

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CR/34087

N74-20546

NASA-CR-134087) RESULTS OF FLOW VISUALIZATION STUDIES IN THE NASA/MSFC 14 X 14 INCH TRISONIC WIND TUNNEL ON A .004 SCALE MODEL (34-0) SPACE SHUTTLE (Chrysler Corp.) 59 p HC \$6.00 CSCL 22B

Unclas G3/31 34401

SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER HOUSTON, TEXAS

DATA MANagement services

SPACE DIVISION CHRYSLER
CORPORATION

The state of the s

DMS-DR-2042 NASA CR-134,087

RESULTS OF FLOW VISUALIZATION STUDIES IN THE NASA/MSFC 14 \times 14 INCH TRISONIC WIND TUNNEL ON A .004 SCALE MODEL (34-0) SPACE SHUTTLE ORBITER

AND INTEGRATED VEHICLE

Ву

W. P. Garton, Rockwell International

Prepared under NASA Contract Number NAS9-13247

by

Data Management Services
Chrysler Corporation Space Division
New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center
National Aeronautics and Space Administration
Houston, Texas

WIND TUNNEL TEST SPECIFICS:

Test Number: MSFC 584 NASA Series No.: IA-52

Date: 12-17 Oct, 1973 (28 Occ. Hrs.)

FACILITY COORDINATOR:

Jim Weaver Marshall Space Flight Center Mail Stop S&E-AERO-AAE Huntsville, Ala. 35802

Phone: (205) 453-2512

PROJECT ENGINEERS:

W. P. Garton Southern Region Office Rockwell International Holiday Office Center Huntsville, Ala. 35802

Phone: (205) 881-2200

DATA MANAGEMENT SERVICES:

This document has been prepared by:

J. E. Vaughn Liaison Operations

Maurice Moner, dr. Data Operations Haunce Hosen J.

This document has been reviewed and is approved for release.

A-N. D. Kemp Data Man**age**ment Services

Chrysler Corporation Space Division assumes no responsibility for data presented herein other than its display characteristics.

RESULTS OF FLOW VISUALIZATION STUDIES

IN THE NASA/MSFC 14 x 14 INCH TRISONIC WIND

TUNNEL ON A .004 SCALE MODEL (34-0) SPACE

SHUTTLE ORBITER AND INTEGRATED VEHICLE

Вy

W. P. Garton*

SUMMARY

This report presents details of flow visualization techniques developed during wind tunnel test IA-52 conducted in the NASA/MSFC 14 x 14 inch Trisonic Wind Tunnel. Testing was conducted from Mach = 0.9 to 5.0 on the orbiter alone and integrated vehicle configurations. Thin film oil paint and ultraviolet light sensitive oil applications were used on a .004 scale model vehicle. Test results presented herein are in the form of black and white photographs taken after the completion of a test run.

* Rockwell International

PRECEDING PAGE BLANK NOT FILMED

(This Page Left Intentionally Blank.)

TABLE OF CONTENTS

SUMMA	RY		111
INDEN	OF	FIGURES	;
TEST	FACII	LITY DESCRIPTION	1,
CONF	LGURAT	TIONS INVESTIGATED	6
TEST	PROCI	EDURE	8
DATA	INTE	RPRETATION	13
TABL	ES		
	I	TEST CONDITIONS	12
	11	DATA SET COLLATIONS	13
	III	MODEL DIMENSIONAL DATA	11

INDEX OF FIGURES

FIGURE	TITLE	PAGE
1	General Arrangement of Orbiter Model	24
2	Oil Flow Photograph of Integrated Vehicle, $\alpha = \beta = 5^{\circ}$, M = 0.9, Blue Oil Paint (Top View)	25
3	Oil Flow Photograph of Integrated Vehicle, $\alpha = \beta = 5^{\circ}$, M = 0.9, Phosphor and Silicone Oil (Left Oblique)	26
4	Oil Flow Photograph of Integrated Vehicle, $\alpha = \beta = 5^{\circ}$, M = 0.9, Blue Oil Paint (Right Oblique)	27
5	Oil Flow Photograph of Integrated Vehicle, $\alpha = \beta = 5^{\circ}$, M = 1.2, Blue Oil Paint (Top View)	28
6	Oil Flow Photograph of Integrated Vehicle, $\alpha=\beta=5^\circ$, M = 1.2, Blue Oil Paint (Left Oblique)	29
7	Oil Flow Photograph of Integrated Vehicle, $\alpha = \beta = 5^{\circ}$, M = 1.2, Blue Oil Paint (Right Oblique)	30
8	Oil Flow Photograph of Integrated Vehicle, $\alpha = 8^{\circ}$, $\beta = 0^{\circ}$, M = 0.9, Blue Oil Paint (Top View)	31
9	Oil Flow Photograph of Integrated Vehicle, $\alpha = 8^{\circ}$, $\beta = 0^{\circ}$, M = 0.9, Blue Oil Paint (Left Oblique)	32
10	Oil Flow Photograph of Integrated Vehicle, α = 8°, β = 0°, M = 0.9, Blue Oil Paint (Right Oblique)	33
11	Oil Flow Photograph of Integrated Vehicle, $\alpha = 10^{\circ}$, $\beta = 3^{\circ}$, M = 4.96, Zyglo Solution (Top View)	34
12	Oil Flow Photograph of Integrated Vehicle, α = 10°, β = 3°, M = 4.96, Red and Yellow Oil Paint (Left Oblique)	35
13	Oil Flow Photograph of Integrated Vehicle, α = 10°, β = 3°, M = 4.96, Red and Yellow Oil Paint (Left Side)	36
14	Oil Flow Photograph of Integrated Vehicle, $\alpha = 10^{\circ}$, $\beta = 3^{\circ}$, M = 4.96, Red and Yellow Oil Paint (Right Oblique)	37

INDEX OF FIGURES (Continued)

FIGURE	TITLE	PAGE
15	Oil Flow Photograph of Orbiter, $\alpha = \beta = 0^{\circ}$, M = 0.9, Blue Oil Paint (Top View)	38
16	Oil Flow Photograph of Orbiter, $\alpha = \beta = 0^{\circ}$, M = 0.9, Blue Oil Paint (Left Oblique)	39
17	Oil Flow Photograph of Orbiter, $\alpha = \beta = 0^{\circ}$, M = 0.9 Blue Oil Paint (Right Oblique)	40
13	Oil Flow Photograph of Orbiter, $\alpha = 10^{\circ}$, $\beta = 5^{\circ}$, M = 0.9, Blue Oil Paint (Top View)	41
19	Oil Flow Photograph of Orbiter, $\alpha = 10^{\circ}$, $\beta = 5^{\circ}$, M = 0.9, Blue Oil Paint (Left Oblique)	42
20	Oil Flow Photograph of Orbiter, $\alpha = 10^{\circ}$, $\beta = 5^{\circ}$, M = 0.9, Blue Oil Paint (Right Oblique)	43
21	Oil Flow Photograph of Orbiter, $\alpha = 10^{\circ}$, $\beta = 5^{\circ}$, M = 1.96, Blue Oil Paint (Top View)	
22	Oil Flow Photograph of Orbiter, $\alpha = 10^{\circ}$, $\beta = 0^{\circ}$, M = 1.96, Blue Oil Paint (Left Oblique)	45
23	Oil Flow Photograph of Orbiter, $\alpha = 10^{\circ}$, $\beta = 0^{\circ}$, M = 1.96, Blue Oil Paint (Right Oblique)	46
24	Oil Flow Photograph of Orbiter, $\alpha = 10^{\circ}$, $\beta = 0^{\circ}$, $M = 2.99$, Blue Oil Paint (Top View)	47
25	Oil Flow Photograph of Orbiter, $\alpha = 10^{\circ}$, $\beta = 0^{\circ}$, $M = 2.99$, Blue Oil Paint (Left Oblique)	1,8
26	Oil Flow Photograph of Orbiter, $\alpha = 10^{\circ}$, $\beta = 0^{\circ}$, $M = 2.99$, Blue Oil Paint (Left Side)	49
27	Oil Flow Photograph of Orbiter, $\alpha = 10^{\circ}$, $\beta = 0^{\circ}$, $M = 2.99$, Blue Oil Paint (Right Oblique)	50
28	Oil Flow Photograph of Orbiter, $\alpha = 10^{\circ}$, $\beta = 0^{\circ}$, $M = 4.96$, Blue Oil Paint (Top View)	51
29	Oil Flow Photograph of Orbiter, $\alpha = 10^{\circ}$, $\beta = 0^{\circ}$, $M = 4.96$, Blue Oil Paint (Left Oblique)	52

INDEX OF FIGURES (Continued)

FIGURE	TITLE	PAGE
30	Oil Flow Photograph of Orbiter, $\alpha = 10^{\circ}$, $\beta = 0^{\circ}$, M = 4.96, Blue Oil Paint (Right Oblique)	53
31	Oil Flow Photograph of Model Preparation: Blue Oil Paint Brushed on and Wiped Down	5,14
32	Oil Flow Photograph of Model Preparation: Appearance after Spraying with Machine Tool Oil	55

i.

TEST FACILITY DESCRIPTION

an intermittent blowdown tunnel which operates by high pressure air flowing from storage to either vacuum or atmospheric conditions. A Mach number range from .2 to 5.85 is covered by using two interchangeable test sections. The transonic section permits testing at Mach 0.20 through 2.50 and the supersonic section permits testing at Mach 2.74 through 5.85. Mach numbers between .2 and .9 are obtained by using a controllable diffuser. The range from .95 to 1.3 is achieved through the use of plenum suction and perforated walls. Mach numbers of 1.44, 1.93 and 2.50 are produced by interchangeable sets of fixed contour nozzle blocks. Above Mach 2.50 a set of fixed contour nozzle blocks are tilted and translated automatically to produce any desired Mach number in .25 increments.

