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I. THE GEOLOGIC SETTING OF BOULDER 1, STATION 2

. , *
R. W. Wolfe
Center for Astrophysics
Harvard College Observatory and Smithsonian Astrophysical Observatory
Cambridge, Massachusetts 02138
. H. H. Schmitt

Office of the Administrator
National Acronautics and Space Administration
Washington, D.C. 20546 -

and \
W. M. Muchlberger

Department of Geology
University of Texas
Austin, Texas 78712

Apollo 17 landed on the flat floor of a deep, narrow valley embayed in the moun-
tainous highlands that comprise the southeastern rim of Mare Serenitatis (Figure I-1).
Serenitatis is one of the youngest multiringed basins on the lunar nearside and is
underlain by a mascon. The valley of Taurus-Littrow, which is radial to the basin,
is generally interpreted as a graben formed as a result of structural adjustments of
the lunar crust in response to the Serenitatis event (Apollo Lunar Geology Investigation
Team, 1973a). ‘

The highlands surrounding the valley can be divided on the basis of their morpholo-
gies into 1) high, steep, smooth massifs, 2) lower domical hills {the Sculptured Hills),
and 3) other low hills adjacent to both the massifs and the Sculptured Hills (Figure I-1)
(Apollo Lunar Geology Investigation Team, 1973a). According to Schmitt (1973),

Although certainly internally complex, the dominant fabric of the North
Massif is apparently that of roughly horizontal structural units that may
be depositional or intrusive layers. In the South Massif these units
appear to be tilted westward or southwestward. High angle normal
faulting and tan~-gray breccia intrusions apparently break the continuity
of the structural fabrics in both massifs. The tilting and faulting of
massif units may relate to their uplift during the Serenitatis impact
event or subsequent major basin events.

T ——
Acting as editor, I have drawn freely on the references cited and materials submitted
by the other authors. The credit for the information presented here is theirs; errors
in the presentation are mine.
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Figure I-1. High-oblique view toward the southeast of the Apollo 17 landing site (NASA
photograph AS15-9290).




The materials of North Massif and Sonlh Maassif were sampled from bovlders that
roiled down their slopes or were, perhaps, ejected by small impacts higher on the

massifs, -

South Massif materials were collected from Station 2, EVA-I. This station is
located about 50 m above the break in slope at the foot of the massif at the southeastern
edge of Nansen crater and is on the bright deposit extending northward across the
valley floor from the base of the massif (Figures I~2A and I-3). This deposit consists
of breccias similar to those of the massif and ;'is interpreted as material shed from the
slopes of the massif as a landslide or avalanche. Inthe area of Station 2, subdued
craters 3 to 5 m in diameter are common. T:here are no blocky craters visible, nor
do any of the fresher craters appear to penetrate to bedrock (Apollo Lunar Geology

Investigation Team, 1973a,b).

A concentration of boulders occurs at and near the break in slope at the foot of
South Massif. Those with visible tracks on the massif slopes were emplaced after the
avalanche that formed the light mantle, and probably emplacement of all the boulders
postdates the light mantle. If they were a part of the avalanche itself, the boulders
would be more uniformly distributed across the surface of the light mantle, rather
than concentrated near the base of the massif (Apollo Lunar Geology Investigation
Team, 1973a). -

The most obvious sources for the boulders near Station 2 are on the upper one-
quarter of the massif slope (Figure I-2B). Visual inspection from a distance indicated
that linear source-crops on this part of the massif and the subtle contact between blue-
gray and tan-gray units have an apparent dip of 10° to 15° to the west., Offsets of the
color changes, downward to the east, suggest that normal faults dipping steeply east-

ward cut this apparent massif structure (Figure 1-4A, B) (Schmitt, 1973).

In the area of color variation, blocky patches are comimon, especially in the blue-
gray unit (Figure 1-4A, B). There is no apparent source for the Station 2 boulders
on the lower three-quarters of the massif (Figure I-2B). Although none of the sampled
boulders has visible tracks on the slope, the boulders lie directly below the blocky

area above the contact between the tan-gray and blue-gray units near the top of South
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Massif (Figure I-2B). Boulder tracks from the blue-gray source-crops on the upper
portion of the massif led to the large boulders in Nansen. This supports the con-
clusions bascd on visual correlation of colors viewed from a distance that boulders
from the bluc-gray source-crops reached the base of the magsif and that Boulder 1

. is probably one of these,

In summarizing the activities at Stati@ 2, Schmitt (1972) commented on the
significance of Boulder 1 in the following transmission upon leaving the station:

Those two major kinds of blocks that we sampled there were about
the two varieties we saw in the area, It's a long extrapolation 1
realize, but they do resemble in color, andI believe in texture, the
blue-gray rocks and the tan-gray rocks up on the massif. So I feel
fairly confident that we sampled at least the two major units visible
from a distance in the South Massif. .

The regional stratigraphic relations of the foliated and layered fragment-rich
breccias as represented by Boulder 1 were summarized by Schmitt (1973):

The oldest through youngest stratigraphic units which are present as
bedrock in the North and South Massifs are as follows: (i) Light

gray breccia and crystalline rock as distinctive clasts in the blue-
gray breccias. (These clasts may be closely related to the differ-
entiates of an early melted lunar crust.) (ii) Crystalline blue-gray
fragment-rich breceias and their metamorphic equivalents. (These
breccias are possibly quenched and breceiated impact melts produced
during the formation of the large lunar basins or even older events, )
(iii) Crystalline, vesicular, tan-gray matrix-rich breccia and any
metamorphic effects associated with its infrusion into the blue-gray
breccias. (These insirusions may be partially molten impact breccias,
possibly of Serenitatis age, or polygenetic tuff-breccia eruptives of
undetermined origin.) (iv) Foliated layered breccia of low metamorphic
grade which is rich in a variety of breccia clasts and which appears to
correlate with units near the crest of the South Massif. (These rocks
may be representative of the youngest ejecta blankets from large
bagins.) .

REFERENCES

Apollo Lunar Geology Investigation Team (1973a). Preliminary geologic analysis of
the Apollo 17 site. USGS Astrogeolegy 72.
Apollo Lunar Geology Investigation Team (1973b). Documentation and environment of

the Apollo 17 samples: A preliminary report. USGS Astrogeology 71.
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IO. MORPHOLOGY AND SURFACE MAPPING

Ursula B. Marvin

Center for Astrophysics
Harvard College Observatory and Smithsontan Astrophysical Chservatory
Cambridge, Massachusetls 02138

Of the many boulders photographed at the Apollo 17 site, Boulder 1 from Station 2
is unique in having a strongly developed foliation. Resistant layers form four steeply
inclined ridges separated by joint planes or by deeply eroded beds of softer materials.
A prominent cleavage, or set of cross joints, is oriented almost normal to the foliation
(Figure II-1). The cleavage is expressed as subparallel cracks, some of which are
open fissures. The entire surface of the boulder is rough and studded hy dark-colored

knobs ranging in diameter from 1 to 15 cm.,

The unusual morphology of this boulder, which is about 2 m long by 1 m wide and
stands about 1 m above the surface of the regolith, attracted the attention of Astronauts
Schmitt and Cernan, who collecied four specimens from the locations shown in Figure
HO-1. Two of these specimens, 72275 and 472255, were subdivided and distributed to
consortinm members in the autumn of 1973. The other two, 72215 and 72235, will be
distributed by summer 1974. The results assembled in this report show that Boulder 1
from Station 2 is unique in several other respects besides its morphology. If is a
polymict breecia containing at least one type of rock that has not been recognized in
any other lunar sample, and it records an unusual minor-element distribution and
magnetic history. These early findings on two of the specimens greatly enhance our

interest in the remaining two.

All four specimens were prominent features on the bbulder: 72275 stood up in
bold relief at the top of the boulder; 72235 was a black knob from a lower portion of
the same layer; and the other two specimens were gently rounded bulges on two different

layers (Figure II-1RB).
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Figure II-1A. NASA photograph (ASl?—lS';"-ZOSaOI) of the southeast face of Boulder 1 -
in situ at Station 2. Arrows indicate the sampling sites.
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Figure JI-1B. Sketch of Boulder 1 in situ at Station 2, showing the foliation, cleavage,
and sampling sites. The photographs show the four specimens as they
were positioned on the boulder., The lunar orientation of the boulder,
and hence of the specimens, is indicated by the compass directions., The
cubes give the conventional orientations assigned to the specimens after
they arrived at the Lunar Receiving Laboratory. The lunar and the
laboratory orientations are not the same.
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Despite its exposed posgition, 72275 is the most friable of the four specimens. By
the time it was transported from the Moon to the Lunar Recciving Taboratory in
Bouston, it had broken into four main fragments plus numerous chips and fines. A
reassembly of the four identiiiable fragments of this specimen is shown in Appendix A
(sec Fipurc A-1j, where all the subdivisions of 72275 are documented. Tour views of
the main mass, 72273, 0 — the only portion of the oi'igillal specimen that has been sub-
divided and distributed for study — are shown in Fiéure Im-2.

I

Specimen 72255 is more resistant than 72275; nevertheless, it also broke into
fragments en route from the Moon, The reconstructed specimen is shown in Appendix
B (Tigure B-1), along with complete documentation of its subdivisions. Tigure II-3
shows three views of the main mass, 72255,0, from which samples have been taken

for distrihution to consortium members.

The most coherent of the four specimens is 72215. It is competent encugh to
maintain one rather large open crack and several subparallel cracks alipned with the
main foliation direction of the parent boulder (see Figure II-4). This specimen includes
two features of special interest: an apparent layering within the matrix itself, and a
small knob consisting partially of chalky white anorthosite, including several holo-

crystalline lithie clasts.

Speeimen 72235 is a resistant black knob embedded in a gray friable matrix
resembling that of 72275. The knob consists of gray and white fluidized cataclastic

breccia enclosed in a strongly annealed aphanitic gray-black rind (Figure II-5).
SPECIMEN 72275; SURFACE CHARACTERISTICS

The surface features of 72275, 0 visible through the cabinet windows of the nitrogen
lines at the Tunar Receiving Laboratory are outlined in the maps of Figure II-6. The
portions that were exposed on the lunar surface have a brown ﬁatina and abundant zap
pits, represented on the maps by stippling. A number of dark, resistant knobs covered

with patina are shown in view B The most prominent feature on any surface of the

I
specimen is a light-colored clast with a black rim, seen in view N 1 This clast

{designated hereafter as clast #1} appears to be the remnant of a knob that broke away

12
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Figure II-2A. The north and south surfaces of specimen 72275. Maps of these sur-
faces are shown in Figure II-6.
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Figure II-2B. East and west surfaces of specimen 72275. Maps of these surfaces are
shown in Figure II-6. '
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Figure JI-2C. Left photograph: Some of the dark knobs that occur on the exterior of the boulder. Right photo-
graph: The top surface (T 1), where the specimen was attached to the parent boulder, and the east
surface, which is markedly irregular and partially covered with fine-grained delicately layered
and ripple-marked material (see also Figures II-7 and A-2).
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Two views of specimen 72255. The unique Civet Cat clast, a dark
wedge-shaped fragment with lenticular white inclusions, is visible in
both photographs. Surface maps of 72255 are shown in Figures II-10
and II-12.
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Two views of specimen 72215. The subparallel cracks across the south
face are aligned with the dominant foliation of the parent boulder. The
upper photograph gives a clear view of an irregular medium-gray layer
or streak through the matrix; and the lower photograph, a small knob
at the lower right that encloses layers of gray and white breccia.
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Figure 1I-5.
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Two views of specimen 72235, a black knob embedded in a friable gray
matrix. The lower photograph shows the interior of the knob, which
consists of layers of gray and white fluidized cataclastic breccia
enclosed within a rim of aphanitie black breccia.
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from the Loulder, leaving a {resh interior surface that subsequently acquired a patina.
'The cutling plan for 72275, 0 was designed to slice open clast #1 and include most of it
within a large slab. The cutting lines are represented by the dashed lines in views

Nl and S] of Yigure -6,

Most of the freshly fractured surfaces of 72275, 0 consist mainly of fine-grained
matrix and small gray or white clasts. The matrix tends to shed dust each time the
specimen is bandled, and the dust obscures the fine structure of the interior. However,
a most unusual surficial feature is exposed on the El face. Here, the surface is
partially coated with a very fine-grained yellowish-gray clay-like material that is
delicately layered and, in places, ripple-marked. The location of the rippled surface
is indicated by an appropriately rippled symbol in views N 1 and El of Figure II-6, and
photographs of this lunar minitopography are shown in Figure II-7. 'The origin of the
ripples has not been satisfactorily explained, but the following observations may bhe

relevant,

The material of the rippled surface layer appears to have much the same composi-
tion as does the parent boulder. Optical determinations by the immersion method show
that the grain size ranges from about 1 to 12 p and averages 1.5 p. Most of the particles
have an index of refraction of approximately 1,580, which matches anorthite; a few
range above 1.650, and these could be any mafic silicate. X-ray-diffraction films of
the bulk material yield a dominant anorthite pattern plus a weaker bronzite pattern.

An average of 16 defocused-beam electron-microprobe analyses is listed in Table I1-1,
where it is compared with analyses of the friable gray matrix and of dark matrix
breccias, which are an abundant component of the boulder (see Section ). All these
lines of evidence suggest that the layered and rippled material is derived from the
boulder itself, rather than being dust of an alien composition that was wedged into a

boulder crack or plastered onto the surface.

While it was attached to the parent boulder, the El surface faced down toward the
lunar surface. However, it was neither a fully exposed surface, as is shown by its
fine state of preservation and its lack of a patina, nor a freshly fractured surface.
When 72275 was collected by the astronauts, the specimen broke away from the parent

boulder along face T, and during transport from the Moon, fragments broke away

1’

from faces W, and Sl (see Figure 1I-6). Therefore, either the rippled face, E,, was

20



Electron-microprobe analyses of the ripple-marked sur-
face layer and light and dark matrix materials.

Table Ii-1.

72275, 128"
Light gray

N
72275, 17

Ripple-marked 72275, 128'

surface layer matrix Dark malrix
Si0s 51.0 ' 47.3 49.7
TiOg 0.9 0.6 1.1
Cry03 0.2 P 0.1 0.2
AloOg 20.2 ' 21,3 18. 8
FeO 7.6 . 8.8 10,0
MnO 0.1 (| 0.1
MgO 6.7 8.3 9.0
CaO 12.0 12.4 11.4
NasO 0.4 0.4 0.5
K920 0.2 0.1 0.3
P05 0.2 0.5 0.5
Total 899.5 99.9 10L. 6
Fo 0.0 0.0 0.0
Fa 0.0 0.0 0.0
En 16. 6 20.7 22.0
Fs 12,5 15,2 16. 3
Wo 1.3 1.0 2.1
Or 1.2 0.8 2.0
Ab 3.4 R 3.7 3.9
An 54.5 55, 8 47.5
Ilm .7 1.2 2.1
Chr 0.3 0.1 0.3
Qtz 8.0 0.2 2.7
Cor 0.0 0.0 0.0
Ap 0.6 ! 1.1

*Recalculated average of 16 defocused-beam analyses. The
rippled material is very porous and took a poor polish. The
sums clustered at 86.5%. The result is therefore to be taken
as only an approximation,

TFor further explanation, see Table III-6.

21



an interior surface bounding a preexisting crack along which rock powder was pulverized
and rippled by grinding between the walls, or it was protected by an overhang. Per-
haps the best explanaiion invokes two siages of fermation: The powdery su riace layer
was produced by grinding motion within a crack, and the opposite wall of the crack

later fell fo the lunar surface leaving the El surface facing down toward the regoelith.
Such a sequence of events is suggested by the 'ﬁresence of a very few zap pits in the
surficial layered material, Although none of thesé occurs within the rippled arca, they
are present near its margins, where,' at one gite, they are accompanied by delicate

splashes of black glass (feature ¥ 4 in Figure I-7).

If the production of ripple marks requires the distribution of material by a moving
medium, then Boulder 1 at Station 2 records the passage of a cloud of gas (?) or fine
particles, generated in a landslide or hase surge, either through a crack or across a
surface. Alternatively, a fine powdery layer within a erack may have been rippled by
vibrations accompanying an event such as the one that emplaced the boulder on top of
- the landslide at South Massif.

The sawing of a slab from 72275, ¢ was done on July 26 and 27, 1973. The process
was made difficult by the {riability of the matrix, and dust and small fragments were
produced in abundance along the saw cut. Several times the saw blade bit into hard,
resistant clasts that stopped the motion altogether or twisted the specimen out of line.
To obtain a single, coherent slab proved impossible., When the sawing was complete,

the specimen consisted of the four main subdivisions shown in Figure II-8.

As sawing proceeded, each freshly exposed surface was examined and mapped by
Ursula Marvin and Stewart Agrell, who used transparent overlays on Polaroid photo-
graphs, The Polaroids were taken through the cabinet windows at different magnifica-
tions, so the maps are drafted to different scales, as is readily apparent in Figure
I1-9.

The materials mapped are of four main lithologic types:

A. Light gray matrix with minor darker gray zones.
B. Anorthositic clasts.

22



Figure -7,

b o Rl

Two views of the fine-grained layer on the east surface of 72275. Upper
photograph: A ripple-marked area, where a piece has broken away, and
exposed deeper layers, where ripples are oriented in a direction differ-
ent from that on the surface. Lower photograph: A site near the lower
edge of the layered material, where the surface is marked by zap pits
and splashes of black glass. The location of this area is indicated by the
symbol ¥4 on the E; map of Figure II-6. For additional views of the
rippled surface, see Appendix A, Figure A-2,
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72275,102
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lcm
BEFORE REMOVAL OF SLAB

T22575,42
SLAB

ST

72275,102 AFTER REMOVAL OF SLAB

Figure II-8A. Photographs of the main mass, 72275, 102, and the slab, 72275,42, after
sawing was completed. Maps of these surfaces are shown in Figure II-9A.

45

AT pas oy S SR

A e e A A T WIS O e




L
e Yoy

/A 72275,29
i o v:- |
CLAST #1 | b <8

\ “ 72275, 28

G

. k.
v
N
-

=

72275, 3l

g

}72275, 38

TRy

lcm 22T, 21

Figure II-8B. Photographs of clast #1, 72275, 28, and the east-end piece, 72275, 27,
after sawing was completed. Maps of these surfaces are shown in

Figure II1-9B.

A5




KEY TO SALPLE LOCATIONS
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T2275,27

FRAGMENTS
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Figure II-9A. Maps of the sawed surfaces of the main mass, 72275, 102, and the slab,
72275,42, BSee Figure II-8A for photographs of these surfaces.
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CLAST «51 AND ASSOCIATED FRAGMENTS

722T75,29

CLAST #1 — '
s 72275,28
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EAST END OF SPECIMEN
72275,27
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DARKER GRAY

 DARK GRAY MATRIX
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DARK GRAY BASALTIC @meE ANQRTHOSITIC CLASTS
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AREA OF MATRIX [_JLIGHT GRAY MATRIX

Figure II-9B, Surface maps of clast #1 and the east-end piece (see photographs in
Figure II-8B).
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C. Davk gray aphanilic clasts.

D. DBasaltic ¢lasis and zones.

The petrologic character of these materials, based on thin-section studies, will
be describad in Saction Il of this report. Their broad distribution through the
sp{\:éimcnB as observed with the unaided eye and through a binocular microscope, is
indicated in the maps of Tigure II-9. The follds};ing obgervations were made during

examination of the hand specimens.

A. Light gray matrix (areas unmarked bjf 'map symbol). The matrix appears fo

be a friable aggregate of mineral and lithic clasts ranging in size from a few microns
to about 0, 5 mm. The identifiable components are predominantly fragments of plagio-
clase admixed with a few percent of brown or yellow mafic silicates plus sparse grains

of pink or amber spinel and metallic iron.

Some darker gray areas with indistinet boundaries oceur within the matrix. These
areas are somewhat finer grained and more strongly annealed than is the typical light

gray matrix.

B. Anorthositic clasts, The most striking of these is clast #1, the conspicuous

white clast with a black rim. Smaller white clasts, with and without thin rims, occur
throughout the specimen. Those of mappable size are outlined and marked with an
"A" on the figures. Clast #1 is not pure white; it contains 10 to 20% of yellow mafic
silicates. Texturally, it appears to be a fluidized cataclastic breccia crudely inter-
layered with gray breccia and black rim material. The rim itself is a breccia of
black aphanific material containing distinct angular xenoliths of feldspar. The sub-

divisions of clast #1 are documented in Appendix A,

Some of the smaller white clasts appear to be sugary anorthosite with a granulitic
texture.

C. Dark gray aphanific clasts (obligue hatching on maps). Clasts #2 and #3 on

the east face of the slab are of hard, resistant dark gray material, which we have
described as aphanitic, The term simply means that the material is too structureless

for an observer to tell macroscopically whether it is crystalline, glassy, or hoth.
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However, clasts #2 and #3 do contain some small angular fragments and thin white
sfreaks, indicating that they are anncaled breccias. Smaller fragments of the same
material are common throughout the specimen, Clast #2 (sec Figures II-8 and 11-0)
has a swirled form and is emhedded in an area rich in small angular fragments that
appear to be broken from the main clast. This clast looks as though it has heen

crushed and rotated in situ.

D. Basaltic clasts and zones (cross hatching on maps). Numerous rounded

basaltic clasts oceur in this specimen. These clasts typically consist of white feldspar
laths and yellow pyroxene. Among the more conspicuous of these are clast #4 on the
west face and clast #5 on the east face of the slab. Clast #5 was removed in foto and
subdivided as shown in Appendix A, Figure A-9. On close examination under the
binocular microscope, the clasts appeared to be embedded within zones rich in fine-
grained basaltic detritus. Thin-section studies have since confirmed that the basaltic
clasts, which are rich in pigecnite, do indeed exist within a matrix of crushed basalt
having only minor amounts of admixed gray matrix or gray clast material. The
basaltic zones are difficult to delineate with any assurance on the hand specimens.
The most visible ones are sketched on the maps of Figure II-9, but the actual amount
of erushed basalt may be greater than is indicated. A

A unique clast of coarse, chalky-white plagioclase and brown pyroxene occurs in
fragment 72275, 31. On the maps of Figure II-9, it is labeled "cataclastic gabbro.”
That clast has not been distributed for study.

SPECIMEN 72255: SURFACE CHARACTERISTICS

This specimen was taken from a resistant bulge in the parent boulder at the site

indicated in Figure II-1. Three views of the specimen are shown in Figure II-3.

Specimen 72255 differs from 72275 in three important respects:
A. 72255 is markedly less porous and more coherent than 72275,

B. Neither the freshly fractured surfaces of 72255 nor its sawed surfaces reveal
any of the clasts or zones of crushed pipeonite basalt that were so conspicuous in
72275. However, two or three small brownish holocrystalline clasts, rich in mafic
silicates, were observed on the T

surface (see C. in Figure O-10).

1 1
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C. 72255 inciudes a unique, wedge-shaped ciast with while-tabulav-to-lenticular
inclusions in a very dark brownish-gray matrix. It was dubbed the Civet Cat clast by
Astronaut Schmitt. Delailed study has shown that ﬂ:e Civet Cat clast consists almost
exclusively of anorthite and orthopyroxene, and although it has been shocked, it pre-
serves the outlines of a coarse igneous texture. It is unlike any other lithic fragment
deseribed {o date in the lunar samples. The petrology and Rb/Sr age of the clast are

discussed in Sections HI and VII. J

Maps of the surface characteristics of 72255 are shown in Figure II-10. The
cutting plans called for a single slab that would include part of the Civet Cat clast.
The sawing, performed on July 26, 1973, was accomplished with comparative ease.
Unlike 72275, this specimen is coherent enough for a slab to be cut without significant
breakage or shedding of fines. The sawed surfaces of the boulder and the slab are

illustrated in Figure II-11 and mapped in Figure II-12.

