 6$	4．674E	05	3.5935	n4	7.414 E	03	4.4815	03	$2.775 E$	03	$1.727 E$	03	1．087E
0.244%	3．86n	2.24 CE	06	1．456E	06	2．tSAE	05	2.1505	04	$4.317 E$	03	2.6095	93	1．6i6E	03	$1.006 E$	03	$6.327 E$
n．25：3	3.070	1．07PF	06	6．560：	75	$1.245 E$	05	9.919 SE	C3	1.992 E	03	1．203E	03	7．455E	02	4.63 EE	02	2
C．25A？	4.090	2．792F	05	3n3E	15	2．394E	04	1.917	03	3.848	02	2.32	22	1.4	02	C．96aE	01	5．640E

Figure 26．Sample MODEL Output

INNEO TONE ELECTRON MOOEL AES EDOCH DCTOBER 1967.

OIFEEGENTIAL FLUX UNITS－ELECTRONS／SOC＊．SEC．NEV
L VALUE $=1.70$ EO P $=$ O．AK 34 GAUSS

ENFRGITSPMEV：。

$\begin{aligned} & \text { engan } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0.100 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.250 \\ & \text { te } \end{aligned}$	$\begin{gathered} 0.500 \\ \text { tח } \end{gathered}$	$\begin{gathered} 1 . \operatorname{coo} \\ \text { TC } \end{gathered}$	$\begin{gathered} 1.250 \\ T e^{2} \end{gathered}$	$\begin{gathered} 1.530 \\ 10 \end{gathered}$	$\begin{aligned} & 1.750 \\ & 10 \end{aligned}$
$\cdots .190$	c． 250	9．500	1．N00	1－250	1．500	1．730	2.000