Air is supplied to a 6000 cubic foot storage tank at approximately -40°F dew point and 500 psi. The compressor is a three-stage reciprocating unit driven by a 1500 hp motor.

Tunnel flow is established and controlled with a servo-actuated gate valve. The controlled air flows through the valve diffuser into the stilling chamber and heat exchanger where the air temperature can be controlled from ambient to approximately 180°F. The air then passes through the test section which contains the nozzle blocks and test region.

Downstream of the test section is a hydraulically controlled pitch sector that provides a total angle of attack range of 20° ($\pm 10^{\circ}$). Sting offsets are available for obtaining various maximum angles of attack up to 90° .

CONFIGURATIONS INVESTIGATED

The 0.004-scale orbiter model general arrangement is shown in figure 1. The model has an aluminum wing and stainless steel body, vertical fin, and movable (interchangeable) surfaces. Data were taken with speed brake settings of:

$$S_{SB}$$
 (deg) = 0, 24, 55.

The orbiter model was fabricated in conformance with the lines drawings listed below:

Nose VL70-000143A

Mid-body and wing VL70-000200

Aft body VL70-000145

Vertical tail VL70-000146A

The launch vehic'e models (MSFC Model No. 453) were fabricated to 0.004-scale in conformance with the following configuration control drawings:

External Tank VL78-000041B (except nose radius 30° vice 16.5" FS)

Solid Rocket Booster VL77-000036A

The mated vehicle was assembled in a ordance with the Shuttle Configuration Control Drawing VL72-000088D. Exact duplication of attached hardware and protuberances could not be maintained at 0.004-scale. Model fidelity, or lack thereof, in attachments and protuberances is indicated below:

6.

Component	Description	Model Fidelity
AT ₅	Front Orb/ET Attach.	No: single vertical mounting post (.099" diam.) at same body station.
AT ₆ , AT ₇	Left and Right Rear Orb/ET Attach.	Yes
AT ₈ , AT ₉	Front and Rear SRB/ET Attach.	No: single stand-off post mount .182" in diam. at approximately same body stations on ET £.
FL ₁ , FL ₂	LOX and LH2 Feedliness	Yes: represented by aft model orbiter/ET mounting posts (0.187" diam.) at correct body station.
FR_1	Umbilical Door Fairing	Absent.
FR ₂	Splash Shield (LOX and LH_2)	Absent.
PS ₁	SRB Electrical Tunnel	Absent.
PS_2	SRB Aft Attach Ring	Yes.
PS3	Separation Rocket Fairing	Yes.
PT ₁	LOX Vent Line Fairing	Yes.
PT ₂	LOX Feedline	Yes.
PT ₃	LH ₂ Vent Line	Yes.

Model dimensional data sheets defining the various configuration designators are provided in Table III. The model components tested were:

B26	orbiter body
С9	canopy
R 5	rudder
v8	vertical tail
W116	wing, basic

F7 body flap

E26 elevon

M7 OMS pods

Solid Rocket Booster with Attach ring (PS2) and

Separation Rocket Fairing (PS3)

T14 External Tank with LOX and LH2 vent lines and

LOX feed line (PT1,2,3)

TEST PROCEDURE

Model Preparation

The model parts were cleaned of oil and grease before assembly and then again after assembly to aid adhesion of the filler. All gaps, nicks, and screw slots were filled with polyester resin (auto body) filler so that no pockets for pigment or solvent remained. Final contouring was accomplished with #600 wet aluminum oxide paper.

The model was lightly degreased and then sprayed with white lacquer in several medium coats. Imperfections then evident were touched up with filler and # 600 paper. The model was then resprayed with lacquer and allowed to dry at least one hour following achievement of an acceptable finish. The color coat was then sealed with several coats of clear lacquer, as it has been found that the oil paint pigments tend to adhere to the color coat. The model should be allowed to dry overnight if possible; hardware and facility schedules did not permit this long a drying period for this test. The effects of surface imperfections may be noted in many of the photographs; Figure 11 shows these effects very clearly.

Medium Pr paration

Red, yellow, and prussian blue oil paints were mixed with artists linseed oil in the approximate proportions (by volume) shown below. It is believed that best results with black and white photography will be obtained with black or prussian blue oil paints.

Pigment	Linseed 0il	Mach No.	Po	
1	1	1.0	22	
1	1.5 to 2.0	2.0	28	
1	2.5 to 3.0	3.0	30	
1	2.5 to 4.5 (?)	5.0	90	

A medium composed of a mixture of silicone oil, silicone stopcock grease, and phosphor powder mixed to the consistence of thin pancake batter was found to be effective at $0.9 \le M \le 1.2$. It is believed the it would be necessary to thin the mixture as Mach number increases. Enough phosphor should be used to provide ample pigmentation. Ultraviolet illumination of the model during the run to observe flow pattern development (and decide when to terminate the run) is required using either the phosphor or a "Zyglo" solution medium. Ultraviolet lighting is also required for black and white post-run photography of the model. The longer exposure times were found to permit puddling or running of the flow pattern on the model with the thin medium used at the higher Mach numbers. Figures 3 and 11 are examples of the results obtained with the phosphor/oil/silicone grease and the Zyglo solution, respectively.

Application

oil Film - There was a tendency to apply too much pigment, with puddling and subsequent running during the post-run photography of the model. Better results were obtained with a <u>thin</u> coat of paint applied with an artist's brush (# 5 or # 6 is good) and then wiped off evenly with a facial tissue so that a thin film of pigment remained (Figure 31). The wipe pattern may be removed if desired by lightly spraying (from a distance of approximately 12") with an aerosol can of machine tool oil; an atomizer and linseed oil would also work. This produces a dappled appearance (Figure 32).

Phosphor - This was also brushed on thinly, but not wiped down. The same technique was used with the Zyglo solution.

Data Runs

Runs should be long enough to develop a pattern and blow away excess medium if possible. The appearance of the model during the run was monitored through glass walls and the run terminated on visual cues. Typical blows were 20-25 seconds in the transonic range, but as brief as 10 seconds at M > 3.0.

Photography

Black and white photography was employed to record the run results. Motion pictures are feasible with the oil paint technique. It may be desirable to open the tunnel immediately after the blow and roll the model to minimize running of the thin medium at higher Mach numbers. As previously mentioned, this problem is compounded with the fluorescing medium because of the longer exposure times required.

Model Clean-Up

C

The chosen cleaning method was to paint the model with liquid soap and rinse with hot water. Mineral spirits may also be used.

DATA INTERPRETATION

The data (Figures 2 through 30) obtained in this test have been (and are to be) used only for qualitative evaluation of flow characteristics in the selected flight conditions. Quantitative results will require more rigorous control of camera look angles than was provided in this study.

TABLE I. TEST CONDITIONS

TEST:	MSFC TWT 584		يا	ATE: 10/8/73
		TEST CON	DITIONS	
MACH N umber	REYNOLDS NUMBER (per unit length)	DYNAMIC PRESSURE (pounds/sq.inch)	STAGNATION TEMPERATURE (degrees Forrenheit)	STAGNATION PRESSURE (pounds/sq inch)
0.9	6.2 x 10 ⁶ /ft	7.36	100	22
1.2	6.7	10.68	100	22
1.96	7.0	10.20	100	28
2.99	4.0	5.19	140	30
4.96	4.8	3.07	140	90
:				
BALA	NCE UTILIZED:	None		
	•	CAPACITY:	ACCURACY:	COEFFICIENT TOLERANCE:
	NF SF			
	AF	 -		
	PM	-		
	RM	-		
1	YM			

TABLE II.

SELVROIT NUMBER COLLATION SOMMER!	
MACH NUMBERS	N HOVW
0.9 1.2 1.96	9 1.2
1 2	1 2
3	3
5	Ś
9	9
7	
2 Jest line partaberances	Partabeliance
49 55 61	
	1
10VAR (1)	10VAR (1)
55	

TABLE III. MCDEL DIMENSIONAL DATA

MIDEL COMPONENT: BODY - Pas					
GENERAL DESCRIPTION: Orbiter Fuselage Config	guration 140 A/B				
NOTE: Bac identical to Bag except underside	of fuselage refa	ired to			
accept W116.					
Model Scale = .004					
DRAWING NUMBER: VL70-000140A					
DIMENSIONS:	FULL-SCALE	MODEL SCALE			
Length (Body Fwd Sta $X_0 = 238$) - in.	1290.3	5.16120			
Max. Width (at $X_0 = 1520$) - in.	262.0	1.04800			
Max. Depth (at $X_0 = 1464$) - in.	250.0	1.000			
Fineness Ratio	4.92481	4.92481			
Area - ft ²					
Max. Cross-Sectional	340.88462	0.0051.5			
Planform	•••				
Wetted					
Base	•				

MODEL COMPONENT:	Canony-C9			
GENERAL DESCRIPTION:	Configu	retion 3A		*
Model Scale = .004				
DRAWING NUMBER		0-0001404 0-0001434		
DIMENSION:	•	•	FULL SCALE	MODEL SCALE
Length (X ₀ =4,34.64	3 to 670)		235.357	0.94143
Max Width (○ Xo=5	313.127)		152.412	0.60065
Max Depth (7 Xo=	=495.0)	•	25.000	0.10000
Fineness Ratio				
Areo				
Max Cross-Sec	tional			
Planform			•	•
Wetted				
Bose				

O

MODEL COMPONENT: R5 - Rudder		449
GENERAL DESCRIPTION: 2A and 3 configuration VL70-000095 and VL70-000139	on per Rockwell	lines
Scale Model = .004		
DRAWING NUMBER: VL70-000139 VL70-000095		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area ~ Ft ²	106.38	0.00170
Span (equivalent) ~ IN.	201.0	0.8040
Inb'd equivalent chord	91.585	0.36634
Outb'd equivalent chord	50.833	0.20333
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.400	0.400
At Outb'd equiv. chord	0.400	0.400
Sweep Back Angles, degrees		•
Leading Edge	34.83	34.83
Tailing Edge	26.25	26.25
Hingeline	34.83	34.83
Area Moment (Normal to hinge line) Ft ³	526.13	0.00003
Product of area and mean cho	⊤d .	

