
(NASA-C2-120182) SUMC/MFOS/HAL INTERFACE W74-20839
SIUDY Final Report (Intermetrics, Inc.)
86 p HC $7.50 CSCL 09B

Unclas
G3/08 16079

11TERmETRIES

https://ntrs.nasa.gov/search.jsp?R=19740012726 2020-03-23T11:22:41+00:00Z

Final Report

SUMC/i4POS/HAL

Interface Study

December 1973

Prepared by:

Joseph A. Saponaro
Alex L. Kosmala

Prepared for:

George C. Marshall Space Flight Center
Huntsville, Alabama 35812 under contract:
NAS 8-29607

by:

Intermetrics, Inc.
701 Concord Ave.
Cambridge, Mass. 02138

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

Foreword

This document is the final report of a study to
analyse the feasibility of providing a HAL capability
on the NASA/MSFC SUMC multiprocessor operating under the

proposed MPOS. The study was sponsored by the NASA
Marshall Space Flight Center, Huntsville, Alabama, under

contract NAS 8-29607 entitled, Research Study on
Memory Hierarchy. It was performed by Intermetrics, Inc.,
Cambridge, Mass., under the direction of Alex L. Kosmala.
Technical monitors for MSFC were Mr. Bobby Hodges and Mr.
Jim L. Lewis.

Publication of this report does not constitute approval
by NASA of the findings or conclusions contained therein.

INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Table of Contents

Page

1.0 INTRODUCTION 1

1.1 Scope and Objectives 1

1.2 Assumptions and Groundrules 2

2.0 SUMMARY OF MAJOR POINTS 3

2.1 HAL/S-360 Real Time Implementation Summary 3
2.2 Evaluation of HAL/S-360 Mechanization and

OS-360 Interactions 5
2.3 HAL/S Interaction and Implementation on

SUMC 7
2.4 HAL/S Interfacing with MPOS 8

3.0 DESIGN APPROACH FOR HAL/S RUN TIME ENVIRONMENT
ON THE 360 11

3.1 Background/Rationale 11
3.2 Design Approach 12

4.0 BASIC CONCEPTS AND FUNDAMENTALS FOR HAL/S
REAL TIME 15

4.1 HAL/S Compilable Units 15
4.2 HAL/S Dynamic Units (e.g., a Process) 15
4.3 HAL/S Process Management & Control 16
4.4 Process State Transition 17
4.5 HAL Process Management Queues & Data

Structures 19

4.5.1 The Process Control Block (PCB) 19
4.5.2 Queues 23

4.6 HAL/S Memory Organization 25

4.6.1 HAL/S Organization of Program
Data Memory Block 27

4.6.2 STATIC & AUTOMATIC 29

.4.7 Process Swapping & Breakpoint Concept 29

4.7.1 Breakpoints 31
4.7.2 Summary 32

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Page

5.0 MECHANIZATION AND STRUCTURE OF HAL/S-360
REAL TIME 33

5.1 HAL/S Start Routine 35
5.2 HAL/S-360 Process Manager 36

5.2.1 The Process Selector (Dispatcher) 36
5.2.2 Process Initiator 37

5.3 HAL/S Statement Processor 40

6.0 FUNCTIONAL DESCRIPTION OF HAL/S-360 REAL
TIME STATEMENT SERVICE ROUTINES 43

6.1 The Process Scheduler 43
6.2 CANCEL Process Service Routine 47
6.3 TERMINATE 47

6.3.1 Terminate Subroutine 47

6.4 Event Handling 51

6.4.1 Event Expression Enqueue Routine 54
6.4.2 Event Expression Evaluator 56
6.4.3 Event Processor 59

6.5 Timer Management 59

6.5.1 Timer Enqueue 61
6.5.2 Timer Interrupt Routine 63

6.6 Detailed Interfaces for HAL/S-360 65

7.0 HAL/S-360 INPUT/OUTPUT 69

7.1 360/I/O Mechanizations 69

8.0 HAL/S-360 ERROR CONTROL 73

9.0 HAL/S-360 AND OS-360 INTERFACES 75

9.1 Sequential I/O - READ, WRITE 75

9.2 Error Control, diagnostic capabilities 75
9.3 Miscellaneous 76

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Page

10.0 SUMMARY AND CONCLUSIONS 77

10.1 Summary of Current HAL/S-360 Interface 77

10.2 HAL/S-MPOS Interface Implementation
Options 78

10.2.1 Minimal Modifications Approach 78
10.2.2 Major Re-Design Approach 79

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

1.0 INTRODUCTION

This report describes the implementation of the HAL/S

language on the IBM-360, and in particular the mechanization

of its real time, I/O, and error control statements within

the OS-360 environment.

1.1 Scope and Objectives

This material is the result of an evaluation of the

HAL/S Language/SUMC Computer Operating System (MPOS) interface

under contract NAS-8-29607 for Marshall Space Flight Center.

In accordance with the scope of this effort the objectives are

twofold:

a) TASK 1 - An analysis and general description
of HAL/S real time, I/O, and error control

statements and the structure required to

mechanize these statements. The emphasis is on

describing the logical functions performed upon
execution of each HAL statement rather than

defining whether it is accomplished by the

compiler or operating system.

b) TASK 2 - (a) An identification of the OS-360

facilities required during execution of HAL/S
code as implemented for the current HAL/S-360

compiler.

(b) An evaluation of the aspects
involved with interfacing HAL/S with the SUMC

operating system utilizing either the HAL/S-
360 compiler or by designing a new HAL/S-SUMC

compiler.

1

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

1.2 Assumptions and Groundrules

Although HAL has been implemented on the 360 via a
FORTRAN translation, the information presented in this memo
is based on: (a) the Shuttle version of HAL, termed HAL/S
language defined in "HAL Language Specification", Intermetrics,
Inc., 15 April 1973. It has been modified and accepted by
NASA/JSC for the Space Shuttle; and (b) the corresponding
HAL/S-360 compiler implementation as defined by "HAL/S-360
Compiler System Functional Specification", Intermetrics, Inc.,
13 July 1973. This document specifies a HAL/S-360 BAL code
generator which compiles and executes on the 360; (c) Intermetrics
is involved in an effort for Rockwell International Corp. to
define the architecture of the Space Shuttle Flight Computer
Operating System. This effort includes analyzing interface
requirements between Shuttle Flight Operating System (FCOS) and
HAL/S.compiled code. A preliminary FCOS Requirements and
Architecture document dated 19 July 1973 by Intermetrics is
relevant to the MSFC effort and has been utilized in this
report.

It is important to note the status of this HAL/S-360
compiler relative to the description presented herein. The
preliminary version of the compiler, which was delivered to

NASA/JSC on 1 August 1973, does not contain all HAL/S
features. An updated version, containing real time and error
control statements and other capabilities is scheduled for
delivery on 1 October 1973. Accordingly, some aspects of the
HAL/S implementation are still undergoing modifications.
In addition, some aspects of the implementation are tailored
for Shuttle software development, such as the expected flight
processing environment and operating system characteristics.
As a result, aspects of the detailed design and mechanization are
not presented completely at this time. For example, the
detailed mechanization of data sharing, process swapping, file
I/O, are not finalized. This report does, however, attempt to
present the current understanding and design intentions.

2

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

2.0 SUMMARY OF MAJOR POINTS

The emphasis of the MSFC effort is to focus on aspects
and problems relative to HAL interaction with a target

computer operating system and specifically MPOS. The

following paragraphs summarize major points and highlight

aspects which should be pertinent to the MSFC effort.
These

are: 1) HAL/S-360 real time implementation, 2) HAL/S
interfaces with OS-360, and 3) Implications of HAL/S to
interfaces with the SUMC/MPOS. Detailed information on these

topics is presented in this report.

2.1 HAL/S- 360 Real Time Implementation Summary

(a) The HAL/S-360 compiler is currently implemented
as a "self-contained" system which executes as
a single task/job step under OS-360. A load
module is created by a "HAL Link Step" using the
360 linkage editor. The load module contains all
HAL/S compiled programs/tasks, external procedures,
and compool blocks which are pertinent to the run,
together with a collection of run time routines.
This load module or HAL/S system is then loaded
and executed under OS as a single task.

(b) All HAL/S process management functions, that is
control over the scheduling and dispatching of HAL/S
program and task blocks, are implemented through
HAL run time routines. The HAL/S real time
control statements (i.e., SCHEDULE, TERMINATE,
WAIT, CANCEL, SIGNAL) are interfaced from the
compiler directly to HAL/S run time routines and
not to OS-360. The HAL/S run time routines utilize
internally defined process queues. The process
states and state transitions are controlled by
HAL/S compiler run time routines. The compiler
generates "branch and link" commands to the
appropriate HAL/S routine to implement execution
of its real time statements. All HAL/S event
tables, event queues and the processing of event
expressions are performed by HAL/S run time routines.
There is no interaction with OS-360 for servicing
event variables.

A timer queue and HAL/S process interaction with
timed events is controlled by HAL/S run time
routines. The logical implementation of these
routines is presented in Sections 4, 5, and 6 of this

report.

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

(c) OS-360 control and OS task interaction is
limited to supervision of the HAL/S system
load module. It is unaware of the existence
of multiplicity of HAL/S processes and queues.

In summary, HAL/S interacts with OS-360 only
at the ."HAL/S load module level" or system
level as a single OS task and not at the
statement level or HAL program/task block
level (i.e., a HAL process).

(d) The HAL/S-360 implementation does not execute
in "real-time" on the 360. HAL/S pseudo time
is maintained in "machine units" by HAL/S
run' time routines. Internal pseudo clock
registers are updated in machine units which
are decremented by a "clock tick" HAL run time
routine after the execution of each HAL/S
statement. The intended objective is to model
the estimated execution time of each HAL state-
ment for a specific Shuttle flight computer
on the 360,and to maintain this simulated clock
as HAL statements are executed on the 360. This
should aid in the testing of flight software
by direct execution on the 360 without requir-
ing simulation. Preliminary versions of the
statement execution time model will utilize HAL/S
statement 360 execution time. The HAL/S-360 system
does not utilize the real time OS-360 clocks.

(e) In HAL/S-360, the compiler inserts "hooks" between
the code generated for each HAL/S statement to
enable recording of variables, implementation of
diagnostics, clock updating, process control,
and other functions. These HAL/S-360 hooks will
ultimately be interfaced to the NASA/JSC/SDL
simulation facility to enable Shuttle avionics
environment updates and diagnostics.

(f) The HAL/S-360 memory management is controlled
primarily by the compiler for an individual
program, and by the link function for all programs.
Each HAL/S compiled unit consists of a "code
block" and "data block". The data block contains
both a static part used for the storage require-
ments of all code block declared variables and a
dynamic portion used by the compiler for linkage

4
INTERMETRICS INCORPORATED • 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

and other temporary storage. The compiler and
"linker" determine the total size of memory required
for each compilable unit and system. On the
current 360 system, memory requirements for the
entire load module are determined by the linkage
editor. At execution of the load module the
user specifies to OS-360 a region size that is
sufficient for both the load module and OS
requirements for I/O. The design of a memory
management scheme is, of course, a function of
the target computer, its operating environment,
etc., and not a function of the language. It
is therefore determined as part of the target
computer comp.iler design. It is not currently
designed for a virtual memory environmentsuch as has been
contemplated for SUMC. However, it does not utilize
overlays or other memory conservation techniques,
hence it may be relatively simple to adapt to a
paging system.

