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ABSTRACT

The problem of designing optimal inputs in the identification of linear
systems with unknown random parameters is considered using a Bayesian
approach. The information matrix, which is positive definite for the
class of systems analyzed, gives a measure of performance for the sy-
stem inputs. The computation of the optimal closed-loop input mappings
is shown to be a nontrivial exercise in adaptive control. Deterministic
optimal inputs are shown to be easily computable. Numerical examples
are given. A Kalman filter is used to estimate the parameters. A
necessary condition for the Kalman filter not to diverge when applying
linear feedback, is also given.
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INTRODUCTION

The problem of designing deterministic system inputs to en-

hance the performance of some identification algcrithms has received

some attention in the literature. The formulations are based on the

Fisher Information Matrix and on least squares identification. Continuous-

time systems have been discussed by Levadi [1], Nahi et al [2,3] and

Mehra [4]. Deterministic systems observed through additive Gaussian

noise are considered in those works. Discrete-time single-input single-

output systems are considered by Gagliardi [5], Aoki and Staley [6],

Goodwin et al [7] and more recently by Mehra [8] whose frequency-domain

approach allows multi-output systems.

The more general results have been obtained for formulations

that lead to a linear model [1],[8], where linear least-squares

techniques can be applied. The Fisher Information approach usually

yields equations that depend on the unknown parameters [2,3,4,6,7] and

thus some suboptimal scheme has to be used.

In this paper, we shall be concerned with a particular class of

linear systems, namely those whose unknown random parameters appear

linearly in the system description. Using a Bayesian approach, we

will attempt to design optimal closed-loop inputs via the Information

Matrix criterion. In Section II we indicate that this is a difficult

problem in adaptive control. Section III gives the solution to the

problem for deterministic inputs and some examples are given in

Section IV. Finally, Section V gives an asymptotic result for iden-

tification of closed-loop systems.
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II. OPTIMAL CLOSED-LOOP INPUT MAPPINGS

In this section we will derive conditions that the optimal feed-

back input mappings, maximizing the sensitivity of the system output

with respect to the parameters, must satisfy. This sensitivity criterion

is also shown to be equivalent to maximizing the trace of the Information

Matrix (which is positive definite for the class of systems considered).

Consider the discrete-time linear system1

n m
y(k) = A.(k-i)y(k-i) + B.i(k-i)u(k-i) + 0(k) (2.1)

i=l i=l

where y(k) E Rr and u(k) E Rs are the observed system output and input,

respectively, 0(k) 6 Rr is a white Gaussian noise with known statistics

(6kj is Kronecker's delta) E{6(k)} = 0; E{_(k) T(j)} = 0(k)6 kj; (k) > 0

rxr rxs
all k,and where A. (k) E R and B.(k) E R are partially known

--1 -1

random matrices.

It is assumed that the initial conditions y(O),...,y(-n+l) and

u(-l) = ... = u(-m+l) = 0 are known.

By an appropriate rearrangement of Eq. (2.1) as noisy observations

on the unknown parameters, one can apply the results of Kalman filtering

theory. Assume that all elements of the A. (k) and B. (k) matrices are
1 -1

unknown random parameters varying according to a Gauss-Markov process

of the following form. Let a.j (k) and b. (k) be the j-th row of A.(k)

1Although this system has a very particular structure, it can be used
in a large class of realistic problems. See e.g. 111], [12], [13].
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and B (k) respectively, the vector y(k) E Rnr 2 + msr of unknown parameters--1

at the k-step is formed by placing the rows of A. (k-i) one after another
-1

in consecutive order j = l,...r and for i = 1,...n, followed by the

rows of B. (k-i) in the same ordering fashion, i.e.

(k) = [a 1 (k-1)...a 1(k-n)...a n(k-n)b 1(k-1)...b m(k-m)]
1-n n-n -1 m

then Y(k) is assumed to vary according to

y(k+l) = F(k)y(k) + E(k) (2.2)

where F(k) is known and (0) and (k) are mutually independent (also

independent of e(j)) Gaussian variables with known statistics,

E{X(0)} , E(- (17y) = E
-Y

E{(k)} = 0 , E{ (k)j (j)} = w(k)6

With the above definitions, Eq. (2.1) can be rewritten as the

linear model

y(k) = C (k)j(k) + 0(k) h(k) + 0(k) (2.3)

2
where C(k) E R(nr +msr)xr is given by

T T T T
y (k- 1) 0 . . 0 (k-2). . . .y (k-n). .0 u (k-1)...

