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FOREWORD

- This program was conducted by the Grumman Aerospace Corpora-
tion, Bethpage, New York, under partial support of Contract
NAS 1-10087, entitled "Nonlinear Analysis of Structures." The
work was performed by the Research Department of Grumman Aerospace
Corporation, with support from Grumman Data Systems.

The authors wish to acknowledge the valuable contribution of
Patricia Zirk and Joseph S. Miller of Grumman Data Systems for
digital computer programming. Thanks also go to Catherine O'Regan
for the technical illustrations.

This volume presents the analytical investigations and results

obtained in the application of the methodology to several repre-
Sentative sample structures.
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SUMMARY

The material presented in this report, although primarily
concerned with the author's investigations, is representative of
the current state of the development of nonlinear analysis tech-
niques within the framework of the finite-element method., Although
the emphasis here is concerned with those nonlinearities associated
with material behavior, a general treatment of geometric nonlinear-
ity, alone or in combination with plasticity is included, and ap-
plications presented for a class of problems categorized as axi-
symmetric shells of revolution. Effects due to creep and other
time-dependent material properties are not considered.

The report represents an extension of two previous studies
reported in NASA Contractor's Reports CR-803 and CR-1649. The
emphasis of the two previous investigations was on the develop-
ment of methods, along with sufficient computer programming and
computation to establish their validity and effectiveness. The
purpose of the currently reported effort is to develop a compre-
hensive program that implements the methods and procedures of
the two previous investigations, and thus provides practical tools
to the designer and analyst. To accomplish this requires that the
capabilities and capacity of the programs be sufficiently broad in
scope so as to permit the analysis of realistic structures and
that close attention be paid to efficiency, so that computations
can be made more economically.

The scope of the nonlinear analysis capabilities resulting
from this study includes: 1) a membrane stress analysis,
2) bending and membrane stress analysis, 3) analysis of thick
and thin axisymmetric bodies of revolution, 4) a general three
dimensional analysis, and 5) analysis of laminated composites.

Applications of the methods are made to a number of sample
structures. Correlation with available analytic or experimental
data range from good to excellent,

A catalog of the finite-elements used in developing this com~

prehensive program and a general discussion of three plasticity
theories are presented in respective appendices.

XV




1. INTRODUCTION

The application of finite-element methods to treat the non-
linear behavior of structures has reached a sufficient state of
maturity so that the results obtained from these analyses can be
accepted with a high level of confidence. While these methods are
generally analysis oriented, their application to industrial de-
sign is gaining momentum in this country [1-3].

Although it is not customary in design practice to allow a
structure to enter the plastic range, the need for developing a
capability for treating the nonlinear behavior of structures never-
theless exists. An obvious reason for this capability is that the
prediction of failure loads (elastic and plastic instability) under
realistic loading conditions provides a consistent, meaningful ap-
plication of factors of safety. 1In addition, predicting the redis-
tribution (whether by design or from unavoidable circumstances) of
stresses resulting from the nonlinear behavior of a structure is a
necessary ingredient toward its design as an efficient, safe, well
proportioned structure.

Compendium of Previous Studies

While solutions exist in the literature that are applicable to
numerous structures and materials, many of these solutions involve
such gross simplifications that they must be used with caution.
These simplifications were made because the complexities associated
with plastic behavior render the solution of all but the simplest
problems a formidable task. First, the laws of material behavior
under complex multiaxial stress states have not been precisely de-
fined. The stress-strain relations do not simply involve the cur-
rent values of the stress components, as is the case for linear
elastic behavior; rather, they depend as well upon the past his-
tories of these components, i.e., the material has a memory asso-
ciated with its behavior. 1In addition, the material laws appear
to be different for each material. One approach to this difficulty
is the use of approximations that provide a reasonably realistic
representation of the essential experimentally observed features
of inelastic material behavior.

Another complexity associated with the general plasticity prob-
lem is its nonlinearity. Thus, the chances of obtaining a closed-
form solution to a specific problem are fairly remote. As was the



case with linear elastic stress analysis, solutions to specific
problems had to be matched to a catalog (however limited) of pre-
determined solutions. If the geometry and system of loads did

not f£it these known solutions, the analyst was forced to consider

a simplified geometry and loading system that approximated the

one in question. The nonvalidity of the principle of superposi-
tion added an extra dimension of complexity to the nonlinear analy-
sis. Therefore, the analyst sought numerical solution techniques

of the repetitive type. These are usually classified as iterative
or stepwise. In the first, the iterative approach, the entire load
may be applied at once, and a solution is effected by using an ap-
propriate convergent iterative technique. 1In the stepwise approach,
the response of the structure is assumed to be linear over small in-
crement:s of load. There are merits in both approaches, as well as
in their combined use.

A major difficulty with the repetitive type of solution is that
it generally requires quite an extensive computing effort. To cir-
cumvent this difficulty, it is necessary not only to develop higher-
speed machines of larger capacity but also to develop methods of
analysis that minimize the computing effort.

Despite these complexities, substantial progress has recently
been made in developing general methods of plastic analysis. This
progress is largely due to advances in the field of numerical methods
of structural analysis, specifically, the finite-element method. The
treatment of nonlinearities, both physical and geometric, within the
framework of existing finite-element techniques permits analysis of
structures of arbitrary shape and comsideration of a variety of
loading and boundary conditions.

References 4~16 are representative of recent investigations
concerned with incorporating the effects of plastic behavior in
finite-element analysis. These studies describe techniques to treat
plasticity by means of various algorithms that linearize the basi=-
cally nonlinear problem. These techniques have been divided into
two general categories: a) the initial strain and b) the tangent-
modulus methods.

In the imitial-strain method, the equivalence between tempera-
ture gradients and body forces in causing a strain field is extended
to include plastic strains. Thus plastic effects are treated by in~-
terpreting plastic strains as initial strains. This analogy, first
introduced in Ref. 17 reduces the nonlinear analysis to the analysis
of an elastic body of identical shape and boundary conditions, but




with an additional set of applied loads, here termed "effective
plastic loads." The initial-strain method is advantageous because
of the ease with which it can be implemented in a finite=-element
analysis and because the stiffness matrix developed for the elastic
behavior of the structure remains unaffected by changes in material
properties.

In the tangent~modulus method (outlined in Refs. 6 and 9), the
incremental linear constitutive relation, based on the plasticity
theory, is introduced directly into the governing equilibrium equa-
tions. This method requires modification of the element stiffness
influence coefficients at each incremental load step.

Despite differences in application of the initial-strain and
the tangent~-modulus concepts, there is, in some respects, a close
relationship between them. References 9 and 16 discuss this rela-
tionship and the comparative merits of the methods as applied to
membrane stress problems, while Ref. 18 discusses the relative merits
of each of these approaches for combined nonlinear problems.

The development of nonlinear finite=-element analysis has not
been limited to the area of plasticity. Considerable effort has
been directed toward the treatment of geometric nonlinearity. Ef~
fects resulting from geometric nonlinearities alone [19-21] have
been considered extensively, and in several instances the simul-
taneous effects of both types of nonlinearity have been treated
[18, 22-24]. 1In general, these studies have been concerned solely
with monotonic loading conditions where the load reaches a speci-
fied maximum value, or until structural failure occurs. Only in

rare instances have unloading and reversed loading been considered
[11, 16, 23].

In many cases, w hen one considers the problem of combined geo-
metric and material nonlinearity, the solution technique used for
the treatment of plasticity alone (i.e., an incremental approach)
becomes especially attractive. Since the relations derived from
the flow theory of plasticity are themselves incremental, the modi-
fications necessary to incorporate the effects of geometric non-
linearity are minimal.

However, the choice of using the tangent modulus or effective
load approach to account for material and geometric nonlinearity is
of utmost importance because of the extensive computer times re=-
quired for repetitive solutions to these problems. 1In addition,
the choice of solution algorithm (e.g., Cholesky decomposition,
Gauss-Seidel iteration, etc.) and solution procedure (Newton=-Raphson,
first order self-correcting, etc.) in conjunction with either of the



above two methods can have an appreciable effect on the accuracy,
efficiency (time), and stability of the solution. Various aspects
of these problems have been discussed in two recent papers [18, 23].

Grumman~NASA Investigations

Since 1965 NASA/Langley has partially supported several efforts
concerning the development of methods for the inelastic analysis of
complex aeronautical structures. A chronological summary of these
efforts is presented in Fig. 1. The goal of these studies has been
to provide a feasible analytical means for determining the behavior
of structures under conditions approaching failure and for loadings
of a realistic nature. The methods developed under these contractual
investigations, cited in Refs. 16 and 25, are based on and represent
an extension of, the displacement method in finite-element techniques
of structural analysis.

In the earliest of the previous studies (Ref. 25), consideration
was given to the development of discrete~element methods for the
plastic analysis of complex built-up structures in states of biaxial
membrane stress, with particular emphasis on the effect of cyclic
loading causing stress reversals into the plastic range. To accom-
modate this case, the methods implemented a plasticity theory that
can take into account the Bauschinger effect. This theory is the
kinematic hardening theory of Prager (Refs. 26 and 27) as modified
by Ziegler (Ref. 28). 1t can represent the salient features of the
plastic behavior of structural metals, and is readily implemented
in a discrete-element analysis.

The governing linear matrix equation relating nodal displace-
ments to applied loads and initial strains was modified for the
treatment of membrane stress states to the form of a linear matrix
equation relating stress increments directly to increments of ap=-
plied load and initial strain. The solution to this equation was
obtained by means of two altermative procedures. In the first,
termed a predictor procedure, estimated values of initial (plastic)
strain increment are used in the governing equation to yield stress
increment. In the second, termed the stepwise linearization pro-
cedure, the flow rule of the plasticity theory chosen is used di~-
rectly to obtain a matrix equation in terms of the unknown stress
increment. These two methods are discussed in detail in Ref. 4.

The computer programs for this analysis follow a two-step procedure.
First, an elastic finite-element program must be used to develop the
coefficient matrices to be used in the governing equation for the
stress increments. The program accepts nodal and member topological
information, forms the stiffness matrix for the structure, and sub-
sequently performs the necessary matrix operations to form the




coefficient matrices relating the stress increments to the incre~
ments of applied load and initial strain. Constant stress or
linearly varying stress elements are used in computing these co-
efficient matrices. As a second step, computer programs are
written, independent of the type of finite-element used, to per=-
form the plasticity amalysis.

The simplicity of this technique for membrane stress analysis
stems from the fact that the coefficient matrices, initially de-
veloped from an elastic analysis, remain unchanged during the course
of the plastic analysis, and thus may be used without further
modification.

In the follow-on effort, reported in Ref. 16, the methods pre=~
viously developed for membrane stressed structures were extended to
include the treatment of bending alone or in combination with mem-
brane stresses.

An added complexity in a plastic bending analysis is that
plastically deforming elements cannot be treated as wholly plas-
tic. The regions of plasticity extend through only a portion of
the thickness, consequently, it is necessary to locate elastic~
plastic boundaries within the thickness of the element. A technique
developed to accomplish this both for bending alone and for bending
in combination with membrane stresses, involves an assumed distribu-
tion of plastic strain across the thickness (i.e., each component of
plastic strain was assumed to vary linearly from the extreme fibers
to an elastic=plastic boundary). A subsequent technique, developed
under the present effort, does not require an a priori assumption
concerning the representation of plastic strains or the elastic-
plastic boundary through the thickness. 1Instead, the integrations
necessary to obtain the components of the initial strain stiffness
matrices are performed numerically by using the Gaussian quadrature
scheme for in-plane integrations and Simpson's rule for the plastic
strain integrations through the thickness. 1In addition, states of
stress are evaluated at selected points through the thickness. Con-
stitutive relations from the plasticity theory are used to evaluate
states of plastic strain at these points, and the resulting varia-
tion is used in evaluating the pertinent integrals associa ted with
those matrices required in the plastic analysis. While the previous
approach is quite satisfactory for cases involving monotonic loading
conditions, it is nevertheless restrictive and leads to great com-
plexities when consideration is given to unloading and cyclic loading
involving reversed plastic deformation. The new technique avoids
such complexities.




At the completion of Contract NAS 1-7315, the methodology had
been extended so that the “library" of elements available for
plastic analysis included a beam of rectangular cross section, tri-
angular and rectangular flat plate elements, and constant strain
and linear strain triangular membrane elements. Also included in
this study was an investigation to determine the feasibility of in-
cluding the treatment of geometric nonlinearity within the frame-
work of the plasticity methods. An incremental method was used to
account for the effects of the changing geometry of the structure
as it deforms, and application of the combined nonlinear procedure
was made to beam and arch structures, as reported in Refs. 13 and 16.

The emphasis of the two NASA contracts was on the development
of methods, along with sufficient computer programming and compu-
tation to establish the validity and effectiveness of these methods.
The results obtained for almost all of the sample structures con=
sidered during the course of the contracts were compared with ex~
perimental and/or previous analytical work, and the correlation
ranged from good to excellent. On this basis, we believe that the
methods and procedures developed under these contracts can be used
with a high level of confidence. The acceptance of these plasticity
methods as a practical means for determining the nonlinear response
of structures subjected to realistic loadings now required that they
be made available on a convenient basis to the structural designer
and analyst. This requirement led to the currently reported effort,
Contract NAS 1-10087, the purpose of which is to develop a compre~
hensive program that implements the methods and procedures of the
two previous investigations, and thus provides practical tools for
the designer and analyst. To accomplish this requires that the capa=-
bilities and capacity of the programs be sufficiently broad in scope
so as to permit the analysis of realistic structures and that close
attention be paid to efficiency, so that computations can be made
more economical,

The scope of the nonlinear analysis capabilities resulting from
the study reported on here is presented in Fig. 2a. The capabilities
are cataloged 1in terms of the types of analysis that can be treated.
Finite-element programs, written for each of the analyses, take full
advantage of the distinctions associated with each type of analysis
for which they were written. The final comprehensive program con-
sists of these programs under an executive that will selectively load
and supervise the execution of individual programs as selected by the
user. An organization chart of this structure is shown in Fig. 2b.
more detailed description of the organization of PLANS (PLastic
ANalysis of Structures) is discussed subsequently in this report and
in detail in a companion report.

A




One of the principal requirements of a comprehensive finite=
element plastic analysis computer program is that it contains a
library of finite~elements of sufficient variety that it is capable
of accurately describing the state of stress and deformation exist-
ing in a wide variety of structures. These elements should be of a
basic shape such that arbitrary geometric configurations may be
represented to any desired accuracy. A catalog of the specific
finite~elements to be available in the developed plasticity program
is presented in Appendix A. A brief discussion of each element is
presented in this appendix in which each element is classified
according to the type of analysis to which it is applicable.

2. GOVERNING MATRIX EQUATIONS

The method employed in the present report uses an incremental
formulation for the large deflection, elasto-plastic problem and is
based on a variational principle presented in Ref. 29. The approach
used here is identical in concept to that outlined in Ref. 24, with
the exception that plasticity is treated by means of the initial
strain concept [30, 31] in the present work, whereas the tangent
modulus method [10] is used in Ref. 24.

The use of either approach requires the use of constitutive
relations for an elastic-plastic engineering material. In general,
the matrix equations governing the response of a structure to some
arbitrary history of loading are used to solve for displacement and
total strain increment. It is necessary, therefore, to develop in-
cremental relations linking plastic strain or stress to total strains.
These relations are presented here in matrix form for strain hardening
and ideally plastic behavior. A more detailed discussion is presented
in Appendix B and Refs. 16 and 25.

Plasticity Relations

Appropriate incremental plasticity relations to determine values
of stress and plastic strain developed during the history of loading
are now considered. Hill's yield criterion [32] for an orthotropic
material, which reduces to the Von Mises yield condition for iso~=
tropic materials, is used to predict initial yield and to obtain the
flow rules of plasticity. The capability of handling both strain
hardening and ideally plastic behavior is included in the analysis.
While orthotropic behavior is included in the case of ideal plasticity,




only isotropic behavior is now allowed when the material strain
hardens. There are several theories to treat the plastic behavior
of strain bhardening orthotropic materials, but the acceptance of a
suitable one awaits further experimental verification. A discussion
of three theories for the treatment of strain hardening materials is
presented in Appendix B. Two of these theories (isotropic hardening
and kinematic hardening) have been developed for initially isotropic
materials; the third theory (work-hardening modulii) can treat ini-
tially anisotropic materials.

Regardless of the theory used, linear incremental constitutive
relations can be developed and incorporated into an equation re-
lating generalized loads to generalized displacements of an arbi-
trary structure. These constitutive relations can be conveniently
represented in matrix form.

Matrix Relations - Strain Hardening

We can, for small strain increments, decompose the total strain
increment {AeT} into elastic {Ae®} and plastic ({Ae} components,
as

{AeT} = {Aee} + {Ae} . (L)

The elastic strain increments are related to the stress increments
{Ac} by

{Aee} - 17! {AG} : (2)

where [E] is an array whose elements are combinations of elastic
material constants.