(g) The host operating system under which HAL/S-360
runs is OS-360 MVT release 21.6. It currently
interfaces with the following limited set of
OS-360 functions, which are primarily used for I/O
(Sequential and File), controlling HAL/S error
handling and performing diagnostics: FIND, OPEN, CLOSE,
DCB, GETMAIN, DEVTYPE, GET, PUT, READ, WRITE, SPIE, STAE,
SYNADAF, SYNADRLS, ABEND, TIME. See Section 9 of this report.

2.2 Evaluation of HAL/S-360 Mechanization and OS-360 Interactions

After evaluating the difficulties of implementing the
HAL/S language real time statements with a more direct inter-
action with OS-360, it was considered more expedient and
practical to implement HAL with minimum interface to OS-360.
This approach was taken particularly because of the intended
use of HAL/S on the 360 as a Shuttle test-bed functional
simulation facility. The HAL/S 360 compiler implementation
for the flight computer will necessitate a more direct inter-
face between compiler and flight computer operating system to
enable direct implementation of HAL real time and multi-
tasking features. A preliminary definition of these inter-
faces is provided in the "Requirements and Architecture" document
referenced in Section 1.2

5
ITeRMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Although it is possible to utilize OS-360 macros to
implement statements, several difficulties would be encountered
in attempting to match HAL/S language requirements with OS-360

capabilities. They are briefly discussed below.

(1) Under OS, you must be in a priveleged C(Systeml
mode to attach an independent task. In the
standard user mode only dependent tasks may
be attached. In HAL/S both dependent and
independent processes are scheduled. An
OS-360 user-mode-only implementation
would necessitate a "work around" technique
to implement HAL.

(2) The DETACH facility of OS is not exactly
compatible with the HAL TERMINATE statement requirements.

(3) The full implementation of HAL schedule
statement options (i.e., time, event, cyclic,
etc.) would necessitate work around techniques
utilizing "outer loop" OS tasks and/or
events to monitor for conditions,and to initiate
HAL processes in accordance with schedule state-
ment options.

(4) The scope of HAL events is not compatible with
OS events. In OS only one task can wait for an
event. Not so in HAL - multiple tasks can wait
for the occurrence of an event or event expression.

(5) OS events correspond only to HAL/S "latched" events,
and do not include HAL/S unlatched events.

(6) OS does not allow for direct processing of an
event expression with all the options as specified
in HAL/S language. A work around would be necessary.

INTERMETRICS INCORPORATED * 701 CONCORD AVENJE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.3 HAL/S Interaction and Implementation on SUMC

Although a detailed review of the SUMC Multi-Processing
Operating System (MPOS) was not completed, several observations
are made at this time relative to HAL/S implementation in
SUMC and interaction with MPOS:

(1) The preliminary MPOS functional design document
supplied to Intermetrics is not in sufficient
detail for analysis and evaluation of HAL/S-360
and MPOS interfacing requirements as per items
2B and 2C of Intermetrics letter of 9 July 1973
to MSFC. However, it does not appear as though
it were.meant for this purpose and subsequent
MPOS design documents may contain sufficient
detail for successful completion of these items.

(2) The HAL/S-360 compiler as delivered to NASA/JSC
can be implemented with similar capability
in the SUMC/MPOS with relatively minimum modifica-
tions. Assuming that SUMC executes 360 compatible
code and that MPOS contains those OS routines
which the HAL/S system uses as specified in Sect. 9,
it should be almost directly compatible. The
HAL/S capability, however, would be similar to the
MSC version, namely:

(a) HAL/S operates as a separate self-contained system

(b) It will function in the same machine with other
PL/1 or FORTRAN jobs

(c) It does not operate in real time

(d) It contains no multi-processing or MPOS multi-
programming features

(e) It contains no specific virtual memory utilization features

This would appear to be the easiest, most cost
effective route to obtaining HAL/S for the SUMC
computer.

7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

(3) Depending on the modifications to HAL/S-360, the
intended use of HAL by MSFC, and the dollars
available, several modifications could be made
to remove some or all of these restrictions.

(a) Through relatively simple modifications
HAL/S-360 could be made to execute in
near real time. Since HAL/S-360 timer
management is centralized, it could be
stimulated by the actual SUMC computer
clock(s) and timers.

(b) The implementation of HAL/S-360 in the
SUMC virtual memory may be relatively
simple, depending on the paging technique
and memory management system utilized.
The structure of HAL/S-360 code/data
blocks are contiguous blocks, not over-
layed or shared for efficient memory use.
The appropriate "hooks" for the SUMC
virtual memory system should be fairly
straightforward. It requires further
analysis of SUMC to evaluate the cost
of this feature.

(c) To implement direct interfaces to MPOS
for HAL real time statements and process
management would probably most effectively
be implemented by a new compiler (HAL/S-
SUMC). Significant changes appear to be
necessary to the HAL/S-360 compiler/system
to accomplish this task as discussed below.

2.4 HAL/S Interfacing with MPOS

It is possible to utilize some of the defined MPOS
functions directly for implementing HAL/S real time. However,
a thorough design analysis is necessary to determine all
"mapping functions" for HAL/S compiler code generation for each
HAL/S real time statement and the appropriate restrictions
either in MPOS or in HAL/S.

There are several ways to approach this effort,all of
which will depend on the intended use of HAL/S on SUMC; (i.e.,
flight software/development/interactive, etc.), the status of
MPOS relative to the compiler, and the cost. One approach is

8
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

a new compiler design which would assume that MPOS functions
and features are fixed and that HAL/S be implemented in this

framework. The appropriate tradeoff in the complexity required

to achieve HAL/S requirements within MPOS versus its cost and
need should be made. HAL/S capabilities could be limited where

appropriate to MSFC functions. It is fundamentally in the

HAL real time and other areas where any problem would exist.

This approach could be as costly as any new compiler - and

could be a patch-work of code caused by the work around
techniques required to implement HAL/S. Of concern specifically,
is that HAL/S program and task blocks are required to co-

exist in the SUMC environment with PL/l and FORTRAN jobs as
individual processes and not as a HAL/S system.

One wonders if the processing requirements imposed by
all these languages can be simultaneously satisfied by a
universal operating system both efficiently and correctly.
If the particular SUMC system selected for HAL/S were flight
oriented and contained all HAL/S programs, it would be more
likely accomplished.

A second approach is to design.a HAL/S-SUMC compiler
assuming the MPOS is not fixed. Accordingly, the design
effort would entail negotiation of HAL/S interfaces to the new

compiler in order to maximize efficient execution and minimize

contractor interference during operating system and compiler
development. Such an effort will occur in the development
of the HAL/S-Flight Computer code generation. It presumably
will result in a well designed "matched" interface.

Another possible alternative is to presume that both

HAL/S-360 and MPOS are fixed but to modify and re-build some

of the compiler, particularly the supplied run time package.
It could perhaps be done in a language like PL/l,attempting
to maximize and exploit those PL/l/MPOS interfaces which would

need to be resolved anyway. A more detailed analysis is

required to examine the mapping of HAL/S constructs for

processes and process management into the PL/l constructs
for

the SUMC version of PL/l. Additionally, the HAL/S-360 compiled
BAL code would need to be sub-structured such that it could

be interfaced with these PL/l drivers. This is a very preliminary

suggestion but may be worth further investigation.

9

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3.0 DESIGN APPROACH FOR HAL/S RUN TIME ENVIRONMENT ON THE 360

3.1 Background/Rationale

The HAL/S language is designed with a collection of problem

oriented, machine independent, source language statements.

These statements are fed into a HAL/S compiler whose function

is to map the statements into machine instructions and output
"blocks" of code capable of being executed on a particular

"target computer system". Its source language contains real

time and multi-tasking control statements to facilitate aero/
manned space programming requirements. These real time state-

ments were designed and incorporated into the language syntax

specifically to express application programmer intent in a

machine/system independent way. The statements are primarily
defined for mechanization and use within a real time, flight

computer type environment with a similar type operating system,
and not a non-real time batch environment where the statements

are normally not required.

The initial HAL/S compiler has been specified for implementa-

tion on the IBM-360 - a large non-real time ground computation

facility. The HAL/S-360 code generator is expected to be used

as a software development/analysis tool and will execute Shuttle

flight software in the 360 environment primarily in a functional

simulation mode. A HAL/S flight computer code generator will

compile the "real" flight code which will be used to execute
in

actual flight hardware, and in an interpretive computer simulation

(ICS) mode on the 360.

Since the characteristics of the operating system and

the processing environment of both systems (Flight Computer/

360) are different, the compiler mechanization of the HAL

real time, I/O, and error control statements are different.

paB , GB B A N o F&NO

11

SINTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

However, in both cases the HAL/S real time compiler mechaniza-
tion generates code, interacts with the target machine opera-
ting system and implements the specified intent of each HAL
statement (i.e., SCHEDULE A in 10 causes program A to be
scheduled for execution in 10 machine units of time).

The flight computer is a HAL/S only, real time, constrained
software environment. The flight computer compiler mechaniza-
tion will necessitate more direct interaction with the flight
operating system to insure all HAL generated code meets real
time demands and operates within memory management and time
management schemes designed for the Shuttle Software system.
The HAL/S-360 System involves implementation within a multi-job/
language environment .and a general purpose non-real time
operating system. The result is that the 360 HAL compiler
mechanization has been designed to function as a "stand alone
system" which can co-exist with other jobs on the 360 and
interacts with the OS-360 minimally - only at the HAL system
level. It also contains diagnostics and tracing capabilities
which are useful in this environment but not required as part
of a flight computer code generator.

3.2 Design Approach

Accordingly, the design approach for the 360 HAL/S
compiler implementation of real time statements encompasses the
following:

(a) Run time subroutines are written in BAL and supplied
with the compiler, to implement each HAL/S real
time statement (i.e., SCHEDULE, CANCEL, WAIT, SET, RESET,
SIGNAL, etc.). These routines are specified in the
HAL/S-360 compiler specification, Sect. 6.8. These
routines in effect control all HAL process manage-
ment functions and interface directly with compiler
generated code for each statement.

(b) All process queues, services, and process swapping
control is maintained under the control of HAL/S
routines but not using OS-360 multiprogramming
facilities. The HAL/S system is viewed by OS as
a single task and provides services and controls to
it.

12

INTERMETRICS INCORPORATED -701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

(c) A simulated clock is maintained by a HAL/S time
handler routine which is entered at the completion
of each HAL statement. It decrements a timer by
the amount of machine units the statement consumes.

(d) Since a flight computer memory management scheme
is generally a static one, the HAL/S-360 implementa-
tion presumes code and data are available at
execution.

(e) HAL I/O statements are implemented using a limited
set of OS routines and 360 type peripherals/
channels.

(f) HAL error control statements ON & SEND are implemented
by HAL run time routines. OS-360 is utilized only to
trap some 360 error conditions. Process reactivation
or termination is accomplished via HAL run time software.

A general overview of the static organization of HAL/S on the
360 is illustrated in Figure 3-1. The HAL/S run time system
for the IBM 360 is operated as a single task under OS-360
control. HAL/S source statements are compiled, the separately
compilable units linked together into a single HAL/S system
load module and executed as a single job step task. HAL/S
"compilable units" are described in Section 4.

A "HAL/S system load module" is created by the linkage editor.
Memory requirements for the load module are determined by the
linkage editor as described in Section 4.1.

