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ABSTRACT

This report deals with some of the existing

methods to "globally" approximate the roots of

transcendental equations namely, Graeffe's method7

Summation of the reciprocated roots, Whittaker-Bernoulli

method and the extension of Bernoulli's method via

Koenig's theorem. The Aitken's 8
- process is used

to accelerate the convergence. Finally, the suitability

of these methods is discussed in various cases.
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NOMENCLATURE

C.P.U. = a measure of computer time

M = a constant representing the upper bound for a set

S(z) = a function analytic at z= r

h = values derived recursively from Bernoulli's difference equation

Y = the maximum modulus of 4(z)

Hyp = a sequence of Hankel determinants

p = radius of convergence of a power series

k = a normalizing polynomial
vP

K = a Hankel determinant of order p
vP

Rv+ = the remainder for the Taylor series after v terms

P = an approximate to the root of least modulus using the method
of summing the reciprocated roots.

v



CHAPTER I

INTRODUCTION AND SUMMARY

In the area of applied mathematics, there is an urgent need to

effect more efficient means of approximating the roots of transcendental

equations. Existing standard methods employed in finding the roots of

algebraic equations are of little aid in obtaining satisfactory results

in this situation. Incidently, there exist no formulated method for

finding the roots of algebraic equations above the fourth degree [14].

The same fact applies to a transcendental equation when it is repre-

sented by a power series that has been truncated above the fourth degree

term.

There have been various attempts made in locating or approxi-

mating the roots of certain types of transcendental equations. One of

the more basic means of obtaining information about the nature of the

roots of an equation (algebraic or transcendental), such as, h(x)=

g(x)-f(x)=0, is through graphing the functions g(x) and f(x) on the same

coordinate axes and noting the point (s) of intersection. After having

made some suitable approximation to the desired root, then an iterative

method may be used to refine the approximation.

On the other hand, there are methods which are capable of

yielding, in a more consistent manner, information about the roots

of a given transcendental equation. One such method is the Graeffe

method [151. Graeffe's method guarantees convergence to a root

through repeated root squaring [4].

There are other methods, though not discussed in this paper,
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that are 'self starting' or 'global' in the manner in which they

approximate the roots to transcendental equations. These methods

include Rutishauser's q-d algorithm and Bairstow's method. The

above methods are fairly effective in determining the roots of

polynomial equations, but posses certain inherent disadvantages

such as their sensitivity to truncation error where power series are

involved. Furthermore, they are impractical from the standpoint of

their compatability with the digital computer where C.P.U. time

may be crucial.

There exist another method of great prominence and it is

known as Bernoulli's method. However, its convergence is somewhat

less rapid than Graeffe's method. In addition, it may be more

difficult to deal with complex roots [4].

Later, Koenig proposed a theorem which extends Bernoulli's

method to non-algebraic equations [5]. In this extension, provisions

are made for treating equations having "equal" roots or in the case

in which there are complex conjugates. Besides computing the root of

least modulus within the region of analyticity, it is theoretically

possible to compute all the roots of a transcendental equation that

are within the radius of convergence of its power series representation[5].

However, in some cases the convergence of Bernoulli's method may be

somewhat less than ideal and in this case one may hope to employ some

method of accelerating this convergence. One method of achieving this

aim is the use of Aitken's 82 process [5].



Another method, although less popular, can be derived from

the Bernoulli method is the Whittaker expansion [3,11]. This method

relates the coefficients of a polynomial or a truncated power series

to the roots via determinants.

Among the miscellaneous methods, the root of least modulus

for a transcendental equation may be evaluated by utilizing the

standard relationship that exist between roots and coefficients of

the truncated power series representing a particular transcendental

equation.

Thus in chapter 3 these methods will be applied to certain

transcendental equations in order to obtain information (on a

comparative basis) regarding their suitability to the computer, speed

of convergence, ease of computations, and accuracy of approximation.

We will study the nature of the non-algebraic equation by

studying the coefficients of its power series representation. From a

practical standpoint, we *cannot consider all the terms in the series,

hence, we must truncate it at some point where the truncation error [15]

will be minimal. Afterwards, we consider the truncated power series as

a special case of a polynomial. However since the original equation is

likely to consist of meromorphic functions, we must have some previous

knowledge about the nature of their convergence in the region of analyticity.

