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ABSTRACT

This work concerns the partial structure factors of
classical simple 1iquid_mixtures near phase se?&ratioh. The
theory is developed for particles interacting thrdugh'pair
.potentials, and is thus appropriate both to insulating fluids,
and also to metallic systems if these may be described bj an
effecﬁivelion-ion.pair interacﬁion}. The motivation arose
from consideration of‘metallic liquid mixtures, in which

resistive anomalies have been observed near phase separatiomn.

ef

r?f +-v}., where v?.
1] ij

The pair potential is written as vij = vi;
is the pair interaction appropriate to a reference fluid and
iéAchosen so that vij'may'be.treated'és a perturﬁation. We
study how to correct a mean field tﬁeory appfopriate tq-such a
'potential for the effects of correlated motions in‘the |
referencé fluid..lThe'work is cast in‘terms of functions fij
which are closely related to the direct corfelation functions
of Ornstéin'and Zernike. Exact equations for the fij are

derived by é method, originally.developed for the study of

the quantum electron gas,‘which treats the densities of the

-



mixture as basic variables in a 1inear response problem. We
obtain approximate solutions to these equations which, however,
are exact to first order in vij in éhe long wavelength limit,
and which explicitly include the effects of reference system
correlations. Thesa solutions are then used to,éalcﬁlate the
long wavelength form of the structure factors of metallic
alloys, where werselect for vi?f the potentials appropriate to
a mixture of hard spheres. We seek to observe the singular-
ities, at k = 0, associated with phase separation (in the
critical region) and the long wavelength behavior.which
accompanies these singularities. The results arerqualita—
tively in accord with our physical expectations. Quantitétive
agreement with expefiment seems to turn on thé selection of
the Hard core feferencé potential in terms of the metallic
effective pair'potentiél, a task for which a successful
systematic proéeduré hés yet to be fouﬁd. It is @suggested
thgt the present effective pair potentials are perhaps not
properly used to calculate the metallic structure factors at
long wavelength. Suggestions are made for application of
these results to the thermodynamic and structural properties
of insulating fluidé. In the case of metallic systems, a
qualitative explanation of the resistive anomaly is proposed,

and suggestions made for a quantitative test of the hypothesis.

~ARA



I. Introductioﬁ and Statement of the Problem

The work reﬁorted here arose from consideration of a
single experimental result, the resistange anomaly observed
in some binary 1iquia metal alloys as the phase separation
temperature is approached. The importance.of this result is
that the theoretical difficuity it presents has its origin
in a central problem of the theory of classical liguids,
namely, thé calculation of ligquid structure from the
interactions among the particles of the liquid. 1In this
section, we shall describe these experiments and develop
our analysis of these experiments tb the point where :a clear
statement of the prbblem and program of this thesis can be

‘made.

I-A. Phase Separation and the Experiment of Schﬁfmann
and Parks

To-set the stage, we must begin with a récital of the
basic facts of phase separation in binary systems. Consider
a binary system composed of Ny particles of type 1 and N2
particles of type 2. The thermodynamic state of this
system may be considé;gd a function of three wvariables;
pressure b, temperature T, and concentration x = Nz/(Nl + NZ).
The phase diagram relevant to this work is thét formed, at
constant p, in the x-T plane. Fig. 1 represents schematically
a portion of an x-T diagram of the type important to our work.

- It represents, in fact, an abstraction from the x~T diaQram

-1- b
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Portion of an x~-T phase diagram of a binary system

which exhibits phase separation.




compiled by Schurmann (1%71) for the Li-Na system.

The phase diagram specifies, for each point (x,T), the
stable configuration of the corresponding mixture. In Fig. 1,
points from the small triangular region at the lower left
correspond to a solid phase. The phase boundary from D to
E separates the remainder of the region shown into two
liguid phases. For a point above the boundary, say the poiht
A specified by (xA,TA), thé stable configuration is a single,
uniformly mixed, alloy of concentration x,. For a point
below the boundary, say the point specified by (xB,TB), £he
stable configuration is a separated phase. In this phase,
two distinct alloys are present simultaneously. (Under the
influence of gravitation, these alloys will occupy two
separate regions of the container, divided by a meniscus.)
These alloys are described by concentrations x, <X and

B

5 > Xpi where Xq and x, are determined by TB alone as the

concentrations at which the phase boundary cuts the line

X

T = TB. This construction is illustrated in Fig. 1. The

relative amounts of these two alloys are determined from Xy

and x the given x and the requirement that all particles

2’ B'
be accounted for.

At points.above the phase boundary, where a single
uniform alloy can be maintained at equilibrium, the components
are said to be miscible. The boundary defines a critical

temperature T, above which the components are miscible in all

C
proportions. The point C at which the line T = T intersects

the phase boundary is the critical point, and defines a
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¢critical concentration Xne TC and X afe indicated in Fig. 1.
The transition of an alloy from the uniform to the separated
phase is known as phase separation.

The experiments which motivated this work are concerned
with what happens in the stable uniform alloy at femperatures
Jjust above phase separation. Schurmann and Parks (1971) have
measured the electrical resistance as a function of
temperature at various concentrations in two metallic binary
systems, Li-Na and Ga-Hg. As we shall outline shortly, the
electiical resistance provides an integrated measure of
fluctuation effects. The purpose of these experiments was
to determine if changes in the fluctuation spectrum would
cause the resistance to show any precursive behavior, that
is, to respond in an observable way as phase separation is
approached. Such a response might be considered analogous
to the critical ocpalescence of the critical ligquid-gas system.

No precursive behavior was observed at any concentration
in the Ga-Hg system. In the Li-Na system, some degree of
precursive behavior appeared at most concentrations, and the
effect became more pronounced as the concentration varied
toward the critical value. The effect takes the following
form. 1If the temperature is decreased, starting at a point
well removed from phase separation, tﬁe resistance decreases
at first in a nearly linear fashion. As the temperature of
separation is approached, however, the resistance begins to
decrease more rapidly, so that a plot of resistance vs. T

develops a pronounced curvature, and the resistance attains



a value at separation which lies below the linear

extrapolation of the high temperature results.

I-B. The Resistance Anomaiy and Liquid Structure

To understand the significance of these experiments, we
consider first the theory of conduction in liguid metal
alloys. The simplest successful theory was proposed for the
case of a pure fluid by Ziman (196l1). The theory was
generalized to. the case of binary alloys by Ziman and Faber
{1965). The development of the theory has been aided by the
introduction of adegquate models for the electron-ion
pseudopotential and the ligquid structure. Calculations for
pure simple liguid metals (Ashcroft and Lekner, 1966) and for
liguid binary alloys of simple metals (Ashcroft and Langreth,
1967, A, B, to be referred to as Al-I and Al-II respectively)
have achieved reasonable agreement with experiment. Although
this success remains something of a mystery,.we-base our
analysis oﬁ the Ziman theory. The theory, as we shall see,
encompasses, in a reasonable way, the possibility of an
anomaly near phase separation.

In the formulation of Al-II, the result of the Ziman and

Faber theory for the resistivity of a binary alloy is written

_ 4rdh 1 3p, /v
Pelec e?k ;* };dy y 2/ {l=x) Slz(y)vl(y)v2(y)
F

+ 38 @) (v )2+ (08, ) (v, 0% -

For this discussion, we need not give careful definitions to
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most of the pieces of this expression. .The liguid metal is
viewed as a system of rigid ion cores, of types one and two,
moving about in a sea of nearly free conduction electrons.
Defined relative to this model, kF is the usual Fermi wave
vector, Z* is a (concentration dependent) effecti&e valence,
X 1s the concentration variable we have already defined, y is
a wave number variable measured in units of ZkF, and the
functions vi(y) are dimensionless form factors for the
screened electron-ion interactions. The key functions of
our work are the functions Sij(y), the partial structure
factors, for they are the only functions in (1-1) which
contain detailed information on the ionic positions. They

are defined by

_ ~% . A drre - X -
Siy 00 = (NN TE () By(-R)> - (NDT 8 oL (1-2)

Here, Nl and N2 are the particle numbers defined above, < >
denotes a thermal average, and the operators ﬁi(g} are
defined by

ik-

1
r
pilk) =2 e T, (1-3)
m

where 5; denotes the position of the mth particle of type i.

The operators §. (k) have the property that
l_-.

pi (_}F_) = <6i'(5_)> r {1-4)

h Fourier coefficient of the equilibrium

where pi(E) is the Et
density of particles of type i. From {1-2), we see that the

Sij(E) represent the static density fluctuation spectrum of
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the liquid. It is reasonable to exbect the density
fluctuations to reflect in some way the nearneSs of ﬁhe'
phase separation instability. This idea provided the
original motivation for the resiétivity measurements, and
lies at the heart of our work.

It will be useful in this work to present here a few more
relations involving the structure factors. A more detailed
discussion of such matters is reserved for an appendix (&)
on the classical n-body distribution functioné.

Many of the general points we need to make can be made
in reference to pure fluids, avoiding the clutter of notation
introduced by consideration of binary systems. For a pure
fluid, we can define a single static structure factor S(k) by

ik - (x _Em)

S(k) = % <Ce TR, Ly (1-5)

k,0 !
where N is the number of particles and I, denotes the position

t

of the n h particle. This function is related by Fourier

transform to the radial distribution function g(r):

v  -iker | '
glr) = 1 + 5 e == (s(k) -1 , (1-6)
N (2m?

where V is the volume of the system.* The function g(r) is
proportional to the conditional probability that a particle
will be fouﬁd at r, given a particle at the origin. Finally,
the functions S(k) and g(r) are related to the two body

distribution function p2(£,£'). This function has the property

*The integral in this equation, incidently, defines the
Fourier transform convention which we adopt throughout this
work. ) :



iat p,{e,x')dr 4 is the probability o inding simulta~
th 2(______')d_ ar' i h babili f finding simul

neously one particle in the volume element dr about r and

another in the element dr’ about r'. 1In the translationally
invariant system, p2(£,£') = p2(£—£') and
2
glx) = (V/N}" p,(x) - (1-7)

The generalization of (1-6)} to binary systems is

ak . |
g;.(x) = 1+ %’f — e IsLm) -6, L) (1-8)

where gij(g) now represents, suitably normalized, the
probability of finding a particle of type j at a distance
r from a given particle of type i. Clearly, gij(E) = g,. (r).

e B
The generalization of (1-7) is straightforward.

We can collect what has been said so far into a first
statement of the problem of this work. That problem is to
calculate the partial static structure factors of the alloy
with sufficient precision that the onset of phase separation

can be observed and the resistance anomaly explained.

I-C. Expectations

The development of our approach has been guided to a
considerable extent by our expectations for the form of the
outcome.

The first, and'most important, of these expectations
concerns the limit as k->0, and takes the following form.

At all points (x,T}), we can in principle calculate the
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structure factors of the uniform phése. (For this purpose,
points below the phase boundary are exceptional only in that
the appropriate Gibbs energy is higher than that of some
separated phase.) A thermodynamic analysis (outlined in
appendix B) shows that such qaléulations will yield, at each
concentration, a temperature at which the partial structure
factors will diverge as k->0. When plotted vs. céncentration,
these temperatures will form a curve suggesting, but not
strictly reproducing,.the phase boundary. This curve lies in
general below the phase boundary, rising to join it at only -
one point, the critical point. We shall seek to calculate
this line of hypothetical singularities at k = 0, and identify
its highest point as the critical point.

A second guide in this work has been a conjecture that
it is the small k behavior associated with this k = 0
singularity which gives rise to the resistance anomaly. As
this conjecture is at variance with that of Schiirmann and
Parks (1971), we should outline the manner in which the small
k behavicr might account for the observed effects.* First, in

the resistance data for the Li-Na system, some degree of

*This conjecture is also at variance with that of Fisher and
Langer (1968), who suggest that the observed resistance
‘ancmalies at magnetic critical points must not be due to long
range correlations, because of the finite mean free path of
the conduction electrons. Their point, however, is that the
electron mean free path is limited by scattering other than
spin scattering (e.g. phonons, impurities), while for the
liguid metal alloy, we consider that the only scattering
present is the scattering from density fluctuations treated
in the gziman formula. The electrons may thus be scattered
by even long wavelength fluctuations. :
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anomalous behavior is observed at most concentrations, but.
the effect clearly becomes more pronounced as the concen-
tration is varied toward the critical value. This observation
seems to reflect the relation, described above, between the
phase boundary and the line of singularities.

Secondly, we must ask why the effect is observed in
Li-Na but not in Ga-Hg. Consider the form of (1-1). The
upper limit on the integral is 2kF, which depends on the
effective valence of the alloy. Now the partial structure
factors are characterized by strong first peaks (AL-II), and
the valence dependence of the integration limit is such that
these peaks lie within the range of integration for Ga-Hg,
but just outside it for Li-Na. Thus, when we observe that
large k effects are heavily weighted by the factor y?%, it is
reascnable that a small k effect will be lost in Ga- Hg, but
{barely) observable in Li-Na. We note ih support of these
ideas that the effect in Li-Na is very small. Even at the
critical concentration the resistance at separation lies less
than 1% below the linear extrapolation of the high temperature
results.

Finally, we must ask why the resistance is depressed by
this effect, when the structure factors of (1~1) are diverging.'
When Bhatia and Thornton (1970}.discussed these singularities,
they in fact suggested that the resistance should go up. In
this matter, we can-only note that the complexities of the
alloy (e.g. the factors Sll and Syo diverge positively while

812 diverges negatively) are such that a clear prediction may
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not be possible.

I-D. Structure of Metallic Liguids - Previous Results

To arrive at a final statement of the problem, we need
to review the assumptions and principle results of the theory
of 1iquid metal structure, as it existed at the inception of
this work. A

At the level appropriate here, the theory of liquid
metals rests on séveral standard assumptions. The fundamental
assumption is the validity of the adiabatic approximation,
which asserts that, on the time scale of ionic motions, the
relatively light and mobile conduction electrons adjus£
instantly to any change in ionic configufation. This means
that, for purposes of determining ionic motion, the electronic
configuration may bhe considered to be completely specified by
only the volume V and the ionic positions, which we denote by
the general variable R. Then the total energy may also be
considered a function of only V and R, and denoted by

E (V,R). A second assumption (actually implicit in this

metal

definition of E {(V,R)) is that the ions exhibit no

metal
internal structﬁre. The final assumption is that the ions
form a classical system so that their motion may be determined
by classical dynamics.

With these assumptions, the problem of ionic structure
factors and motion is cast as the problem of a classical

liquid, with, however, a complicated energy function. 1In

theories of .classical liquids, the assumption is almost
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universally made that the energy function depends only on the
particle positions R, and is expressible as a sum of pair
interactions. That is, it is assumed that the energy may be
written as
UR) =3 L vir, - r.) . (1-9)
oy =i =3
i#j ,
Ashcroft and Langreth {1967C, AL-II) have proposed an

approximate form for E 1(V,R) in which all dependence on

meta
R can be accounted for in a sum over an effective, volume
dependent, pair interaction between ions. (The total energy
of the liguid, however, is not recovered by a sum of the form
{1-9), since the sum excludes some volume dependent terms.)
This effective pair potential will be denoted by VAL. These
results suggested that classical liquid theory might be
applied to the ions of a simple liquid metal at constant

volume by using VA

as the pair interaction. This idea has
opened the way to important progress in understanding liquid
metal strﬁcture. Though we shall mount a selective challenge
to this idea in section V, it formed a crucial starting
assumption of the present work.

The important strides in understanding liquid metal
structure have come with the application of the hard sphere
model. When the potential VAL is viewed in real space (AL-II),
it is characterized by a short range, harshly repulsive core,
and a weak, long raﬁge, generally attractive tail. The

simplest non-trivial model of such a potential is that acting

between hard spheres of diameter o:
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©  r<g '
ch(r) = { (1-10)
0 r»o

The structure factors appropriate to the hard sphere model
fluid are reasonably well known from machine calculations
(Alder and Wainwright, 1958; Alder and Hoover, 1968; Wood, .
1968; Rowlinson,_1968) and in the analytic Percus-Yevik (PY)
approximation (Percus and Yevik, 1958; Wertheim, 1963; Thiele,
1963; Lebowitz, 1964; Ashcroft and Lekner, 1966; AL-I ).

Even before the form of VAL was suggestéd, Ashcroft and
Lekner had applied the hard sphere modél to pufe simple liquid
metals with considerable success. They showed that the hard
sphere structure factors ¢f the PY approximation could be
adjusted by selection ©f ¢ to give an excellent fit tonthe.
experimental structure factors of these systems in the region
of the first peak and, to a lesser extent, down to the
smallest wave vectors for which experimental data were
available. Using these hard sphere structure factors in the
Ziman fofmula, they calculated the electrical resistivity and
achieved reasonable agreement with experiment. They also
noted that the hard sphere diameter ¢ used to achieve the
structural fit corresponded, near the solidification point of
each element, to a packing fraction* of about 45%. This
compares fa§orably with the value of 49% at which machine
calculations place the crystallization of the hard sphere

ligquid (Hoover -and Ree, 1968).

*The packing fraction is the ratio of the volume occupied by
the hard spheres to the total volume of the system (eq. (5-9}).
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When the potential VAL was inﬁroduced, Ashcroft and
Langreth showed that it bore a simple physical relation to the
hard core diameters of the Ashcroft-Lekner work. They went on
to generalize this relation to the case of a binary alloy, and
use the structure factors of the hard sphere mixture (in the
PY approximation) in a successful calculation of alloy
resistivities (restricted, of course, to alloys which do not
separate).

The hard sphere success, however, does not appear to
include an accounting for phase separation. Phase separation
has not been observed in hard sphere mixtures either by
machine calculation (Alder, 1964 (M.D.) and Rotenberg, 1965
(M.C.)) or by analytic study from the PY approximation
(Lebowitz and Rowlinson, 1964). Although this is apparently
still an open guestion, the negative result is not unexpected.
The hard sphere potential defines no energy scale, but only
a scale of length. Then a phase transition in a hard sphere
fluid can be driven only by geometry. When we consider phase
separation in mixtures, we note that both the uniform and
separated phases are characterized by disordered alloys, so
that we do not expect gecmetry to play the dominant role in
the transition. (We shall, in any case, treat the important
hard sphere systems of this work in the PY approximation,
within which these systems are known to be stable.} The plan
of our work will then be to go beyond the hard sphere model in

order to understand phase separation.
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I-E. Statement of the Problem and Outline of the Thesis

What is needed is & ﬁheory of structure which preserves
the successes of the hard sphere model, Eut goes beyond this
model in ofder to account for phase sepaiation. The natural
suggestion is that we try to calculate the liquid structure by
a perturbation theory which begins in zero order with the hard
sphere liquid.