The maps in Figures I1-10 and II-12 display four main lithologies:

A. The light gray matrix is similar in color to the matrix of 72275 but much

more strongly anncaled.

B. The anorthositic clasts are relatively small and rare. The largest, in
the E. face of the slab, is about 9 mm across. Most of the clasts are pure white,

1
sugary, granulitic anorthosite.

C. The dark gray aphanitic clasts are abundant, irregular in shape, and very
coherent and appear to be similar in all respects to the material of clasts #2 and #3
in 72275, In addition to the clearly defined clasts, some regions of the matrix are
intermediate in color and coherence compared to the dark aphanitic clast material and

the light gray matrix (see Figure H-12).

D, The Civet Cat clast consists of a unique variety of lunar norite.

The composition and textures of these materials, as well as of the less common

components of 72275 and 72255, are discussed in detail in Section III.
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Figure II-10, Surface maps of specimen 72255. Two views of this spccimen appear
in Figure 1I-3.

5% preceding page hiank



72255, 23

- - e

lem .

122556, 10

PN s L s e

.Piw""'

s F ey

lem

Figure II-11. Photographs of the sawed surfaces of specimen 72255, after removal
of the slab. Maps of these surfaces are given in Figure 1I-12.
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KEY TO SAMPLE LOCATIONS
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Figure Ii-12, Maps of the sawed surfaces of 72255, See Figure I1-11 for photographs
of these same surfaces.
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TI. PETROLOGY

D. B. Stoeser, R. W. Wolfe; J. A. Wood, and J. I'. Bower

Center {or Astrophysics
Harvard College Observatory and Smithsonian Astrophysical Observatory
Cambridge, Massachusetts 02138

.-’ .

- INTRODUCTION

Boulder 1, Station 2 as a whole can be considered a complex polymict breccia
consisting of lithic and breceia clasts seated in a matrix that ranges from friable and
poorly sintered to densely welded. Only two of the four samples collected from
Boulder 1, Station 2 have been examined in detail: 72255 and 72275, Of the remaining
two, only two undocumented thin sections from 72235 have been studied, while none
from 72215 has been examined., Sample 72275 was collected as representative of the

boulder matrix, whereas the other three samples were thought to be large clasts.
SAMPLE DESCRIPTIONS
A, 72275 «

Sample 72275 contains two major, distinct types of lithologic domains: gray
polymict breccia, and pigeonite basalt breccia (Figure II1-1). The former is composed
of a porous, poorly sintered light gray matrix, which contains lithic clasts of dark
matrix breceia, granulitic ANT (anorthosite-norite~troctolite), anorthosite, troctolite,
pigeonite basalt, and fine-grained granitic particles (in order of abundance). The
clasts of dark matrix breccia are themselves polymict, containing lithic clasts of the

granulitic ANT, anorthosite, and microgranite.

A point count of the 72275, 128 gray polymict breccia (Figure II-1B) produced the

following mode:
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72275, 12

72275, 128:

72275, 135:

72275, 122:

Figure III~1. 72275 thin-section photographs.

Typical gray polymict breccia. "The lithic clasts consist largely of
dark matrix breccias and ANT. Note the large anorthositic clast
with the dark envelope at the right. Clasts of rimmed anorthosite
are one of the distinctive features of Boulder 1.

The 72275 breccia here consists of two very contrasting domains,
a pigeonite basalt breccia above the arrows and a typical gray
polymict breccia below. The contact between the two domains is
relatively sharp, with a gradational transition zone a few milli-
meters wide, The white streak left of center in the gray polymict
breccia is a disaggregated gabbroic anorthosite.

Here, in contrast to 72275, 128, the relationship between the gray
polymict breccia and the pigeonite basalt breccia is not distinct;
rather, the two are intercalated in diffuse bands and stringers.
The areas of the gray polymict breccia are marked by the dark
matrix brececia and white ANT clasts. Note the large clast of
pigeonite basalt at the bottem, just above the scale,

Pigeonite basalt breccia. This rock, which is similar to the
pigeonite basalt breccia domain of 72275, 128, is essentially a
pure pigeonite basalt breccia, consisting of clasts of pigeonite
basalt in a matrix of crushed pigeonite basalt. Two foreign clasts

of granulitic ANT are present in the lower left corner.
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B.
C.

72255, 91:
72255, 93:
72255, 95:

72255, 97;
72255, 99:
72255, 107

Figure [I-2. 72255 thin-section photographs.

Orthogonal thin-section set of typical 72255 breccia. Note the con-
trast in clast sizes and the dark color of the matrix compared to
72275. Whereas the 72275 matrix is porous and friable, that of
72255 is very welded with low porosity. The bulk of the large clasts
visible are monomineralic plagioclase, mafic silicates, granulitic
ANT, and anorthosites.

It can be seen from these photographs that 72255 is quite uniform
throughout. One notable difference between 72255 and 72275 is the
apparent lack of dark matrix breccia clasts, but this may be largely
a function of contrast. 72255, 107 appears to have such clasts, The
large white clasts in 72255, 99 and 107 are granulitic ANT clasts.
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Miaterial %

Matrix . 65.0
Monomineralic clasts >100 p ? 2.2
Dark matrix breccia clasts 27.7
Granulitic ANT and anorthosite elasts 4.1
Troctolife clasts 0.6
Pigeonite basalt clasts : 0.4
Glass shards : trace
Granitic clasts : trace

|

The pigeonite basalt breccias consist of clasts of pigeonite basalts seated in a
matrix of finely granulated pigeonite basalt (Figure IM-~1B, C, and D). A small amount
of granulitic ANT, anorthosite, and dark matrix breccia clasts are generally present.
The pigeonite basalt breccias occur as clots and bands up to 2 cm thick within the
gray polymict breceia (Figure 1I-9). The contact between the two types of breccias
may be sharp (Figure HI-1B), or the two breccias may be intermixed as stringers,
one within the other (Figure III-1C).

B. 72255

Sample 72255 differs markedly from 72275 in having a dark dense matrix with.
little porosity and in lacking domains of pigeonite bagalt breccia (Figure OI-2). The
lithic clast population of 72255, however, is similar to that of 72275 except for the
absence of the pigeonite basalt. Dark matrix breccia clasts appear to be present,
but they have low contrast against the dense dark matrix of 72255 (Figure III-2). A
survey of lithic clasts greater than 200 pin diameter in thin section 72255, 95 (Figure
III-2A) produced the followings : ‘

Material %
Granulitic ANT 48.7
Anorthosite 19.2
Devitrified glass 20.0
Troctolite 4,3 °
" Bagalth ¢.8
Granitic clasts 4.3
" Ultramafic particles 1.7
Plutonic norite 0.9
100.0
Number of clasts surveyed 118
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C. 72235

Sample 72235 consists mainly of a single, large compicex clast with an aphanritic
rind; which appears at least superﬁciallﬁr to be similar to that of the gabbroic
_anorthosite clast #1, 72275 (Figures II-8 and II-9). At present, we have only two
'undocumented thin sections from 72235; these came not from the large clast, but
from the small amount of light gray brecéigz matrix material adhering to it. There
does not appear to be any significant difference hetween the 722385 breccia and the gray

polymict breccia domains of 72275, although no pigeonite basalt clasts were observed.
LITHIC CLASTS

The lithie clasts of the two samples 72275 and 72255 are essentially the same,
except for the pigeonite basalts (which occur oniy in 72275). In general, the lithic

clasts fit within the following classification scheme:

A. ANT.

B. Devitrified glasses.

C. Troctolites.

D. Pigeonite basalt clasts and breccias.
E. Granitic clasts. B
F. Ultramafic particles.

G. Plutonic norite (Civet Cat clast).

H. Dark matrix breccias.

Descriptions of each follow.
A, ANT

The acronym ANT is used here to describe generally plagioclase-rich, potash,
and phosphorus-poor rocks whose mineralogy varies over the range anorthosite-norite-
troctolite. These rocks have a variety of metamorphic textures, including recrystal-
lized (granulitic) breccias and cataclasites. Similar rocks have been found in soils
-and breccias from Apollo 11, 15, and 16, as well as from Luna 16 and 20 (Keil et al.,
1972; Delano et al., 1973; Prinz et al., 1973a; Taylor et al., 1973).
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The ANT suite of clasts forms the dominant crystaliine lithic clast group in the
boulder samples. In this section, the suite will be discussed under the following sub-
headings: granulitic ANT, poikiloblastic norites, other anorthosites, and a special
dark-rimmed gabbroic anorthosite (clast #1, 72275). In a study of the lithie clast
population of thin section 72265, 95, the relative proportions of the first three categories

were 68:4:28 (78 clasts counted, >200 y in diameter).
Granulitic ANT

This abundant group of clasts is composed primarily of monomict brececias with
recrystallization textures. They exhibit a range of textures, from obvious breccias
with finely recrystallized matrices (Figures II-3A and B) to rocks that are much
coarser and approach equigranular (Figure II1-3C). In these coarser varieties, the
olivines tend to occur as rounded, small inclusions in the plagioclase, whereas the
pyroxenes tend to be interstitial and some border on poikiloblastic. Spinel, ilmenite,

phosphates, and zircon cecur as minor phases.

Preliminary whole-rock analytical work indicates that more of the granulitic ANT
rocks are troctolitic than are noritic. This conclusion is also supported by microprobe
mafic-mineral surveys, which indicate a greater abundance of olivine than pyroxene.

The compositional range of olivine is Fo 5‘(Figure I11-4). The pyroxenes generally

fall in the compositional fields estab]ishtfé fcng ANT from other lunar samples

(Figure III-5A) (Taylor et al., 1973). Most of the ANT plagioclases have compositions
in the range Angz_ 98 (Figure III-6). Who_le—rock analyses of fypical granulitic ANT
clasts are presented in Table III-1, analyses 1 to 3, and granulitic ANT analytical data

are presented in Figures III-22 and III-23 {(pp. 96 and 97).

A distinetive type of granulitic ANT is a 'vesicular' mafie-rich granulitic
" troctolite (Figure II1-3D). These rocks, which are also recrystallized breccias, have
euhedral mafic silicates in a matrix of subpoikiloblastic plagioclase. An analysis of
one of these vesicular troctolites is presented in Table III-1, analysis 5.

Poikiloblastic norites

This relatively rare, but distinctive, lithology consists of small plagioclase
crystals enclosed by poikiloblastic orthopyroxene (Figure III-3E). The largest clast
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Tahie J1i--1. Yithic ANT cloasis.

1 2 3 4 5 6 7 8
763820 Y7007 770C12 770C24 TT0C27 770C26 770C37 V2275, 12

8i0g 44,2 43.9 46, 2 5L, 1 44,3 44,9 42.8 42,7
TiOs 0.1 0.1 0.1 0.3 0.2 0.1 0.1 tr.
Cr203 0.1 0.0 0.0 tr. | tr. 0,1 tr. tr.
AlsO3 29. 4 25.8 32.2 20.6 23.8 33.9 35.3 34.9
¥eO 3.7 4.1 2.4 6.3, 6.4 0.8 0.2 0.2
MnO tr. 0,1 tr. 0.1 0.1 tr. tr. -
MgO 7.8 5.7 1.0 7.9 11. 6 0.8 tr. 0.1
CaO 15.9 15.8 i7.5 12. 2. 13.6 19.3 19.4 19.1
Na,O 0.2 0.4 0.6 0.4 0.3 0.4 0.3 0.7
Ko 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1
Py0s5 tr. tr. tr. tr. tr. tr. tr. 0.2
BaO - tr. tr. 0.1 0.1 0.1 0.1 -
Total 101.5 96.0 100. 1 99. 2 100.5 100, 5 98.3 98. 0
To 11.2 4,0 0.0 0.0 15.1 0.0 0.0 0.2
Fa 4.3 2.3 0.0 0.0 6.7 0.0 0.1 0.2
En 3.1 9.1 2.5 19.8 Te2 2.0 0.0 0.0
Fs 1.1 4.8 4.4 11.3 2.9 1.3 0.0 0.0
Wo 0.0 4.3 0.9 2,7 1.6 2.0 1.4 4,4
Or - 0.6 0.7 0.3 0.9 0.6 0.8 0.4 0.7
Ab . L9 3.3 5.2 3.3 2.2 3.0 2.6 5.6
An 77.5 71.3 B4.6 54.5 63.3 90.3 94.3 85,2
Im 0.1 0.1 0.1 0.7 0.3 0.2 0.2 0.1
Chr 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0
Qtz 0.0 0.0 1.8 6.8 0.0 0.3 0.0 0.0
Cor 0.1 0.0 0.0 0.0 0.0 0.0 0.8 3.2
Ap 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.4
Key:

1. 72275,128: clast #763C20, granulitic ANT (average of 2 600 pX 100 u DBA traverses;
Flg’ure II1-3A).

2. 72255,95: clast #770C7, granulitic ANT (average of 6 100 p diam. DBAs),

3. 72255, 95: clast #770C12, granulitic ANT (average of 13 100 p diam. DBAs).

4. 72255, 95: clast #770C24 poﬂ«:lhtm norite (average of 7 100 p diam. DBAs; Figure II-3E).

5. 72255,95; clast #770C27, "vesiculax'" mafic-rich ANT troctolite (average of 27
100 p dlam. DBAs; Flg‘ure i-3p).

6. 72255,95: clast #770C26, anorthosite breccia (average of 16 100 p diam, DBAs; Figure
I~ TA)

7. 72255,95: clast #770C37, fine-grained polygonal anorthosite (average of 16 100 p diam.
DBAs; Figure III-7B).

8. 72275,12: shocked anorthosite (average of 23 100 p diam. DBAs; Figure III-16A, B).
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72255, 95:
72255, 95:
72275, 12:

72255, 95;

79255, 95:

Figure iII-3. Grauilitic ANT.

Granulitic ANT clasts. The granulitic ANT suite appears to show
a complete transition from fine breccias, which have only a2 minor
amount of recrystallization (Figure A), to relatively coarse, com-
pletely recrystallized varieties with large equigranular plagioclase,
which include small olivines and pyroxenes (Figure C). {(Figure C
is with crossed nicols.)

"Vesieular' mafic-rich ANT (troctolite). This rock type is clearly
part of the granulitic ANT suite, being a recrystallized breccia of
troctolitic composition. It is distinet in having moderately abundant
pores, or ''vesicles, ' and 2 matrix that consists of small euhedral
olivines in a groundmass of plagioclase. An analysis of this par-
ticular sample is presented in Table III-1, analysis 4.

Poikiloblastic ANT. Clasts of granulitic ANT, which consist of
individual plagioclase crystals set in poikiloblastic orthopyroxene,
are rare. The bulk of the mafic mineral present in this clast (the
largest observed) is a single pyroxene. An analysis of this partic-
ular sample is presented in,Table III-1, analysis 5.
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Figure III-4.

Olivine histograms.

A: Monomineralic olivine clasts in the polymict

gray breccia matrix of 72275, 12. B: Monomineralic olivine clasts in
dark matrix brececia clasts of 72275, 128, 134, and 135. C; Olivines

from granulitic ANT clasts from 72275, 122 and 128 and 72235, 7 and 9,
D: Monomineralic olivines from the anorthositic portions of clast #1,
72275, 140 and a similar white anorthositic streak in the gray polymict

breccia matrix of 72275, 128, E: Olivines from clasts of troctolite and
a pigeonite basalt from 72275, 128. Only one olivine grain has been
observed in the pigeonite basalts.
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Figure ITI-HA.

Three-element (Mg/Fe/Ca) electron-microprobe survey of pyroxenes
in 10 granulitic ANT clasts (recrystallized ANT breccias) in thin section
72275, 128. Note the strony convergence of orthopyroxene at approxi-
mately Envg.g1. Fourteen more analytical points fall in that cluster but
were not plotted, because of the density of points already on the diagram.,
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Figure LII-5B.

TeO versus MgO diagram for the Boulder 1 troctolites (open squares).
Sources for other data (solid circles with sample numbers): 451-7, 514-6,
and 514-21: Apollo 15 spinel troctolites (Reid, 1972); A15 FIIR: average
Apollo 15 feldspathic intersertal ignecus rocks (Delano et al., 1973);

Ave. 120 sp-troct.: average Luna 20 spinel troctolite (Prinz et al.,
1973a); and 67435, 14: Apollo 16 spinel troctolite (spinel-olivine cumulate)
(Prinz et al,, 1973b); 62295: spinel troctolite (Hodges and Kushiro, 1973).
The bars on the Luna 20 plot give the range for individual samples.
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Figure III-6. Plagioclase histograms. A: Plagioclases from monomineralic and .
lithic clasts in the dark matrix breccia clasts of 72275, 134 and 135,
B: Plagioclases from pigeonite basalt clasts and monomineralic clasts
of the pigeonite basalt breccia matrix of 72275, 122 and 147. C; Plagio-
clase monomineralic clasts in the gray polymict breccia matrix of
72275, 12,
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of this rock {ype is only ahout 200 p in diamcier, and its analysis is not felt to be
nccessarily representative (Table 711-1, analysis 4). Minzialogic siudies of these

clasts remain to be done.,
Other anorthosites

Besides plagioclase-rich members of the granulitic ANT group, three other fypes
of lithic clasts have anorthosite compositions: |, 1) anorthosite breceias (Figure I-7A),
2) fine-grained polygonal anorthosite (Figure II-7B), and 3) devitrified maskylenite
and anorthositic glasses (Figure HI-7C and D). The third group will be discussed in

Section B.

The first type forms a distinet group of clasts in both 72275 and 72255, They con-
sist of abundant angular plagioclase set in an annealed matrix and appear fo be a
coarse-grained anorthosite that has been crushed, but with little or no reérystallization.
Mafic minerals are rare and are confined to the matrix, This group comprises 7% of
the total lithic clast population (>200 ) of thin section 72255, 95. An analysis of a
typical anorthosite breccia of this type is presented in Table II-1 (analysis 6).

The fine-grained polygonal anorthosite particles appear to be recrystallization
products of larger plagioclases. They constitute 12% of the lithic clast suite of thin
section 72255, 95. They are essentially pure feldspar and have an average composi-

tion of An Or 6Ab and an unusual MgO/(MgO + FeO) ratio of about 0. 1.

896.27 0. 3.2

Clast #1, 72275; gabbroic anorthosite

This clast is set apart both because of its wide distribution among the consortium
and because of its distinctive structures and composition. The designation, clast #1,

is derived from the sawed slab mapping of Marvin (Section II}.

This large clast, with a diameter of 3 cm, consists of a light-colored core with
a dense cnvelope of dark matrix breccia material (Figures I1-8, II-9, and III-8A, B).
A similar (?) clast also appears to constitute the bulk of the 72235 sample (Figure II-5).
Currently, we have only two serial sections, taken from the margin of the clast, and

have nothing from either the core or the pure rind. The two sections are essentially
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Figure UI-7. Anorthosites and Elevitrified maskylenites.

72255, 95:

72255, 95:

72275, 146:
72255, 95:

Anorthosite breccia. This distinct type of clast, though sparse,

is widely distributed throughout the 72275 and 72255 samples. The
texture is that of a coarse-grained anorthosite that has been crushed
and annealed without significant recrystallization. (Plain light.)

Polygonal fine-grained anorthosite, These clasts apparently are the
result of recrystallization of large plagioclases; usually no mafic
phase is present. (Slightly crossed nicols.)

Devitrified maskylenite glass. {(Both crossed nicols.)
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Figure III-8. 72275, clasts #1 and #21, ultramafic particle.

72275, 140;

72275, 140

72275, 146:

72255, 95:

Clast #1, 72275 (Figures I-8 and II-9). Thin section of a marginal
portion of clast #1, a large dark-rimmed gabbroic anorthosite. The
material seen here consists of intercalated crushed gabbroic
anorthosite and a dark matrix breccia. It seems probable that the
two must have been mixed before ejection at the impact site.
Analyses of both types of rock are given in Tables II-2 (analysis 4)
and II-6 (analysis 9).

Enlargement of center region of A,
Clast #2 (Figures II-8 and II-9), dark matrix breccia. The large
white clast is devitrified maskylenite (Figure III-7C). An analysis

of this clast is given in Table IO-6, analysis 8.

Ultramafic particle (microdunite}. The source rock of these
granular olivine particles is not known.
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identical, consisting of inlimately intercalated bands and lenses of a porous, crushed
gabbroic anorthosiie breceia and a dense dark matrix breccia; ihe latier breccia will

be deseribed in Section 1. It is clear that the anorthosite constitutes the core material
of the clast, and the dark matrix brececia, the rind. The intexmixing of these two
materials is essentially like the one that would be produced if two essentially immiscible

fluids were mixed together by a moderale amount of stirring.

The anorthositic hands have the appearance of a single rock type that has been
crushed to a relatively fine breccia. This rock appears to have been a gabbroic
olivine-pyroxene anorthosite composed of 85% moderately shocked plagioclase and
15% mafic silicates (olivine, F060—64; orthopyroxene, EnGO. BWOSFSS& 55 and augite,
En, Wo

40" 0457 5150
olivine appears to be the most abundant. The minimum measured diameters for each

The relative proportions of the mafic silicates are not known, but

silicate mineral are plagioclase 1 mm, olivine 150 p, orthopyroxene 250 p, and augite
not known. Deep red-brown spinels up to 80 p in diameter are also present, but they
constitute less than 1% of the anorthositic gabbro. Traces of fine ilmenite and sulfide

have also been observed.

Residual lithie fragments in the anorthositic bands suggest that the parent rock
had a texture consisting of polygonal interlocking plagioclase in which many of the
mafic silicates occur as smaller inclusions. This texture, as well as the composition
of the orthopyroxene, suggests a metamorphic rock, since pigeonite would be expected
if it were an igneous rock. The composition of the whole rock (Table III-2, analysis 4),
‘as well as of the mafic silicate minerals, indicates a distinetly higher Fe/Mg ratio than
those of the granulitic ANT rocks (Figure III-22).