Regardless of the plasticity theory used, a linear incremental
constitutive relation between plastic strains and stresses can be
written. This relationship can be represented as

{Ae} - [c] {AU} . (3)

Therefore, substituting Eqs. (2) and (3) into (1) we can write




{Ac} - [RI7F {AeT} : (4)
where [R] = [E]-l + [C].

Matrix Relations ~ Perfect Plasticity

The treatment of multiaxial elastic ideally plastic behavior
requires that the following conditions be satisfied:

e The stress increment vector must be tangent
to the loading surface.

The plastic strain increment vector must be

normal to the loading surface, where the loading
surface is the representation in stress space of

the initial yield function or the subsequent yield
function after some plastic deformation has occurred.

If f(oij) represents the yield surface, the first condition
can be expressed analytically as

of
Sog; Y3 =0 ©)
1]

and provides a linear relationship among the components of stress
increment. Thus, one of the components may be expressed in terms
of the others. In matrix form, this can be written as

{Ac} - [E] {49} : (6a)

where {Ag} represents the independent stress components.

The normality condition provides a linear relation among the
various components of the plastic strain increment. This condition
is derived from the flow rule of Eq. (B~3), and provides a linear
relationship in which each of the components of plastic~strain
increment can be written in terms of any one component. This re-
lationship may be represented in the following form

{Ae} = [E] {AS} , (6b)

where {45} is the independent plastic strain increment,
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It is apparent from Eq. (5) that the independent increments
of stress and plastic strain can be combined and written as the
components of a vector, {Aw} (see Ref. 33), so that Egs. (6)
can be written, respectively, as

{Ao} = [E] {Aﬂ)} (7a)
{Ae} - [E] {Aw} . (7b)

Combining the above equations with Egqs. (1) and (2), we can form
the following relation for the independent quantities

{Aw} = [E*]“l {AeT} . (8)

where [E'] = [E1"'[E] + [E].

Thus, it is apparent that, upon the selection of an appro~
priate plasticity theory to represent the nonlinear material be-
havior, the constitutive relations can be represented in terms of
a linear matrix relation. There are several alternatives towards
incorporating this relation into the final equation relating loads
to deformations. The approaches we have found to be convenient
(in terms of required machine time) and accurate when compared with
previous solutions and/or experiments, are outlined in the following
subsections.

Development of Load-Deflection Relations

As the initial step towards the development of the governing
matrix equation, we choose a reference state, Ip, in the body,
for which the states of stress, strain, and deformation are known.
We now choose the next state to be incrementally adjacent to the
initial state with all quantities referred to the reference state,
i.e., xi = Xj + Ouy, where xj are the new coordinates of an
arbitrary point, X; are the original coordinates in the local
coordinate system, and Auj are the incremental deflections of

the point in going from the reference state to the current state
[29].



At the start of a load increment, let the stresses, surface
tractions, and body forces acting on the structure be denoted by
Zi4, Tg, and Fg. These quantities are referred to a unit of
"undeformed" area, i.e., before the addition of the current load
increment. They take into account the effects of any previous ini~
tial strains present in the body. The application of an incre-
mental load to the body, expressed in terms of ATy and AF;, re-
sult in additional stresses Acij, displacements Au;, plastic
(initial) strains Lej g, and the distortion of the body to its
new configuration given by xj.

The total stresses, surface tractions, and body forces, re-
ferred to the unit undeformed area and in the new coordinate direc~
tions xj;, are

g.. = 2., + Ac. .
ij ij ij

F. = F0 + AF (9)
i i i

T, = TQ + AT, R
R T 1

The development of the governing matrix equation may be ap=~
proached by one of several alternative procedures. The authors
choose here the principle of virtual work, which, for an incre~
mental method, may be written as [29]:

n 0
(zij + Aoij)a(Aeij)dv = (T, + AT,)6(4u,)dS

v S
(10)

0
+ (Fi + AFi)ﬁ(Aui)dv
\Y

o . o
Here Aei: 1is Green's strain tensor that refers to the original
or "undeformed" volume of the element

AS.. = De.. + I

ij ij ij (11)
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In this expression Aej: are the terms that represent a linear
strain-displacement relationship, while Anij are those associated
with the nonlinear terms in the strain-displacement relationship,
The incremental constitutive equations are taken to be in the fol-
lowing form

Ao = (Ae ~ Ag

ij 1Jk1 (12)

kl) 3

where Aegpq are the initial or plastic strains developed in the
current increment based upon the "undeformed" geometry. These

are assumed to be small and independent of the total strains. The
terms, Eijkl’ are the linearly elastic material properties.

Substituting the stress~-strain relatiomns, Eqs. (12) and (11)
into Eq. (10) yields

{Ae 1Jkla(Ae D+ 3 6(AnlJ)HdV =

AT 8 (Au;)dS + | AF;6(du,)dv

- 3, . ..0d
+ AeijEijkIG(Aekl)dv lJB(AelJ) v .
13

0 0
- T.6(ou;)dS - F.6(buy)dv

- Ao, .5 (AN, .)dV
AnijEijklﬁ(Aekl)dV + 0136( nlJ)




We now have an equation that is similar in form to that pre=-
sented in Ref. 24, with the exception of those terms associated
with initial strains. As in Ref. 24, it is assumed that, although
total strains may be large, incremental strains from one neighbor-
ing state to the next are small, and thus the last two terms of
Eq. (13) (which are cubic and quartic in displacement increments)
may be neglected when compared to terms that are quadratic in dis~
placement increments. These terms that are neglected lead to the
matrices [Nj] and ([Np] of Ref. 34 and must be retained in a
total Lagrangian formulation. An additional wmatrix due to the
presence of initial strains is also generated from the last term
of Eq. (13), but as it contributes terms of the same order of mag-
nitude as the other termsneglected, it too need not be retained.

We then have

lav -
ZijB(Anij) + AeklEijklﬁ(Aeij)JdV =

ATi6(Aui)do + AFiﬁ(Aui)dV

S v
\ (14)
+ AeijEijklﬁ(Aekl)dv
JV
+ 1l % yds + | P cauyav - | 3 s(e. . )av
i i i i ij ij
“S A A\

If the initial stress state, Zi5 Tg, and Fg, is in equilibriu
at the start of the incremental step, then the last three terms of
Eq. (14) vanish and we get the following incremental initial strai

large deflection relation:

m

0,

13
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e ]
L3 ] =
i ijE(Aqij) + AeklEijklﬁ(Aeij)JdV AT, 6 (ou, ) dS

(15)

+ AFiB(Aui)dV + S(Aekl)dv

BessBisia
v Jy

The first term of this equation yields the initial stress
stiffness matrix after the rotations (or other nonlinear terms)
have been expressed in terms of nodal degrees of freedom. The
second term leads to the conventional stiffness matrix. The first
two terms on the right side lead to the consistent load vectors
for surface tractions and body forces, respectively. The last
term on the right side leads to the initial strain stiffness matrix
which is multiplied by a vector of plastic (initial) strains to be
used as an "effective" plastic load vector.

Because we use a predictor procedure, however, the initial
stress state may not be in equilibrium before the current load step.
The results for the next step may be adjusted or corrected for this
imbalance by introducing a residual force given by [24].

0 0
- V =~ 2 vV
R. T.B(Au.)ds -+ F,a(Au.)d .jﬁ(Ae.j)d . (16)

S i v

Any discrepancies due to the neglect of the change in direc~
tion of the load are also accounted for in Eq. (16), because the
total load is applied to the structure in its current configura=-
tion. The total stresses o3 obtained at the end of load incre=-
ment N become the initial s%resses for step (W + 1). These
must now be related to the new deformed area (which is the unde-
formed area for step. N + 1). The transformation that accomplishes
this 1s presented in Ref. 24 and written here as

T3 = (- beydog, + (Rey + ooy )0y +(eyy +ow, )04 (17)




where the Awjj are the incremental rotations. Similar trans-
formations must be carried out for the surface tractioms, body
forces, and initial strains.

We will, at this point, mention that the last two terms of
Eq. (13) need not be neglected and can be included without the
formation of any additional stiffness matrices besides the re=
quired initial stress stiffness matrix and initial strain sitff-
ness matrix. These terms may be retained in a predictor process
in which values for Acj; and Anjy obtained from the previous
step (appropriately extrapolated) are used in the formulation of
the appropriate stiffness matrices for the next incremental step.
This should permit the use of larger step sizes in the current
formulation. This latter concept was not used to obtain the re-
sults presented here.

Final Matrix Equations and Solution Procedures

The final form of the incremental equations used in the finite-
element formulation is obtained from Eq. (14). The displacements
{Au}, 1linear total strains {fejj}, and rotations {Awjj} are re-
lated to the nodal generalized displacements {Auj} via the follow-
ing matrix relations:

{au} = [N]{Au;)
(Bey ) = [WI(ou;] (18)
{Awij} = [Q]{Aui}
We then have
() + (670)(au,) = (23 + (28Q,) + (R,] (19)
where
%1 = | wTEIa




[kl —F 1=, . 1lalav
= Q 1] Q
Y
{APi} = [N]T{ATO}dS
“S
(8;} = | [(WIT[E](Ae }av
Y
2T 0 T,
(®) = NIrtyas - | e e
“s v

and body force terms have been neglected, as they are not considered
in_this report. Here (k0] is the conventional stiffness matrix,
[k*] 1is the "initial stress'" or geometric stiffness matrix, [APi}
is the vector of applied loads, {AQj} is the effective plastic
load vector, and {Ri) is the vector of residual forces due to the
existence of any equilibrium imbalance that may exist because of

the predictor nature of the numerical solution procedure.

Equation (19) is derived by using a moving coordinate system
fixed to the body. It is valid for large elastic-plastic deforma-
tions, provided the appropriate nonlinear terms are retained in the
strain-displacement relations and the total strain increment can be
simply decomposed into elastic and plastic components. Additionally,
proper transformations from the previous to current coordinate sys-
tems must be used so that the changes in orientation and volume of
the elements must be accounted for [23, 24]. 1In this report, con-
sideration is restricted to small strain, moderate rotation prob-
lems. Alternative solution techniques to solve Eq. (19) are pre-
sented and comprehensively discussed in Ref. 33. For completeness,
a brief summary of these techniques is presented here.




Material Nonlinearity

If we initially neglect the effects of changing geometry and
the equilibrium correction term, and write the elastic stiffness
matrix as

] = [k, 1 , (20)

and use the superscript "k" ' to denote the "ktB'" 1544 increment,
then Eq. (19) may be written as

ke 1€ (0w} = tap 1%+ (ag )" (21)

It should be noted that the initial stress stiffness matrix [kt]
is not necessarily associated only with geometric nonlinearity; it
may also be required in such other cases as the bending of plates
subjected to membrane stress.

In Ref. 33, Eq. (21) is put into alternative forms suitable
for numerical solution; distinctions among the basic forms employed
are accomplished by using the term "method," and distinctions among
the solution procedures are effected by using the term "procedure.”

Displacement Method — Predictor Procedure. 1In the first
"method" to be treated, the "effective plastic loading" is taken to
be equal to that computed in the preceding load increment, and is
thus taken as a known quantity in the equationm.

The final form of Eq. (21) is
k k k k-1
[k 17 (ou )™ = (4P 3 + {0Q) ; (22)

where k~1 1is the preceding load step. The use of this type of pre-
dictor procedure obviates 'the necessity of introducing the plastic
stress-strain relations explicitly into the governing matrix equation.

The incremental solution technique using Eq. (22) reduces to a
sequence of linear problems in which the applied loading is con-~
stantly modified by the effective plastic load vector. Thus, with
the increments of generalized displacement obtained from Eq. (22),
the strain-displacement relations and Eqs. (4) and (3) are used to
obtain the complete solution for increments of total straim, stress,
and plastic strain, respectively, assuming elastic strain»hardenigg
material behavior. The corresponding relations [replacing Eqs. (&)
and (3)] for an elastic, ideally-plastic material are given in
Egqs. (7) and (8). After summing all incremental quantities to de-
termine current values of the pertinent variables, new values of
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the increments of fictitious load ({AQ} are determined for each ele-
ment in the plastic range, and the procedure is repeated until the end
of the loading process is reached. A further discussion of the use of
the effective plastic load concept in conjunction with the basic gov-
erning matrix equation, Eq. (22), can be found in Refs. 13, 16, and 25.

Strain Method = Predictor Procedure. The predictor procedure
solution technique can also be applied in an alternative formulation
of the problem involving a direct solution for the increments of total
strain. This alternative formulation is applicable to those problems
in which an explicit solution for displacements, or their increments,
is not rvequired, and where the initial strain stiffness matrix [k*]
does not change throughout the loading range. The governing matrix
equation in this formulation is determined by substituting Eq. (20)
into Eq. (19), and making use of the nodal strain-displacement rela-
tion of the following form:

fael} = [A] (aP;) + (3] {81 (23)
where
~1
(A = L Jlk 17,
and ‘
(3] = w1k 17K
with

K] = fv w1t [Elav

where [Wi] represents the matrix relating the linear component of
the strain-displacement equations to the nodal degrees of freedom.

If we wish to use a predictor procedure to solve Eq. (23), we
must write this relation in the following form:

i . .
(aely = [(a] (2P )+ [3)0ae )T (24)
i i i

Using values of {Aej} estimated in this way, we can find the un-
known total strain increments from Eq. (24), and then find the in-
crements of stress and plastic strain from Eqs. (4) and (3) for strain-
hardening behavior, or from Eqs. (7) and (8) for ideally plastic be-
navior. 1In Refs. &, 6, 7, and 25 the predictor procedure is also
formula ted in terms of a governing matrix equation relating increments
of stress to increments of lcad and plastic strain, similar to that of




Eq. (23). This procedure, referred to as a ''constant stress' pro-
cedure, has been: Jhowr to lead to a characteristic numerical in-
stability [4, 7, 25]. No such instability occurs when the pre~-
dictor procedure is used in conjunction with Eq. (22) or Eq. (24).

The prediccoc procedure, involving the use of estimated values
of plastic strain in Eq. (22) or Eq. (24), has computational ad~
vantages since the solution requires only matrix multiplicarti
each load step once the corresponding effective plastic load wvector
is formed, provided the matrix [k,] is constant and thus need be
inverted only once. This differs from vhe direct substitution pro-
cedure, to be disrussed below, in wiich matrix inversion or simul-
taneous equation solution is required at each load step. However,

a disadvantage associated with the predictor procedure solution
technique is a "drifting" of the numerical results from the true
solution as plastic strain proceeds. One may choose to use small
load increments for improved accuracy, thereby reducing the compu~
tational advantage of this procedure, or the results for any incre~
ment may be adjusted or corrected toward the true solution by intro-
ducing a residual force {R;} to ensure equilibrium of the total
system. At any step, the residual force may be computed from the
governing equations written in terms of total quantities. Thus,

for the displacement method we have

k

(R = - 11,1 (u )% + (20 + (), (25)

and for the strain method

k.
(R, = - fe]) + (8] ()% + (3] ()70 (26)

The value of the residual force is uged in the next incremental
load step, i.e.,

[, 1 Cou 3 = (a0 + (a1 + (S 27)

Displacement and Strain Method = Direct Substitution Procedure.
The use of Eqs. (22) or (24) is usually associated with the initial
strain method of finite~element plasticity amalysis. An alternative
approach, commonly referred to as the tangent modulus method, in~
volves the direct substitution of the incremental comstitutive plas=-
ticity relations into the governing matrix equation, Eq. (21). For
an elastic, strain~hardening material, Egs. (3) and (4) may be

ot
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combined to yield an incremental relation between plastic strains
and total strains. For an elastic, ideally-plastic material the
incremental relation between plastic strains and total strains

is obtained from Eq. (8). Thus, regardless of material behavior,
an equation of the following form may be written at those nodes
or elements in the plastic range:

(2e;} = (8] (8e]) (28)

where [S] reflects strain-hardening or ideally~-plastic behavior
and is a null matrix at those nodes or elements in the elastic
range.

An incremental plastic strain~displacement relation is ob-

tained by substituting the total strain~displacement relation
into Eq. (28), so that we can write

(ae) = [810W;] (bu;) . (29)
A linear incremental ‘load~displacement relation of the form
(ap ) = Tkl (8w}, (30)

where [kyl = [kl - [k*][S][Wi], results from substituting
Eq. (29) into Eq. (19). Alternatively, after extensive manipula-
tion (see [33]),

kgl = Tk + [k (1)

where

[k 1= [/ [w;1" M)W ldv
v

[M] = [R] for strain-hardening behavior
*
= [E ] for perfectly plastic behavior.

A direct formulation of the equations in the tangent modulus form
has been presented in [22, 24].