The following well known theorems and definitions are relevant to our

further discussion in later chapters.



Roots and coefficients. Given the polynomial equation

a xn + alxn-l + ... + an = 0,

the following relationships exist between coefficients and roots [14]:

(a) al/ao = -(rl + r2 + r3 + ... + rn )

(b) a2 /ao = (r1r2 + rlr3 + . + rlrn + ... + rnirn)

n

(c) a3/ao = -(flr2r3 + rlr2r4 + ... + rn_2rnrirn)

(d) an/ao = (-1) (rrr ...r )
n o 123 n

Theorem 1. Every power series c n(z-zo )n has a "radius of convergence"

R such that when 0< R (o the series converges absolutely for

Jz - z l< R and diverges for Iz - zol > R. When R = 0, the series

converges only for z = z . When R =* , the series converges for all z.

The number R is given by

R = l/ lim njcn

Theorem 2. Let f(z) be analytic in the interior of a circle C with

center at z and radius R. Then at each point z interior to C
o

f(z) = X f(n)(zo)/n!(z-zo)n

Definition 1. A function f(z) which is analytic in a domain D, except

at some points of D at which it has poles, is said to be mememorphic.



'CHAPTER II

THEORETICAL DEVELOPMENTS OF GLOBAL METHODS

Among the existing methods * of approximating the roots of poly-

nomial equations, Bernoulli's method [1] is perhaps among the oldest kmown.

In its original form, Bernoulli's method was proven valid for algebraic

equations. By expressing the equation in terms of a power series, it

would seem possible that a modified Bernoulli method could be used

to determine information concerning non-algebraic equations.

Due mainly to the efforts of Koenig, the Bernoulli method was

shown to be valid in the case of non-algebraic or transcendental

equations. The theorems which follow were reproduced in order to

(1) extend this method to the case of transcendental equations and

(2) show that Aitken's 62 process can be applied jointly with the

Bernoulli method.

THEOREM A (Koenig's theorem) Let h(z) = g(z)/f(z) = c o + clz + ... be

convergent for Izi<R where f(z) has a simple zero at z = r and

g(z) be any function which is analytic throughout the circle

but g(r) # 0. If Irl< 6R<R, then c v /cv+1 = r + 0(oV+) [5].

From the hypothesis, since z = r is a pole then it is apparent that

(2z) = (r-z)(h(z)) = b + blz + b 2 z 2 + ... is analytic for Izi(R.

Let Ir 8( R< R and 'f'rjl < P < R, then i (p) also converges having a term that

is maximal in modulus which we call y . Then for any v , Ibdv yp V  and

this establishes the fact that each b, is bounded. Expandingy(z) and

equating similar coefficients, then

See [14] for a detailed development of Graeffe's method.
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rc o = b

rc1 - co = b1

re - cv-1  = b

Upon multiplying the first v+ 1 equations by 1, r, r2 , r3 , ... ,r

v+l
and adding we have c V r = +19(r) whereP(z) = bo + blz + ... + bvzY

Letting R (z) Ei (z) - 9(z), then R (r) = r v  (bv+1 + b+2r +. .)

IR (r) < y(l +jrl/p+ 1r21 /p 2 + ... ) IrV I  /pV1

= jr/p +  / (1 - Ir/pl)

o( r/ pl )

But C /Cv+1 = r*V(r ) / Vl(r)

= r[ l-R (r) /b(r) ] / [l-R +1(r) /*(r)]

= r[ 1 + o(jr/plv +)]

and choosing an appropriate p, then jr/pl<6. In conclusion, since

0 < 6 < 1 we may conclude that lim cv+/C+l r. Also Ir/plis a common

ratio of (c /cv+1 - r) thus making the sequence geometric. (This fact is

very essential before the application of Aitken's 62 process.; which we

will discuss later in this chapter.) This theorem may be extended

to include the case in which the power series h(z) has p simple

poles in Izl<R , though in the examples that we have considered, this

extension will be impraticable to apply.