The actuwal program set for this work results from
combining this suggestion with one further hypothesis. That
hypothesis addresses the following question. .The perturbation
theory we envision will find its most natural formulation for
potentials of the form

v = V4, | (1-11)
where vl is the perturbation. But the potential v cannot be
cast in this form, since all potentials of this form have a
rigorous hard core, while VAL has a core with a steep but
finite slope. It is our hypothesis that the "softness" of
the core has little effect on the physics of phase separation,
‘and thus, at least for a first attempt at this problem, we
néed not consider the more elaborate perturbation theory
required to treat this softness.* Rather, we assume that the
essential physics of phase separation is implicit in a
potential of the form (1-11l}), and develop our theory for such

a potential. We call this potential the "hard core plus tail”

*Such theories have been developed. See for instance Andersen
et al. (1971) and Barker and Henderson {1967B).
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model of VAL will be VHC plus that part of VAL which lies

outside the core.
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potential. 1In Fig. 2, we present a schematic showing a
potential VAL, and a hard core plus tail model of this
potential.

Based on these considerations, the ﬁrogram set for this
work was to develop a suitable perturbation approach to the
hard core plus tail liquid, ahd then to perform calculations
for real liquid metal systems by.constructing-hard core plus
tail models of the potentials VAL. In section II, we discuss
the general nature of the perturbation problem in liquids, and
then present and discuss the mean field theories which |
provided the motivation for our approach. In.sections ITI and
IV, we develop our approach tc the problem, first through a
set of general equations, and then through a study of
approximate solutions to these equatiocns. The best solutions
appear at long wavelengths. In section V, we turn to the
application of these results to liguid metallic systems. We
perform calculations for both pure fluids and binary systems.
This work ultimately encounters a fundamental difficulty in
the use of the pair potential v®F for calculations at long
wavelength. We do not undertake to resolve this difficulty,
but we do suggest that our calculations are perhaps best
viewed as model‘calculations, which incorporate some, but not
all, of the essential features of metallic systems. The
calculated results are in accord with our physical expec-
tations. Although a resistivity calculation is not presented,
suggestions are made for the form of a calculation to test the

hypotheses described above. Finally, in section VI, we review
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and discuss what has been learned, and suggest further lines
of work both for the perturbation theory itself and for its

application to metallic systems.



II. General Discussion and Mean Field Theory

In this and the next two sections, we shall develop our
approach to the perturbation theory of the hard core plus tail
mixture. In recent years, a good deal of effort has been
devoted to the perturbation théory 6f simple liquids. (For a
recent review, see Barker and Henderson, 1972). Some of this
work, dealing with the softness of the core, has already-been
menticned. The majbr lines developed in this work have been
directed, initially at least, at the calculation of thermo-
dynamic and structural properties of Lennard-Jones fluids away
from any critical points. In contrast, the thrust of our
effort has been toidevelop an approach specifically designed
for the problem of critical fluctuations in binary metallic
liguid systems. The result has been that our work did not
grow directly from any of the major lines of recent
perturbation theory, but deﬁeloped instead out of consider-
ation of the simplest mean field theory of the hard core plus
tail liquid. 1In this section, we shall first review briefly-
some of the main lines of liquid perturbation.theory, for the
insights they offer into the general nature of the problem,
and then turn to a more detailed presentation and discussion.
of the mean field appreach. In order not to clutter this
section with the notation of mixtures, we shall make its
general points in reference to pure fluids, except where

explicitly noted.

-19-
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II-A. General Discussion

We seek a perturbation theory which begins with a
"reference" fluid described by a pair interaction vref' and
considers the properties of a "real" fluid described by a pair

interaction, v, of the form
v = v + v . ' (2-1)

The plan is to calculate the properties of such a fluid as an
expansion in vl abdﬁt the properties of the reference fluid.
We shall ultimately select for the reference potential the
hard core potential of eq. (1~10).

Thig program faces a major difficulty in principle,
namely, that the ultihate reference system, the hard sphere
liquid, is incompletely understood. The limits of our
knowledge are best expressed in the language of the n-body
distribution functions. {See Appendix A). Of these, only the
one and two-body distribution functions are known with any
accuracy for the hard sphere liquid. But straightforward
expansions in vl of either the Helmholtz free energy (Zwanzig,
1954) or structure factors (Coopersmith and Brout, 1963; also
Brout, 1965) of the "real" fluid lead rapidly to terms
requiring higher distribution functions of the reference
fluid. This difficulty is of crucial importance in deter-
mining the form ultimately taken by any of the perturbation
theories, including our own. |

This point is usually made in another way. Although the

ref

5 for the hard core liquid is a field in

calculation of »p
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itself, the fundamental assumption of all the perturbation
theories, again including our owh, is that p;ef is a known
function.

The present activity in the pertﬁrbétion theories of
liquids begins with the ﬁork of Zwanzig (1954) who derivéd

the expansion for the free energy of a fluid with the pair

potential of the form (2-1). The expansion takes the form

ref
2

Ire

Fr=rf %Jh; dr’ vl(gfg') P (E;E') + o(vl)z. (2-2)

Here, P and Fref

are the free energies of the "real" and-
reference fluids reséectively, and the other elements have
already been defined. All higher terms in this series involve
reference distribution functions.of order higher than two. 1In
éarly work {(e.g. Smith and Alder, 1959), the series was
truncated after the first order term so that only pgef was
required. Though we start from a different viewpoint, an.
expansion similar to (2-2) eventually plays an important role
in our work. |

In later work, Barker and Henderson (l1967A) studied the

second order term in (2-2). This term contains reference

ef ref

three and four-body distribution functions, pg and Py #
which, for these purposes, are essentially inaccessible to
present analytic and "machine experiment" technigques. Viewed
in one way, the work of Barker and Henderson shows that these
complicated functions actually contain mbre information than

is needed to calculate the second order term. They cast the

required information into a form which is reasonably
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accessible to analytic approximation {1967a) and machine
calculation (Barker and Henderson, 1972). The Barker-
Henderson theory has found its chief application to the
thermodynamic (and some structural) properties of Lennard-
Jones fluids. (These are reviewed by Barker and Henderson,
1972.) Though the approach and application are very different
from ours, there are ultimately some points of contact between
the Barker-Henderson work and our own. These will be pointed
out in the concluding discussions of section VI.

Turning from thermodynamics to consideration of the
structure factors, we find that the direct expansion of s (k)
in powers of vl yields, even in first order, terms requiring
hard sphere distribution functions of order greater than two.
This expansion was presented by Brout and Coopersmith (1963),
who attempted to surmount this difficulty by approximating the
" higher order distribution functions with a superposition of
the functions pgef. Since their work, it has been shown.that
this problem has a =olution in principle, which can be
obtained by beginning the perturbation theocry not about the
hard core fluid, but about the ideal gas, for which, of
course, all distribution functions are known. The result is
a series in the full potential v. (The development of this
series is presented in several places. For presentation,
discussion and references, see Rushbrooke (1968).) If the

ref and Vl, partial summations

in favor of p;ef'

potential v is then split into v

can be performed which eliminate erf

yielding a series in which each term can be evaluated knowing
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£ and vl. This development forms the basis of recent

only pge
work by Andersen and Chandler (1972), to which the reader is
referred for discussion and references. Though we shall not
have occasion to use this series expliciﬁly, we have in fact
studied it in some.detaii,‘and its existence and form have
influenced this work at some points. These points will be
mentioned as they appear. The Andersen~Chandler work itself -

has some relation to our own, and we shall have occasion to

mention it later on.

As discussed at the outset, our work, despite its links
to these various approaches, has developed primarily from
consideration of the mean field theory of the hard core plus

tail system, to which we now turn.

II-B. The Mean Field Theory

At the base of our work is the observation that the
structure factor S(k) bears a simple relation to the static
density response function of the liguid. Consider a static
external field ¢(r) applied to a pure liquid of mean density
Pos The ligquid will respond to this field by assuming a
configuration in which the local density, given by p(r), will
not in general be uniform. If the density response §p(r) =

p(r) - p, is given in reciprocal space by
Sp(k) = x(K) (k) + ol , (2-3)

then, for a classical system,
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X(k) = -Bp.S(k) . (2-4)
(Here, B = l/kBT‘) This result may be straightforwardly
derived from the definition of S(k) and the statistical
definition of the density thermal average. The function X (k)
is the linear density response function of the liquid. Though
the relation (Zz-4) is a simple proportionality, it is
convenient to cast the development of this and the following
two sections in terms of y rather than 8, for that development
leans heavily on the linear response interpretation of S.

To display the mean field theories, and for later use in
the formalism, it is useful to develop the following notation.

We first give a name to the inverse of y by defining

R -
£k) = HE | (2-5)

The comparison of "real™ and reference fluids then takes the
following form. The "real" system, with potential v, is
characterized by a response function x{k}, while the reference

system, with potential vref

+ is characterized by the response
function Xref(£). These functions in turn, through the form
(2-5), define functions f£(k) and fref(£). Then, with the

natural definition
fhx) = £k - 75 (2-6)

we can write
ref<£)

X (k) = . {2-7)
B VR 3 .
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If we substitute {2-7) into {2-3), the result can be written

aeff

sptk) = X" F ) o2t (k) + 0(0)?, (2~8)
where, in real space, the "effective poténtial" ¢e£f takes the
form

025 (x) = o(m) + Jd;_' £l(z-z") 8otz . (2-9)

In words, these last equations cast the response of the real
fluid as the response of the reference fluid to an effective’

potential which contains both the applied potential and the

effects of the perturbing pair potential vl.

The simplest mean field approximation is to let the

ref _ eff

reference system be an ideal gas (v 0) and take for ¢

the "Hartree" potential; i.e.

ref(

x5 (k) = -Bp, - | (2-10)

and

() = o) + fag' viz-r')6p(z') . - (2-11)

Then, clearly fl = v, and we have

Bp

x(k) = 1 +-B'p:vug)" (2-12)

These steps represent a classical realization of the familiar

random phase approximation to the response of the gquantum

*The result (2—10) can be calculated directly, but it also
follows gquickly, via egs. (1-6) and (2-4), from the well known
result that g(r) = 1 for an ideal gas.
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electron gas. Stroud (1973) has already used the general-
ization of this approach for a two component system to

consider phase separation in binary liguid metal alloys.

. , . . r
It i1s our purpose to consider the case in which v ef

= VHC. A natural approximation ({in the spirit of (2-11))

would be to let ¢Eff be a Hartree potential based only on vl:

o* ) = ¢ + far' vzrnse . (2-13)
In this form, fl = vl and we have
X C (k)
x (k) = . A (2-14)

1 - vt k)
Such a theory, however, suffers from a peculiar ambiguity.

The prchlem is that, for erf = VHC, the region r<o can never
be sampled. Then the physics of the liguid must be indepen-
dent of the form given to vl(g) for r<g. This requirement is
clearly not met by the form (2-14).

To perform, with any confidence, a modification of (2-14)
which removes this difficulty, we must return to the beginning
and develop a systematic theory. But that is not the purpose
of this section. Our purpose here is to present the flavor
of the mean field idea, and to describe somé calculations
which, by pointing out the faults and virtues of that idea,
motivate the development of our formalism. For these purposes,
the ambiguity of (2-14) is really only a technical point. We
therefore proceed a£ this point simply by stating that if one

considers the systematic perturbation series and the partial

summation represented by (2-14), it is seen that a simple



-27-

modification, which represents a similar partial summation, is

to write
xHC (k) ' |
N Ry ' (2=is)
where
gL () = {0. <o . | .(2-16)
MF vltr) r>d '

In this form, the theory is independent of vl(r) for r<o. As
Indicated in the notation, we shall refer to this as the mean

field theory of the hard core plus tail liquid.

II-C. Discussion of the Mean Field Theory

| Mean field theories represent a common first approach to
the physics of a phase transition. 1In this problem as well,
the mean field theory achieves a measure of success. In-a
calculation best detailed in section V, we applied the mean
field approach to the Li-Na binary system. The program was
to model the Li-Na system with a hard core plus tail mixture,
and apply the genefalization'of (2—15f and (2-16) for this
case. .We sought to identify the locus in fhe'x-T plane of
points at which the mean field partial structure factors
diverge as k approaches 0. Withiﬁ a crude but reasonable
model, the line of singularities can readily be calculated.
The result is a curve which, in shape, symmetry, and position
ih the plane, strongly suggests the experimental Li-Na phase
boundary. (See Fig. 3.)

Despite this success, the mean field theory suffers from
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a serious inadeguacy when applied to such dense systems. The
nature of the difficulty can be illustrated by considering an
extreme case and then observing parallels between this case
and the case of the dense fluid. Suppose we let the density
increase until the hard core reference "fluid" forms a
rigorously close packed lattice. Then the subseéuent addition
of any tail potential vl will c¢learly have no effect on the
structure, because the particles are unable to move in
response to that potential. For any vl, we have in this

limit x = xHC. Now, the structure factor and hence XHC of a
close packed lattice of hard spheres is a series of §-function
spikes. The formula {2-15) is thus clearly inadequate. The
origin of the difficulty is that the mean field formulation
treats the response of each particle to the fields of the
other particles as if those fields were part of the applied
external field. In fact, the accessible responses to the two

types of field are very different. In this limit of close

packing, the particles will execute a strong collective

response to an external field with the periodicity of the
lattice (this is the meaning of the spikes in ¥x), but can
execute no relative motion, and hence no response to fields
fixed to the particles themselves.

The essential features of this situation survive, in
muted form, when we allow the density to relax to ligquid
densities. The parﬁicles can now exXecute some relative
motion, but the motion is nevertheless severely limited by the

hard core packing. 1In this sense, the success of the hard



-29—

sphere model at these densities (and away from critical
points) is a reflection of the rigorous close packing result
X = XHC. In reflection of ancther close packing result, the
hard core structure factors at these dehsities are charac-

" terized by strong (but now finite) peaks, indicating strong
colleective responses to appligd fields of certain wavelengths.
Thus, when the effect of a tail potential is examined in the
mean field theory, this theory erroneously predicts a large
effect at the wavelengths of the hard sphere peaks. We
observed this failure in a calculation of a hard core plus
tail model of pure liquid liquid Na. For a model appropriate
to temperatures just above solidification, the mean field
theory failed catastrophically at the first peak. This
failure completely destroyed the excellent agreement in this
region between the structure of the simple hard core model

and the experimental structure factor of Na. This calculation

is reported in section V.

*An approach which appears to surmount this difficulty is the
"optimized random phase approximation" of Chandler et al '
(1872) (see also Andersen and Chandler (1972)). This work
replaces the mean field formulation (2-16) with the two
equations

fl(r) = vl(r) for r>o ,
and
glr) =0 for r<g

leaving fl(r) for r<o to be determined. Here, g(r) is the
radial distribution function, defined in (1-6), for the “"real"
fluid, so that the second eguation represents an exact result
for a hard core plus tail fluid. These equations turn out to
be sufficient to determine f£!(r) for all r, and hence y and
S{k). The resulting structure factors (for a hard core plus
tail model appropriate to a Lennard-Jones fluid) show quite
reasonable behavior in the neighborhood of the first hard
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Based on these considerations, an important thrust of our
work was -to discover howrto treat these collective oz
"correlation" effects. Keeping in mind the limit of close
packing, we sought a theory which would be adequate in this
limit, and thus deal at least with reference system
correlations.

Though the mean field theory suffers from this difficulty,
its success with the line of singularities at k = 0 has been
an important influence on our work. First of all, it tends to
support our hypothesis that the hard core plus tail potential
contains the essential physics of phase separation. In fact,
during the development effort, our faith in this hypothesis
rested in large measure on a crude form of this calculation.

A second influence is more important, and also more

subtle. The point concerns the relation (2-7) between ¥,
xref' and fl. This relation is, of course, just definition,
and yet it represents a rearrangement of the perturbation
series in‘the sense that y contains terms of all orders in fl.
Thus, the mean field theory may be viewed eguivalently either
as an {incomplete) low order approximation to fl or as a
selection of terms of all orders in the series for ¥. Viewed
in the light of this obserwvation, the success of the mean

field theory in locating the phase boundary suggests that, in

{(continued from previous page) sphere peak. The first formula,
however, is guite arbitrary at this stage, and, as it repre-
sents a severe restriction on the form of f!, considerable
justification is required before the results can be understood.
The systematic viewpoint and exact results developed in this
thesis might possibly shed some light on its meaning.
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some sense, whatever physics attaches to the function f1 may
be more siﬁply related to the phase transition that the
physics attached to X. Such considerations have implicitly
motivated.the shape of our effort, which is to study the
physics of fl, and ultimately to seek a theory of phase

separation by completing the low order approximation to fl.

Our search intc the physics of fl began with considera-
tion of its role in the effective potential formulation
defined by (2-8) and (2-%). By these definitions, the real
fluid response to the applied field is cast as the reference
system response to an effective field in which fl plays a
central role. We might ask, what is the correct effective
potential? As it turns out, this guastion has been asked
before, in the study of the dielectric response of the
quantum electron gas. There, the referénce system is a non-
interacting Fermi gas, and the effectivé potential is usually

formulated as

i SR W S SN (2-17)

where oy is the Hartree'potential of (2-11), and'cpex and
¢corr. are corrections for exchange and correlation. (See,
for example, Ballentine (1967).) A study of this work led us
to study the work of Hohenberg and Kohn (1964) and Kohn and
Sham (1965), who, considering the non-uniform electron gas,
presented a formally exact prescription for the potentials ¢ex

and ¢ Elements of their work, transcribed to the case

corr.’



~32-

of a hard core plus tail mixture, form the basis of our work.

We now turn to the development of our approach.



IIT. The Formal Development
.III—A.' The Basic Equations

In this subsection, we use the statistical mechanics of a
classical fluid in the presence of exterhal fields to derive
the basic equations of our work. Because we shall need the
generalization to binary alloys, we shall work from the outset
with a multi-component mixture.

We consider ;n m=component mixture containing Ni parti-
cles of type i, for i = 1,2,...m. We shall evaluate thermal
averages in a canonical ensemble at constant temperature T,
volume V, and particle numbers N;. We consider the mixture in
the presence of a set of external fields. The configurational

free energy of the mixture may be written

NI jaR e ~BU(R) e ~B® (R) y (3=1)
m _

where the integral over dR is over all co-ordinates of the

in.

1
!
2

1
|
™|

N, IN

1

particles, U(R) denotes the potential energy of interaction
amcng the particles, and ¢ (R) represents the energy of inter-
action between the particles and the external fields. We
shall ultimately take U(R) to be a sum over pair potentials,
though, for now, it can remain unspecified. For ?(R), we
intend from the outset a sum over single particle potentials.
.That is,
_ N,
2(R) = ):if 6 (23) (3-2)
ig=1 :

where ¢. is a field which couples only to the particles of

33
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;'denotes the position of the lth

type i. We shall ultimately consider the effects of varying

type i, and r particle of
both U and ¢, and have thus included their specification, as
super- and subscripts, in our notation for the free energy.

We are interested in the linear response of the densities
‘of this system to the external fields. The neceésary termi-
nology is defined in generalization of that describing single
component fluids. We denote the local thermal average density
of particles of type i by pi(g). In the absence 6f any
‘external fields, this density will be uniform, taking every-
where the value p; = Ni/v. When the external fields ¢ are
applied, the density need nct be uniform. We denote the
density in the presence of the fields by p?(g), and define the

density response by

Gpi’(}:} = pf(;_) -~ p7 - | (3-3)

The most general linear relation between the 692 and the ¢i is
of the form
sodtx) = Dy o (0 + om)? . (3-4)
3 J J

This relation defines the linear response functions xij of the

mixture. A calculation analogous to that giving (2-4) yields
xij(E) = —BVD;DS Sij(E) ' (3-5)

where the Sij are the partial structure factors of (1-2).
The following development parallels the work of Hohenberg

and Kohn (1964) and Kohn and Sham (19%65), as generalized to
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finite temperatures by Mermin (1965). As the argument is
somewhat involved;-it may be useful to give an overview before
beginning in earnest. The physical point which provides the
basis for the wd:k concerns thg relationé between the den-

sities pi(g), the external fields ¢i(£), and the free energy

Fg. We shall throughout the first part of the argument
consider U(R) to be specified. Then it is clear that the

potentials ¢. are sufficient to determine the p; (¥) and Fg.