B. Devitrified Glasses

All the glasses in the boulder samples are devitrified, with the possible exception
of a few small brown glass shards in the 72275 gray polymict breccia. The glasses
are of two types, maskylenite and thermal melts. The survey of thin section 72255, 95
showed that 20% of the lithic clasts (>200 p) were devitrified glasses, of which three-
quarters were maskylenite (Figure III-7C and D). At least some of the maskylenites
were fluid at the time of deposition because a few are tear-drop or dumbbell shaped.
The glasses that appear to be thermal melts are distinguishable from the colorless-to-
pale-brown maskylenites in having a distinct, often deep, red-brown color (Figure II-9B
and C).
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Table ITi-2. Devitrificd glasses and clast #1, gabbroic anorthosite.

i 2 3 4 5
770C1I0 770C39 770C83 72275, 140 72275, 140
devitrified devitrified devitirified anorthosite KEREEP-~vich

glass glass maskylenite domains area
8i0y 44.0 42.4 44,8 43.5 46.4
TiOg 0.2 0.3 0.1 0.1 1.3
Cry0g 0.1 tr. tr. tr, 0.2
AlyOg 25.3 31.6 32.8 34.6 20.8
FeO 5.0 3.7 .7 1.8 8.0
MnO 0.1 0.1 0.1 tr., 0.1
MgO 12,0 0.7 0.4 1.0 4,3
Ca0 13.9 17.1 18.4 18.4 14.9
Na,0 0.4 0.3 0.5 0.3 0.4
K50 0.1 tr. 0.1 0.1 1.0
P,0g 0.1 tr. 0.2 0.1 3.1
BaQ 0.1 0.1 - tr. 0.1
Total 101.3 96.3 98.1 99.9 _ 100.1
Fo 18. 2 0.1 0.0 0.9 0.0
Fa 6.3 0.5 0.0 1.3 0.0
En 2.1 1.6 1.0 1.2 - 10,7
Fs 0.6 1.1 1.2 1.5 12,6
WwWo 0.7 0.0 « 1.7 0.0 0.0
Or 0.8 0.2 0.5 0.6 5.9
Ab 3.5 2.8 4.0 2.0 3.4
An 66.0 88.0 89.2 90.8 51.3
Im 0.6 0.2 0.2 0.2 2.5
Chr 0.2 0.1 0.0 0.0 0.3
Qtz 0.0 0.0 2.1 0.0 6.0
Cor 0.0 0.0 0.0 0.8 0.3
Ap 0.2 0.1 0.0 0.2 7.1
Key:

1. 72255, 95: clast #770C10, devitrified brown glass (Figure III-9B) (average of 11

100 p diam. DBAs).
2. 72255, 95: clast #770C389, devitrified brown glass (Figure JII-9C) (average of 3

100 p diam. DBAs). .
3. 72255,95: clast #770C83, devitrified maskylenite (average of 4 100 p diam. DBAs).
4. 72275, 140: clast #1, gabbroic anorthosite domains (Figure II-84, B) (average of

18 100 p diam. DBAs).
5. 72275, 140: clast #1, KREEP-rich domain (see text, Section H) (average of 3

100 p diam. DBAs).
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A

72255, 95:

72255, 95;

72255, 95:

72255, 95

72275, 128:
72275, 95:

Figure 1I-9. Troctolites zir}ddevitriﬁ.ec_l glasses.

Civet Cat-type plagioclase. “Monomineralic clasts of plagioclase
that have been heavily shocked and closely resemble those found in
the Civet Cat clast (Figure III-15) are common throughout the 72275
and 72255 samples. They typically have distinct re-equilibration
rims, even though nearby unshocked plagioclase clasts have none.
{Crossed nicols.)

Devitrified glass (DG). Both clasts are deep red-brown in color.
In C, the white clasts are maskylenites (M). Analyses of the two
devitrified glasses of B and C are given in Table III-2 (analyses 1
and 2). (Both plain light,)

Troctolite. This clast is essentially bimineralic with euhedral to
anhedral olivines (OL) set in a groundmass of subpoikilitic plagio-
clase (PL) (Table II-3, analysis 2). (Plain light.)

Cataclastic troctolite. E is very similar to the troctolite shown in
D except that it has been cataclasized. The olivine grain marked
OL in E can be seen to be euhedral in crossed nicols (Table I1i-3,
analyses 1 and 3). (Both plain light.)

56



T T enTey AN

-3

W e

- TR

.1\.
oyl
S




Table II-3. 'Troctoliie group.

1 2 3 4 5 6 7 8

Average
Al5 Luna 20

763C10 770C2 T70C30 770C7T FIIR 62295, 48 67435, 14  sp-troct.

43,7

8102 42,2 42,38 42,5 41.2 45,2 45,3 37.5

TiOz 0.2 0.3 0.2 0.4 0.8 0.8 0.05 0,17
Cr203 0.1 0.3 0.1 0.0 0.2 0.2 0.49 0.11
Al 03 14,6 16.3 9.8 12.5 24,4 20.8 15.9 22.7

Fe 7.0 6.5 9.7 13.3 G.1 5. 99 5.8 4.9

MnO 0.1 0.1 0.1 0.2 0.1 - 0.16 6. 07
MgO 27.6 25.6 30.5 24,4 10.8 14. 4 33.7 14.7

CaQ 7.4 8.7 6.3 7.1 12.7 11.5 G.2 13.1

Nazo 0.2 0.3 0.3 0.2 0.5 0.4 0.14 0.39
K50 0.1 0.1 0.1 0.1 0.2 0.14 0.04 0.05
P2O5 0.01 0.2 0.1 0.1 - - 0.02 0.04
BaO - 0.1 0.1 0.0 - - -

Total 99.5 100.8 99.8 99.5 101.0 99,5 100.0 948, 93
Fo 44.7 44,1 50.0 40.5 11.b 14. 8 58. 98 23.2

Fa 9.1 8.8 12.8 17.7 4.7 4.3 8.1 6.1

En 5.4 0.5 4.9 3.5 10.2 15.0 0.0 3.6

Fsg 1.0 0.1 1.2 1.4 3.7 4.0 0.0 0.9

Wo 0.0 0.0 2.2 0.6 “ 0.0 1.0 8.2 2.0

Or 0.3 0.5 0.4 0.3 1.2 0.8 0.2 0.3

Ab 1.4 2,7 2.4 1.8 4,2 3.4 1.2 3.3

An 36.8 41.9 25.4 33.3 62.4 54.9 10.9 60.2

ilm 0.3 0.5 0.4 0.7 1.5 1.5 0.1 0.3

Chr 0.1 0.4 0.1 0.0 0.3 0.0 0.7 0.2

Qtz 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ¢.0

Cor 0.9 0.3 0.0 0.0 0.3 0.0 11.7 0.0

Ap 0.0 6.3 0.2 0.2 0.0 0.0 0.0 0.1

1. 72275,128: clast #763C10, troctolite (average of 4 600 X 100 yp DBA traverses, Figure

i~ 9E).

2. 72255,95; clast #770C2, troctolite (average of 16 100 p diam. DBAs, Figure III-9D).

3. 72255, 95: clast #770C30, cataclastic troctolite (average of 10 100 p diam. DBAs, Figure
OI-9F.

4. 72255,95: clast #770C77, cataclastic troctolite (average of 7 100 p diam. DBAs).

5. Apollo 15: feldspathic intersertal igneous rocks (FIIR) (average of 18 samples, Delano
et al,, 1973).

6. 62295,48; spinel micro-troctolite (Walker et al., 1973).

7. 67435, 14: spinel troctolite (spinel-olivine cumulate; Prinz et al., 1973b).

8. Average Luna 20 spinel troctolite (Prinz et al., 1973a).
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Analyses of both {ypes arve presented in Table I1-2 (nnalyses 1to 3)e From the
analyscs available, it appears that the glasses as a whole span the entirve composition
range {rom granulitic ANT to anorthosite, although very anorthositic compositions

dominate.

C.. Troctoliles

Though not common, iroctolites apt&ea'rito be widelyl disseminated throughout the
boulder. They superficially resemble troctblitic. ANT rocks but can often be distin-
guished by their euhedral olivine and distiﬁcti\’e textures. Unaltered examnples have a
basaltic texture with olivine crystals (Fogq - o) about 200 p in diameter, setina
groundmass of plagioclase and Ca-~poor pyroxene(?) {(Figures III-4 and HI-9). Most of
them have the appearance of annealed cataclasites, in which fractured olivines sit in
a granulated groundmass (Figures HI-9E and F). A few, however, have escaped this
process and show no signs of cataclasis (Figure II-9D). Most are very poor in opaque

minerals, with rare spinel and ilmenite.

The troctolites chemically resemble the Apolio 15 and 16 and Luna 20 troctolites
and spinel troctolites, except that those of the boulder are much more mafic and less
feldspathic than most (Table III-3, Figure UI-22). Several of them approach the com-
position of the Apollo 16 olivine-spinel cumulate (spinel troctolite) sample 67435, 14
(Prinz et al., 1973b) (Figure ILI-5B).

D. Pigeonite Basalt Clasts and Brecclas

The bulk of the pigeonite basalt is restricted to the basalt breccia domains of
72275, but disseminated clasts of pigeonite basalt are also found in some portions of
the gray polymict breccia. No pigeonite basalt has been observed in 72255, with the
possible exception of one very small subophitic basalt clast 200 1 in diameter (in
72255, 95). The pigeonite basalt breccias are primarily composed of pigeonite basalt .
clasts seated in a matrix that appears to consist almost entirely of crushed pigeonite
basalt (Figure III-1). A small amount of ANT and dark matrix breccia clasts, how-

ever, are usually also present,



Most of the pigeoniie hasalt clasts have a mesostasis-rich subophitic texture, in
which the majority of the pyroxene is pigeonite (Figure 111-10). The grain size of the
subophitic varieties tends to be uniform within any particular clast. A few clasts,
however, are much {iner grained; and some exhihit a variolitie texture. This rangc
of textures, and the relative proportions of fine-grained basalts, suggest that the
fine-grained varieties are derived from the chilled margins of flows, and the subophific

varieties, from the flow interiors.

One unusual hasaltic clast is included here (72255, 95; #770C29), although it does
not properly belong to the pigeonite basalts, Its texture is essentially intersertal,
but the groundmass appears granulated and may be recrystallized (see Tigure I1-14A,
Section E). The composition is similar to the pigeonite basalts, hut it is more mafic
and has a distinctly higher FeO/MgO ratio (Table III-3, Figures III-11 and 22).

The carliest pyroxene to crystallize has a composition of En75W65Fs 90° The
bulk of the early pyroxenc is pigeonite, but a few grains may have orthopyroxene cores
(Table TII-4, analyses 1 to 6). Calcium-poor augite and ferroaugite appear late as rims
on the pigeonite or as small interstitial grains. The major-element compositions of the
pigeonite basalt pyroxenes are shown in Figures ITI-12A and B, Figure III-12Bis a
plot of pyroxene compositions for mineral clasfs in the pigeonite basalt breccia matrix
of 72275, 128. This plot is interesting because it probably indicates the full composi-
tional range of pigeonite basalt pyroxenes and because it demonstrates that there is
very littie contamination of the breceia by foreign material. The general paragenetic
sequence of the pigeonite basalts is plagioclase-pigeonité—subcalcic augite-ferroaugite.
Olivine (FoT 0) has been observed in only one clast of pigeonite basalt (Figure II-104).

The overall compositional range of the plagioclase is An9 4-867 with most analyses
falling in the range Angg__g0 (Figure III-6 and 13). Large opaque mineral grains are
rare; those present appear to be chrome- spinel and ilmenite. The mesostasis is com-
plex, and the detailed mineralogy remains to be worked out. Minerals known to be
present are iron-metal, troilite, ilmenite, rare spinel, a phosphate mineral, and at

least one zirconium mineral.

The mineralogy and whole-rock major-element chemistry of the pigeonite basalts
are similar to those of the Apollo 14 Fra Mauro basalts (such as 14310) and the Apollo 15
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Table [I1-4. Pyroxene analyses.

1 2 3 4 5 8 7

o]

763C18 763C18 763C18 763C18 761C1 761C1 Civet Cat
ortho- Mg- intersertal subcalcic ferro- ortho-

pyroxene pigeonite pigeonite augite augite augite pyroxensg

510, 54,06 53.58 52.06 50,46 48, 15 46. 85 54,11
Ti0g 0.17 0.37 0.33 0.85 0.83 1.02 0.52
Cry0q 0.60 0.99 0.39 0.75 0.74 (.56 0.70
AlgOgq 0.88 2.25 2.34 2.05 2.37 2.10 0.80
FeO 15,47 17.01 20. 87 22.02 17,90 20.49 16. 67
MgO 26,82 23,48 20.34 14.60 13.99 10.65 27.33
Ca0 2.31 3.25 3.28 9.562 14.92 15.78 1.82
Total 100,31 100.93 100, 11 100.25 98. 90 97.45 101.65
Fe 23.36 26.99 34,05 36,56 28,90 34. 32 23.76
Ca 4.46 6.62 6.85 20.26 30.87 ~ 83.88 3.45
Mg 72.18 66,29 59,11 43.18 40. 23 31.78 72.7%

1to 4. 72275, 128: typical pyroxenes from a subophitic pigeonite basalt clast (single focused-bzam electron-
microprobe analyses).

5 and 6. 72275, 136: typical iron-rich pyroxenes from a subophitic pigeonite basalt clast (Table HI-5,
analysis 1) (single 100 py diam. DBAs).

7. 72255, 105: orthopyroxene from the Civet Cat norite (1 100 p diam. DBA).



72275, 128:

72275, 136:

72275, 128:

72275, 122:

Figure II-10. Pigeonife basalts.

Subophitic pigeonite basalt. The subophitic texture of this clast is
typical of most of these basalts (P — pigeonite, PL — plagioclase,
OL — olivine, and M — mesostasis). This clast is unusual in that it
contains the only grain of olivine (Fong) observed in any of the
pigeonite basalts.

Subophitic pigeonite basalt. This is a relatively fine-grained clast
that borders on intersertal.

Variolitic pigeonite basalt. The variolitic bundles are a mixture of
plagioclase and pigeonite (M — mesostasis). (Plain light.)

Typical pigeonite basalt mesostasis. The bright grains are sulfide
and iron metal; the darker areas consist of ilmenite, a mafic silicate,
phosphate and zirconium minerals, and glass (7). The surrounding
mineral is plagioclase. (Reflected light.) :
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Figure II-11. MgO and FeO contents of Boulder 1 pigeonite basalts compared to com-

positionally similar rocks from Apollo 12, 14, and 15, The Boulder 1
pigeonites are enclosed by the dashed line. The lone Boulder 1 plot at
the top of the figure is 72255, 95, clast #770C29, which is not included
with the pigeonite hasalts, Sources of other data are as follows: aver-
age Apollo 12 KREEP glass, Meyer et al. (1971); average Apollo 14 Fra
Mauro glasses, Reid et al. (1972); 14310, 30, Longhi et al. (1972);
Apollo 15 KREEP basalts, Phinney et al, (1972), Drake and Klein (1973),
and Cameron et al. (1973), and average Luna 20 alkali-rich (KREEP)
basalt, Prinz et et al. (1973a). The bars on the Luna 20 plots give the
range for each oxide of individual samples.
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Figure JI-12. Pyroxene quadrilaterals. A: For pyroxenes from pigeonite basalt
clasts from 72275, 122, 128, and 136 (from complete major- and minor-
element mmroprobe 'malybes) B: For a three-element (Mg/Fe/Ca)

electron-microprobe survey of monomineralic pyroxene clasts in the
pigeonite basalt breccia matrix of 72275, 128 (see I'igure II-1B).

65



1 T 1 1 1 I 1 | T 1 | 1 J | I ] 1 ] ) I |
50  PIGEONITE BASALT y B
40 |- -
3.0 _

Or _ .
20 : -
IO 2 - * ° .o.. 3"‘ ... —
. .'s % .
[ N DU I B '1 IS U DR TR (VN JUNEN NN SN MR N AN N R

Figure I1I-13. Anorthite (An) versus orthoclase (Or) contents of plagioclases from
pigeonite basalt clasts and monomineralic clasts in the pigeonite basalt
breccia matrix of 72275, 147,
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Table 1I-5, Pigeonite basalis, granitic clusts, and the Civet Cat novite.

1 i 3 4 5 G Lo 8 o 1o 1
Avels ALD TEIC 770C3 72376,140 72275, 108
KREEY meson- granitic averige Civet
THUC 1Y TG1C) TRICE  T61C3 YLeC?D t§:110 hasalt slasis cinst rraniie Cat
5i0s d8. 8 48,0 44, 2 47,0 17,0 £8.27 503 48,0 7l.2 65,6 50.3
Tidl; 0.6 0.6 0.8 1.0 (] ey ot 17 L] 0.1 0.1 1.8
C1‘BE)3 0.3 0.2 0.2 0.2 0.2 0. 20 - - te tr. 0,3
:\1203 16,2 15.0 4.0 14.2 4.7 20. 26 17.8 3.8 12.7 17.6 14.4
FeO 11,6 10. 6 10.7 1.3 15,1 5.11 ' 8B 1E6.7 0.6 0.7 9.6
AMnO 0.2 0.t 0.2 0.2 0.3 - - 0.} tr. tr, 0.3
MgO 6.0 6.4 6.6 7.8 7.2 .70 6.9 0.9 0.1 0.2 15.7
ca0 15,4 12,1 11,4 10.1 14.9 12,25 10,0 13.86 1.1 3.5 7.9
Nz,O 0.4 0.2 0.4 3.3 0.2 0, 81 0.9 0.} 0,2 0.4 0.3
K0 0.4 0.3 0.4 0.3 0.1 6. 35 0.8 0.8 8.5 8.2 0.1
PyO5 0.3 0.5 0.2 0.5 0.0 - - 5.7 tr. 0.2 0.0
BaO - g.1 0.1 0.1 0.1 - - 0.1 0.6 0.7 -
5 0.3 n7 0.1 0.7 - - - 4.5 - - -~
Total 85.0 95.4 93. 8 94,6 99.2 99.48 97.7 99,4 95.1 97,2 100.7
Fo - - - - 1.2 - - - 0.0 0.0 0.0
Fa - - - - 2.1 - - - 0.0 0.0 0.0
En 20.5 16.7 17.7 20.7 16.5 19.5 1.6 2.4 0.2 0.3 . 38,0
Fs 19.4 16.6 19.8 17.5 25.0 12.7 12.7 14.9 I.0 1,2 i5.1
Wo 59 7.6 B.8B 4.8 12.7 4.5 3.2 0.8 0.0 0.0 0.6
Or 2.3 2.0 2.5 1.6 0.6 3.3 4.8 4.7 53.3 50.2 0.6
Ab 3.9 3.0 3.6 3.0 1.6 6.9 7.8 0.9 1.4 3. 5 2.5
An 41.8 41.8 37.8 38.8 39.3 50.3 43.2 7.8 5.8 16,7 3.5
1Im 1.3 1.2 k.5 2.0 0.7 2.4 3.3 2.3 0.2 0.2 3.4
Chr 0.5 0.3 0.4 0.4 0.3 0.3 0.0 0.1 0.0 0.0 0.0
Qtz 3.0 7.6 7.2 8.3 - 0.1 T3 30.86 36.8 250 1.2
Cor - - - - - - - - £.3 2.3 0.0
Ap 0.6 1.1 0.6 1.2 - - - 13.8 0.0 0.5 0.0
Troi 4.9 2.0 0.3 2.0 - - - 12.8 - - -
Fey: M
1. 72275,126; clast #763C10, intersertal pigeonite basalt {average of 4 600 ;1< 100 p DBA traverses).
2. 72275, 135: clast #76)1Ck, subophitic pigeonite basalt (uverage of 28 100 p diam., DBAs).
3. 72275, 135: clast ¥761C2, fire-grained feathery (quench textured ?) pigeonite basalt (average of 6 100 p diam. DBAs).
4, 72275, 1351 clast 761C3, subophitic pigeonite basalt (average of 18 100 p diam. DBAs).
5. T2255,95: clast £770C29, “intersertal basalt' {Figure III-14A; average of 13 100 p diam. DBAs).
6. 14310, 138 (Longhi et al., 1972).
i.  Average of 6 Apollo 15 KREEP hasalts {Phinney ct al., 1972; Drake and Kiein, 1973; Cameron et al., 1973).
B. Mesostasis of the pigeonite basalt (clast £761C1) given in column 2 (average of 32 25 p diam. DBAs).
9. 72253, 95; clast #770C3, glassy granitic clast (average of 9 100 p diam. DBAs). (Very similar to clast shown in

Figure {1i-14D.)
10. 72275, 140: clast 1, average of two glassy granitic clasts in the dark matrix breceia domains (average of
5 100 y diom. DBAS).
11. Estimated bulk composition of the Civet Cut norite, from an estimated mode of 60% £ 10% orthopyroxene and
405, + 107% plagioclnse. Estimate made from two defocused-benm traverses 2 mm long and 100 p wide in ortho-
pyroxene-rich and plagioclase-rich areas whose modes were deteymined (thin section 72255, 105, Figure III-15A).
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and Luna 20 KREEP basalts (Table III-5, analyses 1 to 7). The outsianding differences
between the Boulder 1 pipgeonitc basalts and thesc others are lower KZO’ PZO.‘B’ A1203,
TiOz, and SiO:2 abundances and lower MgO/(MgO + FeO) ratios (Figures IH-11 and
IH—?Z), Although they are similar to KREEP basalts and glasses, their content of Kzo
(<0.4 wt. %) and phosphorus disqualifies them from being labeled as KREEP basalts
(Cameron et al., 1973). Some of the pigeonité brasalt clasts appear tfo be more meso-
stasis-rich than any analyzed so far, and later.:{".vo'rk may detect some clasts that fall

into the compositional range of KREEP basalt.

E. Granitic Clasts

Lithic clasts of granitic composition are sparse in the 72275 gray polymict breccia,
where they apparently arve confined largely to the dark matrix breccia clasts, but
relatively common in 72255, They are also present in both our thin sections from
sample 72235. In thin section 72255, 95 (our one large thin section of typical 72255},
we have observed 30 granitic clasts in the size range 25 to 250 . Although they are
usually small (<300 ), one granitic clast in thin section 72255, 103 has a length of
2 mm (Figure I1I-2A). Overall, however, the granitic clasts constitute less than 1%
of the boulder. .

The main phase assemblage of the granitic clasts is silica (cristobalite?) % barian
K-feldspar + plagioclase (rare) + glass. Rare, very small opagues and mafic silicates
may also be present. Texturally, the granitic clasts fali into two groups of about equal
abundance — holocrystalline and glassy. The holocrystalline variety consists primarily
of silica pius barian K-feldspar (usually with K-feldspar > silica) (Figures 11I-14B and
C). The glassy variety tends to consist of parallel or subparallel sets of crystalline
silica grains in a groundmass of clear brown glass (Figure III-14D), which often contains
fine, feathery, quench crystallites. The glasses analyzed are similar to whole-rock
compositions. Table III-5 presents whole-rock analyses of two typical granitic

clasts.

The potash feldspar of the granitic elasts is rich in barium and very poor in soda,
An average of 13 feldspar analyses from 3 clasts gave the following:
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Range

si0,, 62. 10 58, G4~ 63,73
AL,0, 20, 06 19, 32—21, 06
ca0 0, 44 0.04— 1.18
Na,O 0. 03 0.00- 0.16
K,O 15.25 14,01~ 16. 00
BaO 2,01 1.12- 3.11
Sum 99. 89

A few potash feldspars are perthitic (Figure III-14E), but considering the very low ‘
soda content, it seems unlikely that the lamellae are an alkali feldspar. Those K-
feldspars with greater than 0.3 wt, % CaO are generally perthitic, and therefore

these lamellae may be anorthitic.

The granitic clasts have reacted with the 72255 matrix and have dark reaction rims
approximately 10 p thick. The composition of these rims has not yet been determined.
The 72255 matrix was also hot enough to partially melt the holocrystalline granitic
clasts such that a film of glass surrounds every grain within a clast. In some
clasts, the degree of melting is the greatest around the margins, indicating that the
heating was probably related to the matrix (Figure II1-14F). The degree of partial
melting is slight, and therefore it seems unlikely that the initial temperature of the
matrix was much above the orthoclase plus silica eutectic temperature of 990 + 20°C
(Levin et al., 1964).

There appears to be a complete textural fransition from the holocrystalline to the
glassy varieties., Three possibilities arise to explain the observed textures: 1) They
are primary igneous textures; 2) they are the result of varing degrees of thermal
partial melting of originally holoerystalline granitic rock; or 3) they have resulted
from varing degrees of shock melting of the parent rocks and are diaplectic, The
similarity in the glass composition compared to the bulk chemistry of the granitic
clast makes the third possibility the least likely, since the diaplectic glass should

have the composition of a K-feldspar.

69



72255, 95;

72255, 95:

72255, 95:

72275, 146;

72235, 9:

72255, 95:

Figure III-14. Granitic clasts,

Unusual basalt clast. This clast has an intersertal {fexture, but the
groundmass appears granulated and the rock may have undergone
some recrysiallization. The groundmass is largely pyroxene, but
mineral analyses have not yet been performed (whole-rock analysis,
Table IIl-5, analysis 5). (Plain light.)