THEOREM B [5] Let h(z) be a meromorphic function in Izl<R having

exactly p poles rI, r-2  .... r not necessarily distinct in the

disk. Let



Irll t21 I r l <  ... *.lrp < aR<'R and let

(z) 1 + alz + ... + az p  (1 - rl z) ... ( - r z)

setting K,(z) = K, (z) l + a(z) + ... +azP where

kvp() is defined as H pKp(z). Then

= a i + o(aV), and Kv(z) = P(z) + o(0v)

In this section, we will extend the coverage of Theorem A by including

the case when p = 2. Let r1 and r 2 be 2 distinct roots. Then

4(z) = V(z)h(z) = bo + blz + b2 z 2 + ... is analytic in izl< R and

we have 1 + alz + a23 2 + ... ) (c o + cl z + c22z + ... ) =

(z) = b0 + blz + b2z2 + . . and equating simular coefficients

c o = b0

cl + alco = bl

c 2 + alc1 + a 2 co = b 2

c, + alc- 1 + a 2Cv-2 = bu

Suppose r represents rl or r2. Multiplying the equations above

by 1, r, r2 , ... rV and adding, we obtain

(1) rcv + ( 1 + alr)rv-1 c- 1 = (r). In a similar way we obtain

(2) r+lcv+l + ( 1 + alr)rcv_1 =4v+(r) and

(3) rv+2 c +2 + (1 + alr)rV+lcv+ 2 = 1+ 2 (r)

and multiplying the first equation (1) by r2 and (2) by r , the equations

then show that the determinant
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cv-i cv r2 , (r)

cv Cv+ 1  r1 (r) = 0
CV CV =

V+l Cv+2

where they express the linear dependence of the three columns.

Since #v(r) = f(r) - Rv(r), it can be seen that in the limit

both rl and r2 satisfy the equation Kv2(z) = 0 or equivalently,

k 2() = 0. However, in case rl = r2 is a pole of h(z) of

multiplicity 2, a further argument is necessary to show that the

limiting equation has rl as a double root. Accordingly, a

different argument has been developed by Householder [5] in which

confluence does not require special consideration.

At this point, it is appropriate to develope the difference

equation enabling us to compute the coefficients of the power series

which was derived from the quotient g(z)/f(z) , f(z) #0. Consider

f(z) = ao + alz + ... which has a root r in its region of analyticity

and g(z) = bo + blz + ... which is analytic within the same disk

as f(z) but not vanishing at z = r, then

g(z)/f(z) = h0 + hlz + ...

Therefore,

g(z) = (a0 + alz + a 2 z 2 + ... )(ho + hl z 2 + ... )

= bo + blz + b2z2 +

On equating similar coefficients, we have
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aoh o = bo where a0 # 0
0

aoh + ah o = bo 1 1 1

aoh 2 + alh1 + a2ho = b2

aohv + alhv_1 + a2h _2 + ... + an h = b

making it possible to compute h while making some arbitrary se-
v

lection for g where hV /h +l approaches r for some sufficiently

large v .

With the knowledge gained from previous results we can

compute a very useful expansion for approximating the root of least

modulus for a particular transcendental equation. This is known

as the WHITTAKER-BERNOULLI expansion. In reference to theorem A,

the root of least modulus may be expressed as

r = hc/hI + (hl/h 2 - h /h) + ( h2/h3 - hl/h 2) +..

- ho/hI + (h2 - h h2)/hlh2 + (h2 - hlh 3)/ h2h3 +

and futhermore, suppose h(z) = /f(z) or h(z)f(z) = 1 where

h(z) is meromorphic for lz I<R having a simple pole at z = r

within the disk. Let f(z)h(z) = ho + hlz + h2z2 +



then multiplying and equating coefficients

aoho = 1

a hl + alh = 0

aoh 2 + alh 1 + a2ho = 0

aoh + alh,.-1 + ... +a, ho = 0

Solving the system of v +1 equations in v + i unknowns we find that

ho = 1/ao

h i = -al/a2

h2 = a2 /a - a2/a2

Thus we find r to be

Sa2  a3

-a a 2  a3 1 a

0 a0- - - I

ao , a2 a al a aI a 2

O ao ' al



Ocassionally, the sequence relulting from the application

of the Bernoulli method to a articular transcendental equation may

not provide satisfactory convergence to the root of least modulus, i.e.

subsequent recursive computations of h /h +1 determines a sequence

of slow convergence. To accelerate convergence, there exist a method that is

2
both highly effective and convenient, namely, Aitken's 6 method.

