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EVALUATION OF TANTALUM-ALLOY-CLAD URANIUM MONONITRIDE

FUEL SPECIMENS FROM 7500-HOUR, 10400 C

PUMPED-LITHIUM -LOOP TEST

by Gordon K. Watson

Lewis Research Center

SUMMARY

Simulated-nuclear-fuel-element specimens, consisting of uranium mononitride (UN)
fuel cylinders clad with tungsten-lined T-111 (a tantalum alloy containing 8 percent
tungsten and 2 percent hafnium), were exposed in a pumped-lithium loop operating at
10400 C (19000 F). The lithium flow velocity was 1. 5 meters per second (5 ft/sec) in
the specimen test section. Two fuel-element specimens were exposed for 2500 hours,
two specimens were exposed for 5000 hours, and one specimen was exposed for
7500 hours. A cladding crack was simulated in one of the specimens exposed for
5000 hours by an axial slot machined through both the cladding and the tungsten liner.
After exposure, the specimens were evaluated on the basis of weight and dimensional
changes, chemistry, metallography, and cladding ductility.

All the fuel-element specimens appeared to be in excellent condition after the test.
No evidence of any chemical compatibility problems between the specimens and the flow-
ing lithium was found. Except for a slight reduction in the oxygen content of the T-111,
very little change in chemistry was observed in the T-111 or the UN. No microstruc-
tural changes were noted in the UN, but bands of fine precipitates were seen in the
T-111 after the lithium exposures. These precipitates were thought to be the result of
thermal aging and not the result of the lithium exposure.

Direct exposure of the UN to the lithium through the simulated cladding crack re-
sulted in some erosion of the UN and in some nitrogen contamination of the T- 111 clad-
ding in the area of the defect.

The T-111 cladding on the fuel-element specimens was ductile after the long-time
lithium exposure. The thermal aging at 10400 C (19000 F), however, resulted in the
T-111 becoming sensitive to hydrogen embrittlement during post-test handling and
testing.
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INTRODUCTION

A lithium-cooled, fast-spectrum, nuclear reactor was investigated at the NASA

Lewis Research Center for use in advanced space power applications (ref. 1). The

reference reactor was designed to operate at a power level of 2. 2 megawatts (thermal)

for up to 50 000 hours with a fuel-element cladding temperature of about 9800 C

(18000 F). There is a possibility, however, that local cladding hotspots could reach

temperatures of about 10400 C (19000 F). The reactor concept is based upon the use of
uranium mononitride (UN) as the fuel and a tantalum alloy, T-111 (tantalum - 8 wt. %

tungsten - 2 wt. % hafnium), as the fuel cladding. The T-111 cladding would be lined

with a thin layer of tungsten (ref. 2) to prevent contact and possible reactions between

the fuel and cladding.

The chemical compatibility of the various proposed reactor materials has been ver-
ified primarily by out-of-pile, isothermal capsule tests (ref. 3). No compatibility prob-

lems were observed in these tests between T-111 and UN as long as the two materials

were physically separated with a layer of tungsten. The tests also showed that lithium

and UN were compatible providing the oxygen content of the UN was less than about
800 parts per million by weight. Although isothermal capsule tests are useful for
materials screening studies, they do not simulate the temperature gradients and lithium
flow rates found in the reactor. Thus, additional compatibility tests of the fuel-element
materials are necessary under the more severe conditions present in a pumped-lithium
loop.

The purpose of the work presented in this report was to test T-111 clad UN fuel-
element specimens in a 10400 C (19000 F) pumped-lithium loop for up to 7500 hours.
The loop was operated successfully for a total of 7500 hours with one scheduled shut-
down after 2500 hours of operation. Two fuel-element specimens were exposed for
2500 hours, two specimens were exposed for 5000 hours, and one specimen was exposed
for the entire 7500 hours. After exposure in the loop, the specimens were evaluated on
the basis of weight and dimensional changes, chemistry, and metallography to determine
the compatibility and corrosion behavior of the fuel-element specimens in flowing lithi-
um. Preliminary evaluation of the two specimens exposed for 2500 hours is presented
in reference 4. The results of the detailed evaluation of all the fuel-element specimens
are summarized in this report. Fabrication and evaluation of the fuel-element speci-
mens were done at the NASA Lewis Research Center. Exposure of the specimens in a
10400 C (19000 F) lithium loop was performed under contract.

LITHIUM-LOOP TEST DESCRIPTION

The 10400 C (19000 F) pumped-lithium loop used in this study was designed, fabri-
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cated, and operated by the General Electric Company under NASA contract NAS 3-6474.

A detailed description of the loop and the complete operating history for the entire
7500 hours are given in references 5 to 12. These reports are summarized in the final

report on the corrosion loop program (ref. 13).

A schematic drawing of the lithium loop and a cross section of the fuel-element test

section are shown in figure 1. Also included in the loop was a tensile-test-specimen

assembly (containing advanced tantalum and tungsten alloys) and a corrosion-specimen

assembly (containing T-111 and advanced tantalum alloys). The entire loop, with the

exception of a columbium - 1-percent-zirconium surge tank (not shown in fig. 1) was
fabricated from T-111. Lithium, at the rate of about 1. 8 kilograms per minute
(4. 0 lb/min), was circulated through the loop by an electromagnetic (EM) pump. As the
lithium passed through a resistance-heated coil of T-111 tubing, it was heated to
10400 C (19000 F). From there, the lithium flowed through the fuel-element test sec-

tion at a flow velocity of 1. 5 meters per second (5 ft/sec), through the heat-rejection

part of the loop, where the lithium was cooled to about 10000 C (18300 F), and finally
back to the pump. The loop was contained in a 61-centimeter- (24-in. -) diameter vacu-
um chamber that maintained a vacuum during loop operation of 1. 3x10 - 6 newton per
square meter (10-8 torr) or better.