TABLE III. (Continued) MODEL COMPONENT: WING-Wile		
GENERAL DESCRIPTION: Configuration 4		
NOTE: Identical to will execut airful tiplacess.	Dihedral angle	e is along
trailing edge of wing.		
Model Scale = .004		·····
TEST NO.	DNG. RO. VE70	-0001408 -000727
DIMENSIOUS:	FULL-SCALE	MODEL SCALE
TOTAL DATA Area (Ineo.) Ft2 Planform Span (Theo In. Aspect Ratio Rate of Taper Taper Ratio Dihedral Angle, degrees(at Xo=1500.623,Yo= Incidence Angle, degrees 105, Zo= 282.75) Aerodynamic Twist, degrees Sweep Back Angles, degrees Leading Edge Trailing Edge 0.25 Element Line Chords: Root (Theo) B.P.0.0. Tip, (Theo) B.P. MAC Fus. Sta. of .25 MAC B.L. of .25 MAC EXPOSED DATA	2690.00 936.6816 2.265 1.177 0.200 3.500 0.500 +3.000 45.00 -10.056 35.209 689.2429 137.6486 474.8117 1126.721 291.00 187.35101	0.4304 3.74572 2.265 1.177 0.200 3.500 0.500 +3.000 45.00 -10.056 35.209 2.75697 0.55134 1.65735 4.56575 1.15700 0.76934
Area (Ineo) Ft Span, (Theo) In. BP108 Aspect Ratio Taper Ratio	1812.2205 736.6516 2.058 0.2451	0.02899 2.94013 2.058 0.2451
Chards Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rackwell Mod NASA)	570.6230 137.8512 354.2376 1164.237 292.00 239.67786	2.28249 0.55140 1.41695 4.65695 1.16600 0.95871
XXXX-64 Root <u>b</u> = 0.425 Tip <u>b</u> = 1.00	0.113	0.113
Data for (1) of (2) Sides Leading Edge Cuff Planform Area Ft Leading Edge Intersects Fus M. L. 0 Sta Leading Edge Intersects Wing 0 Sta	118.333 505.0 1003.5	2,02000 4,01400

TABLE III. (Continued)

MODEL COMPONENT: Tody Tis Fg		
GENERAL DESCRIPTION:Configuration 3	3.	
MCE: Podr flap has wrighte centerling	e deflection of +33.	.75° and
-14.05° from roll position. Min	rn line located at)	(, 41 5 22.3.
$Z_0 = 284.3$		
Model Coste = .004 DRAWING NUMBER VI.70-600140	04, MI70-000145	
DIMENSION:	FULL SCALE	MODEL SCALE
Length (X_0 =1520 to X_0 =1613) - IN.	93.000	0.372
Mox Width - Ill.	262.000	1.048
Mox Depth ($N_0 = 1520$) - III.	23.000	0.092
Fineness Ratio Area - Pt ²		
Max Cross-Sectional		•
Plonform	150.5250	0,00241
Wetled		
Base	41.84722	0.00067

MODEL COMPONENT: TUWCY - E26	•	4- مالىدىد دەمەرىدىنىڭ ئۇرۇپىيە ئاستانىڭ ئۇرۇپىيى دېرىدىنىڭ ئىرىدىنىڭ ئاستانىڭ دېرى دېرى دېرى
GENERAL DESCRIPTION: Configuration 4		
NOTE: VL70-000400 data for (1) of (2)	sides. Identical	to E ₂₃ except
airfoil thickness		
Model Scale = .004		
DRAWING NUMBER: VL70-000140 B		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area ft.	223.5814	0.00358
Span (equivalent) in.	368.34	1,47336
Inb'd equivalent chord in.	119.623	0.47849
Outb'd equivalent chord in.	55.1922	0.22077
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.2076	0.2096
At Outb'd equiv. chord .	0.1,004	0.1,001.
Sweep Back Angles, degrees	• •	
Leading Edge	0.00	- 0.00
Tailing Edge	-10.056	-10.056
Hingeline	0.00	0.00
Area Moment (Normal to hinge line)	851.1502	0.00005

MODEL COMPONENT: 012 FED - 1/2		
GENERAL DESCRIPTION: Configuration 3A	.	
Model Scale = .004		
DRAWING NUMBER VL70-000140A VL70-000145		
DIMENSION:	FULL SCALE	MODEL SCALE
Length (OLD Find Ste Xo=1233.0) - IN.	327.000	1.30800
Max Width (~ Xo=1450.0) - IN.	94.5	0.37800
Max Depth (0 % = 1493.0) - IN.	109.000	0.43600
Fineness Ratio	C	
Areo		
Max Cross-Sectional		
Planform .	-	
Wetted		
Bose		•

erner and LT lear	r corner
	r corner
FULL -SCALE	
FULL-SCALE	, British Brit
FULL-SCALE	
FULL-SCALE	
	MODEL SCALE
413.253 315.720 1.675 0.577 0.60369 45.00 25.547 41.150	1.263 ····································
26°.500 10°.470 149.4756 1443.50 635.502 0.00 10.00 14.900 2.00	1.07500 3.75763 5.07673 5.07673 2.76774 0.00 10.00 10.00 0.0000 0.00000 0.00000
	315.720 1.675 0.577 0.675 0.675 0.675 25.967 41.150 268.500 103.670 199.7756 163.50 0.00 10.00 16.00 16.00 16.00 16.00 16.00 16.00

MODEL ICMPONENT: BOOSTER SOLID FROME	- 112	
GENERAL DESCRIPTION: Configuration 3A, sides, per Rockwell Lines VL77-000036		(2)
sides, per nockwell blines vb// object		
Model Scale = 0.004		
DRAWING NUMBER: VL77-000088A VL77-000036A		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length (Includes Nozzle) - IN.	1741.0	6.9640
Max. Width (Tank Dia) - IN.	142.3	0.5692
Max. Depth (Aft Shroud) - IN.	192.0	0.7680
Fineness Ratio	9.06771	9.06771
Area - FT ²		
Max. Cross-Sectional	201.06193	0.00322
Planform		
Wetted		
Base		
WP of BSRM Centerline (Z_T) - IN.	400	1.6000
FS of BSRM Nose (X _T) - IN.	200	0.8000

Table III. (Concluded)

Table III. (Conclud	•	
MODEL COMPONENT: EXTERNAL TANK - T1	<u> </u>	
GENERAL DESCRIPTION:		
NOTE: T ₁₄ identical to T ₉ but with e	external fuel li	nes added.
Model Scale = 0.004		
DRAWING NUMBER: VL78-000018		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length - IN.	1858	7.432
Max. Width (Dia) - IN.	324.0	1.296
Max. Depth		
Fineness Ratio- <u>r</u> /D	5.73457	5.73457
Area - FT ²		
Max. Cross-Sectional	<u>572.56</u>	0.009161
Planform		
Wetted		
Base		

<u>(</u>

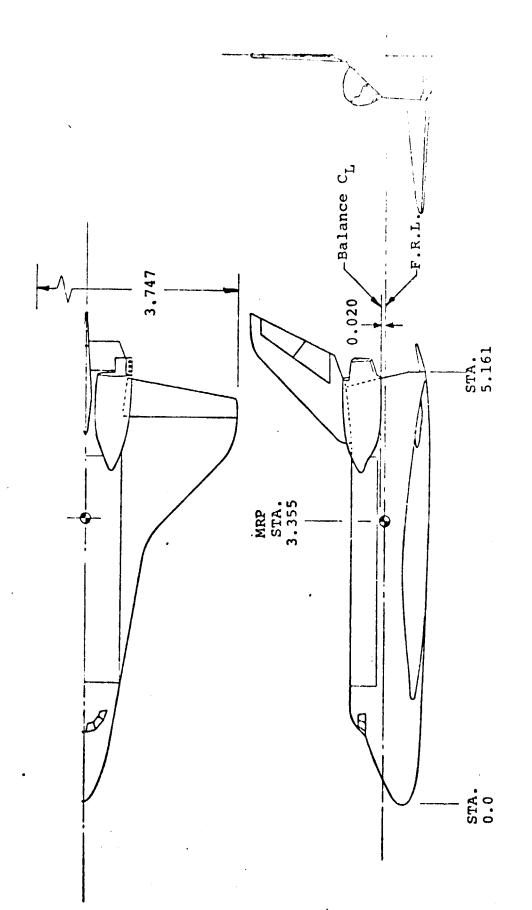


FIGURE 1. - General Arrangement of Orbiter Model

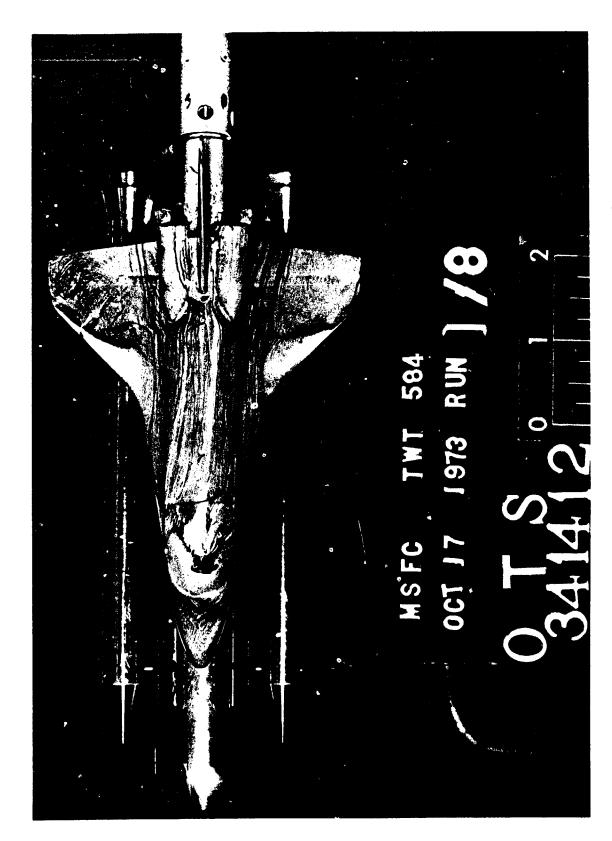


FIGURE 2. OIL FLOW PHOTOGRAPH OF INTEGRATED VEHICLE; α = β = 5° BLUE OIL PAINT (TOP VIEW)