A sufficient condition for the employment of this method is that the

given sequence be geometric. Recall that this condition was established

in Theorem A.

Consider a sequence al , a2 , ... a , ... converging geometri-

cally to a limit, say, a, for some v , where a = h /hV+1 . Now

2
the Aitken 6 algorithm may be derived in the following manner. Under

the assumption that the sequence above converges geometrically to a

value a or a-a = bhV +e (hV ) where e- 0 whenever h +0 which

may be expressed as a - a = bh + o(h). From this result, we obtain

(a-a+l)/(a-a ) = h + o(h) and (a -a ) /(a-av-1) = h + o(h)

thus upon subtracting we have

(a - ay+1)/(a-av) - (a-a ) /(a - a_-1) = o(h) where

2 2
a -Lav av - a(aV 1 - 2 a + a ) = o(h )

Since

2 v-1
a V- 2a + a -bh (1-h) = o(h ) thus

v+l

a = ( a a a )/(a -2a + a )+ o(h
-_1 +1 V ~- av+l(h



12

In the following discussion, we will investigate a method

of solving transcendental equations whose theoretical developments

are unrelated to the previously discussed materials. An algorithm

will be developed which will enable us to locate the real root of

least modulus through summing the reciprocated roots of a power

series. The motivating reason underlying such an undertaking is

that situations do exist where a transcendental equation may have

a power series representation.

Using basic principles from the theory of equations one can

state explicitly the sum of the roots of a regular polynomial equation.

We focus our attention to the general case where anx + anxn- +...ao=0.

Upon dividing through by a # 0 we have (an/ao)xn + (an-/a)xn- + ...+l =0

then 1 + a x + a2x
2 + ... anx  = 0, In addition from the theory of equations,

we know that the sum of the product of the reciprocals ofK taken k at

k
a time is (-l)a . It also follows that if given the equation

of the reciprocals of its positive roots taken k at a time is (-l)k(ak).

Suppose if given the real roots of a particular equation, say

A1 ' 2 ' X3 , ... where we are find the sum of the reciprocals of

various powers of the roots. First, we may represent the sum of the

reciprocals of the given roots as

(1) 1/ 1 + l/X2 + ... + 1/A 
= a

(2) l/A1l 2 + 1/ 2 3 X + ... + 1/ n-ln = a
2 3 . n-1 n a2



Now assuming that 11 ' 1 2 ' 3 ... are roots to the equation

1 +, x +a2 x 2 + ... = 0 and combining equations (1) and (2) we have

2 2 2 2
(3) 1/A1 . 1/ 2  1/ + + 1/ n = a 2 - 2

In a similar way we can find

3 3 3 3 2 2
(4) / + X + 14 3 + . + 1n 3/2(1 A + .. + 2) x2 3 n i n

(1/ + 1/A + ... + 1/ )

+3(1AIAX 3 + 1AIXc 4 + -... )

-1/2 ( 1,/ 1 + 1/12 + ... + 1/n) 3

Thus from equations (1), (2) and (3) we have

3 3 3 3
(5) 1/ 3 + 1/12 + ... + 1/An = 3crl 2 -3a 3 -al and similarly

(6) 2 1/A = c4 4a22  + 22 + 4 a - 4a
k 1 12 2 13 4

At this point it should be noted that the reason for seeking higher

powers of 1/Xk ( k= 1,2,3,...) is to obtain a better approximation to

the root of least modulus. Also in the manner in which (5) and (6)

were derived, one may extend this method to include higher powers of

1/Ak  if further "refinement" is desired. Note that the rapidity of

convergence of the expressions on the left of (5) and (6) is such that

all but a finite number of terms will cluster about the "dominating"

term thus allowing us to approximate the root of least modulus.



CHAPTER III

EXAMPLES OF SOLVING TRANSCENDENTAL EQUATIONS

The methods of solving transcendental equations that were indi-

cated in Chapter II will now be applied to particular equations. The

motivating reasons for the employment of these methods are consistent

with those outlined in the abstract.