The matrix [k,] in Eq. (31) may be regarded as a ''plastic
stiffness matrix" since it explicitly contains the effect of plas~
ticity and enters into the analysis as an additional component of
the total stiffness matrix. Further, since the elements of [k_]
are functions of the instantaneous stress state, they must be P
evaluated at each incremental step. Similarly, substituting the
incremental plastic strain-total strain relation of Eq. (29) into
Eq. (23) results in the following equation:

T
(ae]) = [¥] (0;) , (32)

where [Y] = [A] + [JI1[s].

The direct substitution procedures, as is the case with the
predictor procedures, may make use of an equilibrium correction to
account for errors associated with the linear incrementation of
the problem. For example, in the displacement method we can write

(k] (sug} = (02} + (R,] (33)

where ({R;} = [kp] {u;} - {P;}.

Summary of Methods for Plastic Analysis

A distinction among the various formulations is associated with
the solution procedures used, which may be named the predictor and
the direct substitution procedures. In the former, estimated values
of plastic strain are used in the governing linear matrix equation.
Thus, plastic effects are treated in the linear matrix equation by a
modification that is external to the stiffmness influence coefficient
matrix. In the direct substitution procedure, plasticity is accounted
for by means of an "internal" modification of the stiffness matrix.

The direct substitution or internal modification procedure,
though it retains the errors associated with stepwise linearization,
does eliminate the propagation of error associated with the pre-
dictor or external modification procedure. This improvement in
accuracy for a given magnitude of the load increment is, however,
accompanied by an increase in the number of numerical operations
required to obtain a solution. These operations can be computa~
tionally expensive, since the elements of the influence coefficient
matrices, [kp] of Egs. (30) or (31) or [Y] of Eq. (32), must be
recomputed at each incremental step of loading. The effect of this
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can be mitigated by increasing the magnitude of the load increment,
but at the cost of greater inmaccuracy. A choice between the two
basic procedures thus involves a tradeoff between smaller load in-
crement but less computation per increment, in the case of the pre~-
dictor procedure, and larger load increment but more computation per
increment, in the case of the direct substitution procedure. This
choice will not be obvious in any given problem.

An approach that combines the two procedures might prove to
be the most effective. For example, the predictor procedure may
be sufficiently accurate in those regions of a structure where
plastic £low has begun but has not yet been substantially developed.
In those regions where plastic effects are predominant, the direct
substitution procedure could be used.

Implementation of Combined Plasticity and Geometric Nonlinearity

A primary consideration in choosing a method for the analysis
of geometric nonlinearity from among the several currently avail-
able is the ease with which it can be combined with methods of
plastic analysis. For this reason, our approach is based upon a
linearized incremental formulation, i.e., one in which the non~
linear analysis is reduced to the solution of a sequence of linear
incremental equations. 1In Refs. 6, 10, and 35, this approach was
used to solve problems involving geometric nonlinearity. Since the
plasticity relations are themselves incremental, and the methods
discussed in the preceding section depend upon a revision of the
governing matrix equation in each loading step, the modifications
necessary to incorporate ''large deflection" terms are minimal.

The method of solution of the small strain, geometrically non-
linear problem discussed here involves the solution of a sequence
of "beam-column" type problems, using Eq. (19), in which values of
the membrane stress resultants and the geometry of the deformed
structure are updated in each increment of loading. For sufficiently
small loading increments, the increments of rotation in any finite-
element will be small as measured with respect to a local coordinate
system that translates and rotates with the element in successive
loading steps (but is assumed to remain fixed within any one loading
step). Consequently, squares and products of the increments of
rotation may be neglected in computing increments of membrane strain
[29].

Because of the presence of geometric nonlinearity, the entire
elerent stiffness matrix [kg,] in Eq. (20) must be reformed in




each loading step, with current stress levels and geometry being
used. In the discussion of the development of the elastic stiff~
ness matrix, it was mentioned that the only component matrices re-
guired are the conventional stiffness matrices (those not dependent
upon the presence of stress) and the initial stress stiffness matrix.
The latter matrix accounts for the change in bending stiffness due
to the presence of membrane loads. In the development of the ini-
tial stress stiffness matrix, the membrane stresses taken into
account are those present at the beginning of the loading step, any
further changes in these stresses occurring during the loading step
being neglected in that development. This constitutes the lineariza~
tion of the procedure during an increment of loading.

Some investigators (see [21, 22]) have indicated the need for
an additional matrix, termed "the initial displacement' matrix, for
the treatment of geometric nonlinearity. Because the current analy-
sis uses a "moving" local coordinate system, this additionmal stiff=
ness matrix is not required (see [24] for a more complete discussion
of this point).

For the large deflection elastic-plastic analysis, the load is
applied in small increments from the initial unloaded state. At
the end of each increment, new increments of deflection, stress,
strain, and plastic strain are calculated. Total quantities, such
as the initial stresses, are calculated by using appropriate trans-
formations, and the geometry of the structure is updated. Again
the plastic strain increments used are those calculated in the pre-
vious step. The total stiffness matrix is reformed at every in-
crement, together with the incremental load vector, plastic load
vector, and residual load vector. The element contributions are
then assembled and the system of linear incremental equations is
again solved and the process repeated until the maximum specified
load is reached or .structural failure occurs. If the response to
cyclic loads is desired, the load increment is reversed at the maxi-
mum load, and the incremental process is repeated until the new
maximum (minimum) load is reached. This procedure is then repeated
for as many load cycles as desired.

For the large deflection problem, the most time~consuming fea-
ture is the reassembly of the stiffness matrix and solution of the
linear incremental equations. It becomes convenient, therefore, to
consider the possibility of treating the large deflection terms as
well as the plasticity effects as effective loads. This may be done
by rewriting Eq. (19) as
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k

T oy = - k] (o ) o e (a0 e (my), (34)

where the product of the initial stress stiffness matrix and the
vector of displacement increments of the previous step is now
treated as an "effective geometric load." The stiffness matrix
[k®] may be re-formed every M steps (M > 1), with the possi-
bility of saving considerable time. The use of this solution pro-
cedure may lead to numerical instabilities when the nonlinearities
become large [20], although none were observed in the limited num~
ber of problems solved by the authors. The use of the geometric
terms as effective loads is not new, and has been used in many
Lagrangian formulations with great success [20].

If large deflection terms are not important, considerable sime
plification results. For the problem of material nonlinearity
alone 1f we consider the displacement method-predictor procedure,
the sequence of computations followed is to calculate the value of
the load at which plastic deformation first occurs. From this
point, the load is incremented to a maximum value, with new in~
crements of displacement, plastic strain, and stress calculated at
each step and total values obtained by summing incremental values.
The plastic strain increments used in the plastic load vector are
those calculated from the previous step. Because this is a small
deflection analysis, the stiffmess matrix need never be re-formed.
The residual force vector was not used in any of the small deflec~
tion problems presented although it could have been so used. At
the maximum load, a new critical load for which yielding begins in
the reverse direction is calculated, based upon elastic unlecading
to this point. Procedures for determining this load are presented
in Refs. 16 and 25. This critical load may occur before all the
load is removed from the structure because of the presence of
residual stress and the existence of the Bauschinger effect. At
this new critical value, the load is incremented to the new speci~
fied maximum (minimum) value, and this procedure is repeated for
as many half cycles as desired.

3. APPLICATIONS OF NONLINEAR METHODS

The methods and procedures of the previous section have been
applied to a variety of problems during the course of several years
of investigation by the authors. Comparison between the predictor




procedure and the direct substitution procedure involving plasticity
alone is made and evaluated for the strain method as applied to mem-
brane stress problems [25], and for the displacement method for
problems involving bending stresses [16]. A survey and thorough
evaluation of procedures for combined geometric and material non-
linearity is presented in Ref. 36.

The development of practical methods of treating the nonlinear
response of structures within the framework of finite-element tech~
niques bhas required that they be made available on a convenient
basis to the structural designer and analyst. This requirement
has led to the development of a comprehensive program that provides
a practical tool for the designer and analyst. A brief description
of this program is presented in the next section and, in more de-~
tail, in a companion report. To accomplish the development of such
a program requires that the capabilities and capacity be sufficiently
broad in scope to permit the analysis of realistic structures and
that close attention be paid to efficiency, so that computations
can be made economically.

On the basis of the authors' experience we have found that for
plasticity problems alone, the displacement method-predictor pro-
cedure is the most attractive in terms of generality and ease of ap-
plication. Furthermore, it is highly competitive in terms of effi~
ciency and accuracy as compared with various other algorithms dis~-
cussed in this report. Hence, in the program developed in this study
and for the results to be subsequently presented, this technique has
been used exclusively. For problems involving combined material
and geometric nonlinearity the predictor procedure is used for both
geometric and material nonlinearity until the geometric nonlineari-
ties become '"large." From then on the geometric nonlinearities are
included via the tangent modulus approach while the material non-
linearities are still handled via the effective load technique.

The equilibrium correction term is used in each increment. This
procedure is effective [23] although not necessarily the most ef-
ficient [18].

Elastic-Plastic Analysis of Representative Two and Three Dimensional
Structures

Our basic philosophy of program organization for material non-
linearity alone, as presented in the next section, is to separate
classes of analysis into individual groups, with each group defined
by the physical problem to be solved. For example, groups can be
defined for membrane structures, combined bending and membrane
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structures, thick or thin bodies of revolution, general three
dimensional solids, or laminated composites. On the basis of

this concept, each group is in itself an independent finite~element
computer program, with an associated element library that can be
individually loaded and used to solve the problem class of in-
terest. In this manner any simplification or specialization ger=
mane to the individual analysis can be incorporated.

Each group can contain subprograms common to all other pro-
gram groups as well as subprograms distinct to its group alonme.
Linkage to any individual program group is made through an execu~
tive program that performs the function of loading the individual
analysis programs. Data set management and core allocation are
handled by each of the group programs, and linkage to any group
can be made only through the executive routine.

Representative problems from each of the individual analysis
programs are presented to demonstrate the scope, accuracy, and
general adaptability of the analysis techmiques.

Membrane Stress Analysis

The element library for this program contains the following
elements: 1) constant strain triangle, 2) linear strain triangle,
3) hybrid triangles linking the constant strain and linear strain
triangles, 4) warped quadrilateral shear panel [37], 5) stringer
elements, and 6) a beam element. This program is designed to be
used for the analysis of arbitrarily shaped structures (stiffened
or unstiffened) in which the loads are those that generate pri-
marily membrane stresses.

Uniformly Loaded Sheet with a Central Crack. An illustration
of the application of the membrane stress program is that of a uni-
formly loaded sheet with a central crack. The idealization of a
quadrant of the sheet, as shown in Fig. 3, involves 455 elements,
219 wvertex nodes, and 250 mide~side nodes, resulting in 902
degrees«-of-freedom when symmetry boundary conditions are applied.

A mixture of linear strain elements (used in the region surrounding
the crack tip), transition elements, and constant strain elements
are used to make up the network shown.

Results from the analysis in the form of the distribution
along the horizontal axis of symmetry of the stress component in
the direction of loading is shown in Fig. 4a. Results from the
finite-element analysis for the elastic behavior compare favorably




with a continuum solution [38]. Results for the plastic behavior
are shown for two levels of loading corresponding to stress levels
for which the gross section stress (og) is 37.6 percent and
75.3 percent of the yield stress of the material. The effect

of plasticity in decreasing the stress gradient in the vicinity
of the crack tip is clearly evident from the figure. Also shown
are the residual stress distributions that result from complete
unloading from the respective maximum loads of 37.6 percent and
75.3 percent of yield stress. The residual stresses in the
vicinity of the crack tip are significant and can be expected to
represent an important factor in determining the fatigue life of
such structures.

The displacement profile of one~half of the crack is shown in
Fig. 4b. Once again, a comparison of the finite~element results,
assuming elastic behavior compares favorably with the continuum
solution. The results from the finite~element analysis for load~
ing in the plastic range indicate that the displacement profile is
virtually unchanged from the elastic profile. This is attributed
to the fact that plasticity is localized to a rather small region
around the crack tip. That is, for monotonically increasing loads,
the localized region of plasticity does not appreciably affect the
deflection profile to the extent that it influences the stress dis-
tribution in the vicinity of the crack tip. However, because of
the development of a plastic zone there is a residual displacement
profile along the entire crack length as shown in Fig. 4b. This
profile has a "dog-bone'" type pattern, i.e., the maximum opening
occurs near the crack tip and becomes uniform toward the center of
the crack.

The propagation of the plastic zone in the uniformly loaded
sheet with a central crack is shown in Fig. 5a for monotonically
increasing loading and in Fig. 5b for unloading from the maximum
load. The zones are determined by drawing a curve through the
centroid of those elements that are plastic at the corresponding
load. As shown in Fig. 5b, prior to the removal of all the load
(Go/Gyield = 0.345) a compressive plastic zone develops in the
region of the crack tip. The plastic zone that remains upon the
complete removal of the loads is also shown in this figure.

Additional problems, typical of the type that can be treated
by this module of the program, have been presented in previous
publications by the authors (i.e., 11, 16, and 25). Although not
illustrated here, the current capability includes tne treatment
of general out~of-plane stiffened and unstiffened structures.
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Bending and Membrane Stress Analysis

This module of the comprehensive program is to be used for
the general analysis of structures in which bending and membrane
stresses are generated. Its finite element library consists of
flat triangular bending [39] and membrane elements, and a general
beam element to represent stiffeners.

A wide range of applications of prototypes of this program
appear in several of the author's previous publications (i.e.,
13, 16, and 40). The problems considered to date include ini~
tially flat rectangular, circular, and annular plates subjected
to loads causing bending alone and combined bending and membrane
stress states. The current capability includes the treatment of
general out-of=-plane stiffened and unstiffened structures.

Axisymmetric Analysis of Bodies of Revolution

The element library for this program consists of a revolved
triangle [41] for general thick walled bodies of revolution, an
isoparametric shell element [23, 42], and a ring element [43].

Full Sphere. The problem of a full sphere subjected to a
"c0s28"™  loading is used to illustrate the accuracy of the elastic
solution obtained by using the revolved triangles or the shell ele-
ment. An idealization of a quadrant of the sphere, as shown in
Fig. 6, consists of 153 triangular elements, 95 nodes, resulting
in 183 degrees=-of-freedom when symmetry boundary conditions are
applied. An idealization using the shell element consists of
15 elements, 16 nodes and results in 60 degrees~of~freedom. The
meridional segments shown in Fig. 6 represent the meridional lengths
of the shell elements.

A comparison of results for the radial displacement distribu-~
tion versus the meridional direction is shown in Fig. 7. The re-~
sults from the two separate finite~element solutions are compared
with an elasticity solution [44]. The correlation of results be~
tween the three solutions is quite good, with a maximum divergence
occurring at, and in the neighborhood of, the apex. A similar
correlation exists when a comparison is made for the circumferen-
tial stress versus the meridional direction, as shown in Fig. 8.




Thick Tube Under Uniform Internal Pressure. The elastic-~
ideally plastic behavior of an internally loaded circular tube was
considered to be a representative test of the accuracy of the non=-
linear analysis using the triangular elements. Results from the
finite-element analysis are compared to the results from a solu-
tion obtained in Ref. 45, and shown in Figs. 9-11. For this par-
ticular case, the ratio of the outer to inner radius equals 2.
The external radial displacement and radius of the elastic~plastic
boundary versus the internal pressure p are plotted in Fig. 9.
The comparison of results between the two solutions is good for
the entire range of loading considered. The resulting radial and
circumferential stress distributions for various positions of the
elastic-plastic boundary are shown in Figs. 10 and 11. The corre-
lation with the results of Ref. 45 is again seen to be quite good,
despite a discontinuous distribution of circumferential stress at
the elastic-~plastic boundary as shown in Fig. 1l. It should be
noted that the stresses plotted represent the "average' stress at
a node; that is the average value of the stresses in all those
elements common to a node.

Sheet with an Oversized Fastener. Another illustration of the
use of this module of the program considers the residual stress
field surrounding a hole in a sheet into which an oversized fastener
has been driven. As shown in Fig 12, the "head" of the fastener,
which must be driven through the hole, is tapered to a maximum
diameter D, with the shank stepped down to a diameter, Djy. Re-
sults for the residual circumferential and radial stress distribu~
tion along a radial line on the outer surfaces of the sheet are
shown in the figure for three cases of prescribed interference,
Dij=-2a. These stresses apply with the fastener shank in the hole.
Linear strain hardening material behavior is assumed for the sheet
material in the plastic range. It is significant to note the small
increase in favorable compressive residual stress at the edge of
the hole as compared to the substantial increase in tensile stresses
at some distance from the edge. For the case involving the largest
interference, the level of this tensile stress was found to be un-
acceptable from both fatigue and stress corrosion considerations.