C

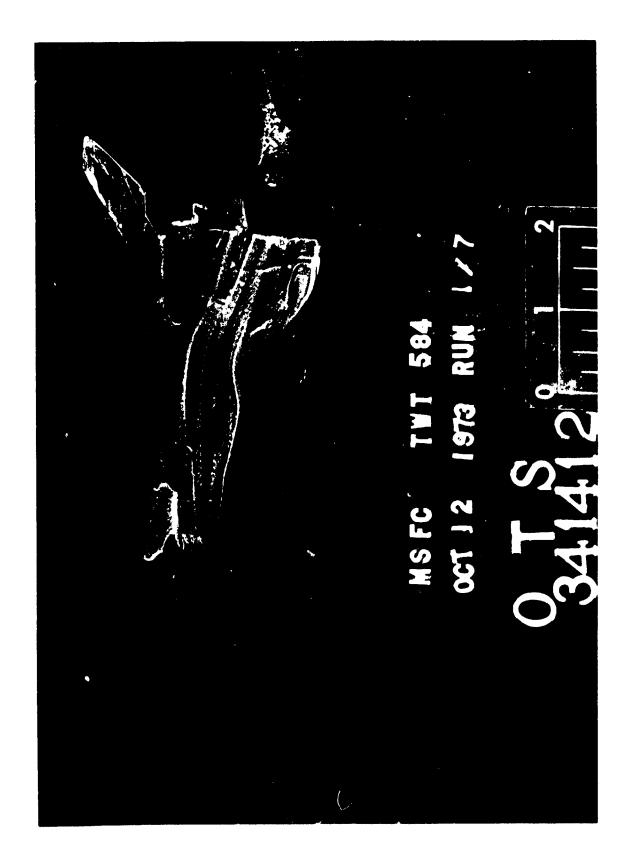
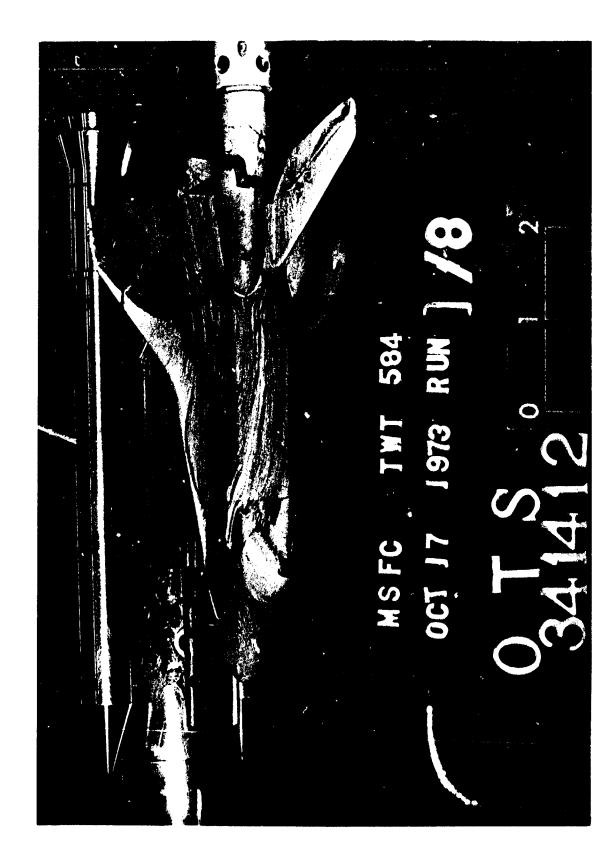



FIGURE 3. OIL FLOW PHOTOGRAPH OF INTEGRATED VEHICLE, α = β = 5° , M = 0.9, PHOSPHOR AND SILICONE OIL (LEFT OBLIQUE)

ない、一個人の大学をはないのである。

 $\beta = 5^{\circ}$, M = 0.9, FIGURE 4. OIL FLOW PHOTOGRAPH OF INTEGRATED VEHICLE, α = BLUE OIL PAINT (RIGHT <code>OBLIQUE</code>)

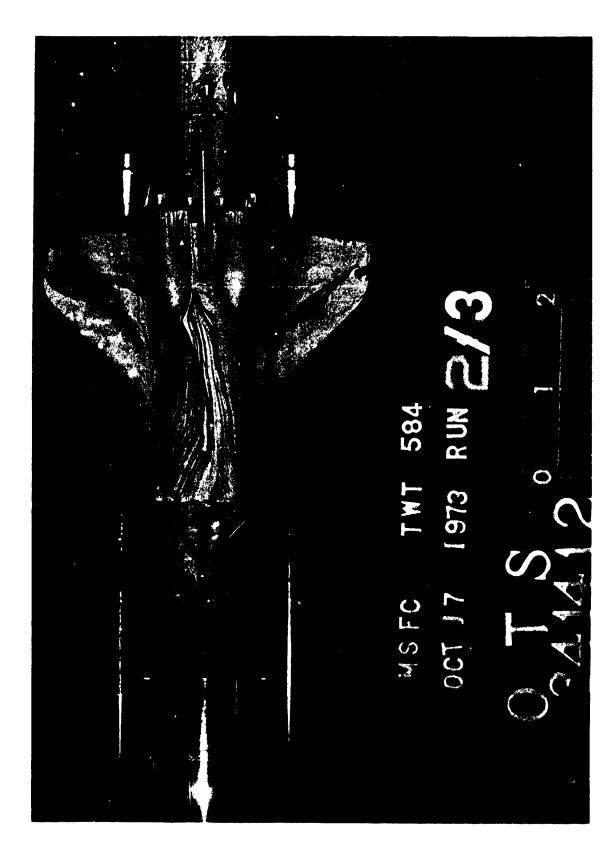
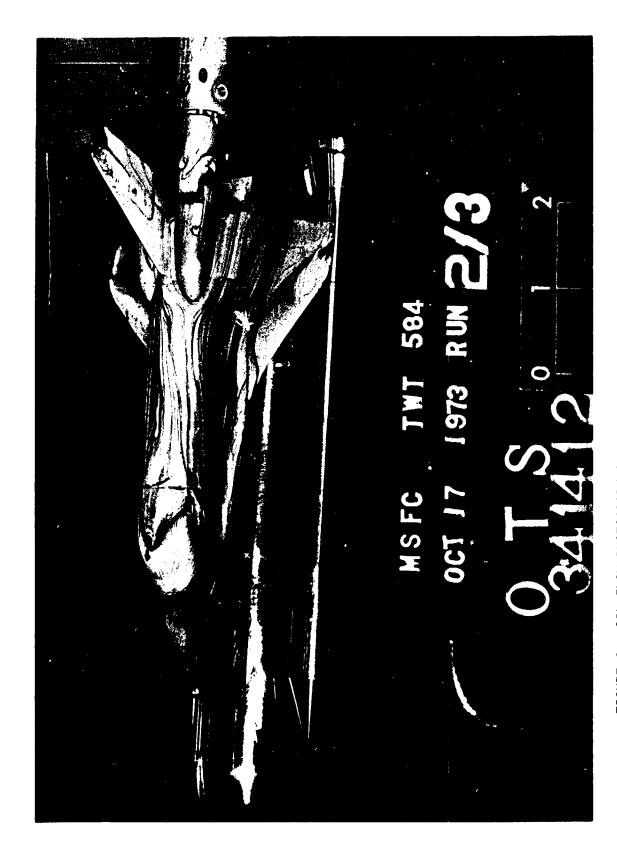



FIGURE 5. OIL FLOW PHOTOGRAPH OF INTEGRATED VEHICLE, α = $_B$ = $5^\circ,$ M = 1.2, BLUE OIL PAINT (TOP VIEW)

OIL FLOW PHOTOGRAPH OF INTEGRATED VEHICLE, α = β = 5° , M = 1.2, BLUE OIL PAINT (LEFT OBLIQUE) FIGURE 6.

