

RECEIVED
NASA STI FACILITY

Imperial College

Department of Computing and Control

ON SPYERES

R.W. BROCKETT

[^0]Lie Theory and Control Systems Defined on Spheres ${ }^{\dagger}$

R.W. Brockett*

Abstract

Abstract

We show in this paper that in constructing a theory for the most elementary class of control problems defined on spheres, some results from lie theory play a natural role. In particular to understand controllability, optimal control, and certain properifes of stochastic equations, Lie theoretic ideas are needed. The framework considered here is probably the most natural departure from the usual linear system/ vector space problems which have dominated the control systems ifterature. For this reason our results are compared with those previously avallable for the finite dimensional vector space case.

[^1]
1. Introduction

Specific results about control systems whose state spaces are spheres have been.useful in understanding problems in energy conversion, controlled rigid body dynamics, etc. Some examples are mentioned in our carlier paper [1]. Here we work out in more detail; and in greater generality, the theory for a class of problems of this type and compare out results with the case where the state space is a vector space. To carry out this program requires some results from Lie theory, Lie groups acting on spheres, etc. There has been no attempt here to discuss the most general setting in which techniques which we use are applicable. Instead we have taken the sphere problems as a model and have studied a range of control-theoretic questions in that setting. A number of possible generalizations will be apparent.

To begin with we mention some well known facts about linear system theory. We do this to make the paper a little more accessible to those not familiar with control problems and to sensitize the reader to certain issues importart in control. For a more complete account and references to the ilterature one can consule [2] for the deterministic results and [3] for the stochastic results.

Inear system theory deals with the pair of equations

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t) ; y(t)=C x(t) \tag{1.1}
\end{equation*}
$$

where \dot{x} denotes a time derivative. It is assumed that $x(t) \varepsilon \pi^{n}, u(i) \varepsilon \pi^{m}{ }^{m}$ and $y(t) \in \mathbb{R}^{p}$. For simplicity we take A, B, C to be constant matrices. One calls u the control, x the state and y the output. The theory of inear
system fis extensive but for our present purposes we point out only the following five results.

1) (1.1) is said to be controllable if for every x_{0} and \dot{x}_{1} in \mathbb{R}^{n} and evary $t_{1}>0$ there exists a piecewise continuous control $u(\cdot)$ such that if $x(0)=x_{0}$ then $x\left(t_{1}\right)=x_{1}$. A necessary and sufficient condicion for controllability is that $\operatorname{Rank}\left(B, A J, \ldots A^{n-1} B\right)=n$ where, indicates a column partition.

1i) (1.1) is said to be observable if for every $x_{1} \nmid x_{2}$ and every ${ }^{\circ} 1>0$ the outputs corresponding to x_{1} and x_{2} differ on the interval [$0, t_{1}$ I. A necessary and sufficient condition for obseryability is that rank ($C_{;} C A ; \ldots C A^{n-1}$) $=n$ where ; indicates a rov partition'.
iii) If (1.1) is controllable then for every given x_{0} and x_{1} in \mathbb{R}^{n} and every $t_{1}>0$ there exists a plecewise continuous control u defined on $\left[0, t_{1} I\right.$ which transfers the state from x_{0} at $t=0$ to x_{1} at $t=t_{1}$ and minimizes

$$
\begin{equation*}
n(t)=\int_{0}^{t_{1}} u^{\prime}(t) u(t) d t \tag{1.2}
\end{equation*}
$$

relative to all other piecewise continuous controls which accomplish the same transfer.
iv) If therc exists a linear feedback control law $u=F x$ such that $\dot{x}=(A+B F) x$ has a null solution which is asymptoticaily stable then there exists a control law u. Fx such that $\lim _{t \rightarrow \infty} x(t)=0$ and the functional.

$$
\eta=\int_{0}^{\infty} u^{\prime}(t) u(t)+y^{\prime}(t) y(t) d t
$$

is minimized by setting $u(t)=\operatorname{Kx}(t)$.
v) If (1.1) is controllable and if the differential equation $\dot{x}=A x$ is asymptotically stable then the associated stochastic equation (for notation see [3]).

$$
\begin{equation*}
d x(t)=\dot{A x}(t) d t+B d w(t) \tag{i.3}
\end{equation*}
$$

has a unique invariant Gaussian measure which has zero mean and variance Q satisfying

$$
Q A+A^{\prime} Q=-E B^{\prime}
$$

In this paper we establish analogs for each of these results for systems of the type

$$
\begin{equation*}
\dot{x}(t)=\left(A+\sum_{i=1}^{m} u_{i}(t) B_{i}\right) x(t) ; y(t)=C x(t) \tag{1,5}
\end{equation*}
$$

where $A, B_{1}, P_{2}, \ldots, B_{\text {m }}$ are skew symmetric, matrices and the system can be thought of as evolving on the sphere $\|x(r)\|=\|x(0)\|$.