0 (k-1) . .. . . .

C T(k) = . .

[ 0 . . . .(k-l) 0 . . . . . . 0...yT(k-n) 0 . . .

uT (k-m) . . 0

0 u T (k-m)
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The following lemma is merely a statement of the Kalman filter

and will be used in the proof of Theorem 2.1 below. Its proof requires

a modification of Kalman's original proof to take into account that C(k)

is random. A formal proof can be obtained paralleling Striebel's [91

derivation of the conditional distribution for a class of systems.

Lemma 2.1

Let Yk = {y(l),...,y(k)} be the observed outputs of system (2.1)

and assume that the inputs are of the feedback type (nonanticipative)

u(k) = u(k,Yk ). Then the a posteriori density p(y(k) IYk ) is Gaussian

with mean and covariance given respectively by

-1 T ^
y(k) = F(k-l)Y(k-l) + _(klk)C(k) - (k) (y(k)-C (k)F(k-l)y(k-l))

(2.4)

and

_(k k) = (E-l(kik-1) + C(k) -l(k)C (k)) - 1 (2.5)

where E(klk-l) = F(k-l)E(k-lk-l)F (k-l) + E(k-l) and

(010o) = Z > 0, (o) =

If some of the parameters are known, one can write

y(k) = z(k) + C (k)yl(k) + e(k), where Yl(k) is the vector of

unknown parameters. Once again Striebel's procedure can be applied

to derive p(yl(k) lyk). The result is to substitute y(k) by y(k)-z(k)

and C(k) by C (k) in the above equations.-- 1

Equations (2.4) and (2.5) provide a recursive estimator for

the unknown parameters, which is known to be unbiased (Ef{(k)} = E{j(k)})

and minimizes quadratic estimation errors. Moreover, if the parameters
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are mutually independent or are simple unknown constants, Eqs. (2.4) and

(2.5) can be broken down to yield r Kalman filters of smaller dimension

[10].

We now introduce some more definitions in order to state the

NsxNs
main theorem of this section. Let Q E R be the diagonal matrix.

Q = Diag[(q 1 +...+q .)I , (q 2+..+q S1)I
5  D(9 +..+ _ )I s ,

(qN-m++. N ",..., (qN_l+qN)I, qIS)] where qk = tr -l (k) and

I s is the s x s identity matrix. Similarly, let P E R(N - l)rx(N- l)r

be the diagonal matrix P = Diag[(q 2 +...+qC )Ir,..., (qN_+...+q )Ir,

d2 a+g nn N-1

(N-n+l+  +)I(qN_+ I r , q I r ] and define the submatrices

sxs rxrQi R and P . R in correspondence with .2 and P as follows

2 = Diag[P,...'$9-1

P = Diag[P ,...P 1  , P = 0
i 1 -'''''-N-l -0

Theorem 2.1

Let y(k+l) = Y(k) = Y with Y(0) a Gaussian variable with

mean I and covariance Z > 0 and let M be the Information Matrix
-Y -eteIfrainMti

= ff( log p(, ))T (Vy log p(~N,))d N (2.6)

where V denotes gradient and Y~ = N (i)...y (N) j

Then, for system (2.1) we have that

-1) (2.7)
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(ii) The following problems are equivalent (maximization is with

respect to input mappings u(k,Yk))

(a) Max tr MN (2.8)

(b) Max of the sensitivity index

N-1 r h i(k) T j3h(k)

SPi(k) (2.9)
ik=0 i=l

-1
where p.(k) = [91 (k)].. is the i-th diagonal element

-1
of l(k) and h. is the i-th element of h (Eq. 2.3).

(c) Max

T T
E (T(k)k+(k) + (k)pk(k)) (2.10)

k=0

Proof. See Appendix A.

Remarks.

It is known that M% is related to the error covariance matrix

N of any unbiased estimator of y by the Cramer-Rao inequality

S- -l > (2.11)

Eq.(2.7) indicates that % has only nonzero eigenvalues and since

-1
1/tr M and tr 1I go to zero at the rate 0(1/X min) as .min [6],

where min. is the minimum eigenvalue of M . Eqs. (2.8) and (2.11) give

a relationship of the optimal inputs with mean square estimation errors.