The T-111 clad UN specimens were arranged in series in the fuel-element test sec-
tion as shown in figure 1. Specimen position was maintained by two TZM spacers
(molybdenum-0. 5titanium-0. 08zirconium-0. 03carbon) and by the interlocking design of
the specimens. The TZM spacers were included in the test to provide some information
on the compatibility of TZM in a flowing lithium - T-111 system because some of the
components in the proposed reactor were to be fabricated from TZM. Post-test evalua-
tion of the TZM spacers is presented in reference 13. The lithium flow in this section
of the loop was in the annulus between the fuel specimens and the containment tube, as
can be seen in figure 1.

Three fuel-element specimens were exposed to the flowing lithium for the first
2500 hours of operation. Then, during a planned shutdown, two of these specimens were
replaced with two new fuel specimens, and the loop was run for an additional 5000 hours.
A cladding crack was simulated in one of the specimens exposed for 5000 hours. After
corrosion testing, the fuel-element specimens were evaluated at the NASA Lewis Re-
search Center.

FUEL-ELEMENT SPECIMEN FABRICATION

A total of seven fuel-element specimens (designated LT-1 to LT-7) were fabricated
for this study. Two of the specimens (LT-4 and LT-7) were left untested as control
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specimens. The other five specimens were tested in the loop: LT-1 and LT-3 were

tested for 2500 hours, LT-5 and LT-6 were tested for 5000 hours, and LT-2 was tested

for 7500 hours. A cladding crack was simulated in specimens LT-6 and LT-7 by an

axial slot electrodischarge-machined through both the T-111 cladding and the tungsten

liner.

Although the design of all the fuel-element specimens is essentially as shown in

figure 2, they were fabricated in two different lots. Specimens LT-1 to LT-4 were

fabricated at one time, and specimens LT-5 to LT-7 at another. The two lots of speci-

mens were similar except for the quality of the UN, the method used to line the T-111,
and the material for the dished washers.

Uranium Mononitride Fuel Cylinders

All the UN cylinders were about 94 percent of theoretical density and were produced

by the Oak Ridge National Laboratory as described in detail in reference 14. The UN

in the first set of specimens was produced by a die pressing and sintering technique.

These fuel cylinders were relatively short because of the length-diameter-ratio limits

associated with die pressing. Thus, two fuel cylinders were used in each of the first

four fuel-element specimens. The oxygen content of this UN was about 1000 to 1500

parts per million by weight, which could cause compatibility problems if directly ex-

posed to lithium. No problems were anticipated, however, because the UN was com-

pletely encapsulated in T-111 and was not directly exposed to the lithium. But for the

fuel-element specimen with an intentional cladding defect through which lithium could

contact the UN (LT-6), a much lower oxygen content was desired.

For the second set of fuel-element specimens (LT-5 to LT-7), the UN cylinders

were fabricated by a subsequently developed fabrication process, which used an isostatic

pressing and sintering technique. As indicated in reference 14, this improved fabrica-
tion method is superior to die pressing because the length of the UN cylinders is not

limited and thus only one UN cylinder was needed for each fuel-element specimen. In

addition, because binders or die lubricants are not needed in isostatic pressing, the
oxygen content of these UN cylinders was quite low (~ 200 ppm by wt. ).

The UN cylinders for both sets of specimens were thoroughly cleaned to remove any

machining residue prior to final assembly. The cylinders were ultrasonically cleaned,
first in acetone and then in methyl alcohol. After drying, any remaining volatile impur-

ities were removed by heating the UN cylinders for 30 minutes at 5400 C (10000 F) in a

vacuum of 2. 7x10 - 3 newton per square meter (2x10- 5 torr) or better.
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T-111 Cladding and End Caps

The claddings for the fuel-element specimens were fabricated from commercially
produced T-111 tubing (1. 9-cm o. d., 0. 1-cm wall (0. 750-in. o. d., 0. 040-in. wall)).
The tubing was inspected thoroughly by nondestructive methods before being cut into the
lengths required for the fuel-element specimens. Any part of the tubing having defects
deeper than 3 percent of the tube wall was rejected. The T-111 rod for the end caps was
also obtained from a commercial vendor. Following nondestructive inspection, the end
caps were machined from the T-111 rod. All the T-111 components were cleaned be-
fore specimen assembly (as described in ref. 15) and then heated to 10900 C (20000 F)
for 1 hour in vacuum (2. 7x10 - 3 N/m 2 (2x10 - 5 torr) or better) to remove any volatile
adsorbed impurities.

Tungsten Liners

Contact between the fuel-element cladding and the UN fuel was prevented by lining
the T-111 tubing with a thin (0. 013-cm (0. 005-in.)) layer of tungsten. The tungsten
liners for the first set of specimens were in the form of thin-wall, free-standing tung-

sten tubes. These tubes were produced by isostatically hot-pressing multiple wraps of
0. 0025-centimeter- (0. 001-in. -) thick tungsten foil around an accurately machined cy-
lindrical molybdenum mandrel. Pressing conditions were 2. 1x10- 8 newton per square
meter (3x104 psi) and 16500 C (30000 F) for 3 hours. After pressing, the tungsten-
wrapped mandrels were shaped on a centerless grinder for a slip-fit into the T-111 clad-
ding and then cut to the proper length. Finally, the molybdenum mandrel was removed
by dissolution in nitric acid, and a thin-wall, tungsten tube having very accurate dimen-
sions was left. The tungsten tube was inserted into the T- 111 cladding as a liner during
final capsule assembly.