One significant point in the in near theory is that the matrix B is generally not invertible and cases for which it is invertible are so infrequent as to be virtually without interest. If B is invertible then by an appropriate choice of basis equation (1.1) becomes

$$
\begin{equation*}
\dot{x}(t)=A x(t)+u(t) \tag{1.6}
\end{equation*}
$$

and controllability is automatic. Moreover, in this case problems iii) and iv) are easily reduced to variational problems of the classical type

$$
\begin{equation*}
\dot{n}=\int_{0}^{t_{1}} L(x, \dot{x}) d t \tag{1.7}
\end{equation*}
$$

With $!$ quadratic in x and \dot{x} and $L_{\dot{x} \dot{x}}$ positive definite. Control theory works with the more general "degenerate" case where $L_{\dot{x} \dot{x}}$ is only nonnegative definite but certain constraints are in effect. ...If the above integral is
thought of as the action integral in a mechanics problem then the case treated in control theory allow for the possibility of certain zero masses provided there are appropriate linear constraints between position
and velocity. It can also be thought of as a limiting case of an unionstrained dynamical problem where certain masses and associated energies go to infinity. \because 2 his second interpretation is generally more useful. Remarks of the same type apply to equation (1.3) where existence of a smooth transition density is well known if B is invertible whereas the same is true, but for rather more subtle reasons, if we assume controllability instead of invertibility of B.
\qquad 0 arks
\qquad

2. Controllability

One of the main areas of applicabllity of lie theory in control has been that of detemining the set of points reachable along solution curves of $\dot{x}(t)=f(x(t), u(t), t)$ for the set of all piecewise continuous controis $u(\cdot)$. For studics of this kind see references [4-7]. If the control equations are of the form

$$
\begin{equation*}
\dot{x}(t)=\left(A+\sum_{i=i}^{m} u_{i}(t) B_{i}\right) x(t) ; x(t) \varepsilon \mathbb{R}^{n} \tag{2,1}
\end{equation*}
$$

then the system typically evolves on a manifold in π^{n}. The determination of the set of points reachable from a given point x_{0} can be accomplished by the detemination of the set of matrices reachable from the identity for the matrix equation

$$
\begin{equation*}
\dot{x}(t)=\left(A+\sum_{i=1}^{m} u_{i}(t) B_{i}\right) X(t) ; X(0)=I \tag{2,2}
\end{equation*}
$$

and then letting this set act on x_{0} via crdinary watrix-vector multipifation. Equation (2.2) can be thought of as defining a control problem on a matrix LiE group. The question of determining what matrices are reachable from the identity along solutions of (2.2) has been the subject of a number of papers [1, 7-10]. Following Jurdjevic and Sussmanin; we term systems of the form of (2.i) right invariant. This is appropriate because the vector fields defined on the $G \ell(n)$ by the right side of (2.2) are invariant under the trans-: lation defined by right multiplication with an clement of $G \ell(n)$. We will say that equaticn (2.2) is controllable on a group \mathscr{G} if any two points in \mathscr{C} can be joined by a solution curve generated by some plecewise continuous control $u(\cdot)$.

Suppose that Λ and $B_{1}, B_{2}, \ldots, B_{m}$ are all nkew symmetric. Then regardless of the choice of u the solutions of equation (2,1) remain on the sphere defined by $\|x(t)\|=\|x(0)\|$. We will say that the system (2.1) is controllable on the sphere if any two points on the sphere be foined by a solution cuave generated by some piecewise continuous curve $u(:)$. Phrased another way, the system is controllable if the set of matrices reachable from the identity along solutions of (2.2) act transitively on s^{n-1}. From earliex results [10] we know that since the motion is confined to a subgroup of $S O(n)$ the set of matrices reachable from I is the matrix Lie group consisting of all the matrices which can be expressed as products of the fom $\exp \Pi_{1} \exp H_{2}, \ldots \exp H_{n}$ where H_{1}, $\dot{H}_{2}, \ldots, H_{n}$ belong to the Lie algebra generated by $A_{1} B_{1}, B_{2}, \ldots B_{n}$.