0.0 .534	1.000	1．317E	09	1．27ee	99	3．ACIE	c8	1.487 F	07	2.957 E	06	1.719 E	06	1．057E		6．454E	0
	1．110	t．a．ane	99	1．108E	－9	3．0．1E	${ }^{\text {ar }}$	1.24 CE	$n 7$	2.4655	08	1.4 .33 E	96	8．8c9E	－ 5	5.3796	05
9.0 .774	1．220	1.40 sF	19	$9.605 E$	90	2．53s¢	C9		97	2．055E	06	1.	06		0		
c．ns44	1.33 m	1.2305	09	$9.323 E$	09	2.17 T	28	8．0．3 3E	Ps	1．712E	06	9．092E	05	$6.122 E$	0.5	$3.737 E$	05
$0 \cdot 0013$	1.44 r	1.975 F	99	7.241 F	9	1．752F	08	6．9038	r 6	1.390 E	08	9，0R1F	ns	4.9805	ne	C34E	5
0.8097	$1.55 n$	e．fise	08	6.2398	28	1．4235	$0 \cdot$	5．65 OF	ra	1．123E	06	6.519 F	95	4.014 E	C5	2.451	5
3．1053	1.650	9.4435°	18	5．350f	${ }^{\sim} \mathrm{A}$	1，171E	C8	4．57i¢	Cs	9.1005	05	5．289E	$n \mathrm{~s}$	$3.252 E$	Cs	$1.986 E$	5
0.1133	1.770	479	$\mathrm{T}^{\text {P }}$	4.50 nE	ค	9．729E	27	3．760E	Of	7.4955	05	4．356 $=$	ns	2．ATSE	0	1．f35F	5
． 1193	1.989	F．474F	78	3.9665	\cdots		07	3.104 F	On	6.172 E	05	3．5R7E	ns	$2.205 E$	05	． 347	5
．126？	1．903	5．A5？5	Ag	3.4375	23	f． 73 RE	17	2.5585	n6	5.0905	05	2.9585	05	1．010f	CE	111 E	05
A－1732	2．109	$4.763 E$	78	2.972%	9.	5．633E	$n 7$	2．128F	${ }^{6} 6$	4．227E	05	2.457	C5	511	ns	9.224	04
$0.140 ?$	2.210	4．7are	78	2．5375	\％	4． 71 CE	07	1．785	ns	3.510 E	05	2.040 E	05	1．254E	cs	7.660 E	04
0.1472	2.320	7．71sE	38	2．2005	\％${ }^{\text {a }}$	3． 4495	a7	1.46 KE	nf	2.014 F	05	1．ngae	n5	1.042 F	－	6．360 E	4
n．154，	2.43 C	3.3065	18	1.9035	A	3．259E	17	1.216 E	06	2．417F	05	1.4 cse	05	， 6 STF．	ก4	S．274E	4
$0 \cdot 1611$	2.540	2．3axE	08	1.63 CE	OR	2．750E	07	1.3185	05	2．0n4E	05	$1.165 E$	05	7．163E	04	． 37	4
O．1se：	2．65\％	E．595E	A8	1.4005	n9	2．Pe3E	07	2． 360 F	05	$1.662 E$	05	9.661 E	04	S．940E	C_{4}	3．f2TE	04
0.1791	2.760	$2.155 E$	08	1.193 F	np	1.901 F	87	R．847E	9＊	$1.361 E$	05	7．912E	34	4.865 E	4	．971E	04
m．19？！	2.278	1．713E	99	1.0025	A	1.558 FE	07	5， B C7\％	C． 5	1.115	05	6．4．99E	04	3．984E	ca	3E	04
$\cdots .1980$	2.980	1．5？se	2A	8，4K5E	07	1．27eE	07	4．5ア7e	05	9.178	04	5.289 E	04	3.252 E	ca	1．9P6E	4
9.15 sm	3.090°	1.31 Per	9 a	$6.907=$	の7	1． 633 E	07	3．55 28	C5	7－261E	04	－．220E	04	2．595E	$n 4$	1．ड84E	04
$0 \cdot 2039$	3．2nn	1.2538	98	S．B8r	97	9．2n9E	06	2．913E	הs	5.793 E	$n 4$	3．3F7E	04	2.070 E	04	1．264E	04
9.2159	3.310	－Kの7＊	$\xrightarrow{7}$	4.557	07	6． 5365	06	$2.265=$	05	$4.5 n 4 E$	04	$2.613 E$	24	1.68 eg	54	9.8285	03
n．2！xn	$3.42 n$	R．9395	97	3.5725	07	4.930 F	26	1．727E	05	$3.435 E$	04	1．006E	04	$1.227 E$	04	$7.495 E$	03
$\bigcirc . ? 239$	3． 3 C	C．${ }^{\text {cose }}$	97	2．77．6E	$n 7$	1． 724 C	06	1． 276 E	cs	$2.537 E$	04	1.474 E	04	9．n65E	c3	5．536E	03
ヘ． 2300	$3.64 n$	3．9125	97	$1.036 E$	$n 7$	$2.593 E$	06	9．0585	$n 4$	1．80tE	04	1.047 E	04	5．4 36E	03	3.9308	03
0.2375	3.750	2.638 E	07	1.3005	\rightarrow	1．722E	06	5．9n 25	04	1．174F	04	6．A21E	03	4．104E	03	2．ESIE	03
0.2440	3.860	1.5675	a）	7．873F	n_{B}	1． 01 RE	08	3．437E	04	6.833 E	03	3.971 E	03	2.4425	C3	1.4918	03
人，PR18	3．97n	7.4275	06	？，Kice	76	4．5e5F	05	1．595F	04	3．152E	03	1．832E	03	1．128E	03	5.879 E	02
0.2598	4.200	1．566F	75	7－0535	05	A． 8095	04	3．064F	03	＊．091F	02	3.540 E	ก2	2.1 TE	C2	$1.329 E$	02

Figure 26 （continued）

L BAND SUMMARY
AVERAGE INTEGRAL FLUX UITHIN ENERGY GANDS
(PARTICLES / (CM**2 - DAY))
CIRCULAR ORBIT. PER \& AP $=300 \mathrm{NM}$. FIELD MCD $=$ HEC-120, INC $=30$ DEG
mooels USED $=$ mE4. AES