The HAL system load module consists of the code and data
blocks for each compilable unit as output by the HAL compiler,
together with a collection of HAL run time routines automatically
brought in by the linkage editor. These run time routines
consist of math routines, I/O routines, conversion routines,
built-in functions, and routines to implement the HAL real time
statements defined in Section 6 of the HAL compiler functional
specification. On the 360 this is termed the "HAL run time
executive" or "process manager". The functions and logic of
these HAL run time routines (i.e., process management) is
described in Sections 5 and 6 of this report.

13

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Figure 3-1

HAL SYSTEM ORGANIZATION FOR THE IBM 360

m
m

IBM 360 HARDWARE

c) OS-360
O.S. FUNCTIONSz

0 (SINGLE TASK INTERACTION)
o 0 HAL/S SYSTEM
- "HAL SYSTEM LOAD MODULE" LOAD MODULE
O

I EXECUTION CONTROL
> (NO MULTI-PROG)

m
HAL SYSTEM CONTROL * I/O SERVICES

* TRAP FIELDING
MATH

o FUNCTIONS
O
z
O VECTOR HAL FUNCTIONS
O COMPOOL(s) MATRIX

0 ALL HAL PROCESS
CONVERSION MANAGEMENT (i.e.,

TASKING)m
c I * HAL EVENTS/SERVICES
m CHARACTER

HAL * HAL TIME/SERVICES
PROCEDURES 0 HAL ERROR CONTROL

> REAL TIME
w O(COMSUBS) STATEMENTS * HAL I/O

x ROUTINES

I QUEUES &
. EVENTS

C 0 I/OROUTINES
U)

I

0

cn HAL HAL HAL
o PROGRAM PROGRAM PROGRAM

#1 #2

o

4.0 BASIC CONCEPTS AND FUNDAM4ENTALS FOR HAL/S REAL TIME

Prior to describing the logical functions performed to
implement HAL real time statements, it is necessary to define
basic terms and concepts pertinent to HAL/S. The following
topics are presented in this section: HAL/S Compilable Units,
HAL/S Dynamic Units (i.e., processes), Process State

Transitions, Process Control, HAL/S Memory Organization and
HAL/S Data Structures and Queues.

4.1 HAL/S Compilable Units

There are three types of compilable units

defined in the HAL/S Language specification: (1) a program
block, (2) external HAL procedure block (COMSUB(s)), or (3) common
data COMPOOL block(s). Each of these is a collection of

HAL/S source language statements which can be compiled
separately to facilitate multiple programmer groups working on the
development of a common system. In order to run, all the HAL/S

compilable units which are scheduled or called and/or are
pertinent to the collection of programs in the system must be
linked together. The object code for each compilable unit is
linked, and made ready for execution.

4.2 HAL/S Dynamic Units (e.g., a Process)

The term process is used to describe a dynamic entity,
or unit of work, to the flight computer operating system. There
is a relationship between the static block structure of HAL/S
and its dynamic role in that only TASK and PROGRAM code blocks
may be processes. A procedure block can not be a process.

A Process Control Block (PCB) defines a process (see Sect. 4.5).
A process is associated with a block of executable instructions,
its name, and an assigned work area for its data. A program or
task becomes a process when it is SCHEDULED and is no longer a
process when it completes execution. Process completion occurs
when it is TERMINATED, when it executes a CLOSE or RETURN statement
with all dependent processes completed, or when the end conditions
of a cyclic SCHEDULE statement or CANCEL statement are satisfied.

15

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

A process must be in one and
only one of three states:

Running, Ready, or Waiting.

a) Running - The process is allocated
the CPU and is

being executed.

b) Ready - The process is ready to run and only

requires the CPU. A process must enter

the ready state prior to running.

c) Waiting - The process is awaiting a
condition.

These conditions include:

1) a time to occur

2) an event(s) or event expression
to

occur

3) the completion of all dependent
processes

d) A program or task block
which is not a process

can be

considered as code in an "INACTIVE
state".

HAL provides all services for state
transition implicitly with

the execution of specified HAL/S real
time statements.

4.3 HAL/S Process Management & Control

Processingq is controlled by the HAL/S Process
Manager.

It controls the execution of all processes
in the

process queues by giving control to processes which are ready

for execution on the basis of priority. The highest priority

ready process is given control.

Processes are scheduled for
execution by other processes.

They are inserted into the process queues
by the execution of

a HAL/S SCHEDULE statement. Processes may be scheduled for

execution by several options:

16

NTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184(

a) Scheduled at a particular time

b) Scheduled at a particular event or combination
of events

c) Scheduled immediately*

The scheduler may also be requested through the options
of the HAL/S SCHEDULE statement to continue execution of a
process on a time iterative or cyclic basis and/or until a
particular event or time condition is met.

A process is allocated the CPU on the basis of priority
and remains running until: a) it is completed; b) it
voluntarily releases the CPU by entering a wait state; or c)
it reaches a breakpoint and a higher priority process is ready
to execute.

A breakpoint is a point during execution of a process
which is determined to be "convenient" to allow the process
to be "swapped" if a higher priority process exists in the
queues and is ready to run. It is inserted frequently enough
in longer duration processes to allow acceptable timing
response for other high priority processes demands.

The breakpoint concept and the methods of implementation
are discussed in Section 4.7.

4.4 Process State Transition

A simplified version of the transition of process states
and their conditions is illustrated in Figure 4-1. Processes
are scheduled into either the wait or ready state depending
on the conditions supplied in the statement. A waiting process
is placed into the ready state only after the condition it was
waiting for occurs. Once a process is in the ready state it
is allocated the CPU on the basis of priority by a "process
selector" function. The selector is entered at the end of a
process, at a breakpoint (if a higher priority process exists)
or if a process voluntarily removes itself from the running
state via a WAIT statement. On a Simplex CPU system, only one
process can be in the running state, and it remains running until
it ends,or issues a WAIT,or a higher priority ready process
exists as determined at its next breakpoint.

17

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Fig. 4-1

Simplified Process State Transition

WAITING

wait I
condition

CREATE PROCESS CONTROLcondition Occurs
BLOCK (PCB) AT
SCHEDULE REQUEST

REMOVE PCB FROM
READY QUEUE AT END OF

SPROCESS
o

RN z

UE4 0

RUNNING

Strictly speaking, a running process does not have the
CPU dedicated to itself at all times. The CPU is automatically
allocated to service all interrupts and traps which occur
during a running process.

A process may be completed and its PCB removed from
the queue from any of these states.

4.5 HAL Process Management Queues & Data Structures

This section presents a discussion of the fundamental
queues and tables used by the HAL/S run time routines to
implement real time statements. These are:

a) Process Control Block

b) Process Priority Queue

c) Time Queue

d) Event Queue

4.5.1 The Process Control Block (PCB)

A PCB is an element in the process priority queue. It
is associated with a single process. It is inserted into the
queue when a process enters an active state (i.e., when it is
scheduled) and is removed from the queue when the process
is terminated.

Each PCB will be fixed in size but the number of PCB's
varies. The recommended approach to PCB allocation is to
create and initialize the PCB from a fixed region reserved
for this purpose.

The information required in a PCB is illustrated in
Figure 4-2 and described functionally below.

19

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Fig. 4-2

Process Control Block (PCB) Information

PRIORITY QUEUE LINKAGE

PRIORITY

PROCESS STATE INFORMATION

TASK/PROGRAM FLAG

ENTRY ADDRESS

PROCESS DEPENDENCY LINKAGE
(FATHER, SON, BROTHER)

CYCLIC CONTROLS

SAVE AREA

EVENT QUEUE COUNT

TIME QUEUE COUNT

20

a) Priority Queue Linkage

This field contains a pointer to the next PCB
in the priority queue.

b) Priority

Process priority assigned in SCHEDULE statement.

c) Process State Information

This field contains the following information:

* READY/WAIT - Is process ready for execution?

eWAIT ON DEPENDENT PROCESS - Is process
waiting for dependents?

* INTER-CYCLE WAIT - Is process cyclic and
between cycles?

e INITIATED - Has process begun execution (at
least once if cyclic)?

* CANCELLED - Is process to be terminated at
the end of its current cycle (if cyclic),
i.e., has a CANCEL statement been issued
for this process?

d) Task/Program

Is process a task or a program?

e) Entry Address

Pointer to the program entry for this process.

f) Process Dependency Linkage

This field contains:

oPointer to PCB of father process (a null
pointer indicates an independent program
process).

21

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

* Pointer to PCB of one son process (a null
pointer indicates a process with no dependent
processes).

SPointer to next PCB in a chain of "brother"
PCB's.

g) Cyclic Controls

This field contains:

" CYCLIC - A flag indicating whether or not the
process is cyclic.

*TYPE - This indicates whether the cyclic
type is REPEAT AFTER, REPEAT EVERY, or
immediate (from SCHEDULE statement).

*VALUE - A scalar indicating inter-cycle
wait time if TYPE is AFTER or complete
cycle time if TYPE is EVERY.

h) Save Area

This field is for saving key register(s) for
the process. Its contents depend on the
breakpoint implementation, the machine selection,
and compiler conventions. However, its intent
is to allow the re-establishment of the process'
addressing and machine environment when control
returns to the process after a process swap.

i) Event Queue Count

This integer indicates how many Event Queue
elements refer to this PCB.

j) Time Queue Count

This integer indicates how many Time Queue
elements refer to this PCB.

22
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

4.5.2 Queues

A queue is a threaded list or chain of elements. The
concept involves each element pointing to another element in
accordance with some rule (such as next lower priority) with
the head of the chain pointed to by an anchor for the queue.
An entry is inserted into a queue by searching the queue from
the anchor until the element is found which satisfies some
condition at which time pointers are exchanged. It is a
simple and efficient data structure which is used in most
operating systems. Several different queues are required in

the Shuttle FCOS for handling processes, events, time, and
I/O.

4.5.2.1 Process Priority Queues. Each element in this queue
is a PCB which is active (i.e., in either a ready or wait
state). PCB's are chained together in this queue by means of

the priority queue linkage field of the PCB. Process

priorities could be divided into a small number of major

priority groups (say, 4), with each group containing a number

of sub-priority levels. The Process Priority Queue is actually
a collection of four distinct queues, or one for each priority

group. The PCB's are ordered within each queue first by sub-

priority level, and then within each level on a first come

first served basis. The anchor of a given queue points to the

first PCB in the queue. This is the PCB for the process which

(a) is assigned to the priority group represented by this queue,

(b) has a sub-priority level at least as high as every other

process in the queue, and (c) was scheduled before any other

process in the queue having the same sub-priority level. These

queues are illustrated in Figure 4-3. In the HAL/S-360 only
a single priority queue is used.

23

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Fig. 4-3

PROCESS PRIORITY QUEUE

?riority Priority Group Linked Process Control Blocks

3roup Anchor

Aigh

_

PCB PCB - PCB

0

PCB PCB

PCB PCB PCB

Low

0 signifies a null pointer

24

4.5.2.2 Time Queue. Each element in the Time Queue is
associated with a single process and represents a desired timer
interrupt. A Time Queue element is inserted into the queue by
the FCOS Timer Enqueue Routine upon execution of a SCHEDULE
statement (AT, IN, or UNTIL options) or a WAIT statement (no
option on UNTIL option). The Timer Enqueue Routine is also
called by the Process Initiator just before initiating a process
(REPEAT EVERY) or at the end of a cycle (REPEAT AFTER). The
Time Queue is ordered by absolute time of expiration, with the
anchor pointing to the queue element representing the next timer
interrupt. The Time Queue is illustrated in Figure 4-4 and
consists of the following elements:

Pointer to next ordered Time Queue element

Absolute time of desired interrupt

Pointer to the PCB affected by the interrupt

Type of queue element (this determines what action
should be taken upon occurrence of this interrupt)

When the timer interrupt occurs, the process awaiting the top
queue element (pointed to by the anchor) is made ready. The
top queue element is removed from the queue, and the
(programmable) timer is set to the time left until the time
indicated by the next queue element.