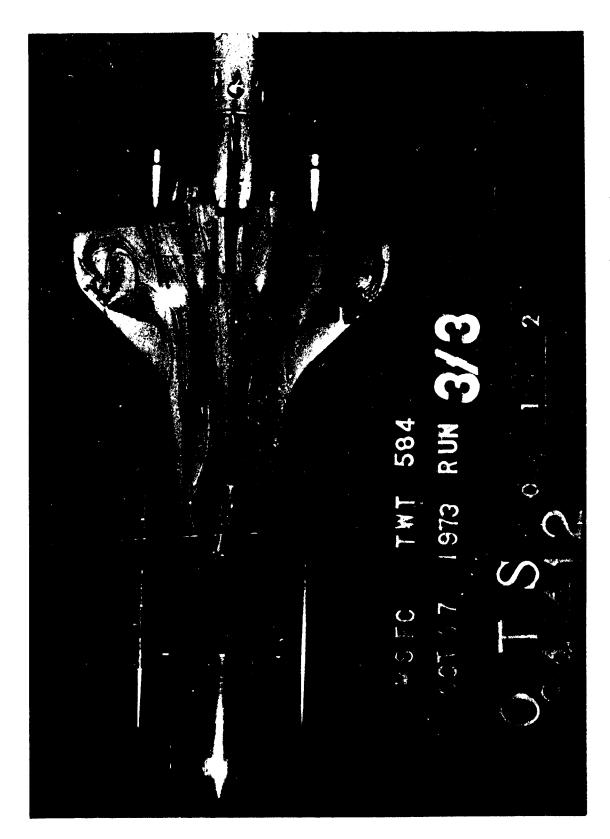
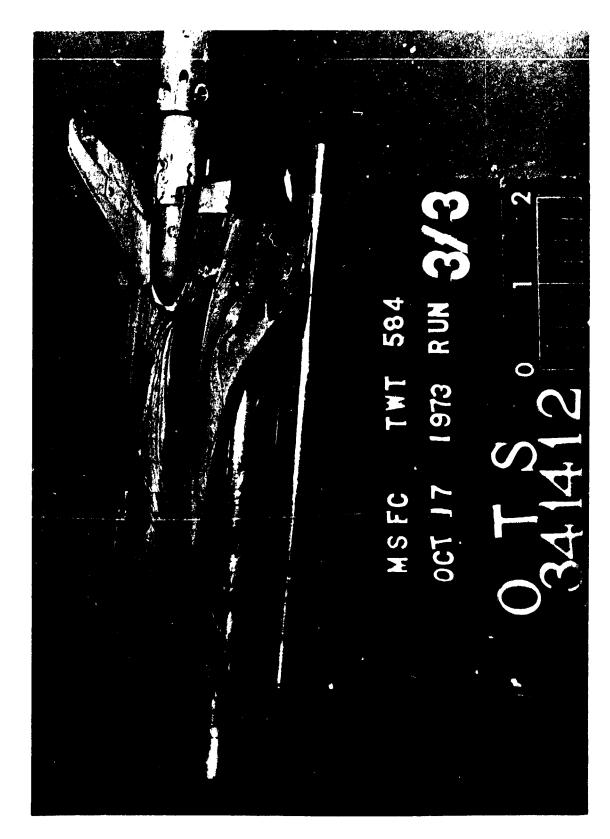



FIGURE 8. OIL FLOW PHOTOGRAPH OF INTEGRATED VEHICLE, α = 8°, $_B$ = 0°, M = 0.9, BLUE OIL PAINT (TOP VIEW)

OIL FLOW PHOTOGRAPH OF INTEGRATED VEHICLE, α = 8°, $_B$ = 0°, M = 0.9, BLUE OIL PAINT (LEFT OBLIQUE) FIGURE 9.

(

FIGURE 10. OIL FLOW PHOTOGRAPH OF INTEGRATED VEHICLE, α = $8^{\circ},~\beta$ = $0^{\circ},~M$ = 0.9, BLUE OIL PAINT (RIGHT OBLIQUE)

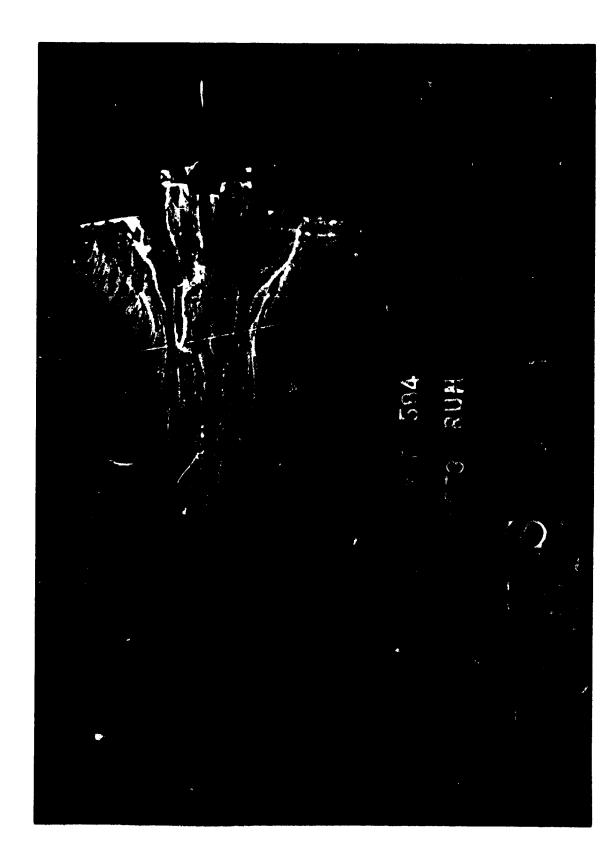


FIGURE 11. OIL FLOW PHOTOGRAPH OF INTEGRATED VEHICLE, α = 10°, $_B$ = 3°, M = 4.96, ZYGLO SOLUTION (TOP VIEW)

I)

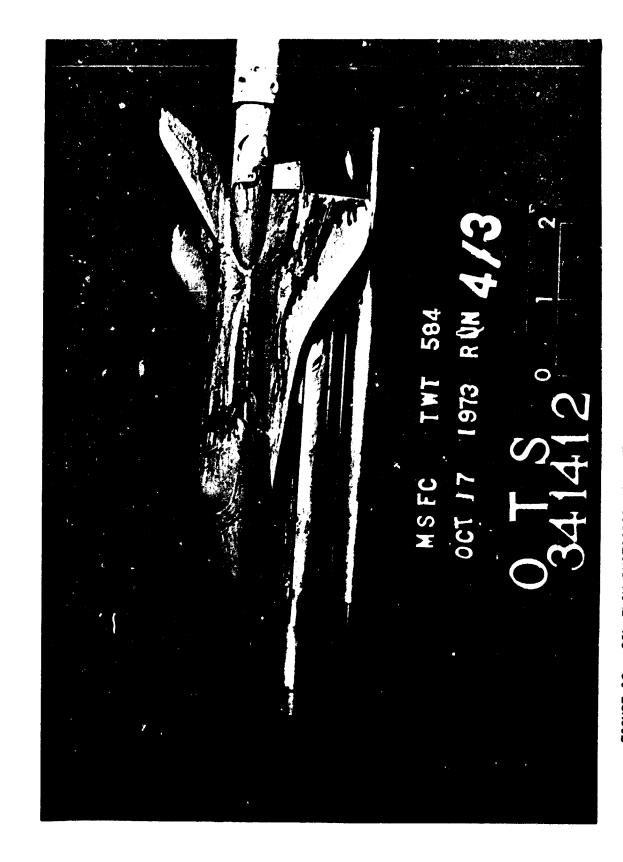
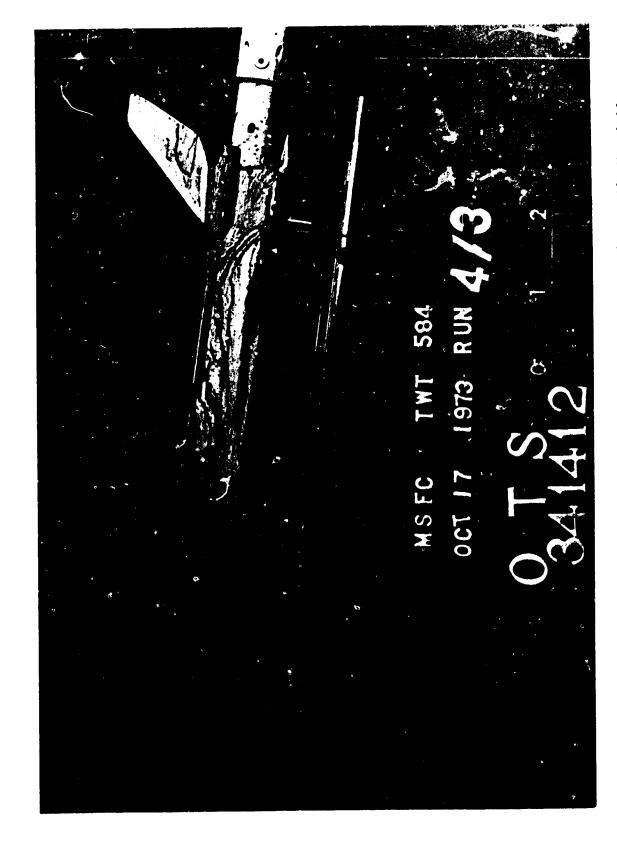



FIGURE 12. OIL FLOW PHOTOGRAPH OF INTEGRATED VEHICLE, α = 10°, $_B$ = 3°, M = 4.96, RED AND YELLOW OIL PAINT (LEFT OBLIQUE)

OIL FLOW PHOTOGRAPH OF INTEGRATED VEHICLE, α = 10°. β = 3°, M = 4.96, RED AND YELLOW OIL PAINT (LEFT SIDE) FIGURE 13.