Eqs. (2.9) and (2.3) show that the inputs should maximize the sensitivity

of the system output with respect to the parameters, where Pi(k) has the
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interpretation that if the noise is "high", the output contains "little

information" about the parameters. Eq. (2.10) is derived from either

(2.8) or (2.9) and remains unchanged if one considers time-varying

Markov parameters (Eq. (2.2)) with the index (2.9) changed to

rN-1 r T(h.(k)\T (h.(k)1
k= 1 (k) (k)

Eq. (2.10) implies that this type of inputs for identification is con-

flicting with any input aimed to regulate the system.

III. OPTIMAL OPEN-LOOP INPUTS.

It is not difficult to check that unfortunately, the maximi-

zation of Eq. (2.10),subject to an energy constraint, cannot be per-

formed analytically. Some suboptimal schemes, developed in the theory

of adaptive controllers may however be applicable. In this section,

we give the solution to the problem for the case of deterministic

inputs. We will consider only the case of constant random parameters,

the extension to time-varying parameters with index (2.11) is completely

straightforward.

Let us define A C R ( N- l ) r x ( N- ) r and B R(N - l)rx(N -l ) s by

I .. O B . 0--1

--1 --- 2 .

A= B = " (3.1)
A B "
*-n . . -.

0.. A ... A -I 0... B . . . 2 BII - _ - -m ;-2-1
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Let h E R(N-l)r be a vector depending on the initial conditions through

h= [ A..(1-i) A. y(2-i) T .( . (AO)) T

(N-n-l)r zeros

(3.2)

NsxNs
Let H E R be the symmetric positive definite matrix

HB A P A BO (3.3)

-T -1T Ns
where A = (A ) always exists since det A = 1, and let d E R

d = E{[(B TA-TP A-lh) T  . . 0]T (3.4)

s zeros

Then we can state the following theorem.

Theorem 3.1

Let UN = [u (0) ... (N-1)] RN s be the vector of the first

N system inputs. The optimal input sequence u*(0),...,u*(N-l) that

solves part (ii) of Theorem 2.1, subject to the energy constraint

N-i

u u ( i ) u ( i ) < W, is given by the vector
i=0

-l
UN* = [-H + A I] d if d # 0 (3.5)

where I is the Ns x Ns identity matrix and A is such that

If d = 0, then UN* is the eigenvector corresponding to the

maximum eigenvalue of H, normalized according to Eq. (3.6).

Proof See Appendix B.
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Remarks.

In Eq. (3.5) X is a Lagrange multiplier. If the initial conditions are

zero, or E{B} = 0 and B is independent of A (element-wise) then d = 0.

These conditions are however not necessary for d to be zero. From

Eqs. (3.1) through (3.4) it follows that H and d depend on the noise

statistics, on the initial conditions and on E{Yik}, k = 1,...,2N-4,

where yi is the i-th unknown parameter. The only difficulty in the

computation of explicit expressions for H and d is that of notation.

As an example, the single-input single-output (SISO) case is considered

next.

IV. EXAMPLES

Example 1

The SISO system is described by the equation

n m
y(k) = a.y(k-i) + biu(k-i) + 6(k) (4.1)

i=l i=l

Proposition

If = [al..anbl..bn ]T is a vector of Gaussian mutually inde-

pendent random variables, the expectations required in H and d can be

obtained as follows



-10-

m m

E{B A TP A-1B} = E{b.}E{b.. + E{bi2}i i
i,j= 1 i=l

i j

2N-4 k m
+ E{a kl}...E{a k n }  E{biE{bj Rijk

k=l k +...+k =k 1,j=1
1 n
k SI i

i=1 1 n

E{B A T P A h} = E{a }E{b.)y.f
i=l j=1 £=1

2N-4 m i

k=l j=l k +...+(k.+1)+..+k =k+l £=1
1 1 ni=l,... ,n
k eI

E{alk 1...E{a i+}...E{ankn}E{b }Yigkj

where k S I reads "for all k S {0,1,...}, a = l,...n" and the matrices

(N-)x(N-1) N-I
Rijk'2ij R and f Pakj E R can be precomputed for

fixed N(they depend only on the noise statistics G(k), k = 2,...,N,

and if 0(k) = 0 all k, they can be replaced by constant matrices

independent of 0).