Among the facilities used for aiding computations was an APL

360 computer terminal. Because of the limited capacity of our compiler,

some difficulties were encountered in cases where the coefficients of

series under consideration converge absolutely at a fast rate.

However, inspite of these limitations, considerable progress was made

in making the objectives of this paper a reality.
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SUMMATION OF THE RECIPROCALS OF ROOTS

Consider some transcendental equations and their solutions:

(1) sin x /x = 0, using the Maclaurin series expansion for

sin x, we find sin x / x = 1 - x2 /6 + x4 / 120 - x6 / 5040 + ...

From previous considerations, we see that al = -1/6.

a2 = 1/120, a3 = -1/5040. Now if we let Pn be a

root of sin x/x = 0, then the sum of the reciprocated

fourth powers of the roots would be represented by

E1/P = 1/90, thus Pn 4/90 3.14. The actual value is 3.14+.

Of course, an even more accurate approximation may be

made by calculating the sum of the reciprocated eighth

powers of the roots.

(2) Consider Jo(x) = 0 where Jo(x) is a particular solution to the

Bessel equation. Jo(x) = 1 - x 2/22 + x4 /2242 - x6/224262 + ... = 0.

a = - 1/4, a2 = 1/64 , a3 
= - 1/2304

th
Letting P be the n positive root of Jo(x), thus we have

n

E1/P = 1/4 where lZ/P4 = 1/32 and El/p 6 = 1/192n n n

thus P = 6/192 ; 2.40. The actual value of this root is 2.4048.
n

(3) In our investigation of tan x = x, and tan x, and tan x being an

non-integral function, we may write an equivalent expression

for the given. Namely, sin x - x cos x = 0, cos x # 0. Using

the power series for cos x and sin x
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we have the following series:

3 5 7% 9
x /3 - x /30 + x7 /840 - x /45360 + ... = 0. Multiplying

both sides of the expression by 3/x3 , we have

1 - x2/10 + x4/280 - x6/15120+ ... = 0; x 0.

We see that al = -1/10, a2 = 1/280, a3 = -1/15120

th
assuming that P is the n positive root ofn

sin x - x cos x = 0 and from previous results, we have

2 4 6
l/P2 = -1/10; ~1/P 4 = 1/360, ~1/P = 1/7875

n n n

thus 6 /7875 2 4.46. The actual value of this root is 4.4934.

(4) Now consider another equation which is associated with the

trans-vibration of beams, namely cosh x cos x 1 . Again utilizing

the Maclaurin series expansion for cos x and cosh x the expression

becomes - x4/12 + x 8/5040 - ... = 0

Sl/P 4 = 1/12 and P = 412 = 1.86
n n

also /P8 = 11/1680 and P = 1680/11 = 1.87 + . The actual value is 1.8751.
n n V

THE METHOD OF WHITTAKER - BERNOULLI

We now focus our attention on another method which may be

alternately used to approximate the roots of a transcendental equation.

This method is known mainly by the Whittaker-Bernoulli method which

was derived in chapter II. For some equation say

a + a x + a2x + ... = 0 the smallest root can be approximated in

absolute value by the given expression:
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a2 a3

a1 a2

X = a/al - a a2/al a l  a2 - a3 al a2 al a2  a

ao a1  a a1  a a1 a2

0 a a

Now we employ this method to treat the equations introduced previously.

Jo(x) = 1 - x2/22 + x4 /2242 - x6/224262 + ... where we let z = x2

then Jo(x) = 1 - z/22 + z2/224 2 - z3/224 26 + ... = 0

and

1/64 1/2304

1//4 + 2 1/64 -1/4 1/64

-1/4 1/61 -1/4 1/64 1/4 1/64 1/2304

1 1/41 1 -1/4 1 -1/4 1/64

0 1 -1/4

z=4 + .3333 + .16447

thus x = 2.40

Evaluating the equation cosh x cos x = -1

where x4 = z and cos z cosh z = 1 - z/12 + z2/5040 - ... = 0

and a = 1, a = -1/2, a = 1/50400 1  2

then the root
z = i- ____ =1.8744

-1/12 ,1/5040

1 1/12
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Consider the equation sin x/x = 0 whereby applying the Maclaurin