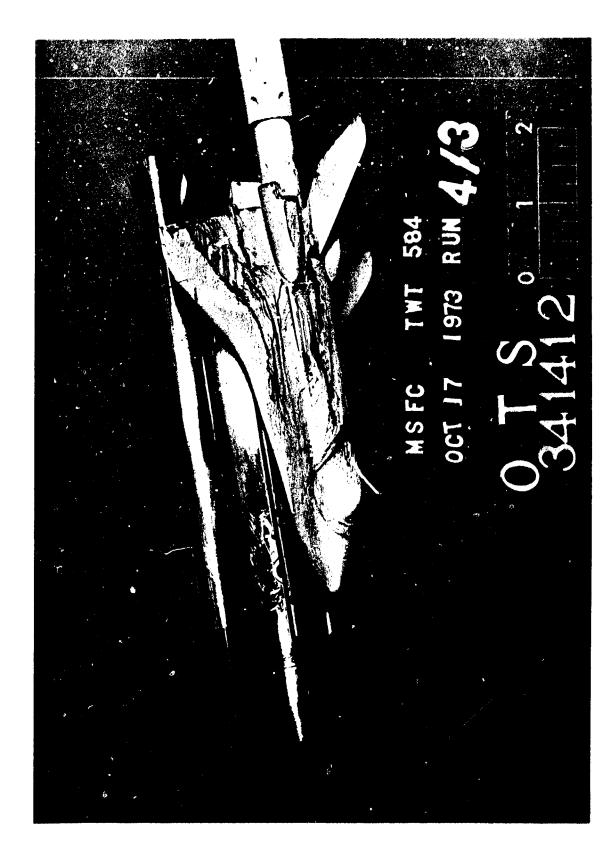


FIGURE 14. OIL FLOW PHOTOGRAPH OF INTEGRATED VEHICLE, α = 10°, $_B$ = 3°, M = 4.96, RED AND YELLOW OIL PAINT (RIGHT OBLIQUE)

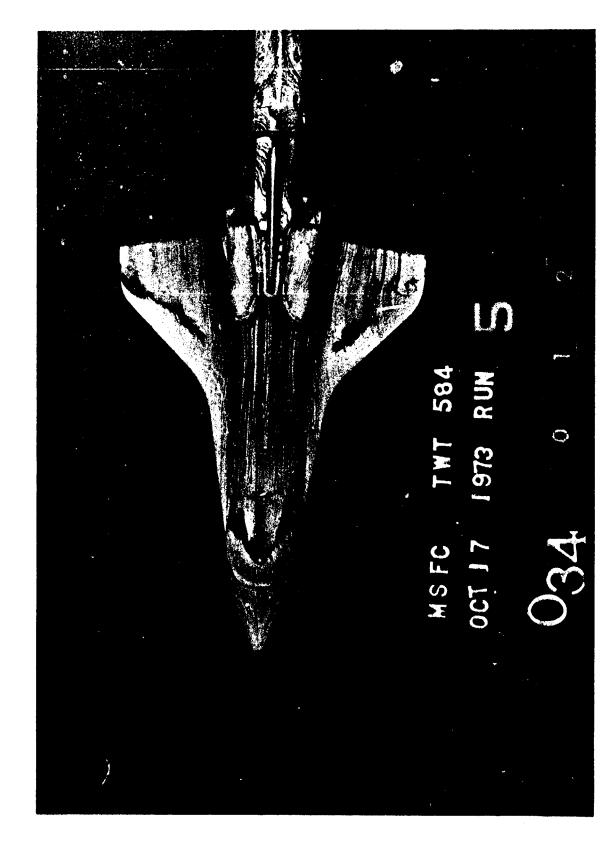


FIGURE 15. OIL FLOW PHOTOGRAPH OF ORBITER, α = β = 0° , M = 0.9, BLUE OIL PAÍNT (TOP VIEW)

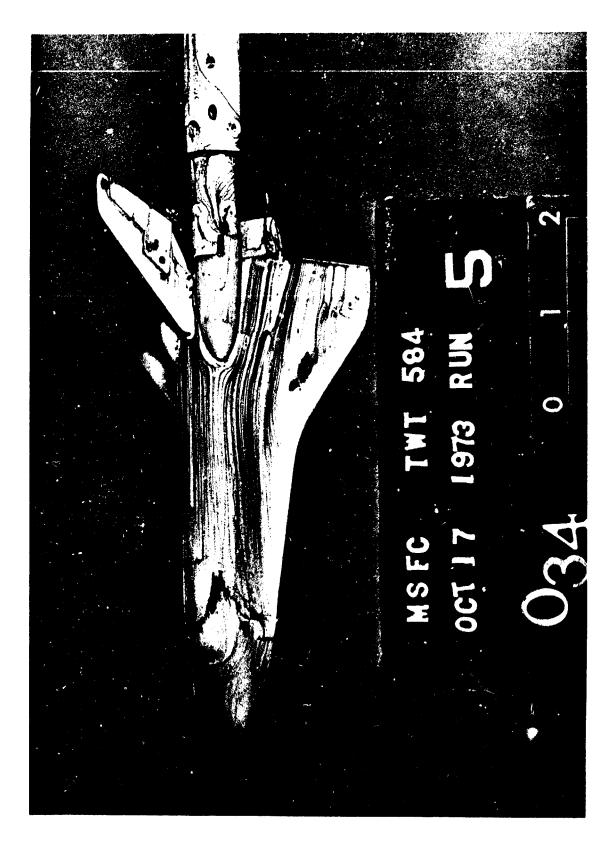


FIGURE 16. OIL FLOW PHOTOGRAPH ORBITER, $\alpha = \beta = 0^{\circ}$, M = 0.9, BLUE OIL PAINT (LEFT OBLIQUE)

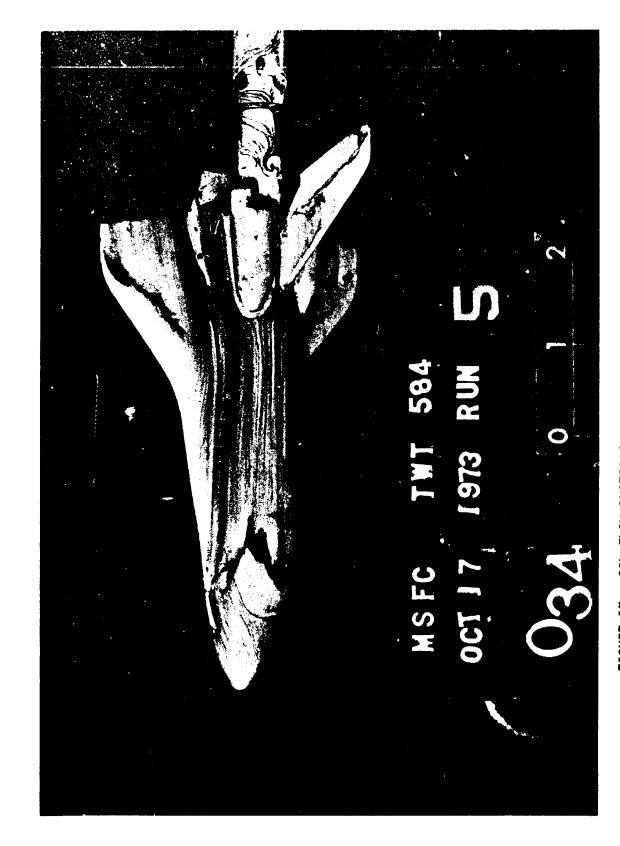


FIGURE 17. OIL FLOW PHOTOGRAPH OF ORBITER, α = β = 0° , M = 0.9, BLUE OIL PAINT (RIGHT OBLIQUE)

 \mathcal{L}

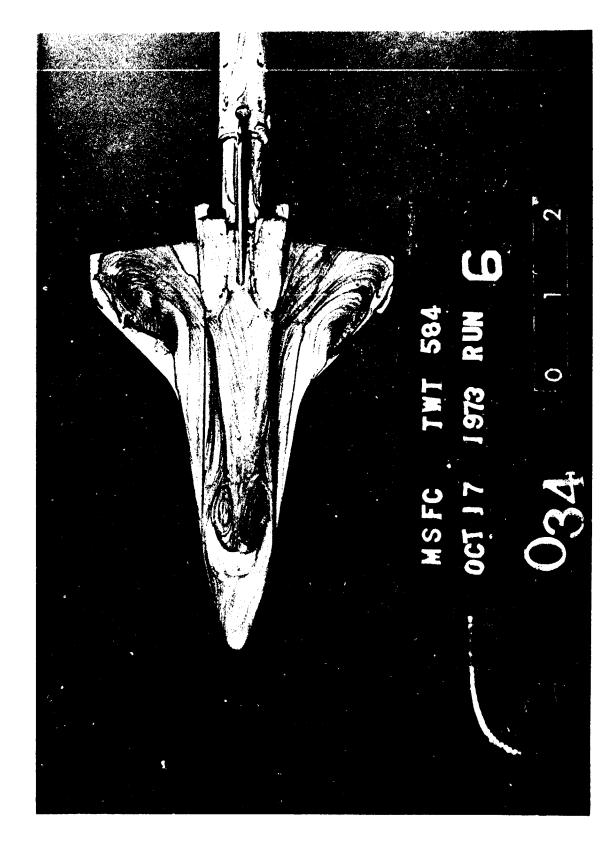


FIGURE 18. OIL FLOW PHOTOGRAPH OF ORBITER, \sim = 10°, $_{B}$ = 5°, M = 0.9, BLUE OIL PAINT (TOP VIEW)

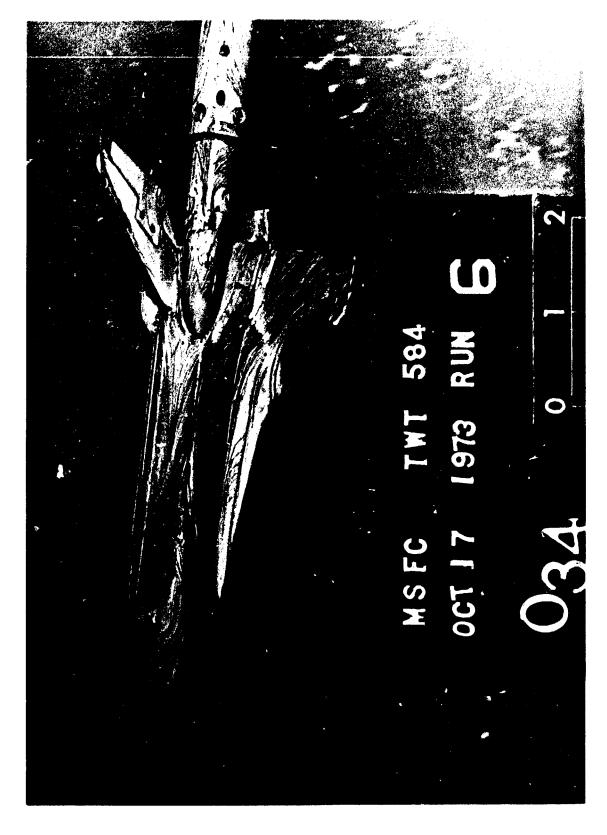


FIGURE 19. OIL FLOW PHOTOGRAPH OF ORBITER, α = 10°, $_B$ = 5°, M = 0.9, BLUE OIL PAINT (LEFT OBLIQUE)