Holocrystalline granitic clast. The texture consists of crystalline
silica grains (8) in poikilitic barian potash-feldspar (F). The
clast has reacted with the matrix, resulting in a dark matrix halo
about 15 p thick. (Plain light.)

Holodrystalline granitic clast. The texture is similar to that of the
clast in B, with crystalline silica (S) and plagioclase(? (P) in
poikilitic barian potash-feldspar, (Crossed nicols.)

Glassy granitic clast. The texture consists of a framework of
crystalline silica (S) in 2 clear brown glass (G). The "eye'" is a
hole in the section.

"Perthitic" barian potash-féldspar (PF). The feldspar (F) at top
center is without the perthitic lamellae. These feldspars are part
of a brecciated granitic clast. (See Section E of the text for a dis-
cussion of these feldspars.)

Partially melted granitic clast. Each grain is isolated from the

others by a thin film of glass. Note that the greatest concentration
of glass (G) is at the margin of the clast. (Reflecied light.)
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The granitic clasts always occur as isolated particlcs and have never heen
chserved to be directly related to any other lithology. In distribufion, they tend to be
most closely associated with the dark matrix breccias and the ANT suite. Whalever
their origin, the occurrence of these ubiquitous granitic clasts throughout the boulder
suggests a derivation {from larger widespread bodies of granitic composition at the

impact site,

F. Ultramafic Particles

No large clasts of ultramafic rock have been observed in thin sections of the
boulder, but sparse, small polycrystalline ultramafic clasts usually less than 200 p
in diameter are present (Figure I1I-8D). Only three of these clasts have been analyzed.
Two are similar in composition to pyroxenes from the ANT group, while the third con-
sists of magnesian olivine (Fo 87) . Many of these small ultramafic particles do not
resemble any of the olivines or pyroxenes found in the crystalline clasts; they may be
derived from other unseen lithologies. The presence of debris from rocks with a very
high Mg/Fe ratio is also hinted at by the occurrence of a few very magnesian olivines
in the dark matrix breccias and the 72275 gray polymict breccia (Figure 1I-4A and B).

L3

G. Plutonic Norite (Civet Cat Clast)

Civet Cat is a shocked, relatively coarse, orthopyroxene-rich norite. In Figure
II-11, it can be seen that Civet Cat has a mottled texture with diffuse light streaks set
in a dark matrix. Thin-section examination indicates that the light areas are almost
pure plagioclase, and the dark areas are.chieﬂy orthopyroxene (Figure III-15). In
spite of its porous appearance by transmitted light, reflected-light illumination reveals

that Civet Cat has almost no porosity.

Modal analysis of our thin section of Civet Cat (72255, 105) showed it to contain
53. 8% plagioclase, 45.9% orthopyroxene, and 0. 3% opaque minerals, From an exam-
ination of the macroscopic documentation photographs, however, it appears that our
thil_l sections are from a plagioclase-rich portion of the clast and are not representa-

tive. Assuming that the dark and light portions of Civet Cat as seen in thin section
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are analogous to those seen in the macroscopic photographs, we estimate that the
clast consists, very approximately, of 40% plagioclase and 60% orthopyroxenc.

Revigion of this estimate awaits the arrival of iiew thin scctions.

Texturally, the plagioclase ranges from oecasiona! unshocked rectanpular grains
to whole arcas of plagioclase that have bezen nearly isotropized or recrystallized to
a very fine--grained crystalline material like tfle rim material shown in Figure iII-9C.
The plagioclase has a narrow compositional ra:r:ngc, An92_95 (average, AnM) and

0T 0.5
maximum dimension of 1.6 mm.

(seven analyses). The largest single erystal of plagioclase obscrved had a
[

The orthopyroxene has a compositional range of En7 Wo,Fs,., to En7 Wo Fs, .,

5 27723 0 74" 726
with an average composition of EI]._{,S\J‘\FOS]E‘S24 (T'able III-4, analysis 7). The Civet
Cat orthopyroxenes ave distinctive in having abundant platey hrown inclusions {(ilmenite ?)
that appear to be exsolution lamellae and rare Ca-rich clinopyroxene(?) exsolution
lamellae. The orthopyroxene commonly shows substantial shock effects, but a few
grains are subhedral. The largest orthopyroxene grain measured was 1.4 mm in

diameter,

We have observed distinctive large clasts of orthopyroxene and plagioclase (the
latter with fine-grained rims) in most of our 72275, 72255, and 72235 thin sections,
for which Civet Cat appears to provide the required type of source rock. The fine~
grained rims around the shocked monomineralic plagioclase clasts apparently result
from re-equilibration with the matrix (Figure III-9A). One clast analyzed has a core
of An95 and a rim of almost pure fine-grained plagioclase of Ango. The average com-
position of normative plagioclase in the surrounding matrix was also Ango' Unshocked
homogeneous plagioclase clasts in the matrix near these shocked ones do not exhibit

obvious re-equilibration rims.

It seems clear that Civet Cat is a shocked igneous rock of norite composition
(Table II-5, aralysis 11), which originally had an average grain size in the range
1to 4 mm. The overall texture is suggestive of a plutonic reck., This rock has been
dated at 4. 18 b.y. (see Section VII of this repor't).
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72255, 101:
72255, 103:
72255, 105:

72255, 105t

72255, 105:

Figure II-15. Civet Cat clast,
Orthogonal set of thin seetions of the Civet Cat clast, a shocked
plutonic norite, and surrounding matrix. The clast marked G is an
unusually large granitic clast.

Heavily shocked portion of Civet Cat. The orthopyroxene (OPX) has
been crushed and the plagioclase (PL) maskylenized. (Plain light.)

Matrix rind around a portion of Civet Cat. An analysis of the dark
rind is given in Table ITI-6, analysis 4. (Plain light.)
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H. Dark Matrix Breceiasg

Besides the layering of the boulder, one of its most distinctive features is the
occurrence of large, dark-rimmed anorthositic clasts (Figures II-2, O-4, and lI-8).
At least two large samples of these clasls were returned, 72235 and 72275 (clast #1)
(sec Section II of this compilation). The rind maferial of clast #1, 72275, which will
be discussed separately, as well as a number of smaller rimmed ANT clasts, con-

sists of dark matrix breccias (Figure I1I-16).

In addition to these rimmed clasts, similar dark matrix breccias are found as
uncored clasts (Figure III-17A, B, and C). Inthe 72275 gray polymict breccia domains,
dark matrix breccias form the largest group of lithic clasts. The uncored varieties
range in shape from angular to rounded and bomb-like types that were clearly plastic.
The bulk of the angular dark matrix breccia clasts is probably derived from the dis-
integration of larger rounded clasts, In 72275, the number of uncored dark matrix
breccia clasts greatly exceeds that of the cored variely, although both are common.
The question of whether or not dark matrix breccias occur in sample 72255 will be
discussed below. In Section II of this compilation, the uncored dark matrix breccia
clasts are referred to by Marvin ag gray or dark gray aphanitic clasts (e.g., clésts

#2 and #3, 72275).

Clasts similar to the dark matrix breccia clasts found in the boulder have been
observed in Apollo 14 breccia 14082, which is classiﬁed ag a glass-poor breccia
with a fragmental matrix (Engelhardt et al,, 1972). This breccia, which consists
primarily of ANT debris in a fragmental matrix, also contains irregular clasts of
dark matrix breccias whose style of occurrence and matrix are very similar to those
observed in Boulder 1, Station 2 (Figures III-17D, E, and F). An analysis of the dark
clasts, which are considerably more feldspathic than those of 72275, is presenled in
Table IIi-6, analysis 6. '

In thin sectioﬁ, the dark matrix breccias are easily recognized by their very
dark, usually opaque, very fine-grained matrix with little porosity (Figure III-17E),
Thej contain sparse ANT clasts, large monomineralie clasts, and rare granitic
clasts. The monomineralic clasis are primarily plagioclase, pyroxene, and olivine
and sparse spinel, ilmenite, sulfide, and iron-metal, No pigeonite basalt clasts have

been observed in the dark matrix breccias.
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Table III-6. 72275 and 72255 matrices and dark matrix breccias (DMB).

LL

1 2 3 4 5 6 7 8 8 10
72275, 128 72255,105  72275,128  72275,134  72275,12 72275, 146
72275 gray 72255,95 Civet Cat DMB DMB vesicular clast #2 72275, 140 14082, 9
PET matrix matrix rind matrix matrix rim matrix DMB DMB
5i0y 47.5 47.3 45.1 46.5 49,7 47.7 43.9 47.0 | 456.6 45.8
TiOg 0.9 0.6 0.6 0.2 1.1 1.1 0.0 .0 1.3 2.8
Cro0g 0.4 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1
AlsOg  17.0 2L.3 20,0 21.4 18. 4 20.3 22.9 22.8 19.6 25.8
FeO 1.6 8.8 T T 8.5 10.0 10.6 8.7 8.9 1.0 5.1
MnO 0.2 0.1 0.1 0.1 0.1 0.2 0l 0.1 0.2 0.1
MgO 9.4 8.3 9.1 9.4 9.0 10.0 12.1 8.7 8.2 3.3
Ca0 11,7 12.4 12.7 12.3 11.4 1.5 11.6 12.9 11.4 14.7
NagO 0.4 0.4 ) 0.5 0.3 0.5 0.5 G.7 0.6 0.6 1.5
Ko0 0.3 0.1 0.2 0.2 0.3 0.2 0.3 0.2 0.5 0.2
P,05 0.4 0.5 0.2 0.4 0.5 0.4 0.3 0.5 0.8 0.3
Total 09. 8 99.9 96.4 100.2 J0L.G 102,7 101.7 102, 9 100.4 92.5
Fo 0.4 0.0 4.3 1.8 0.0 3.4 18.5 4.5 1.6 0.2
Fa 0.4 ¢.0 2.8 1.2 0.0 2.7 8.8 3.3 1.5 0.1
En 22.8 20.7 17.3 2028 22.0 19.5 6.1 14.8 18.2 7.2
Fs 19.2 15.2 10.2 12.1 16.3 13.9 3.0 9.9 155 4.9
Wa (] 1.0 4.3 0.8 2.1 0.7 0.0 0.3 1.1 3.3
Or 1.7 0.8 1.3 1.3 2.0 1.3 .G 1.3 2.9 .4
Ab 3.2 3.7 4.1 2.3 &9 4.2 5.4 4,9 5.5 13. ¢
An 44.1 55.8 53.9 56.5 47.5 51.1 55.1 537.4 48.7 53.3
Ilm 1.7 1.2 1.1 1.7 2.1 2.4 1.6 1.8 2.5 3.0
Chr 0.5 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.1
Qtz 0.0 0.2 0.0 0.0 2.7 0.0 0.0 0.0 0.0 0.0
Cor 0.0 0.0 0.0 0.0 G.0 0.0 1.0 0.0 5.0 0.0
Ap 0.8 i 0.5 0.8 .1 1.0 0.6 1.0 1.8 0.7
Key:

1, - 72275: whole~rock analysis (PET, 1973a).

2. 72275 5, 128: gray polymict breccia matrix ('wcrage of 26 100 p diam. DBAs of the <50 p portion of the matrix).

. 722535, 95: dark matrix (average of 4¢ 100 u diam. DBAS of the <50 p portion of the matrix).

4. Dark rmd of the Civet Cat norite clast. Ths material analyzed can be seen in Tigure II1-15C as the very dark, dense,
approximately 1/2-mm-thick rind immediately adjacent to the norite. (Average of 5 100 p diam. DBAs of the <50 p
portion.)

9. 72275, 128: average matrix of two dark matrix breccia clasts {average of 10 100 p dinm. DBAs of the < 50 p portion).

6. 72275, 134: dark matrix breccia clast matrix (average of 21 100 p diam. DDBAs).

7. Dark vesicular rind material around the anorthosite of 72275, 12 (Figure III-16A, B, and C) {(average of 5 100 p diam.
DBAs).

8. Clast #2, 72275: matrix (a dark matrix breccia, Figure I1I-8C) (average of 15 100 y diam. DBAs).

9. Analysis of the dark matrix breecia portion of clast #1 (Figure 1I1-84 sand B) (average of 10 100 ¢ diam. DBAs).

10, Dark matrix breceia clasts of Apolle [4 brecciz 14082, 9 (Figure III-17D) (average of 19 25 p diam. DBAS).



72275, 12:

72275, 12;

72275, 12;

79275, 12

Figure II-16. Cored dark matrix breccia clasts.

Clast with shocked anorthosite core and dark matrix breccia rim (plain
light). The dark blur at the left is due to a crack in the section.

Same clast as A in reflected light. Vesicles are clearly visible in the
dark matrix breccia rind, showing that it once had fluid properties.
This is a very rare example of vesicles in dark matrix breccia mate-
rial, however; they are absent in most clasts.

Enlargement of a portion of B. Note vesicles, but also the high abun-
dance of monomineralic fragments in the dark rind.

Typical clasts of ANT-cored dark matrix breccia. Note the smooth,

streamlined envelope of the left-hand clast, as compared to the more
angular and fragmented appearance of the right-hand clast.
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72275, 128:
72275, 135:

72275, 128:

14082, 9:

Figure HOI-17. Dark m.s.if;ri_x breccias.,

Streamlined bomb-shaped clasts of dark matrix breccia. Note that
the clast in A has been broken in half,

Typical rounded-to-angular clasts of dark matrix breccia in the
72275 gray polymict breccia. The white portion of the matrix is a
erushed disaggregated gabbroic anorthosite. The darker matrix

at the lower left is more typical of the 72275 gray polymict breccia.

Cored and uncored clasts of dark matrix breccia in an Apollo 14
breccia. The core of the clast at the bottom is a shocked anorthosite.
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72275, 129
14082, 8;

|
Tigure JII-17 (Cont. ).
Closeup of the matrix of a typical 72275 dark matrix breccia clast

compared to one from 14082 (Figure D). Note the lack of vesicula-
tion, the fine grain size, and the abundant small monomineralic

fragments. (Reflected light.)
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The matrix consists of abundant fine monomineralic and lithic particles seated
in a very fine (<1 ), more or less opaque groundmass (Figurves J1-17E and 1l1-18D).
The opaque quality of the matrix is duc to a myriad of disseminated opague mincrals
almost too fine to be resolved optically. Excluding the larper sparse lithic and mono-
mineralic clasts (>200 p), the matrix of two large dark matrix breccia clasts in
72275, 128 consisted of 7% lithic particles (10 to 200 p), 13% monomineralic particles
(10 to 200 p), and 70% fine matrix (<10 | diameter particles). Electron-microprobe
analyses have shown that the monomineralic olivines in the matrix have re-equilibration
rims 10 to 15 p thick. The lack of such rims around olivine and pyroxene clasts in the
surrounding gray polymict hrececia indicates that these rims are directly related to the
dark matrix breceia. Superficially, the dark matrix breceias resemble soil breccias,
but they lack the ropy glasses and glass spherules associated with soil breccias and
are much better sorted. '

Some workers have suggested that the dark matrix material contained significant
glass. In thin section, however, no glass is discernible. With one exception —a
vesicular rind around an anorthosite clast (Figure 11I-16A, B, and C) — no vesicles,
flow structures, nor devitrification textures that would indicate large amounts of glass
have been observed. If glass is or was present, it must represent a very small per—
centage of the matrix and must be finely dispersed. We prefer an origin of essentially
complete sintering of very finely granulated crystalline material without significant
recrystallization,

Although most of the lithic clasts in the dark matrix breceias are granulitic ANT
and other anorthosites, the composition of the matrix is more mafic and has a lower
MgO/(MgO + FeO) ratio than does granulitic ANT (Table 1II-6, Figure 111-22). The
matrix also has a distinetly higher KREEP content, as determined from potassium
“and phosphorus abundances, than do the ANT rocks (Figure II-23). The presence
of the potash-rich granitic clasts might explain the higher KREEP content of the dark
matrix breceias, but it cannot explain their more mafic chemistry. Therefore, at
least one other major component must be present, In terms of their major-element
chemistry and their MgOQ/(MgO + FeO) ratios, the dark matrix bredcias are compo-
sitioﬂaﬂy intermediate between granulitic ANT and the pigeonite basalts (Figures
OI-22 and III-23).
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The compositions of the monomincralic elnsts alvo sugpest that the dark matrix
breceia contains other than ANT and pranitic moterials. In Figure JII-4, it can be
seen thai the range of olivine compositions is more extensive than that of the ANT
suite, Sixﬁilm.‘ly, for the pyvexenes, it appears that basallic pyroxenes are present
(Figure 11I1-19). Sinece it seems improbable that these pyroxenes ave derived from
mare hasalts, the most likely source is {roin basalts similar to the pigeonite basalts
described earlier (compnre Tigures III-19 andI I11-12). It is interesting, however,
that no lithic clasts of the hypothetical hasaltic component have been obscrved in the
dark matrix breccia clasts. J

|

Clast #1, 72275; dark matrix breccia rind

The gabbroic anorthosite core of clast #1 was discussed in Section A. Petro-
graphically, the dark matrix breccia rind is similar to other dark matrix breceias
found in 72275, although it is even darker. Its clast population consists of sparse ANT,
rare granitic clasts (Table III-5, analysis 10), and monomineralic particles. The
major-element chemistry of clast #1 is also similar to that of the other dark matrix
breccias in 72275, although it has the highest KZO + P205 content of any dark matrix

breccias analyzed (Table 1II-6, analysis 9).

In addition to the dark matrix breceia gnd the white gabbroic anorthosite portions,
clast #1 contains some breccia domains intermediate in color between the two major
lithologies. One of these areas can be seen in Figure III-14A, at the top edge, just
right of center. An analysis of this area (Table IlI-2, analysis 5) had the highest P205
content of any boulder material yet analyzed by us (P,0., 3.1 wt. %; K0, 1.0 wt, %).
It is not yet known whether this analysis is characteristic of these areas or whether
it is a fluke. Nevertheless, the KREEPy nature of this material, as well as that of
the dark matrix breccia portions, suggests the possibility that clast #1 as a whole may

be KREEPier than most other boulder materials.
Clast #2, 72275; dark matrix breccia

Clast #2, which was mapped by Marvin (see Section II), is a large clast of dark

matrix breccia, approximately 3 1/2 cm in diameter (Figures II-8 and II-9), It



A.

B.

72275, 12:

72255, 8:

Figure JI-18. 72275 and 72255 matrices.

Typical 72275 gray polymict Breceia vu;ith clasts of dark matrix
breceia (cored and uncored), ANT, and abundant monomineralic

fragments.

Typical 72255 breccia with a dark, highly welded matrix and clasts
of ANT and monomineralic fragments.
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C.

D.

E.

72275, 128;

72275, 129;

72255, 95:

Figure I11-18 {Cont. ).

Closeup of the poorly sintered, very porous, 72275 gray polymict
hreccia matrix (reflected light).

Closecup of dark matrix breceia matrix at the same scale as C. The
opaqueness of this material in transmitted light is due to abundant,
dispersed, very fine opaque minerals.

Closeup of 72255 matrix. The 72255 matrix is distinet from those
of 72275 in that it has been partially recrystallized. The main
mineral assemblage of the recrystallized portion is plagioclase,
pyroxene, and dispersed tabular ilmenite. Porosity is low, but the
shapes of the pores suggest a small amount of vesicularity.
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C.

D.

E.

72275, 128:

72275, 129:

72255, 95

V-

TFigure 1II-18 (Cont. ).

Closeup, of the poorly sintered,' very porous, 72275 gray polymict
breccia matrix (reflected light).

Closeup of dark matrix breccia matrix at the same scale as C, The
opaqueness of this material in transmitted light is due to abundant,
dispersed, very fine opaque minerals.

Closeup of 72255 matrix. The 72255 matrix is distinct from those
of 72275 in that it has been partially recrystallized. The main
mineral assemblage of the recrystallized portion is plagioclase,
pyroxene, and dispersed tabular ilmenite. Porosity is low, but the
shapes of the pores suggest a small amount of vesicularity.
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Figure III-19.

Three-element (Mg/Fe/Ca) microprobe survey of monomineralic pyroxenes in dark matrix
breccia clasts of 72275, 128. The pyroxene fields indicated by dashed lines are those of the
Boulder 1 granulitic ANT rocks (see Figure III-54), and the solid lines indicate the fields of
the pigeonite basalt breccia matrix (Figure III-11Bj).



contains lithic clasts of ANT, devitrified maskylenite, and granitic particles (Figures
Ii-7C and 1II-8C). Its composilion is the same as that of smaller typical 72275 dark

matrix breceia clasts {Table III-6, analysis 8).
79275 GRAY POLYMICT BRECCIA MATRIX

The gray polymict breccia domains of'7_22?5 consist of approximately 60% matrix
and 40% clastic material (PET, 1973a).- The matrix is very porous (10 to 40%) and
poorly sintered (Figure H1~180). Itisa feldépathic microbreceia that consists largely
of sintered mineral and lithic ffagrhénts. 'THe matrix is heterogeneous, ranging in

color from whitish to medium gray (Figures II-1B and III-17C).

The whitish areas are plagioclase-rich and appear to be disaggregated gabbroic
anorthosite. A survey of pyroxenes in one of these anorthositic areas (Figure III-17C)
indicated pyroxenes similar to those of clast #1 (gabbroic anorthosite) (Figure II-20A).
The darker gray material constitutes the bulk of the matrix (Figure III-1A, B). An
analysis of the finest grained portion of typical 72275 gray matrix and the PET (197 3h)

whole-rock analysis of 72275 are presented in Table 1II-6, analyses 1 and 2.

The monomineralic clast population consists of plagioclase, olivine, orthopyroxene,
pigeonite, Ca-rich clinopyroxene, ilmenite, spinel, troilite, Fe-metal, and trace
amounts of K~feldspar, silica, zircon, and armalcolite. The plagioclases show a
somewhat diffuse range of compositions, most values being in the range Angz_%, with
a distincet peak at A“gs (Figure TII-6). It appears that the plagioclases can be explained
as being derived mainly from ANT, with a lesser contribution from the pigeonite basalts.
Olivine shows a wide range of compositions (F058—9 4) without any marked concentration
of values (Figure IT1I-4). Neither the olivines with Fo > 90 nor those with Fo < 62 can
be explained by derivation from known ci‘ystalline lithic clast rock types of the boulder
samples. Most of the pyroxene compositions fall within the fields of the ANT pyroxenes,
but a few are distinctly different and are probably from the pigeonite basalts (Figure
III-20B). Two main groups of spinels are present. The most common variety is deep
red-brown-to-opaque chromite. A few, very aluminous clear-pink-to-orange spinels,
up to 300 p in diameter, also occur. Typical analyses of both types are presented in

the following:
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Figure I11-20. A; Three-element (Mg/Fe/Ca) electron-microprobe survey of pyroxenes
in a white streak in the gray polymict breccia of thin section 72275, 128.
This streak can be seen as an elongated, very white area near the left
arrow of Figure 1II-1B, The material appears to be similar to the
anorthositic portions of clast #1, 72275 (see Figure III-8A). B: Mono-
mineralic pyroxene clasts in the gray polymiet breccia matrix of
72275, 12, The fields outlined by the solid lines indicate compositional
range of Boulder 1 granulitic ANT pyroxenes (Figure 1II-5A), and that
by the dashed line, pyroxenes from the pigeonite basalt breccia matrix
(Figure III-11B).
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72275, 12 72275, 128

chromite pink spinel
MgO 3.3 19.2
FeO 33.0 12,0
Al, 0, 18.0 60. 4
Cr,0, 44,0 8.8
TiO, 1.3 0,1
Sum 99.6 100. 6
f
Atomic Cr/(Cr + Al) 0.62 0.09
Atomic Mg/(Mg + Fe) 0.15 0.74

It does not seem that the gray polymict breccia matrix was subjected to high
temperatures for any great length of time, as indicated by the lack of extensive sinter-
ing and the presence of small (<100 ), apparently undevitrified, rare glass shards of
anorthositic composition. Electron-microprobe analyses of a few monomineralic
olivines and pyroxenes failed to detect any re-equilibration rims against the matrix.
Small silica (cristobalite ?) fragments, however, had narrow reaction rims of Ca-poor

pyroxene.
r'
72255 MATRIX

The 72255 matrix, in contrast to the 72275 gray polymict breccia matrix, is
dense, with a generally low porosity (0 to 10%). From megascopic examination of
sample 72255, Marvin and Jackson (PET, 19733). estimated that 72255 was 60% matrix,
or about the same as 72275, The 72255 matrix consists of abundant small mono-
mineralic and lithic clasts seated in a finely crystalline submatrix, which has an
average grain size of about 5 p (Figure III-18E). The main mineral assemblage of
this submatrix is plagioclase, pyroxene, and sparsely dissgminated small tabular
ilmenites. The larger matrix monomineralic clasts consist of plagioclase, olivine,
orthopyroxene, clinopyroxene, and sparse-to-trace amounts of pink-to-red spinel,

chromite, and ilmenite.