The free-standing tungsten liner method was not used for the second set of speci-
mens, which included specimens having simulated defects, because the alinement of the
defect slot between the cladding and the loose liner would be difficult to maintain. In-
stead, a differential-thermal-expansion liner method (ref. 16) was used. The tungsten
liner, in the form of multiple layers of thin (0. 0025-cm- (0. 001-in. -) thick) foil, was
wrapped around an alumina-coated steel mandrel and inserted into the T-111 tube. Dur-

ing high-temperature exposure in vacuum (1. 3x10 - 3 N/m 2 (1x10 - 5 torr)), the steel
mandrel expands more than the T-111 and forces the liner against the T-111. Under the

conditions used in this study (1 hour at 13150 C (24000 F) and a 0. 008-cm (0. 003-in.)
initial gap size), enough solid-state welding occurred between the liner and the T-111
to prevent any movement of the liner during subsequent operations. The tungsten liner
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was recessed 0.23 centimeter (0. 090 in. ) from each end of the T-111 cladding to provide

clearance for the end caps. A cladding crack was simulated in specimens LT-6 and

LT-7 by electrodischarge-machining a small axial slot (0. 008 cm wide and 0. 64 cm long

(0. 003 in. wide and 0.25 in. long)) through both the T- 111 cladding and the tungsten

liner. After machining, the specimens were ultrasonically cleaned in acetone and

methyl alcohol and then vacuum (1. 3x10 - 3 N/m 2 (lx10- 5 torr)) degassed at 10900 C

(20000 F).

Specimen Assembly

Great care was taken to prevent contamination of the fuel-element specimens during

final assembly. The components were handled only with nylon gloves after cleaning.

Assembly of both sets of specimens was similar. The female end cap and the cladding

of each specimen were electron-beam welded, and then the assemblies were annealed

at 13150 C (24000 F) for 1 hour in vacuum (2. 7x10 - 3 N/m 2 (2x10- 5 torr) or better).

After this anneal, the loose tungsten liners for the first set of specimens were inserted.

For the second set of specimens, no separate liner operation was needed during assem-

bly because the bonded liners were already in place.

As shown in figure 2, the UN fuel cylinders were positioned axially by dished wash-

ers sandwiched between flat, 0. 025-centimeter- (0. 010-in. -) thick tungsten disks. The

main purpose of the flat tungsten disks on each side of the dished washers was to pre-

vent contact of the UN fuel with the T-111 end caps. The gap between the UN fuel and

the end caps served to minimize heat input to the UN during welding of the male end cap

to the cladding. The gap also minimized the effects of thermal expansion differences

between the fuel and the cladding. Tungsten sheet (0. 025 cm (0. 010 in.) thick) was used

for the dished washers in the first set of specimens. Some of these relatively brittle

washers cracked during shipment of the specimens to the contractor for testing. Al-

though it was felt that the cracked washers would not adversely affect the experiment,
the dished washers for the second set of specimens were fabricated from T-111, a more

ductile material, and no further cracking problems were encountered. The flat tungsten

disks served an additional function in the second set of specimens by also preventing

contact of the UN fuel and the dished T-111 washers. The components for a typical fuel-

element specimen (LT-6), prior to assembly, are shown in figure 3.

After all components were in place, the male end caps were electron-beam welded

to the claddings. *These final closure welds were made in a vacuum of 1.3x10- 2 newton

per square meter (1x10 - 4 torr) or better; thus, the vacuum level inside all the fuel-

element specimens, except the two having intentional defects, should have been approxi-

mately 10- 2 newton per square meter (10- 4 torr). After welding, the fuel-element
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specimens again were annealed at 13150 C (24000 F) for 1 hour in a vacuum of

2.7x10 - 3 newton per square meter (2x10 - 5 torr) or better (ref. 15). The purpose of

this anneal was to allow the hafnium in the T-111 to getter any grain boundary oxygen

picked up during welding and thus prevent subsequent liquid metal attack of the welds.

The integrity of the fuel-element specimens after annealing was verified by visual

inspection and by the use of a helium mass spectrometer leak detector (except for the

specimens having intentional defects, LT-6 and LT-7). Then, the specimens were

X-ray radiographed to verify the location of the various components. Finally, the spe-

cimens were weighed, measured, and shipped to the contractor for testing in the loop.

POST-TEST EVALUATION RESULTS

General Observations

All five of the fuel-element specimens tested in the lithium loop appeared to be in

excellent condition after removal from the loop, as can be seen in figure 4. The speci-

mens were clean and bright and showed no evidence of any corrosion of the T-111 clad-

dings. Excessive weld heat input during the fabrication of specimens LT-5 and LT-6

resulted in rather large weld beads, which were filed down to minimize possible flow

restrictions in the fuel-element test section. Thus, these welds (see fig. 4(b)) look

different from the welds on the other specimens. Except for the simulated cladding

crack in specimen LT-6, no leaks or cracks could be found in the fuel-element speci-

mens with a helium mass spectrometer leak detector. No dimensional changes as a

result of the lithium exposure were observed.

The weights of the fuel-element specimens before and after testing and the resulting

weight changes are listed in table I. The weights listed are based on measurement made

by NASA and the contractor. The data in table I show that exposure in the lithium loop

resulted in only minor weight changes for all the fuel-element specimens except LT-6.