Torispherical Shell. The accuracy of the shell element, used
in this module of the PLANS program, is demonstrated in Ref. 42 in
the form of an extensive number of applications and comparisons
with existing solutions. An application of the use of this element
for a plastic analysis is presented in Fig. 13 where the load versus
apex deflection for a torispherical shell under uniform internal
pressure is presented for various load increments, and a comparison
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is made with the results obtained in Ref. 46 where elastic-perfectly
plastic behavior was assumed. The results from Ref. 46 were obtained
by using load increments of 1.03 x 10 N/mz, and are virtually
identical with those of the present analysis, where a load incre-
ment of 2.76 x 103 N/m2 was used. As seen in the figure, halving
this load increment produces a significant change in the results
only at a load above the theoretical collapse load predicted by
limit analysis [47]. The use of the initial strain method, wherein
the plastic behavior is accounted for by an "effective plastic

load" vector, requires smaller load increments than a tangent
modulus method [16]. However, increment size alone is not the

sole criterion governing the efficiency of one method versus
another. The increase in computing time associated with the use

of smaller increments in the initial strain method is offset by

the fact that the stiffness matrix need never be reformed after

the first step. Additional evidence that indicates that the ini-
tial strain procedure is competitive from the standpoint of com~
puter time requirements is presented in Ref. 48.

Figure 14 shows the load versus apex deflection curve for the
same shell for one full cycle of loading. The_load is varied be=-
tween amplitudes of 80 psi (%5.52 x 109 N/mz) and back to zero.
It is interesting to note that the deflections, moments, etc., ob=-
tained by unloading from the maximum load and subsequent loading
to =80 psi (=5.52 x 10° N/mz) are virtually the same as those
that would be obtained simply by loading monotonically to =~80 psi
(=5.52 x 10 N/m2) from the initial state. It is conjectured that
this occurs as a combined result of assuming elastic=~perfectly
plastic behavior, neglecting the effects of geometric nonlinearity,
and the fact that the same material properties were assumed to
exist in reversed loading. Moreover, the values of residual stress,
strain, and deflection obtained at the end of one full cycle are
virtually the negatives of those values obtained by unloading to
zero load from the maximum load.

Simply Supported Circular Plate. To investigate the generality
of these results, a different structure, a simply supported circular
plate subjected to a uniform pressure applied centrally over a cir-
cular area with radius 0.0718 of the plate radius, was cycled
through various load ranges. Again, elastic=-perfectly plastic be-
havior was considered. The material properties assumed were E =
10.5 x 106 psi (7.24 x 1010 N/w?), v = 0.33, o, = 4000 psi
(2.76 x 107 N/m2). The radius of the plate was 2.61 in, (6.63 x
1072 m), and the thickness was 0.2615 in. (6.64 x 103 m). The
load ranges considered were #2000 psi (1.38 x107 N/m2), #3000 psi
(2.07 x 107 N/m2), #3500 psi (2.41x107 N/m?2), and =4000 psi (2.76 x
107 N/m?). The results are presented in Fig. 15. 1In all cases




except the last, the displacements, moments, etc., at the maximum
negative load obtained by unloading from the maximum positive load
are the same as would be obtained merely by loading monotonically
to the maximum negative load from the virgin state. For the last
case [+4000 psi (#2.76 x 107 N/mz) load range] the load incre~
ments used during reversed loading are too large from the stand-
point of accuracy, and consequently, the plastic strains computed
are smaller than those that actually occur [4000 psi (2.76 x

107 N/mZ) is ngar the theoretical collapse load of 4280 psi
(2.95 x 107 N/m*) for this structure]. These cases tend to core
roborate the hypothesis that for elastic=-ideally plastic material
one need only consider one-half cycle of loading to obtain informa-
tion concerning full cycle behavior when the effects of geometric
nonlinearity are ignored.

Clamped Circular Plate. A strain hardening problem is con=~
sidered next. A uniformly loaded clamped circular plate was
cycled between *560 psi (£3.86 x 10 N/m2). The same problem
was considered for monotonic loading up to 560 psi (3.86 x
106 N/m?) in Ref. 49, and the results for this range are com-
pared. Excellent agreement up to the maximum load was achieved
(see Fig. 16). The discrepancies at this load may be attributed
to the use of different plasticity theories (kinematic versus iso-
tropic hardening) and the difficulty in reproducing the stress-
strain data from Ref. 49. Furthermore, the load~deflection curve
does exhibit all of the characteristics of strain hardening be-
havior. The absolute magnitude of the center deflection at the
maximum negative load is larger than that developed at the maxi-
mum positive load, and the full cycle residual deflections are
triple those of the half cycle.

Stiffened Shallow Spherical Shell. Results for a uniformly
loaded shallow spherical shell with a stiffened circular hole at
the apex are presented next. This problem demonstrates the bhene-
ficial effects of a stiffening ring on the elastic-plastic behavior
of a shell, although for this particular problem it is seen that
large deflection terms are also important and should be included.
The pertinent geometric and material parameters defining the prob-
lem are shown in Figs. 17 and 18. The ratio of the hole radius to
shell base plane radius (b/a) is 0.1, and elastic~perfectly
plastic material behavior was assumed for the shell.

Figure 17a shows the normal displacement versus the applied
pressure at the ring hole interface and at an interior point ap-
proximately halfway between the hole and the outer edge boundary
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for an unstiffened hole and one with a stiff ring. As seen from
Fig. 17a there is a substantial difference between the displace=
ment at the hole boundary for the case of an unstiffened and for
that of a stiffened hole. In fact, at the collapse load the dis~
placement for the stiffened hole changes sign and is in the di-
rection opposite to that of the applied uniform pressure. 1In ef-
fect, the region in the vicinity of the hole moves as a rigid body
as the displacements in the interior become unbounded. This is
due to the restraining effect of the ring in preventing the bhole
circumference from contracting. Since the effect of the hole is
localized, the displacements in the interior (Fig. 17b) for the
stiffened and unstiffened case are indistinguishable. As indi-
cated, sudden collapse of the shell is evidenced at qa[‘/Et“L = 15000,
This occurs when the entire cross section in a substantial portion
of the interior is plastic for both cases considered. However,
since the ring carries a portion of the load, there is a wholly
elastic section between the hole boundary and completely plastic
interior cross section at collapse. This contrasts with the un-
stiffened case, for which the wholly plastic cross sections begin
at the hole boundary and propagate towards the interior with in-
creasing load.

Figures 18a and b show the distribution of circumferential
stress resultant at the yield load and at an intermediate load in
the plastic range. As expected (Fig. 18a), the peak value for the
unstiffened hole is at the hole boundary. As the region of plas~
ticity expands, this peak value moves toward the interior and is
located approximately at the elastic-plastic boundary. Figure 18b
shows results at the same two loads for the stiffened hole. It can
be seen that the stiff ring substantially reduces the stress re-
sultant at the hole boundary.

Analysis of Three Dimensional Bodies

The isoparametric hexahedra family of elements presented in
Ref. 50 represents the element library for this program.

End~Loaded Rectangular Prism. Results for the longitudinal
and transverse stress distributions in a rectangular prism sub-
jected to prescribed end forces, shown in Figs. 19a and b, are
used to demonstrate the accuracy of this element for elastic be-
havior. The idealization used to represent a quadrant of the
prism consists of 128 members and 225 nodes and resulted in
560 degrees~of-freedom when the simple 8-~node linear displace~
ment field element was used throughout the idealization. The re=~
sults are compared with a three dimensional elasticity solution




presented in Ref. 51. As seen from these figures the correlation
is quite good although it should be noted that the elasticity solu~
tion corresponds to points along the =x-axis with y = 0 and

z = 0, whereas the results from the finite-element analysis are
plotted at points corresponding to the centroid of those elements
adjacent to the axes of symmetry.

Uniformly Loaded Rectangular Laminate. The elastic stress
distribution in a laminated fibrous composite is studied by means
of the three dimensional finite-element module of the PLANS pro~-
gram. Of interest are the normal and shear stress components in
the interlaminar region, which cannot be predicted by using classi-
cal plate theory. The influence of interlaminar deformation on the
delamination and general failure of laminates is currently under
investigation.

The stress distribution in each layer of a boron-aluminum
laminate with a symmetric [90/90/0/0]SA1ayup is shown in Fig. 20.
The interlaminar normal (oz) and shear (Tyz) stresses are seen
to be significant only in the vicinity of the free edges. This
effect was noted in several previous studies, and it has been shown
that the interlaminar stresses decay beyond a distance that is of
the order of the thickness of the laminate.

For the layup and loading considered, the interlaminar normal
stress is a favorable compressive stress tending to retard delamina-
tion. A reversal in applied stress or layup (e.g., [0/0/90/90]g)
would result in an unfavorable tensile normal stress.

Infinite Plate Containing a Circular Hole. ‘The classical
problem of an infinite plate containing a circular hole is chosen
to demonstrate the use of the three dimensional element for a
problem involving material nonlinearity. The thickness=to-hole
diameter ratio was taken as 0.75 so that a plane stress analysis
would not be valid [52]. The finite-element model consisted of
four layers of eight-node hexahedra elements to represent the
half-thickness, with each layer consisting of sixty elements.

Results of this analysis are shown in Fig. 21 for the wvaria~-
tion of circumferential stress og, along the axis of symmetry
perpendicular to the load at the maximum elastic load. The elas-
tic distribution along the middle and upper surfaces compares
quite favorably with published results [52]. The values of stress,
obtained from the finite~element analysis, at the edge of the hole
are obtained by extrapolation, since centroidal stresses are used
exclusively in this analysis.
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The dashed curve in Fig. 21 represents,the distribution of
og at almost twice the maximum elastic load, for elastic-perfectly
plastic behavior, and reveals a substantial reduction in peaking of
the stress field in the vicinity of the hole. Although the plate
yields initially at the middle surface, the elastic-plastic boundary
quickly propagates through the thickness and thereafter follows a
pattern that is similar to the behavior associated with a plane
stress state.

Plane Stress Analysis of Laminated Composites

A finite~element to model the interlaminar behavior of multi-
layered fibrous composites under plane stress loadings has previously
been presented and discussed [53,54]. The idealized model separates
the membrane and interlaminar properties of a laminated composite by
using alternating orthotropic fiber-~bearing segments, which are as~
sumed to remain elastic throughout the entire load history, and iso=
tropic, elastic~-plastic shear segments. The constant stress triangle
is used to represent the orthotropic segments that carry in-plane
stresses only; the shear segments carry only interlaminar shear
stresses, and are in a state of pure shear.

Results for several sample problems are presented and discussed
in detail in Ref. 54. One such problem involves a flat panel with
a circular cutout, loaded along two opposite edges. The dimensions
of the panel were chosen such that the stress field around the cut-
out is not influenced by the external boundaries. A typical idealiza-
tion is shown in Fig. 22, which contains 223 members and 138 nodes.
A fine network of elements are used around the edge of the hole
since the interlaminar region in which the stress fields diverge
from the classical plate solution comprises a narrow region along
the stress free edge of the laminate. The interlaminar shear stress
distribution around the edge of the hole is shown in Fig. 23 at the
maximum elastic load (oo/Tyield = 2.95), maximum and minimum loads
in the plastic range (GO/Tyield = +7.37), and at a load corre-
sponding to complete unloading from the minimum load. As indicated
in the figure, high residual shear stresses occur for 6 < 45°, and
relatively low residual shear stresses occur for 6 > 45°.

Geometric Nonlinearity

Circular Plates

The capability of treating geometric nonlinearity and combined
geometric and material nonlinearity has been developed under the




present contract for axisymmetric shell structures. The analysis
uses the shell element reported in Ref. 42, and a presentation of
the application of the element for combined nonlinear analysis is
presented in Ref. 23. The accuracy of the procedure for geometric
nonlinearity in the case of purely elastic behavior is demonstrated
in Figs. 24 and 25 where a comparison of results obtained from the
present analysis is made with those obtained in Ref. 55 for a
clamped, uniformly loaded, elastic circular plate. Poisson's ratio
was chosen to be 0.3. Figure 24 is a plot of central deflection
versus load, and Fig. 25 is a plot of bending and membrane stresses
at the center and edge versus deflection. For the increment size
chosen, excellent agreement was obtained between the solution pre-
sented in Ref. 55 and our numerical results.

In the present investigation, results for this problem were
obtained by using both the "tangent modulus' method and the "effec~
tive" load method for the same increment size. For the latter case,
the stiffness matrix was re-formed every five increments. No equi-
librium correction term was included for either method for this
problem. The deflections and bending stresses in both cases were
identical, while slightly smaller membrane stresses were predicted
by the effective load method. Of most significance was the re-~
duction in CPU time from 386.28 seconds for the tangent modulus
method to 202.08 seconds for the effective load method, an ap-~
proximately 47 percent time savings at no appreciable loss in
accuracy. Similar time savings of from 40 to 50 percent were
noted for other problems.

Spherical Cap

Figure 26 illustrates the need for the equilibrium correction
term in problems involving a high degree of nonlinearity. An exact
load~deflection curve obtained from Ref. 20, based upon results
presented in Ref. 56, is shown for an elastic, clamped spherical
cap loaded by a central concentrated load. Also shown are results
obtained from the current analysis using a straight incremental ap~
proach with 1/8 1b (0.56 N) increments and an incremental-plus-
equilibrium correction solution using 1 1b (4.45 N) increments.
The results obtained in the current analysis are virtually identical
(for both incremental and incremental-with~equilibrium correction
solutions) to the numerical results given in Ref. 20,
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Combined Material and Geometric Nonlinearity

Circular Plate

Figure 27a shows a load versus central deflection plot for a
centrally loaded, simply-supported plate with a diameter-to-
thickness ratio of 40.6. The numerical results are compared with
test data obtained from the experimental program described in
Ref. 23. Shown are the linear elastic, nonlinear elastic, elastic-
plastic and combined nonlinear predictions using the tangent modulus
approach with the incremental and incremental-with-equilibrium cor-
rection solution procedures. Although for these combined problems
the equilibrium correction affords a considerable improvement over
the incremental appreach, without equilibrium correction, a more
extensive iteration scheme is probably needed to close the theoretical-
experimental gap. In Figs. 27b and 27c the radial distribution of
circumferential strain at the lower and upper surfaces, respectively,
for this plate is illustrated for several load levels and compared
with theory. Despite the only fair-to-good correlation of the dis-
placement data at high loads, excellent correlation with experiment
for the strains is noted, except, as might be anticipated, directly
under the loading rod for higher loads. The discrepancy at this
point might be the result of local shear and penetration effects.

Spherical Cap

Wilkinson and Fulton [57] have presented results for the
elasto-plastic buckling of uniformly loaded shallow spherical caps
with both simple and clamped support at the edges. Several compari-
son test cases were chosen to verify their results and detemmine
the present program's ability to predict buckling loads of such
structures. The cases run were for o = 0.1, B8 = 0.002, and
A =4 and 5.5 for the clamped cap, and N = 4 for the simply~
supported cap. Here a 1is the ratio of tangent modulus to Young's
modulus, £ 1s the ratio of yield stress to Y ung'slmodulus, and A
is the geometric shell parameter 2[3(1 - v2)I%(#/h)Z, with v be-
ing Poisson's ratio, H the maximum shell rise, and h the shell
thickness. As can be seen from Fig. 28, excellent agreement for
these cases was obtained. The buckling pressures are 3 percent
higher than those predicted by the analysis of Ref. 57. The results
from the previous analysis are probably more accurate than those ob-
tained here, since the present analysis makes no attempt to refine
the load increment size in the vicinity of the critical load. The
tangent modulus method was used to account for the effects of geo-
metric nonlinearity.




Cyclic Loading of Simply~-Supported Circular Plate

Results in the form of load versus central deflection of a
simply-supported, centrally loaded mild steel circular plate are
shown in Fig. 29. These results involve a history of loading to
a maximum load in the plastic range and then the removal of the
load. A comparison with the experimental data presented in Ref. 58
indicates that the finite-~element results predict larger displace-
ments than those obtained experimentally. This may be partially
explained by the fact that no information (except the yield stress)
was available in Ref. 58 concerning the strain hardening proper~
ties of the material used in the experiment. The finite~element
analysis was performed by assuming elastic-ideally plastic Dbe-
havior, which is a good representation of the stress-strain be-
havior for mild steel for strains less than 2 percent. The
larger displacement prediction from analysis is consistent with
this assumption. When the strains in the plate become larger than
2 percent, mild steel experiences gtrain hardening. Indeed at
loads above 15,000 1b (66.72 x 10’ W) ihe =“heorstically pre-
dicted strains exceed 2 percent in a considerable region of the
plate, and divergence of the results occurs. As a consequence of
the overprediction of the maximum displacement, the residual dis-
placement predicted by the analysis is considerably greater than
that experimentally observed. However, the general shape of the
load~-deflection curve upon unloading parallels the experimental
curve.,

Ring-Stiffened Cylinder

The circular cylinder is a structural component that is cur-
rently under consideration as an energy-absorbing device to improve
the crashworthiness of small land and air vehicles. A reasonably
accurate prediction of the load-deformation behavior of this de~-
vice is required to evaluate its efficiency as compared to other
devices of a similar kind. Toward this goal the prototype program
was used to describe the elastic-plastic, large deflection behavior
of a simply-supported ring-stiffened circular cylinder shown in
Fig. 30.