ENERGY RANGES (MEY)	1.00			$1 \cdot 27$				4 values				1.55		1.65	1.75		1.85		
			1.22			1.8	$\begin{gathered} 2.05 \\ 10 \end{gathered}$												
	T0			TO						10		1.45				ro	T0		T
	1.22		1:27	1.32		1.37		1.45		2.55		1.65		1.75	1.85		1.95		2.15
$0.05-0.25$	2. 276	07	$1.76 E^{08}$	$4.67 E$	08	7.468	08	1.3AE	09	2.28E	09	1.59 E	09	1.12E 09	5.36E	08	0.0	0.0	9.0
0.25-0.50	9.27E	06	A.6SE 07	1.43 E	08	2.11E	08	$3.35 E$	\%8	$4.41 E$	0 O	$2.83 E$	08	1.52 E 08	6.33 E	07	0.0	0.0	200
$0.50=0.75$	3.25E	06	$1.86 E 07$	$4.55 E$	07	5.72 E	07	$6.65 E$	07	$6.39 E$	07	2.01 E	07	$9.27 E 25$	$4.44 E$	06	0.0	0.0	
0.7501 .00	1.24E	06	6.ATE O6	1.72E	07	2.00 E	07	$2.03 E$	07	1.60 E	07	6.11E	06	2.46 E OS	3.CSE	05	0.0	2.0	$n=0$
1.00- 1.25	9.36E	05	5.020^{66}	1.21E	07	$1.37 E$	07	1.37E	07	1.075	07	2.AOE	06	1.09 E OS	$3.11 E$	05	0.0	0.0	A.0
1.25-1.50	2.43E	05	$4.52 E 06$	1.08 E	07	$1.23 E$	07	$1.25 E$	07	9.515	06	2.08 E	06	6.42E OS	1.63E	05	0.0	0.0	0.0
1.50- 1.75	6.43E	05	4.47E 06	1.08 E	07	$1.22 E$	07	$1.21 E$	07	6.79E	06	1.63 E	OR	4.00 ES	0.64E	04	0.0	0.9	9.0
1.75-2.00	6.43E	05	$4.35 E$ OS	1.04E	07	1.14 E	07	$1.05 E$	07	7.428	06	$1.25 E$	06	$2.45 E 05$	4.73	04	0.0	0.0	0.0
2.00- 2.25	$7.14 E$	0 O	3.37E 06	8.03E	06	9.14 E	06	B.20E	08	$5.66 E$	06	$9.67 E$	05	1.67 E 05	$2.84 E$	04	0.9	0.0	O.0
2.25- 2.50	$4.16 E$	05	1.80E D6	4.30E	46	$4.96 E$	06	$4.52 E$	06	3.18 E	06	5.68 E	05	$1.01 E 05$	$1.62 E$	04	0.0	0.0	6.0
2.50-2.75	2.68E	05	1.2eE Of	2.71E	06	2.99 E	06	2.77E	D6	$2.01 E$	06	$3.73 E$	05	6.70E 94	$0.97 E$	03	0.0	0.0	0.0
2.75-3.00	1.47E	05	$5.91 E 05$	$1.31 E$	08	1-47E	06	1.388	06	1.02 E	06	$2.01 E$	05	3.78E 04	5.39E	03	0.0	0.0	$0 \cdot 0$
3.00- 3.25	1.26E	05	3.96E 05	9.50 E	05	1.08 E	06	9.87E	05	7.22E	05	1.4BE	05	2.95 E4	$3.13 E$	03	0.0	0.0	n. 0
3.25-3.50	4.40 E	04	9.seE 04	$2.20 E$	05	2.67 E	05	2.79 E	05	2.32 E	05	\$.55E	04	1.17E O4	$1.56 E$	03	0.0	0.0	0.0
3.50-3.75	1.62 E	04	2.3 AE 04	5.12 E	04	6.72 E	04	7.008	04	$7.45 E$	04	$2.09 E$	04	4.77E03	7.05E	02	0.0	0.0	
$3.75-4.00$	E.43E	03	6.65 EE 03	1.19 E	04	1.70E	04	$2.24 E$	04	$2.41 E$	C_{4}	7.96 E	03	$2.26 E 03$	0.0		0.0	0.0	0.0
4.00-4.25	0.0		0.0	$2.80 E$	03	4.30 E	03	7.065	D3	8.62 E	03	3.11 E		6.71 E 02	0.0		0.0	0.0	0.0
4.25-4.50	0.0		0.0	0.0		0.0		0.0		0.0		0.0		0.0	0.0		0.0	0.0	Cat
4.50	0.0		c. 0	0.0		0.0		0.0		0.0		$0 \cdot 9$		0.0	0.9		$0 \cdot 0$	0.0	n.n
TOTAL :	4.4EE	07	2.84E 08	7.35E		1.10E		1.85	09	$2.85 E$		1.39E	09	1.29E09	6.05E	08	0.0	0.0	0.0