The fact that some samples had a slight weight gain and other samples had a slight

weight loss is not considered significant because of the very small weight changes in-

volved. As will be shown in the section Specimen Disassembly, the weight loss from

specimen LT-6 can be attributed to erosion of the UN fuel cylinder by the flowing

lithium.

Specimen LT-2 was weighed after 2500 hours in the loop and at the completion of

the test after a total of 7500 hours in the loop. About 80 percent of the total weight loss
from this specimen occurred during the first 2500 hours of testing. The remaining

weight loss took place during the final 5000 hours of testing. Based on these results,
testing for even longer times in the loop would probably not have resulted in any signifi-
cant increase in the total weight loss of the defect-free fuel-element specimens.
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Specimen Disassembly

The two fuel-element specimens removed from the loop after 2500 hours (LT-1

and LT-3) and the two control specimens (LT-4 and LT-7) were disassembled in air.

Because of cladding embrittlement problems observed with specimens LT-1 and LT-3

(see the section Ductility Tests), the other three specimens exposed in the loop were

disassembled in an argon atmosphere to minimize reaction of the specimens with the

atmosphere during disassembly. The general procedures used in disassembly, how-

ever, were the same for all the specimens. The male end cap was carefully cut from

each fuel-element specimen with a hacksaw (13 teeth/cm (32 teeth/in. )). Then the flat

tungsten disks, dished washers, and UN fuel cylinders were removed and examined.

No evidence of any reactions between the UN fuel and the tungsten components was

found. In all cases, the UN fuel cylinders were removed easily from the tungsten-lined

T-11 claddings. Remnoval of the tungsten liners, however, was more difficult. Only

the free-standing liner from control specimen LT-4 could be removed. Similar liners

could not be removed from specimens LT-1, LT-2, and LT-3, even though these liners

were loose prior to testing in the loop. A small amount of solid-state welding probably

occurred between the tungsten and the T-111. The tungsten liners from specimens LT-5,
LT-6, and LT-7 also could not be removed because the differential-thermal-expansion

liner method used for these specimens resulted in some solid-state welding between the

liner and the cladding prior to testing.

All the specimen components were clean and bright except for the UN fuel cylinder

from LT-6, which showed some erosion and discoloration at the simulated cladding de-

fect. Typical components from a specimen with no defect (LT-1) are shown after dis-

assembly in figure 5. Only one dished tungsten washer is shown because the other

washer was broken during shipment. Note that one of the tungsten disks is stuck to the

dished washer. The other disks are not shown. The components from a specimen with

a defect (LT-6) are shown in figure 6 after 5000 hours in flowing lithium. (Prior to

assembly, one of the dished T-111 washers was dimpled to provide additional axial

clearance for the UN fuel cylinder. ) The marks on the outer surface of the T-111 clad-

ding were caused by slippage in the vise during removal of the end cap. The discolored

area on the UN cylinder coincided exactly with the intentional defect in the fuel-element

cladding. A matching discolored area was observed on the inside surface of the tungsten

liner also. The eroded area of the UN fuel cylinder from specimen LT-6 is shown in

more detail in figure 7. Note how the discolored area fans out from the defect slot in

the direction of the lithium flow. In this side-lighted photograph, the erosion depth is

very apparent. The weight loss from the 61-gram UN cylinder, however, was only

0. 0162 gram (about 0. 03 percent of the total UN weight), which is quite low considering

the large gap width and the long exposure time (5000 hr). The weight loss from the UN
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cylinder was somewhat larger than the weight loss from the entire fuel-element speci-

men (0. 0133 g). This difference might have been the result of some reaction between

the UN and the cladding in the defect area (see the section Metallography) or of some

trace amounts of lithium remaining in the fuel-element specimen having a defect when

it was weighed.

Chemical Analyses

Samples of the T-111 end caps and the T-111 claddings from the fuel-element speci-

mens exposed in the lithium loop were analyzed for interstitials (carbon, oxygen, nitro-

gen, and hydrogen) and major constituents. The results are listed in table II along with

the results obtained for the unexposed control specimens. Very little change was ob-

served in the interstitial contents of the samples as a result of the lithium exposures,

except for a slight reduction in oxygen content. Both the claddings and end caps showed

similar decreases in oxygen content, which is typical of metals subjected to long-time

lithium exposures. The observed variations in the tungsten content and some of the

variation in hafnium content were probably caused by inhomogeneities in the T-111 start-

ing material. The hafnium analyses, however, showed an apparent trend toward in-

creasing hafnium content with increasing loop exposure. The reason for this increase

is not readily apparent. Although an analytical round robin on T-111 (ref. 17) indicated

that no serious problems were encountered in the determination of alloying elements in

T-111, it is possible that the observed increase in hafnium content is the result of some

undefined problems in chemical analyses. Since the three specimens with the highest

hafnium contents (LT-5, LT-6, and LT-7) were analyzed about a year later than the

other specimens, slight changes in the analytical procedures could account for the ap-

parent increase in hafnium content. The hafnium values also are questionable based

on the before and after exposure weights of the specimens (table I) because the weight

changes are not large enough to account for the apparent increases in hafnium content.

The UN fuel cylinders from the loop test specimens and from the control specimens

were analyzed for uranium, nitrogen, oxygen, and carbon by the analytical methods

described in reference 18. These results are presented in table III. As can be seen in

the table, two different lots of UN cylinders were used for the fuel-element specimens.