The bulk of the 72255 matrix is dense and very dark, but a few light, more feld-
spathic streaks are also present (Figures III-2D and III-21) (PET, 1973a); None of
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Figure III-21. Whole thin-section photograph of 72255, 8 showing the two types of
matrix domains in 72255, The dark matrix domain is typical of the
bulk of 72255, whereas the light-colored feldspathic area resembles
the matrix of 72255. Note the occurrence of dark matrix breccia clasts.
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our thin sections contains a good example of these areas, but they resemble — at least
superficially — the 72275 gray polymict breeeia domains. In these light-colored areas,
dark matrix breccia clasts are visible (Figures III-2D and HI-21). Large dark clasts
can also be seen megascopically on the sample surface and in sawed slabs (Figures
II-3 and II-11). In most of our thin sections of 72255, they are either absent or diffi-
“cult to distinguish from the dense dark 72255 matrix itself (Figure HI-2A, B, and C).
Where these dark matrix breccia clasts can be distinguished, they are similar to those
in 72275, except that their matrices are texturally identical to the dense portions of
the 72255 matrix. It would appear that the dark matrix brececia clasts have been

reerystallized to the same degree as has the rest of 72256.

Partial matrix recrystallization (Figure III-18E), the presence of re-equilibration
rims up to 15 p thick around olivines and pyroxenes (detected by electron-microprobe
analysis), narrow reaction rims around spinel clasts, devitrification of all glasses,
reaction rims around granitic clasts, and the partial melting of at least some of the
holocrystalline granitic clasts (Figure 1II-14F) indicate that the ?2255 matrix was
initially at high temperatures. 'The complete devitrification of all maskylenite indi-
cates annealing femperatures of 800°C or more for at least a few hours (Anderson
et al., 1972). The partial melting of the granitic clasts indicates a minimum tempera-
ture cqual to that of the orthoclase-quartz eutectic of 990° + 20°C (Levin et al., 1964).

a

The texture of the 72255 matrix may be the result of high-temperature sintering
with high temperatures sustained long enough to result in partial recrystallization of
the matrix, or it might indicate devitrification of an initial interstitial glass. The
sparsity of identifiable clasts of thermal-melt glass (now devitrified) and the great
abundance of fine clastic material in the matrix would seem to make a sintering-
recrystallization origin preferable. The similarity in compositions among the 72275
gray polymict brececia, the dark matrix breccias, and the 72255 matrix (Table 11I--6)
suggests that they may be essentially the same material and that the differences in

their textures may be mainly a function of their thermal histories.
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Figure III-22. AlgOg versus MgO/(MgO + FeO) plot for Boulder 1 materials. In the
ANT field, filled circles are used for granulitic ANT, open circles
for other anorthosites, and partially filled circles for devitrified glasses.
Elsewhere, filled circles are used for Boulder 1 plots, except for the
dark matrix breccias, which are indicated by a plus (+). The Civet Cat
norite is indicated by CC. The single point just right of the pigeonite
basalt field is the "intersertal basalt" of 72255, 85 (clast #770C29,
Table II1-5, analysis 5, Figure IlI-14A). The points marked with filled
squares are taken from Drake and Klein (1973). TFor references to the
other nonboulder plots, see the captions for Figures III-5B and IT1-13.
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Figure III-23.

Truncated triangular plot of Boulder 1 materials, in which KREEPiness is indiecated hy the sum

of the normative wt. % of orthoclase (Or) and apatite (Ap). The normative mafics + oxides is the
sum of wt. % norms of olivine, pyroxene, ilmenite, chromite, and troilite. The ANT ficid
includes all analyses of crystalline and glassy lithic clasts of ANT composition. The ficld markad
DMB + Matrices includes the dark matrix breccias (indicated by a +), the PET (1973b) whole-rock
analysis of 72275, and the average analyses of the fine portions of the 72275 and 72255 matrices
(unmarked solid circles). The two open circles that happen to plot in the troctolite field are the
Civet Cat norite (CC) and the intersertal basalt clast #770C29 (Table III-5, analysis 5). The
KREEP-rich norite ficld is taken from Taylor et al. (1972).



DISCUESION

In their overall chemistry, the samples from Boulder 1, Stetion 2 fall within the
range of materials collected from terra regions elsewhere on the Moon, Figures III-24
through I[I-28 show the relationship of several categories of boulder material to the

recognized range of lunar terra rock types.

A, Nature of the Boulder Breccias

The boulder breccias examined contain no glussy spherules of the type that charac-
terizes unconsolidated regolith samples or regolith breccias elsewherce on the Moon,
nor do they contain devitrified relics of spherules, For this reason, we do not helieve
them to be soil breccias. (This possibility will be tested more conclusively when the
noble-gas content of the boulder samples has been measured; soils — i.e,, uncongolidated
rock debris that has resided for a long time near the lunar surface and has been cycled
through various depths by the stirring effect of meteoroid bombardment — are charac-

terized by their high content of noble gases implanted by solar wind.)

On the other hand, we feel that the overall compositions and clast populations of
samples from two different sirata in the boulder are sufficiently similar to preclude
the possibility that the various layers represent the cjecta deposits of many different
cratering events, widely separated in space and time, -It also seems unlikely that
modest-sized cratering events would heat their debris to a high-enough temperature
to effect the metamorphism of the debris deposits noted below. At this point, we think
it most probable that Boulder 1, Station 2 is a sampling of the stratigraphic sequence
of debris deposits laid down by a single, very large, very energetic cratering event.
Intuitively, it seems likely that the scale of the cratering event was that of a mare-
‘basin-forming impact. The boulder was undoubtedly once part of a much more exten-
sive debris deposit, presumably at the crest of the South Massif (Section I); we assume
that one or more minor cratering events exhumed it from these beds and rolled it down

to the vicinity of Station 2.
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Figures HI-24 through TI-28,

These five fipures campare the campositions of five prominent mate rials from Boulder 1, Station 2 with the
broad range of oiher rocky materials encountered oh the Moon, The "pins' that comprise the plofting bascs are
a sampling of analyses from a libraiy of 112 whele-vock anatyses, H01 lithie frazment analyses {mnstly DBAE),
and 2364 plass particle amalyses that we have accumutated from the litcrature {all missiong). Wat all are plotted;
the Hbrary was randomly sampled ir such a way as to plol ahout 50 cach of the Lhree categories of analyses. The
three-axis plotting rouline was developed to detect broad clusterings and trends amang snalyses of lunar materiale.

The whole range of lunar materials was sampied for Figure UI-24; “pins" at the far left {low AlaOq, variable
TiQg) are mara basatts. Only highland materials {according to eriteria involving their Al2Oy and TiO2 contents)
arc included in Figures 181-25 through OI-28. Lntries in these plots range from noritic or gabbroic at the low-
plagioelase end of the box, lo anorthositic al the high-plagioclase end.  Where mineral content or compesition is
plotted, this refers to normative mineralegy, computed from the chemical analysis, :

The boulder materials plotted are entered as letters above dashed pinshafts, as follows:

A: Pigeonite basalt {average of eolumns 1 o 5, Table 111-5}. :
B: 72275 gray matrix {column 2, Tabhle I11-G6).

C: 72255 matrix (column 3, Table II-6). ;

D: Dark matrix breccia clasts (average of eolumns 5 to 9, Table 111-6).

E: Civet Cat clast (cotumn 9, Table 1II-5).

Note that these boulder analyses are averages of DBAs [rom our laboratory, rot the analyses of Haskin et_al.
(Scction V). Analyses of similar materials by the two groups diverge considerably. ‘This divergence is partly
attributable to differences in accuracy and sampling covernge of atomic absorption analysis versus defocused-
beam microprobe analysis, but it should also be borne in mind that we analyzed different splits and sampled them
in different ways. For example, our defocused-beam analyses of breccia matrices (B, C, D) were limited to
very fine-grained material; clasls as large as 50 p in dimension were systematically avoided. Also, our analysis
of the Civel Cat clast was corvected to allow for the macroscopically apparent proportions of plagicclase and
pyToxene, as it seemed clear that our thin sections contained nonrepresentalive proportions of these components.
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3. Which M:are Basin?

Deliris from major cratering events are cast very great distances on the Moon and,
in prineiple, many different mare basins are candidate sources for the debris that
comprises Boulder 1, McGetchin et al. (1973) list seven mare basins that could have
delivered to the Taurus-Littrow site mean thicknesses of debris sufficiently great to
have formed the source of Boulder 1. However, Oberbeck et al. (1973) have arpued
that debris from a large crater is only laid down a's a continuous deposit relatively
close to the crater rim (in an annular region extending one to {two crater radii); beyond
this, the crater debris falls as discrete fragments and clumps of fragments, each of
which excavates a secondary crater. During the secondary cratering process, debris
from the primary crater is thoroughty mixed with and diluted by indigenous material,
instead of forming a discrete blanket over the latter. From this point of view, only
Mare Serenitatis is close enough to the Taurus-Littrow site to have deposited a discrete
layer of basin debris, Mare Crisium, the only other possible source, is at least two
craler radii away; the probability that Crisium could have deposited a thick mass of
material at Taurus-Littrow (as a ;tatistical fluctuation) is extremely small. Mare

Imbrium appears to be completely out of the question.

Imbrium and Crisium debris were undoubtedly deposited at the Taurus-Littrow
site, but our expectation is that all of it was mingled with indigenous (i.e. , Serenitatis)
material and is present now only as 2 minor component in complex brececias, The
Boulder 1 breccias could contain such components, but we are inclined fo doubt it; if
small amounts of Imbrium or Crisium debris, however hot, were mixed with larger
amounts of cold, indigenous material in relatively low-energy secondary cratering
events, the heat content of the mixiure would not be great enough to account for the

“metamorphic effects observed.

Other bhoulder and breccia samples from the Apollo 17 site are substantially
different from Boulder 1 in composition and structure, but can with equal validity be
understood as samples of the Serenitatis ejecta blanket. A basin-forming impact
would have sampled many different lithologies, which would have mingled in various

proportions and temperatures in the many jets and rays that were projected outward,

102



" Resulting heterogeneities in the deposils can account for large-scale differences from
one sample (or massif) to another, as well as for the small-scale differences within
Boulder 1.

C. DPre-Basin Sources of Lithologies

A basin-forming impact on the Moon wo,ﬁld sample from a great range of depths,
from the surface to the lower crust, or even- conceivably to the upper mantle (30 to
60 km deep). We tentatively assign the sources of the lithologies in Boulder 1 as

follows:

A. The deep crust. Caiaclastic anorthosites and Civet Cat norite must have been
derived from the deep crust because of their relatively coarse grain size and gimple
mineralogy and, in the case of Civet Cat, because of its lack of meteoritic trace ele-

ments (see Section VI).

B. The upper crust — ancient highlands regolith (kilometers deep, brecciated,
stirred, and thermally recrystallized many times). Granulitic anorthositic (ANT)
rocks and trociolites are probably upper crustal materials chiefly because of their
fine grain size and because of the ubiquity of the ANT lithologies everywhere the Moon

has been sampled. P

C. Surface of the Moon. From its texture, we interpret the pigeonite basalt in
Boulder 1 as a voleanic rock, a KREEP-rich pre-mare-basalt lava that flowed onto the

lunar surface before the Serenitatis{?) impact.

D. Undetermined source. The granite clasts remain a puzzle, Their fine textures
make it unlikely that they were derived from granitic plutons. Since we have never
observed fragments of earlier, more mafic minerals attached to the granitic clasts, the
clasts must have been derived from other than merely oversized pockets of residual
melt after the crystallization of some more mafic magma. Possibly they are fragments
of granophyre veins, injections of residual melt into cracks in the country rock enclos-

ing bodies of crystallizing magma.
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D. Megascopic and Microscopic Structure in the Boulder

We recognize three structural entities in Boulder 1: 1) The dark, fine-grained,
Hglobby" clasts (sometimes containing cores of anorthositic rock) that are abundant in
Boulder I (Figures III-16 and I[I-17) but that have been observed in very few other lunay
samples; 2) the friable breceia of 72275, similar to many highland samples returned
from the Moon (and which encloses the dark clasts noted in 1 above); 3) the hard,
competent breeeia of 72255, which is intermediate in texture between 1 and 2 (materials

of this sort are also comnion amobg previously studied lunar samples).

All three materials are, to a first order, similar in composition (see Table ITI-6
and Figures III-22 through III-28). Thejr consist basically of minerals and lithic clasis
from noritic (ineluding Civet Cat) and troctolitic sources, but they also contain minor
components of anorthositic and KREEPy materials, The chemieal variations displayed
by these materials can be understood in terms of differing levels of anorthesitic and
KREEP components, In the dark clasts, the KREEP component takes the form of
smaller (sub)clasts of granite. In 72275, the KREEP level (and the higher degree of

silica saturation) appears due to a substantial component of pigeonite basalt.

The modes of aggregation of the three classes of material are critically different.
The dark, globby clasts are least readily understood. Although some of them are dis-
tinctly angular in form, it does not seem likely that the dark clasts in general were
formed simply by the fragmentation of a preexisting breccia deposit, as is commonly
postulated to explain the existence of breccias—withjn—bi‘eccias elsewhere on the Moon
(e.g., the Apollo 14 samples). In the case of rebrecciation, the clasts are much more
consistently angular in form than those in the boulder. The concentrie core-and-rind
arrangement in some boulder clasts militates against this simple origin., Rather, it '
- seems that “globbiness" is the primary characteristic of the dark clasts in the boulder
gsamples and that such angular clasts as exist were formed from globby clasts by

secondary fragmentation.
One possibility is that the clasts were globs of molfen rock, melted and thrown

" out by a major impact event. Comparisons have been drawn with inclusions in the Ries

suevites, which were patently formed in such a way. However, the suevite inclusions
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are typically quite vesicular and have heen transformed almost entirely into glass.
The boulder inclusions consist largely of mineral detritus and very rarely contain
vesicles (Figure DI-16A, B, and C shows the ohe prominent cxamplie we have found).
One-shot melting and ejection could not produce such an aggregation, nor could it
account for the concentric coating of dark clast material on anorthositic cores such as
that shown in Figurc II-16. i

'}

Some special place and stage in the impactfprocess is required to form these
clasts, where mineral debris was particularly i?inely comminuted; metallic iren was
present in an extremely finely divided siate, porhaps even vaporized (metallic iron is
present in the clasts as 0. 1to 0.5 grains in a very even state of distribution);
temperatures were high; and larger (anorthositic) clasts had an opportunity to accrete
fine material onto their surfaces. We suggest that the clasts are aggregations of hot
mineral and glass debris that collected in flight, cither in ballistic trajectory or in a
churning base-surge énvironment, in the aftermath of the hypothetical basin-forming
impact that formed the boulder materials in general, Aggregation sometimes nucleated
on anorthositic fragments, also in flight, that had been derived from deep in the basin,
The aggregation included melt-spray droplets as well as solid debris; this liquid com~
ponent both served to hold the mineral and glass debris together and lent a degree of
mobility or plasticity to the mush-like accumulations, thus accounting for their globby

forms.

The state of aggregation of 72275 appears easiest to account for. The 72275
breccia is a porous, friable conglomeration of mineral and lithic clasts (as well as
the dark clasts discussed above), highly variable in dimension, that was deposited in.
a short time on the lunar surface. We suggest that the debris was hot enough when it
was deposited to promote partial sintering of the grains to one another (Section IV),
lending the aggregation its modest degree of coherency. Much of the debris from a
Serenitatis-type event might have been deposited at temperatures too low to have given
rise to any degree of sintering whatsoever, but such deposits are automatically excluded
from our study (except as soil samples); a breccia even weaker than 72275 could not

have survived the roll down the South Massif, nor the trip back in the Command Module.
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| One aspect of 72275 thaﬁ is not so easy to explain is the integrity of the zone of
pigeonile basalt. One can picture an igolated ray or jet from the impact delivering a
rain of pure pigeonite basalf to the site oi deposition; but 2s the particies impacted
the depositional surface at ballistic velocitics, we would expect secondary cratering
and thorough mixing of the pigeonite basalt with lithologics deposited carlier.

One possibility is that the pigeonite hasalt had accreted in flight (as discussed
above for dark globby breccias) and was depoé"itéd as 4 coherent mass; under these
circumstances, however, we would expect to observe pronounced interfaces between
pigeonite basalt zones é.n'd enclosing matrix, as is the case with dark breccia clasts;
these are lacking. Conceivably, the pigeonite basalt mass developed just enough

coherency in flight to shatter but not mix when it impacted the lunar surface.

Another possibility is that the pigeonite basalt was deposited as a single large
lithic clast, which was subsequently brecciated in situ by shock events accompanying
the deposition of later units, However, it is puzzling that the dark breccia clasts still

visible were not also disrupted by these hypothetical stresses.

The competent portions of 72255 can best be described as having properties inter-
mediate between dark globby breceia clasts and 72275. The layer that 72255 was taken
from may have been hotter when deposited than the 72275 layer, and therefore was more
rigidly sintered, Or compositional differences might have made the 72255 layer more
amenable to sintering than the 72275 layer. (This seems unlikely, however; Section V
shows that 72275 contains a higher level of the KREEP component — which correlates
with easily meltable material — than does 72255.)

Alternatively, the 72255 layer may actually be a very large "dark globby clast, "
rather than a discontinuously deposited layer of indefinite extent. In photographs of the
boulder (Figure II-1), the unit that 72255 came from appears more like a pod than a
continuous layer, The astronauts stated, at the time 72255 was taken, that they were

sampling a clast,

106



At this point, we tend to think of the competent portions of 72255 as occupying a
position intermediate between these two modes of aggregation. This may seem unreal-
istic; a mass of material was deposited either as a coherent whole or as independent
particles. IHowever, we found in trying to cvaluate the various lithologies in the 72255
slab (Figures II~11 and IITI-2]) that all gradations exist between obvious dark clast
material and obvious friable enclosing matrix material; there is no sharp line of
demarcation between the two. This has eroded our confidence in our ability to provide
a. pat explanation for all lithologies. A definilive explanation for the 72255 competent

lithology will have to await our pronouncement in Volume 2 or Volume 3 of this series.
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IV, PRELIMINARY RESULTS OF EXPERIMENTS TO DUFPLICATE
BOULDER TEXTURES BY THERMAL SINTERING OF POWDLRS

Marie E. Hallam

Center for Astrophysics
Harvard College Observatory and Smithsonian Asirophysical Observatory
Cambridge, Massachusetis 02138

Petrography of Boulder 1 samples 72255 and 72275 reveals three distinet matrix

textures (see Section II of this compendium, Figure III-18):

A, Compact, cohesive material with a visually estimated porosity of 5 to 10%
and an average grain size much less than 1 p. This material forms the matrix of
the dark matrix breccias and the rims of cored anorthositic-noritic-troctolitic (ANT)

clasts.

B. Compact, cohesive material with a visually estimated porosity of 5 to 10%
and an average grain size of about 4 p. This material forms the medium-to-dark

gray matrix of 72255.

C. Very porous, very friable materialk with a visually estimated porosity of

30 to 40%. This material forms the light gray matrix of 72275,

All three matrix types have very nearly the same chemical composition (Table IV-1).

The principal distinction to be made among them is textural.

One process capable of producing the varying degrees of porosity and cohesive-
ness observed in these matrix materials is sintering. Sintering is essentially the
welding together of initially distinct grains at temperatures below or about the mini-
mum melting temperature of the given sy stem under consideration. The driving force
for this process is surface free energy — in other words, sintering operates to reduce
this particular property of the system. The chief effect observed is shrinkage, which
becomes evident microscopically and macroscopically as an increase in density and a

decrease in porosity.
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Table IV-1. Average oxide compositions of three Boulder 1 matrix types,
from defocused-beam microprobe analyses.

72275,128  72255,95 72275, 134
gray polymict dark matrix
Oxide breccia dark gray breccia
810, 47.3 [ 45.1 47.7
TJIO2 0.6 J 0.6 1.1
Cr203 0.1 : 0.2 0.2
Al_O 21.3 i 20. 0 . 20.3
273 [

FeO 8.8 ‘ 7.7 10.6
MnO 0.1 0.1 0.2
MgO 8.3 9.1 10.0
CaO 12.4 12,7 11.5
Na20 _ 0.4 0.5 0.5
KZO 0.1 0.2 0.2
PZOS 0.5 0.2 0.4

Total 99.9 86.4 102.7
Number of analyses 926 40 21

averaged
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It has beoen suggested that lithification of Apollo 14 breccias took place by sinter-
ing of glassy material in an ¢jecta-blanket environnent (Simonds, 1973). (The
matrices of some of these breceias have a texture closely resembling the 72255 matrix
described above.) To test the idea that sintering played an important role in the
lithification of the boulder, we have begun‘ a course of experiments to compare texturcs
Qroduced from Boulder 1 sawdust by sintering and devitrification of glass powder,

s'intering of crystalline powder, and devitrification of glass chunks.
EXPERIMENTAL METHODS

About 0,2 g of boulder sawdust was gr'oimd under acetone for 10 min with an agate
mortar and pestle. In each run where sawdust was the starting material, approxi-

mately 2 to 4 mg of the resulting powder was utilized.

The experimental method employed is the same as one described in detail by
Walker et al. (1972); we shall therefore only summarize it here. The experiments
listed in Table IV-2 were performed in vacuo in sealed silica tubes, During the evacua~-
tion procedure, each sample was mildly heated o drive off volatiles. The silica tube
was sealed under vacuum and lowered into the hot spot of a vertical Pt-wound furnace.
Temperature was continuously monitored and automatically controlled. All runs were

terminated by quenching into water. Quench times were not longer than a few seconds,

All samples were Tun in "hog' capsules of exceptionally high~purity iron. Use
of these very high-quality iron containers places oxygen fugacity in our experiments
below iron-wustite buffer values; the actual value for an individual experiment can be
much more aceurately evaluated by determining the Fe/Mg ratio of the product '
(Walker et al., 1973).

PRELIMINARY EXPERIMENTAL RESULTS

The conditions and results of experiments performed to date are summarized in
Table IV-2,
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Table IV-2.

Summary of runs using Boulder 1 sawdust.