Figure 27. Sample ORP Output

integrated flux table

CIRCULAR OREIT, PER AP $=300 \mathrm{Nm}$. FIELD MCD $=$ HEC-120. INC =30 DEG MODELS USED = AEA. AES

ENERGY RANGES (MEV)		$\begin{gathered} \text { AVE RAGEO } \\ \text { PLUX } \end{gathered}$	INTEGRAL FLux	PER CENT
		above el	IN ENERGY BAND	
	E2	(PER OAY)	E1-E2	
0.05	0.25	1.07E 10	B.38E 09	78.12
0.25 -	0.50	2.35E 99	1.68E 09	15.61
0.50-	0.75	6.73E 08	2.89808	2.69
0.75	1.00	3. 84E 08	9.180^{07}	0.86
1.00 m	1.25	2.92E O8	$6.05 E$ OT	0.56
$1.25-$	1.50	2. 32E 08	S.34E 07	c. 50
1.50-	1.75	1.79E Ot	5.13607	0.48
1.75-	2.00	1.27E 08	$4.65 E 97$	0.43
2.00-	2.25	0.08E 07	3.61E 07	0.34
$2.25-$	2.50	4.47E 07	$1.99 E$ OT	0.19
2. $50-$	2.75	2.47E 07	$1.25 E 07$	C. 12
2.78	3. 60	$1.23 E 07$	$6.17 E 96$	0.08
3.00-	3.25	6.11506	4.43E 06	0.04
3.25-	3. 50	1.69 E 06	1.21 E 06	0.01
3.50-	3.75	4.79E 05	3.3aE OS	0.00
$3.75-$	4.00	1.41 E 05	$1.01 E 05$	0.00
$4.00=$	4.25	3. SAE O4	$3.11 \mathrm{E}^{1}$	0.00
$4.25-$	4.50	8. $26 E 03$	$8.26 E 03$	$0 \cdot c o$
4.50		0.0		0.0

Figure 27 (continued)

INTENSITY SUMMARY
AVERAGE I NTEGRAL FLUX EITHIN ENERGY BANDS
(PARTICLES / (CM**2 - CAY))
CIRCULAR ORBIT, PER \& AP $=300 \mathrm{NM}$. FIELD MOC $=\mathrm{HEC-120}$. INCL $=30$ DEG
MODELS USEO $=$ AEA. AES

Figure 27 (continued)

PEAK FLUX PER ORBIT TAELE
CIRCULAR OREIT. PER \& AP $=300 \mathrm{NM}$. FIELD MOD $=$ HSC-120, INCL $=30$ DEG
MCDELS USED $=$ AE4. AES

ORE IT NO.	peak flux ENCOUNTERED	LONGITUDE	LATItude	AL TI TLOE	$\begin{aligned} & \text { TIME } \\ & \text { (HRSS) } \end{aligned}$	FIELC(B) (GAUSS)	LINESL	TOTAL FLUX/OREIT (OART ICLES/CMF\# 2)	S-N EGUATORIAL CROSSING (OEG)
1	2.731E 03	290.星	-20.41	555.6	1.40000	0.19782	1.171	1.158 Cos	0.0
2	1.356E 02	298.17	-10.23	555.8	3.10000	0.21322	1.154	4.733 E 04	336.70
3	2.372500	271.88	-9.81	555.6	4.70000	0.23016	1.109	4. ezae 02	313.39
4	0.0	266.78	1.76	555.6	6.40000	0.25958	1.140	$0 \cdot 0$	290.09
5	0.0	240.47	0.32	555.6	7.98333	0.25276	1.089	0.0	266.78
6	0.0	217.17	0.76	555.6	9.58333	0.0	0.0	c.e	240.47
7	0.0	193.86	1.20	555.6	11.18333	0.0	0.0	0.0	217.17
8	2.373E 00	356.20	2.34	553.6	11.95000	0.23064	1.111	4.610 E 02	193.86
9	$4.13 c E 03$	24.63	-24.39	555.6	13.81667	0.24900	1.592	$1.118 E 06$	170.56
10	9.011204	357.82	-23.69	555.6	15.40000	0.22745	1.471	3.312 E 07	144.25
11	$2.830 E O 5$	342.10	-26.16	555.6	17.03331	¢. 21194	1.412	1.017 E O8	120.95
12	$4.440 E 05$	334.69	-29.25	555.6	18.70000	0.20692	1.407	1.717 EOB	87.84
13	4.615E OS	332.00	-29.72	555.6	20.38332	0.20514	1.394	$2.396 E 08$	74.34
14	2.57EE 05	320.95	-28.10	555.6	22.03331	0.19706	1.297	1.191 E 0 O	48.03
15	3.343E 04	313.03	-24.01	555.6	23.70000	0.19300	1.221	1.439 E O	24.72
16	c. 0	10.48	6.55	555.6	24.00000	0.24533	1.083	0.0	0.0

Figure 27 (continued)