If y is a vector of jointly Gaussian variables, with mean y

and covariance E, the transformation Y = ry where r satisfies
T =Y Diagonal Matrix and -- 1T = I, yields a set 1 of mutually

,fr = Diagonal Matrix and rrT = I, yields a set Y. of mutually
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independent Gaussian variables. The expressions for the expectations

are then similar to those above.

Proof See Appendix C.

Example 2 (Numerical example).

Consider the two-input one-output system

y(k) = ay(k-1) + blul (k - 1 ) + b2 u 2 (k-l) + 0(k) where O(k) is white

Gaussian N(0,1). The following two cases of random parameters are

analyzed.

Case (i) a,b1 and b2 are jointly Gaussian with

a 0 .5 0 0

bl ~ N 0 , 0 .1 .1 (4.2)

b2  0 0 .1 1

The inputs, computed according to Section III are (N=10) shown in Fig. 4.1.

Case (ii) a,b1 and b2 are jointly Gaussian with

a 0 .1 0 0

b ~ N 0 , 0 .1 .1 (4.3)

b2  0 0 .1 1

The optimal inputs for this case are shown in Fig. 4.2.

The inputs of Fig. 4.3 with the same energy (W = 85.23) that

those of Figs. 4.1 and 4.2 were used as comparison.

Mean square errors for 2500 Monte Carlo runs were computed,

the results are shown in Table 4.1.
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System Input tr 10

Fig. 4.1 .1281 *
(4.2) Fig. 4.3 .2510

Fig. 4.2 .1163 *
(4.3)

Fig. 4.3 .2062

Fig. 4.1 .1287

Table 4.1 Mean Square Errors for Different Inputs

From the figures we can see that u2* contains most of the energy

of the optimal inputs. This agrees with our intuition, since b2, the

parameter multiplying u2 has the largest uncertainty. The results of

the simulation (Table 4.1) indicate that the mean square estimation

errors corresponding to the optimal inputs (indicated by *) are approx-

imately only 50% of those corresponding to constant inputs.

The optimal input for system (4.2), Fig. 4.1, is of the impulse

type. An interesting result follows by comparing the optimal inputs

for system (4.3) with the impulse type input Fig. 4.1 (3th vs. last

row in Table 4.1). The former gives a 10 % reduction on mean-square

estimation errors corresponding to the latter. Thus impulse type

inputs are not always the best.

V. ASYMPTOTIC ANALYSIS

Most identification algorithms have been designed on the basis

of an open-loop operation of the plant and erroneous results may be

obtained if one uses such algorithms for closed-loop system identification

[14][15]. Nevertheless, if one is careful about the type of feedback

being used, then correct results are obtained.
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Consider for instance the system [16]

x(k) + ax(k-l) = bu(k-1) + e(k)

u(k) = ax(k) (5.1)

It is well known that the Kalman filter on least squares estimate can

be obtained minimizing

N (a-a
J(a,b) = (x(k+l) + ax(k) - bu(k)) + (a-a b-b) (5.2)

k=l - b-b

where a,b, ab is the a priori information. As N - 0 the a priori

information becomes negligible. Thus Eq. (5.2) becomes

N
J(a,b) = (x(k+l) + ax(k) - bu(k)) 2

k=1

N
= (x(k+l) + (a+aX)x(k) - (b+)u(k))2

k=l

= J(a + aX, b + X) (5.3)2

and the parameters are not identifiable. They become identifiable if

the feedback loop is changed to u(k) = a x(k) + a2x(k-l).

The following theorem gives a necessary condition for the

Kalman filter (Eqs. (2.4),(2.5)) not to diverge when linear feedback

is being used. Only the SISO case is considered. The extension to

multi-input multi-output systems is conceptually straightforward.

Note that this cost function can also correspond to a maximum
likelihood estimate.
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Theorem 5.1

Let the system be

n m
y(k) = C a.y(k-i) + biu(k-i) + 6(k) (5.4)

i=l i=l

where 6(k) is white Gaussian N(O,o 2 ). Let = [a ... a b ...b ] T

be a Gaussian random vector N(E, ), and assume that linear feedback

u(k) = c.y(k-i) (5.5)
i=O

is being used. Then, if k < n we have that the mean square errors

satisfy

N ) T (
Jim E{(y - Y(N)) (y - y(N))1 + (5.6)
N4

Proof. See Appendix D.