This fact has been indicated above by placing the superscript
¢ on Py~ Suppose instead we specify the densities pitg}, and
denote by ¢ a set of external fields which gives rise to
these pi(£). The important gquestion is, to what extent are o
and hence FUp defermined by the pi? The answer can be

" obtained frgm a variational principle and is, not surpris-
ingly, that ¢P is determined to within constant terms, and

hence, by (3-1), FUp

%
We can show further, however, that even the constants cancel

is also determined within constant terms.

from the combination

G(p,u) = F:p - ? IdE ¢p(_r_) Py (X} (3-6)
so that, as indicated in the notation, G is uniguely deter-
mined by the densities pi(£) (assuming,'as stated above, that
U(R) has been previously specified.) Then for given U, the
function G(p,U) may be ex?anded (formally at least) in a
functional Taylor series about some specified density
functions pi(E)' If the expansion is carried out about the

particular set pi defined above, the coefficients of the
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second order terms turn out to be just éeneralizations of the
functions f introduced for pure fluids in section II. By
writing G(p,U) for real and reference fluids, we thus generate
equations for the functions which are generalizations of fl.
These form the "basic equations" promised in the title of this
subsection.

We shall, in this argument, consider at some points that
the densities pi(£) are the starting point, so that we .
consider Py and @p, and at other points that the potentials ¢i
are the starting pdint sc that we consider 9, and pf. We
shall endeavor to be clear, both in context and notation,
which view we adopt at each point. At the outset, until we
prove the unigueness theorem, we must consider that we start
with the potentials ¢i.

The argument begins with a wvariational principle.

Consider the functional of P{R), U(R), and ¢ (R) defined by

Q(P,ﬁ,cb) = de P(R) {U(R) + ®(R) + %— In P(R)

(3~7)
1 =
+ z §i:1n(Niz)} ’

where U and 9 are defined above, and P (R) is some distribution

function satisfying
de P(R) = 1. (3-8)

If we select for P the particular function P¢ defined by

P¢(R) = & _BU(R) e _B‘D(R)/(J’dR e"'BU(R) e “BQ(R)) , (3_9)
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the functional @ reduces to the free energy of (3-1):

Q(P¢,U,¢) = Fg . ' | (3-10)

A straightforward adaptation to a canonical ensemble of a
grahd canonical argument by Mermin (1965) yields the minimum

principle
a(e,u,e) > 2@®,u,8 , (3-11)

for any P # P® which satisfies (3~8}.

In using this minimum principle, we will limit our
consideration to the set of P's which may be generated by
evaluating (3;9) for all possible fields ¢. Since the special
function P of the minimum principle is a member of this
restricted set, the minimum principle will still apply within
this restricted set.

We can now prove the neﬁessary uniqﬁeness theoren.
Consider two external fields ¢ and &' of the form (3—2),.with
single particle potentials ¢i(£) and ¢i(£} respectively. The
uniqueness theorem asserts that if pg(g) = pgl(g) for all i,
then for each i, ¢i(£) - ¢£(£) is a consﬁant independent of
r. To prove this, we supéose the opposite and deduce an .
absurdity. We suppose ﬁhat pg(a) = pgi(g) for.all i, and that
there exists at least one i for which ¢, (x) - ¢i(£) is not
just a constant. The potentials ¢ and ¢' will define, through
(3-9) and (3-1), distribution functions P¢ and P¢' and free
energies FY and.FU;. Under the hypothesis that ¢i(£) - ¢£(£)

¢ %
. ]
is not just a constant for at least one i, we have P¢ # P¢ '
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so that the minimum principle applies. 1In particular

ro, = ae? ,u,00)
(3-12)
< aet,u,0m) = a@e?,u,0) + jéR P(R) {8' (R)=6(R)}
oxr
Fg. < Fg + ); fdg pqi’(g){ﬁ(g)-dJi (xy} , _ (3-13)

where, for the last step, we make use of (3-2) and the
statistical definition of pi(£) given in appendix A. Now the
argument to (3-13) can be repeated with primed and unprimed

interchanged, yielding

U i
Fo < Fg, + z far o? @ (o, -0 (@} . (3-14)
If we now suppose that pg(g} = pgl(E) for all i, addition of

(3-13) and (3-14) yields immediately 0 < 0. This proves the
unigueness theorem.

| With this theorem, we can now consider the meaniﬁg of
taking the pi(g) as our starting point. We take these to be
any densities which may be induced.in the system by some
external fields ¢, If we denote by oP any potentials which
give rise to these densities, the uniqueness theorem asserts
that ¢° is determined within constants. If we then proceed to
form a distribution function P by inserting one of the
potentials o° into t3—9), we see that the undetermined con-
stants in ¢P cancel, so that the distribution function pP is

determined uniquely by the pi(g). Then, by inserting pP into
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{3=-7), we may define a unigue functional of p, %, and U,

denoted by F(p,%,U0), as

Flp,d,) = QEEP,o,

(3-15)
= far PP (R) {U(R) + 0 (R) + % n PP(R) + —Zln(N
In terms of this functional, (3-10) implies
p = U
F(p,%",U) = F ’ (3-16)
@p .
and (3-11) implies

F(p',¢°,0) > Flp,o",U) for p # p' . (3-17)

Finally, since PP is a unique functional of the pi(E), {3-15)

may be written
Flp,0,0) = X far 4,0 py(x) + Glo,0) (3-18)
l .
where

1

G(p,U) = de P°(R){U(R) + § In PP (R)

{3-19)
l

is a unique functional of U and the densities ¢, (r). This is
the function G introduced in equation {3-6), as can be seen by

setting & = ¢° in (3-18), and using (3-16).

As we described after (3-6), since G(p,U) is a unigue
functional of p, we are at liberty to write a formal expansion

of G(p,U) about its value in the uniform system, specified by
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the densities pz. We proceed as follows. Consider that for

$ = 0, (3-18) reads
F(p,0,U0) = G(p,U) . (3-20)

Further, since the p; are the densities appropriate to ¢ = 0,

(3-17) yields
F(p,0,U) > F(p°®,0,U) for p # p° , | (3-21)

where p° denotes the set of densities p;. From (3-20) and

(3-21), we see that G(p,U) satisfies
G{p,U) > G(p°,U) for p # p° . (3-22)

G thus has a stationary point at p;, and an expansion about

*
this point must be of the form
G(p,U) = G(p°,U)
+ % 2. fﬁr dr' 8p, (x)dp. (x")E, . (x-r") (3-23)
lJ - 1l — J - i3 ' — —

+ 0(69)3 .

*We note that the relationship between G(p,U) and £y is not
unigue. In the canonical ensemble from which we havd derived
these results, the particle numbers Nj are fixed, so that for
any allowable p; (r) {(which can be obtained by the application

of an external field), we must have
Jar sp tmy = o .

Then on the right side of (3-23), the addition of any constant
term to the f;; will not change the value of the integral.
This difficulty is not important, however, because the physics
of our problem is not contained in the results of setting k
rigorously egual to zero (since these results are ensemble
dependent), but only in the results in the limit as k
approaches zero. As the development proceeds, we shall thus
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It is the functions fij which play the central role in our
work. For the case m = 1, the single function £ reduces to
‘the function f defined in seétion II. To see this, and make
use of these functions, we consider now how they relate to the
response functions X ij° 'We use (3-23) and the definition of
the response functions to generate an expansion of Fg in
powers of the ¢i' and compare with the result of a direct
expansion of (3-1).

From (3-18) and (3-16), we have

' = clowm + L far o0 (i, (0) . L (3-20)

P I i i -

If we insert the expansion (3-23) of G(p,U) and make use of

5 |
G(p°,U) = Fo_y » (3-25)

which follows from (3-20) and {3-16), we find

U _ LU p o 1 Py
F o= Foo ¥ ;rﬁiw)pi + Ly Lol R
- (3-26)

1 , | 3
+ e Sp, {(K)Sp_(-kK)YE, (k) + o(dp)" .
g% ZV ;: 8= m: = "im'=

Here, we have rewritten the integrals from (3-24) and (3~23)
as sums in reciprocal space. (¢§(0) denotes the zeroeth
Fourier coefficient of ¢§(£}.) We can now pass from an
expansion in Gpi(g) to an expansion in the ¢i by expanding

Gpi in (3-26) in powers of ¢i using (3-4). This yields

(continued from previous page) ignore further difficulties

of this nature. This policy will result in several equations
to which, for pre0151on, one should add the words "plus terms
1ndependent of r."
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Uu_ .U ey e
Fo = Foug §:¢i‘°)°i

L - L -
0 gL 63 (005 () D5 ) + 3 o ) X5 ) g ()

+ o($)? . : (3-27)

Since the functions pi(a) have now disappeared from the
formulas, we have dropped the superscripts p. The expansion
is now an expansion of Fg in powers of the ¢i.

But the expansion in powers of the ¢, may be generated
without going through the Gpi expansion and hence without
introducing the functions fij' We simply replace the

potential ¢ in (3-1) by 2% and expand in powers of Ai.

(R) ,-BAO (R)

-gU
oFY far etrie

T jéR o~BU(R) =BA8 (R}

U
A

{3-28)

2 dr ¢, (;_)p).‘q’(g) ;
T 1 1
1

where the single particle densities have been introduced just
as in passing from (3-12) to (3-13). For the second deriv-
ative, we formally differentiate the right side of (3-28) and
make use of the linear response form (3-4):

82FE¢
3 = Z:
i

Lo b5 (k) 201 ® (k)

<H‘

oA
(3-29)

i
<H“

X0 (R0 x5 () + 00

i)
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Then writing a Taylor series for F?Q about A = 0, and setting

A =1, we have

U _ U. o
Fo = Fomo * g; ¢5 (0)pg
(3-30)
1 1 3
+ 5 gg = §j¢i<—5)¢j(59xijc§) + o))" .

We are now in a position to identify the fij' Compare
the result (3-30) to (3-27), using the facts that these
expressions must be identical for all potentials ¢, and that

*
both Xij and fij are symmetric in k. We must have

g; Eam @ Xg; W xps 0 = =x;500 for all i,3.  (3-31)
The structure of (3-31) is made clear if we define the
matrices F, with elements fij' and X, with elements Xi5°
Noting from the definition (1-2) of Sij(h) that xij = Y.:gs WE

_ 1
see that (3-31) reads simply

XFX = -X (3-32)
g0 that+
F =-x1, (3-33)

*For xi+4.» this symmetry is well known. For the fi4, it
follows because the £;+(r-r') defined by (3-23) depend only on
properties of the unifdrm fluid, hence only on |[r-r'l.

+We note here another difficulty at k = 0. For (3-33) to held,
the matrix X must have an inverse. But the condition &§p4i (k=0)
= 0, which holds for this canonical ensemble, together with
{(3-4), implies that xij(k=0) = 0, so that X~! is undefined for
k = 0. It is, however; defined for all other k, and hence in
the physically interesting limit as k->0.
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For a single component fluid, (3-33) reduces to (2-5), and we
see that we have recovered the function f whose physics we set
out to investigate. From (3-33), the generalization to a

two-component fluid is immediate:

‘11 7 T ¢ ffif 7z X22 = 77 fitf )2
11722 12 11722 12
{3-34)
X12 7 T ffff X
11722 12
Here, we have noted that since xij = in’ (3-33) implies that

F is also a symmetric matrix.

We note that the functions fij bear simple relations to
the familiar direct correlation functions cij of Ornstein and
Zernike (1914). Comparing (2-5) and (3-34) to the expressions

in Ashcroft-Lekner and AL-II, we find

£(k) = E%;—{l—poc(_lg)}

and (3-35)

1

o L 4, . e L q_ o ] -1
£11 = Eﬁf(l Pic11) 1 £y, spg(l P3Cop) 7 Ei5 = F €9y -

This completes the formal development for a general
system. The key results of this work have been somewhat
scattered by the development. They are equations (3-6) and
(3-23), which define G(p,U) and its expansion and thus define
the problem to be sélved for the fij' and eqguation (3—33),
relating fij to the Xij’ The argument to this point essen-

tially represents a realization for a classical fluid of the
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case of "almost constant densitY" studied for the gquantum
electron gas by Hohenberg and Kohn (1964).
In our problem, we wish to compare the real liguid to

some reference liquid, specifically to the hard sphere liguid.

Dividing the pair potential v into erf + vl separates U into
Uref + Ul. Then consider G(p,Uref), which by (3-6), is
given by
ref
6(p,0™%) = 0 ree - X Jaz ¢ e 0 (3-36)

Here, we have explicitly noted that since 3° must be a
potential which gives rise to the densities,pi(E), it will in
general be a different function in the reference and real

fluids. This function G(p,UrEf) will have an expansion of the

ref £

. re
form (3-23) with fij replaced by fij . where the fij
f

turn related through (3-33) to the xi? . Defining

are in

£

Glp,U) - G{p,Uu""")

Gl(p)

(3-37)
ref

F:p - ng,ref - Z jdl_f. pi (E){‘bg (£)"¢g'ref(_1_7)} ’

1

1 _ ref -

it is clear that Gl(p) has the expansion
6, (o) = 6, (p°) + 3 T [ar arvso; (meo, ()£} (zox?)
1 1 AR R RS
(3-39)

+ o{ép)?
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Equations (3-37) and (3-39) define the problem to be solved

for the f;

ij*c
already been given for a single component fluid (eg. (2-7)).

We note that the relation between fl and Y has

For the two-component fluid, we find from (3-34)

Xref Xref
_ M1l ref ) - 22 ref .
Xy, = S {1+(f 2275550 i Xy, = . {l+(fll/f Yo
_ (3-40)
Xref
_ 12 ref
where
_ _ Jref .1 _ref -1 _ ref 1
D=1=x3;" f3) - Xg3 f35 - 2x3, I,
(3-41)
ref ref ref 2 l
gy x5y - W)l {fll 22 =~ (F07} .

ref

22
Xiif (from (3-34)), and that similar reaults hold for the

Note that in X1+ any zeroces of £ will be cancelled by the
other functions. Then the search for singularities of the y's
is the search for the zerces of D. |

This completes the development of the basic equations of
our perturbation theory. The basic eguations are (3-37) and
(3-39) , which define the problem to be solved for the fij'
and the relation (3-33) with its realizations (2-5), (3-34),

(2-7) and (3-40), (3-41), relating the f's and the x's.

III-B. Analysis of the Basic Equations

In this section, we study the role played by the func-

tions fij in (3-37) and (3-39), in order eventually to suggest
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suitable aﬁproximations. Because we shall seek forms for
Gl(p), we shall throughout this section consider that the
pi(£) are given.

We must specify the form of U(R). It is to be a sum over
pair potentials:

U(R) = % E 2 Vij (E,i = _3:‘313 ' (3-42)

ij L¥m

where vij is the pair potential acting between a particle of

type 1 and a pérticle of type j, and Ei was defined below

(3-2). We note the symmetry vis = We note that the

j T Y3i
restriction 2¥m is harmless but unnecessary in those terms in
which i#j.

We shall specialize for a time to the case of a single
component fluid.

The structure of cur eqguations takes its simplest form in
the limit as T+0. It is fhus instructive to examine this
limit as an idealization, even though no classical fluid
exists ét T = 0. In this limit, the entropy term in the free
energy vanishes, leaving only the energy terms <U> and <&>,
where, as in section I, < > denotes a thermal average. As
described in appendix A, to evaluate <U>, we must introduce
the two body distribution function p,(r,r') defined above

{(1-7), while we can evaluate <%> in terms of the single par-

ticle densities p; (x). With these considerations, we may write

P, tfar ar' viz-refz.rh + far ¢P@etm

¢ (3-43)

+ terms which vanish as T-0,
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where FUp denotes, just as in the last section, that free
energy getermined within a constant by p(r). The particular
distribution function p§(£r£') is thus to be calculated from
Pp(R) and is uniquely determined by p(r}. For the reference
fluid, we have similarly

Uref

Efar dr' vref(r—r')pp'ref(r,r')
o 219L 9 2P, EXES

p.,ref -
+ [ar p(x)¢P T (1) — (3-44)
+ terms which wvanish as T->0.

We have explicitly noted that the two body distributions
determined by p(r) are in general different for reference and

real fluids.

From (3-43) and (3-44), we can form G, (p) of {3-37). We
find

G, (p) = %Idg dr' V(g--_r_')pg(r,r')

-1 v Gref, ) _
sfer ar' vFf(z-x Yo, r,r') (3-45)

+-terms which vanish as T-=->0.

To accomplish the expansion (3-39), we let p%(;,;') and
pa'ref(E,E') denote respectively the distribution functions
determined for the real and reference fluids by the uniform

density p = po. Then, by (3-45),
G,{p) = G, (po} + l_fdr ar' vir-r{p?(r,r") - °(r,r")}
1P 1'Pe 7Jar ¢r E-ri)ip, lr,x r.r

- %Id; dr' vz (e80T (x,xty - 537 T%F (r, 1))
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+ terms which wvanish as T-+0. {3-46)

Comparison with (3-39) then yields

= %‘IdE dr’ 50(5)69(_{')f1(£—£') + olép)3

+ terms which wvanish as T-+0.

The meaning of this equation is as fdllows. If we expand the
left side in powers of 8p, then in the limit as T+0, the
coefficient of the second order term becomes identical to fl.
Then we see that to calculate fl(E) at T = 0, we must discover
how to expand pg(g,g') and pg'ref(£,£') in powers of §p. An
equivalent observation haé been of importance in the study of
the degenerate electron gas, which, at metallic densities, may
be considered for many purposes to be at zero temperature.

We turn now to finite temperatures, where we must include
the entropy term in F. We shall derive two results. The
first results from the effort to solve the finite T problem by
the kind of energy consideration which works at T = 0. For

all T, we define a function fé by setting the left side of

(3-47) egual to
Llaz az' so(msoizhehzz) + o(p)> . (3-48)

That is, we define fé to be the coefficient at any T of the
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- second order term in the dp expansion of the left side of
%®
{3~47) . Since, as noted above, this coefficient reduces to

fl as T+0, we have the relation

lim £1(z) = Lim £3(x) . , (3-49)
T T-0
To discover the relation that exists between fl and fé at

finite temperatures, we make use of the thermodynamic identity

e - e )

AT E , . (3-50})

V,N,¢
where F is the configurational free energy of the system under
consideration, and E is its potential energy. We explicitly
note that the usual thermodynamic derivative is taken with the
external field ¢(r) held fixed. To apply this relation to
this work, we must instead form thermodynamic derivatives at
constant density p(r). A straightforward calculation (sup-
pressing V and N, which are constant in either case) yields
6, - 6, 26,
P ¢ k k P

| 2,01 \OT

th

where ¢k is the k Fourier coefficient of ¢(r), and the

notation ¢' indicates that all the ¢k are held fixed except

*To see that this expansion must contain no first order term,
consider that the general first order term will be of the form

fdy_ a(r)ép(r) .
But a(r) can depend only on the properties of the uniform

fluid, so that it must, in reality, be independent of r. Then
we are left with a term of the form

aJdE Spl(xr) .