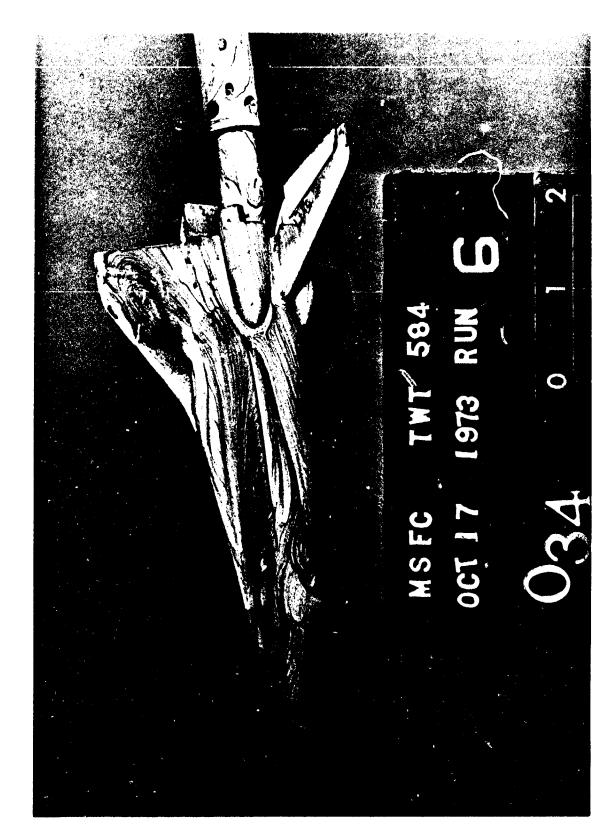


FIGURE 20. OIL FLOW PHOTOGRAPH OF ORBITER, $_{\alpha}$ = 10°, $_{B}$ = 5°, M = 0.9, BLUE OIL PAINT (RIGHT OBLIQUE)

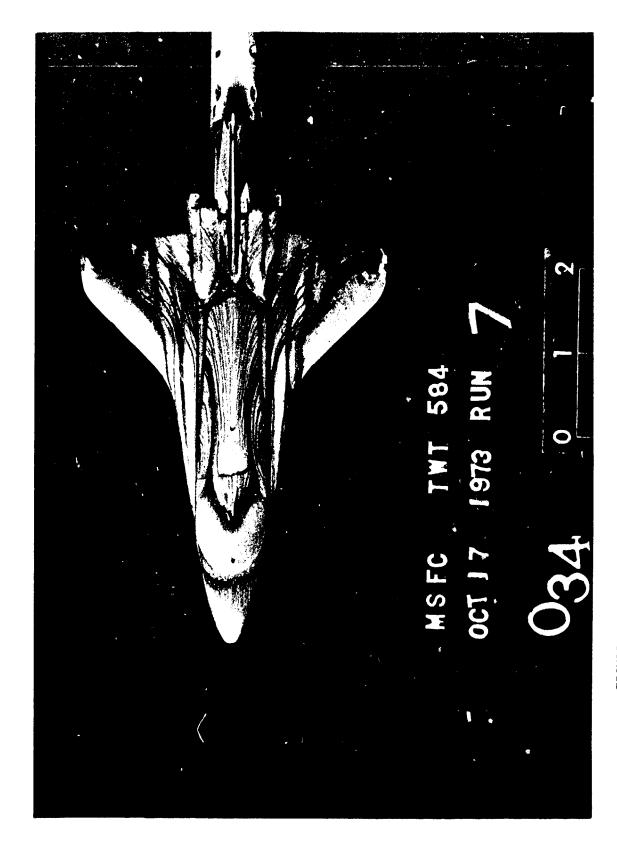
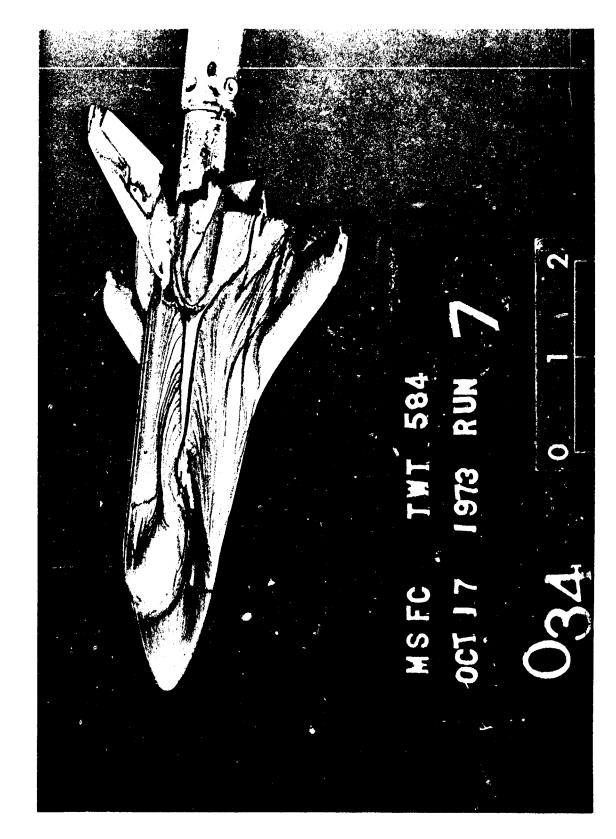



FIGURE 21. OIL FLOW PHOTOGRAPH OF ORBITER, α = 10°, $_B$ = 5°, M = 1.96, BLUE OIL PAINT (TOP VIEW)

€.

FIGURE 22. OIL FLOW PHOTOGRAPH OF ORBITER, α = 10°, β = 0°, M = 1.96, BLUE OIL PAINT (LEFT OBLIQUE)

FIGURE 23. OIL FLOW PHOTOGRAPH OF ORBITER, α = 10°, β = 0°, M = 1.96, BLUE OIL PAINT (RIGHT OBLIQUE)

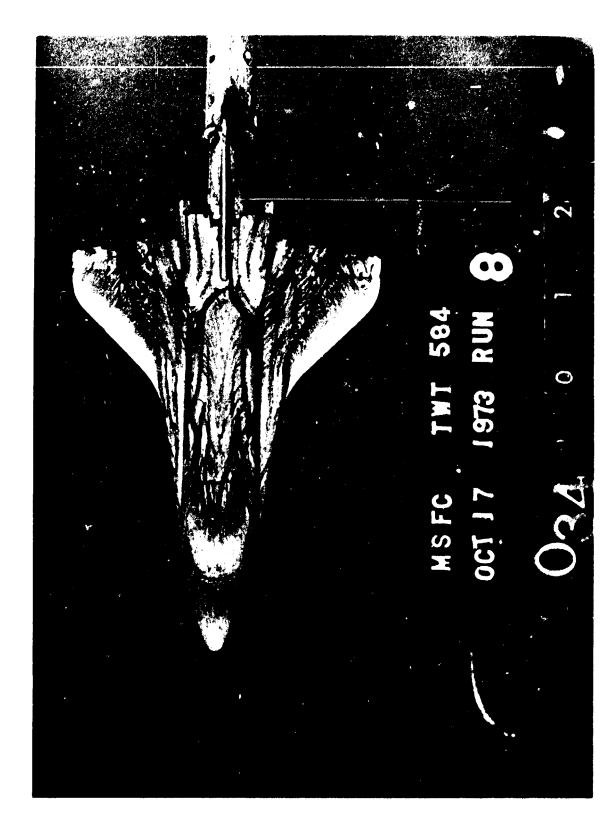


FIGURE 24. OIL FLOW PHOTOGRAPH OF ORBITER, α = 10°, β = 0°, M = 2.99, BLUE OIL PAINT (TOP VIEW)

これには、ないことはなかないことであるとうないが、あいまないのでは、これにはないのでは、

C

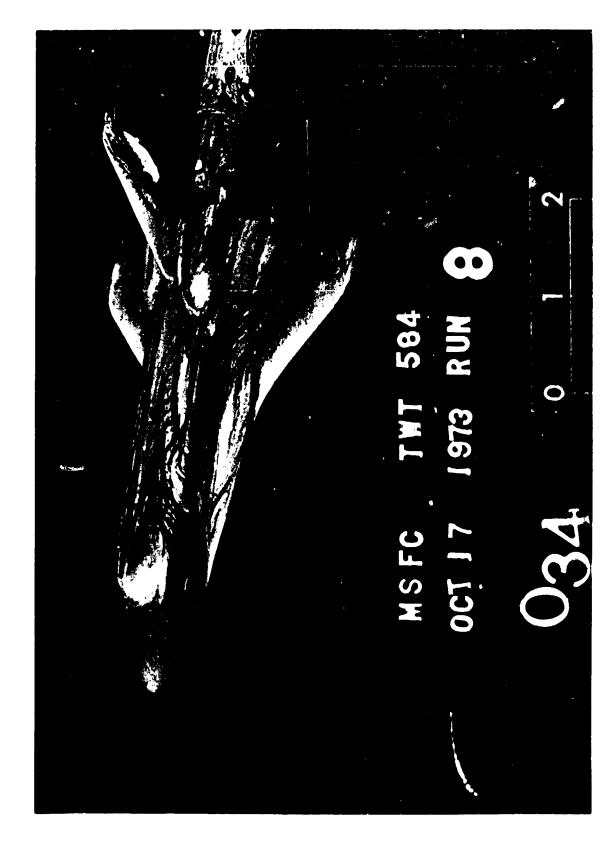


FIGURE 25. OIL FLOW PHOTOGRAPH OF ORBITER, α = 10°, β = 0°, M = 2.99, BLUE OIL PAINT (LEFT OBLYQUE)