Run Time Temperature
number (hr) °C,tl Purpose of run Starting material Products; comments
275-1 20 1142 Sinter Sawdust, uncompacted Cohesive, low-porosity
’ material; above solidus
275-2 5 1275 Establish liquidus Sawdust, uncompacted Glass, one fragment con-
taining plagicclase;
slightly below ligquidus
275-3 5 1300 Establish liquidus Sawdust, uncompacted Glass; above ligquidus
275-3* 3 1100 Sinter/devitrify Glass powder, product Well-sintered and devitri-
of 275-3 ficd material; rescmboles
72255 matrix but grain
size smaller :
275-4 15.75 - 1600 Sinter/devitrify Glass powdér, made Sintered and partially
‘ by fusing sawdust at devitrified; some glass
1300°C for 1.75 hr, remaining
» then quenching
275-5 18.25 898 - Sinter/devitrify Glass powder, made Sintered and partially
: by fusing sawdust at devitrified; some glass
1300°C for 2 hr, then remaining
quenching
275-6 18.25 898 Sinter Sawdust, uncompacted No change; no cobzrence
other than electrostatic
275-7 100 1000 Sinter Sawdust, uncompacted No change; no coberence
other than electrostatic
275-8 33 1075 Sinter Sawdust, uncompacted Slightly sintered; weak
coherence
275-8* 88.25 1075 Sinter; continuation Product of 275-8 Slightly sintered; weak

of 275-8

cohcrence; no change from
275-8

*
Indicates continuation of previous run.



Attempts te dry-sinter uncompacted crystalline sawdust at temperatures of
1000° C and below for periods of 100 hr or less were unsuccessful, resulting in no
change in porosity or cohesivencss of the starting material. In contrast, wet-
sintering of uncompacted sawdust at ahout 1140°C (slightly abeve the cstimated solidus
of the system) for 20 hr produced o material having even lower porosity than the dark

mairix hreeeia matrix and the dark gray matrix of 72255 (Fipure IV-14, see below).

Boulder sawdust begins to sinter at about 1075°C. Heating at this femperature for
approximately one week produced a very weakly sintered material having even less

coherence than the 72275 matrix,

Powdered glass (produced by fusion of sawdust at 1300°C) was also run at tem-
peratures of 900, 1000, and 1100°C for times ranging from 3 to 19 hr. Figures IV-24A,
B, and C show reflected-light photonticrographs of the products of these runs. After
heating at 900 and 1000°C, the products had undergone appreciable sintering but still
contained residual glass, At 1100°C, extensive sintering and complete devitrification
had occurred. The dark matrix breccia matrix, shown in Figure IV-2D, looks texiur-

ally intermediate between the products of the runs at 400 and 1000°C.

In Figure IV-1, we compare the light gray matrix of 72255 to textures produced
during experimental runs. Figure IV-1A Si:lOWS sawdust wet-sintered at 1142°C for
20 hr. E:;:tensive recrystallizalion and welding of the sawdust occurred in this run.
The texture of the product is similar to that of the 72255 matrix (Figure IV-1B), but
the average grain size is much larger. In Figure IV-2C, we see that glass powder
of the same composition, run at 1100°C for 3 111:, has sintered and completely devitri-
fied, forming a material that texturally resembles the 72255 matrix but has a grain

size (~1 p) much smaller than that of the 72255 matrix (~4 p).

These experiments seem fo indicate that at the low pressures characteristic of an
ejecta blanket, sintering or sintering/devitrification could have lithified Boulder 1
matrix materials and produced the textural types observed in 72255 and 72275. If so,
this very preliniinary conclusion is consistent with Stoeser et al.'s ohservation (see
Section III of this compendium, especially Figure III-13F) that granitic clasts have under-

gone a slight degree of partial melting (and have therefore experienced temperatures
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Figure IV-1. Reflected-light photomicrographs of A: Boulder sawdust, sintered and
partially melted at 1142°C for 20 hr; B: Boulder sawdust, sintered at
1000°C for 100 hr.
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Figure IV-2., Reflected-light photomicrographs of A: Glass powder (made by fusing
boulder sawdust at 1300°C), sintered and devitrified at 900°C for 18 hr;
B: Same glass powder, sintered and devitrified at 1000°C for 16 hr.
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Figure IV-1 (cont.). C: Reflected-light photomicrograph of 72255 matrix.
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Figure IV-2 (cont.). Reflected-light photomicrographs of C: Same glass powder, sin-

tered and devitrified at 1100°C for 8 hr; D: 72275 dark matrix breccia
matrix.




on the order of 1000°C), This conclusion is also in agrecment with Stoeser et al.'s
report (Section ITN) that maskelynite in the boulder is completely devitrified; according
to Bunch et al. (196%), maskelynite devitrifics almost completely above 900°C in 2 hr

but shows little or no apparent change when heated at 800°C for 4 hr,
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V. MAJOR- AND TRACE-E LEMENT CONCENTRATIONS IN
SAMPILES FROM 72275 AND 72255

L. A. Haskin, D. P. Blanchard, R. Korotev, J. W, Jacobs, J. A. Brannon,
R. 8. Clark

NASA Lyndon B. Johnson Space Center
Houston, Texas 77058

and
A, G. Herrmann

Lunar Science Institute
Houston, Texas 77058

Analytical data have now been obtained for Co, Sc, Hf, Zn, Cr, Ga, Rb, Cs,
Ni, major elements, and rare-earth elements (REE) in eight samples from Boulder 1
(see Tahles V-1 and V-2). The data for trace elements were obtained by radiochemical
neutron activation analysis. Major elements, except Na and Mn, were obtained hy
atomic absorption spectral photometry as in previous work (Helmke et al., 1973;
Haskin et al., 1973) but with slightly poorer precision and no values for SiOz- for the
‘present, owing to a-change in spectral photﬂometers and associated problems. The
uncertainty for FeO in Table V-2 is £5% of the reported value. We expect to provide
more precise values for Fe as well as the value for SiO2 in the near future. The
accuracy has been tested so far by the internal consistency of the results (i.e., SiOZ
values obtained by difference are reasonable) and by a single analysis of sample 65015,
Values for Na and Mn were obtained by neutron activation analysis of the same powder
that was later dissolved to provide the atomic absorption analyses., A single value for
72275 obtained by PET agrees well with the values for major elements reported here
(PET, 1973).

The massif rocks, as PET indicated, are unexpectediy rich in refractory trace
elements, somewhat reminiscent of the Fra Mauro material from Apolle 14. Concen-
trations of these elements in the massif rocks are not so extreme, however, as those
in the Apollo 14 samples. Of the two rocks analyzed so far, 72275 has higher REE
concentrations than does 72255, with only a slight overlap hetween the two. The slope
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Table V-1. Trace-element concentrations for samples from 72275 and 72255.

72275, 76
72275, 91 72275, 83 72275, 80 Light 72255,69  72255,52  72255,42
Pigeonite Dark Dark rind, core, 72275, 57 Dark Light Civet Cat

basalt clast #2 elast #1 clast #1 Matrix matrix matrix ciast
La 48 1 41 78 48 47 43 31 16
Ce 131 2 112 220 131 150 95 80 46
Nd 82 14 67 130 76 100 69 57 25
Sm 23,0 +0.2 18.7 35,5 22.4 24.5 20 15.5 7.6
Eu 1.58 4 0,05 1.50 2. 18 1.81 1.67 1.76 1.49 1.75
Tb 4.5 +0.2 3.8. 7.6 4.7 6. 1 47 3.8 1.9
Dy 25.9 + 0.4 22.4 43 " 28 L
Ho 5.8 + 0.6 5.2 9.7 6.4 6.8 6.0° 4.7 2,7
Yb 11.9 +0.5 12.1 23 13.9 15.1 14.8 * 116 6.6
Lu 1.75 £ 0,03 1.82 3.5 2. 04 2.21 2.25 30 '1.69 1,01
Co 36.8 + 0.8 30 28 18.7 27 21 28 29.
Se 60.6 =+ 0.2 28 34 25 39 19,5 19,8 13,2
Hf 17.8 +0.5 13.7 19.8 14 14. 0 13.1 9, 8 5.5
Zn 4.0 +0.7 <16 <3.3 <8.7 <18 <1.8 <2.8 1.9
Cr 3140 160 1610 3140 1390 1680 2110 1510 1100
Ga 3.14 & 0,02 3.3 4.0 3.7 3.4 3.6 3.7 3.9
Rb 10 1 5. 7£0.8 l6x2 : 1141 9+ 2 82 541 3x1
Cs 0.42 £ 0.04 0. 29 0. 60 0. 40 0.41 0.33 0.31 0.11
Ni <40 <15 32 <30

*
The uncertainties are 1 standard deviation based on counting statistics. These uncertainties, converted io percen-
tages, can be applied to the trace-element data for the other samples. (For a better assessment of accuracy and

precision, see Kosiewicz et al., 1974.)
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mole percentages

weight percentages

Table V-2.

Major-element concentrations for samples from 72275 and 72255.

72275,76 12275, 80 72275, 83 72275,91  72255,42 72255,52  72255,69
72275, 57 Light core, Dark rind, Dark Pigeonite Civet Cat Light Dari
Matrix clast #1 clast #1 clast #2 basalt clast matrix matrix
Si0g" 48 47 47 48 46 52 49 48
TiO, 0.8 1.8 1.8 1.5 0.7 0.3 1.4 0.9
AloOn 17.9 23,5 17.9 13.9 19.8 15.0 14. 5 18.9
FeO 9.9 7.4 10.3 15 9,8 7.4 14 9.8
MnQ 0.12 0.077 0. 104 0. 156 0. 111 0,122 0. 163 0. 198
MgO 11.0 5.24 9.43 9.38 10.4 15.9 9,71 10.3
CaO - 11.0 14,2 11,7 19.9 12.3 9.1 19.7 11.2
NagO 0.40 0. 36 0.39 0.29 0.38 0.33 0. 32 0. 40
K,0 0.22 0,32 0.47 0.26 0.25 0.08 0.27 0.28
cry037 0.25 0.20 0.46 0.24 0.46 0. 16 0.22 0.31
Normative Mineraiogies
rFo 1.8 0.0 1.2 0.0 7.3 0.0 0.0 1.4
Fa ©Le 0.0 0.9 0.0 5. 2 0.0 0.0 1.0
En " 25.0 13.1 21,9 23.5 15.5 29.5 24.1 23.6
Fs 15.3 10.6 14.6 25.2 9.9 13.1 23.4 15.1
Wo 3.4 3.7 5.2 7.6 3.9 2.5 6.6 2.8
Or 1.3 1.9 2,8 1.5 15 0.5 1.6 1.7
Ab 3.4 3.0 3.3 2.5 3.2 2.8 2.7 3.4
An 46.8 61.6 46.0 36.0 51.5 39.1 37.3 48.9
n 1.5 3.4 3.4 2.9 1.3 0.6 2.8 1.7
Chr 0.4 0.3 0.7 0.4 0.7 0.2 0.3 0.5
L Qtz 0.0 2.5 0.0 0.4 0.0 1.8 1.3 0.0
.
Fo 68. 1 - 66.3 - 57.2 - - 67.2
Fa 31.9 - 33.7 - az., - - 32.8
En 63.0 53.7 58.4 47.6 58.6 76.5 50.7 63.0
Fs 29.5 33.1 29,7 39.0 28.6 19.3 37.4 30.7
Wo 7.5 13,2 1.9 13.4 12, 8 4.1 11.9 6.3
Or 2.5 2.8 5.3 3.8 2.6 1.1 3.8 3.0
Ab 7.0 4.8 6.7 6.5 5.0 6.9 6.9 6.5
| An 90.5 92.3 87.9 89.7 9l.4 92.0 89.3 80, 2

*By difference.

TFrom radiochemical activation analysis.

Note:

Uncertainties for FeQ and ’1‘102 are +5% of the reported value; those for other clements are £l to 2% of

the reported values.



of the chondrite-normalized REE abundances and the magnitude of the Eu anomaly
(Figure V-1) are like those reported by Hubbard ct al. (1973) for Apollo 16 KREEP
basalts. The éhondritomormalized,REE abundances for the samples from 72255 (Figure
V-2), while roughly similar fo those found in KREEP hasalts, are significantly differ-
ent, as discussed below. All comments on the petrology and general character of the

samples have been taken from Section 1II of this report.

72975, 57 |
ﬁ

This sample is a portion of the friable light gray polymict brececia, which has a
porous, poorly sintered matrix, and is heterogeneous with light streaks that are
plagioclase-rich. The analysis given in Table V-2 for this sample can be compared
with the Apollo 17 PET report on 72275. The REE concentrations are intermediate
between those of 72275, 80 (dark matrix breccia rind of clast #1), and those of 72275, 91
(pigeonite basalt clast) or 72275, 76 (light matrix "marble cake' interior of clast #1).
The REE concentrations are toward the low edge of those reported by Hubbard et al.

(1973) for Apollo 16 KREEP,.

72275,76
“

This "marble cake” material is a mixture of crushed gabbroic anorthosite and
dark matrix breccia that is perhaps the same as the rind of clast #1 (sample 72275, 80).
The texture is sugpgestive of two immiscible fluids poorly mixed by moderafe amounts
of stirring. The REE abundances in this material are the same, within uncertainty,
as those found in the sample of pigeonite basalt breccia 72275, 91. This similarity
extends to the elements Ga, Rb, and Cs as well, but is presumably fortuitous. The
basalt material has lower concentrations of the constituents of plagioclase, higher
concentrations of the constituents of mafic minerals, and higher concentrations of Co,
Sc¢, Hf, and Cr.

72275, 80

This is a sample of dark matrix brececia that was present as the rind of clast #1.

It contains stringers of the anorthositic core material. The highest REE concentrations
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Figure V-1. Rare-earth abundance patterns in samples from 72275.
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Figure V-2. Rare-earth abundance patterns in samples from 72255,
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of any 72275 sample studicd were found in this m aterial. These concentrations are

well within the range given by Hubbaxrd ct al. (1973) for Apollo 16 KREEP basalts,

72275, 83

Sample 72275, 83 is also dark matrix brecéia, but taken from clast #2, It is inter-
esting to note that this material contains the los.lvest concentrations of REE in any of
our 72275 samples analyzed. The concentrations are still within the range for Apollo 16
KREEP. This sample is more mafic and contains less plagioclase than the other sample
of dark matrix breccia (72275, 80). This may indicatc that material with the highest
concentrations of REE and of other KREEP-associated trace elements can be equally
well diluted by plagioclase or by mafic minerals, which have low concentrations of

these elements.
72275, 91

This sample comes from pigeonite basalt breccia clast #5. The REE concentra-
tions are identical to those found for 72275,76, and the reader is referred to the dis-
cussion of that sample. We note no obvious effects of the presence of basalt in this

material as opposed to its absence in the 01:1181‘ general types of 72275 material.

The major-element concentrations for the samples from 72275, in general,
reflect the petrologic character, but the trace-element concentrations ave, to a first
approximation, independent of the major-element compositions and petrologic charac-
ter. This suggests that the refractory trace ele;ments may be present either in a
noritic material that has been mixed with relatively small-to-equal amounts of mafic
or plagioclase-rich materials or in extremely high concentrations in some identified
material that has become mixed in unknown proportions with the trace-element-poor

materials that would then comprise the bulk of the samples.

72255, 42

This sample is part of the so-called Civet Cat clast, which is mainly a mixture

of plagioclase and orthopyroxene. From visual examination and photography, Stoeser
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et al. (Section IN) estimated that this clast consists of approximately 40% + 107, plagio-
clase and 60 ¥ 107 orthopyroxene, suggesting that it is the shocked remains of a
plutonic rock. From our major-element analysis (Table V-2}, we caleulate a norm

of 55% orthopyroxene and 42% plagioclase in our sample. The relatively low REE con-
centrations and the much smaller Eu anomaly Tor the Civet Cat clast, when compared
with the other samples from 72255 that we h.a_\_jr;e"analyzed so far, do argue in favor of a
possible plutonic origin for this rock. If the ‘clast is entirely of plutonic origin, it
contains a significant component of the parent 'lniquid from which the plagioclase and
pyroxene crystallized. This liquid was soméwhat higher in trace-element concentra-
tions than is required for most liquids that were parents for other plutonic rocks (see,
for example, Haskin et al., 1973, 1974), The parent liquid would also have had a
significant negative Eu anomaly since the precipitation of plagioclase would enrich the
resulting rocks in Eu relative to the other REE. The slope of the rare-earth pattern
in 72255, 42 is not so great as that in the KREEP-like distributions found for all
samples from 72275, but more nearly approaches that slope for the light REE than do
the other two samples from 72255. Perhaps its altered slope reflects in some way

the REE pattern found for the samples of matrices 72255, 69 and 72255, 52.

72255, 52 .

This material consists of interior chips of light gray matrix. The REE concen-
trations in this material are only 80% as high as those in the dark matrix material
72255, 69, The REE distribution relative to chondrites (Figure V-2) shows an inter-
esting departure from the KREEP pattern found in 72275. The extent of enrichment
of the elements La to Sm relative to chondrites in 72255, 52 is about the same, although
the size of the Eu anomaly is about that expected, based on concentration levels and |
rare~earth distribution found in Apollo 16 KREEP. The slope of the chondrite-
normalized REE distribution of 72255, 52 for Gd to Lu is the same as that found in the
more KREEP-like samples from 72275, It is interesting to note that this light matrix
sample, while slightly more mafic in major-element composition than its darker
counterpart 72255, 69, has essentially the same concentrations of Co, Sc, and Hf as
does 72255, 69, even though in many materials these elements associdte principally
with mafic minerals as rocks crystallize from silicate melts. These elements tend
to remain in the liquid while crystals of plagioclase or orthopyroxene form but are

enriched in later crystallizing minerals — Co in olivine and Co or Sc in clinopyroxene.
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The samples from 72255 show lower lrace-element concentrations and greater
deviation from KREEP-like trace-element patterns than appears to be characteristic

of noritic materials sampled from other boulders (unpublished results).
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VvI. SIDEROPHILE AND VOLATILE TRACE ELEMENTS IN 72255 AND 72275

John W, Morgan, R. Ganapathy, Hideo 'Hig‘uchi, and Edward Anders

Enrico Fermi Institute and Depar%ment of Chemistry
University of Chicago
Chicago, 0Olinois 60637

ABSTRACT

Of six samples from DBoulder 1 at Station 2, four contain a unique meteoritic com-
ponent, which we attribute to the Crisium projectile. The other two samples are
meteorite-free, igneous rocks: an unusual, alkali- and Ge-rich pigeonitic basalf, and

an alkali-poor norite of unexceptional trace-element chemistry.
INTRODUCTION

Six samples have been analyzed for 17 elements by radiochemical neytron-activation
analysis (Table VI-1). Four of these have substantial meteoritic components, judging
r3
from the ~100-fold enrichment in siderophiles (Ir, Re, Au, Ni, etc.) over their indig-

enous levels in erystalline highland rocks.
METEOQRITIC COMPONENTS

Different types of lunar meteoritic components are best distinguished from each
other on ternary plots of diagnostic elements, for example, IrAuGe (Figure VI-1, from
Morgan et al., 1974a). All four Boulder 1 samples fall in Group 3, where no other
Apollo 17 samples lie (Figure VI-2). Essentially, the same groupings are found on a
ReAuSh plot. |

It is possible to assign these lunar meteoritic components fo specific basins, .by
comparing their abundances at different landing sites (Morgan et al., 1974a, b) with
calculated ejecta thicknesses at those sites (McGetchin et al., 1973). By such argu-

ments, we have assigned Group 3 to the Crisium projectile. This is consistent with
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METEORITIC METAL IN LUNAR HIGHLAND ROCKS
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Figure VI-1. Six discrete ancient meteoritic components are present in highland rocks, as seen from the cluster-
ing of points on ternary diagrams such as IrAuGe or ReAuSb (Morgan et al., 1974a}.
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At the Apollo 17 site, samples from the gray, foliated Boulder 1 form a unique grouping. All fall
into Group 3, in contrast fo the blue-gray and green-gray breccias, which fall into Group 2 and
Groups 1, 2, 5, and 6, respectively. Trom its geographic distribution and stratigraphic position,
the Group 3 component is assigned to the Crisium projectile.



the high stratigraphic position of Boulder 1 (Schmitt, 1973) and the rarily of Group 3
at other landing sites (Figure VI-1), According to McGetchin et al. (1973), a 100-m
layer of Crisium cjecta is expecied at the Apollo 17 site (Figure VI-2). Other major
contributors and their assipnments according to Morgan et al. (1974a,h) are as

{follows: .

Imbrium = 1, |

0, J

Neectaris
Serenitatis = 2. N
The rind of clast #1 contains essentially the same Group 3 meteoritic component
as do the other samples, but it is enriched in Rb, Cs, and U (Table VI-1). Our data
are quite consistent with the notion (Section III of this report) that the rind consists of

ejecta welded on in flight, We have not yet analyzed the anorthositic core of this clast.

INDIGENOUS TRACE ELEMENTS

General

All samples except the Civet Cat clast are KREEP-rich, as determined from the
Rb, Cs, and U contents, They lie near the toﬁ of the Apollo 15 or 16 range, though

somewhat below Apollo 14.
Matrix

We see no significant difference between the matrices of 72255 and 72273, except
for a twofold higher abundance of meteoritic elements in the former. Judging from
the alkali and U contents, their major-element compositions ought to be fairly similar.
There is no evidence for depletion of volatiles in 72255, in spite of its more metamor-
phosed nature. (The most labile volatiles under such conditions might be Se, Te, Br,
Bi, Cd, and Tl.) This is not surprising, because we have never seen clear evidence
of metamorphic losses in any lunar rock. Presumably the metamorphism took place

under closed-system conditions, at least for our suite of volatiles.
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Table VI-1.

Abundances of 17 trace elements in 72255 and 72275.

722535, 42, 9001
Black and white

72255, 52, 9004

72275, 57, 9002

72275, 80, 9004

72275, 83, 9005

72275, 91, 9006

_clast o 1 Clast #_1 Clast #2_ _

Element (Civet Cat) Matrix Matrix black rim gray aphanitic Basalt clast
Ir 0.0040 5.28 2. 26 2.54 3. 44 0.023
Re 0.0068 0.498 0.225 0.233 0.334 0. 0066
Au 0.008 2, 00 0.82 1. 16 - 1.30 0.045
Ni 4 227 97 122 UL 43
Sh 0.26 0.77 1. 17 0. 94 1. 06 2. 87
Ge 61 174 406 137 178 1290
Se 280 77 34 63 52 ) 230
Te 14.3 5.2 4.4 3.6 3.7 7.3
Ag 0.76 0. 57 0.74 0,93 . 0.56 0. 58
Br 15.3 101 48 290 95 44
Bi 0. 30 0.21 0.11 0.14 0.12 0. 14
Zn 4.5 2.8 2.7 2.8 2.4 2.7
cd 5.8 8.1 13 15 26 8.3
T 0.30 1. 18 0.71 0.71 0.62 0.58
Rb 1.27 5.8 5.9 11.3 5.4 8.0
Cs 67 240 260 480 260 360
U 240 1790 1500 3100 1840 1500

* .
Light-to~-medium gray, with ~10% dark-gray material like 72255, 64.

TPussibly contaminated by pigeonite basalt.



72275, 91 (Basaltic Clast £5)

This intercesting rock belongs to o small but prowing family of nonmare hasalts,
possibly ancestral to KREEP-rich breceias.  Like 14310, 62295, and 68415, it has
an igneous texture and a fairly high content of KREEP-lype clements (U, Rb, Cs).
But unlike these rocks, it is 2 to 3 orders of magnitude lower in siderophile elements
{lr, Re, Au, Ni} than a typical KREEP-rich breccia is. A previous example is the
mesostasis-rich basalt 15272, 9, 22 (Morgan et al., 1973).