series we have sin x/x = 1 - x2/6 + x4/120 - x6/5040 + ... = 0

where ao = 1, al = -1/6 , a2 = 1/120, a3 = -1/5040 and letting

2
Z

= 
X

1/120 -1/5040

so z -1/1/6 + 1 1/20 -1/6 1/120
so z = -1/1/6 +

-1/6 1/12C -1/6 1/120 -1/6 1/120 -1/504d

1 -1/6 1 -1/6 1 -1/6 1/120

0 1 1/6

thus z = 6 + 2.57201 + .9207885 or x = \/9.49279 = 3.081

Now let us consider the equation

tan x = x or in power series form

1 - x2/10 + x4/280 - x 6/15120 + ... = 0 and letting z = x 2

we have 1 - z/10 + z2/280 - z3/15120 + ... = 0

where a o = 1 , al = -1/10 , a2 = 1/280 , a = -1/15120

and x = 4.49



19

THE EXTENSION OF
BERNOULLI'S METHOD

Consider the Bessel function Jo(x). Following closely the

theorem outlined in chapter 2, we shall obtain an approximation to

the root of :

Jo(x) = 1 - x2/22 + x4 /2242 - x6 /224262 + ... = 0, and letting z =x2

Jo(z) = 1 - z/2 2 + z2 /22 42 - z3 /224262 + ... = 0

we find that ho/hI = 1, hl/h2 = 5.333, h2 /h3 = 5.684 , h3/h4 = 5.763

h4/h5 = 5.779, h5/h6 = 5.782, h /h7 = 5.783

Noting the relative magnitudes of the last 2 terms in the sequence, it

becomes apparent that the sequence has begun to converge to a root.

Thus we find that z = 5.783 or x = 2.405

Now we consider a function which converges somewhat less slowly, namely,

log(l + z) = 1/2. Expanding the function by the Maclaurin series, we

have -1 + 2z - z2 + 2/3 z3 - 1/2 z4 + ... = 0

Again computing recursively, h,'s from the difference equation

h = 2( h + 1/2h + 1/3 hv_3 + ...) and ho=l , hl=2 , h2=3, h3=14/3v v.1 v-2 v-3 0 1

h4 = 43/6, h5 = 166/15 , h6 = 767/45 and ho/hl = .5, hl/h 2 = .667

h2/h 3 = .643, h3/h4 
= .651, h4/h5 = .648, h5/h6 = .6493. According

to this method, the indicated root is .6493. The actual root to the

above equation is el/2 - 1 = .64872. At this point it would be inter-

esting to see whether the Aitken 2 process (5] would have given us

better accuracy while using fewer terms. This process is stated

as x xn+ 2 - (xn+2 - xn+1 )2 / (Xn+2 _2Xn+l + n) , thus

we find that x ; .6493 - (.6493 - .648)2/(.6493 - 1.298 + .651)=.6486.

The result compares very favorably with the actual least root of

the above equation, namely , log(l + z) = 1/2.
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Let us now focus our attention on the equation - tan,/Z/z

-1 - 1/3 z - 2/15 z2 - 17/315 z3 - 62/2835 z4 - 1382/155925 z5

6
21844/6081075 z = 0 and computing ho , , h 2 , .... , h6, which are

respectively 1, -1/3, -1/45, -2/945, -1/4725, -2/93555, -1382/648750375.

The ratios ho/h 1 , hl/h 2, ... , h5/h6 becomes respectively

-3, 15, 10, 5, 10 , 9.9, 9.870. On the other hand, from the

Aitkin 82 process we find that the indicated root is 9.938. It

should be noted here that we used only four (4) terms from the sequence

to make this evaluation!
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GRAEFFE'S METHOD

In computing the root*of least modulus to the equation

log(l + x) = 1/2 whose power series representation is

2 3 4 5 6 7
-1 + 2x - x + 2/3x 3 - /2x + 2/5x 5 - 1/3x6 + 2/7x ... , we find

that the root of least modulus is .6448 where the actual root to

this equation is .64872. Eight (8) terms and iterations were used.

For equation (2), we have sin x/x = 0 where x # 0 and

sin x/x = 1 - 1/6x2 + 1/120x4 - 1/5040x6 ... Employing the Graeffe

Method to these coefficients, it was determined that root of least

modulus x = 3.078 + ... On the other hand, the actual value of such

root should have been 3.14 + ... Four (4) terms and iterations were

used.