The UN in the first set of specimens contained much more oxygen than the UN in the

second set of specimens. Comparing the analyses of the unexposed control specimen to

the analyses of the tested specimens shows that testing in the lithium loop had essential-

ly no effect on the analyses of any of the UN samples. Even specimen LT-6, exposed

directly to lithium, showed no significant change in composition. The amount of scatter

in the analyses is within the range normally seen in as-received UN.
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Metallography

All the fuel-element specimens were examined metallographically to evaluate the
effects of the lithium exposure on the microstructures of the T-111 cladding, the tung-
sten liners, and the UN fuel cylinders.

T-111 cladding. - Welds between the end cap and the cladding from specimens typi-
cal of each exposure condition are shown in figure 8. The difference in joint penetration
during welding between the first set of specimens fabricated (LT-1 to LT-4) and the
second set of specimens fabricated (LT-5 to LT-7) can be seen clearly in this figure.
The weld heat input for the second set of specimens, typified by specimen LT-6
(fig. 8(c)), was much greater than that for the first set of specimens and resulted in a
larger weld fusion zone and greater joint penetration. The larger welds, however, did
not cause any problems during fabrication or during lithium exposure. Comparison of
the microstructure of the untested specimen with the microstructureS of the lithium-

exposed specimens shows that the T-111 end caps and welds were in excellent condition
and there was no evidence of any corrosion or chemical compatibility problems. The
only noticeable change in microstructure was the formation of dark bands of precipitates
in the T-111. There was no apparent trend for the amount of precipitates to increase
with increasing exposure time. These precipitates have not been identified, but they are
probably the result of localized areas of inhomogeneities in the T-111. At a higher mag-
nification (see fig. 9), grain-boundary precipitates also can be seen in the T-111 micro-
structures of the tested specimens. It was shown in the work of reference 19 that pre-
cipitates of this type are commonly formed during long-term thermal aging of T-111 at
about 10400 C (19000 F) regardless of aging environment (lithium or vacuum). Thus, it
is reasonable to assume that the precipitates observed in this present study are also the
result of thermal aging and not the result of the lithium exposure.

Examination of the T-111 claddings from all the lithium-exposed specimens showed
no evidence of any lithium corrosion. No apparent contamination of the T-111 by the UN
was observed except for the specimen having a defect (LT-6). The cladding microstruc-
ture from specimen LT-2 exposed for 7500 hours in the loop is shown in figure 10. As
can be seen, the cladding is in excellent condition. A thin layer (about 1x10 - 3 cm

(4x10 - 4 in.) thick) of a second phase, however, is visible at high magnification on the
inside surface of the T-111 cladding (fig. 10(b)). This layer is thought to be a tungsten-
rich layer formed as a result of diffusion from the tungsten liner. A diffusion layer of
this type has essentially no effect on the strength or ductility of the T-111 cladding, as
shown in reference 20.

The T-111 microstructure around the defect slot in specimen LT-6 is shown in fig-
ure 11 along with the similar defect region in the untested control specimen LT-7. In
the unetched condition (figs. 11(a) and (c)), both samples appear to be uncontaminated.
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In the etched condition, however, a large number of precipitates can be seen in the

lithium-exposed sample (fig. 11(d)), while no precipitates can be seen in the untested

control sample (fig. 11(b)). Thus, the observed precipitates are considered to be the

result of the UN fuel being directly exposed to the flowing lithium.

A small sample of the T-111 cladding surrounding the defect slot in specimen LT-6

was analyzed for nitrogen in an attempt to identify the precipitate around the defect.

Whereas the average nitrogen content of the cladding was about 25 parts per million by

weight, the nitrogen content of the defect area sample was about 400 parts per million

by weight. Right at the defect the nitrogen content of the cladding was probably much

higher, because the nitrogen content at the defect would be diluted by the uncontaminated

T-111 around the reaction zone.

The nitrogen pickup by the T-111 at the defect region was probably the result of the

erosion of the UN fuel cylinder by the flowing lithium. The exact mechanism for the

nitrogen pickup in the T-111, however, is not known. One possible explanation is that

small particles of UN eroded from the fuel cylinder contacted the T-111 and reacted.

The resulting nitrogen could have diffused into the T-111, and the free uranium could

have been carried away by the lithium flow. (The reactions between UN and T-111 in

direct contact and the resulting contamination of the T-111 were demonstrated in capsule

tests in the study of ref. 3.)

Tungsten liners. - None of the tungsten liners showed any evidence of any chemical

compatibility problems with the UN fuel. As can be seen in figure 12, the only notice-

able change in the microstructures of the tungsten liners as a result of the long thermal

exposure was some grain growth and the elimination of the visible bond lines between

the layers of tungsten foil.

Uranium mononitride fuel cylinders. - A comparison of the UN microstructures be-

fore and after testing showed no change in general appearance as a result of the expo-

sure in the pumped-lithium loop. The UN used in the first set of specimens is shown in

figure 13 in the untested condition and after 7500 hours in the loop. The UN from the

second set of specimens is shown in figure 14 in the untested condition and after

5000 hours in the loop. As can be seen in both figures, long-time exposure in the loop

at 10400 C (19000 F) had no apparent effect on the density, grain size, and pore struc-

ture of the UN fuel cylinders. The white spots that appear in the pores in two of the

photomicrographs (i. e., figs. 13(b) and 14(d)) are probably the result of reflected light

from the bottom of the pores. The densities and microstructures of both lots of UN were

quite similar except that the grain size (ASTM No. 6) of the UN used in the first set of

specimens (fig. 13) was slightly larger than the grain size (ASTM No. 7) of the UN used

in the second set of specimens (fig. 14). It was shown in the work of reference 14 that

die-pressed UN would have to be sintered at a higher temperature than isostatically

pressed UN in order to achieve similar densities. Thus, it is assumed that the die-
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pressed UN used in specimens LT-1, LT-2, LT-3, and LT-4 was sintered at a higher
temperature than the isostatically pressed UN used in specimens LT-5, LT-6, and LT-7.