VI. CONCLUSION

The design of inputs for system identification has been con-

sidered using a Bayesian approach. The optimal identifying inputs are

shown to be conflicting with a system regulator. Optimal deterministic

inputs have been shown to be easily computable and digital simulation

shows that they yield smaller mean square estimation errors than arbi-

trary inputs. The divergence of the Kalman filter-estimator for

closed-loop systems has been analyzed.



APPENDIX A

From the definition of the Information Matrix given by Eq. (2.6),

= E{(V log p(YN,y))T( log p(YNY))} (A.1)

Using Baye's rule we get

= E( log p(y)YN) + log p(YN))T(V log p(Y)Y)

+ V log p(Y ))}

i.e. = E{(V log P(jYIN))T(V log P(yIjY))}

From the results of Lemma 2.1, the density p(IY N) for any set of

admissible (nonanticipative) input mappings u(k,Y ) is Gaussian with

A
mean and covariance given by y(N) and E(NIN), thus

V log p(YIY) = - (Y - Y(N))T Z(NIN)

and using the properties of conditional expectations, MN can be written

as

= E{ IE 1 (NIN) ( - y(N)) ( - T(N)) T-1(NIN) ~}}

or

= E{E- (NI N)} (A.2)

Now, from Eq. (2.5) of the lemma

Sl(klk) = -l(k-llk-l) + C(k)g (k)C (k)

then

-1 -1 T
S(NIN) = E -1+ C(k)G (k)C (k) (A.3)- -Y k=l

Substitution of (A.3) into (A.2) proves part (i) of the Theorem.

-15-
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Maximization of tr _% is, by (A.2) and (A.3) equivalent to

maximization of

J = tr E C T(k)C(k) 0 (k) (A.4)

Using the definitions of C(k), h(k) and Pi (k), it follows after some

algebra that Eqs. (2.9) and (A.4) are equivalent. This proves parts

(ii-a) and (ii-b) of the theorem.

We also have that

n m
CT (k)C(k) = YT (k-i)(k-i) + T(k-i)u(k-i) I

i=l i=l

where I is the r x r identity matrix. Thus, using the definition of

qk we get
nm m

tr[C(k)C(k)l(k)] = k (k-i)y(k-i) + u(k-i)u(k-i )

i= i=1

Adding N of these terms as indicated by (A.4) and using the definitions

of P and 2 we have

J = E{YNT -- -1 +N UN) (A.5)

where YN-1 = [(l)... (N-)], U = [u T()...uT(N-1)].

Using the partitions of P and 2, from (A.5) we get

J = E (T(k)P (k) + u (k)ku(k))

This completes the proof.



APPENDIX B

For deterministic inputs, (A.5) can be written as

J = tr P E{E{Y Y T, + T
1 -N-1-N-1-N

or

J = tr P EY +N-Y )+ +UN * (B.1)
1 --

where

Y = E{Y /y)-N-i N-1 -

= E{(Y - Y )(Y -Y ) /y}

It is easy to see that the first N-I system outputs satisfy

A -1 +  - +B _ I-1 + h = 0 (B.2)

where A, B and h are defined in the Theorem, I 6 R(N - l )rx(N- l)r is

the identity matrix and

e = T (1).... T(N-1)]T

Since A always exists, the vector

-i
~Y = - A 7(BU -l + a-l + h)

has a Gaussian conditional (on y) density, with

7-i = - A (BU- + h)
N-1 -- N-1

E =A-10 A- T-- -

where 8 = Diag (8(1),...,O(N-1)).

Therefore, substituting into (B.1) and considering only terms

that depend on U N, we must maximize

-17-



J ' =  r BTTA P AB}U + 2 T E{B A - T P Alh} + U
1 -- 1 2_N-1 ENN1 N -N

Using H and d as defined in the Theorem we have

J1 = H UT + 2U Td

To maximize Jl' subject to the energy constraint

N-N-L

notice that since J1' is strictly convex, the optimum occurs when

UNTUN = W, the optimization is thus equivalent 
to

Min-UT H- U N- 2UNd + (U U - W)

where A is a Lagrange multiplier. The necessary condition gives

HU N* + d - AU * = 0 (B.3)

-1
If d O, U N* = [-H + I- 1 d, which proves the first part of the Theorem.

If d = 0, then (B.3) gives H UN* = AUN*, i.e. UN* is an eigenvector of H.