But this is identically zero by the canonical ensemble
restriction of constant particle number. (See note to (3-23)).
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the one appearing explicitly in the derivative. But direct

calculation from {3-1) shows that

IF 1 - _
(W)T,w S o(-k) . . | (3-52)

Substituting this result into (3-51), and rewriting the sum in

reciprocal space as an integral in real space yields

aF) _ (3F 9 o _
&ﬁﬂ - &ﬁﬂ + (BT) 565 ¢ {x)p(x} . (3-53)
P ¢ P
(The superscript p has been added to ¢ to make explicit the

dépendence implied in (3-51).) Then, using (3-50), we may

write

F - T(%%)p - E - (%f)pjdg P ()p (x) . G

U

We find, for F
¢p

’

u

__];,I ] ety AP '
oo 2 dr dr' viz-r')e,(r,r’)

5
(1 -7 3T)D)F
(3-55)

r -3 1 far P@ew
. .

where we have formed the potential energy E just as discussed

above (3-43). If we now operate with (1—1‘&%& p) on Gl(p) from

,ref

(3-37), and use (3-55), the terms in ¢p and ¢p are seen to

cancel, and we are left with

(1-T(%@-) p’Gl“” = -zl-sz dr' v(z-r')ej(z,z")

ref( f r

1 ' ety PsTE
ﬁ'_jdE dr' v o {(z-r')e,
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This implies
(-2 (3g) )6y ()= (o))
= %—5&5 dr' v(g-—;_‘){92(5_,5_')-05(5,5_')} (3-57)

If we now expand both sides of this equation in powers of §&p,
making use of (3-39) for the left side and (3-48) for the

right, and equate the second order terms, we find

(1~r6%9p)%jﬁ£ dr' prg)ao(g')fltgrg')

‘ (3-58)

Since this must be true for all 8p, and since fl and fé must

be symmetric in r, we must have
9 .1 I | _
(1-T gﬁ}f (r) = fE(E) . {3-59)

(We need no longer form the derivative at constant p, since
f:L depends only on the properties of the uniform fluid.) This
equation is one of the desired finite T results. It is a
temperature differential equation to be solved subject to the
boundary condition that fl = fé at T = 0, It shows the added
complexity introduced into the problem by the necessary inclu-
sion of the entropy term in the free energy.

We can, howevef, derive a second expression which shows

that we can regain the conceptual simplicity of the T = 0

problem if we are content to calculate fl only to first order
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in the perturbation vl. We make use of the well known tech-
nigque for expanding the free energy in powers of vl (2wanzigqg,
1954). For an m-component mixture, we have from (3-1)

e

-gr? - D 1 ) P (-

Nll..le

where we have written ¢(R) in terms of the Fourier components

of the ¢i(£) and of the density operator defined in (1-3).

Then, if we also write {(3-60) for the reference fluid, we find
ref

P U :

(3-61)

<l

1
'

| -BU]‘(R) - L LD, (k)¢9'l(-k>
= <% e ikt— 1 =
p,ref

where

21 = o242 , vhm) = vRI-UT T (R) , (3-62)

' _apref _aaPref
far a(ry o7PUTTT(R) 76O (R)

(a) = (3-63)
p,ref _antref _aabrref
de o BU (R) _-B¢ (R)

In this notation, (3-37) reads
ref
U U 1 1
Fop = Fgp,ref = G0 + GEX o (0617 (k) . (3-64)
(Note that 91(5) in (3-64) is not an operator.}) Now from
(1~3) , we have

B (k=0) = N, = p, (k=0) . (3-65)
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Inserting (3-64) and (3-65) into (3-61), we find

~8{6, () +3 T Ep; (k)08 () }

e

(3-66)
25 -
o By (k) (_1<_)> .
p.ref

=]

<=

= e e

~8030f "1 (0) < -sut (R) -

Cancelling the terms in k = 0 yields

- 1 p,l
Bley (o) 45 2 }%;opi (k)¢f "~ (k)}

e
(3-67)
—apl BT s pel,
=<e BUT(R) =y & 71 (0 45 (1.<_> .
‘ p,ref
For Ul(R), we have
vhR) = 3 )0 ) vistrg - D) (3-68)

ij i#m
where the vi. are the perturbing pair potentials. We intro-
duce an expansion parameter A by replacing Vij by Avlj in
Ul(R). We may then formally introduce the ) expansions

Gl(p) = AA(p) + AZB(D) + ..

ool _ 2
¢ T (k) = Aay (k) + A%bi(K) + ... (K # 0, (3-69)

vlr) » avl(r) .

If we insert these expansions into (3-67), and expand all

around in powers of A, we find (when we note that <ﬁi(E}>p ref
r

= pi(E) by definition)

= <pt
A(p)r~ <U (R)>p,ref . (3-70)
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This expression can be written in terms of the two body
distribution functions of the reference fluid. In analogy to
the notation already introduced for pure fluids, we denote by
pgj(E,E') the two body functiop,'for one particle of type i
and the other of type j; which is uniguely determined by the
densities pi(E). (We omit the subscript "2" since it is
cumbersome and, with two indices i,j, redundant.) Then

{3-70) reads

p,ref

Alp) = %’Z:JEE dr' Vij(zfz')oij (x.z') (3-71)
1] _

so that, using (3-69),

Gl(p) - Gl(po)

(The superscripts "ref" and "_," are introduced here in strict
analogy to the pure fluid case.) Finally, if we also expand

fij(i) in powers of A,
£ = Aajy (@) + o ? (3-73)
we can write the expansion of (3-39) as
G, (P) = Gy (po)
= % ggjag ar’ 6pi(£)6pj(£){kaij(£7£')-+ _—

+ olsp)?. | (3-74)
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Comparing the terms of order ) between (3~72) and (3~74) shows

that aij satisfies

Z:Jhg dr' vij(g—g'){DerEf(g,g') - p?fref(r,g')}
(3-75)

= Z:Jai ar’ 5pi(£)6pj(£') aij(g-g') + o(sp)3 .

That is, when the left side of (3-75) is expanded in powers of

8p, the coefficients of the second order terms are the aij
defined by (3-73}), i.e. the first order terms in the expan-

sions of the fij in powers of the Vij- We note that, as

promised, the form of this equation is guite like that of
(3-47) . |

From a calculaticnal standpoint, (3-75) represents
perhaps the central result. As indicated at the end of sec-
tion ITI, the success of the mean field calculation suggests
that we seek a theory of phase separation by completing the
low order approximation to fl. Equation (3-75) shows that the

problem of calculating fij to first order in vij is equivalent

to calculating pigrEf(g,g'), the two body distribution func-
tion .in the non-uniform reference fluid, to second order in
the Gpi(E).

From the standpoint of physical approximation, this
result offers a certain conceptual simplicity. As we noted
in section I1, a mofe conventional expansion of Sij(E) (hence
of fij(ﬁ)) encounters in the first term the three and four

body distribution functions of the reference fluid. What we
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have done is to provide an alternate form of the problem.
Thus, one may either seek to evaluate aij by evaluating 05'
p%, and pz in the uniform reference fluid,_as required by the
conventional theory, or by evaluating pg in the non-uniform
reference fluid, as reqﬁired by (3-75). While p% amd pz are
wholly unknown, we might hope that our extensive knowledge and
physical understanding of p; could be used to suggest success-
ful approximations to pg. This is the approach which we

ultimately adopt.

' The important results of this section are the "zero tem-
perature” equation (3-47), the finite temperature differential
equation (3-59) (together with the boundary condition (3-49)
and the definition (3-48) of fé), and the first order equation
(3~75). We turn now to the study of approximate solutions to
these equations. We shall begin by reviewing, in the light of
these formulas, the matters raised in section II. Then, after
considering the possibility of a self-consistent approach, we
turn to the development of the first order formulas on which

we base our calculations.



IV. Approximate Solutions for the fij'and aij .
IV-A. The Earlier Results

The simplest approximate solutions for fij are those
which give rise to the mean field theories of section II. We
shall specialize, as in section II, tc the case of single
component systems.

Consider first the case in which the reference system is
an ideal gas. For this case, we propcsed in section II the

"gsimplest mean field theory" specified bf {2-12) or
1 -
£ ({x) = v(x) . (4-1}

This approximation can be seen from our formalism to be the
correct Ffirst order approximation to fl (a result which is
well known from the perturbation series.) Consider the first

order eguation (3-75). For a pure fluid, it reads

Jﬁ; dr' vlfgfg'){pg'ref(E:E') T Py (z.x')}

(4-2)
= far ar'so@ o altz-rh + oten)? .

When we take the reference system to be an ideal gas, we have

=0, vo = v, and

r,r') = p(xlelx') . (4-3)
Thus, the left side of (4-2) becomes

fax axteomsotxy viz-zh | ey

-58§-
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where have made use of the canonical ensemble restriction

(see note to (3-23))

Jaz som = 0. . (4-5)
Comparing (4-4) to the fight éide of (4-2), we conclude

at(z) = v(z) , | | (4-6)

where we have assumed that v(r) = v(-r) (an assumption we
shall make throughout this work) and regquired (4-4) and the

right side of (4-2) to be identical for all §p(r). Then
) = vim) + om?, (4-7)

so that (4-1) is just the first order approximation to fl(E}.
We note that (3-75) allows a ready generalization of the

simple mean field theory to multi-component systems. For

ref _

vij 0, (3-75) yields

1 - -
aij(E) = vij(£) . {4-8)

(To produce (4-8) from (3-75), we must consider varying 6pi(£)
independently for each i.) Then to generalize (4-1), we just

make the first order approximation

el - A
The resulting partial structure factors for the two component
case are precisely those used by Stroud (1873) in his study of

phase separation.

The approximation (4-1) can also be understood in a more
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subtle, but instructive, way from our equations before the
first order approximation is made. Consider first the equa-
tion (3-47), which represents the limiting case as T+0. For
the case of a pure fluid and an ideal gas reference system,

this equation reduces to

%jﬁ; dr' v(£—£'){pg(£,£') - polz.x")}
a (4-10)
= ar arso@ep(x) ) + otsn)®

(where we have ignored the terms which vanish as T+0.} Now

P
2

the functions appropriate to the "real" fluid. But because

the pJ and p% are in general unknown functions, since they are
the liquid exhibits no long range order, we do know the form
of these functions when the points designated by r and r' are
sufficiently far apart. Then the functions just assume the

form (4-3):
pg(gr};') = p(x)p(x'}) . : (4-11)

We shall speak loosely of the particles being "correlated" in

S(E'E') differs appreciably from

(4~11). Now suppose in (4-10} that the potential v(r) is well

the short range in which p

behaved at small r, and of sufficiently long range that the
dominant contribution to the integral on the left of (4-10)
comes from regions beyond thé rangé of correlations, that is,
from regions where (4-11) is a good approximation. Then we
might reasonably ignore the short range effects, and replace

pg everywhere by p{(rjp(xr'). On making this replacement in
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(4~10) , we recover immediately the mean field form (4-1). To
extend this result to finite temperature, we note that the
left side of (4-10) is just the (implied) left side of (3-48)
for this case, so that the approximatioﬁ {4-11) yields immedi-
ately f;(g) = v(r). This'result is independent of temperature,
so that solving (3-59) subject to the boundary condition
(3-49) yields again (4-1). Thﬁs, the mean field theory of
(4-1) (or (2-12)) emerges at all temperatures from the neglect
of short range correlations in pg<£:£')-

Next, consider the case of an arbitrary reference system,
for which we pfoposed the mean field form (2-14), or, more

'precisely,
) = v . (4-12)

This approximation results in our formalism when we make the
first order approximation fl = al, and evaluate al in (3-75)

with the approximation

0975 (r,x") = pimo(x") . (4-13)

In words, for an arbitrary reference system, (4-12) represents

£l

calculated to first order in vl with neglect of reference
system correlations. |

We are now better able to understand the modification
(2-16) which was introduced to rémove the ambiguity of (4-12)
(or (2-14)) in the special case V?Ef = VHC. Since two parti-
cles in a hard core fluid can never be found separated by a

distance less than o {(where ¢ is the hard core diameter of



{(1~10)), we must have pg’HC(E,E') = 0, identically, when

|z-r'| < 0. It is clear that the simplest approximation in

the spirit of (4-13) which satisfies this condition is

!
05" " (xix") = {0 | SR (4-14)
p(x)p(r') |r-z'| >0
When al is evaluated from (3~-75) with this approximation, the
form (2-16) resuvlts immediately from the first order approxi-

“mation fl = al.

We are now better able to understand the significance of
the correlation effects at liguid densities. At these densi-
ties, the hard sphere correlations have a range comparable to
that of vl, so that the dominant contribution to the integral
on the left of (3-75) (or (4~2)) comes from the region where
(4-14) is a poor approximation.

Consider next the limit of close packing, which was
introduced in section II to illustrate the correlation
effects. Within the formalism we have develcped, the case of
close packing assumes a special importance, for it represents
the one case, apart from the case of an ideal gas, for which
we can write an explicit form for 92(5,5'). In a close packed
system, we may induce a non-uniform density p(r) by applying a
field ¢(r) which has the periodicity of the lattice. But this
density cannct change the conditional probability that a par-—

ticle will be fcund at r' given a particle at r. Since this

probability is given by pg(gjg')/p(E), we have
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5 (x,z") pg(r,x")
= = = (4-15)
p(;_) Po
or
p( vy o P(x) o 1 1 Xi 1imd 4-
polEsx }y = . p3{xr,r') , close packing limit. (4-1¢6)

We see immediately that pg(£,£') has no second order term in
dp. Though some care is required, it is no surprise that
these considerations can be made to yield flfﬁ) = 0 when k is
any reciprocal lattice vector, and hence, the desired result
X = XHC. Thus we have achieved one goal we set for this work,
namely, to handle the close packing limit correctly.

Return now to the problem at liquid densities, and con-
sider a more sophisticated approach than is represented by the
mean field theories discussed so far. Consider the structure
of equaticon (4-10), which holds for the case of an ideal gas
reference system in the limit as T+0. It states that when the
expression on the left is expanded in powers of §p, the func-
tion fl will appear as the coefficient of the second order
term. In order to evaluate the expression on the left, how-
ever, it is necessary that we already know fl. This follows
because p%{g,g') {which is the two body function in the uni~
form "real" £luid) is related through g{r-r') to S(k) and
x(k}, and ié thus sufficient to determine fl. If a stronger
statement were true, if the knowiedge of f:L were sufficient to
determine the entire left side of (4-10), we could define a
self-consistent procedure for determiningﬂfl through (4-10)}.

- Such a statement is, of course, not true without further
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approximation, since.fl says nothing difectly about pg(g,g').
Similar observations on the problem of the quantum elec-
tron gas have led Singwi and co-workers (1968, 1970) to sug-
gest approximate forms for pg(£,£'}, for which, in the present
context, a knowledge of £l is sufficient. The earliest of

these was the form

pO(z.r') = plx)olxr')ge(x-x") , | (4-17)

where g°(r) is defined (as in section I) by g°(£)=p5(£)/(po)2.

With such approximations, Singwi et al. were able to define
self-consistent methods for calculating the electron gas
response functions. Within the classical formulation repre-

sented by (4-10), the particular approximation (4-17) yields
fl(gr_) = v(r)g°(x) , (4-18)

which is to be solved self-consistently for fl and g°. We
note in pgssing that, by (4-16}, the particular approximation
(4-17) fails in the limit of close packing, so that it is
highly suspect in application to a dense fluid of hard cores.
The point we wish to consider here is not the particular
form of these approximations, but rather the possibility of a
self-consistent apprcach to our problem. When we turn to
finite temperatures, we find that even the simple approxima-
tion (4-17) yields an exceedingly complicated problem. When

substituted into (3-48), it will vyield

fé(g)_ = vir)g°(x) . (4-19)



-655~

This is a temperature dependent result, so that, to find fl,

we must integrate the equation (3-59), maintaining self-
consistency throughout. Because of this complication, we have
not attempted a self-consistent calculation in our problem,
despite the success which has accompanied such calculations
for the zero temperature electron gas.

We have instead elected to pursue our original plan of a
hard core plus tail perturbation approach, and focus our at-
tention on the first order equation_(3—75), in which the ex-~

1

pression on the left is a function only of v- and the proper-

ties of the reference fluid.
IV-B. The Solution for a?i:j'

We begin with the remark that (3-75) can in fact be
solved exactly for aij in terms ofmféférence system distrib-
ution functions. This can be accomplished by expanding
p,ref(E'E,) in powers of the fields ¢° which give rise to
ép(r). Though this expansion will contain terms of first
order in ¢, we see from the form of (3-75) that the first
terms survivihg the integration on the left will be of second

order in ¢. It is then a simple matter to use the response

functions x to produce the second order terms in &p. Now the

expansion of pg'ref(g,g') in powers of ¢° introduces the
higher order distribution functions p%'rEf and pZ’ref, so that,

as might be expected, the result of this approach is simply
the more conventional form of fl alluded to in the discussion

following (3-75). For the reasons outlined in that discussion,
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we prefer to work with (3-75) directly, and seek approxima=-

p,ref
5 {

This task may be simplified by considering the problem in

tions for p r,r').

reciprocal space. Choose the densities 591(5) to be given by
Gpi(g) = 6pi cos(EioE)', i=1,2,...m. (4-20)

When the right side of (3-75) is evaluated for such densities,

the full equation takes the form

Zs‘d_l; d£' Vi—J (£_£|){D§3ref(£'£|) - p;éref(£'£|)}
i3
(4-21)
v 1 3
=32 Spidpsai (k)6 p *6 ) + olép)™.
ij =125 it

where we have introduced Fourier transforms, and the function
SP K has its usual meaning. This result means that, in order
LS

to calculate the aij(h) correctly at some k, we have only to
p,ref
ij :
through (4-20), by the same k. (The complexities of (4-21})

evaluate p (r,r') for density variations specified,
are such that some care must be exercised in order to reach
this conclusion for a multi—componeﬁt system.) Then the
problem of the aij(g) can be solved independently at each
wavelength.
1.} The long waveiength limit.