4.5.2.3 Event Queues. Events are declared HAL/S variables
which have boolean on/off states. These are both "pulsed" or
unlatched or non-pulsed latched events in HAL/S. Events are
stimulated by the use of a SIGNAL statement. Event queues
tables and expression evaluation are described in the process
services section of this report.

4.6 HAL/S Memory Organization

In order to understand the memory scheme proposed, the
concept of organizing a program into a code block and a data
block is introduced. HAL/S programs generated by the compiler
will be organized into a code block which consists of closed
sets of sequential machine instructions, and a data block
consisting of a continuous block of memory which contains all
program declared data variables and temporary work areas
required by the compiled routine.

25

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Fig. 4-4

TIME QUEUE

LINK TO NEXT
TIME QUEUE TIME QUEUE

ANCHOR LEMENT PCB 1
ABSOLUTE VALUE
OF TIME Tl

PTR TO
PCB

DESIRED ACTION

NULL

T2 . PCB 2

PTR TO
PCB

DESIRED ACTION

NOTE: T1 < T2

26

The code block will be generated in a form which is
capable of being executed in any part of the memory,assuming
appropriate base registers and pointers are preset at entry.
It shall require no internal modification to the code block.
Also, the code block is constructed such that its data block
may be located anywhere in the operating memory. The code
produced can be "bound" to its data block by initializing
several base registers and pointers to identify the beginning
location of the program work area and beginning of its
temporary area. The binding of code and data block does not
require internal alteration of the code block.

4.6.1 HAL/S Organization of Program Data Memory Block

The allocation and management of a HAL/S program's
data block area is primarily a compiler function. The
compiler determines part of the size of the data block at
compile time. A data block contains all internally declared
data including data for all tasks and procedure blocks
contained in the program. The block also contains a section
dynamically controlled by compiler for procedure linkage,
parameter passage and compiler temporaries which operate as a
stack during program execution. Since a program and all its
task blocks are processes, capable of being scheduled, the
data block is structured with a static and dynamic area for
each process as illustrated in Figure 4-5.

Given this structure of a contiguous data block for
each HAL program, it is theoretically only necessary to set
a single data pointer to the start of the contiguous data
block area for either the initiation of a program or one of
its tasks. On the 360, if the data block exceeds 4K more
than 1 pointer is required. Also, ideally, the size of the
program's data block is determined such that it includes all
memory requirements for execution of the program and its tasks.
Once a data block is assigned to a program it does not need
more memory at any time during execution.

On the 360, however, the size of the dynamic "stack"
area for a HAL/S compilable units data block cannot be
determined until after all external reference to procedures
are resolved during the link phase. Memory requirements must

27

INTERMETRICSJINCORPORATED .701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

LOGICAL CONSTITUENCY OF

HAL PROGRAM DATA

Fig. 4-5

PROGRAM:DECLARED DATA

DECLARED DATA

TASK: DECLARED 'DATA

PROGRAM "DYNAMIC" PROGRAM: linkage, formal parameters,

AREA compiler temporaries,
reentrant data declarations

TASK 1: linkage, formal parameters,
compiler temporaries,
reentrant data declarations

TASK i
"DYNAMIC" DATA

TASK N: linkage, formal pa--ameters
compiler temporaries,
reentrant data declarations

28

be added into the stack for those procedures or routines
invoked during execution of the program and the requirements
are not known at compilation time. As a result, a "HAL/S
link job step" is operated as part of generation of the
HAL/S load module. This HAL/S link job step calls the 360
link function, performs a tree search of all calls to routines,
looks for error conditions such as recursive calls, etc.,
and determines the stack size for each program or task block
in the load module.

In summary, the memory requirements for each HAL
program (& COMSUB) in the HAL system load module is determined
prior to execution.

4.6.2 STATIC & AUTOMATIC

The use of the STATIC and AUTOMATIC attributes in a

HAL/S data declaration are described in the Language Specifica-
tion. AUTOMATIC variables are re-initialized at entry to
the block, in which they are declared, STATIC are not. This
applies to variables declared at the program, task and procedure
block levels. Hence, the handling of STATIC and AUTOMATIC
program and task blocks in a load module, which .are also the
HAL/S processes in the load module, are similar. This means that
a program which becomes a process, completes execution (i.e.,
returns to an inactive state) and is subsequently rescheduled,

gets assigned the same static storage area. Its.automatic
storage is, however, reinitialized.

The use of the HAL/S INITIAL attribute corresponds
to these rules on the 360. AUTOMATIC variables are initialized
with code at each entry to the block, whereas STATIC are not.

4.7 Process Swapping & Breakpoint Concept

The exchange of control between processes (i.e., alloca-
tion of the CPU), termed a "swap" can involve overhead. The

question of when to swap is related to the arrival of a "higher"
priority" process generally resulting from an interrupt.

The interruption of a running program in response to an
external signal was introduced into computer technology to serve
two purposes:

29
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

a) to provide rapid response to asynchronous
events; and

b) to eliminate the necessity of polling (and its
overhead) to discover whether an awaiting event
has occurred.

In single-processor systems, particularly aerospace real-
time systems where most or all of the computation is devoted
to a single functional application with interrelated processes,
the introduction of interrupt-mode computation can raise some
standard multiprogramming problems, (i.e., re-entrancy and
data sharing conflicts). Thus, methods for masking or
inhibiting interrupts were added, and the nature of the functions
allowed in the interrupt-mode were restricted.

The negative aspects of interrupts, i.e., timing response
uncertainties and potential data/program conflicts can be
minimized by causing interrupts to schedule processing
whenever possible, as opposed to performing it. This provision
reduces the multiplicity of possible timing situations,
since process swapping can be made to occur only at specified
intervals (i.e., breakpoints).

Accordingly it is considered desirable to utilize hardware
interrupts. The primary consideration becomes when to swap
a higher priority process resulting from an interrupt, such that
response time requirements can be satisfied and conflicts
avoided.

It is assumed that there will and should be timing require-
ments but with some tolerance. Because of this tolerance, it
is possible to control the points at which processes may be
swapped. As long as the swap point is within some definable
limit, it can then be placed appropriately in order to minimize
the overhead involved in swapping process control. The over-
head saved includes for example: protection from conflict of
resources (e.g., memory locks, exclusive procedures), and saving
and restoration of resources (e.g., register sets, fast memory).

The effect is that the compiled code can then make full
use of a flight computer's resources without having to guard
against a potential process swap (except possibly the foreground).
The implementation of this compiler controlled feature would
be accomplished by a means of compiler "insertion" of a break-
point at the appropriate swap points within the process. The

30

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-184

breakpoint logic would test to see if there is the need of a
process swap. This code is itself overhead. However, this
overhead is but a small percentage of the process execution
time and memory space as compared with the overhead involved
with the implementation of controlled protection features.

4.7.1 Breakpoints

There are several considerations and issues concerning
the implementation of breakpoints as a means of controlling
process swapping. Some of these are:

a) Why are breakpoints used?

b) How are breakpoints mechanized?

1) in line test in software
2) call
3) via hardware or hardware support

c) Where are breakpoints inserted?

1) time intervals
2) statement levels

d) How is breakpoint implementation overhead
minimized?

The major recommendations for the flight computer implementation
of HAL are as follows.

a) Processes swapped at breakpoints inserted into the code
by the compiler.

b) Breakpoints shall be inserted at sufficient
frequency to satisfy response requirements,

c) The length of time between breakpoints shall be
constrained.

31
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

d) Implementation and mechanization techniques of
breakpoints is dependent on computer hardware
features and shall be determined during the
detailed design of compiler.

e) The compiler will implement all breakpoints. In
the HAL/S-360 a breakpoint will occur at each
statement.

f) The preference for mechanizing breakpoints is an in-
line test inserted by compiler to determine if
higher priority jobs exist.

9) Breakpoints are inserted by the compiler at
points in program code commensurate with an estimated
period of execution time.

h) Breakpoints shall not be inserted in update
blocks to prevent sharing conflicts.

i) Compiler inserted breakpoints shall be visible
in the listing.

4.7.2 Summary

In the 360 version of HAL, breakpoints will be implemented
at each HAL statement. That is, the HAL/S-360 run time routines
will look for a higher priority process ready for execution atthe end of execution of each statement, and if one exists a process
swap will occur. The breakpoint policy and implementation
scheme for the flight computer has not been determined as yet.

32

INTERMETRICS INCORPORATED .701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

5.0 MECHANIZATION AND STRUCTURE OF HAL/S-360 REAL TIME

The purpose of this section is to describe the overall
structure and control of the HAL/S-360 run time system.
Figure 5-1 illustrates the organization of the system.
There are basically four major sections:

1) A HAL/S Start Routine which gains control
from OS-360 and initializes the HAL/S run

2) A HAL/S Process Manager which performs the
selection (dispatching) and initiation of all
HAL/S processes in the process queues. It is
the central control element

3) A HAL/S statement processor which is invoked
after execution of each HAL/S statement. It
performs a series of functions at each statement
such as: updating simulated clocks, checks for
higher priority processes , determines when a
process swap is required and performs tracing and
diagnostics when required.

4) A set of HAL/S process management service
routines which are called by the process on the
execution of a SET, RESET, SCHEDULE, CANCEL
TERMINATE<ID>, SIGNAL event statements. The
logic and functions performed by these routines
are described in Section 6 of this report.

As an overview, a process is given control by the process
manager when it is the highest priority ready process. During
execution it calls the HAL/S statement processor after each
statement. It keeps track of time and diagnostic requests. A
process may schedule, cancel, or terminate other processes
during execution. This is done by the compiler inserting code
to call the appropriate HAL/S process service routine.

It is important to note that process service
routines such as the scheduler do not result in a process
swap. These routines set a "breakpoint switch" when the
action taken results in a higher priority ready process than
the process currently running. The breakpoint switch is
independently tested (currently by the statement processor
each statement).

33

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Fig. 5-1

OVERVIEW OF CONTROL AND DYNAMIC STRUCTURE

HAL/S-360 REAL TI4ME

OS/360

HAL START
ROUTINE

INITIL END OF
ACTIVTION RN

NO WORK CLOCK VIA

HAL/S PROCESS TIMER
MANAGER ROUTINE
(SELECTOR,INITIATOR)

PROCESS ENTERS

WAIT
WAIT

ul AT ENTRY TO AT LOSE/
NEXT PROCESS RET RN OF A

PRO ESS TERMINATE
STERMINATE

SET

H

HAL PROCESS
EXECUTE WAIT OR

0
TERMINATE

CTIVATE ON EXECUTION OF
STATEMENT

HAL/S REAL TIME
HAL/S STATEMENT ISERVICES
PROCESSO CSCLEDUiJE, CA;CEL,
(EXECUTED lC. L/ SIGAL, TEIATE<ID>
STATEMENT)

E VE NT S TEI E<ID>

TIMER
INTERRUPT STATEMENT TRACES TERMINA
ROUTINE TIME SCHEDULE SIGNAL TSKIDET

SECT.)R" ROUTINE ROUTINE ROUTINE

IF OVER
FLOW SD
TIMER

SET
BREAKPOINT NSET BREAXPOIN
FLAG SWITCH FOR

PROCESS SWAP

34

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

When a process executes a wait or terminate (self)
statement it results in a process swap and the appropriate
action is taken for updating the PCB entry.