Results for the axial displacement versus axial stress resultant
(Fig. 30a) and the radial displacement (Fig. 30b) are shown for elas-
tic and elastic-ideally-plastic, large deflection behavior. The
rings (EA = 106 1bs = 4.45 x 100 N) remain elastic throughout the
entire load history, but the influence of material nonlinarity in the
cylinder significantly influences its behavior and decreases its
buckling load. From the results for the radial displacements, it is
apparent that the rings have a negligible influence on the behavior
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of this cylinder. To verify this conclusion, the problem was re-
analyzed (elastic and elastic-plastic) for the unstiffened cylinder,
and it was found that the removal of the rings had virtually no ef-
fect on the buckling load or mode shape.

Unstiffened Circular Cylinders

Results for the end-load versus end-deflection for a clamped
circular cylinder fabricated from 6061-0 aluminum alloy are pre-
sented in Fig. 3la. They indicate a buckling load of about
1600 1b/in. (280 x 103 N/m) or 39,800 pounds (177 x 103 N)
total load for this structure. This compares quite favorably
with experimentally determined buckling loads of 35,650 pounds
(159 x 103 N) (two specimens) and 41,250 pounds (183 x 103 N)
(one specimen) obtained at NASA/Langley. In the course of the
analysis, it was found that the buckling load is extremely de-
pendent on an accurate determination of the material properties.
A Ramberg~0Osgood three parameter representation of the stress-
strain curve for 6061-0 aluminum alloy was used for the analysis,
i.e.,

¢ =g 38 (¢ \;nml
E 7E \0007/
We chose E as 107 psi (6.9 x 1010 N/mz), og.7 = 5050 psi

(3.5 % 107 N/mz), and n = 4,8. A proportional limit (opl)

of 4300 psi (2.97 x 107 N/mé) was used. These properties were
derived from data obtained from the Materials Selector Handbook
and verified by tests performed in the Grumman Research Department
Applied Mechanics Laboratory. Pertinent geometric data for the
clamped circular cylinder are given in Figs. 3la and b. Calcula-
tions were then performed, using the same configuration and mate-
rial properties, but with simple supports at the ends to determine
the effect of edge restraint on the buckling load of this cylinder.
As anticipated, the reduction in buckling load resulting from the
change in edge restraint was extremely small and virtually negli-
gible (see Fig. 3la).

Figure 31b shows the radial deflection profile versus axial
length for the clamped and simply~supported cylinders at end-loads
of 1050 1b/in. (184 x 103 N/m) and 1575 1b/in. (276 x 103 N/m),
which is immediately before buckling. The initial buckling pro-
files are quite evident, with the wavelength of the simply-supported
cylinder being smaller than that of the clamped cylinder, and the
maximum displacement amplitude of the simply-supported shell ap-
proximately 13 times that of the clamped cylinder at this load,
indicative of the slightly lower critical load for the simply-
supported cylinder.




Clamped Truncated Circular Cone

A clamped truncated circular cone was then analyzed in an ini-
tial effort to determine what qualitative and quantitative bene-
ficial effects tapering the sides might introduce into the energy
absorption capacity of a vehicle. The first cone chosen had the
dimensions of one specimen of the test program at Langley. It,
too, was fabricated from 6061-0 aluminum alloy and its dimensions
are presented in Figs. 32a and b. The cone angle, o, is 17.09 de~
grees., The critical load for this structure was calculated to be
42,575 pounds (189 x 103 N}, corresponding to an axial stress re~
sultant applied at the larger end of 670 1b/in. (117 x 103 N/m).
This represents an increase of almost 7 percent over the cal~
culated critical load for the clamped circular cylinder previously
analyzed. The cone has the same thickness and axial length as the
cylinder and its smaller diameter is equal to the diameter of the
cylinder. Figure 32a shows an applied load versus end-~deflection
curve for this structure, and Fig. 32b presents a normal displace-
ment profile versus axial distance for loads of 420 1b/in. (74 x
103 N/m), and 660 1b/in. (116 x 10° N/m) (i.e., immediately pre-
ceding buckling). It can be seen that the structure buckles at the
smaller diameter end.

Several additional analytical cases have been considered because
the experimental buckling loads obtained for the cone with o = 17°
were considerably lower than those obtained analytically assuming
clamped edges. It was observed during the experiment that, at the
small diameter end, the edges "curled" as the load increased, in-
dicating that clamped edge conditions are not justifiable. To deter~
mine the extent of the effect of edge restraints, the same cone was
analytically buckled with the small diameter end simply supported and
free (axially restrained with no radial force or bending moment al-
lowed). The critical load for the simply supported case was slightly
lower than for the clamped case and was equal teo 38,800 1lbs (172.7 x
103 N). For the left end free, the buckling load was drastically re~
duced from 42,575 1lbs (189 x 103 N), for the clamped case to
13,000 1bs (57.9 x 103 N), a 69.4 percent change. See Fig. 32a
for load-end deflection curves for the simply supported and free end
cases.) The experimentally observed actual load of 25,000 lbs
(111 x 103 N) 1lies between the two extremes of edge restraint repre-
sented by simple supports and a free edge, thus indicating the im=-
portance of accurately reproducing the restraint conditions for the
plastic buckling analysis of conical shells.
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4. PROGRAM DEFINITION

As mentioned in Section 1, the computer program PLANS for the
PLastic ANalysis of Structures is organized as shown in Fig. 2b.
The basic philosophy of program organization is to separate classes
of analysis into individual groups, with each group defined by the
physical problem to be solved. For example, as indicated in the
figure, groups can be defined for membrane stressed structures
(PLANE) , combined bending and membrane stressed structures (BEND),
bodies of revolution (REVBY), three dimensional solids (HEX), and
membrane stressed laminated composites (COMPEL). On the basis of
this concept, each group is in itself an independent finite-element
computer program, with an associated element library, that can be
individually loaded and used to solve the problem class of interest.
In this manner any simplification or specialization germane to the
individual analysis can be incorporated. Each group can contain
subprograms common to all other program groups as well as subpro-
grams distinct to its group. Linkage to any individual program
group is made through an executive program indicated in the figure.
As shown, linkage to any program group can be made only through
this executive routine with no horizontal linkage between group
programs.

A brief discussion of the significant features of several
components of the program follows. A more detailed discussion
is presented in a separate report.

Executive Program

The executive program performs the function of loading the
individual analysis programs. Data set management and core al-
location are handled by each of these programs. The system allows
a user to store many program decks on a magnetic tape or direct
access volume, and to use these programs conveniently. During a
single computer run, the user may call for a "Select-Load~Go" pro=-
cedure to execute routines in a previously created object file, or
he may issue a series of easily-learned commands to change the old
source file, thereby generating new source, index, and object files
incorporating the desired changes. These new files can then be
made available for a '"Select-Load-Go'" as part of the same run.

The executive system comprises three separate collections of
subprograms to accomplish this. These are:

® A source update program to allow a user to
selectively edit and compile 2 new source
program.




@ An object update program that maintains up-
dated files of compiled source programs.

® A file select program that selectively loads
programs from the object file for execution.

While the file select program can accept commands to load in-
dividual programs, it can also load groups of programs by simply
supplying a group name that has been previously defined. In addi-
tion, each group definition may contain other group names in its
definition. This feature is particularly meaningful for our pur-
poses since each program in Fig. 2b naturally defines a group, and
programs common to all groups (such as the solution package) are
naturally subgroups. Thus, as shown in Fig. 2b, groups can be set
up corresponding to PLANE, BEND, HEX, etc., and subgroups can be
set up defining, for example, the solution package.

Thus, the capability to maintain source and object files and
selectively load programs by groups is the most significant feature
of the executive program. In addition, this system will have the
ability to update files by rereading complete groups and is able to
define new groups as additional programs are added to the PLANS
system.

Basic Flow of Analysis Programs

Figure 33a is a gross schematic representation of the flow of
each of the analysis programs. As shown in the figure, each module
has three components: a main calling routine (MAIN); and elastic
analysis group (ELAS); and the plastic analysis group (PLAS). A
brief description of these components follows.

Main Program

Each individual computer program defining a group is controlled
by a main calling program. This program sets up core allocation for
principal arrays and the data set specifications for auxiliary
storage. It then transfers control to subroutine ELAS. ELAS is a
finite-element elastic analysis program that performs the elastic
analysis and calculates the initial yield load. Control is then
transferred back to the main program, which calls Subroutine PLAS
only if requested. PLAS manages the plastic analysis and main-
tains control of the analysis until the complete plastic analysis
is performed. At this point control is transferred to the main
program either to terminate the job or call ELAS again to work
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another problem. By so organizing the program it should be possi-
ble with a minimum amount of changes to use PLAS with other avail-
able finite-element elastic analysis programs.

ELAS

Figure 33b. shows a block diagram of the computational flow of
ELAS. This program is a special purpose finite-element program for
the elastic analysis of structures. Accordingly, its first major
task is to read all inputs. The input is read in functiomal groups
as follows:

® Problem title.

° Nodal coordinates and control variables,

® Member topology describing connectivity.

® Nodal boundary conditions. Single and multi~

point constraints on the displacements are
specified in addition to fixed or free condi=
tions.

e Load vector = includes the consistent member
load vector for a distributed load.

o Material properties — tables of elastic and
plastic material properties and member
geometric properties are set up along with
applicable members. Complete generality has
been maintained so that orthotropic material
behavior can be specified.

Other variables controlling output are also specified. The input
scheme has been written so as to minimize the amount of card
handling for any problem.

The next step is to form all element stiffness, stress, and
initial strain stiffness matrices. This routine also places the
elements of the stiffness matrix along with their position in
the total stiffness matrix on an auxiliary storage device.

The total stiffness matrix and load vector are assembled by
sequentially reading this information, stacking that portion of
the stiffness matrix that fits in core, and then reading it onto
an auxiliary storage device. This process is repeated until the
entire load vector and stiffness matrix have been formed.




At this point it is appropriate to mention that our basic de~
sign philosophy is to make alterations, perform certain matrix
multiplications, account for boundary conditions on the element
level, and then to assemble these quantities into total arrays.

In this manner we need not make use of a matrix interpretive sys-
tem to manipulate large matrices.

With the total stiffness matrix and load vector assembled, the
next step is to solve for displacements. Two solution packages
are currently being used for this purpose, both based on the Cholesky
factorization method. Their differences are based on the system
used to store the stiffness matrix. PIRATE is based on partition-
ing the structure so that the stiffness matrix is explicitly in
block tridiagonal form. The second routine, PODSYM, is based ex-
plicitly on the banded nature of the stiffness matrix, so that only
elements within the lower triangle that lie between the semiband~
width need be assembled. In addition, this routine '"packs" the
rows of the stiffness matrix before writing it on auxiliary storage
by suppressing all consecutive zeros.

The unit load stresses are calculated next from displacements.
These stresses are used to calculate the initial yield load, and
this yield load is used to scale the displacements and to calculate
vield load stresses and strains. Control is then returned to the
main program.

Subroutine PLAS

Figure 33c shows a block diagram of the computational flow of
Subroutine PLAS. This program supervises the entire plastic analy-
sis after initial processing has been carried out by ELAS. The
principal information that must be communicated to PLAS is:

® Factored stiffness matrix and unit load vector
o Element stress énd initial strain matrices

° Initial yield load

® Plastic material properties.

With this information, the routine increments the load and
checks the yield condition for each member. Members that were pre-
viously plastic are also checked against an unloading criterion.

The effective plastic load vector is then formed as the product
of the member's initial strain matrices and the plastic strains and
added to the vector of applied load. This combined load vector is
then used as the right hand side of the matrix equation to calculate
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nodal displacements. It should be noted that, at this point, the
stiffness matrix has been factored so that the solution involves
only the multiplication necessary to perform the forward and back=~
ward solution.

In the next step, a subroutine is called that implements the
plastic constitutive relations. This segment of code, calculates
increments of total strain, stress, and plastic strain (shift in
the yield surface when kinematic hardening is used) for each member
from the increments of displacement, and sums the results with
total quantities calculated previously.

After control 1s returned from the above subroutine a test is
made to see if the maximum specified load has been reached. If not,
the load is incremented and the steps discussed above are repeated.

When the maximum load is reached, the final effective plastic
load vector is formed and displacements calculated with the applied
load vector set equal to zero. Stresses and strains are calculated
on the basis of these displacements. If subsequent yielding occurs
in the reversed cycle at a load that is opposite in sign to the load
previocusly completed, then these stresses and strains represent
residual quantities. This is checked next by computing a new yield
load. This calculation involves the solution of a quadratic equa-
tion for each member. One root of this solution represents the
previously reached maximum load and the other the new yield load in
the reversed direction. This load level is used as a starting
point for the next cycle of loading.

At this point, a check is made to see if another cycle of load~
ing is desired. 1If not, control is returned to the main program.
If an additional cycle of loading is specified, new plastic mate-
rial parameters can be read as input and inserted into the material
property tables. This is followed by the formation of the effec-
tive plastic load vector. This load vector is then added to the
load wvector, and the sum is used to solve for the new critical load
displacements and the corresponding stresses and strains. Transfer
is then made to the beginning of PLAS in order to increment the
load and proceed as described above.

Representative Time Requirements

The cost involved in obtaining an elastic solution to a par-
ticular problem depends upon a multitude of parameters. These in-
clude the core requirements, number of operating system calls, the
total and central processing time, etc. An attempt to uniquely de-
fine the cost requirements for a problem of a given size, run under
any one of the current operating systems, is unfeasible.




Although a realistic accounting procedure would consider some
or all of the variables mentioned, it nevertheless remains true that
the central processing time (CPU) is a significant factor in deter-~
mining the total cost. On this basis we have indicated (Fig. 34)
representative elastic solution time requirements versus problem
size for the PLANE module. The problem size is represented in the
figure by the number of degrees~of-freedom and the semi-bandwidth.
The two curves in Fig. 34 were not obtained independently. That
is, as illustrated in the figure, a problem inveolving 700 degrees~
of~freedom requires 13 seconds of CPU if the semi~-bandwidth is 90,

The time requirements for the solution to an elastic~plastic
problem is measured as the summation of the time required for each
increment of load. As discussed in Section 2, the displacement
method-predictor procedure (used by all the modules of PLANS) does
not require the reformulation and successive decomposition of the
elastic stiffness matrix for each step beyond the initial maximum
elastic load value. Thus, the time required for each incremental
load step is considerably less than the -elastic solution require-
ment. In general, it has been found that ome~tenth of the elastic
solution time represents a fairly reliable estimate for determin-
ing the CPU time for each increment in the plastic range.

A schematic curve of total system time versus problem size
(degree-of-freedom x semi-bandwidth) is presented in Ref. 59, in
addition to an excellent discussion on the cost of computing for
a nonlinear analysis system.

5. CONCLUDING REMARKS

The material presented in this report, although primarily comn-
cerned with the authors' investigations, is representative of the
current state of the development of nonlinear analysis techniques
within the framework of the finite-element method. 1In addition to
this report, recent surveys of the literature reveal that these
methods have been developed to the point where a broad spectrum of
structures of considerable complexity can be analyzed thwugh the
plastic range. Particular emphasis has been placed here on cyclic
loading conditions involving reversed loading into the plastic
range. Information concerning the behavior of structures subjected
to realistic load spectra of this type should be of great value in
treating the problem of low-cycle fatigue.




Although deficiencies still remain in the development of ac~
curate constitutive relations describing elastic-plastic large
deformation behavior, we do not believe that this should inhibit
the development of analytical methods and their associated com-
puter programs. Whether any one of the currently available plas~
ticity theories represents an "exact" wmodel for material nonlin-
earity is of less significance than the fact that the finite-
element method allows us to perform numerical experiments to aid
in the development of theories that more realistically describe
complex material behavior. The programs also provide a guide for
the experimentalist so that he can determine the type of experi-
ments to perform, the properties to measure, and the data to
monitor so that more accurate theories may be formulated. On this
basis it is anticipated that further inroads can be made into those
areas of investigation that, in the authors' opinion, require fur~
ther insight. These problem areas include: anisotropic plasticity,
temperature dependent plasticity, and dynamic loading effects.