Consider first the case of a single component system on
which we impress a iong wavelength density wariation. Clear-
ly, as the wavelength of the density variation becomes infi-

£
nite, ép will go to a constant, and pg’re*(E,E') can be



-67—

expanded in a conventional Taylor series in 6p:

0BT (r,xt) - 037" tz,z")
(4-22)
2 32 ref
= 60 35 g™ mr) + 160 % 0 03 ™z + otem)

Now for wavelengths which are finite but still very long com-

pared to the range of correlation, we can simply evaluate

pg'ref(E,E‘) at the local density. We generalize (4-22) for

this case by

pg'mf(_r_._r;') - p;"ref_(g.;_')
= I {so(m+oo ()} 35 05 " (r,x") (4-23)
2
+ 2 80(x) o (c") -:——; ps'TE(z,x) + ots0)? .
Po

Within the range of correlations, by hypothesis, §p does not
vary significantly, so that (4-23) is identical to (4-22).
The particular form has been selected from considerations at

long range. Beyond the range of correlation, where

pa'rEf(E,E') = poz, {4-23) reduces to the correct form
pg'ref(E,E') = p(£)p(£'). Substituting from (4-23) into

(3-75), we read off immediately

2
o rref

a“(x) = % vlig) "
3P0

Here, we have noted explicitly that, because pa'rEf(g,E') is
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the function appropriate to a uniform f£luid, it is a function

only of r-r'. 1In Fourier transform, (4-24) becomes
dak’ 2
al (k) = %’J — vk o3k . (4-25)
(27)® Ip.? “

This is the form of al(g) which we expect to be wvalid for
small values of k. Wé shall consider the limits on its region
of validity more precisely in ﬁhe next section.

To extend this long wavelength approximation to the case
of multi-component systems, we adopt the same basic procedure,
but the argument is complicated by a lack of symmetry among

the p?j in a non-uniform fluid. In particular, we find that,
2 ) p 1 p [} . : p -

in general, pij(£'£ ) # pji(£f£ ), that is, that pij is not
symmetric in the indices 1i,j. For instance, if r .and r' are

far enough apart, we have

p

pgjtg.g'}=pi(£)pj(£') and pji(gfg')=pj(£)pi(£'). (4-26)

and these certainly need not be equal. On the other hand, in

the uniform fluid, the distribution functions are symmetric:
pfalr,r') = p3,(r,x') . (4-27)

Now, the long wavelength approximation is to be derived by
treating the non-uniform fluid as locally uniform. We see
that we must take care that the appfoximation does not intro-
duce the wrong symmetry into the functions for the non-uniform
fluid. We can do this by defining symmetric distribution

functions for the non-uniform fluid as well. We define
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PP (x,r") = %— {p? (z,x)+pf (x,z") )} . (4-28)

These functions are explicitly symmetric in i,j, and thus,
as we shall see, can be treated consistehtly with a "local
density" approximation.
In terms of the ng' the left side of (3-75) reads
Efdz dr' Vij(g-r'){E‘?'rEf(;_,g_'} ~ 3°’ref(£.£')} , (4-29)
ij -

ij ij

(r) (noted below (3-42)). To

where we have used vij(E) = Vji r

make the long wavelength approximation, we first expand the

=P

p__le for constant 68p:

—-p,ref f yref '
13 (£r£ ) ;-J ( ' )
_ 3 ref _ -
= L 60y gpr 0357 (mx) (4-30)

where we have used (4-27) and (4-28) to replace Eij by p;j.
Just as in the single component case, we proceed to evaluate

the form of Eﬁj beYond the correlation range, and then insert

local densities into (4-29) in a manner consistent with this
form. (We note that, by (4-27) and (4-28), both sides of the
resulting eguation will be symmetric in i,;j, so that the ap-
proximation is consistent in this sense.) Substituting the
resulting approximation into {4-29) and thence into (3-75),

we find
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dk'! 2
1 1 — 1 3 ref
a:. (k) = = E ‘[ v (k') == p3.! (k-k'} , (4-31)
1] = 2 iw J(2m ® im Bpiapj im

in complete analogy to (4-25).

We pause to note that in the limit as k-0, (4-31) becomes

dk 2
1 1 - 1 3 ref
a..(0) = = E J:-—- v, (k) === 0%/ (k) . (4-32)
ij 2 & J(2m 3 fm Bpiapj fm -

This limiting expression can in fact be obtained by a short
argument from a grand ensemble. This argument is given in
appendix C, and provides a check on our work.
2.) The problem of short wavelengths.

In section II, we discussed the difficulty encountered
by the mean field theory (2-16), when applied to dense fluids, .
at wavelengths around the first peak of the reference (hard
sphere) structure factor. There we introduced the ideali-
zation of a close packed lattice in order to interpret the
difficulty. As we have seen, the formalism we have developed
reproduces the expected form in the close packing limit.
Despite this improvement, however, we still encounter consid-
erable difficulty, at liquid densities, in formulating a
successful approximation for values of k near the reference
peak. Reduced to simplest terms, the difficulty is that,
while an explicit form {4-16) exists for pg’ref(E,E') in the
close packing 1imit; we must proceed at liquid densities by
approximation, and the formulas, for values of k around the

. ‘e . 1 .
peak, are exceedingly sensitive to errors in £~ . This
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sensitivity results, of course, from the peak itself, since

1 . . . 1 ref
fij appears in the comblnation fijxij

complex gquadratic term of (3-41), for which similar consid-

(and also in the more

erations will hold.) In the single component case, for
example, XHC(E) for k at the peak is nearly 100 times as large
as for k = 0.

The difficulty might be-measured'against the problem in
the electron gas. One approach which hés been suécessful in
the electron gas problem has been to define a short range cor-
relation function, which, in the spirit of our work at long
wavelengths, is evaluated at the local density. Singwi et al.
(1970) take this approach in a paper subseqguent to that dis-
cussed arcund (4-17). They define and evaluate at the local
density a correlation funetion o which is a §-function in the
RPA, and which they expect to be short ranged as well in the
fully correlated solution. Such an approach seems always to
fail for the hard sphere liquid, because the hard sphere poten-
tial, unlike the Coulomb potential, defines a characteristic
length ¢ which is, unfortunately, of orderl]],’/kpeak at liquid
densities. It has not proven possible to define a correlation
function whose range is smaller than o, and which thus might
believably be calculated at the local density when k ~ kpeak'
We did make an attempt to evaluate at the local density the
direct correlation function of Ornstein and Zernike (see
(3;35)), which has a range of order ¢. (The range is exactly
g in PY.) Not surprisingly, this calculation gave very poor

results around the peak, and will not be reported in detail.
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If an answer is found, we expect that it may arise from
consideration of the finife size of the particles. To test a
simple idea, we noted that, at ligquid densities, the wave-
length at kpeak is very nearly equal to a particle diameter
and to the average particle spacing. It thus seems reasonable
to suppose that at short distances, where the correlations are

strong, a density variation appropriate to k ~ k might

peak
have effects similar to long wavelength density variations.
(We are here moving in the direction of the reciprocal lattice
vector concept appropriate to a crystalline solid.) Noting
further that the long waﬁelength form (4~-23) is correc£ beyond
the correlation range at all wavelengths, these observations
suggest that this form (4-23) might have a region of validity
around the peak as well. As we shall report in the next
section, the calculations yield interesting, but wholly
inconclusive, evidence that this might be the case. Perhaps a
more dilligent pursuit of the short range analogy with a
crystalline solid may yield a successful approximation.

We note finally that these difficulties do not have the
effect of terminating (or invalidating) this effort. It is,
after all, in the long wavelength region of the spectrum that
we expect to observe the phase separation instability, and we
have a clear approximation for this region. Further, as we
shall see, the correlation effects we have learned to include
are of considerable-importance at long wavelengths as well.
Thus, while there is still much to be learned, the pProgress

which has been made in this effort can be put to good use.
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As set forth in the opening section, the program of our
work is to develop a suitable perturbation approach to the
hard ceore plus tail mixture, and to appiy this theory to
liguid metal systems by constructing hard core plus tail
models of the real potentials. With these last remarks on the
“short wavelength problem, that portion of our effort devoted
purely to the perturbation development'comes to an end. We
turn now to the application of this work to liquid metal
syétems, to learn about these systems, and, of course, to

learn more about the perturbation theory itself.



V. Application to Liguid Metal Systems
V-A. Systems and Models

To lay the grouﬁd work for this section, we must preéent
the form of the effective pair potential VAL, and define the
parameters we shall use to discuss both the metallic systems
themselves and the hard core plus tail models we shall propose
for these systems.

The effective ion-ion pair potentials used in this work
are those which Ashcroft and Langreth (AL-II) have used to
discuss liguid metal structure. The potential is derived and
discussed in AL-II. It consists of the direct Coulomb inter-
action between a pair of ions, and an indirect interaction
between one ion and the polarization induced by the other in
the gas of conduction electrons. 1In reciprocal space, it

takes the form

Az .2 .e? vPs(k)vES(k)
Vit = —id0 e A3 2 Wy oo DY - (5D
3 k2 (4m/k2) el

Here, we have presented the interaction between an ion of
species 1 and an ion of species j. 2, and Zj represent the
respective valences, e is the electronic charge, e (k) is the
conduction electron dielectric function, and VES(E) is related

to the bare (unscreened) pseudopotential, V?(E), acting be-

tween a conduction electron and an ion of type i by
= -7 &2,P8 -
Vi) = -zefvPS (k) . (5-2)

-74-
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Tc specify the pseudopotential and aielectric function, we
fellow AL-II exactly. For vgs we choose the empty core poten-

tial (Ashcroft, 1966) given by

0 r<ri )
vgs(r) = or v?s(k) = 4An cos(kr;) ' (5-3)
1 i k2 '
= r>r
r c

where ri is a parameter to be specified for each species. We
have used in this work the values of ri listed by Ashcroft and
Langreth (1967C). A more complete listing of suggested ri
values is given by Cohen and Heine (1970). (See also Stroud,

1973). PFor the dielectric function, we use

2

e(k) = 1 + A Fly) + y = 5%— ’

y? F
Fly) = £(y) {1 -~ A2£(y)/(2y2+g)} *

e e Ny l+y _
fly) = 5 + 7 (1-y<) lnll-y (5-4)
_ 2y =1

g = (1 + 0.158)2)

-1 h? 1
Az = (“aokF) r dg = mez ’ kF = (31sze) /3 ’

where Pe is the conduction electron density. These formulas
completely specify the pair potential when the parameters

i

r
o4

Zi’ and p, are known. The real space form of these poten-

tials for some. systems are calculated and presented in AL-II.
In calculating the potential for a given system, we shall

consider that the parameters ri and zi are characteristic of

the species. Beyond the specification of the components,

then, the parameter from which all else follows is the
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conduction electron density Pa- In this work, we replace Pe

by the usual dimensionless parameter I defined by

r 33 .1 (5-5)
4ma,? Pe

This parameter is the radius, in atomic units, of a sphere
with volume equal to the average volume per conduction elec-
tron. For a pure metal, r, may be determined from a know-
ledge of the density and valence of the element.

The specification of r for the alloy is more complicated,
since it will be a function of concentration. The alloy is
specified by the average densities, Py and Por of ions of
species one and two. As indicated in section I, we find it
convenient to replace these variables by

Py
pl+pz

p=py tp, and x = . (5-6)
To determine the total ionic density p, we shall make an

interpelation between the densities p? appropriate to the
individual components in their pure state. The interpolation,

used also in AL-II, is

1 l-x X
= + == . (5-7)
p {x} p§ pg

If ré and rg are the values of ry appropriate respectively to
pure species one and two, the equivalent interpolation in rg
is

.._, 13 23

(1 x)Zl(rS) + sz(rS)

3
S {1 x)Zl + x22
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This completes the description of the metallic systems and
their potentials. |

We turn now to the description of the hard core plus tail
models of these systems. Consider first the hard core refer-
ence fluids. To specify a single component hard sphere liguid,
we require, in addition to the particle density o, the hard.
sphere diameter ¢ of the potential (1-10). We find it conven-
ient in.this description to replace 0 with the packing frac-~

tion n defined (as on page 13) by

03 _ volume occupied by hard spheres
pe = total volume

=
1l
o3

. (5-9)

The convenience of this arrangement lies in the fact that
classical single-component hard sphere liguids of different
densities but identical packing fractioné are simply scaled
versions of each other. Specifically, the structure factor of
any such system, expressed as a function of the dimensionless
wavenumber variable y = ko, is completely determined by n
alone.

To specify the two-component hard sphere liguid, we
require, in addition to the densities Py and Pyt two hard
sphere diameters 9, and Gy in terms of which the reference

interactions take the form

13

0 r>Uij

. (5_10)

© r<g,. = {0.,+0.)/2
"Iiig-:fr) ={ 3

For the same scaling reasons applied to the single-component

case, we replace the diameters o4 and o, by n and a, defined
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by

-7 3 3, _ volume occupied by hard spheres
n=7g (Proy” *+ 0y0,7) = total volume

(5-11)

o = 01/02 (0 < a <1, by convention) .

In this case, the partial structure factors, expressed as
functions of the dimensionless variable y = koz, are uniquely
determined by x, n, and «.

In our calculations for the hard sphére reference sys-
tems, we have used the structure factors determined from the
PY approximation. (References were listed in section I.)
Because the forms of these functions are given by Ashcroft and
co-workers (1966, AL-I), and becéuse, for our purposes, we
need only be aware that they exist, we shall (mercifully)
neglect to copy them into.this document.

Finally, we consider the description of hard core plus
tail models for the metallic s?stems. Once the reference hard
sphere parameters have been selected, we rass to the hard core
plus tail model by adding to the potential VHC that part of

AL

v~ which lies outside the core. That is, in the pure fluid

case, our model potential will be

{w r<ag
v(r) = . P (5-12)
VAL(r) r>0 , :

while for the binary case, the model potentials will be
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: oo r<c’i N
vij{r) = AL i, _ (5-13)
vij(r) r>o’ij

It is clear that the adequacy of these model potentials will
depend greatly on the choice of the ¢'s. This choice is, in
fact, a central problem in this work, and will be discussed in
detail later on.

To use our perturbation theory for the potentials (5-12)

and (5-13), we need to specify the perturbation potentials

vij. It is clear that we have already made the partial spec-
1 _ _AL ‘ . .
ification Vij(r) = vij(r) for r > Gij‘ The region r < Uij is

inaccessible, so that thé form of vij in this region is in
principle immaterial. Indeed, as we shall indicate, this
feature is explicitly represented in the formulas we have
derived. Computational ceonvenience, then, (meaning the use of
(5-1) through (5-4)) usually dictates V;:L‘Lj (r) = vﬁ(r) in this
region as well, Then, to study the model potentials (5-12)
and (5-13) with the theory we have developed, we study the

perturbation problem defined by

vref = ch and vi. = VAL . {(5-14)

V-B. The Mean Field Calculations

In this subsection, we present the mean field calcula~
tions referred to in section II. Consider first the line of
singularities in the x-T plane. This is to be calculated by

generalizing the mean field formula (2-16) to the case of a
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binary system. That generalization may'be established in
precise analogy with the discussion around equation (4-14),

and is, not surprisingly,

1 _ _ 1 : _
where
( _ 1 rccij 16
i3 r) = o . {5-16)
r>0ij
1

With the choice (5-14), the form of fij(E) (i.e. the form in
reciprocal space) is readily calculated by numerical convo-
lution of VAL(k) with the Fourier transform of H i3°

To find the singularities in the Sij(ﬂ)' we seek the
zeroes of the denominator D of (3-41). Expressing the denom-
inator in terms of the structure factors (using (3-5)}, we can

write

D=1+ Bo{(l-x)s"Ced 4+ xsHCel 4 ovmrTmny sHCel )

1111 22722 12512
(5-17)
2 CgH
+ szzx(l :-:){(SHC - }fl 22}{(f12)2 - f%lfgz} .

We studied this denominator for the Li-Na system. The valen-

2 o
ceas Zl and 22 are both unity, and we use rgl = .561 A and
=}
rﬂa = .884 A. To simplify the calculation, we have taken both

the density and the parameters o, n to be independent of tem-
perature. Then both fij and SE? are independent of tempera-
ture, so that (5-17) is a simple gquadratic in B. We calculate

r, by interpolating with (5-8) between the representative
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FIGURE 3
Comparisdn of experimental phase boundary and MF line of
singularities in Li-Na. The parameters of the MF calcu-

lation are specified in the text.
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values rgl = 3,333 and rﬁa = 4.064. Finally, we choose o and

n to be independent of concentration as well. The values used
Li, Na _
s /rs -

(This value of n is that at which Ashcroft and Lekner achieved

in this calculation are o = r .8201, and n = .456.
the pure fluid fit near solidification.)

With these assumptions and the mean field form {5-15),
the line of singularities is calculated as follows. The
calculation of f%j(g) is, as noted above, a straightforward

numerical integration. At each concentration, we calculate
HC

these functions at k = 0, combine with Sij(O) {(from PY) to
evaluate D, and solve the resulting guadratic for the two
values of T at which D = 0. Sincé lim D = 1, the stability
condition (D > 0) will he satisfiedT;zr values of T greater
than the larger root. It is thus the larger root that we take
as the desired singularity temperature. The resulting line of
singularities in the x-T plane is presented in Fig. 3, and
compared to the experimental Li-Na phase boundary of Schiirmann
(1871). It is clear that the curve has the proper shape and
symmetry, and although the values of T are low, they are
certainly of the righﬁ_order of magnitude.

The second mean field calculation concerns the structure
factor of pure liguid Na for arbitrary k. 1In terms of the

structure factor, (2~7) reads

e
S(k) = s__(k) . (5~18)

1+ spsHC(E)fltg)

1
MF

pression is of the same form as (5-16) and is thus similarly

We evaluate this formula using the £ of (2-16). This ex-
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evaluated by numerical convolution in reciprocal space.

As we have indicated in several places, a good fit to the
structure of pure Na just above solidificaﬁion (T = 371°K) can
be achieved with the (PY) hard sphere structure factor appro-
priate to n = .456 (Ashcroft and Lekner, 1966; see also Stroud
and Ashcroft, 1972). This.structure factor is displayed in
Fig. 4a. We note the strong first peak which indicates, as
discussed in section II, a strong correlated response at
ko ~ 7. Then the mean field theory at these wavelengths
erroneously predicts a large effect from the perturbation vl.
To display this effect, we calculated the expression (5-18)

in the mean field approximation, taking the reference system

appropriate to n = .456, and using T = 371°K and Vl = VAL
. Na 2 Na * .
determined by re = .884 A and ry = 4.064. In Fig. 4b, we

have displayed the resulting form of the denominator of
(5-18}). The strong (for these parameters, catastrophic)
effect at the peak is clear.

The significance we have attributed to these meah field
calculations was discussed in section II, so that no further

discussion is called for here.

V-C. Pure Pluid Calculations
In this subsection, we use the theory developed in
sections III and IV to calculate the structure factors of

single~component fluids. These calculations are, in

*This is a bit of an error with respect to our intent to model
Na. The correct value at T = 371°K is rga = 4,045.
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themselves,_of less interest than the alloy calculations to
come, because the success of our theory is limited to the long
wavelength regions, and it is only for the alloy case that we
expect any spectacular effects. Neverthéless, these calcula-
tions do have some intrinsic interest, and they allow us to
discuss many important features of our theory and calculations
without the confusion which accompanies the multi-component
case.

The plan of these calculations is dictated by the results
of the last section and is as follows. We must calculate £l
to insert into (5-18). We adopt the perturbation approach,

1 in a series fl = al + o(vl)z, and truncating

expanding £
after the first term. We shall calculate al using our only
clear approximation, the form (4=-25), and thus limit our

investigation to small values of k. In the next section, we

shall adopt this same scheme, suitably generalized, to calcu-

late the Sij(£)' With a name derived from the nature of the
approximation to a1 {actually to pg,ref(E’E,))’ we shall refer

to this structural approximation as the "mean density approx-
imation™ (MDA).