A process continues to run until it either ends normally
or executes a CLOSEor RETURN statement. At this point,
the process manager selects the next ready process.

The process manager completes the run when all queues
are empty. If an abnormal error condition occurs, it causes
the run to be aborted.

These run time routines have been.implemented in BAL
on the 360 and are estimated at a total size of 3-4K bytes
of code.

5.1 HAL/S Start Routine

The HAL/S system load module is given control by the
operating system with an ATTACH macro (it may be also CALLed).
Once the "HAL load module" gets control from OS, the HAL
start routine performs various initialization functions. It
prints out a HAL/S header, and sets up run time parameters
input through JCL PARM field such as lines/page, channel #
for system messages, # of errors before abort, debugging
options etc. It also issues SPIE and STAE macros to trap
program interrupts and abnormal abort (ABEND) conditions.

The SPIE macro specifies an exit routine address which is
used in the HAL system to signal the appropriate HAL error
conditions for recoverable errors, performs fix up if
required and continues execution. The STAE macro is used to
specify an exit routine address which prints as much HAL
unique diagnostic information before OS-360 terminates the
run.

HAL start must initiate the run. It does this by
scheduling the "initial HAL process" to establish the
first entry in the queues. Although this function can be
expanded it currently schedules the first HAL program in
the load. HAL/S start then calls the Process Manager.

35

INTERMETRICS INCORPORATED -701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

5.2 HAL/S-360 Process Manager

The Process Manager is the function which controls the
state of execution of all processes in the priority queue.
It consists of a process selector which chooses a process
ready for execution, and a process initiator which controls
the starting, cycling, and normal end of process execution.
The scheduler and terminator which create and remove processes
from the system are part of the application process control
services and are described in Section 6.

5.2.1 The Process Selector (Dispatcher)

The process selector chooses a process, then gives it
control, so' that it may proceed with execution. The choice
is limited to those processes in the ready state. If there
are no ready processes, the system would normally (in a flight
computer environment) enter an idle state, and would remain
idle until a process is brought to a ready state - normally
through the occurrence of a time or event interrupt. In the
HAL/S-360, however, the system is advanced through this time
interval by decrementing the simulated clock to zero - forcing
an interrupt. This should cause a process to enter a ready
state and if not, the HAL/S-360 run is ended.

In general, there may be more than one ready process,
so the choice is based on priority; i.e., the relative
importance of the various ready processes. Any number of
schemes may be used to represent this ordering, but the most
effective and efficient way is the priority queue.

From the point of view of the Process Selector, only
ready processes need be part of the queue. In such a case
however, the enqueuing and dequeuing of PCB's would be
necessary every time a process changed state (which occurs
more frequently than process selection). On the other hand,
if all scheduled processes (running, ready, and waiting)
are on the queue, the priority queue need be altered only
when scheduling or terminating a process. This latter design
is the one chosen for the 360. The process selector must
skip over waiting processes in the queue to find the first
ready process, but this is still less time consuming than
altering the queue frequently.

36

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

After the selector picks a process, it either
uses the resume information (save area) in the PCB to
restart the process at its suspended or swapped point, or
it initiates the process at its beginning if it has not
yet executed.

Figure 5-2 indicates that the selector starts at
the top of the queue when looking for the first ready
process. If the selector was entered because a process
entered the wait state, search time is considerably reduced
if the selector first checks the breakpoint flag. If it is
not set, the search may start with the next process on the
queue instead of at the top. The breakpoint flag is set
whenever a process having a higher priority than the running
process is readied (i.e., whenever a process swap should
occur at the next breakpoint).

5.2.2 Process Initiator (Fig. 5-3)

The process initiator is a routine which gets control
from the process selector the first time a process starts
executing. The program or task which was scheduled as a
process is called as a subroutine of the process initiator.
When the program or task executes a RETURN or CLOSE at its
highest level, control comes back to the process initiator,
which performs the following functions:

1) Causes the process to wait until all
dependents have terminated

2) If the process is not cyclic or is a cancelled
cyclic process, it is terminated by calling
the terminate subroutine, and control is passed
to the process selector

3) If another cycle of a cyclic process is
indicated, the program or task is called again,
after possibly placing the process into an
inter-cycle wait state (EVERY or AFTER, options
from SCHEDULE statement). If the cycle type
is AFTER, the timer enqueue routine is called
to start the AFTER interval. The EVERY interval
is set up once when the process initiator is
entered, and is automatically repeated by the
timer interrupt routine.

37

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02133 * (617) 661-1840

ROM AL START Fig. 5-2
WAIT BREAKOINT

RACIIED AND BE PROCESS SELECTOR
POINT FLAG SET;

BEGIN

NO

GET PROCESS

QUEUE ANCHOR

SET UP FOR
SEARCH DOWN
PROCESS QUEUE

NEW PROCESS

PROCESSES \NO

YES

LOOK AT
NEXT

PROCESS

+ADVANCE
CLOCK

IS IT
READY

YES

RESET
BREAKPOINT
FLAG

NO
PROCESS

NO BEEN YES
INITIATED YET

TO PROCESSSM
INITIATOR CODIE R S

FOR PROCESS

PROCESS
RESUNMED

38
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE MASSACHUSETTS 02138 * (617) 661-1840

Fig. 5-3

Process Initiator

FROM PROCES
SELECTOR AT

FIRST
EXECUTION OF

PROCESS SET FLAG:
"INITIATED"

CALL TIMER

CYCLIC YES ENQUEUE ROU-

EVERY? TINE FOR "EVERY"
INTERVAL

NO

ALL TASK OR

PROGRAM AS PROCESS SWITCHING
SUBROUTINE TO & FROM PROCESS SELECTOR

AT BREAKPOINTS AND WAITS

CLOSE COMESRACK

YES TO PROCESS SELECTOR WAIT

?IDEPEINDENTS FROM PROCESS SELECTOR RESMIE

PROCESS?

YES

YES
ANCEROCESS SELECTOR RESUMECALL

ETERMINATE

NO ROUTINE TO

T CALL TIMER CLEANUP

IMMEDIATE CYCLE \AFTER ENQUEUE Ro-R PROCERE

TYPE\ INTERVAL TO PROCESS
SELECTOR

E TO SELECT HIGHEST
EVERY . PRIORITY READY

PROCESS

WAIT FOR TO PROCESS SELECTOR WAIT

PROCESS SWITCHING

TIME INTERL FROM PROCESS SELECTOR RESUME

39

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

5.3 HAL/S Statement Processor

The HAL statement processor logic is executed at the
end of each HAL/S statement. Its logic is illustrated in
Figure 5-4.

40

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Fig. 5-4

HAL/S-360 Statement Processor

entered every statement

UPDATE STATE-
MENT NUMBER
IN STACK

STATEMENT

DECREMENTS - TIME EXECUTION

CLOCK MODEL

YES SDL TIME
CLOCK = 0 INTERRUPT TRAPS

ROUTINE TPS?

DIAGNOSTIC SUPPLY SDL
REQUEST YES DIAGNOSTIC STATEMENT

INFORMATION TRAPS

SHIGHER
PRIORITY YESDIPTH
ADY PROCESS FOR PROCESS
& BREAK- SWAP
POINT
FLAG

ON

rETURN TO
NEXT STMT. 41

6.0 FUNCTIONAL DESCRIPTION OF HAL/S-360 REAL TIME STATEMENT
SERVICE ROUTINES

This section presents a description of the structure and
mechanization of all process control services. It includes
the HAL/S real time statements of:

SCHEDULE

CANCEL

TERMINATE .<ID>

SET, RESET, SIGNAL (event>

WAIT <event>

Time and Time Management

The description of the statements does not include changes
to HAL/S which may have occurred subsequent to the April HAL/S
specification. It also does not include the UPDATE PRIORITY
statement.

6.1 The Process Scheduler

The Process Scheduler is the process service routine
which gets control when a HAL SCHEDULE statement is executed.
It creates a process by putting a new Process Control Block
.(PCB) containing the proper information on the priority queue.
When the scheduler returns to its caller, the new process
is either in the ready state or in the wait state (if the AT,
IN, or ON option was specified). It is then the dispatcher's
(i.e., process selector's) responsibility to give it control at
a process swap point.

The options to the SCHEDULE statement are handled by
separately testing for the occurrence of each one. If an
option is specified, the appropriate processing is performed.
Sometimes this is accomplished by a call to a system routine
such as the event enqueue routine to set up an event expression,
or to the timer enqueue routine to enter an interval in the
timer queue. A parameter is passed to these routines specify-
ing what action to perform (ready or cancel the process) when
the requested condition (time interval expires or event expres-
sion becomes true) occurs. The Event Processor is called if
a process event was declared for the program or task.

PRECEDING PAGE ,AN K NOT FILME1

43

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Other SCHEDULE option processing is done local to the
scheduler. A specified priority is assigned by setting the
priority field in the PCB (used to determine the position on
the priority queue). If the option DEPENDENT was specified,
the scheduler places the new PCB on the dependence queue of
the running process.

Parameters to the scheduler routine are listed below:

A) OPTIONS:

DEPENDENT

initial conditions (none, IN, AT, ON)

PRIORITY

REPEAT options (none, EVERY, AFTER, REPEAT
with no delay)

cancel condition (none, UNTIL <event exp>,
UNTIL<time>, WHILE<event exp>)

B) LABEL or RUN-TIME REFERENCE - program or task i.d.
used in the Program Directory Index.

C) TASK/PROGRAM - is process a task or a program?

D) PROCESS EVENT - (optional) pointer to process
event, if declared

E) WAIT TIME - (optional) time specified in AT or IN
phrase

F) CANCEL TIME - (optional) time specified in EVERY or
AFTER phrase

G) PERIOD - (optional) time specified in EVERY or AFTER
phrase

H) WAIT EVENT EXPRESSION - (optional) pointer to event
expression structure used in ON phrase

I) CANCEL EVENT EXPRESSION - (optional) pointer to
event expression structure used in UNTIL or WHILE
phrase

Functional flow of the scheduler is illustrated in
Figure 6-1.

44

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Figure 6-1

PROCESS SCHEDULER

SCHEDULE
Statement

SEARCH
PROGRAM
DIRECTORY

IS PROGRAM
ALREADY IN YES
USE? C

ISS D

NO CONDITIONAL NO

ON TIME (IN,
GET AN UNUSED AT)?

PCB

YES

CALL TIMER

VENT CONDITIONS TIME QTO ENUEUE TIME
SPECIFIED? TERVAL

CALL TIME
CALL EVENT NO ENQUEUE ROUTINE
ENEUE ROUTINE TO SET UP CANCEL

TO SET UP E V EN T INTERVAL

IS SCHEDULE

HAS CANCEL CONDITIONAL NO

NO NO TIME ALREADY ON EVENTS

IMMEDIATELY PASSED? (ON)

CALL EVENT
YES S ENQUEUE ROUTINE

TO SET UP EVENT
EXPRESSION

SET PROCESS
EPRESS

TYPE IN PCB
(PROG/TASK,

READY/WAIT,
CYCLIC, ETC.)

PRIORITY
YES SPECIFIED ON NO

SCHEDULE?

SET PRIORITY
SE T PRIORITY

TO SPECIFIED TO DEFAULT

VALUE
V AL U E

45

Process Scheduler (cont.)

/Is NEW
N PROCESS PRIOR-

NO ITY>CURRENT
PRIORITY?

YES

IS NEW

YES PROCESS IN
WAIT STATE?