(The actual sintering temperatures used for the two lots of UN were not supplied by the
contractor. ) Such a difference in sintering temperature could account for the observed

difference in grain size.

The UN fuel cylinder from specimen LT-6, with an intentional defect, was sectioned

through the eroded area with a water-cooled silicon carbide abrasive saw. The cut sec-

tion then was examined metallographically to determine what effect direct exposure to

flowing lithium had on the UN. The cross section of the UN cylinder adjacent to the

simulated cladding defect is shown in figure 15 in both the unetched and etched condi-

tions. The erosion of UN by the lithium is very apparent in this figure. There is no

evidence, however, of any chemical compatibility problem between the UN and the flow-

ing lithium. It appears in figure 15 that the UN lost from the surface of the fuel cylinder

was the result of simple erosion. It is possible that some surface reactions occurred

between the UN and the lithium, but it is not apparent from the metallography. The

crack in the UN fuel cylinder probably occurred during sectioning of the UN cylinder for

examination and not during the lithium exposure. The low-density region to the left of

the eroded area was probably present in the UN cylinder prior to testing. A similar

low-density area can be seen in the upper left corner of the photomicrograph of the un-

tested UN cylinder from the same lot of material (fig. 14(a)).

Ductility Tests

The ductility of the T-111 cladding from the lithium-exposed specimens and from

the untested control specimens was determined by a ring-flattening test at room temper-

ature. Rings, about 0. 3 centimeter (1/8 in.) wide, were cut from the specimens and

flattened either in a hydraulic compression machine or in a hand-operated vise. In both

cases, the flattening rate (ram speed) was about 2. 5 centimeters per minute (1 in. /min).

As discussed in reference 4, initial flattening tests on the T-111 cladding were con-

ducted on rings cut from the cladding of the two fuel-element specimens exposed in the
lithium loop for 2500 hours (LT-1 and LT-3). All the ring samples for these initial
tests were cut from the specimens with a water-cooled silicon carbide abrasive saw.
Then the cut surfaces were wet-sanded with 400-grit silicon carbide paper. When the

rings from the lithium-exposed specimens were flattened, they fractured in a brittle,
intergranular manner with very little deformation. The ring samples from the untested
control specimens were very ductile and could be flattened completely with no evidence
of any cracking. Hydrogen embrittlement is suggested in reference 4 as a possible ex-
planation for the brittle behavior.
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Later studies conducted on the embrittlement of T-111 (ref. 19) showed that thermal

aging of T-111 at 10400 C (19000 F) for long periods of time greatly increased the sen-

sitivity of T-111 to hydrogen embrittlement. Embrittlement resulted from exposure of

the T-111 to water during cutting and sanding after aging. Testing of the tubing samples

in a moist atmosphere also resulted in embrittlement. In view of these results, the

T-111 rings from the fuel-element specimens exposed for 5000 and 7500 hours in the

lithium loop were prepared and tested in an argon atmosphere without any exposure to a

source of moisture. Rings were cut from the T-111 claddings on specimens LT-2 and

LT-5 with a hand-operated hacksaw (13 teeth/cm (32 teeth/in. )), filed to remove worked

metal, and finally dry-sanded with 400-grit silicon carbide paper. The rings then were

flattened in a vise at room temperature in argon. The rings from both specimens were

very ductile and could be flattened completely, as shown in figure 16. There was no

evidence of any cracking or embrittlement of the T-111. The tungsten liners cracked

and spalled during deformation, but this was expected.

A ring sample from specimen LT-2 also was prepared by the same techniques that

had been used on ring samples from specimens LT-1 and LT-3 (i.e., wet-cutting and

wet-sanding). The ring sample from LT-2 fractured during flattening in air, which

again showed the sensitivity of the aged T-111 to hydrogen embrittlement.

DISCUSSION

The evaluation of the fuel-element specimens exposed in the lithium loop for up to

7500 hours showed that there are no apparent chemical compatibility or corrosion prob-

lems between defect-free fuel-element specimens and flowing lithium. The appearance,
integrity, weight, dimensions, composition, and metallography of the defect-free speci-

mens were essentially unchanged as a result of the lithium exposure. Based on these

results and the assumption that no other reactions would occur with longer exposure

times, the fuel-element specimens should be compatible with the flowing lithium at

10400 C (19000 F) for the desired reactor lifetime goal of 50 000 hours.

A small amount of UN was lost from the fuel cylinder directly exposed through a

simulated cladding defect to flowing lithium for 5000 hours. The UN loss appeared to be

the result of simple erosion. Metallographic examination of the UN cylinder showed no

evidence of any chemical compatibility reactions between the lithium and the UN. The

T-111 cladding near the defect slot, however, was contaminated with nitrogen from the

UN fuel and contained large amounts of precipitates. The fuel loss and the contamina-
tion of the T-111 would probably increase with increasing exposure time. Thus, addi-
tional tests are needed for longer times to investigate the amount of fuel loss and to de-
termine if the contamination of the T-111 at a cladding defect could have adverse effects
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on the ductility and compatibility of the T-111.