To use (4-25), we must calculate the function
%%:5 pE’HC(E). Using the relation between Py and S(k) defined

by (1-6) and (1-7), we find

2 . .
= 03 = 22m s ()
-]

(5-19)

.3 HC 32
+ 2=— 5 K) + po
apo ('_) P apoz

sHC (1) .
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At this point, we face a rather difficult matter. Of the two
parameters, p and o, needed to specify the HC reference sys-
tem, p is determined by the particular system under investi-
gation, while ¢ is left to choice. We shall shortly have a
good deal to say on the subject of the best choice of o. The
important point for now is that if ¢ is selected'by any scheme

systematically related to the potential VAL

, it will depend on
the density through the ry dependence of this potential. A
question which might be asked is, should the density deriva-
tives in (5-19) properly include density derivatives of this
"best" ¢? This guestion is actually the first manifestation
to this point of what is ultimately a fundamental difficulty
in applying this work to metallic systems, where the notion of
an ion-icn pair potential depends crucially on.the accounting
of conduction electron effects. We shall discuss this matter
in section V-F. For now, however, we proceea from the assump-
tion, stated in section I, that the ionic structure factors
are those appropriate to a classical fluid with pair inter-
actions VAL. Then once a potential VAL has been constructed,
and subsequently mcdelled by a hard core-ﬁlus tail, we shall
investigate the appropriate classical structure without fur-
ther consideration of the origin of these potentials. Within
this wview, if the parameter o is-accepted as a characteristic
of the potential VAL, it is a given in the problem, and the
differentiations in.(5-19) are performed only with respect to

the explicit density dependence.

We can thus use the definition (5-%) of n to replace
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5_
Po3p.

tuting into (4-25), we find

by n%ﬁ . On making this change in (5-19), and substi-

al ) = vix)

{5-20)
dk' 242
A o Pl inde s®Ck-kty + D s C -k .
Po (2m) 3 - an = - 2 3nz A
We note further that since pgc(r) = 0, identically for r < o,
o, _
we must also have 3 °'Hc(r) = 0, identically, for r < 0.

3pe2 P2
Then (remembering that {4-25) is just the Fourier transform of

(4~24)), we see that al(g) in this approximation is explicitly

independent of the form of vl(r) for r < g. Thus, as dis-

cussed earlier, we make the replacement vl = VAL. Finally,
making the first order a?proximation f1 =-al, we have, for the
mean density approximation to fl,
£hx) = VP k)
. . , (5-21)
+ 1 (:i UK (ngr ST (k) + %z-g-%-z- s" -k} .

We note that the n derivatives of the structure factors can be
given an explicit analytic form in the PY approximation, so
that the expression_in (5-21) is calculated by numerical
integration of analytic functions.

We first specialize this calculation to the case of the
absolute long wavelength limit, k = 0. Our interest in this
case derives from two sources. First, at k = 0, the expres-
sion (5-20) for al(O) is exact (for the hard core plus tail

potential). Then the only approximations we make in this case
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are the first order approximation, and, of course, the PY
approximation for SHC(E). Secondly, at k = 0, the physical
meaning of our results can be discussed using the well-known

compressibility sum rule:

3o -4, —
]ii?; S(k). pol ¥I3p/p ! - (5-22)

where the expression in braces is the isothermal compressi-
bility.

We have calculated S(0) in the MDA for the VAL appropri-
ate to four alkali metals, Li, Na, K, and Rb, at, in each
case, the temperature appropriate to melting. To specify each

metallic system, we need to specify r Yo and Z. The values

s’
of T, listed in Tabie I are calculated for each element from
the density at melting (Smithells, 1967). The r. value for
Rbh is taken from Al;II, while the other T, values are those.
listed in Ashcroft and Langreth (1967C). 'The valence % is
unity in each case. For the hard sphere reference system, we
follow the suggestion of Ashcroft and Lekner (1966) that each
of these elemeﬁts aﬁ melting should be characterized by the
same packing fraction. We therefore take the reference fluid
in each case to.be a hard sphere liquid of.the appropriate
density with n = .456. Within the PY approximation, this
yielas sHC(0) = .023¢6. |

The results are presented in Téble I. The first three
entries after each élement are the melting temperature Tyr Tg

o
at melting, and r. in A. The next column presents the values

calculated for fl(O) according to (5-21). We must say a word
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HC (o) = .02396 (n = .456)
° 1+
Metal TM( K) I rC(Q)
Li 453 3,318 .561
Na 371 4.045 .884
K 337 5.017 1.132
Rb 312 5.371 1.12
TABLE I
Results at k = ¢, T = TM'

l .
fMDA (0)
-.1965

.0872
-.0731

-.5247

14+gHC

f
.6342

1.133
.9200

.4587

1

Syupat®
.03778

.02114
.02604

.05223

for the pure alkalis in MDA.
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about the dimensions used for the entries in this column. In

this, and all subsequent reportings of fl, vl, and VAL, we

adopt the convention of reporting not these figures directly,

but the dimensionless ratio between these figures and the

. 2.2 2 . 2 ;
guantity 4mZ<e /(kTF) 3 ZEF/Do- (Here, kTF is the usual

Thomas-Fermi wavenumber, or, in the notation of {5-4}, just

2k A?*.) Thus, for example, in the column labelled fl(O), we

£
actually guote the values of, say, £{0), where

4mzle?

1
£7(0) = =5
(Kpp) 2

£(0). (5-23)
In these terms, the important guantity Bpofl(k) is given by

2
3 F

last two columns present, from these values of fl, the values

ZE(k)TF/T, where T, is the usual Fermi temperature. The
of the denominator in (5-18) and the resulting S(0).
We note from the compressibility sum rule (5-22) and the
C
{

comparison between 5(0) and st 0), that the compressibility

can be either increased or (in the case of Na) decreased by

the addition of vl.

Numerically, this reflects the fact that
the calculated values of fl(O) are of either sign. We note
that, for these potentials, the mean field form f;F(O) (which
is, from {(2~-16), just f:vl(r)rzdr ] will no£ have this proper-
ty, since the potentials vl defined here are predominantly
negative for r > o. (These potentials are displayed in AL-II.
In relation to the hard sphere diameter defined by n = .456,
they each take a form gualitatively like that displayed in
Fig. 2.) That the correct from of fl(O)'should in fact permit

either sign is apparent from the fact that these negative vl
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nevertheless contain both attractive and repulsive regions.

At sufficiently high density, the nearest neighbor position
will be placed in the repulsive region of vl, so that a de-
crease in compressibility is expected on passing from hard
core to hard core plus tail models. This is, of course, a
correlation effect, since a nearest neighbor position can only
be defined for correlated particles. It is instructive to
note, from AL-IT, that the nearest neighbor position in Na is
indeed just into the repulsive part of.vl, while in Rb, it is
well into the attractive region.

We turn now to the results at k # 0. In Fig. 5, we
present the functions fl(E) for Li, Na, and K, calculated in
the MDA (that is, by ({5-21)). Note that to present only .~
fl(g), we need not present the temperature (though temperature
will affect the careful selection of rs.) As with the k = O
results, we plot these.functions in units of 4ﬂ2262/(kTF)2.

The MDA is a long wavelength (first order) approximation
for fl. We expect it to be valid for wavelengths longer than
the correlation range in the reference fluid. The correlation
range should be given roughly by the inverse of the width of
the first peak in SHc(k), since this peak defines the dominant
oscillation of the radial distributioh function g(r) (see
equation (1-6)). From consideration of the HC structure
factor of Fig. 4a, we expect, optimistically, that what we
might call the range of "a priori validity” of the MDA should
extend only out to ko ~ 1. The interesting_feature of the

results presented in Fig. 5 is that, in spite of strong
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variations in the shape and amplitude of the curves, the
curves all go through zero at a value of ko near the hard
sphere peak (kcpeak = 6.8). This means'that for a small
region around the peak, the MDA gives to S(k) values which are
in accord with our physiﬁal expectation that S(k) should be
little affected at the peak by vl. This region is really very
narrow. In Na, the structure factor has been driven to
negative values by ko = 7.0. (Note from (l-5) that the struc-
ture factor is a positive definite quantity.) Yet the exist-
ence of such a region in each element seems to suggest that

this effect may be, as discussed at the end of section IV, a

manifestation of finite particle size.

Until now, we have been content to neglect the problem of
selecting the hard sphere reference parameters in favor of
illustrating, with simple (but not unreasonable) wvalues, the
general features of these theories. Though we shall adopt
this tactic once more to make a point when we turn to the bi-
nary alloy case, we must ultimately consider the selection
these parameters with care. It is convenient to begin the
discussion of this matter before we leave the simpler pure
fluid case.

For the pure fluid, we wish to dewvelop a systematic pro-
cedure for selecting the "best" ¢ of the model potential
(5~12), given the potential VAL; The aim of this work is to
be able, with this model, to calculate closely the structure

appropriate to VAL; Consideration of the physics involved
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suggests that, with a good enough perturbation theory, ¢ could
be defined through an empirical approach. The work proceeds

in two stages. We first model the potential VAL

with the po-
tential of (5-12), that is, with a potential_which is infinite
for all r less than some diameter ¢, and equal to the real po-
téntial for r > o. We then calculate the structure by a per-
turbation theory in which the perturbation is that part of VAL
which lies outside the core of diameter . Consider for a
moment a seguence of such models for a single potential VAL,
arranged in order of decreasing o. If we could sum all orders
of the perturbation series, and hence calculate exactly the
structure appropriate to each model potential, we should find
in this segquence that the structﬁre eventually becomes inde-
pendent of ¢. This will happen when VAL takes on a value at

r = ¢ which is more than a few KT above its minimum value.
Then further decreases in o will affect the model potential
only in a region which is virtually never sampled. In reality,
of course, we can calculate the structure only in an approx-
imation which is based fundamentally on the smallness of the
perturbation. With decreasing o, the perturbation becomes
larger, and the approximation will eventually break down. If,
however, the approximate theory works reasonably well for a
perturbation of order one or two times kT, we might observe
some vestige of the ideal result. That is, there might still
be a small range of-o for which the calculated structure is

independent of ¢. This structure would clearly be the struc-

ture we are after.
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To search for such a region, we repeated, for many values
of n, the 5(0) calculation for pure ligquid Na described above.
A region of independence does not appear. In fact, the result

is quite strongly dependent on n. At T = 371°K and for

Na 2 Na ‘ .
r, = .884 A and ry = 4,064, the values of S(0) in the MDA
vary almost linearly between .0335 at n = .400 and .0140 at

n = .500. The result of this calculation is plotted in
Fig. 6. This result provides a revealing and not too encour-
aging look at the adequacy of the approach.

In any case, this result means that the best we can do is
try to devise an external criterion for selecting ¢ which will
bring the calculated model structure closest to the structure
appropriate to VAL. It is clear that the essence of that
criterion will be to select the largest hard sphere diameter
consistent with a reasonable modelling of the potential. This
consideration suggests an aéproach in the spirit of that taken
by Ashcroft and Langreth (AL-II), who selected o as that point
in the core region of vAL(r) at which the poteﬁtial has risen
% XT above its minimum. Such an approach seems to contain the
essential physics of our problem. In more recent work (e.g.
Stroud and Asheroft, 1972) a diameter o was selected for a

different problem by a variational approéch. This approach is

based on the result (Lukes and Jones, 1868)

HC
FXF 4 <Py, (5-24)

where F is the free energy of the fluid with internal poten-

tial U(R), FHC is the free energy of some hard core f£luid, and
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<U> is the thermal average of U{R) taken with the hard core

HC
distribution functions. For the case of a pure fluid with

pair interaction VAL, {5-24) reads

F < FiC 4 %JAE d£’»vAL(£~£')p° r,r') . (5-25)

In an effort to calcﬁlate the liquid free energy, the right
side of this inegquality can be minimized with respect to the
hard core diameter o. Though such an approach may seem to
bear little direct relation to our problem, it, in fact,
appears to contain essentially the same physics as the % kT
rule, for it gives very nearly the same results for both the
magnitude and temperature dependence of o. The advantage of
the variational approach is that the right side of (5-25) can
be simply expressed ags an integral in reciprocal space and the
whole procedure automated to a great extent. We make use of
the generalization of this procedure for binary alloys in the
next section.

This completes the discussion of our results for pure

fluids.

V-D. Binary Alloys I: The k = 0 Results and Phase Separation.
In this subsection, we apply the theory of sections III
and IV to calculate for binary alloys the line of singulari-~
ties in the x-T plane. The elements of these calculations are
the same as those of the mean field calculation presented in
V~-B. We calculate fij and search for the highest temperature

at which D of (5-17) eguals zero. In the present work,
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however, we shall replace the mean field approximation to fij
by the mean density approximation, suitably generalized to the
alloy case. As 1n the case of the pure fluid calculations,
the MDA is exact in first order at k = 0, so that, once the
hard core plus tail poténtials are specified, the only approx-
imations in the present section are the first order approxima-
tion and, as usual, the use of the PY approximation for the
s??(g).

To construct the MDA for the alloy case, we consider the

long wavelength approximation (4-31) to a}.(E), and proceed as

1]
we did for the pure fluid case. We can express the deriva-

_.B_E_.____ o rHC H
303903 Pem i
structure factors. We differentiate only the explicit density

dependence, make the replacement vij = v?? because the form of
{4-31) is observed to be independent of vij(r) for r < o4

jl
and finally make the first order approximation fij = aij. The
1

i

tives (k) in terms of the § g(k), the reference

result is a set of expressions for f j(k) which are analogous
to (5-21) but more complicated. These expressions are pre-
sented in appendix D. They form the MDA to fij. We note that
for this case as well, the density derivatives may be given an
explicit form in the PY épproximation, so that the calculation
of aij, though by now a lengthy process, is in principle just
a numerical integration over analytic functions.l

For the first calculatioh, we éought a comparison between
the mean field and mean density approximations. To do this,

we use the MDA in a calculation which is otherwise identical

to the mean field calculation of section V-B. That is, we set
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rﬁa = 4,064, rgi = 3.333, independent of temperature, and
o = .8201, n = .456, independent of temperature and concentra-
tion, solve the resulting quadratic, D = 0, for two roots T,
and plot the higher root. The results are plotted in Fig. 7,
where, for comparison, we have repeated from Fig. 3 the exper-
imental Li-Na phase boundary and the mean field results. We
can see that the asymmetry has been maintained, and that the
curve has been shifted upward by about 100° in passing from
mean field to MDA. That the curve has been shifted towards
- the experimental phase boundary is probably not important,
since the seléction of o and n has been quite arbitrary. This
calculation shows once again that, although we originally con-
sidered correlation effects at the peak, they are of impor-
tance at long wavelengths as well. Also, the degree of suc-
cess achieved by this calculation tends to support our sugges-
tion that the lesson of the mean field success is that we
should seek a consistent low order approximation to fij.
To complete this comparison, we present in Table II the
numerical results of these two calculations. Within our con-
vention for reporting potentials in k-space, we list, for each
concentration, the wvalues of v??(O), fij(O) from mean field,
and fij(O) from MDA. We also list the singularity tempera-
tures for the two calculations. We observe that in passing
from mean field to MDA, the fij(O) ére substantially changed,
while their arrangement, in which fiz lies roughly midway be-
tween fil and f%z, is essentially unchanged. Perhaps the

second of these observations explains why these substantial



-101-~

AL(ll) 1 (11) 1 11 oz
X viol22 £ 22 £ 22 T °K T (°K)
12 MF 12 MDA 12/ MP MDA
.000 1.223 -.138
2.455 -.127
1.841 -.133
100 1.190 -.150 -.202 . 265 349
2.385 -.136 -.059
7 1.787 ~-.144 -.168
.200 1.154 -.1l61 -.204 351 4134
2.314 -.145 -.028
1.736 -.155 -.160
. 300 1.124 ~-.172 -.201 394 490
2.256 -.153 . 005
1.691 -.165 -.152
.400 1.093 -.182 -.213 406 514
2.201 -.162 .033
1.648 _0175 -1145
.500 1.065 -.193 -.218 3%6 511
1.609 -.185 -.141
.600 1.037 -.203 -.223 369 486
1-571 _0195 --138
2.059 -.186 .081
1.536 -.204 -.138
.800 .987 -.224 -.236 272 358
2-017 _0194 0085
10503 —-214 -.140
.900 . 964 -.234 -.244 205 243
1.978 -.202 . 085
1-472 -0223 ""l143
10000 -935 "-244
1.941 -.210
1.438 -.232
TARLE II

Comparison of MF and MDA calculations of f%j(O) in Li-Na.
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changes in the fij give rise to only moderate changes in the
singularity temperatures.

We must now turn to the problem of the careful selection
of the reference fluid parameters a and n. The elements of
the problem here are the same és in the pure fluid case, so we
to straight away to the variational technique. For the binary

system, the realization of (5-24) is

F < FOC 4 % Zjdr dr' Vol (r-r')p®!HCr 1y . (5-26)
- I A E R

The integral on the right side of (5-26) can be written as an
integral in reciprocal space over v??(&) and the partial
structure factors S??(E). The hard core free energy FHC is
known for mixtures in the PY approximation (Lebowitz and
Rowlinson, 1964). The plan is to select the best values of

o and n by minimizing the right side of (5-26) at each concen-
tration and temperature.

We have applied this variational technique to the calcu-
lation of the line of singularities of the Li-Na system. The
plan of the calculation is as follows. Given-the concentra-
tion and a temperature T, we calculate the density of the
alloy by interpolating with (5-7) between the published den-
sities of Li and.Na at T (Smithells, 19%967). 1In this way, we
make some account of the thermal expansion of the system.

From the density, the three potentials V%L

ij
as specified in V-A, and, in turn, the "best" hard sphere pa-

(k) are determined

rameters, a and n, are determined by the variational tech-

nigque. With the potentials, temperature, and a and n, the
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denominator D of (5-17) can be calcﬁlated in the MDA. The
calculation is then repeated for several values of T, to seek
out that T for which D = 0.* This defines an unambiguous
procedure for calculating the line of sihgularities.

We have performed this calculation for three concentra-
tions, .3, .4, and .5, of Na in Li, using {as always)

Li

-] [+]
rNa = ,884 A and rc = .561 A, The zeroes of D are found to

c

i

lie quite high, at T = 1000%, 1040°K, and 975°K respectively.
(The experimental phase separation temperatures are 574°K,
576°K, and 560°K respectively (Schﬁrmanh, 1971).) The value
calculated for o by the variational technique seems to be
almost independent of concentration and temperature at .77.
The values of n appropriate to the three points (x,T) pre-
sented here are .274, .271, and .284 respectively. These are
not unreasdnable values, since, in relation to the solidifica-
tion value ~ .45 at 400°K for Na, they represent an average
change of -.03 for each 100°K, precisely as suggested by Al-II
(though carried to temperatures well ogtéide the range for
which that suggestion was intended.) A more complete speci-
fication of the densities and the calculated values of o and
n is presented in Table III, |

To round out the picture of the o and n dependence of our
results, we performed a calculation of a different sort, to
discover what values of o and n are required to get the

"right" temperatures. Of course, we can't fit two parameters

*For temperature dependent density and hard sphere parameters,-
the denominator is no longer a simple guadratic in T.