NO
SET BREAKPOINT *
FLAG SO
PROCESS SWAP

No DEPENDENT Yes END ERROR:
MULTIPLE

SCHEDULING

* ALLOWED

IS NEW

NO PROCESS A FATHER IS
TASK? RUNNING

PROCESS

YES

•O DEEDN EUNUUE

FATHER ISP
PROGRAM

PROCESS

PUT PCB ON
-DEPENDENT Q RETURN UNUSED
OF FATHER I , _ PCB

PCB

PUT PCB ON
PRIORITY QUEUE
FOR SELECTOR

PROCESS NO
EVENT OP-

TION

YES CRETURN
TO

SET PROCESS CALLER
EVENT "01" &

CALL EVElT

PROCESSOR j

46
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

6.2 CANCEL Process Service Routine

The CANCEL statement provides a safe way to terminate
a process, avoiding the danger of half-results. If the
process has not yet begun execution or is in between cycles
of execution, it can be safely terminated by immediately
calling the terminate subroutine. In any other state, however,
the process is allowed to run to the end of its current cycle.
A non-cyclic process in this case would be unaffected. The
cancel flag in the PCB is set by the CANCEL routine, and
tested by the process initiator before starting another cycle.
If it is set, the processor initiator calls the terminate
subroutine. See Figure 6-2 for a flowchart of the CANCEL
Service Routine.

6.3 TERMINATE

The TERMINATE statement allows for immediate and
unconditional termination of a process and all its dependents.
Termination involves cleanup of pending conditions (time,
event) and allocated resources, and removal of the PCB from
the priority queue. Since these actions must be taken for
all kinds of termination (TERMINATE, CANCEL, RETURN, CLOSE),
a terminate subroutine is used to carry out the cleanup work.
The TERMINATE statement service routine merely locates the
PCB address, checks if the active process is allowed to
terminate the specified process, then calls the terminate
subroutine. A flowchart of the TERMINATE Service Routine
appears in Figure 6-3.

6.3.1 Terminate Subroutine

It is called by the TERMINATE statement service routine,
by the process initiator, and by the following routines when
a cancel condition occurs and the process can be immediately
terminated: CANCEL Statement service routine, event processor,
and timer interrupt routine. It performs the following
functions on the process to be terminated:

a) cancels its active event expressions (found by
searching the event queue until n blocks are
found which point to the PCB, where n is the
event queue count from the PCB)

47

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Fig. 6-2 CANCEL STATEMENT SERVICE ROUTINE

CANCEL
CANCEL <taskid>

LOCATE PCB LOCATE PCB

OF RUNNING THROUGH TASKIE

PROCESS INDEX INTO
PROGRAM

RECTORY

DOES NO
NO

PCBSET PCB
EXIST

YES

'INITIATED 'NO INVALID

FLAG TASKID

YES

IN
INTER

NO YES

CALL
TERMINATE
SUBROUTINE

SET PCB
CANCELLED
FLAG

48

TERMINATE

TERMINATE <taskid>

LOCATE PCB

LOCATE PCB THROUGH TASKID

OF RUNNING INDEX TO

PROCE SS PROGRAM
DIRECTORY

CALL
TERMINATE

SUBROUTINE NO P

EXIST

TO PROCESS YES

SELECTOR

YES

TASKIDTASKID

CALL
TERMINATE
SUBROUTINE

RETURN

TERMINATE STATEMENT SERVICE ROUTINE

Fig. 6-3

49

b) cancels its active timer intervals (found like
event expressions - using the timer queue
count from the PCB)

c) frees its allocated memory

d) frees EXCLUSIVE code it may have entered

e) frees any other shared resource it may have
acquired

f) turns its associated process event off

g) removes and frees its PCB from the priority
and dependency queues

h) terminates all its dependents in an identical
manner

i) readies the father process if it is waiting
for dependents and the terminating process
is its last dependent

j) if any process events were turned off in f),
the event processor is called

The terminate subroutine may cause other processes to
become ready because 1) termination may satisfy the father's
dependency wait, 2) turning the process event off may satisfy
c. WAIT FOR or SCHEDULE ON event expression, 3) freeing a
shared resource (e.g., UPDATE lock) may wake up a process
waiting for it. In any case, a process is made ready in the
PCB, and, if it has a higher priority than the running process,
the breakpoint flag is set. The process swap then occurs at
the next breakpoint.

In addition to causing a process to be made ready, the
terminate subroutine, in turning off the process event, may
cause another process to terminate if a cancelling event expression
is satisfied. The terminate subroutine and event processor
must be coded to avoid recursive calls in such a situation.

50

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

6.4 Event Handling

The event handling system of process management carries
out the signalling of events and performs specific actions
when logical combinations of events, called event expressions,
become true. Events are declared HAL language variables
which have a boolean true/false or on/off state. These software
events may be signalled (caused to change state) by a program
statement or by an associated hardware occurrence. If a real
time statement with an event expression is executed, the
expression is immediately evaluated. If its value is not
true, it becomes an "activated" event expression. An
"activated" event expression is monitored until it becomes
true or until the associated process is terminated. When
an event changes state, "activated" event expressions are re-
evaluated to determine if they have become true. If they
have, the requested action is taken (ready or cancel a process).
Thus event expressions have a life time beyond the execution
of the containing statement.

The following statements can signal (change the state of)
an event:

SET, RESET, SIGNAL - explicitly sets or pulses the state
of the event (see Fig. 6-4)

SCHEDULE - implicitly sets the process event state to
true, if the program or task was declared
with a process event

RETURN, CLOSE, (at program or task level), CANCEL,
TERMINATE - implicitly sets the process event state to

false, if the program or task was declared
with a process event.

The following statements may explicitly specify an
event expression:

WAIT FOR - causes the executing process to wait until
the event expression is true (see Fig. 6-5)

SCHEDULE (with ON option) - causes the newly created
process to wait until the event expression is
true

51

INTERMETRICS INCORPORATED 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

-
m

m-4

C)

SIGNAL SET RESET
O

O

> CALL ON OFF
m EVENTST RETURN PRESENTmEVENT STATE0 PROCESSOR STATE

o
OFF ON

O0

o STATE STATE
0

m
Z Ln
o

RTRm

Go

CALL

EVENT

PROCESSOR

cn

0 RETURN

Ca
0

ci SET.,, RESET,. SIGNAL PROCESSING

-4Fig. 6-4

o

C.)~

WAIT FOR

CALL EVENT

ENQUEUE
ROUTINE

VALUE OF TO WAIT ENTRY
EVENT FALSE OF PROCESS
EXPRESSION? SELECTOR

TRUE

RETURN

WAIT FOR ROUTINE

Fig. 6-5

53

SCHEDULE (with the WHILE option) - causes cancellation
of the newly created process if the event
expression is false (an implicit "NOT" is
applied to the event expression)

SCHEDULE (with the UNTIL option) - causes cancellation
of the newly created process if the event
expression is true, with the stipulation
that at least one cycle will be allowed to
execute

Note: In addition, event expressions may be used in any context
where a boolean or bit expression is allowed. However, in
these contexts, the HAL/S does not monitor the event expressions.
They are evaluated only once at the time the containing
statement is executed, and unlatched events always appear in the
false state.

The routines associated with these HAL statements are
called by the HAL compiled code and in turn call system event
and event expression handling routines. There are four types
of event expressions; two specify wait conditions (WAIT FOR,
SCHEDULE ON), and two specify cancel conditions (SCHEDULE
UNTIL, SCHEDULE WHILE). Since the UNTIL and WHILE phrases
are mutually exclusive, the SCHEDULE statement can potentially
specify two event expressions. Compiled in-line code cannot
always be used to evaluate event expressions since event
expressions can remain "activated" asynchronously with respect
to execution of compiled code. An event expression must
therefore be communicated to the routine through an event
expression structure, created by the compiler and passed by
a pointer in the parameter list of the WAIT or SCHEDULE
routine. See Figure 6-6. The WAIT or SCHEDULE routine then
calls the enqueue routine, described below.

6.4.1 Event Expression Enqueue Routine

This routine is called by the WAIT FOR routine and by
the scheduler to:

1) Test if the event expression is immediately
true by calling the Event Expression Evaluator.

54

INTERMETRICS INCORPORATED -701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

EVENT EXPRESSION STRUCTURE, EVENT BLOCK, EVENT BLOCK QUEUE

EVENT EXPRESSION: A AND NOT (B OR C)

EVENT EXPRESSION
STRUCTURE: EXPRESSION STRING

STRUCTURE

--- EXPRESSION 1 2 3 OR NOT IAND EOS

STRING 0"
PoT ER - EOS=END OF STRING

POINTER TO EVENT r---

EXPRESSION STRUCTURE 1

(USED IN PARAMETERS UP TO 5

LIST OF WAIT FOR EVENT 2

AND SCHEDULE ROUTINES, VARIABLE EVENT VARIABLES
AND PASSED TO EVENT POINTERS B (true or false

EXPRESSION EVALUATOR) 4 booleans)
4 unused

5 unused C

The expression string is an encoded reverse Polish form of the

event expression suitable for stack evaluation. Events A, B, and C

are represented by 1, 2, and 3 respectively, indicating the relative

positions in the event expression structure. The operators AND, OR,

NOT, and EOS (End of string) are coded in a way which distinguishes

them from event variable representations.

EVENT BLOCK: NEXT - pointer to next event block or null

PCB - pointer to PCB of associated process

TYPE - type of event expression (SCHEDULE ON, UNTIL,

or WHILE, or WAIT FOR)

event expression structure as above

EVENT BLOCK QUEUE: representing 3 "activated" event expressions

ANCHOR
NULL

EVENT BLOCKS, AS
ABOVE

Fig. 6-6
55

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2) If it is not, copy the event expression
information to an event block and enqueue the
block on the event block queue, thereby
activating the event expression condition.
(Event blocks are diagrammed in Figure 6-6.)
If the expression is the wait type, the
appropriate wait state is set in the PCB.

This routine has the following parameters:

1) TYPE of event expression (SCHEDULE ON, UNTIL, or
WHILE, or WAIT FOR)

2) PCB POINTER

3) EVENT EXPRESSION STRUCTURE POINTER

If the expression is immediately true, an event block
is not queued, and the routine returns with an indicator
that the expression was not activated. In this case, the WAIT
FOR routine does not pass control to the process selector,
but returns control to the executing process.

The event expression structure must be copied to the
event block because it is created by the compiled code in
temporary storage, and does not remain beyond the execution
of the statement. See Fig. 6-7 for a flowchart of this
routine.

6.4.2 Event Expression Evaluator Routine

This routine is called by 1) the enqueue routine
described above, and 2) by the event processor (described
next) when an event has changed state. It takes a pointer to
an event expression structure as input and returns a boolean
result which is the value of the represented event expression.
Using the polish string form of the expression and a simple
push-down stack, it actually carries out the logical opera-
tions on the event variables. Since the condition is satisfied
when the expression value is false for the SCHEDULE WHILE
type and true for the other types, the routine inverts (applies
the NOT operation to) the result of a WHILE expression. Thus,
the Evaluator always returns true if an event expression
condition is satisfied. See Fig. 6-8 for a flowchart of the
Event Expression Evaluator.