Another area that has not been investigated is the effect of irradiation on the com-

patibility of the fuel-element materials with flowing lithium. Therefore, some addi-

tional compatibility tests in an irradiation environment are needed to evaluate fully the

compatibility of the fuel-element materials.

CONCLUSIONS

A total of five simulated nuclear fuel-element specimens (consisting of uranium

mononitride (UN) fuel cylinders clad with tungsten-lined T-111) were exposed in a

pumped-lithium loop at 10400 C (19000 F) for up to 7500 hours. Lithium flow velocity

through the specimen test section was 1. 5 meters per second (5 ft/sec). After exposure,

the specimens were thoroughly evaluated and compared to unexposed control specimens.

The results of this evaluation lead to the following major conclusions:

1. The UN fuel cylinders clad with tungsten-lined T-111 were compatible with flow-

ing lithium at 10400 C (19000 F) for at least 7500 hours. Based upon the compatibility

results after 7500 hours in the lithium loop, no compatibility problems are expected be-

tween fuel elements without defects and flowing lithium at 10400 C (19000 F) for the re-

actor life-time goal of 50 000 hours.

2. Direct exposure of the UN fuel to flowing lithium through a simulated crack in

the T-111 cladding for 5000 hours resulted in only minor fuel loss and reaction with the

T-111 cladding. Longer tests are needed, however, to determine if the rate of fuel loss

and the cladding reaction would increase with increasing exposure time.

3. The T-111 fuel-element cladding was ductile at room temperature after exposure

in flowing lithium for up to 7500 hours at 10400 C (19000 F). The effects of thermal

aging at this temperature, however, made the T-111 sensitive to hydrogen embrittle-

ment during post-test handling, as had been demonstrated in previous studies.

4. The long-time lithium exposure at 10400 C (19000 F) had no significant effects on

the microstructures of the UN fuel and the T-111 cladding.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, November 28, 1973,

502-21.
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TABLE III. - CHEMICAL ANALYSES OF URANIUM MONONITRIDE

FUEL CYLINDERS FROM FUEL-ELEMENT SPECIMENS

BEFORE AND AFTER EXPOSURE IN 10400 C

(19000 F) LITHIUM LOOP

Specimen Exposure Element concentration

time,

hr Uranium, Nitrogen, Oxygen, Carbon,

wt. % wt. % ppm by wt. ppm by wt.

LT-4 0 94.56 5.31 982 208

LT-1 2500 94.47 5.35 1122 192

LT-3 2500 94.40 5.33 983 189

LT-2 7500 94.38 5.38 1100 180

LT-7 0 94.42 5.52 115 265

LT-5 5000 94.41 5.52 95 255

LT-6 5000 94.40 5.52 105 250

TABLE II. - CHEMICAL ANALYSES OF FUEL-ELEMENT CLADDINGS AND END CAPS

BEFORE AND AFTER EXPOSURE IN 10400 C (19000 F) LITHIUM LOOP

Specimen Exposure Element concentration

time,

hr Carbon, Oxygen,a Nitrogen,a Hydrogen,a Tungsten, Hafnium,
ppm by wt. ppm by wt. ppm by wt. ppm by wt. wt. % wt. %

T-111 Cladding

bLT-4 0 61 72 22 1 7.70 2.22
cLT-7 0 65 40 17 <.5 7.91 2.06

LT-1 2500 69 35 20 7.92 2.09

LT-3 2500 71 27 15 7.63 2.20

LT-5 5000 64 25 27 7.75 2.63

LT-6 5000 57 13 25 7.70 2.52

LT-2 7500 57 21 40 7.64 2.72

T-111 end caps
d

bLT-4 0 24 68 12 1 7.51 2.19
cLT-7 0 50 47 10 <.5 7.54 1.92

LT-1 2500 53 47 10 7.89 2.14

LT-3 2500 43 45 10 7.55 2.02

LT-5 5000 32 35 16 7.71 2.23

LT-6 5000 44 28 11 7.86 2.34

LT-2 7500 52 40 16 7.86 2.37

aAverage of duplicate analyses.
bControl specimen for LT-1, LT-2, and LT-3.
cControl specimen for LT-5 and LT-6.
dCombined average analyses of male and female end caps.
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TABLE I. - WEIGHTS OF FUEL-ELEMENT SPECIMENS

BEFORE AND AFTER EXPOSURE IN

10400 C (19000 F) LITHIUM LOOP

Specimen Exposure Weight, g Weight change, g
time,

hr Before test After test

LT-4 0 135.7926 -------- -------

LT-7 0 133.6238 -------- -------

LT-1 2500 135. 9871 135. 9901 +0. 0030
LT-3 2500 135. 5784 135. 5817 +. 0033
LT-5 5000 133.5430 133.5417 -. 0013
LT-6 5000 134.3446 134.3313 -. 0133

aLT-2 2500 135.2545 135.2524 -. 0021
LT-2 7500 135. 2545 135. 2519 -. 0026

aSpecimen removed from loop and weighed after 2500 hr.