								MODEL USED=AEA, AES		
	oreit metitude..		300 nmi		total time.. 24. hour				time interva	al.. 60. seconos
	$\begin{aligned} & \text { EVERGG } \\ & \text { WEV } \end{aligned}$		$\begin{aligned} & \text { ORe ITAL FLUX } \\ & 0 \\ & \hline \text { DEG } \end{aligned}$		oret tal flux		$\underset{\substack{\text { ORBITAL } \\ \text { OEG }}}{ }$		oreital flux ge deg	
	Et	E2	*E1	E1-E2	* 1	El_{1}-E2	$* E 1$			
	0.05	0.25 0.80	0.416 E 0.2868	0.1288 0.7026 0.05	O.107E 11 0.2351 10	$0.938 E \quad 10$ $0.168 E_{10}$ 0.0	O.232E 0.511 0.510 0.10	0.181811 0.33610	0.194E 11	
	\bigcirc	0.75	0.218E Oe	n. 335 ES	$0.673 E$	O. 2999	O.172E 10	9.72EE 09		O.e90e os
	0.75	1.00	0.184 E 06	$0.154 E$ 05	0.384E 09	$0.918 e^{\text {ob }}$	0.992 E 09	0.364E 0	0.932 E 09	-. 251509
	1.00	1.25	0.1696	$0.132 \mathrm{Fc5}$	0.292E 0s	0.cose os	0.623E 09	0.193509	0.581 E 09	0.196809
	1.25	1.50 1.75	a.156E 68	-.132x 05	0.2328 0.1708 0.108	C.534E 08	2.435E 9	-1335 99	0.304 E 09	$0.125 E 09$
	1.50	1.75 2.00	-.1142E	(1332 05	-1179E	-0.513E 00	(0.302E 090	-	O.269E	
0	2.00	2.25	O.10ee De	0.132 E 05	0.808 E D	0.3615 os	0.135 c c9	0.5ese 08	0.118 BF	-. E30F ${ }^{\text {O }}$
\bigcirc	2.25	2.50	$0.8 \in 7 e^{\text {co }}$	0.132E 08	0.447E OB	-. 190 E OB	C.843E Of	- 3100 OB	$0.736 E_{\text {Of }}$	0.2715 Se
	2.50	2.75	${ }^{0.6965}$	0.1328 05	0.247708	O.125E On	0.532208	$\bigcirc .217808$	0.465E CB	-. 189E Of
	2.75	3.00	c.551E 65	0.1158	$0.123 E 08$	$0.617 \mathrm{EF}_{07}$	$0.315 E^{08}$	D.126E 08	\bigcirc	O.110E 08
	3.00 3.25	3.25 3.50		$\begin{array}{ll}0.115 E & \text { OS } \\ 0.979 E \\ 0.04\end{array}$	0.8116 0.1096 0			0.990 E 0.455 O 0	O.156E O.797e O7	
	3.50	3.75	$0.155^{\text {E }}$	0.663 E 04	0.479E O6	0.33EE 06	0.448E 07	0.300 E 07	0.397E 07	0. 2686 c
	3.75	4.00	0.12eE 0s	$0.663{ }^{0} 04$	0.141 E OS	$0.101 E^{06}$	0.148 E 07	$0.992 E 06$	0.131 E 07	O-800E O6
	4.00 4.35	4.25 4.50	$0.454{ }^{0.4}$	0.0	0.394805	0.312 E OS	$0.4896 E^{\circ 8}$	0.3946 06	0.432 E O6	$0.350 E^{06}$
	4.25 4.50	4.50	-0,	0	${ }_{\substack{0}}^{\substack{0.826 E ~}} 0$	0		${ }^{0.8535}$	-	

Figure 27 (continued)

Job Card

```
// EXEC FORTRANH,PARM='OPT=2,ID,MAP,XREF',REGION=45OK' or 375K
//SOURCE.SYSIN DD *
Source Deck
/*
// EXEC LINKGO,REGION.GO = 160K
//LINK.OBJECT DD *
Object Deck
/*
//G0.FT1OF001 DD (input tape information)
//G0.FT13F001 DD (output tape information)
//GO.SYSUDUMP DD SYSOUT=A
//GO.GSFCDUMP DD SYSOUT=A (GSFC only)
//GO.DATA5 DD *
Data Deck (Figure 29)
/*
//
```

FSource block data statements.
$X_{\text {Object }}$ block data statements.

Figure 28, ORP Deck Setup

Figure 29. ORP Data Deck Setup