56
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

EVENT EXPRESSION ENQUEUE ROUTINE

Fig. 6-7

EVENT ENQUEUE

CALL EVENT

EXPRESSION
EVALUATOR

EXPRESSION
TRUE FALSE

GET NEW EVENT
RETURN TRUE BLOCK AND COPY

EVENT EXPRESSION
STRUCTURE, PCB,
AND TYPE TO NEW

ENQUEUE NEW
EVENT BLOCK ON
QUEUE

WAIT FOR TE SCHEDULE -
SCHEDULE ? UNTIL/

ON WHILE

SET WAIT

STATE IN PCB

IN PCB: INCRE-
MENT EVENT

QUEUE COUNT

RETURN FALSE

57

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Fig. 6-8
EVENT EXPRESSION EVALUATOR

EVENT EXPRESSIO
EVALUATOR

START WITIH
NULL STACK &
BEGINNING OF
EXPRESSION
STRING

LOOK AT NEXT

ITEM IN

EXPRESSION
STRING

END
YES / OF

STRING

NO

NO "WHILE"
EXPRESSION Is PUSH STACK

? ITEM YES PLACE EVENT
AN EVENT) ALUE ON NEW
VARIAB TOP OF STACK

YES ?

APPLY "NOT" NO
OPERATION TO
RESULT IN TOP
OF STACK IS APPLY "NOT"

ITEM YES OPERATION TO
NOT" OP-
ERAOR OVALUE IN TOP
ERATOR

? OF STACK

NO

RETURN with top

of stack as re- OR WHICH AND
PERATOR

"AND" THE TOP
"OR" THE TOP TWO VALUES
TWO VALUES IN STACK
IN STACK

TOP STACK

L72VES RL'SULT

OF' AND/OR IN

TOP OF STACK

58

INTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

This routine has the following parameters:

1) TYPE

2) POINTER to event expression structure

6.4.3 Event Processor

This routine is called by the SET, RESET, and SIGNAL Service
Routines for normal events and by the Scheduler and the Terminate
Subroutine for process events. It re-evaluates activated
event expressions by calling the Event Expression Evaluator
for each event expression on the event block queue. If the
Evaluator returns with a true expression, the Event Processor
performs the. appropriate action for that condition (readying
or cancelling a process), and the event block is removed
from the queue and freed. If an event block is encountered
with the "terminated" flag set, it is removed and freed. The
Terminate Subroutine need only set this flag to de-activate
an event expression. See Fig. 6-9 for a flowchart of the
event processor.

6.5 Timer Management

There are three programmable clocks specified in the
Flight Computer. These clocks can be set via software and
are continuously decremented by hardware in real time. They
cause an interrupt when the count drops through zero and
becomes negative. One of these clocks will be used to provide
the timing services requested by the following HAL/S real
time statements,and are simulated on the 360.

WAIT - causes the active process to wait for a specified
time interval or until a specified time

SCHEDULE (IN or AT option) - causes the newly created
process to wait before initial execution

SCHEDULE (REPEAT EVERY or AFTER option) - causes the
newly created process to execute cyclicly with
a specified period between either the beginning
(EVERY) or the end (AFTER) of one cycle to the
beginning of the next

SCHEDULE (UNTIL option) - causes the newly created
process to be cancelled at a specified time.

59

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

EVENT PROCESSOR

Fig. 6-9

EVENT PROCESSOR

GET ANCHOR TO

EVENT BLOCK
QUEUE

LOOK AT
NEXT EVENT
BLOCK ON

QUEUE

IS
"TTER-

MORE YES INATED"
EVENT FLAG. SET

BLOCKS 6

NO
CALL EVENT

RETURN EXPRESSIONC D EVALUATOR

YES WAS NO
EXPRESSION

TRUE

SCED. ON HATO S
EVENT Eg
EXPRESS

DEQUEUE

REMOVE AND 40
FREE EVENT HAS
BLOCK HAS NO

BEEN INI-
TIATED

YES

CALL READY
ROUTINE FOR
PROCESS

IS
NO IT IN YES

CYCLE
WAIT

CALL
SET PCB /TERMINATE
CANCELLED SUBROUTINE
FLAG

60

These timing services are provided by two routines
which control the use of the interval timer. The timer
enqueue routine is called by any routine requesting a time
interval. A type code indicates what action is to be
performed when the specified time arrives. The timer interrupt
routine is called by the interrupt fielder when a timer
interrupt occurs. These two routines operate on a timer
queue, each element of which represents a separate timer
request. The queue is ordered by time of expiration, so that
the first element on the queue is the next to expire. The
value in the timer is such that it will cause an interrupt
at the time specified in the top queue element.

6.5.1 Timer Enqueue

The timer enqueue routine takes the following actions:

1) if the time value (time of expiration) was supplied
in relative form (as determined by the type), it
is converted to absolute form.

2) if the time of expiration is already past, the
routine returns with a "not enqueued" indication.

3) otherwise, a new queue element is acquired, the
input parameters are copied to it, and the element
is placed on the queue by order of time of
expiration.

4) if the new element was placed on top of the queue
in 3), the value in the hardware timer is altered
to reflect the new top element.

5) the routine returns with the "enqueued" indication.

A flowchart appears in Fig. 6-10.

This routine has the following parameters:

1) PCB pointer

2) TIME VALUE (relative or absolute)

3) INTERVAL TYPE

61

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Fig. 6-10 TIMER ENQUEUE ROUTINE

TIMER ENQUEUE

TYPE OF

RELATIVE INTERVAL

ABSOLUTE

HAS ABSOLUT
CONVERT RELA- TIME PASSED? YES
TIVE TIME TO i.e.,IS ABS.RETURN "NO

i.e.,IS ABS.TIME
ABSOLUTE BY < ENQUEUED
ADDING CURRENI
TIME NO

GET NEW TIMER
QUEUE ELEMENT &
SET PCB POINTER,
TYPE, & ABSOLUTE
TIME OF EXPIRA-
TION

PLACE ON QUEUE BY
ORDER OF ABSOLUTE

TIME OF
EXPIRATION

S NEW
NO / ELEMENT BEEN

PLACED ON TOP
OF THE QUEUE

YES

REPLACE TIMER
WITH NEW VALUE
(--TIME OF EXPIRA-
TION MINUS

CURRENT TIME)

WAIT TYPE YES SET WAIT

REQUEST? STATE IN PCB

NO

62 N"PN.. . .

6.5.2 Timer Interrupt Routine

This routine gets control when the timer causes a
pseudo interrupt. It takes the top element (the one
representing the expired interval) off the queue, carries out
the specified action, frees the old top queue elements, and
loads the timer with the appropriate value for the new top
element. The actions for the expired elements are to ready
or cancel a process. A special test is made for an interval
representing a SCHEDULE statement REPEAT EVERY option, since
there is the possibility that the last cycle ran longer than
the specified period between beginnings of cycles. If the
process is not in an inter-cycle wait state, an error is
indicated, and the process is not made ready. This causes
the cyclic process to skip a cycle.

There is also a special element on the queue (called
the clock element) which is used to keep the timer running
in the absence of any timer requests. Both the clock element
and any REPEAT EVERY elements are re-enqueued instead of
freed, since they represent self-perpetuating intervals.
The most appropriate value for the clock interval is the
maximum value that can be placed in the timer. A flowchart
appears in Fig. 6-11,

63

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

TIMIER INTERRUPT ROUTINE Fig. 6-11

TIMUR NTERRUPT

called on "Pseudo clock
interrupt"

TAKE TOP

ELEMENT OFF

QUEUE

iWAS THIS
EELeMENT
MARKED BY Y

TERMINATE
SUBROUTINE?

NO

/ WHAT TYPE

REPEAT EVERY OF INTERVAL AL SCHED. UNTIL
O REPXI AT R EXPIRED?

iS WAIT HAS

NO RCES YES CLOCK SCHEDULE- RES NO

C E T/IN, TIA
REPEAT AFTER

CALL READY
ERROR: CYCLE CALL A ROUTINE
IS LONGER READY iS
THAN PERIOD ROUTINE NO ROCES YESSAN INTER

CYCLE

CALL

SET CANCELLED TERMINATE

FLAG SUBROUTINE

COMPUTE NEW COMPUTE NEW

TIME OF EXPIRA- TIME OF EXPIRA
TION FOR TION FOR
"EVERY" ELE- CLOCK ELEMENT

MENT

FREE OLD QUEUE
RE-ENQUEUE ' I LEMENT FOR
ELEMENT TO RE-USE BY

NEW QUEUE ENQUEUE ROUTIN
POSITION

US4C- T2!3 IN

ELEMZNT, COM-
PUTE NEW
TIMER VALUE

LOAD TIMER IS(SET NEW TI-E YESVALE NO (MORE TAN ONE ELEMENT WITH SAME TME)
OF EXPIRATION) E 0

C RETURN

64

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

6.6 Detailed Interfaces for HAL/S-360

The detailed interfaces between the HAL/S-360 compiler
code generator and HAL/S-360 run time services routines are

presented below. These interfaces are subject to change
during implementation and are only presented in preliminary
form:

HAL/S-360 Compiler Real Time Package Interface

A) SCHEDULE statement. Routine name: SCHEDULE

Note: Of.the following parameters, only the first two
are required. The rest are optional, depending
on the options flag.

Register Meaning Bit Position (low order 10 bits)

RO options flag: XX XXXX XXXX

TASK 1

process event1.
initial conditions XX..
-none- 00..
AT 01..
IN 10..
ON 11..

PRIORITY1
DEPENDENT1.....
REPEAT options .. XX......
-none- .. 00..

REPEAT .. 01..
REPEAT EVERY .. 10......
REPEAT AFTER .. 11......

cancel options XX
-none- 00

UNTIL<time> 01
WHILE<event> 10
UNTIL<event> 11

R1 Entry address of program or task

R2 ON <event expression> pointer

R3 PRIORITY value

65

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

R4 UNTIL or WHILE <event expression> pointer

FO AT or IN time value

F2 REPEAT EVERY or AFTER time value

F4 UNTIL time value

B) TERMINATE STATEMENT

I. TERMINATE; EXTERNAL NAME: TERMIN no parameter

II. TERMINATE <taskid>; EXTERNAL NAME: TERMINT

RO: Parameter: entry point of program or task

C) CANCEL STATEMENT

I. CANCEL; EXTERNAL NAME: CANCEL no parameter

II. CANCEL <taskid>; EXTERNAL NAME: CANCELT

RO: Parameter: entry point of program or task

D) WAIT <arith exp>; EXTERNAL NAME: WAIT

FO: parameter: # seconds, double precision

E) WAIT UNTIL <arith exp> ; EXTERNAL NAME: WAITUNTL

FO: parameter: # seconds, double precision

F) WAIT FOR <event exp>; EXTERNAL NAME: WAITFOR

RO: parameter: point to event expression (see event expression)

G) WAIT FOR DEPENDENT; EXTERNAL NAME WAITDEP

no parameters

H) SIGNAL <event var>; EXTERNAL NAME: SIGNAL

RO: ptr to event variable (latched or unlatched)

I) SET <event variable>; EXTERNAL NAME: SET

RO: pointer to event variable (must be latched)

66
INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

J) RESET <event variable>; EXTERNAL NAME: RESET

RO: pointer to event variable (must be latched)

K) UPDATE PRIORITY TO <arith exp> ; EXTERNAL NAME UPPRIO

RO: Priority

L) UPDATE PRIORITY <taskid> to <arith exp>; EXTERNAL NAME UPPRIOT

RO: Priority

Rl: entry point of program or .task

67

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

7.0 HAL/S-360 INPUT/OUTPUT

A detailed description of the mechanization of HAL/S-360

I/O is not presented in this report. However, some
comments can be made pertinent to this effort: (1) There are

two types of I/O in HAL/S: Sequential I/O and Random Access

I/O. HAL/S-360 has been implemented to utilize 360 peripheral
devices only - printer, tape cards, discs, etc. (2) It does

not perform avionics data bus I/O. The I/O system design for

the Shuttle Flight Computer is still under analysis by NASA/
Rockwell and Intermetrics. Subsequent to this I/O effort the

HAL/S Shuttle computer compiler design will reflect any
avionics I/O decisions.