. 300

.400

. 500

T(°K)

950
1000
1050

573
773
90ﬁ
1000

1040

950
975

1050

3.44

3.34
3.38
3.40
3.42

4.43

3.42
3.42
3.44

-104-

4.28
4.30

4,32

TABLE

I1T

.770
.768
772

771
.762
. 770
773
771

- 774
772

.775

n

.280
.274
266

. 351
. 315
.292
277

271

.288
.284

.274

Results of the wvariational calculation for Li-Na.

rLl
s

and rNa
s

D(T)

-.033
. 005
.029

-.608
-.233

- -.095
~.020

. 005

~.015

. 000
.048

Values for

are calculated from published density data

(Smithells, 1967), a and n are determined by the variational

technique,

and D(T)

(at ¥ = 0) is calculated in the MDA. The

points presented were calculated in the search for T at which

D{T)

C.
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to a single data point, but, for each concentration, there
presumably exists a locus of points in the a-n plane for which
D = 0 at the desired temperature. Then the scheme of this
calculation is as follows. Given the cohcentratibn x (we
choose x = .4, near the critical value, so that the line of
singularities lies close to the phase boundary), the observed
phase separation temperature is defined (575°K from Schiirmann,
1971). Then the density and three potentials are calculated
for this x and T as described above, and the value of D inves~
tigated as a functior of o« and n. In Fig. 8, we present the
o-n plane for T = 575°K and x = .4. The boundary in this
plane divides the region where D is greater than zero {above
the boundary) from the region where D is less than zero. The
boundary itself is then the desired locus of points at which
D = 0. For comparison, the variational values assigned to a
and n at this x and T are ¢ = .772 and n = .35.

The range of what we might consider reasonable values for
a and n is determined primarily by our physical feeling for
the packing fraction n. We do not want to select n much above
~ .47, since the experience in pure fluids suggests that the
system would tend to crystallize. Since 575°K is about i25°
above the melting point of Li (at X = .4, the mixture is Li
rich), the experience of AL-II might suggest an n of .41 to
.42, (THe lower value obtained from the variational calcula-
tion presumably reflects both the presence of Na and the
effects of thermal expansion.) For these reasons, we have

chosen to exhibit in Fig. 8 the region between n = .35 and
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FIGURE &8
The o-n plane at T = 575°K, x = .4, in Li~Na.
The denominator D is greater than zero above

the line, and less than zero below.
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n = .46.

From these results, the selection of o and n emerges as
one of the central difficulties in our work. It is clear that
the temperéture at which D = 0 is quite sensitive to the val-
ues of these parameters; The ﬁariational‘calculation, which
probably has the best a priori justification, has yielded tem-
peratures which are far too high. We have seen that the
"correct" temperature can be obtained with “reasonable" wvalues
for o« and n but the physical meaning of those values, indeed
the physical meaning of such a fitting procedure, is unclear.
The confusion at this point suggests that, while we may ulti-
mately have learned something of the form of the structure
factors near phase separation, considerably more work on the
modelling of the systems (and on the theory itself) may be
needed before we can predict this transition in real systems.
Our difficulties here may also derive from the special problem
of the metallic pair potential, to which we shall turn briefly

in section V-P.

V-E. Binary Alloys II: The Results for Finite k.

We turn now to our results in the MDA for binary alioys
at finite k. 1In the previous section, we identified points at
which

lim D(k) = 0 , (5-27)

k+0
where D(k) is the denominator of (5-17). In this section, we

examine one such point in detail, to discover the manner in
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which D(k) goes to zero in the MDA as k+0,.and to observe the
MDA structure factors themselves. Ultimately, we intend such
work to form the basis of a resistivity calculation, and we
conclude this section by suggesting a program for such a
calculation.

We have chosen the point defined by x = .4; T = 575°K,
o = .825, and n = .430. The values of o and n were estimated
from earlier results to give D(0) = 0 in Li-Na at this concen-
tration and temperature. These estimates are in fact slightly
in error, so that the value of D(0) is -.0013. 1In Table IV,
we list values of y = k/ZkF and the corresponding values of
D(y) in the MDA. These values of y were selected in another
unit system, and turn out in the present units to be multiples
of .01692, a fact which we have indicated in the second column
of Table IV. In these units, the first peak of the\structure
factor occurs at about y = 1.2, so that the region in which
the MDA is most to be trusted extends out to roughly v = .2.
When these values of D are plotted vs. ¥y on a log-log plot,
they are observed to follow quite well a straight line of
slope two for the small values of y, but move away from this
line for the larger values (see Fig. 9). This suggests that

the singularity may be of the sort
D = a + bk? . (5-28)

This type of singularity appears in more conventional mean
field theories. Because of the error in o and n, we would ex-

pect for these data to set a = -.0013. This suggests that we
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Y (=k/2kg) y/-01692 D(y) D(y)-D(0)
0.00 0 -.0013 . 0000
.03384 2 .0102 .0115
.05076 3 .0245 .0258
.06768 4 .0442 . 0455
.08460 5 . 0690 .0703
.10152 6 .0985 .0998
.11844 7 .1322 .1355
.13536 8 .1678 .1691
.16920 10 .2526  .2539
.20304 12 .3418 .3431
.25380 15 .4748 .4761
. 33840 20 .6579 .6592
.50760 30 .7951 .7964
.67680 40 .8709 .8722
TARLE IV

Results in MDA for D(y) at y # 0. Calculated for Li-Na at

x = .4, T = 575°K, o = .825, and n = .430.
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FIGURE 9
Log-log plot of D(y)}) in MDA for Li-Na at x = .4, T = 575°K,.

o = .825 and n = .430. The straight line has a slope of two.
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FIGURE 10

Log-log plot of D(y) - D(O) in MDA for Li-Na at x = .4, T

T

= 575°K, o = .825 and n = .430. The straight line has a

slope of two.
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construct a log-log élot of (D + .0013).vs. y. This has been
dbne, and is presented in Fig. 10. The strailght line in this
figure also has a slope of two, and now appears more properly
as an asymptote. This observation lends support to the pro-
posed form (5-28), viewed as a limit.

There are two points to be made about these_results.
First, they coincide with the physical expectation that the
singularity at k = 0 is the first (highest temperature) of the
possible long wavelength singularities. This ﬁust be true on
physical grounds, since any singularity will render the system
unstable, while real alloy systems of critical concentration
are stable down to the critical temperature, at which point
the structure factors diverge at k = 0. Secondly, while we
can present no direct evidence for a k_2 singularity, we must
~ have a singularity which occurs less rapidly than k"4 in order
that the resistivity integral (l1-1) converge at the lower
limit. That our long wavelength approximation conforms to
both these physical expectations, despite the complexity of
the binary alloy formulas, is a gratifying result.

In Figure 11, we present the structgre factors Sij(k)
calculated at this point in the MDA. They have been formed
j
and Sij' In the same figure, we have presented for comparison

using (3-40) for the Xij and the relation (3-5) between Xi

the (PY) structure factors of the underlying hard core refer-
ence mixture (the mixture defined by'x = .4, o = .825, and
n = .430). The MDA structure factors appear to join rather

smoothly with the HC structure factors at point roughly midway
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FIGURE 11 .
Partial structure factors for Li~Na at x = .4,'T = 575°K,
o = .825, and n = .430. The solid lines represent the

structure in the MDA, and the dashed lines represent the
structure of the hard sphere reference system.
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between the origin and the first peaks. This fact is in ac-
cord with our physical expectation for these systems, and,'as
discussed below, might be put to good use in a resistivity
calculation. However, the MDA is expected fo be wvalid only
for small k (y < .2) so that the ultimate meaning of this ob-
servation is unclear. |

This completes the report on the calculations we have
performed for metallic systems. Although we have stopped
short of a resistance calculation, we can at least indicate
the shape that such a calculation may take. We are interested
in shedding some light on the conjecture, discussed in section
I, that the resistivity anoﬁaly observed by Schirmann and
Parks in Li~Na is a long wavelength effect. As indicated in
{(1-1) , what we need for a resistance calculation is the form
of the Sij(k} for 0 < k < 2kp. What we have is an approxima-
tion valid for small k (0 < k g ZkF/T) and the physical idea
that the structufe factors Sij(k) should remain substantially
unchanged around the peaks as we pass from hard core to hard
core plus tail model potentials. It is immediately clear that
we are in no position to do any serious guantitative calcula-
tion. Yet we might still imagine a calculation which could
lend gualitative support to the long wavelength hypothesis;
We might, for instance, simply calculate the contribution to
the resistivity from that part of tﬁe integral in (1-1) for
which the MDA is valid. More completely, we might calculate
the structure in the MDA at small wavelengths, and join the

results smoothly to the HC structure factors around the peaks,
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thus incorporating what we expect will be the essential fea-
tures of Sij{k) near phase separation. {As noted above, the
MDA, somewhat inexplicably, seems to be doing this job for
us.) ,

The trick in any sﬁch calculation, of course, is going to
be to get the T-dependence right (since we are loocking for a
temperature dependent effect.) This involves understanding
both the "normal" (that is, linear) and the anomalous parts of
the resistivity. We might, however, simplify a first calcula-
tion by supposing that the'“normal“ part is ultimately attrib-
utable to the hard cores, that is, could be dealt with by a HC
structural model of sufficiently subtle temperature dependence.
(In view of the successful resistivity calculations of AL~II,
this may not be an unreasonable assumption.) Under such an
assumption, the plan of a first simple calculation would be to
ignore the temperature dependence of the density and the
"best" hard sphere model, and study only the remaining T de-

MDA HC

pendence of the difference p = Pelec

elec . We plan to under-

take such a calculation in the near future.

V-F. The Metallic Pair Potential

In these calculations for metallic liguids, we have sev-
eral times encountered the conceptual difficulty arising from
the density dependence of the pair potential. We have also
encountered a great deal of difficulty in getting our calcu-
lated results to agree in more than general form with the ex-

perimental results for the real systems. It seems to us in
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retrospect that these difficulties may be traceable to an in-
correct assumption made at the outset, namely, that the ionic
structure is precisely that appropriate to (classical) parti-
cles interacting via the pair potential v*¥.  We have not un-
dertaken a detailed and careful investigation of this problem.
Yet it seems to us that there is, within the tradition which
gave rise to the effective potential VAL, a certain contradic-
tion in usage which suggests that the potential'vAL is incor-
rectly used to calculate the structure factors at small k. |
Whether this is in fact the case is a difficult (and still

_ open) question.

The difficulty appears in the following way. Our calcu-
lations are based on an approximate accounting of energy in
simple metallic systems (Ashcroft and Langreth, 1967C, and
Harrison, 1966). For this discussion, the essential features

of this approximation are contained in the form
E(po,R) = Ey(po) + E,(pesR) - (5-29)

The terms belonging to El(po) depend only on the average dens-
ity p, = N/V. The terms belonging to Ez(po,R) depend on the
explicit ionic pdsitions R as well as on p,. When E2 is cal-
culated within a linear screening approximation, the result
can be cast as a sum over an effective ion~ion pair potential.
With the choices of dielectric function and pseudopotential
specified in V-A, this potential becomes VAL.

Without going furﬁher into the origins and form of this

expression, we can make the important points here by consid-
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ering and contrasting how it has been used in the calculation
of the compressibility and structure of simple metals. In
each of these calculations, we are considering the effects of
density variations. To calculate the compressibility, we con-
sider variations in the average density po.. A calculation of
S(k), however it proceeds, must be eguivalent to considering
spatially varying denéities, since S{k) is the density linear
response function. Viewed in this way, the two calculations
differ only in that the appropriate density variations are of
infinite wavelength in the first, and of finite wavelength in
the second. Yet the customary use of (5-29) in thése calcu~
lations requires a fundamental distinction between these two
cases, hence, between infinite and finite wavelength density
variations. Good values of the compressibility are obtained
if one considers all of the p, dependence in (5-29). On the
other hand, the structure factor is calculated ignoring El(po)
entirely, and also ignoring the density dependence of Ez{po,R),
that is, of VAL. {(Of course, p, = N/V is constant in the ca-
nonical ensemble. Our gquestion will be, is this always the
correct density to use in calculating the energy?) This re-
duces the structural problem tc the problem of a classical

liguid with pair interaction vAL

, and, as discussed in I-D,
places the hard sphere success on a good foundation.

The point we wish to make is that, whatever its successes,
this procedure rests on too sharp a distinction between finite

and infinite wavelength. Indeed, for long wavelengths, the

distinction is blurred. This must be so because the correla-
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tions (both ionic and elgctronic) in the liqﬁid are of only
finite range. Then a density variation with a wavelength much
longer than the range of correlations must have effects which
are locally indistinguishable from those of a change in p,
which gives the same local density. With this blurring of the
distinction between finite and infinite wavelengths comes an
ambiguity in the structure calculation at long wavelength.' In
our calculations, we have followed the traditional method of
ignoring the p, dependence and treating VAL as a wvalid pair
potential at all finite wavelengths. .Yet it seems from this
discussion as if, at long wavelengths, we must discover how to
include the effects of El(po) and the p, dependence of VAL,
presumably by evaluating these somehow at the local density.
It is not clear which view (if either) is correct.

We remark that this discussion is confined to the consid-
eration of long wavelengths. With respect to these matters,
the existing short wavelength calculations seem to be less in
doubt. A density variation of wavelength much shorter that
the range of ionic or electronic correlations will look over
this range nothing at all like a change in p,. We expect the
existing pair potential approximation to be valid for such
wavelengths. These wavelengths will include the first peak in
S(k). Then, in particular, the success of the hard sphere
model, which means primarily the ability of this model to re-
produce the experimental first peak, is probably still attrib-

AL

utable to the form of v .

Clearly, a careful and systematic investigation of this
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matter is required before we can remove the ambiguity at long
wavelengths, and define a consistent procedure. We mention
that efforts are being made (Watabe and Hasegawa, 1972A,B) to
- treat the structural and thermodynamic pfoperties of pure
metallic liquids by considering these systems from the outset
as binary systems composed of ions and electrons. We suggest
here that one fruitful line of study for the particular prob-
lem at long wavelength (and in the present tradition) might be
to consider calculating the energy of the metal in a perturba-
tion theory that begins, not with the uniform electron gas,
but with the non-uniform electron gas studied by Héhenberg and
Kohn (1964) and Kohn and Sham (1965).

We note finally that if careful investigation of the long
wavelength problem proves our calculations to be wrong, they
may still be viewed as model calculations, which illustrate
the form of the structure factors near phase separation (and
thus may still give us a qualitative understanding of the
resistive anomaly). The developments of sections III and 1V,
although carried out with metallic systems in mind, stand
quite independently of these systems within the tradition of

classical liguid theory.



VI. Discussion,léonclusions, and Suggestions for Further
Work |
This work has been divided into two parts: the develop-
ment of the perturbation theory of the hard core plus tail
mixture, and the application to the metallic liquids and
alloys. Although some items to be discussed relate to results
from both parts, we shall adopt this same division in this

last section.

VI-A. The Perturbation Theory

We have cast our study of structure in terms of the func-
tions fij(gi, which we may take.as defined by (3-33). These
functions are closely related to the more familiar direct cor-
relation functions of Ornstein and Zernike (1914) (see equa-
tion (3-35)). Perhaps our most important result for these
functions_is the equation (3-75), which shows that to calcu-

late these functions to first order in the perturbing poten-

tials Vij’ we must calculate pgﬁref(g,g'), the two body func-
tion in the non-uniform reference fluid, to second order in
Gpiig). This observation leads directly to the long wave-
length approximation (4-31). As indicated at the close of
section IV, a successful approximation for short wavelengths
may possibly be developed by a carefully chosen analogy to
grystalline solids. ' |

In this effort, we have produced a theory which retains

many of the wvirtues of the "simplest"” mean field theory of the

~-120~-
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phase transition itself (that is, the theory defined by (4-9)
and used by Stroud-(1973) in his study of phase separation),
but which is, in principle at least, a reasonable theory of
structure (which the simplest mean fiela theory is not.) It
incorporates, in princiéle, the hard sphere successes, and is
in the spirit of the most éuccessful of the present theories
of simple liguids, the perturbation theorieé on a HC reference
system.

We note here that, while our effort has concentrated on
the structure factors, we have actually been doing thermo-
dynaﬁic perturbation theory as weli. To make this point, we
consider the form of the Zwanzig expansion of the free energy
F (in the absence of external fields.) Writing
U(R) = Uref + Ul(R), where Ul(R) is defined by (3-68), spe-
cializing to pure fluids, and introducing an expansion param-
eter A by replacing vl by le, ﬁe £find quickly (from (3-1} |
with ¢(R) = 0)

BFA

— = <U1(R)> = gfér vl(r)p
3 A -

orh

3N @ (6-1)

where < >y and p°'k(£) are evaluated from the distribution

2
function determined by U{(R) = Uref(R) + AU;(R). Then
3*F
Ao Yj&r vl(r)ax o2 () . (6-2)
3 2 2)= —-'3 2 =

Using (6-1) and (6-2) in a X expansion of Fy about A = 0 and

setting A = 1, and writing p3"*"(x) ( = p3"*®%(r)) in ternms
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of s¥®% (k) by (1-6) and (1-7), we find eventually

dk
Fo= of 4 B0a (410 4 }-J‘ = vl 5T o -1))
Po (2.“.)3
dk '
+ Hes }-J — v (87T (1)) 2 (-Bpeat (1)) } (6-3)
Peo (2.”)3 )
+ o(vl)3 .

where al (as defined in (3-73)) is the first order term in the
A expansion of fl. That is, the second order term in the

Zwanzig expansion of (2-2) may be calculated knowing SrEf, vl,

and al. At the present level of our work, of course, in which
we have only a long wavelength approximation to al(E), we are
not yet able to perform a sensible approximate calculation of
this second order texrm in F. Perhaps with better approxima-
tions to pg’ref‘this situation will change. We note that this
second order term is, of course, the term studied by Barker
and Henderson (1967a, 1967B). In this sense, our MDA appears
similar in spirit (though not identical) to the "macroscopic
compressibility" and "local compressibility" approximations
introduced (and later abandoned) by these authors (1%67A,
1972).

To proceed beyond the lowest order term in fl, we note
agaiﬁ that f:L is a_well~defined, if inaccessible, sum in the
conventional perturbation series. Perhaps further progress

| 1

can be made by combining our view of £~ with the perturbation

series approach. 2s a simple (and possibly important)
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example, we know from the perturbation series for a pure fluid
that, Qhever a single term Bvl(r) appears, we can perform a
partial summation of higher order terms by replacing that
Bvl(r) with {l—e_Bvl(r>}. (See, for example, Brout, 1965, or
Andersen and Chandler, 1972.) Then we may use (3-75) to gen-
erate a further approximation to fl specified by*

1 '
_%de ar' e"BV (_I_"E_ ){pp,ref

= far ar' spmsp(x) £z + osm? .