Since for all x C R
N s

A. (H)xT x < (J = x H x) < (H)x x
min 1 max - - -

the cost attains its maximum when UN* is the eigenvector corresponding

to the maximum eigenvalue of H. This completes the proof.
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The inverse A E R can be obtained via

A = - (I + G + ... + G2)

where

n
G= a.I.

i=l

where

Ik E R (N - 1) x (N - 1) is the shift matrix with i-jth element

1k ij = 'i-j,k*

Since Gk = a ... a. I ... I.
il" k=l 1 k-1 'k

we have that

n
-T -1 ai - -1

i 1 1 1

n
+ a. a. (P1 . I. + T P I. + I. T Tp)

2. -- -1 - I . P
il,i 2= 1 1 2 1 2 2- -i

+nI.I. P I. .. 
-- 1--N -12

N-2 1 1- -iN-1 2N-5

n+ I a. ... a. (I. T ... I.Tp I .. I. )
iI , .•,i2N-=I1 12N-4 -1N-2 1 - N- 2N--

N-N 1 N-i 2N-4

-19-
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or
2N-4 n

ATP A = P + a. .. a N
k=l i1" k=1  1 kk

where !k is defined by correspondence.

m
Expressing B as B = b.I. we have that

i=1l

m 2N-4 n
BTATp AB = (bPbjAij + I .. a. bi.b R (C.1)

i,j=1 k=l il,...ik=1 1 k jk

where

= T

Rjk ---L j-1

The vector h can also be written as

BA=PA hI X 1
n i

h a iy-i-A-l
i=1 £=1i

0

therefore

n m i
BA-P A-lh a.b.y f

i=1 j=l £=1

2N-4 n m i
+ I I I I aa .. a bjy _igkj (C.2)
k=l i,il,""k=l j=l £=1 1 k

where
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f = _T P 1 1
-j J-l E-l1

0

0

The expected values of (C.1) and (C.2) will lead to the ex-

pressions stated in the Proposition. If the vector Y has correlated

variables, it can be substituted in (C.1) and (C.2) by Y = rF T, where

1~ has independent variables. The resulting expectations will there-

fore be similar, in terms of expected values of yl. This completes

the proof.



APPENDIX D

The conditional error covariance matrix Eq. (2.5) corresponding

to the system (5.4) is

-1 -1 1 N T
z- (N/N) c(k) (k) (D.1)

Sk=1

where c(k) = [y(k-l) ... y(k-n)u(k-1) ...u(k-m)] . Equation (5.5) can

also be written as

U(N) = F(N)Y(N) (D.2)

where U(N) = [u(O) ... u(N)] , Y(N) = [y(O)...y(N)] and

F(N) = ai j (D.3)
i=0

where I. is the (N+l)x(N+1) shift matrix defined in a previous appendix.-1i

Let < X,Y > denote the usual inner product in RN +1. Thus using

(D.2) in (D.1) we have that as N + c,

<Y(N) ,Y(i) > <Y(N) ,IY(N)>...<Y(N),I ]n_(N)> <Y(N),F(N)Y(N)>.

<I Y(N) ,Y(N)>
-11-

- (N/N) =

<F(N)Y(N) ,Y(N)>

m - F -(N)YN : ,Y(N)> . . ... Fi(N)Y(N) ,F(N)Y(N)>...

-22-
-22-



-23-

<Y(N),I F (N)Y(N) >

2 a.s. (D.4)

<I F(N)Y(N),I F(N)Y(N)>
n--- - -r--

To check positive definiteness one can use Silvester's rule. By the

properties of determinants and Eq. (D.3) it follows that if L < n the

matrix (D.4) is singular. This implies that as N - o, at least one

eigenvalue of (N/N) will go to infinity a.s. and: tr = E (N/N) will not

be integrable. Thus lim Ef(y-y(N)) T(-(N))} = lim E{tr E(N/N) } - m.
N- N)o
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9.1

U1 * u2

1.0 1.09

S .12 .016 .003 t .15 .02 .004

01 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Fig. 4.1 Optimd, Inputs for System (4.2)

U1 * 5.13 U2

3.34

.52 . .50 .36

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Fig. 4.2 Optimal Inputs for System (4.3)

ul* u2
1.96

S I I I l I I I I I I I I I I ,
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Fig. 4.3 Constant Inputs
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