7.1 360/I/O Mechanizations

It is relevant to describe which routines and features
of OS-360 are utilized in performing the HAL/S READ, READALL
and WRITE statements on the 360. A general description of
the I/O system is as follows: Using 360 GET and PUT routines

I/O buffers are loaded. An I/O initialization routine is
called to set the statement mode and channel number etc.
Subsequent conversion calls to the library routine are made
for each data element in an I/O list. The data items are
interpreted using the string, converted and loaded into
the appropriate HAL/S declared variable. These HAL/S -360 I/O
routines are:

A) IOINT - initialization of I/O operations

B) INPUT, OUTPUT - numerical input and output

C) CIN, COUT - character input and output
CINP, COUTP - character input and output partitioned

D) Conversion routines

HIN single integer input
IIN double integer input
EIN single scalar input
DIN double scalar input
IOUT integer output
EOUT single scalar output
DOUT double scalar output

pRECEDING PAGE BLANK NOT FILMED

69

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

The FILE statement is not implemented in HAL/S-360 as
yet.

The HAL/S process executing the I/O statement is not
placed into a HAL/S wait state. Control remains with the
process while the I/O is completed by OS. If OS requires a
wait to perform the I/O, the entire HAL/S system load module
is placed into a wait condition under OS.

The exact OS routines used to perform I/O are presented
in Section 9.

An illustration of the HAL/S I/O control flow and logic
is presented in Figure 7-1.

70

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

FIG. 7-1

HAL/S I/O SYSTEM EXAMPLE

HAL PROCESS

READ (5) A, I; I

Compiled Code

CALL IOINIT (5,mode)
CALL EIN(A)

CALL HIN(I)

EIN:
CALL INPUT

- do conversion
- store in A Control Flow

PROCESS

HIN: READ(5) A,I

CALL INPUT
- do conversion
- store in I

EIN

INPUT

OS/360 GET

71

8.0 HAL/S-360 ERROR CONTROL

The HAL/S-360 ON and SEND statement are the error control
statements. Their mechanization is not presented in detail
at this time since it is still undergoing some design changes.

A general organization of the HAL/S-360 error control
system is presented in Figure 8-1.

The compiler generates an entry in the STACK for each
ON statement with a unique error number. Upon activation of
an error condition via a SEND, a library error or 360
arithmetic error, the HAL/S error monitor routine is called.
It determines if an ON statement is active for this error
condition. If it is,the various HAL/S error options are
checked (i.e., IGNORE, GOTO or SYSTEM) and the appropriate
action taken. If an ON statement is not active or the SYSTEM
option is requested, then the routine must do appropriate
checks to determine if the process should continue or the
run should end. The significant point is that the error
conditions are handled by HAL/S-360 run time routines in
in conjunction with the compiler. The only OS-360 routines
utilized are SPIE and STAE as identified in Section 9.

OJW DING PAGE BLANYK NOT FILMED

73

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

HAL/S ERROR CONTROL LOGIC

360 LIBRARY ON
SEND DETECTED

iRITHMETIC SEND DETECTED STATEMENT
STATEMENT ERRORS

ERRORS

. HANDLED AT COMPILE
TIME

. SETS UP ENTRY IN STACK
ERROR MONITOR FOR SERVICING ERROR
FUNCTION

IS

ON SYSTEM
STATEMENT NO TEST

ACTIVE FOR
THIS ERROR

YES

GO TO APPROPRIATE
IS iTABLE CHECK ERROR
IT YES OPTIONS

ON ERROR .LIMITED OR UNLIMITED
SYSTEM OPTION AND # ERRORS

AND # ERRORS
S. TERMINATE

U
O (see COMPILER SPEC)

TERMINATE OR

is FIXUP LIMIT EXCEEDED

GO IT AN
GO TO TO IGNORE IGNORE TURN TO

IPPROPRIAT OR PROCESS AT END OF

LEVEL \ GO TO NEXT STATE- RUN

OPTION MENT

74

9.0 HAL/S-360 AND OS-360 INTERFACES

The following lists the active OS-360 routines used.

9.1 Sequential I/O - READ, WRITE

A) OPEN options - INPUT, OUTPUT, MF=L and E

B) DCB options - DDNAME=CHANNELX,
DSORG=PS,
MACRF= (GL,PL)
EXLST, EODAD, SYNAD
EROPT=ACC

Note: remaining fields are filled in via the DCB open
exit specified by the EXLST operand. The DCBD
macro is used to define the DCB fields

C) DEVTYPE - used to determine blocksize in DCB open
exit if user did not supply it

D) GET, PUT - locate mode

E) CLOSE

F) SYNADAF, SYNADRLS - to analyze I/O errors

G) GETMAIN - for DCB area

9.2 Error Control, diagnostic capabilities

A) SPIE - traps the following 360 program interrupts :

9 - fixed point divide

12 - exponent overflow

13 - exponent underflow

15 - floating point divide

B) STAE - traps ABENDS (system and user) to provide
abnormal termination information for
backtrace and HAL variable dump
(no retry routine is used).

C) ABEND - issues user abends on abnormal conditions

D) GETMAIN - for backtrace buffer

75
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

9.3 Miscellaneous

A) TIME - provide the time of day and date

B) For HAL variable DUMP:

OPEN - to open HAL symbol table and DUMP file

FIND to read HAL symbol tables
READ

WRITE - to write dump file

CLOSE

GETMAIN for symbol table buffers
FREEMAIN

76

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

10.0 SUMMARY AND CONCLUSIONS

As stated in Section 2.0, no specific recommendations

for providing a HAL capability on SUMC under MPOS
can be made

at this time because a sufficiently detailed definition

of MPOS is not yet available. In this section the OS inter-

face characteristics of the current implementation of HAL/S-360

are summarized., and the various options for modifying it for

compatibility with an eventual MPOS are reviewed. Most of

these points have already been made in'greater detail in

Section 2.0.

10.1 Summary of Current HAL/S-360 Interface

The HAL/S-360 compiler is currently implemented as a

"self-contained" system which executes as a single task/job

step under OS-360. A load module is created by a "HAL Link

Step" using the 360 linkage editor. The load module contains all

HAL/S compiled programs/tasks, external procedures, and compool
blocks which are pertinent to the run, together with a collection

of run time routines. This load module or HAL/S system is then

loaded and executed under OS as a single task. All HAL/S

process management functions, i.e., control over the scheduling and

dispatching of HAL/S program and task blocks, are implemented

through HAL run time routines which utilize internally defined

process queues. OS-360 control and OS task interaction is

limited to supervision of the HAL/S system load module. It is

unaware of the existence of multiplicity of HAL/S processes and

queues.

The HAL/S-360 implementation does not execute in "real-

time" on the 360. HAL/S pseudo time is maintained in "machine

units" by HAL/S run time routines. The HAL/S-360 system does not

utilize the real time OS-360 clocks.

In HAL/S-360, the compiler inserts "hooks" between the code

generated for each HAL/S statement to enable recording of variables,

implementation of diagnostics, clock updating, process control,
and other functions.

The HAL/S-360 memory management is controlled primarily by

the compiler for an individual program, and by the link function

for all programs.

77

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

The host operating system under which HAL/S-360 runs is
OS-360 MVT release 21.6. It currently interfaces with the
following limited set of OS-360 f-unctions, which are primarily
used for I/O (Sequential and File), controlling HAL/S error
handling and performing diagnostics: FIND, OPEN, CLOSE, DCB,
GETMAIN, DEVTYPE, GET, PUT, READ, WRITE, SPIE, STAE, SYNADAF,
SYNADRLS, ABEND, TIME.

10.2 HAL/S-MPOS Interface Implementation Options

The options available to interfacing HAL/S to the SUMC/
MPOS fall into two categories:

a) Approaches that leave the current HAL/S-360 implementa-
tion either unmodified or only "slightly" adapted to
SUMC.

b) Approaches involving major re-design of the compiler
and/or SUMC/MPOS to yield a more optimal solution.

10.2.1 Minimal Modifications Approach

a) The HAL/S compiler as delivered to NASA/JSC
can be implemented in the SUMC/MPOS with
relatively minimum modifications. Assuming
that SUMC executes 360 compatible code and
that MPOS contains those OS routines which the
HAL/S system uses as specified in Section 9, it should
be almost directly compatible. The HAL/S capability,
however, would be similar to the MSC version, namely:

1) HAL/S operates as a separate self-contained system

2) It will function in the same machine with other
PL/l or FORTRAN jobs

3) It does not operate in real time

4) It contains no multi-processing or MPOS multi-
programming features

5) It contains no specific virtual memory utilization
features.

This would appear to be the easiest, most cost effective
route to obtaining HAL/S for the SUMC computer.

78

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

b) Depending on the modifications to HAL/S-360, the
intended use of HAL by MSFC, and the dollars available,
several modifications could be made to remove two of

the above restrictions.

1) Through relatively simple modifications HAL/S-360
could be made to execute in near real time. Since

HAL/S-360 timer management is centralized, it could
be stimulated by the actual SUMC computer clock(s)
and timers.

2) The implementation of HAL/S-360 in the SUMC virtual
memory may be relatively simple, depending on
the paging technique and memory management system
utilized. The structure of HAL/S-360 code/data
blocks are contiguous blocks, not overlayed or
shared for efficient memory use. The appropriate
"hooks" for the SUMC virtual memory system should be
fairly straightforward. It requires further analysis
of SUMC to evaluate the cost of this feature.

10.2.2 Major Re-Design Approach

It is possible to utilize some of the defined MPOS
functions directly for implementing HAL/S real time. However,
a thorough design analysis is necessary to determine all

"mapping functions" for HAL/S compiler code generation for each

HAL/S real time statement and the appropriate restrictions
either in MPOS or in HAL/S.

a) One approach is a new compiler design which would
assume that MPOS functions and features are fixed,
and that HAL/S be implemented in this framework.
HAL/S capabilities could be limited where appropriate
to MSFC functions. It is fundamentally in the HAL
real time and other areas where any problem would
exist. This approach could be as costly as any
new compiler - and could be a patch-work of code caused by
the work around techniques required to implement HAL/S.
Of concern specifically is that HAL/S program and task
blocks are required to co-exist in the SUMC environment
with PL/l and FORTRAN jobs as individual processes and
not as a HAL/S system.

b) A second approach is to design a HAL/S-SUMC compiler
assuming the MPOS is not fixed. Accordingly, the design
effort would entail negotiation of HAL/S interfaces
to the new compiler in order to maximize efficient
execution and minimize contractor interference during
operating system and compiler development.

79

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

c) A third possible alternative is to presume that
both HAL/S-360 and MPOS are fixed but to modify
and re-build some of the compiler, particularly
the supplied run time package. It could perhaps
be done in a language like PL/1, attempting to
maximize and exploit those PL/l/MPOS interfaces
which would need to be resolved anyway. A more
detailed analysis is required to examine the mapping
of HAL/S constructs for processes and process
management into the PL/l constructs for the SUMC
version of PL/l. Additionally, the HAL/S-360 compiled
BAL code would need to be sub-structured such that
it could be interfaced with these PL/l drivers.

80

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