(

FIGURE 26. OIL FLOW PHOTOGRAPH OF ORBITER, α = 10°, β = 0°, M = 2.99, BLUE OIL PAINT (LEFT SIDE)

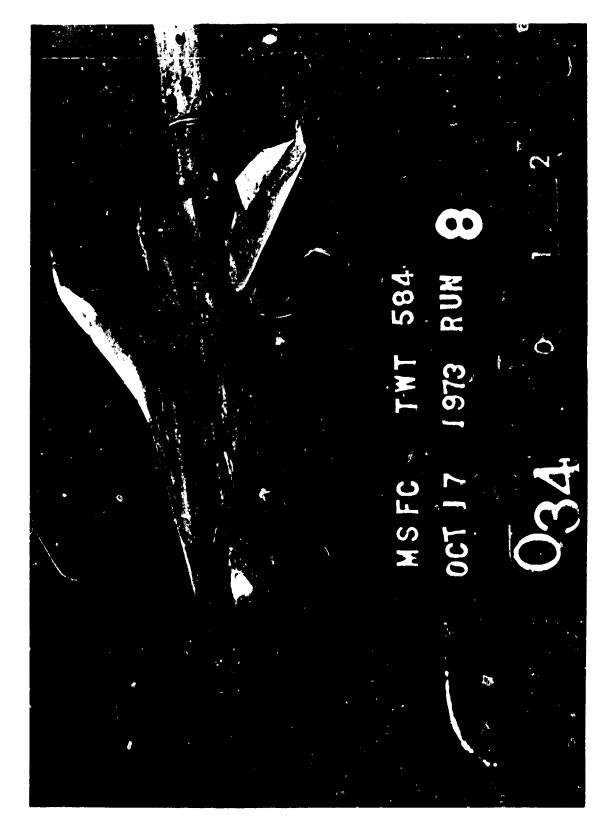
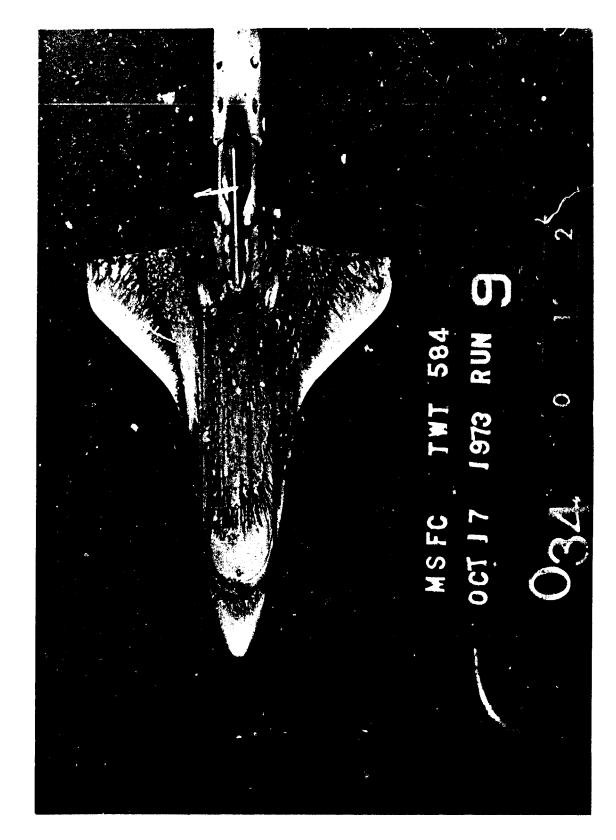



FIGURE 27. OIL FLOW PHOTOGRAPH OF ORBITER, α = 10°, β = 0°, M = 2.99, BLUE OIL PAINT (RIGHT OBLIQUE)

()

C

FIGURE 28. OIL FLOW PHOTOGRAPH OF ORBITER, α = 10°, $_B$ = 0°, M = 4.96, BLUE OIL PAINT (TOP VIEW)

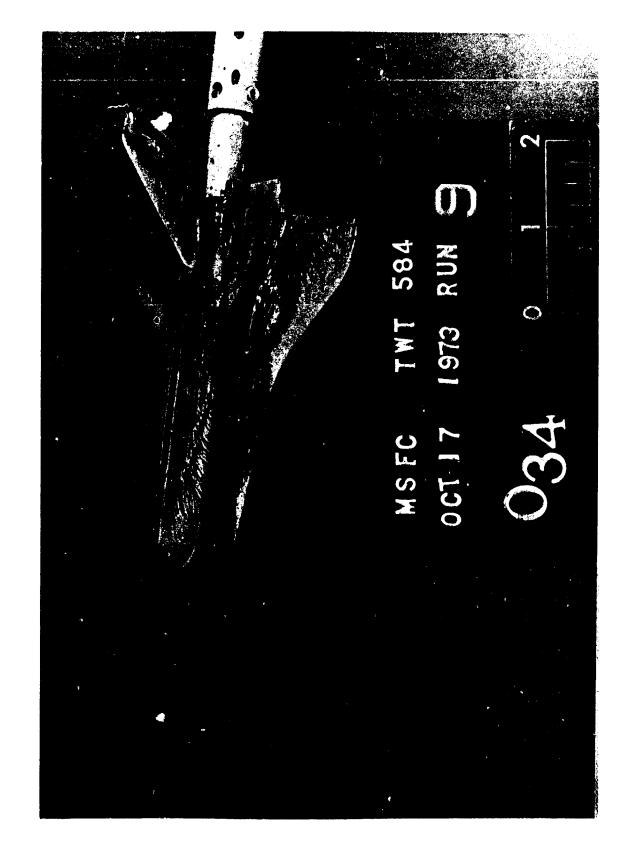


FIGURE 29. OIL FLOW PHOTOGRAPH OF ORBITER, α = 10°, β = 0°, M = 4.96, BLUE OIL PAINT (LEFT OBLIQUE)

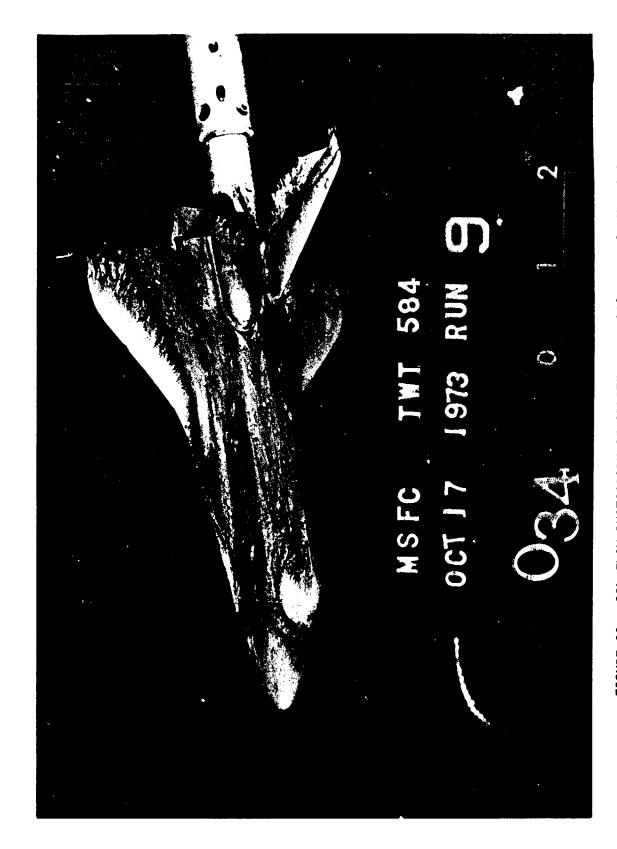


FIGURE 30. OIL FLOW PHOTOGRAPH OF ORBITER, α = 10°, $_B$ = 0°, M = 4.96, BLUE OIL PAINT (RIGHT OBLIQUE)

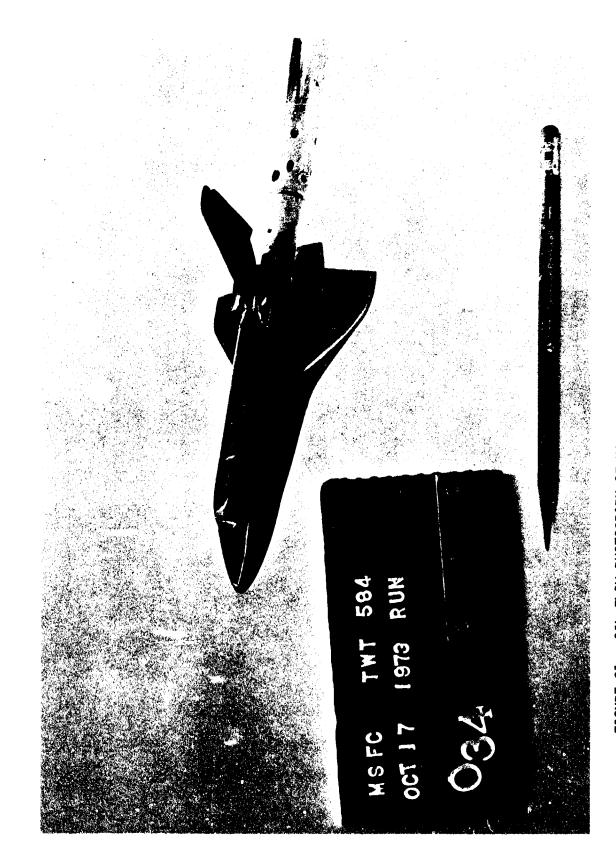


FIGURE 31. OIL FLOW PHOTOGRAPH OF MODEL PREPARATION: BLUE OIL PAINT BRUSHED ON AND WIPED DOWN

(_)

(

NASA-MSFC S&E-Aero-AE

10-17-73

98-34-73

FIGURE 32. OIL FLOW PHOTOGRAPH OF MODEL PREPARATION: APPEARANCE AFTER SPRAYING WITH MACHINE TOOL OIL