Because of the high content of siderophiles, we have argued that 14310, 62295,
and 68415 are not true igneous rocks, but impact melts. Conversely, siderophile-
poor basalts such as 72275, 91 are either igneous progenitors of KREEP breccias,
from a depth below the ancient highland regolith, or impact melts on a gigantic enough
scale to permit segregation of siderophiles. A Rb/Sr age determination on this clast

would be of very great interest.

In its overall trace-element pattern, basalt 72275, 81 is very similar to 15272, 9, 22,
except for a 50-{old higher Ge abundance and lesser enrichments of Sh and Se. This is
by far the highest Ge content seen in a meteorite-free lunar rock to this date. Igneous
rocxs usually contain only a few ppb to a few tens of ppb, while typical soils and
breccias contain ~100 to ~2000 ppb Ge, largely of meteoritic origin. We suspect
that the high Ge content of 72275 matrix (which causes it to plot off-scale in Figure VI-2)
reflects admixture of Ge-rich, pigeonitic basalt. Some 20% would suffice. We note
with some satisfaction that Stoeser et al. (1874) have found zones of crushed pigeonite

basalt to be "fairly abundant in 72275."

72255, 42 (Civet Cat Clast)

This clast is relatively low in alkalis and U. Since it has essentially no meteoritic

component, it presumably came from a depth below the ancient highland regolith.

72275, 83 (Clast £2)

Clast #2 looks very much like matrix 72255, 52.
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Vil. RDb-Sr AGE OF THE CIVET CAT CTLAST, 72255, 41

W. Compston and C. M. Gray

Department of Geophysics and Geochemistry
Rescarch School of Earth Sciences
The Australian National Univer sity
Canberra, Augtlaha

Plagioclase-rich clasts, oi*thopyroxené-rich matrix, purified pyroxene, and
plagioclase from the Civet Cat clast define a Rb-Sr isochron age of 4. 18 £ 0. 04 X 1.(}9 yTr

and an initial 87SI'/SGSr ratio of 0.69922 + 0, 00005 (Table VII-1 and Figure VI-1}.

. The fit of all data to the line is within error except for plagioclase 3, and blank
corrcctions are essentially negligible. The decay constant used is 1.39 X 10—11/3/1“.
Possible bias in age due to spike calibration seems very low and can be compared
with our published results of, for example, 3.93 + 0.04 b.y. for 14310 and
3.83 + 0. 10 b.y. for 70035.

The plagioeclase-rich "clasts" referred‘t’o in Table VII-1 are presumably deformed
phenocrysts. The sample as received was coarsely crushed, and the white portions
were picked oul to make two (nonrepresentative) samples, or "clasts.,' Similarly, the
coarse gray poriions were selected for two "matrix" samples, and the finer, mixed
white and gray remainder was used for two further samples. Following this, minerals

were hand-picked from the combined +100-mesh size fraction.

The isochron probably measures the original igneous age of the Civet Cat norite,
before its brecciation and incorporation in Boulder I. Figure VI-1 shows our
accumulated mean measurement for the initial 87Sr/868r ratio of the meteorite Angra
dos Reis. Our measurements are higher than those of the Caltech group by about
0.00010, so that BABI on our scale is close to 0.69910. The reference line on the
isochron marked "Model 4.5 b.y.'" is drawn through 0.69910. Relative to this line,
the average total-rock clast shows at least a two-stage Rb/Sr evolution. (This assumes

8?Rb/868r ~ 0. 16 for the whole clast, as determined from the modal estimates of
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Table VII-1. Analytical data, 72255,41, Civet Cat clast.

Rb

Sr

Sample (ppm) (ppm) 87Rb/ BOp 8'7:':31‘/ 805y
Pyroxenc 1.092 16. 12 0, 19560 0,71080 + 0.00015
Pyroxene-rich .

matrix #1 5.868 79.8 0. 20530 0.71148 4 0.00003
Pyroxene-rich 5.75 99.7 0. 16620 0.70919 £ 0. 000035
matrix #2 e - ) * *
Plagioclase-rich '
clast #1 4,20 219.5 0.05520 0. 70250 x 0. 000065
Plagioclase-rich 7
clast 42 3. 96 226. 5 0.050837 0.70217 + 0. 00003
Mixed clast, 2,562  10l.4 0.07293 0.70355 % 0. 00002
matrix #1
Mixed clast, 3.020  100.9 0.08640  0.70443  0.00002
matrix #2
Plagicclase 1 3. 591 224,86 0.04614 0.70203 + 0.000025
Plagicclase 2 3,598 221.2 B 0.04692 0.70202 4 0.000027
Plagioclase 3 3.290 209.5 0.04530 0.70168 + 0.00008
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i)):oportions of dark and light material in Section III of this report.) For example, if
the norite was a direet melt of a 4.5 X 109 yr source, its Rb/Sr ratio was increased
during melting relative to that of the source. Alternatively, and more probably, if
it was an accunmulate of pyroxcne and plagicclase, then it also accumulated inter-
stitial Rb-rich mesostasis, which inereased its Rb/Sr ratio. The above is also true

if-some lower initial 8781*/ 865y ratio is used, instead of BABL

The above assumes that the norite was ciiEﬁlically' closed during the major impact
event that put it into Boulder 1, If this \ﬁas not so and if Rb was added during boulder
assembly, the isochron could be 'clénlinated by the new Rb and the age could refer to
the major impact., We have not yet found the Rb-rich phase(s) in the rock — presumably
they are lost in fine-grained shocked material. However, the purified pyroxene fits
exactly on the isechron. If it was originally older, then there must also have been
Sr-igsotope equilibration when the (hypothetical) new Rb was added. This, in turn,
implies high temperatures during assembly, for a period long enough for Sr diffusion.
We have studied polished thin sections of tiny fragments of our sample, and agree with
the assessment of Section III that the clast is a shocked igneous rock. There does not
seem to be any evidence for the recrystallization that we think ought to accompany high

temperatures, so we think it unlikely that Sr iscotope re-equilibration occurred.

Even if this reading is wrong, metamorphic re-equilibration of the rock cannot
have occurred long after the 4. 18-b.y. age reporied. The initial 8751‘/ 868r ratio
of the clast is low compared with mare basalts, and the mean Rb/Sr ratio is moderately
high at 0,055, This combination restricts closed-system Sr-isotope equilibration
during any later heating to within about 100 m.y. of the original age, as the 8781‘/8681'
ratio of the clast increases by 0. 00010 per 45 m.y.

The clast age is older than any samples from the Fra Mauro formation, but it is
comparahble with the 39Ar/ 40Ar ages of Schaeffer and Husain (1973) for fragments in
Apollo 16 soils. The clast age puts a broad limit on the age of Boulder 1 and the
(?)Crisium or Serenitatis impact event: The time of impact was equal to or less than
4.18% 10° yr ago.
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f
We have analyzed the following boulder samples for U, Th, and Pb coneentrations

and for Ph isotopic compositions (Table VIII-1):

72275,53  Matrix |
72275,73  Matrix ‘
72275, 81 Dark rind, clast #1
72275,117  White interior, clast #1
72255,49 Civet Cat clast

72255, 54 Light gray matrix

72255, 67 Dark gray matrix

CONCENTRATION DATA

The U, Th, and Pb concentrations of the dark rind of clagt #1 are high (Table
VHI-1) — similar to those of Apollo 12 and 14 KREEP-rich soils and breccias — indi-
cating that this clast has a substantial KREEP component. This contrasts markedly
with the Apollo 17 basalts 74275, 75035, and 75055, which have low U (0. 132 to
0.151 ppm), Th (0. 407 to 0.488 ppm), and Pb (0.265 to 0.326 ppm) conients, similar
to Apollo 11 low-K hasalts, The dark rind material was hand-picked to >95% purity.
Unforiunately, the white interior material was mixed with black specks, and the small
sample size allocated permitted white material only 70 to 90% pure to be concentrated.
Thus, the relatively high U, Th, and Pb contents (Table VIII-1) of this "white clast"
are probably due to a significant contribution of dark rind material (typically, pure
lunar plagioclase contains <0.01 ppm U and =0. 2 ppm Pb). Similarly, the rather high
U, Th, and Pb contents of the 72275 matrix likely reflect a significant black (KREEP-

238U/204Pb ratios

like) component. These concentration data and associated high
indicate that these rocks were derived from U-rich source regions very different from

the Apollo 17 mare basalts,
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Table VIII-1. Analytical data for 72275 and 72255 samples.

.

Concentration (ppm)T Corrected for analytical blank
Sample Type, Weight 2827, 238y 206 207 208 207 205
number of run (mg) u Th Pb 238U 204y, 204 204 204 206 206

72275,73 P 162. 0¥ 1,325 1,225 599.3 1,218 0.48925  0.99%45
Matrix
#1 C 131.8 1.561 5.962 3.096 3.945 4,284 3,961 1,805 - 0.48105 -
72275,73 C 150.0 1.672 6.285 3.451 3.885 4,712 4,556 2,183 - 0.47921 -
Matrix only
#2
72275, 81 P 53.3 1,915 1,937 1,176 1,880 0.60724  0.9703
Dark rind, ‘ -
clast #1 c 3L.7 3.500 13.21 7.878 3.899 2,493 2,521 1,492 - 0. 59177 -
72275, 117 P 83.3 1,473 1,423 818.2 1,347 0.57522  0.9472
White . . -
interior, C 50.7  0.670 lost  1.410 - 2,445 2,361 1,360 ° - . 0.57606 ~
clast #1 > R
72255, 49 r 66. 2 177.4  198.2  128.9 173.3  0.6505 0. 8743
Civet Cat '

C 5l.6 0.3874 1.216 0.9448 3.24 194.8 217.6  138.6 -~ 0. 6369 -
72255, 54 P 124.1 3,525 3,296 1,709 3,186 0.5187 0. 9666
Light
mafrix C 98.4 1.536 5.724 3.080 3.85 2,998 2,803 1,449 - 0.5171 -
72255, 67 P 100. 8 2,833 2,815 1,601 2,682 0.5685 0.9527
Dark ) ’
matrix C 132.5 1.145 4,222 2.478 3.8l 1,414 1,405 802.5 - 0.5711 -

*
P = Pb isotopic composition; C = concentration.

TConcentration runs were "total spiked" to ensure equilibration of spikes and samples.

j"Actually, only ~54 mg were analyzed since ~2/3 of the solution was spilled, which explains why the Pb isotopic composition
ratios appear low.



AGE RELATIONSIIPS

The data are plotted on a concordia diagram in Figure VII-1. The data points
fall within the ervor of concordia at about 4. 25 b.y. (matrices), 4.50 b.y. (clast #1),
and 4. G5 b.y. {(Civet Cat). The spread in these must reflect al least two very okd
events, but no accurate time asscssment can yet be made from this Limited quantity
of information, owing to the flatness of concordia in the 3.9- to 4.7-h.y. region;
we emphasize, however, that one event distinctly older than the "lmbrian event”
(~4.0 b.y. old) is reflected in these analyses, It may be worth noting that these data
lie within the crror of the 3.99- to 4,47-b.y. discordia line documented by Nuncs ct al.
(1973) for Apollo 16 highland rock samples. We are optimistic that with other Apollo 17

40Ar/ 39A1‘ analyses and our own Rb-5Sr and U-Th-Pb work

boulder workers' Rb-8r and
on the Chao consortium Station 7 boulder samples 77215 and 77135 (work in progress),

we will be able to piece together a more definitive history of events for these materials,
REFERENCE
Nunes, P. D., Tatsumoto, M. T., Knight, R. J., Unruh, D. M., and Doe, B. R.

(1973). U-Th-Pb systematics of some Apollo 16 lunar samples. Proe. Fourth
Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 4, vol. 2, pp. 1797-1822.
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IX. TRACK STUDIES OF SAMPLES 72255 AND 72275

1. I Hufche on

Department of Physics
Univeysity of California
Berkeley, California 94720

Optical microscopic studies oﬁ two iﬁterniediate pieces of 72255, located 1to 3 cm
below the surface, indicate an upper limit {o the track exposure age of 15 to 20 m.y.
Exposure ages determined by track methods, in the context of the large boulders,
require some explanation. They do not necessarily bear any relation Lo the time at
which the boulder rolled to its present location, Lunar surface photographs show con-
siderable debris, including large fragments surrounding the boulders. Because of the
steep depth dependence of the particle-track production rate, the surface under a
spalled-off fragment of typical thickness 10 em is essentially virgin, We thus expect
that particle-track exposure ages defermined at different locations on the same large
boulder will reflect the local rate of large-scale discontinuous erosion and will not

necegsarily be the same.

A striking feature of the track sfudies of breccias 72255 and 72275 is the peculiar
etching behavior of many of the feldspar and olivine crystals. Affer standard etching
procedures, crystal surfaces are frequently irregular and bumpy, presﬁmably owing to
nonuniform dissolution of the surface, thus hindering track observations and perhaps
introducing significant errors if the rate of track etching is as irregular as surface
dissolution is. TFigures IX-1 through IX-4 contrast the normal and peculiar etching
behavior of feldspar grains in 72255. Alithough we have not ohserved this effect in
feldspars or olivines in samples from other missions, it is apparently widespread
among Apollo 17 samples. We have noticed similar behavior in numerous soil samples,
in other boulder samples, in basalt 71055, and occasionally in Apollo 17 deep-core
samples. Viewed in thin section, some affected areas are seen to contain larger than
normal densities of dislocations and inclusions. Microprobe analysis on another Apollo
17 boulder chip similarly afflicted has revealed no apparent chemical differences between
normal and peculiar areas., Fission-track dating of a whitlockite erystal in 72255 yields

an uncorrected track retention age of 3.9 to 4.0 b.y.
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Figure IX-1. A "normal" feldspar crystal after etching in NaOH solution (1 g NaOH:
2 g HoO) for 60 min., Tracks are visible as distinctly shaped pits and
are easily countable with a track density =8.5 X 106/cm?2. 72255, 30;
scale bar, 20 p.

Figure IX-2. Plastic replica of the same grain. Tracks are well-developed and
exhibit no unusual features. 72255, 30; scale bar, 20 .
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Figure IX-3. A typical "peculiar" area after an identical etching treatment. The sur-
face has been attacked and eroded in a very nonuniform fashion, com-
plicating the recognition of track etch pits. 72255, 30; scale bar, 20 p.

Figure IX-4. Plastic replica of an etched ""peculiar'” area. Only a few well-developed
tracks are visible. 72255, 30; scale bar, 20 .
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X. A PRELIMINARY REPORT ON THE MAGNETIC
MEASUREMENTS O SAMPLES 72275 and T2255

S. K.. Bé,'ne,rjee

Department of Geology and Geophysics
~ University of Minnesota
Minneapolis, Minnesota 55455

We have studied 1) the direction and magnitude of natural remanent magnetization
(NRM) of five ~3-g subsamples of 72275 and 72255 and 2} the high-field saturation
magnetization (crs), coercive force (Hc), and isothermal remanent magnetization

(IRM )} of a 100-mg chip from each of these samples. Given an understanding of

SAT
the magnetization processes, group 1 experiments provide information about the
abgolute direction of the ancient magnetizing field and a qualitative estimate of its size
(paleointensity). The group 2 experiments yield a quantitative estimate of the iron

content and a qualitative idea of the grain sizes.

Figure X-1 shows an equatorial projecfion of the NRM vector directions from
three matrix subsamples of 72275 (46, 47, and 56) and two matrix subsamples of
72255 (33 and 36). Mulual-orientation information was available from sample photo-
graphs and from Lunar Sample Information Catalog - Apollo 17 (p. 24). The aver-

age NRM directions of the two rocks (each representing a different layer from the
same boulder) are seen {o be ~100° to each other. It is estimated that orientation
errors can be as large as +20°; however, the data are significant enough in spite of
them. In a terrestrial situation, we would ascribe such errors to a rotation of the
magnetizing field due to secular variation or to the onset of a field reversal that

happened to get recorded.
However, hefore we consider such speculation, it is necessary to conduct storage

tests and partial alternating-field (AF) or thermal~demagnetization experiments to

establish whether the differcnt directions are indeed stable. We have thus far completed
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Figure X-1. NRM directions of samples from Boulder 1, Station 2; equal-area pro-
jection.
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only a storage test (>80 days in zero field). TFortunately, unlike many lunar rocks,
these samples do not show a decay of NRM with time; that is; there is no sign of an
unstable viscous remanent magnetization. Since ATF-demugnetization has been shown

to impart irregular error signals to some lunar rocks, we are proceeding with thermaul
demagnetization in a Hz/ COB gas huffer system suitable {for preventing the oxidation of
iron grains while thermal demagnetization is in progress. Until that is completed, our
tentative conclusion is that the two rocks, 72275 and 72255, arc probably magnetized

at an angle to each other., I we assume that the NRM is a the rmoremanent magneti'za—
tion and that these divergent directions are not due to physico-chemical reasons, then
the two layers must have been mapgnetized (i. e.:, cooled from above 770°C) at different
times. More specifically, for secular variatioﬁ and field reversal, the terrestrial
dynamo (size ~l()3 km) has a time constant of 2 X 103 o 5% 103 yr. If we assume the
ancient lunar magnetizing field also to be due to such a dyramo, then, purely by analogy,
these two rocks could be that much different in age. Even without this conclusion, what
we find remarkable about the NRM properties of these samples is that, compared fo
most lunar samples, the NRM intensities (Table X-1) and directions (Figure X-1) are
very homogeneous among subsamples. Therefore, we can indeed state that the data

in Figure X-1 are truly representative of the two rocks allocated to us {rom two layers

of the same large boulder.

In Table X-I, we show the values of various magnetic properties for the 3-g and
100-mg subsamples of 72275 and 72255, Those for O‘S, Hc’ and IRMSAT were measured
only for the 100-mg (chip) subsamples. NERM values of the larger samples of 72275
are an order to magnitude greater than 72255. Values of US suggest that half this
increase can be attributed to a greater iron content in 72275 (~0. 8% by weight) than in
72255 (0. 16%). This is corrohorated by IRMS AT data, The other half of the specific
NRM increase in 72275 may be due to a larger number of more efficient carriers of

NRM.
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Table X-1. Magnetic parameters of 72275 and 722556 samples.

NRM % H IRMgpp
-1 -1 © -1
Sample number {emug ) {emug 7) (Gc) (emug )
; -4
72975, 46 2.40X 10
72275, 47 1.3ox 1074 12 ~25 7% 107
72275, 56 1.09% 107 .
72255, 33 123X 1077
72255, 36 117X 107° 0.36 ~18 2.3% 1073

156



o

XI. SPECTRAL REFLECTANCE OF 72275 FROM
BOULDER 1, STATION 2, APOLLO 17

John B. Adams

West Indies Laboratory
Fairicigh Dickinson University
St. Croix, Virgin Islands 00820

Planetary Astronomy Laboratory
Department of Earth and Planetary Scicnces
Massachuseits Institute of Technology
Cambridge, Massachuseits 02139

and
Thomas B. McCord

Planetary Astronomy Laboratory
Department of Earth and Planetary Sciences,
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Spectral-reflectance measurements (0,35 to 2. 5 ym) were made of samples
72275, 103 (chip) and 72275, 98 (saw cuttings). Both the chips and the cuttingé consist
mainly of friable feldspathic breccia. Sample 72275, 103, 2 chip taken from east-
end piece 72275, 27, is rich in gray polymict breccia (see Section I}, The saw
cuttings were derived from the entire rock, but they are probably strongly biased
toward the friable feldspathic matrix material that has been preferentially disaggre-

gated.

The spectra of both samples (one of which is presented in Figure XI-1) are very
similar. They show two prominent absorption bands, one at 0,91 pm and another at
1.93 pm, arising from ?E‘ez+ in pyroxene. The depths of these bands (~15%) are large
enough to preclude the presence of much glass or opaque material in the samples.
From the spectral properiies alone, it is clear that the samples are not soil breccias
nor vitric breccias, as, of course, has been verified by petrography. The wavelengths
of the principal absorption bands plot on the pyroxene trend (Figure XI-2), indicating
that orthopyroxene is spectrally dominant. Although it is clear from petrographic
examination that lesser amounts of other pyroxenes and olivine occur in the samples,

we can expect that the orthopyroxene with its strong absorption would monopolize the
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Figure XI-1. Reflectance spectrum of 72275, 98.
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rock specirum. From the data of Adams (1974), the composition of the dominnul
pyroxene, as determined from the reflectance spectra, is EnG 0- GSFSBS " OWO.-; This
composition agrees well with the orthopyroxenc analyzed by Stoeser et al, (Ser -1 HI)
in the anorthositic gabbro bands in clast #1 {marble cake) and in the gray polymict
breccia. The weak hand ncar 0.6 pmn probably involves a titanium and ivon charge
transfer and is typical of many lunar pyroxenes. The weak band near 1.23 pm is

contributed by Fe‘?'+ in calcic plagioclase.

A principal reason for studying the spectral reflectance properties of the boulder
samples has been to gain a better understanding of the rock types from which the
terra soils are made. The soils, in turn, can be measured from earth-based telescopes
(McCord et al., 1972) down to areas about 1 kmz. If 72275 is representative of the
South Massif, we would expect the soils in that area to show a weak band near 0,91 pm,
Telescopic spectra are not yet available for the massifs at the Apollo 17 site; however,
spectra taken of a terra region north of the crater Littrow show a weak band at €,92 to
0.93 pm, and the bright crater Proclus to the southeast has a band at 0. 91 pm, Only
tentative conclusions can be drawn from these sparse data. It appears that the optical
spectra of our samples of 72275 are dominated to a greater extent by orthopyroxene
than are spectra of the regional terra in the Littrow area. It is likely, however, that
orthopyroxene-rich feldspathic rocks may be lfcally abundant, as, for example, may

be the case in the crater Proclus.
REFERENCES

Adams, J. B. (1974). Visible and near-infrared diffuse reflectance spectra of pyroxenes
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APPENDIX A

SPECIMEN 72275 DOCUMENTATION
Ursula B. Marvin

The friability of the matrix of specimen 72275 caused numerous {fragments and
an abundance of fines to hreak away from the main mass during transport from the -
Moon and handling in the Lunar Receiving Labofatory. TFigure A-1 shows five pieces
reassembled in their original positions plus an :a.rray of 20 undocumemed chips.
|
Samples 72275, 1 to 72275, 14 were labeled during the PET examination in January
1973, Samples 72275,1, 4, 6, 7, 8, and 9 were placed in storage, and the remainder

were distributed as follows (sce also Table A-1):

72275,2 Nyquist

72275, 5 Strangway; subsequently returned to storage

72275,11 Thin section of undocumented chip; in library

72275, 12 Thin section of undocumented chip; to Wood

72275,13 Thin section of undocumented chip; in library

72275,14 Probe mount of undocumented chip; in library.

“

On July 24, 1973, the following samples were pried or chipped from the surface

of the specimen before sawing hegan:

72275, 15, 16, 17 Chips of the rippled material coating the E| surface (see
Figure A-2); for Agrell and Wood

72275, 18 to 72275,26 Chips of matrix from the southwest surface (see Figure A-3);
for Agrell and Wood.