During t he course of the present study a substantial effort
was devoted toward the development of a user-oriented computer
code, briefly described in this section, that implements the plas-
tic analysis techniques favored by the authors. To translate
these theoretical approaches into a user-oriented, practical
computing tool, one must recognize that those problems that exist
in the development of such a tool for an elastic analysis are
magnified for a nonlinear analysis. The constraints imposed by
the range of validity of any particular theoretical analysis must
be understood by the user and the data obtained from it carefully
interpreted to ensure its proper application. 'For these reasons
it would be potentially dangerous to consider such a tool as a
"black box." Thus, a desirable feature of such a program, i.e.,
its ease of application, perhaps represents its greatest liability.

Recently, considerable attention [18] has been turned toward
considering problems of efficiency, accuracy, and the resultant
economic feasibility of large scale use of numerical nonlinear
analytic systems. On the basis of the improvements in solution
procedures, equation solving algorithms and computer hardware,
one can now envision the time when it will become unnecessary to
guess at or design around a problem involving complex nonlineari-
ties. In considering the cost of using such a tool, however, one
must always weigh the cost of the analysis versus the cost and
risk involved' in the possibility of designing a system on the basis
of partial information or instituting an experimental program to
gain the same imformation.




APPENDIX A

CATALOG OF FINITE-ELEMENTS

Plane Stress (Membrane States Only)

1. Constant Strain Triangle (CST) (Fig. 35) — This well-
known plane stress membrane element was used successfully for the
idealization of structures considered under Contract NAS 1-5040.
Its derivation is based upon the assumption of a linear distribu-
tion for the in-plane displacements u and v, and consequently,
leads to a constant strain state within the element. Each vertex
is allowed two degrees of freedom (the in-plane displacements u
and v) for a total of six degrees of freedom for the element.
Consistent with the total strain distribution, the initial strains
(plastic strains) are assumed to be constant within each element.
Stiffness and initial strain matrices have been developed and suc~
cessfully used in Contracts NAS 1-5040 and NAS 1-7315, Refs. 25 and
16.

2. Linear Strain Triangle (LST) (Fig.3%6) — In regions of
high strain gradient, the CST triangle is not sufficiently accurate
to be used in a plasticity amalysis unless a very fine grid is em~
ployed. The linear strain triangle (LST) remedies this shortcoming
of the CST element. The assumption of a quadratic distribution for
the in-plane displacements allows for a linear strain variation
within the triangle. Two degrees of freedom at each node (u,v)
for each of the six nodes (three vertex and three midside nodes)
give this element a total of 12 degrees of freedom. The initcial
strains are assumed to be constant within each element and are
evaluated at the centroid. Both stiffness and initial strain
matrices have been developed and successfully used in Contract
NAS 1-7315,

3. Hybrid Triangles — In transition regions, i.e., regions
in which stresses and strains change from rapidly varying to slowly
varying, it becomes convenient and efficient to switch from linear
strain triangles to constant strain triangles. This is accomplished
by using four and five node triangles to maintain compatibility
with both the CST and LST elements. These elements together with
the CST and LST elements were originally used in Ref. 6, and are
referred to as the TRIM 3 through TRIM 6 family. For these mixed
formulation hybrid elements, the displacements along edges may vary
quadratically or linearly, depending upon whether an LST or CST tri-
angle is contiguous to the respective sides. Again, the plastic
strain distribution is assumed constant within each element.
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4. Warped Quadrilateral Shear Panel (Fig.37) — For many air-
craft structures the stiffness properties may be adequately repre-
sented by an assemblage of beams, bars, and shear panels. The
shear panels, as their name implies, provide resistance only to
shearing forces. The normal and bending stresses are carried by the
bars and beams. The shear panel used in the analysis is based upon
the original formulation and approximation proposed by Garvey
(Ref.37). It is quadrilateral in planform and all four nodes need
not lie in a plane. The out of plane "twisting" is taken up by
"kick" forces £y as shown in Fig. 37. The plastic behavior of
this element is assumed to be uniaxial, i.e., the single stress or
strain component at the centroid of the element is used to compute
the plastic strain at that point.

5. Stringers (Fig. 38) — For many aircraft structures, e.g.,
fuselages, wings, etc., local stiffening is required to provide
adequate stability in compression. Special one dimensional finite-
elements are required to represent the stringers used for this pur-
pose. Uniform cross section stringer elements have been developed
using both constant and linearly varying strain assumptions, so
that compatibility with both the CST and LST elements can be main-
tained. For the constant strain stringer, a linear axial displace-
ment and a constant initial (plastic) strain distribution within
the element are assumed. The linear strain stringer stiffness
matrix 1s based upon a quadratic displacement assumption and the
initial (plastic) strains are constant within the element

1. Triangular Element (Bell) (Fig. 3P) — While a rectangular
element is excellent for rectangular regions, a triangular element
is necessary to treat plates with arbitrary boundaries, including
curved boundaries. The fully conforming triangular bending element
developed by Bell (Ref. 39) and several other authors (Refs. 60 and 61)
has proved to be extremely effective for the analysis of bending
of plates with curved boundaries. This element was used effectively
in Ref. 16 to treat triangular, circular, annular, and rectangular
plates. The lateral displacement w is assumed to be a complete
guintic polynomial in x and vy, the in-plane coordinates. Six
nodal degress of freedom (w, Wax, Wiy, Woxx, Wixy, w,yy) at each
vertex node and three normal slopes at the midpoints of the sides
(w,,) are initially prescribed. The latter three degrees of free-
dom are then eliminated by imposing a cubic variation of the normal
slope along the edges, resulting in an 18 degree of freedom element.
The plastic strain digiribution is allowed to vary arbitrarily in
the plane of the element. Plastic strains are evaluated at Gauss




points and the plastic load vector is formed using two dimensional
Gauss-Legendre integration in the plane of the element. The plas-
tic strain variation through the thickness at each Gauss point is
monitored at a given number of points through the thickness (lavered
approach). The strains are then numerically integrated through the
thickness for use with the initial strain stiffness matrix to form
the plastic load vector. For problems involving combined bending
and stretching the in-plane displacements are assumed to vary lin-
early, as in the constant strain membrane triangle or cubically
(see Ref. 10) as in Felippa's formulation. Stiffness, initial
stress stiffness, and initial strain matrices have been derived
and successfully employed in the work of Ref. 16,

2. Beam Element (Fig. 40) — The effects of local stiffening
may be represented by a beam element that assumes the gross geo-
metric and elastic properties of the actual stiffener. Such & beam
element with a rectangular cross section has been developed and
used extensively in Refs. 13 and 62 for bending, combined bending
and stretching, geometric nonlinearity, and integrally stiffened
plate problems. Bending, membrane, and torsional rigidity are all
accounted for in the stiffness matrix. The lateral deflections are
assumed to be cubic in the axial coordinate, while the axial dis-
placement is linear. Torsional rigidity is included through the
assumption of a linear variation of the angle of twist.

In addition to this standard beam element, another element has
been developed for use as a stiffener in conjunction with the tri-
angular plate element. This element, depicted in Fig. 40, employs
a cubic displacement assumption for both lateral displacements and
the axial displacement. The angle of twist is assumed to vary lin-
early from node to node.

Plasticity is accounted for by assuming a linear variation
from node to node of plastic strains along the beam axis and zllow-
ing an arbitrary variation of plastic strains through the cross-
sectional area. The plastic strain distribution is integrated
across the area using Gauss-Legendre integration and along the
length in closed form.

Axisymmetric Bodies of Revolution

1. Axisymmetric Solid Element (Fig. 41) — The analysis of
thick solids of revolution subjected to arbitrary mechanical loads
is of basic interest in the aerospace industry. A triangular ele=~
ment of revolution used to analyze these problems was developed by
Wilson (Ref. 41) and others. This is essentially a two dimensicnal
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element with the formulation modified to account for hoop stresses
and strains (due to the curvature of the structure). Its deriva-
tion is based upon a linear assumption for the radial and axial
displacement components. A modification to this element to include
a torsional degree-of~freedom is incorporated for the element in=-
cluded in this module. Thus, the element has three degrees-of-
freedom at each nodal circle. Because of its triangular shape,

it is capable of representing arbitrary bodies of revolution. The
plastic strain distribution to be used in the formation of the ini-
tial strain matrix is assumed constant within each element. Stiff-
ness and initial strain matrices have been developed and incorpo-
rated into the program. It should be mentioned that good elastic
results have been obtained by using this element (Ref. 63), and
Marcal (Ref. 64) and Armen, Levine, and Pifko (Ref. 65) have ob-
tained good results in elastic-plastic analyses.

2., Axisymmetric Thin Shell Element (Fig. 42) — For shells
whose thickness-to-mean-radius ratio is less than 1/10 (in many
cases this ratio may be as high as 1/3) and where local effects
are negligible (e.g., junctures, branches, welds), the use of a
three dimensional element becomes wasteful. For such structures,
shell theory, which is a two dimensional approximation to three
dimensional elasticity theory, gives an accurate description of
the state of stress and deformation. Moreover, since thickness
effects are included in the kinematic model, only the circumfer-
ential and meridional variation of pertinent variables must be con=
sidered. This results in a considerable saving with regard to
computer storage, since a smaller number of elements is required
to describe the structure.

The shell of revolution is a basic component of many aero-
space structures. Cylinders, spheres, cones, and various combina-
tions thereof are widely used. For these reasons, an axisymmetric
thin shell element capable of treating arbitrary shells of revolu=
tion under axisymmetric loading is included in the plasticity pro-
gram.

The shell element chosen for use here is based upon the ele-
ment developed by Levine and Armen in Ref. 42, The derivation of
the stiffness properties of this element is based upon a shell
theory proposed by Sanders (Ref. 466) that uses Kirchoff's hypothe~-
sis and Love's first approximation. The meridional displacement
is assumed to be a cubic function of the meridional coordinate £
(see Fig. 42) and the normal displacement is also chosen to be
cubic in €. The actual meridional shape of the shell is repre-
sented by a cubic variation within the element. Plasticity has
been accounted for by dividing the shell into layers through the
thickness. For the current analysis, the plastic strains are as-
sumed to vary linearly along the meridian in the derivation of the




initial strain matrix. Initial strain, initial stress, and conven-
tional stiffness matrices have been developed and successfully
employed in combined problems of material and geometric nonlinear-
ity.

3. Axisymmetric Thin Ring Element — A thin ring element to
account for the effects of local stiffening on the behavior of
axisymmetric structures has been developed. The ring may be of
arbitrary cross section and eccentrically attached to the struc-
ture. Torsion, extension, and bending are accounted for. The ef-
fects of prestress, warping, and shear deformation have been
neglected, and the shear center and centroid must coincide. The
element is basically similar to that presented by Cohen (Ref. £43).
Plastic effects are included by numerically integrating rhe plas-
tic strains over the cross-sectional area of the ring for use with
the effective plastic load vector.

Three Dimensional Analysis

Isoparametric Hexahewron Element Family Ranging from 8 Nodes
(at the Corners) to 20 (8 Corner and 12 Mid-edge) Nodes (Fig, 43
and Ref. 50) — For the 8 node element the displacement function
is represented by a set of linear interpolating functions. Qua-
dratic interpolation functions are used for the 20 node element.
In local coordinates the element is a cube; in global coordinates,
however, the position of all nodes is arbitrary. Each edge of the
cube is either a quadratic curve in space or a straight edge, de-
pending upon whether the edge is defined by the location of three
or two node points. Thus, curved boundaries are represented by
quadratic interpolating polynomials.

A constant plastic strain within each element has been in-
corporated.

Laminated Composite Plate Analysis —

® (Constant stress element

e Pure shear element } Composite Element (Fig. 44)
Interlaminar shear deformation, the mechanism by which load

is transferred through a matrix material between two stiff laminae

as the laminae tend to slide over each other, cannot be predicted

by using classical plate theory. This type of deformation develops

along the edges of a laminate and can be important with respect to
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strength predictions of composite structures, especially for a lami-
nate with a relatively low transverse shear strength. Analogous
behavior is found to exist in bonded structural joints.

The idealized model used in the analysis separates the mem-
brane and interlaminar properties of a laminated composite by using
alternating orthotropic fiber-bearing segments and isotropic shear
segments, as shown in Fig. 443, The orthotropic segments carry in-
plane stresses only, and may be considered to be in a state of plane
stress; the shear segments carry only interlaminar shear stresses,
and are in a state of pure shear.

The composite element consistent with the idealized model is
shown in Fig. 44b., The membrane segments are triangular orthotropic
elements in which the total strains are assumed to be uniform.

Here the strain-displacement relation is based on a linearly vary-
ing displacement field. The stiffness properties of the interlami-
nar shear segments are also based on a linear displacement field,
so that the shear strains may be written in terms of the nodal dis-
placements in the following manner:

_ou £-1 4-1 L=1 L bk
Yoz = 3g = <ui + uj + U uy uj uk>,//3t
(A-1)
_ OV _ £-1 4-1 -1 L _ &k
yyz =3, = <vi + Vj -+ Vi v, vj vk> /3¢ ,

where u and v are displacements in the x and y directions,
respectively; subscripts identify elements vertices; and super-
scripts identify element faces as shown in Fig. 44, Since the dis-
placements vary linearly in the plane of a membrane segment, the
interlaminar shear strain is computed on the basis of centroidal
values of displacement, and thus the shear segment may be regarded
as a shear-resisting medium connecting the centroids of adjacent
membrane segments. Any number of segments may be stacked through
the thickness to form the multilayered composite element.

Plastic behavior of the plate is assumed to be confined to the
softer matrix material. A uniform plastic shear strain is assumed
to exist in the interlaminar region. A detailed discussion of this
element and its potential usage is presented in Ref. 54.




APPENDIX B

PLASTICITY RELATIONS

Considerable efforts have been made in the experimental ex-
ploration of the monlinear behavior of many of the commonly en-
countered structural materials. A motivating force underlying
much of this effort can be attributed to basic investigations coun-
cerned with low cycle fatigue (Refs. 67 and 68). From a metallurgi-
cal viewpoint, the mechanism associated with the behavior of duc-
tile materials experiencing cyclic plastic deformation to fracture
appears to be overwhelmingly complex. Because of this complexity
no universally applicable laws governing the behavior of materials
in the plastic range have yet been developed. If the structural
analyst is to predict the gross deformation behavior of structures
in the plastic range, he is required to choose from among the sev-
erz21l available plasticity theories one that successfully combines
mathematical simplicity with a reasonably faithful representation
of some of the more obvious experimentally observed features of
material behavior.

We here present and briefly discuss plasticity relations for
three particular theories associated with strain-hardening behavior.
These are the kinematic hardening and isotropic hardening theories
and a third theory that incorporates features of both. Isotropic
hardening is restricted to monotonic loading conditions, whereas
the last two are specifically developed to treat cyclic loading
conditions involving stress reversals. In addition, consideration
is given to those relations appropriate to ideally plastic material
behavior.

For isotropic, isothermal conditions, we can define a function
of the stress components to be used in describing the limits of
elastic behavior. This function generally represents one or a com-
bination of stress invariants and can be a smooth continuous func-
tion (von Mises) or discontinuous piecewise linear (Tresca).

In the case of subsequent yielding from a plastic state, the
function used to define the elastic limit is referred to as the
subsequent yield or loading function, and the corresponding yield
condition can be represented as

£(o;55055) = ()" =0, (B-1)
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where £ 1s a homogeneous function of order n of its arguments,
013 are the stress components, @jj represents a measure of the
degree of work hardening, and o, 1is the yield stress.

The yield and loading conditions serve to establish criteria
for loading, unloading, or neutral loading from elastic or plastic
states, respectively (Ref. 25). Additional information, in the
form of a constitutive relation between increments of plastic
strain, stress, and stress increment, is required to describe the
plastic behavior of a material. This constitutive relation, termed
the flow rule, is based on the maximum plastic work inequality
(Ref. €9):

o
..~ 0,.)de.. -
(Ul_] Gl])d ij 2 0, (B 2)
where deij represents the plastic strain increment components
resulting from the stress state oij on the subsequent loading
surface, and ng is any other stress state on the surface be-
neath it. In addition to providing the convexity condition on the
loading surface, the inequality leads to the normality condition
associated with the plastic strain increment vector. Thus, the

flow rule is represented as

ij’aij)

of (o

de.,, = dA
ij d0. .
ij

(B-3)

where dA 1s a positive scalar quantity.

Having selected a yield condition and flow rule, we must now
choose a function that will establish conditions for subsequent
yielding from a plastic state. Choice of a hardening rule depends
on the ease with which it can be applied in the chosen method of
analysis as well as on its capability of representing the actual
hardening behavior of structural materials. These requirements
and the necessity of maintaining mathematical consistency with the
yield function constitute the criteria for final choice of a harden-
ing rule. An appraisal of some of the available hardening rules
follows.