In applying the Graeffe Method to the Bessel equation of order

zero, namely Jo(x) = 0, to the coefficients of the Macluarin series

(which was stated early) we find that the root of least modulus is

x = 2.567 + where the actual root is x = 2.40 +.- Six (6) terms and

6 iterations were used.

In reference to the equation cos x cosh x = -1, it was deter-

mined from the application of the method of Graeffe, that the root of

least modulus is x = 1.875 where the actual value of this root is

given as 1.87 +. Three (3) terms and 6 iterations were used.

Finally,'in computing the roots to tan x/x = 0 and with 6

applications of the Graeffe Process, we find that the root as indi-

cated by computation to be x = 4.147 where the actual root is

x = 4.49 +. Four (4) terms and 6 iterations were used.

See Appendix II for the actual computation of the roots.



CHAPTER IV

REMARKS AND CONCLUSIONS

In Chapter III, we mentioned various existing methods of

globally approximating the roots of transcendental equations. The

various approaches mentioned are advantageous from a particular stand-

point depending upon the type of solution desired, size of the root

sought, computational aids available and more importantly, the effect

of "roundoff" effor on the approximation. At this point, we discuss

the suitability of the various methods explored in this paper.

The method whch employs the summing of the reciprocated powers

of the roots of the transcendental equation offers fast convergence.

Implicit in this method of approach is that one may obtain a

fairly high degree of accuracy with the least number of terms

from the power series representing the equation. In economizing

the terms of the power series we reduce the effect of roundoff error

on the root approximation. In addition, this method allows one to

achieve good accuracy, especially, if the computational aids are

limited only to the slide rule or desk calculator.

On the other hand, the Whittaker-Bernoulli method offers a

somewhat different approach as an alternate to approximating the

roots of transcendental equations. This method allows one to

obtain a relationship between the root of the transcendental equation

and the coefficients of the truncated power series. One advantage

here is that we can reduce C.P.U. time by as much as 20% over the

Graeffe method, and at the same time, this method yields acceptable accuracy
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(for most cases) with the least amount of effort. Again we reduce the

effect of "roundoff" error by employing fewer number of terms of the

series.

The method of Bernoulli [Koenig's extension] does guarantee

convergence to a root but not nearly as fast as other methods as

indicated in the application to Jo(x) = 0. One of the advantages of

this slower convergence is that it may provide suitable separation

when the roots are nearly of the same magnitude. However, in the

case of Jo(x) = 0, convergence was accelerated by employing the

Aitken 82 process. This was possible because h,,/h,,+l ( 0,1,...)

converges geometrically as was shown in Chapter II. In using the

Bernoulli method alone, it sometimes requires a large v inorder to

obtain accuracy comparable.to the other methods mentioned in this

paper.

Among the methods that have been studied in this paper, the

Graeffe method is the most "global" in that it is capable of yielding

all the roots to a transcendental equation from a theoretical

standpoint. On the other hand, there are some inherent drawbacks

associated with the process when applied to transcendental

equations. First, when the power series is truncated and the Graeffe

method applied, some sign alternation may result. When this

situation is observed in the case of polynomials, then one is

immediately alerted of the presence of complex roots. On the contrary,

truncating the power series representing a particular transcendental

equation tends to obscure the properties or behavior of roots

subsequent to the first. Throughout the examples that were
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included (see Appendix II), such erratic behavior was not evident
when the root of least modulus was computed from the first coefficient ofthe derived equation(s), but instead with the roots subsequent to
the first when computed from the remaining coefficients. Secondly,
situations were encountered where the coefficients would "absolutely"
tend to zero for increasing subscripts. In : attempting to compute
more terms to refine the accuracy in determining other roots and
iterating Graeffe's process, one is rewarded with an inordinate
number of zero coefficients making it nearly impossible to determine
information about the roots. This is especially evident in the
example displayed on page 33 of the appendix. In a positive
sense, in observing the examples of Chapter III, it can be seenthat the method of Graeffe yields acceptable accuracy and fast
convergence in computing the root of least modulus. Also this
method seemed very compatable with the capability of the APL
programing language. Computer programs for the methods mentioned
in this paper are available in Appendix I.