{The generalization to multi-component systems is presumably
straightforward.) The approximation represented by (6-4) must
represent a valid summation in the perturbation series, and
goes beyond any we have used in this work. Such an approxiﬁa—
tion will clearly affect the T-dependence of the results.
(Since, for the metallic systems, we have vl explicitly only
in reciprocal space, the generalization of (3-75) to (6-4)
introduces non-trivial computational problems.) . Direct exten-
sion of cur approach to higher order seems all but out of the
question, since the expansion leading to (3-75) involves; in
the next term, the three and four body distribution functions

of the non-uniform fluid.

Now consider the adequacy of the overall apprcach, that

is, of the approach which calculates the structure by

-— 1 .
*The constant term in {l-e Bv (r)} vanishes from (6~4) by the
sum rule on pg- (See Appendix A, equation (A-8)).
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célculating fl in first order. We note that, in view of the
objection raised in the discussion of the metallic potentials,
our metallic calculations may not have provided a test of the
theory. It may be that the only test we have run on this
theory is the calculation of SMDA(O) for Na parameters and
several values of n. While the results of this test were not
encouraging, it is clearly incomplete and insufficient to
stand as the only test of the adequacy of the theory. More
complete and careful testing of this theory on model poten-
tials is clearly called for.

Application of this work to Lennard-Jones fluids will
reguire a little care, since the work finds its most natural
expression in reciprocal space. We will thus not be able to
use the full potential as the perturbation on the hard core as
we could for metals. Since, however, these results are expli-
citly independent of the form of vl(r) for r < g, we are at
liberty to give to v1 a form inside the core which makes
Fourier transform of vl possible. This is.the approach taken
by Chandler et al. (1972) in their "optimized" RPA. Direct
application of this work to molecular liguids must be held
pending an understanding of the importance of the assumption
vl(r) = vl(—r), which has apparently been required in several
places. The essentials of the approach, however, that is, the
view which takes the densities rather than the potentials as
the basic variables; may, in suitably generalized form, have
wide application in the theory of both simple and molecular

(insulating) liquids.
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VI-B. Application to Metallic Liguids

We have used the results of sections IIT and IV to define
. a long wavelength structural approximation which we have
called the mean density_approximation (ﬁbA). In application
to potentials modelled for the pure alkali metals, this ap-
proximation yields, at k = 0, results consistent with our
expectations fof the compressibility. At values of k around
the reference (HC) peak, the results in the MDA seem to give
gsome indication of a finite particle size effect. At k = 0 in
the binary case, a simple model calculation of the line of
singularities reproduces guite well the asymmetry and position
of the Li-Na phase boundary in the x-T plane. Because the
correct line of "hypothetical" singulariﬁies lies below the
phase boundary at all points but the critical point, we expect
gualitatively the more rounded shape we observe in the calcu-
lated curve. The selection of the hard sphere reference pa-
rameters emerges as a central problem. This problem, however,
was studied almost entirely with respect to metallic poten-
tials and real systems, so that, in view of the difficulty
with the metallic potential, we clearly need to do more work
in the spirit of the test at S(0), that is, in the spirit of
calculations for model systems. The nature of the singularity
as k+0 was investigated, and appears asymptotically to be of

the form (a + bkz)_1

(a gratifying result in view of the com-
plexity of the MDA formulas), a form which insures the conver-
gence of the resistivity integral (1-1) at the lower limit.

The partial structure factors in the MDA were calculated and
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plotted vs. k for one combination of parameters. Suggestions
were made for a simple resistivity calculation which might
shed some light on the nature and origin of the anomaly ob~
served by Schiurmann and Parks. Finally, a possible difficulty
of the metallic potential at long wavelength was noted and
suggestions made for work on the problem. ’

These calculationé tend to support the hypothesis that
the separation transition is driven primarily by the tail of
the potential. This suggests that the study of such phase
transitions could ultimately yield useful experimental infor-
mation on this long range part of the potential. Such infor-
mation has been difficult to extract from the structure fac-
tors themselves, since these tend to be dominated by the geo-
metric effects of the repulsive cores. It is obvious, how-
ever, that an enormous amount of theoretical progress is still
required. A certain amount of pessimism may be justified.

A guestion which remains unanswered is why some metallic
binaries separate and others do not. One need only consider
Na-K, rather than Li—Na,.to find a binary system in which the
uniform phase is stable at all concentrations for any temper-
ature above solidification. Our physical understanding of
this matter is that phase separation (a long wavelength order-
ing) and freezing (a short wavelength ordering} must in each
system be competing transitions. A calculation of sufficient
subtlety should show that, in Li-Na, the separation transition
occurs at a higher T than a (hypothetical) freezing transi-

tion, while the converse 1is true in Na-K. It remains to be
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seen whether such a calculation can be performed successfully
with present techniques.

The theory of the phase transition implicit in the MDA
is, of course, essentially mean field, sﬁ that we do not ex-
pect this work to shed any light on the usual problems encoun-
tered in the study of critical exponents (Fisher, 1964). The
eritical exponents in this problem are defined by Schurmann
(1971), to whose work the interested reader is referred. We
have paid little attention to this view of the problem and its
necessary introduction of Ising type models, in favor of an
approach directly through the structural results and calcula-
tions of classical liquid theory.

The structural work has been presented with a resistivity
calculation ultimately in view. The work, of course, will
have application near the phase transition to other properties
of liquid metals which depend on the structure (e.g. the
thermopower, thermal conductivity, optical absorption, ultra-
sopic absorption). Before such problems can be studied with
~any confidence, however, it seems that we must resolve the
difficulty of the pair potential approximation at long

wavelength.



Appendix A: The Distribution Functions

We shall define the distribution functions for a pure
fluid. The generalization to mixtures is straightforward but
cumberscme. We consider a system.of N particles in a wvolume V
at temperature T, and evaluate thermal averages 1in a canonical

ensemble. We define the N particle distribution function

{just as in (3~9)). This function satisfies
far e m) = 1. (a-2)

In terms of this function, the thermal average of some guan-

tity A(R) is calculated, just as in (3-63), by

a(R)> = Jar a(R) P (R) . (A=3)

N ¢
The n-body distribution function is defined by

pn(rl,rz,...rn)
(a-4)

_ N} .I . :
= Ty T J Sne1r e 00y Py (FpeXgree Tl e Tyy) o
For n = 1,
pl(£) = de£2...d-¥-N PN(£'£2'.‘.£N) ’ (A_S)

is just the single particle density. This function clearly
satisfies the sum rule
JﬁE pyfr) =N . (A-6)
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For n = 2,
] — - I -
pz(r,r )} = N(N l)!dr3dr4...drN PN(r,r ,r3,...rN) {A-7)

is the two body distribution function which plays the impor-
tant role in our work. It has the meaning that p,(r,r')dxr dr'
is the probability of finding a particle in dr about r and

another in dr' about r'. It satisfies the sum rule
far ar' o,(z,z = w@¥-D . -  (a-8)

Now consider the role of these functions in a thermal
average, using (A-3). First consider the thermal average of

the sum on single particle potentials ¢(R) defined, as in

(3“‘2)1 by
‘N
®(R) = 2. ¢lr,) - (A-9)
i=1
Then
<P (R}> = ﬁi Jﬁ;ldzz...dEN ¢(£i) PN(El""EN) . (A-10)

i=1
Because PN is a symmetric function of its arguments, we may
make in each integral in {(A-10) the change of variables X;7rg.

and r,~>r.. Since all N integrals are then seen to be equiv-

1

alent, we have
<G(R)> = NSdEl ¢(£1)‘fd£2...d£N PN(El'Ez""EN) . {(a~-11)
By (A-5), this is just

<om> = far o(zoy(m) - (a-12)
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Next calculate the thermal average of the sum of pair

potentials U(R} defined, as in (3-42), by

U(R) = (A-13)

bof =
<

H
i)

!
kal
(]

Then

<U(R)>

1 :
3 gggjaEldEQ...dgN V(Ei—gj) PN(gl,...EN). (A-14)

We use the symmetry of PN(R) to make, in each integral of

(A—l4); the changes of variable'£i+£l, I,

£2+£j' Then all N(N-1) integrals in (A-14) are seen to be

eguivalent, and we have

+I. r.»> an
_.l’ _j £2" d

< (R) >
{A-15)

N{N-l)JﬁE&dEQ v(£1—£2).fd£3...d£N PN(El'EZ""EN) ’

B3| =

so that, by (A-7), we find
<U(R)> = %I&E dr' v{r-r')p,(r,r'") . (A-16)

Finally, consider the thermal average of the density
operator 5(k) defined by (1-3). 1In real space, this operator
is

plx) = ) 8(x-r,) . (A-17)

i
Then

<p(r)> = %; IdEldgz...dEN G(Efgi) PN(rl,...gN) . (A-18)

Using the symmetry of PN(R), we make, in each integral of
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(A-18) , the changes of wvariable £i+£ and r

1 1
N integrals in (A-18) are seen to be equivalent, and we have

>r., SO that all

<p(r)> = Njagl G(E_El)J‘d£2"'d£N PN(El’EZ""EN)
(A-19)

= pl (E) r

by (A-5). Then p(r) is, as stated in section I, the operator
whose thermal average is the single particle density. Similar
arguments will establish the relations, given in (1-6) and
(1-7), between S(k) defined in terms of $(k) (in (1-2}) and

the two body distribution function p,(r,r’).



Appendix B: Phase Separation and Singuiarities in the Sij(E).
Here we wish to elaborate on the conclusions stated in
section I concerning the relation between phase separation and
singularities in the partial structure factors Sij(k) in the
limit as k0.
The analysis concerns the form of the Gibbs energy per
particle, g(x), plotted as a function of x at constant T and

p. For some T, < T this isotherm will have a form like that

1 c’
presented schematically in Figure B-1l. This curve exhibits
regions where it Is concave upward and regions where it is
concave downward. In the region where the curve is concave
downward, between the points labelled C and D, we have

CT

T,p '

so that the system is unstable against concentration fluctua-
tions. The points A and B are defined (uniguely) by construc-
ting a line tangent to this curve at two points. A straight-
forward calculation of the Gibbs energies involved (bearing in
mind particle number conservation) shows that, for any concen-
tration between XA and xB {say xE}, the Gibbs energy of the
uniformly mixed phase is higher than that of.some separated
phase, and that the separated phase with the lowest Gibbs
- enexgy is that defined by X and Xy On the other hand, for

concentrations outside this region, x < x, or x > x,, the

A Bl,

Gibbs energy of the uniform phase is lower than that of any

separated phase. Then the concentrations Xa and Xp mark the
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points in the x-T plane at which the line T = Tl intersects
the phase boundary. (Refer to the discussion in section I-A.)
As the temperature is raised, these points move closer togeth-

er, until, at the critical temperature T they coincide. For

Cl’

allT > TnmT the curve is everywhere concave upward. Then a

cr
common tangent may not be constructed, and the uniform alloy
is stable in all concentrations. |

Our concern is with the inflection points C and D, at
which

(a‘;‘%‘z(‘f‘)‘) = 0. (8-2)

T,p

Bhatia and Thornton {(19870) have shown that these are the
points at which the partial structure factors of the uniform

alloy diverge in the limit as k+0. It is clear that, at the

temperature T, represented by the isotherm in Figure B-1,

these points are not accessible. They must lie below—the
phase boundary in the x~T plane. As the temperature is in-

creased towards T however, these inflection points will move

Cl

closer together until, at T the inflection points and the

Cl’
common tangent points coincide. It is thus only at the criti-
cal point that the singularity is fully realized at separation.
Then the line of singularities in the x-T plane lies below the

phase boundary in general, but joins it at the one point which

is the critical point.



Appendix C: The k = 0 result (4-32).

We note from (1-2) and (1-3) that
S..(0) = (N.N.)“Hen.N.> - (N.N.)F . (C-1)
i iy ity iyt '

We evaluate <NiNj> in a grand cancnical ensemble at constant
T, V, and chemical potentials My - Consider the pure fluid

case, for which

z:N'%leBuNJAR e_BU(R)

N> = N (c-2)

1 _BuN (5, _-BU(R)
%N!_e -[ €

Then we find

Hip,v
Then
11 {3 _ 1 . _ _
B— N> (—-é-]?) <N> = <N><N > <N> = S(0) . (C-4)
T,V
That is
5(0) = E—(EE) , where p = N> . - (Cc-5)
Bplau T,V v

In a multi-component system, this result generalizes readily

to

1 Bpi

S..(0) = ( ) ’ (C~6)
ij B/EIEE auj TV,

where the prime indicates that all u's are held fixed except
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the one explicitly appearing in the derivative. By (3-5),

this result is

Bpi

Xij(o) = —(EET (C-7)

J)TrVJU'
Now, if ey is considered a function of all the u's, and My is

congidered a function of all the p's, we have

' 3p . U -
dpi = E:(g;l) du., ; dy. = z:(gal) dpg . (C-8)
VMl v, ur J LV\P/ 1, v,p"
which gives
3P oM.
dp; = 2:(§—£) (g“;) dpy - (C-9)
j2 uj T,V,u' DR T,V,p' .

0D I '
0y ) Y et (c-10
T,V,u'

5 Prle e R
or
p =yt (C-11)
where P is the matrix whose elements are (3p,/du.) v ¢ and
1 3T,V

U is the matrix whose elements are ({9u./3p,) ¢+ Intro-
] 2°T,V,p
ducing the matrices X and F from (3~33), we then have, from

(C-7) and (C-11),

X=-P = -U = ~F ' (C-12)

Y,
£..(0) = ——i) . (C-13)
1] 905 T,V,p'
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From thermodynamics, this is

1{ a?p
£.. (0) = _(__.____)
lJ V aplapj T'v’pl

’ (C-l4)
where F now denotes the free energy of the system. To arrive
at (4-32), we expand fij and F in powers of the perturbation
vij‘ We introduce an expansion parameter A by replacing v;
with Avl, and expand fij as in section III:

_ eref 1l 2 .
fij(O) = fij {0) + laij(O) + o(M)° . (C-15)

For the expansion of F, we simply insert the 2Zwanzig expan-

sion, which, as we saw in the argument to (3-75), is just

ref

r = rref 4 scutirys + o(0)? . (C~16)

orref

On writing <U1(R)> in terms of p?fref(r,r'), just as in
crref i] ==
{3-71) , and substituting into (C-14), the desired result,

(4-32), follows immediately.

We note that this result is also (plausibly) consistent
with a certain limiting case studied by Lebowitz and Penrosée

(1966). These authors replace vl(r) with the form
vl = 2350, (c-17)

and study the form of the free energy in the thermodynamic
limit and in the limit as A+0. In this limit, the potential
vl becomes vefy weak and very long range. The limiting result
for the free energy is

F(p) = F"°F(p) + 3 0%¢o . (c-18)
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where F{p) now denotes the free enerxrgy per unit velume, and
b, =‘fd£ $(x) ='fd£_ka¢(l£} , for all x. (C-19)

This result is made plausible by consideration of (C-16),

which reads, for this choice of vl,

Fip) = F°5(0) + Lar 22003 ™ + 0(0)? . (c-20)

(Note that between (C-16) and (C-20), both F and A have been
redefined.) If the dimensions of the system are much greater
than the range of A%¢(Ar), we can change variables in the

integral to write

Flp) = P25 (0) + 2far s ey ™/ + 0o0)? . (2D

If we now take the thermodynamic limit and the limit as A-0
(in that order, so that the dimensions of the system are
always much greater than the range of k3¢(l£}), we see that

the region of integration in which p%'reftg/l) differs from

p? will shrink to zero. Then (C-18) will follow if, as seems
reasonable for this weak form of vl(r), the higher order terms
may be neglected.

The result (C-18) yields, through (C-14), the mean field

result
£1(0) = ¢, = jd_;-vl(;_) . (C-22)

This result can be obtained directly from (4-32) by a similar

plausibility argument. For this potential, (4-32) reads
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2
£ = %sé£ vi(r) sz o;'refcg) + o(vh?
(C~23)
2 |

where, for the last step, we again regquire that the dimensions
of the system be much larger than the rangé of A% (Ar). If we
perform the same limiting steps described above, the region
where % %%T pa'ref(Efl) differs from unity is seen to shrink

to zero, so that (C-22) follows from the neglect of higher

order terms.
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Appendix D: The MDA to fi.(E) for a Two-component Fluid.

Let x, = pi/p and x; = pg/p, where pi and p% are the den-
sities of species one and two respectively, and p = pi + pS.
Define the partial packing fractions n; and n» by-ni=ﬂp§0i3/6,
where oy is the hard core diameter associated with the ith

species. Then the MDA for fij for a binary alloy is

0,0 = I

HC 1 9
S1p k') + Mg

HC '
T (k=k")}

5 2
X . 1 - AL 3 HC ' 1 LHC .o
+( 2 ) _J;—"_ vig &) {n® g S5 (k-k") - 7 Sp5(k-k")

+ n,=— (k -k")}

4 X2 %f.dE- AL n,2 92 gHC

k) D k-k')
X, 2 (zﬂ)avzz(m-) 2 3n, 7 Saz(kKD)
(D-1)

AL
12(k) = v, k)

dk* » |

1 — T]lnz 0 HC . MNs 9 HC '

S k-k + — 5 k-k

+ ngjlzﬂ)g 11(k ) 4 Inm,511 (kK" 3 (k-k')}

r dk' 2

1 3 1 _HC

+ (k') {nines——== ( -k') + 7 (k-k')
Ry pJ(Zﬂ)s 12 anion: 12 4 712
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The form of féz(ﬁ) may be obtained from the form of fil(E) by
replacing all subscripts 'l' with subscripts '2', and vice
versa.

The ny derivatives gf the,sij may bé given explicit forms
in the PY approximation. If these forms are to be derived
from the published expressions {AL-II), cage must be taken
that the right variables are held constant as the differen-
tiations are performed. The structure fungticn Sij is a func-
tion of k, pi, pg, Op and P We stipulate, just as in the
pure fluid case, that the c; are held fixed. Then, for ex-

ample, some of the necessary derivatives in (4-31) take the

form

88, . '
(Bp% ) . (D-2)
1 k'p§'01'02

The following discussion of the variables will be valid as
well for the more complicatéd derivatives derived from (4-31),
but we shall take the expression (D-2) as the simplest example.
From the definition of the ni, it is clear that we may
trade the five variables above for k, Nyr Nyr Cpo and 0ye We
then have
asi.

p 3 = n
1 apl krpgrclfcz 1 anl k:nzfclraz

Further, since Sij is unchanged when we scale all lengths by

. (D-3)

the same amount, we have

_ -1 _
Sij(krnlvnzwclrgz) = Sij(A k:ﬁlrﬂzrkglrlcz) Pl (D-4)

so that Sij may be considered a function of only the four
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variables kol, kcz, Ny s and nz, Then the expression (D-3)

becomes
BSi.
ol,kcz,n2
If we now trade kdl and k02 for a = 01/02 and koé, we arrive
finally at the result
Bsi. asi. ‘
e = Ny |zt ' (D-6)
1 apl k,p%,0.,0 1 anl ko,,0,m
I 2' lf 2 2' I 2

where Si' is now considered a function of kcz, a, My and Noye
Then the form quoted in AL~I must be rewritten, since the var-

jables in AL-I are koz, o, X, and n.
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