Kinematic Hardening

The hardening behavior postulated in this theory assumes that
during plastic deformation the loading surface translates as a




rigid body in stress space, maintaining the size, shape, and orien-
tation of the yield surface. The primary aim of this theory, due
to Prager (Refs. 26 and 27), is to provide a means of accounting
for the Bauschinger effect. Such a capability is of particular im-
portance in the strength prediction of aircraft structures, since
severe loadings tend to be random, and failure may occur as the
cumulative effect of a small number of such loadings.

An illustration of kinematic hardening, as applied in conjunc-
tion with the von Mises yield curve in the o3, o2 plane, is pro-
vided in Fig.45. The yield surface and loading surface are shown
here for a shift of the stress state from point 1 to point 2. De-
noting the translation of the center of the yield surface by G50
we may represent the loading function £ in the form f(gi%"aij)Q
the subsequent yield condition is given as :

f(o,. —a,.) = o_ =0 . (B-4)

As a comsequence of assuming a rigid tramslation of the load-~
ing surface, kinematic hardening predicts an ideal Bauschinger ef-
fect for completely reversed loading conditions. That is, the
magnitude of the increase of yield stress in one direction results
in a decrease of yield stress of the same magnitude in the reverse
direction. Kadashevitch and Novozhilov (Ref. 70) have independently
developed a hardening rule almost identical to Prager's. In their
theory, the total translation of the yield surface is regarded as
associated with "internal microstresses" that remain in the body
upon unloading. It is these internal microstresses that are con-
sidered to be responsible for the Bauschinger effect.

The kinematic hardening theory as set forth by Prager postu-
lates that the increments of translation of the loading surface in
nine dimensional stress space occur in the direction of the ex-
terior normal to the surface at the instantaneous stress state.
This geometric relation can be expressed analytically by

da.. = cde,, , (B-5)
ij ij

where deij is the increment of plastic strain, which, according

to the flow rule, Eq. (B-3), is in the direction of the exterior
normal to the loading surface, and ¢ 1is a parameter character-
izing the hardening behavior of the material.
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As indicated in Refs. 71 -73, inconsistencies arise when the
theory is applied in various subspaces of stress, that is, when
the symmetry of the stress tensor or the fact that some of the
stress components are zero is taken into account in reducing the
number of dimensions of the stress space.

These inconsistencies produce the result that the loading sur-
face will not, in general, translate in the direction of the ex-
terior normal in a subspace of stress when it is made to do so in
the full nine dimensional stress space. Reference 72 specifies
stress conditions under which a linear transformation of wvariables
enables the loading surface, in the transformed subspace, to trans-
late in the direction of the exterior normal.

To avoid this difficulty in implementing complete kinematic
hardening, Ziegler (Ref. 28) has proposed a modification of Prager's
rule. This replaces Eq. (B-5) with the following expression for
the increment of translation

daij = du(oij - aij) de > 0 . (B-6)

The geometrical significance of this modification is shown

(P)

in Fig. 46, where the increment of translation daij , computed on
the basis of Prager's rule, is compared with the increment of

translation dai.', computed on the basis of Ziegler's modified

rule, Note that in the latter case the increment of translation
dai? is in the direction of the vector from the center of the

yield or loading surface to the point representing the instanta-
neous stress state.

The scalar dp in Eq. (B-6) is determined from the condition
that the stress state must remain on the translated loading sur-
face during plastic deformation. From Fig. 47it can be seen that
this condition may be represented as

(dcjij - daij) So. . = 0 . (B-7)

Substituting Eq. (B-6) into Eq. (B-7), we have



du = - Y (B-8)
(o35 = %44) So..
]

An expression for the scalar factor dA associated with the
flow rule, Eq. (B-3), can be determined by recognizing that the
vector cdeij, shown in Fig. 47, is the projection of dcij on the
exterior normal to the loading surface at the instantaneous stress
state. Thus, we can write

=0 . (3-9)

Using the flow rule, Eq. (B-3), to substitute for d€ij in
"Eq. (B-9) results in the following expression for dA

of
004 3 dci'
ij J

an = % ' (B-10)

( of ( of > ’

Bckﬂ Bokﬂ

where the summation convention is adopted in 9-space. The flow
rule now becomes

aﬁ do
do_. mn
_ 1 _of mn -
deij T e aoij ( df ) ( Of ) (B-11)
Bckz adkﬂ

Isotropic Hardening

This theory assumes that during plastic flow .the loading sur-
face expands uniformly about the origin in stress space, maintain-
ing the same shape, center location, and orientation as the yield
surface. Figure 48 illustrates, on the basis of a simplification to
a two dimensional plot, the yield and loading surfaces when the
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stress state shifts from point 1 to 2. Unloading and subsequent
reloading in the reverse direction result in yielding at the stress
state represented by point 3. The path 2-3 will be elastic, and
0-2 is equal to 0-3.

It can be seen that the isotropic type of representation of
work hardening does not account for the Bauschinger effect exhibited
by most structural materials. 1In fact, this theory provides that
because of work hardening the material will exhibit an increase in
the compressive yield stress equal to the increase in the tensile
yield stress. Furthermore, since plastic deformation is an aniso-
tropic process, a theory that predicts isotropy in the plastic
range cannot be expected to lead to realistic results when non-
proportional loading paths (not necessarily completely reversed)
are considered. This conclusion has been indicated experimentally
in Refs. 74 -77. TFor monotonic loading conditions, however, iso-
tropic hardening is satisfactory and is commonly used.

In the case of isotropic hardening, f(cij) in Eq. (B-1) re-
tains its original form, except that oy increases in magnitude
to provide for the expansion of the yield surface as work hardening
proceeds. Equation (B-1l) then serves to define oy, which is re-
ferred to as the "effective stress." The corresponding relation-
ship between plastic strain increments and stress increments for
the case of isotropic hardening is obtained by introducing the ex-
pression for f(oij) in Eq. (B-1) into the flow rule of Eq. (B-3),
with ¢, treated as a constant.

Work-Hardening Moduli

A theory that combines kinematic and isotropic work hardening
would require the yield condition of Eq. (B-1l) to be modified as
follows.

E(og5 = o3) “F(M) =0, (B-12)

where F()\) 1is a measure of the expansion of the yield surface in
stress space, and, during plastic deformation, A 1is a monotoni-
cally increasing scalar function. Equation (B-12) reduces to the

case of kinematic hardening when F(A) = constant, and to iso-
tropic hardening when @y = 0 and F(A) 1is monotonically in-
creasing.




From experimental considerations concerned with the behavior
of metals under cyclic loading, it has been observed that a steady
cycle of alternating plastic flow is reached after a certain number
of cycles (Ref. 78). For some materials under a fixed strain (or
stress) range, fully reversed cyclic tension-compression tests may
tend to increase the stress (or strain) range toward a fixed steady-
state value (work stiffening). Conversely, in some metals initially
cold worked into the plastic range or heat treated, the stress (or
strain) range can be lowered to the same steady-state value during
plastic cycling (work softening). The hypotheses of isotropic and
kinematic hardening cannot, in general, predict this observed phe-
nomenon. In the uniaxial case shown in Fig. 49, for instance, for

stress cycling between the limits ioB, the isotropic hardening

model predicts completely elastic behavior beyond the first half-
cycle, whereas kinematic hardening predicts steady cyclic plastic
straining beyond the first cycle — neither ofwhich may represent
the actual behavior.

In proposing a work-hardening model to account for the be-
havior of metals under cyclic loading conditions, Mroz (Refs. 79
and 80) has introduced the notion of a field of work-hardening
moduli and the variation of this field during the course of plas-
tic deformation. 1In this proposed model, a stress-strain curve of
an initially isotropic material is represented by n linear seg-
ments of constant tangent plastic moduli, as shown in Fig. 50, 1In
stress space, this approximation can be represented by n hyper-
surfaces f,, f1, ..., f,, where fo 1is the initial yield surface,
and £ to f, define regions of constant work-hardening moduli.
Figure 51 illustrates these hypersurfaces in the o7 - oy plane
for an initially isotropic material. As seen from this figure,
the surfaces fy, £1, ... are similar and concentric, and for sim-
plicity are schematically represented by a family of circles. If
we consider proportional loading in the o9 direction, correspond-
ing to o in Fig. 50, and if we assume that the surfaces can ex-
perience a rigid translation without experiencing a change of size
or orientation, then when the stress state reaches point A on
Fig. 5la, the surface fO will translate until it reaches the cir-
cle f1 at the stress corresponding to point B. The circles fq
and £ translate together until the point C is reached, where
now fo’ fl, and f2 are attached at a common point of contact.
For unloading and subsequent reversed loading, when the stress
reaches a point corresponding to point E (Fig. 51b), reverse plas-
tic flow occurs and the surface f, translates downward along the
o axis until it reaches the surface f; at F. Mrdz further
proposes that the curve of reverse loading in Fig.50 joins the
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curve OA'B’G that is obtained by symmetry with respect to the
origin from OABC. Thus, the curve of reverse loading EFG 1is
uniquely defined by the curve of primary loading, represented by
an equation of the form o = f(e). If a new coordinate system

(c,e) with origin at C 1is used, we have for the curve CEFG

|+

o= f(:e) . (B-13)

nj=
|

In the generalization of this model to nonproportional load-
ing, it is assumed that during translation of the hypersurfaces
the individual surfaces do not intersect but consecutively contact

and push each other. If we consider two neighboring surfaces fj
agd fk+1 hav1ﬁg centerskif Ok and Ok+l ?eflned by the posi-
tion vectors aij and aij , then the equations of these two -

surfaces are
f(%j B “?j) ) <OE> =0 f<gij ] O‘ﬁl> ) <°1<§+l>n =0 ,(B-14)

+1 . .
where 05 and og are constants used to define the size of the
surface. From Ref. 80, the instantaneous translation of f(oij -aij)
is given by

d
dak. = ‘&{(ok+1 - oF ck. - <a$.0k+l - akfxck>] , (B-15)
ij Ok[ o o/ 1ij ij o ij "o/
o
where
dpﬂ _ af/aqudGlJ
- k+1 k
Bf/omn<cmn mn>

On reaching surface fy;7, the position of £y can be obtained
from the following relation:

Ok+l
N I G A (B-16)
ij ij ck ij ij
o




i.e., the vectors connecting the center of the surface with the
stress point are parallel for the surfaces fyx and fy4j. When
the centers of the surfaces originally coincide, the mathematical
description of the translation of the yield surface is identical

to that given by Ziegler (Ref. 28) and presented here in Eq. (B-6).

The work-hardening modulus for each hypersurface is developed
in Ref. 80 from a flow rule in the form of Eq. (B-3), and is given
as

do, .de. .
i) 1] -
€ = de..de,. (B-17)
13 1]

for multiaxial stress. Equation (B-17) represents a generalization
of the plastic tangent modulus in the uniaxial stress state. A
corresponding modulus of the form c¢ = h(c,¢), where h is a
functional representation of the instantaneous slope of an effec-
tive stress (o)-effective strain (€) curve, 1is presented in
Ref. 25. It should be noted that when £ tends to infinity, so
that the work-hardening modulus is constant (the work-hardening
curve being represented by a straight line), the theory proposed
by Mréz is identical to Prager's kinematic hardening model.

The further generalization of the theory of work-hardening
moduli is associated with an expansion or contraction of the sur-
faces f,, f1, ..., so that transitory phenomena (work stiffening,
work softening or nonisothermal conditions) can be treated. Thus,
the hypersurfaces fir are not constants but functions of a scalar
parameter, A, monotonically increasing during plastic flow. One
suggestion for A 1is presented in Ref. 80, where it is proposed
that

k k
= A -
o, = 0,(N (B-18)
where
t
r = /2 (de..de. )Zae
3 ij-oij ’
0

and t represents an interval of time or load, etc.
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The effects of cyclic loading, as predicted by kinematic
hardening or the theory of Mroz, can be expected to give, at best,
a simplified approximation of the actual behavior of structural
metals under cyclic loading. These theories idealize the behavior
of the location of the yield surface(s) in a general direction of
prior plastic deformation. Experiments have shown that the be-
havior of subsequent yield surfaces are far more complex than a
mere translation and/or expansion of the original surface. How-
ever, we believe that these theories satisfy our original criteria
requiring mathematical simplicity and capability of predicting the
essential features of cyclic plastic behavior. Results for sev-
eral of those problems in which strain hardening is considered in
this report were obtained by using the Prager-Ziegler kinematic
hardening theory with a constant work-hardening modulus. For
others, the concept of fields of work-hardening moduli was used
where, for a point undergoing loading in the plastic range, a new
modulus is computed for each increment of load. Further, for re-
versed loading, a new coordinate system, used to define the re-
versed stress-strain behavior, is chosen at a point corresponding
to E in Fig. 51b.
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GOAL OF INVESTIGATION APPROA RESULT
NAS 1-5040: 1965 Combine finite-element Application to membrane

e Develop methods of
plastic analysis applicable
to A/C strucrtures

techniques to plasticity
theory to treat general
loading and boundary cond's.

stressed structures. Some
experimental (NASA)

verification

NAS 1-7315: 1967
¢ Extend methods to
include bending behavior.
¢ Determine feasibility of
treating combined material
and geometric nonlinearity

-

Introduce concept of elastic-
plastic boundary within .ele~
ment. Incorp. incremental
technique to account for
geometric nonlinearity.

Methods include capabilicy
to treat beams and plates
for bending alone, or com-~
a4 bined bending and membrane
loads. Plastic and geom.
nonlinear effects for beams
and arches.

NAS 1-10087: 1970
¢ Expand "library" of
finite elements to include
a broad base of application.
¢ Develop general compre-
hensive program for the
plastic analysis of struc-
tures. @ Extend methods
for the treatment of com-
bined material and geometric
nonlinearity.

In addition to triangular
membrane and plate elements,
the element library includes
¢ Axisymmetric revolved
triangle
¢ Axisymmetric shell
¢ Isoparametric family of
3-D hexahedra
¢ Composite element
¢ Shear panel
Methods of combined nonlinear
analysis extended to treat
plate and shell structures.

Program under development

Fig. 1

Analysis Studies at Grumnan

Chronological Summary of Nonlinear Finite Element

71




(4

Type of Analysis

Loading

Application

I.
Membrane Stress

Arbitrary concentrated and/or
distributed in-plane (membrane)
loads.

Unloading from any plastic
state and reversed loading,

Thin walled membrane stressed
structures, such as sheets with
arbitrarily shaped holes and
cutouts; general out-of -plane
thin walled membrane structures.

Axisymmetric bodies
of revolution

Axisymmetric line or distributed
loads.

Unloading from any plastic state
and reversed loading.

II.
1. DPending Arbitrary concentrated and/or Plates of arbitrary shape with
2. Combined bending and distributed normal and in- holes and cutouts; stiffened
membrane plane loads, panel; general out-of-plane thin
Unloading from any plastic walled structures
state and reversed loading.
IIT.

Thin walled axisymmetric stif-
fened and unstiffened shells of
revolution; thick walled axisym-
metric structures; junctions bhe-
tween branched structures; transi-
tional shells (thin - thick).

v,
Three dimensional

Arbitrary concentrated and/or
undistributed loads.
Unloading from any plastic
state,

Behavior of arbitrarily shaped
three dimensional bodies,

V.
Composite plates
under plane stress

Arbitrary concentrated and/or
distributed in-plane loads.
Unloading from any plastic
state and reversed loading.

Laminated composite plates under
generalized plane stress condi-
tions.

Fig. 2a Nonlinear Analysis Capabilities of the PLANS System




EXECUTIVE PROGRAM
Supervises Calling Specified Analysis Programs

PLANE

Membrane stress
analysis
e CST
e LST

e shear panel
e bar
o beam

triangles

BEND REVBY HEX
Bending and Analysis of axi-— Analysis of general
membrone analysis symmetric bodies 3-D bodies
. of revolution
e triangular plate ; R
e isoparametric ° isoparametric
o trianguiar membrane shell family of
e beam e revolved triangle hexohedra

e ring stiffener

COMPEL

Analysis of
laminated
composites

o CST

e pure shear
element

Fig.2b ORGANIZATION OF PLANS

T T T
————

[ S
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a/b=0.096

b/¢=1.300 i y
¢ = ll2a

—2b— |
BEEER

455 ELEMENTS

Fig.3 IDEALIZATION OF A QUADRANT OF A SHEET WITH A CENTRAL CRACK
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oy ——THEOR. ( elastic) Ref (38) )
== ® FE.{elastic)
o 2a =|2
0 5 a FE. (elasto-plastic Jay =.376 Oyield a/b=0.096 1 : $x
B FE. (elosto plastic) oy =.7530y61g L b/c=1.300 ob
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(a) Stress Distribution Along y=0 (b) Displacement Profile Along Crack Length

Fig 4. ELASTIC-PLASTIC ANALYSIS OF A UNIFORMLY LOADED SHEET WITH A CENTRAL CRACK
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1.0 1.5 R:) 1.0 LI
(a) PLASTIC ZONES (loading) (b)PLASTIC ZONES (unloading)

_x/a

Fig.5 PROPAGATION OF PLASTIC ZONE IN A UNIFORMLY
LOADED SHEET WITH A CENTRAL CRACK.