The sawing of 72275, 0 was done on July 26 and 27. The friability of the matrix
and the hardness of some of the clasts combined to cause much breakage. When
sawing was complete, the specimen consisted of four main subdivisions (see Figure
A-4): '

72275, 102 The west end, or main mass

12275, 27 The east end

72275, 28 to 72275,31 Clast #1 and adjacent pieces of matrix
72275,42 The slab.
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The above pieces were sampled as follows:

72275, 102

72275, 66
72275, 67
72275, 68
72275, 69
72275, 70
72275,71

72275, 27

72275, 103
72275, 110
79275,111,112,113
72275, 114

. 72275, 42
72275, 28

From this specimen, fresh interior chips of matrix were
pried loose from the fractured, protruding part of the

west face at the location outlined in Figure A-5. The chips
were humbered and diétributed as follows:

Reed

Burns
Eglinton
Storage
Burlingame

"Moore -

From this east-end piece, the following chips were taken
(see Figure A-8):

Adams

Reed

Storage

Agrell

The sldb

Clast #1 and its adjacent pieces

These two specimens were subdivided and distributed as
indicated in Figures A-7, A-8, and A-9. ‘

-
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tory in January 1973. Twerty undocumented chips are shown in the foreground (NASA photograph
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source of samples 72275, 15, 16, and 17.
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Figure A-3. Sampling sites and 'photographs of documented matrix chips from the
southwest surface of 72275.

/68




Figure A-4. Top: Specimen 72275, 0 with dashed lines indicating cutting plans.
Bottom: The main subdivisions of 72275, 0 after removal of the slab
and clast #1.
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Figure A-5. Sketch showing source area of documented interior matrix chips from
the west surface of 72275, 102.
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Figure A-6. The east-end piece, 72275,27, énd the source area of some daughter
chips.
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Figure A-7. Subdivisions of the slab, 72275,42, some matrix chips, and clast #1. Sketches of the subdivisions
indicate the sources of samples sent to investigators. Unlabeled pieces were put in storage (see
also Table A-1). Inset: Photograph of the reassembled pieces,
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Figure A-9. Photographs and a sketch of clast #5, a rounded fragment of pigeonite
basalt embedded in 2 matrix of crushed basalt of the same composition

(see also Figure A-7 and Table A-1).
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Table A~1. 72275: Inventory of daunghtecr samples.

Number Grams Distribution Description

72275: Samples Taken before Cutiing (see Figures A-1, A-2, and A-3)

L0 3640. 00

Subdivided . Original specimen
1 0.01 Library Thin section of undocumented chip
0.67 " Library = Potted butt

2 1. 02 NYQUIST . Chip from pan

3 5.87 7 Attrition

: 547. 10 Storage Piece broken off in trahsit

5 105. 10 STRANGWAY Piece broken from main mass

6 132. 10 Storage Piece broken from nrain mass

7 50, 29 Storage Chip from pan

8 18.90 Storage Chip from pan

9 4. 80 Storage Chip from pan
10 18. 80 Attrition
11 0.01 Lib‘rary Thin section #11; undocumented chip
12 0.01 WOOD Thin section #12: undocwmented chip
13 0.01 Library . Thin section #13: undocumented chip
14 0.01 Library Probe mount of undocumented chip
15 0.01 WOQOD Chip of rippled surface material
16 0.01 AGRELL Chip of rippled surface material
17 0. 02 WOoOoD Chip of rippled surface material
18 0. 02 WOOD Thin sections #122, #123: matrix

0.18 Library Potted butt

19 0.32 Storage Chip; clast plus matrix
20 0.13 WOOD Documented matrix chip
21 0.09 Storage Documented matrix chip
22 0.09 AGRELL Documented matrix chip
23 0.09 Storage Documented matrix chip
24 0. 17 AGRELL Gray clast chip
25 0. 08 Storage Undocumented chip
26 Z2.61 Storage Undocumented chips plus fines
27 298. 42 Storage West-end piece after sawing (see

Figure A-4)
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Table A-1 (Cont.)

Number Grams Distribution Description
72275. Black and White Clast (Clast #1) (scc Figures A-7 and A-8)
28 10.91 Storage Remainder of clast 1
29 1. 83 Storage Matrix adjacent to clast
30 0.76 Storage Matrix adjacent to clast
31 6. 34 Storage Matrix adjacent to clast
32 1.42 Storage 9 fragments of black and white clast
33—-41 Undocumented chips (see pages 175 and 176}
42—61 Slab (see pages 173 and 174)
62 0. 67 Storage Black chips from rim of clast #1
G3 0.35 Storage 9 white chips from clast #1
64—65 Fines from cleaning cabinet
66—71 Chips from west face of main mass
(see page 174)
72175 Slab (see pages 174 and 175)
76 0.46 HASKIN White chips from center of clast #1
0.07 ANDERS White chips from center of clast #1
(see Table A-2)
0.27 REYNOLDS White chips from center of clast #1
(see Tahle A-2)
7 0.24 . TATSUMOTO 4W‘hite chips from center of clast #1
18 0.02 AGRELL Thin sections #138, #139: black and
white material
0. 02 wOoOD Thin sections #140, #141: black and
white material
0.39 Library Potted butt
79 0.18 WILSHIRE Thin section #142; black and white
material
0.02 Library Thin sections #143, #144; black and
~ white material
0.15 Library Potted butt
80 0.44 HASKIN Chip of black rim
0.10 ANDERS Chip of black rim (see Table A-2}
0.21 REYNOLDS Chip of black rim (see Table A-2)
81 0.21 TATSUMOTO Chip of black rim
82 0. 17 BANERJEE Chip of black rim
83-109 Slab (see page 175)
110—115

Surface chips and fines (see page 176)
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Tahle A-1 (Cont.)

Number - Grams Distribution Description
116 1,12 Storage - Black and white chips
117 0,21 TATSUMOTO White chips
118 0. 57 Storage . b matrix chips
1198—-121 - Numbers not assigned to any sample

72275; Slab, 72275,42; 1.5 cm Thick (sce TFigure A-7)

42 53.29 Storage ; Matrix and clast #2 of gray aphanitic
1 material
43 37.80 Storage Matrix and clast #3 of gray aphanitic
material
44 0.64 PRICE Surface chip with patina (broken from
piece 72275, 45)
45 0.03 AGRELL Thin sections #124, #125, #126: matrix
' 0. 02 WOOD Thin sections #128, #129; malrix
46 3.10 BANERJEE Matrix (interior piece)
47 2.45 BANERJEE Matrix (surface piece)
48 2. 90 STRANGWAY Matrix (interior piece) '
107 1,41 STRANGWAY Pieces broken from 72275, 48
49 1.54 Storage “  Matrix chip
109 1.06 HOUSLEY Piece broken from 72275,49
50 2.38 CLAYTON Matrix (interior picce)
51 5. 07 Subdivided Basalt clast #5 in matrix (see
‘ .Figures A-7 and A-9) :
90 0. 50 ROSE Matrix adjacent to basalt clast #5 in
72275, 51
91 0.39 HASKIN Portion of basalt clast #5
0. 07 ANDERS Portion of basalt clast #5 (see Table A-2)
0. 19 REYNOLDS Portion of basalt clast #5 (see Table A-2)
92 1. 02 Storage Matrix adjacent to basall clast #5
93 0.01 wWOOD Thin section #147: clast #5
0.0l AGRELL Thin section #148: clast #5
0.01 Library Thin section #149; clast #5
0. 54 Library Potted butt
52 2.34 COMPSTON Matrix (interior piece)
53 1,84 BIRKEBAK Piece with patina
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Table A-1 (Cont.}

Number Grams Distribution Description
104 1. 11 Storage Piece broken from 72275, 53
105 0.63 Storage Piece broken from 72275, 53
54 3.93 Storage : - Matrix slab: 1X 0.8X 1.5 em
55 1.95 WOOD % Matrix piece
56 3. 83 BANERJEE .~ Matrix piece
57 2.04 - HASKIN - " - Matrix piece
0.12 ANDERS Matrix piece (see Table A~2)
0. 52 REYNOLDS Matrix piece (see Table A-2)
58 4.33 Storage Clast plus matrix
59 0.03 AGRELL Thin sections #130, #132, #133:
matrix
0.01 BURNS Thin section #131: matrix
0.03 WOOD Thin sections #134, #135, #136: matrix
0.01 CHAO Thin section #137: matrix
60 2,54 Storage Matrix (interior piece)
61 2.52 Storage Matrix (surface piece)
62 0.67 Storage Black chips from black and white
clast #1 (see page 172)
63 0.35 " Storage 9 white chips from black and white
clast #1 (see page 172)
64 29.25 Storage Fines from air cleaning
65 B.62 Storage Fines from freon cleaning

72275, 102: Chips from West Face Adjacent to Slab (Figures A-4 and A-5)

66
67
68
69
70
71

72
73
74

0.95
1. 09
1.0l
1. 53
2,98
1. 06

1.46
2.04
1. 87

REED
BURNS
EGLINTON
Storage

BURLINGAME

MOORE

72275: Slab

Storage

TATSUMOTO

Storage

Interior chip of matrix
Interior chip of matrix
Interior chip of matrix
Interior chip of matrix
Interior chip of matrix

Interior chip of matrix

Mairix slab
Matrix slab

Matrix slab
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Table A-1 (Cont.)

Number Grams Distribulion Deseription
75 13,71 Storage Band saw chips
T5--82 Black and white clast (sce page 172)
83 0.44 HASKIN Chips from gray aphanilic clast #2
1. 30 ANDERS Chips from gray aphanitic elast 42
(scc Table A-2)
0. 18 REYNOLDS Chips from gray aphanitic clast #2
(see Table A-2)
84 0.14 BANERJEE 1 chip from clast #2
85 0.01 AGRELL . Thin section #145; gray aphanitic
clast #2
0.01 WOQOD Thin section #146: gray aphanitic
clast #2
0, 27 Library Potted butt
86 1.44 Storage Matrix chips
87 2.78 Storage Chips of clast #2
88 0.37 Storage Chips of clast #2 and fines
89 0.38 Storage Matrix, chips and fines
90—93 Subdivisions of 72275, 51, basalt
; clast #5 (see page 173)
94—103 Chips and fines from sawing (see
- page 176)
104 1,11 Storage Surface piece hroken from 72275, 53
105 0.61 Storage Matrix piece broken from 72275, 53
106 172 Storage Matrix piece broken from 72275, 53
107 : 1.41 STRANGWAY Matrix broken from 722735, 48
108 0.41 TAYLOR Surface piece broken from 72275, 45
109 1.06 HOUSLEY Matrix piece broken from 72275, 49

72275: Mostly Undocumented Chips and Fines

33 6. 81 Storage 15 fragments of matrix

34 4,00 Storage 3 fragments with patina

35 2.26 Storage 5 fragments of gray aphanitic material

36 1. 13 Storage Breccia fragment including one gray
aphanitic clast and one 3-mm basaltic
clast

37 1. 05 Storage Fragment of sugary granulitic
anorthosite
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Table A-1 (Cont. )

Numnmbey Grams Distribution Description
38 7.18 Storage West-end _;;face, broken piece
39 1.27 Storage Cabinet sweeping ‘
40 0.28 Storage Fines
41 0.09 lConsumed
94 2. 96 AHRENS Undocumented chips
95 1. 93 LOVERING ﬁndocumented chips
96 1.99 MORRISON Undocumented chips
97 1.02 SIEVERS Undocumented chips
a8 1. 00 ADAMS Undocumented fines
99 2.00 WOOD Undocumented fines
100 9. 88, AGRELL Undocumented fines
101 0.11 HASKIN Undocumented fines
102 2093.6 Storage Main mass; east-end piece
103 1.59 ADAMS Surface chip from west-end piece
72275, 27
104109 Slab (see page 175) _
110 0. 97 REED Chips with patina from end piece
72275, 27
111 39.25 Storage Undocumented fines
112 3.41 Storage Chips
113 1.02 Storage - Surface chips
114 0.23 AGRELL Chips with zap pits and patina
115 16, 18 Attrition
116—-118 See page 173
119-121 Numbers not assigned to any sample
122—-149 Thin sections (see Table A-3)
150 3.46 Attrition
151 0.63 Storage Recovered from crucible
152 0.55 Storage Recovered from crucible
153 6. 62 Attrition
154 0,02 Consumed
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Table A-2. Subdivisions of Haskin samples.

Parent

Number Grams ~ Distrihution sample
9001 Entirely subdivided 2
9002 0. 12 ANDERS Y
9003 0.07 ANDERS 76
9004 0. 10 ANDERS ' 80
9005 100 ANDERS 83
9006 '0.07  ANDERS 91
9007 0. 52 REYNOLDS 57
9008 0. 27 REYNOLDS 76
9009 0.21 REYNOLDS 80
9010 0.16 REYNOLDS 83
9011 0.19 REYNOLDS 91
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Table A-3. 72275: Thin sections.
Parent Area
Number sample Distribution (mmz)

11 1 Library (undocumented) 12
12 1 WOOD (undocumented) 12
13 1 Library (undocumented) 12
14 1 Library (undocumented) 12
122 18 wWOOD 5
123 18 WwWOOD §
124 45 AGRELL 50
125 45 AGRELL 50
126 45 AGRELL 50
127 45 USSR 48
128 45 wWOoO0D 46
129 45 WOOD 40
130 59 AGRELIL 6
131 59 BURNS 36
132 59 AGRELL 35
133 59 AGRELL 35
134 59 WGoOD 35
135 59 WOOD 35
136 59 WOOD 35
137 59 CHAO 25
138 78 AGRELL 10
139 78 AGRELL 10
140 78 WOOD 10
141 78 wQOOoD 10
142 79 WILSHIRE 5
143 79 Library 5
144 79 Library. 5
145 85 AGRELL 5
146 85 wOOoD 5
147 93 WOOD 20
148 93 AGRELL 20
149 93 Library 20
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APPENDIX T3

SPECIMEN 72255 DOCUMENTATION

Ursula B. Marvin
I
Three documented pieces broke away from specimen 72255 during transport. A
reconstruction is shown in Figure B-1. Samples 72255, 1 to 72255, 9 were assighed
numbers during the PET examination in February 1973. Samples 72255, 3 to 72255, 6
and 72255, 9 were placed in storage, and the remainder were distributed as follows

(see also Tahle B-1):

72255,1 Thin section of undocumentied chip; in library
72255,2 Strangway; subsequently returned to storage

72255,7 Thin section of undocumented chip; in library
72255, 8 Thin section of undocumented chip; to Agrell.

The sawing of a slab 1.5 cm thick was accorhplished on July 26, 1973, Tlié 7
specimen is sofficiently coherent for sawing to proceed smoothly, The slab, 72255, 10,
was removed as a single large piece, from.which a small fragment, 72255, 11, broke
off along a preexisting crack. The major subdivisions of 72255 are shown in

Figure B-2.

After removal of the slab, a small piece of chalky white matrix material, 72255, 18,
was sawed from the east tip of 72255, 23, and surface chips were taken at the sites indi-
cated in IFigure B-2. The remaining documented pieces were all derived from the slab,
72255, 10,

The main subdivisions of the slab are outlined in Figure B-3. The further sub-
divisions of the Civet Cat clasi and a strip of adjacent matrix are documented in Tigures
B-4 and B-5. Subdivisions of the slab pieces 72255,29 and 72255, 76 are outlined in
Figures B-6 and B-7, respectively. '
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Figure B-1. A reassembly of the four documented pieces of 72255, photographed in the Lunar Receiving Labora-
tory in January 1973 (NASA photograph S-73-16003).
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Figure B-2. Upper photograph: Specimen 72255,0. Dashed lines indicate cutting
plans. Lower photograph: The main subdivisions of 72255, 0 after
removal of the slab.
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72255, 35
CIVET CAT CLAST

3.55¢

40) 41
[40) Y0974 [41Y Y1004 35 \ 4e ]

_ 1.99¢ 0.50¢
HASKIN
COMPSTON | 7 ANDERS

REYNOLDS

49 i 35 5 48
0.41g 1.05¢ 0.49¢
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— 0.l4q
BANERJEE TATSUMOTO

Figure B~-4. Subdivisions of the Civet Cat clast and the distribution of the daughter
samples of 72255, 35.
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Figure B-5. Sketch of the locations from which orthogonal thin sections were taken
from pieces 72255, 75 and 72255, 31, the Civet Caf clast and adjacent
matrix.
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72255,29
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Figure B-6. Subdivisions of slab piece 72255, 29.
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Figure B-7. Subdivisions of slab piece 72255, 76.



Table B-1. 72255: Inventory of daughier samples.

Number Grams Distyibution Description
-—O 461, 20 Subdivided Original specimen
0.01 Library Thin section of indocumented chip from
tray {see Table B-3)
0.37 Library Potted butt
2 45, 66 STRANGWAY Documented piece broken from specimen
3 7.88 Storage Documented piece broken from specimen
4 3.30 Storage Documented piece broken from specimen
5 1.40 Storage Undocumented chips
6 0.30 Storage Undocumented chip
7 0.01 Library Thin section of undocumented chip
8 0.01 AGRELL Thin section of undocumented chip
4] 0.09 Storage Documented chip
10 54,51 Subdivided Slab 1.5 cm thick (see Figures B-2 and
B-3)
11 5. 50 Storage Piece broken from north end of slab
12 2,04 Storage Surface chip broken during sawing
13 0.25 Storage Surface chip broken during sawing
14 0.60 Storage Surface chip broken during sa{ving
15 1.62 Storage ’ Su.rface chip broken during sawing
16 0.80 Storage Piece sawed from north end of specimen
17 0.30 Storage Piece sawed from north end of specimen
18 1,18 Subdivided 2 sawed chips of grayish-white matrix
from east end of specimen
0.10 HASKIN Piece of the grayish-white matrix
0.01 AGRELL Thin section #106: grayish-white matrix
0.01 WwWOOD Thin section #107: grayish-white matrix
0.12 Library Potted butt
0.95 Storage Grayish-white matrix
19 32.41 Storage West end of specimen
20 2.79 Storage Band saw chips
21 6. 87 Storage Band saw fines
22 0.63 Storage Undocumented fines
23 287.30 Storage Remnant of main mass
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Table B-1 (Cont.)

Grams

Number Distribution Desecription
24 2.94 Storage o Fines from freon cleaning
25 2.41 ' Attrition
26-—28 Numbers not assigned to samples
72255, 10: Slab Suhdivisions {see Tigures B-2 to B-7)
29 3.32 Storage Matrix plus part of Civet Cat clast
30 0. 60 PRICE Matrix plus Civet Cat clast
~ 31 4.93 Subdivided Slice of matrix (see Figure B-5)
0.01 WILSHIRE Thin section #81
0.03 AGRELL Orthogonal thin sections #980, #92, #94
0.03 WOOD Orthogonal thin sections #91, #983, #95
1.43 - Library Potted butt
32 1.76 PRICE Track strip with patina
33 2.08 BANERJEE Interior slah, 0.5X 0.5X 1.5 cm
34 0.32 Storage Surface slab
35 i1.05 Storage Remnant of Civet Cat clast and adhering matrix
36 3.49 BANERJEE Slah with patina on one edge
37 1.47 Storage B;nd saw chips
38 1,89 Storage Band saw fines
39 0; 27 Storage Fines from cleaning cabinet
40 0.97 Storage Fragment of Civet Cat clast plus matrix
41 1. 00 COMPSTON Fragment of Civet Cat clast
42 0.20 HASKIN Fragments of Civet Cat clast
0.06 ANDERS Fragments of Civet Cat clast (see Table
B-2) '
0,22 REYNOLDS Fragments of Civet Cat clast (see Table
B-2)
43 0.14 BANERJEE Fragments of Civet Cat clast
44 1.28 Storage Dark matrix material in piece 72255, 76
45 0.22 HA SKIN White clast plus light gray matrix
0.04 ANDERS White clast plus light gray matrix (see
Table B-2)
0.02 ANDERS White clast plus light gray matrix (see

Table B-2)
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Table B-1 (Cont.)

Number Grams Distribution Description
46 0.01 AGRELL Thin section #93: white clast plus matrix
0.01 WOoOoD Thin scetion #97: white clast plus matrix
47 0.88 Storage . Chip of matrix of 72255,76
48 0,49 Storage ‘Fragment of Civet Cat clast
49 0.26  TATSUMOTO - Interior chip of Civet Cat clast
50 1.80 Storage  Matrix and Civet Cat clast
51 0.98 . Stofage ) 2 chips of matrix and Civet Cat clast
52 0.23 HASKIN Interior chips of light gray matrix
0.07 ANDERS Interior chips of light gray matrix (see
: Tahle B-2)
0.41 REYNOLDS Interior chips of light gray matrix (see
Table B-2)
53 0. 90 COMPSTON Inlerior chips of light gray matrix
h4 2.20 - TATSUMOTO Interior chips of light gray matrix
55 0.22 Storage Sawed chip from matrix of 72255, 29 (see
Figure B-6)
56 1. 00 Storage Sawed sliver from matrix of 72255, 29
57 2.28 Storage Sawed chip from matrix of 72255, 29
58 0.57 Storage ) Sawed chip from matrix of 72255, 29
59 0.63 COMPSTON Chips of light gray matrix from 72255, 29
60 0.88  TATSUMOTO Chip (no sawed surface) of light gray matrix
from 72255,29
61 0.26 Storage Chips of dark gray matrix from 72255,76
{(see Figure B-7)
62 0.27 Storage Chips of dark gray matrix from 72255,76
63 0.69 Storage Chips of dark gray matrix from 72255,76
64 0.20 HASKIN Chips of dark gray matrix from 72255, 29
65 0. 10 BANERJEE Chips of dark gray matrix from 72255,29
66 0,01 WOOD Thin section #99: davk gray matrix of
72255, 76 :
0.20 Library Potted butt
67 2. 50 TATSUMOTO Chips of dark gray matrix of 72255, 76
68 0.02 wOoOD Chip of dark gray matrix of 72255, 29
69 0.15 HASKIN Chip of dark gray matrix of 72255,29 (no

sawed surfaces)
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Table B-1 (Cont. )

Number Grams Distribution Description
70 0.05 AGREiLL Chip of dark gray matrix of 72255, 29
71 2.05 Storage Anvil chips and fines
72 0.45 Storage Chips without patina
73 0.11 HASKIN Band saw fines
74 1,00 ADAMS Band saw fines
75 0.03 WOOD ~ Orthogonal thin sections 101, #103, #105:
Civet Cat clast (see Figure B-5)
0.03 AGRELL Orthogonal thin sections #100, #102, #104:
Lo ~-Givet-Gat alast - -
4,86 Library Potted butt
76 1,36 Storage Remnant of slab piece
77 4.05 Storage Remnant of slab piece
78 1.81 Attrition
79 0.08 HASKIN Interior chip of whitish material from 72255, 18
0.01 AGRELL Thin section #106: whitish material from
72255, 18
80 0.01 WOOD Thin section #107: whitish material from
72255, 18
0.12 Library Potied butt
81 0.95 Storage Remnant of 72255, 18
82—88 Numbers not assigned to samples

Table B-2, Subdivisions of Haskin's samples.

Parent
Number Grams Distribution sample
9001 0.06 ANDERS 42
9002 0. 04 ANDERS ™~ 45
9003 0.02 ANDERS 45
9004 0,07 ANDERS- - - - 52
9005 0,23 - REYNOLDS 42
2006 0.41 REYNOLDS 52
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Table B-3, 72255

Thin sections.

Parent i Area
Number sample Distribution (mm?)

1 0 Libra;y -

7 Librax:_;‘;i m._qrrkh_ —H 7 4_

8 1 AGREIL . __ _

89 31 WILSHIRE . . oo 4

90 st AGREIL

91 31 WooD - -+ - 10

o 9Z 31 U TTAGRELL T T 1B T
- 93 31 WOOD 15

94 31 AGRELL ~ 35
95 31 WOOD= "= - =35
96 46 AGRELL 5
97 46 WOOD 4
98 66 AGRELL 6
99 66 WOOD 6
100 75 AGRELL 10
101 75 « WOOD 10
102 75 AGRELL 12
103 75 WOOD — 12
104 75 AGRELL 25
105- 75 — .WOOD . - 25
106 80 AGRELL
107 80 WOOD
108 75 Library 30
109 46 Attrition
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