In the case involving polynomials, Bernoulli's method maybe applied prior to Graeffe's method inorder to increase the sep-
aration of roots [1]. Since the domain of our investigation did
not include the approximation of real roots of larger modulus, it
may be interesting to know, the degree of separation of rootsthat can be expected from the employment of the above procedure

to a truncated power series. As a contribution to this effort,to what extent should we incorporate the method of asymptotic
expans.ians to the power series representing a particular trans-
cendental equation?
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APPENDIX I

APL COMPUTER PROGRAMS
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APL PROGRA ,'S RELAT.TING TO TRA'.NSCETDEnTAL , -QUATIONS

VDET[ P] V (WHITTAKER -BERNOULLI METHOD)
V Z+A DET B;I;J;K

[1] BD+(l 0 +A)p(,(A,A)pB),~JI<t IA, t+O
[2] +Z(vo=K+3[1;1] ,K)pO
[33 +(O<I+I'PppB+1 (Ji) 1] B-(JxB[;i])o,xC1 ;] 71C1;]-K[E1)/2
[43 Z+x/

-7FOCf f]V (METHOD OF BERNOULLI VIA KOENIG'S EXTENSION)
Z Z rC B

[1] Z-pp+-,tB
[2] -*2x(pB)>pZZ,:+,.x(-pB)+Z

VCOE[Ir]v (GRAEFFE'S METHOD)
VU1+CO4 V

[1] COUNT+O
[21 Ul+(1,(R-1)p -2 2)+.x(((O,-21pV)+U),4)U+.o., _._)x(V*2),[1]x/(1 -1 o.x-l 71 1?T

( 2,(-1+R 0, Sxp V), p V)p V, V
[3] COUjT4-(COUNT + 1)
[4] fl2 *COUNT
[5]3 (COUNT =K)/O
[6] F-V U-Ui
[7] -+2
[ 83 7--i V



APPENDIX II

EQUATIONS EVALUATED BY GRAEFFE'S METHOD



COE SH (COS X CuSH x = 0)

1 0.006547619048 3.936759889E-8

I 4.279257999 -5 1.549807842E-15

i 1.831201803 E9 2.401904349E 30
16
I 3.35330004&E-18 5.1691445E-60
32
i 1.12446211'AE35 0
64
i 1.264415055E 70 0
128
100
256
1- 0 0

R1.264415055 -70*(4256)
R1.875165

1.875165023



COLP XS (TAN X /X = 0)

1 0.002857142857 -4.724111867E-7 4.374177655,-9
4
1 9.108087686-6 -2.477212855E-11 1.913343015A'17
8
1 1.325015183 10 2. 512 4342F-22 3.660881495E-34
16
1 1.70264 148E 20 -2.6725626639-44 1.340205332E-67
32
1 2.8995213919-40 0 0
64
1000
128
1000
256
1000

R*+1.702641148E-20*(432)
R

4.147414124



2 COE Jx (J&x) = 0)

1 0.03125 0.0001899401347 1.094597219E-8 6.768187595E-16 1.321996248E26
4
1 0.0005966822306 3.539313286E-8 1.195571972E-16 4.577942226E'31 1.747674078E 52
8
1 2.852434186 -7 1.252531178E-15 1.429389099E-32 2.095755085E-61 0
16
1 7.885874552E-14 1.568834344E-30 2.043153196E-64 0 0
32
1 6.215564077 27 2.461241198E6 0 0 0 0
64
1 3.863323187-53 0 0 0 0
128
1 0 0 0 0 0
256
1 0 0 0 0 0

R*+(6.215564077E 27)*(*64)
R

2.567301452



COE SX sIN X /X = 0)
2
1 0.01111111111 3.306878307E-6 3.936759889E-8

1 0.00011684, 30335 -8.639000868-10 1 . 549807842E15
8
1 1.538009465 8 3.841548606E-19 2.401904349E'30
16
i 2.357790018e -16 7.3'69192446E-38 5.7681445F-60
32
I 5.5591590323-32 2.71,0013468E75 0
64
1 3.09042491J4E63 0 0
128
1000
256
1000

R+3. 090424914E-63*0(128)
R

3.078642304