9.
n 10

' 153 memb o
53 members } revolved triangle

95 nodes
' I5 members

16 nodes } shell element

. s W '

i
I
+ ] - ) - - - -~
!= a

Fig.6 IDEALIZATION OF QUADRANT OF FULL SPHERE
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Fig.7
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———- Limit Load, Ref.47
Khojasteh-Bakht, Ref. 46
o )ap = L5psi=103x107 AN/m? =10in.=.254m
o =0.4psi =276x 107 3N/ m? =D
a =0.2psi=1.38x 103N/ m? = .06D
= .004 D
4 _
0
a
o
m]
A
3L a &
T
0
"
o
»
32T
2 47 elements
o 188 degrees of freedom
o
' |
0 5 10 5 30 25 30

wg/h
Fig.13 PRESSURE VERSUS NORMAL DISPLACEMENT, w , AT AFEX (# = 0 )
FOR DIFFERENT LOAD INCREMENTS - TORISPHERICAL SHELL
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— RESULTS FROM PRESENT ANALYSIS
O RESULTS FROM REF.49

--96 . _'94 -'92 [ S0 T S LA NN SN N SR NN T N
02 .4 .06 .08 .10 .12

- » CENTER DEFLECTION

| | | :

?
t=1|l | 9
LR o :
r §
alt =10 l a_-l S 3t
g
-
o 27
5
a
[\
<

=12 - ‘10

I T

-.08

3 . 20 elements
= o 39d.0.f. -

sp = 1138 psi=785x10* N/m?

Fig. 16 LOAD VERSUS CENTER DEFLECTION OF A UNIFORMLY
LOADED CLAMPED CIRCULAR PLATE '



SQUARE RING STIFFENER

E=1.0x107 psi=6.90 x 10'°°N/m?
A=030625in> =194 x 10 °m2
Ix=ly =.1368 x16%in’ =5.69x16°m*

(o)
t=.0175in.=0.44mm

E=10x 107psi =6.90x 10N /m?
v=1/73
%, = 30,000 psi =2.07x 108 N/m?

(@)

O - UNSTIFFENED HOLE

: e}
26 ELEMENTS A - STIFFENED HOLE

105 D. O.F. o°
OO

AAA AAAAAAAA

i H 1 | SR | 1 Al H ]

2 4 6 8 10 12 14 16 18 2
4

-(—'a—--xlo3

Et4

(a) Normal displacement ot the hole boundary.

Fig.I17 LOAD-DEFLECTION CURVES FOR RING -STIFFENED
SPHERICAL SHELL UNDER EXTERNAL PRESSURE
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] ] I | ! j
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4 6 8 10 12 14 16 18 20

4
a -
i‘zrx 10
Et
(b) Normal displacement at r=2.5in=6.35¢cm

3

Fig.17. LOAD-DEFLECTION CURVES FOR RING-STIFFENED

SPHERICAL SHELL UNDER EXTERNAL PRESSURE
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(b) Distribution of circumferential stress resultant for stiffened hole.

Fig.18 RING-STIFFENED SPHERICAL SHELL UNDER EXTERNAL PRESSURE
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(b) Distribution of longitudinal stress o, along x axis, z=0 (f=p/4bc)

Fig. 19 RECTANGULAR PRISM
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Maximum elastic load Ref.SZ% 0, = 17.24 ksi
o Finite-element solution y
A Finite-element solution-extrapclated gl
------ Finite-element elastic-plastic solution S
at Oy = 0'6 /O'Yleld =0.87 /

385 nodes 968 dof

AN
2 /
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t
"“TQ—"*
3.0 0
4
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w 2.0 2/1=.875
-
©
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~
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Fig.21 DISTRIBUTION OF CIRCUMFERENTIAL STRESS IN A
THICK PLATE WITH A CENTRAL HOLE.
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Fig.22 IDEALIZATION FOR PANEL WITH A CUTOUT
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Fig. 23 INTERLAMINAR SHEAR STRESSES AROUND CUTOUT
IN BORON -EPOXY [%45]  LAMINATES
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REF. 55
O SOLUTION USING TANGENT MODULUS METHOD
A SOLUTION USING EFFECTIVE LOAD METHOD

p
fL{ s1d 3t 1T TR
T L
¢
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FIG. 24 CENTRAL DEFLECTION VERSUS LOAD FOR A UNIFORMLY
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REF. 55

o SOLUTION USING TANGENT MODULUS METHOD
A SOLUTION USING EFFECTIVE LOAD METHOD

LINEAR BENDING
STRESS AT EDGE &g

4
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E/\n
20 ELEMENTS
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Fig. 25 STRESS VERSUS CENTRAL DEFLECTION FOR A
UNIFORMLY LOADED CLAMPED CIRCULAR PLATE
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o
o
250 o
o
= 200} LINEAR SOLUTION ©
- E=I07psi
s =69x10°N/m“0 0
< v=10.3
= 150} A=b6
>
= 12
£ A2 [31-8) " (ki
& 100F 21 elements
83 degrees of freedom
50 | &f ———— Ref. No. (56)
O AP = 56N
0 AP = 445N WITH EQUILIBRIUM CORRECTION
1 { 1 i { H
0 2 4 6 8 10 2

CENTRAL AXIAL DEFLECTION /h

Fig.26 LOAD VERSUS CENTRAL DEFLECTION FOR A
CENTRALLY LOADED CLAMPED SPHERICAL CAP (X = 6)
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CENTRAL DEFLECTION Wo, Mmm

Fig.27a  LOAD VERSUS CENTER DEFLECTION FOR A SIMPLY-
SUPPORTED CIRCULAR PLATE(2a/h =40.6)
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Fig.27b
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(o]
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——THEOQORY
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18,000 AP = 9.83N
\ ——- THEORY (EQUIL. CORRECT.)
16,000 EEURY AP =9.83N
S P
14, 000 vy h
ZCQ‘- n
F—-Za—-lT
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' | 2024-0 ALUM
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6000 14 elements
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098 ‘
40007~
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T2 3 4 s & 37

RADIAL LOCATION R, cm

CIRCUMFERENTIAL STRAIN DISTRIBUTION AT LOWER SURFACE
FOR A SIMPLY-SUPPORTED CIRCULAR PLATE{(2a/h = 40.6)
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Fig.27c  CIRCUMFERENTIAL STRAIN DISTRIBUTION AT UPPER SURFACE
FOR A SIMPLY-SUPPORTED CIRCULAR PLATE (2a/h = 40. 6)

97




86

30 x 106 psi =206 %100 N/m?2

E:
v =073
a =01
8 =.002
w12
v 2[31-08] (i)
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R . (5
2 \=4, CLAMPED %REF( 7
.4 S.S.
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\ e 4
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6r ~ 20 elements
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al \<
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OO .Oé Jb 15 .20 .25 .30 .35 40 45 .50 .55 .Gb

Wo ,Cm

F1G.28. ELASTO-PLASTIC BUCKLING OF SIMPLY-SUPPORTED AND CLAMPED SPHERICAL CAPS

UNDER UNIFORM EXTERNAL PRESSURE (LOAD VS. CENTRAL DEFLECTION CURVES)
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14 ELEMENTS
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Fig.29 LOAD VS. CENTER DEFLECTION OF A SIMPLY=

SUPPORTED CIRCULAR PLATE
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———— Elastic, Ideally plastic

e Elastic
R/4 =120
E =10 x10%ksi =69 x 100 N/m?2
v =03
Tyield =30ksi=21x107 N/m?
L =25in =0.64m
1.O
(7]
[72]
L
£
’?o 2 8-
= -
% 20~ o ~ (N, =1.23x10%)
4 7/ ] .
E" / QE; 6Fr
s o / S
= / 4
4 ~ = 4}
g 1o- g
@ 8 | (N,=L75x10%)
» 2 2k
— - —
.g 0 1 ] | P
Z "0 20 .40 .60 L RINGS
Axial Displacement/Thickness Y y

0 02 04 0608 10
Axial Position x/L

{a) Lood vs axial end displacemeni. (b) Elastic and plastic redial displacement
profile.

Fig. 30 SIMPLY-SUPPORTED,STIFFENED CIRCULAR CYLINDER
SUBJECTED TO COMPRESSIVE AXIAL LOADS.
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Linear solution
Expt. 1655 [b/in=290x10> N/m , I specimen \
o 300 e N
'o
» e e e s ——— ——— e [ R ——— - [—
E }
~ Expt. 1432 Ib/in =2‘5xlO3 N/m ,2 specimens
=
200
= i Inner diometer =7.8in.=02m 6061~0 Aluminum Alloy
= E =107 psi=6.9x 100 N/m2
v=.33 %pf:= 4300 psi = 2.97 x 10’ N/m?
h=.125in=.3cm %%7= 5050 psi = 3.48 x 107 N/ m?
L=20in=0.5im n= 4.8
loof-
CLAMPED EDGES
O SIMPLE SUPPORTS
0 ] | i 1 1)
0 0.5 1.0 L5 2.0 25
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{a) Applied end lood vs end deflection for clamped and simply-supported circular cylinders

4 -

Simple supports

.2
w/h \-Nx 21575 1b/in =276 x 10° N/m
Clamped
.
Simple supporis /- N, =1050 Ib/in = 184 x IO3 M/m
%umped
1 1 ! ) ] ] ! ] j j
e} .05 10 A5 .20 .25 .30 .35 .40 45 .50
x/L

{b) Radial shell displacement along axis for clamped and simply-supporied end loaded cylinders.

Fig.3! UNSTIFFENED CIRCULAR CYLINDERS
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Linear solution
Clamped ond
Simply supporied
200r——

- A, Uy

Linear solution L__ L ——e]
left-end free

6061 -0 Aluminum Alloy

h =.125 in. =0.3¢cm

150 - L = 20in. = 0.51cm
lis] o N
o Inner da.a. {X=0) =78 m.. 2 m }a 17.090°
x Inner dia. (X =L) = 20.}lin.=.S5im
E
- Clamped
- 100 -~
2}%&
50 b

Note: N, opplied al larger diameter end

Left-end free

O

Ux/h

(a) Axial lood versus axial end deflection.
Fig.32 TRUNCATED CONICAL SHELL
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{b) Norma! shell displacement glong shell axis.

Fig.32 (cont.) CLAMPED TRUNCATED CONICAL SHELL
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Read Input

I

Calculate Yield
Load Stresses
and Strains

Form Element Stiffness
and Initial Strain
Stiffness Matrices

|

ELAS

) |

Return

Assemble Total Stiffness
Matrix and Load Vector

PLAS

Solve for Displacements

[K]{8} = (P}

I

Calculate Unit Load
Stresses and Strains

a) Main Program

Solve for Initial
Yield Load

b) ELAS

Fig. 33 Basic Flow of Each Analysis Program in '"PLANS"




0T

Increment Load
Check Yielding for
Elastic Members;
Unloading for Plastic
Membe s

Form Effective Plastic
Load by Mult. Initial
Strain Stiffness Matrix
by Plastic Strains

Form Total Load Vector,
Applied + Plastic

Solve for Displacements

Note: Total stiffness
matrix has been
factored in ELAS

Calculate Displacement
Increments

Elastic Members

Compute Increments of

Total Strain, Increments

of Elastic Strain for

of Plastic Strain for
Plastic Members

and Increments

Plastic
Constitutive

Sum Incremental
Quantities

Max Load Been

Form Final Effentive
Plas*ic Load Ve~*or

Solve for Dispiacements
[Kif{s} = (Q}

|

Compute Stresses
and Total Strains

33 (Cont.)

Relations

Solve for New
Yield Load

Incremenc the
Load & Repeat
the Above Steps

PLAS

New
Load Cycle

Reza & Set New
Material Plastic
Properties

Reform Effective
Plastic Load Vector

Form Load Vector New
Critical Applied Load +
Effective Plastic Load

i

Solve for Displacements
(Kl{e) = (E_} + (Q)

Calculate New Critical
Load Stresses and
Total Strains

Basic Flow of Each Analysis Program in '"PLANS"

Return to Main

Increment
Load
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Displacement Assumption :
ulx,y)= a; +axx+tazy
vix,y)= ag+agx+agy

Initial Strain Distributien:

€; (x,y) = constant

j\x

Fig.35 CONSTANT STRESS TRIANGLE (CST)

Displacement Assumption: Ae, y
U=a,+apxtagytasxZragxy+tagy? :\/

- 2
V=0,+0gX+0gy+0,4X Ae
2

+a, xyt o,y

Initial Strain Distribution:
€ = constant
j\X

Fig.36 LINEAR STRAIN TRIANGLE (LST)
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Fig.37 WARPED SHEAR PANEL (GARVEY)

(a) Constant strain element (b) Linear strain element
Displacement Assumption: 2
us o) +rayx u=o|+02x+o3x

Initial Strain Distribution

€ = constant

Fig.38 STRINGER ELEMENTS
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Displacement Assumption :

S
°z|y3
U = b| +b2x +b3y+b4x2+b5 xy++bloy

W=0a, +0,X t gy tagx2+agxy+-- -+

v c; teox 1-c3y<|-c4x2+c5xy+---<i-c|0y3
Initial Strain Distribution :
€(x,y,2z) = f(z)i:wi €; (z)
i=l

Fig.39 TYPICAL TRIANGULAR ELASTIC-PLASTIC
PLATE ELEMENT ( PURE B)

‘m,a '“vi*
f.:
f: f yi Yi|f
mxi —— __’XI : ‘r—-x’ —_——— mxj
/I J

‘ fZI fZ|
’m/zi 'ﬁiﬁ

Displacement Assumption:

u 2 (n ) U, xi

vl = DHoi €1 | vi [+ Her 2 (V2

w l=| W| W,xj
(0)

Byt ZHO. ) {8;}

(k) —
H "= Hermitian polynomial of order k

Fig.40 BEAM ELEMENT
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Displacement Assumption:
U =a, +0pr +tazz
Uz =04 +0gr + agz
Ug =0, +agr +agz

Initial Strain Distribution:

‘ij {r,z) =constant

Fig. 41 AXISYMMETRIC REVOLVED TRIANGLE

‘ Y4

Displocement Assumptions:
2 3
wo o= g +02€+0362 +<:4€3
u =ol+azf+03€ +0,€
initial Strain Distribution :

{est=061el (D+ el (b
8 8 8

Fig.42 AXISYMMETRIC THIN SHELL ELEMENT
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Local Coordinates Cartesian Coordinates

Displocement Assumption

U P 0 O U

Vi= |0 P O v

w 0O 0 P|] W
P = Pl P2 P3 " Pe. RE™ on

Pi= =1+ &) (lenyn)(1+& E+n; n+8; £-2)i=1,8
for a typical mid-edge node (eg.&; =0,7; =X1,¢(;,=%1)

P o= (-5 0em m) (1458

Plastic Strain Distribution

eij = uniform

Fig43 ISOPARAMETRIC HEXAHEDRA

111



Ey' 58 z Z
XIA A
B o X B
By ,

" B3 Isotropic < A2
B3 Shear \
B, Segmenti B3
B Modeled Laminate

Symmetric Laminate,[,8|/32//93] :

(o) Laminate Model

s S T g 5
| o IFiber-Bearing

X
| FXY | Orthotropic
' 7Yl segment
Layer.¢-| < 9
I

\Z
i o :
, Interlaminar
i Shear
i~ Segment

| E
|
| [
Layer 2 m
:/\
' 2, 2+1
14t
|
|
|

|
) |
Layer #+l 'm

| |
[ Y|

(b) Finite-Element Model
Fig. 44 COMPOSITE ELEMENT
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LOADING
CURVE

YIELD
CURVE

Fig.45 KINEMATIC HARDENING

LOADING
CURVE 2

Fig. 47 HARDENING RULE AND FLOW

(P) .
dajj PRAGERS KINEMATIC HARDENING

dajj’ ZIEGLER'S MODIFICATION
o LOADING

Fig.46 COMPARISON OF PRAGER'S
RULE WITH ZIEGLER'S MODIFICATION

LOADING
CURVE

Fig.48 ISOTROPIC HARDENING

LAW FOR WORK-HARDENING MATERIAL

USING ZIEGLER'S MODIFICATION
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Fig.49 TYPICAL CYCLIC STRESS- Fig.50 REPRESENTATION OF TYPICAL
STRAIN CURVE CYCLIC STRESS-STRAIN CURVE
BY CONSTANT TANGENT MODULI .
% %2 '
4=
~ o -~ ~
/ c N\
[} ] O'
192 Jiolf\fa
0] __V ]
E
\ \ F
| ~ _¢ 7
{a) {b)

Fig.51 REPRESENTATION OF HYPERSURFACES OF
CONSTANT WORKHARDENING MODULIL,
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