LOOP SCHEMATIC FUEL-ELEMENT
TEST SECTION

TENSILE SPECIMENS

-UN FUEL

FUEL-ELEMENT -TUNGSTEN LINER

1040P C -TZM INSERT
(1900o F)

CORROSION
SPECIMEN -- T-111 CLADDING
ASSEMBLY

HEATER

10000 C
(1800o F)

-T-111 FLOW
LITHIUM FLOW TUBE

EM PUMP

CS-56133
-- LITHIUM FLOW

Figure 1. - Schematic drawing of 10400 C (19000 F) lithium loop and fuel-element test section.
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r T-1ll cladding (o. d., 1. 9 (0. 750);
I wall thickness, 0. 1 (0.040))

Dished washer; thickness, thickness 0.1(0.040))
0.025 (0. 010)-

\ Tungsten washers; / rTungsten liner
\ thickness, 0.025 / (thickness, 0.013
\\ (0. 010) / / (0.005))

iL (  Male end Cap (T-111)
Female end cap (T-11) Male end Cap T-ll)

UN fuel cylinder0.
(0.406) (0. 280)

(0. 845)

3. 30 (1. 30)

4.70 (1. 85)

Figure 2. - Design of fuel-element specimens used in 1040P C (19000 F)
lithium-loop test. (Dimensions in centimeters (in.).)

,~.., Tungsten disks

-- Unfuel cylinder

Sq .- Dished washers

\-T;111 cladding

/ Tungsten liner

'i Machined slot T-111 end cap(Simulated cladding
defect) C-70-1281

Figure 3. - Components for typical fuel-element specimen (LT-6) prior to assembly.
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LT-1 LT-3

(a) Exposed 2500 hours.

LT-5 LT-6

(b) Exposed 5000 hours.

::: 2.5 cm

CS-59013

(c) Exposed 7500 hours; LT-2.

Figure 4. - Fuel-element specimens after exposure in 1040 - C. (19000 F) lithium loop.
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C-70-2902

Figure 5. - Fuel-element specimen LT-1 disassembled after 2500 hours in 10400 C (19000 F)
lithium loop.

- Cladding

Region of UN
fuel adjacent
to cladding
defect

C-71-2173

Figure 6. - Fuel-element specimen LT-6 disassembled after 5000 hours in 1040" C (19000 F)

lithium loop. Note cladding defect and discolored area on uranium mononitride fuel

cylinder.
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Direction of
lithium flow

adjacent
to cladding
defect

Figure 7. - Eroded area on uranium mononitride cylinder from specimen LT-6 after 5000 hours
in 10400 C (190 0 0 F) lithium loop.
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Figure 9. - End cap of fuel-element specimen LT-3 after 2500 hours in 10400 C (19000 F)
lithium loop. Note bands of precipitates and precipitates in grain boundaries. Etchant:
30 grams of ammonium bifluoride, 50 cubic centimeters of nitric acid, and 20 cubic
centimeters of water. X500.
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Inside Outside
surface (a) X100. surface

Inside
surface (b) X500.

Figure 10. - Longitudinal section of T-111 cladding from fuel-element specimen LT-2
after 7500 hours in 10400 C (19000 F) lithium loop. Note tungsten-rich layer on
inside surface of cladding. Etchant: 30 grams of ammonium bifluoride, 50 cubic
centimeters of nitric acid, and 20 cubic centimeters of water.
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(a) LT-7; untested; unetched. (b) LT-7; untested; etched.

(c) LT-6; exposed 5000 hours; unetched. (d) LT-6; exposed 5000 hours; etched.

Figure 11. - Microstructures of defect region in T-111 cladding of fuel-element specimens LT-7, untested, and LT-6, exposed 5000 hours in
104000 (19000 F) lithium loop. Etchant: 30 grams of ammonium bifluoride, 50 cubic centimeters of nitric acid, and 20 cubic centimeters
of water. X100.
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(a) LT-4; untested.

(b) LT-2; exposed 7500 hours.

Figure 12. - Comparison of cross section of tungsten liners in untested condi-
tion and after 7500 hours in 104000 (19000 F) lithium loop. Etchant: 3
parts lactic acid, 2 parts nitric acid, and 1 part hydrofluoric acid. X250.
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(a) LT-4; untested; X100. (b) LT-4; untested; X500.

(c) LT-2; exposed 7500 hours; X100. (d) LT-2; exposed 7500 hours; X500.

Figure 13. - Comparison of uranium mononitride fuel microstructures in untested condition and after 7500 hours in 10400 C (19000 F) lithium loop.
Etchant: 60 cubic centimeters of acid, 24 cubic centimeters of nitric acid, and 2 cubic centimeters of hydrofluoric acid.
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(a) LT-7; untested; X100. (b) LT-7; untested; X500.

(c) LT-6; exposed 5000 hours; X100. (d) LT-6; exposed 5000 hours; X500.

Figure 14. - Comparison of uranium mononitride fuel microstructures from untested fuel-element specimen LT-7 and from fuel-element specimen LT-6,
with intentional defect, exposed for 5000 hours in 104000C (19000 F) lithium loop. Etchant: 60 cubic centimeters of lactic acid, 24 cubic centi-
meters of nitric acid, and 2 cubic centimeters of hydrofluoric acid.
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(a) Unetched.

(b) Etched.

Figure 15. - Uranium mononitride fuel microstructures in immediate area of cladding
defect in fuel-element specimen LT-6 after 5000 hours in 10400 C (19000 F)
lithium loop. Etchant: 60 cubic centimeters of lactic acid, 24 cubic centimeters
of nitric acid, and 2 cubic centimeters of hydrofluoric acid. X100.
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SLT-5; exposed 5000 hr

LT-2; exposed 7500 hr

Figure 16. - Results of tube flattening tests conducted on T-111 claddings from
fuel-element specimens LT-5 and LT-2. Test rings prepared and tested in

argon atmosphere; both rings flattened completely without cracking.
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