Now of course the orthogonal group $S O(n)$ acts transitively on S^{n-1} so that if the algebra generated by $A, B_{1}, B_{2}, \ldots, B_{\text {II }}$ is the full set of skew symmetric matrices then the system (2.1) is controllabie on $\mathrm{s}^{\mathrm{n}-1}$. However there are certain suhgroups of $S O(n)$ which act transitively on s^{n-1} as well. The real compact forms of the classical lic groups are all candidates. The results are well known [11] but we repeat them inere. For example, it is clear that both the full unitary group and the special unitary group of dimension n act transitively on the set of complex n-vectors. whose Hermetian length is one. But this set is just a set of vectors with components $\left(x_{i}+\sqrt{-1} y_{i}\right)$ such that

$$
\begin{equation*}
\sum_{i=1}^{n}\left(x_{i}^{2}+y_{i}^{2}\right)=1 \tag{2.3}
\end{equation*}
$$

which is a $2 n-1$ dimensional sphere. Thus by defining the realification [12]
of the unftary algebras by the Ife algebra homomorphism

$$
\longrightarrow\left[\begin{array}{cc}
\operatorname{ReB} & \operatorname{ImB} \tag{2,4}\\
\operatorname{ImB} & \operatorname{ReB}
\end{array}\right]
$$

ve obtain a set of real matrices whose associated group acts transitively on $s^{2 n-1}$. The real compact form of C_{n} is the intersection of special unitary group and the symplectic groups. Naturally this representation is in terms of matrices of even dimension so that they can act on even dimensional complex vectors only. Thus, by analogy with the unitary case, the real compact forr of C_{n} acts on the sphere of dimension $s^{4 n-1}$. This action is known to be transitive and of course we can add to the algebra real multiples of $\sqrt{-1} I$ to get the "full quaterion-unitary group" which acts transitively as well. These four cases, each valid for all integer n, together with three particular ores account fur all possibilities. The particular cases may be explained as follows. The exceptional algcbra G_{2} admits a 7 dimensional skewsymetric representation whose exponential acts transitively on s^{6}. The spin representation of $S O(7)$ is 8 dimensional and it acts transitiveily on S^{7}. The spin representation of $S O(9)$ is 16 dimensional and it acts transitively on S^{15}. With this explanation we can state the following result.
Theorem 1: Let $A, B_{1}, \ldots B_{m}$ be a collection of n by n skew symetric
matrices. The control system

$$
\begin{equation*}
\dot{x}(t)=\left(A+\sum_{i=1}^{m} u_{i}(t) B_{i}\right) x(t) \tag{2.5}
\end{equation*}
$$

is controllable on S^{n-1} if the algebra gencrated by $A, B_{1}, B_{2}, \ldots, B_{m}$ is
i) $S O(n)$ for $n=0 \bmod 2$
$\therefore \therefore$ 11) $S O(n)$ er the realification of $S U(n / 2)$ or $U(n)$ for $n=1 \bmod (2)$
11i) The realification of $S p(n / 2)$ for $n=1 \bmod (4)$
iv) G_{2} if $n=6, \operatorname{Spin}(8)$ if $n=7$ or $\operatorname{Spin}(16)$ if $n=15$

Moreover, if the Lie algebra is not one of these cases the system (2.8) is not controllabic.

If the system is not controllable on S^{n-1} it is sometimes of interest to compute exactly what points can be reached from a given initial state. The determination of what points belong to this set is facilitated by
a knowledge of the structure of the representation defined by the matrices In the algebra generated by $A, B_{1}, B_{2}, \ldots B_{m}$. If this representation is not irredacible then its reduction is clearly the first etep in the deternination of the reachable set. The properties of the irreducible pieces may reveal the form: of the reachable set in a straightforward way. For example, if the evolution equation can be decomposed as

$$
\begin{equation*}
\ddot{x}=\left[I \otimes A^{1}+A^{2} \otimes I+\sum_{i=1}^{m} u_{i}\left(I \otimes B_{i}^{1}+B_{i}^{2} \otimes I\right)\right] x(t) \tag{2.6}
\end{equation*}
$$

then the Kronecker product of the reachable group for

$$
\begin{equation*}
\dot{X}(t)=\left(A^{1}+\sum_{i=1}^{m} u_{i}(t) B_{i}^{1}\right) X(t) \tag{2.7}
\end{equation*}
$$

and the reachable group for

$$
\begin{equation*}
\dot{x}(t)=\left(\Lambda^{2}+\sum_{i=1}^{m} u_{i}(t) B_{i}^{2}\right) x(t) \tag{2.8}
\end{equation*}
$$

contains the reachable group for equation (2.2). The reachable group will not in general, simply be the Kronecker product of the reachable groups unless the effects of the u 's are decoupled.

For the innear evolution equation (1.1) it happens that if it is possible to transfer any.state to any other state then this transfer can be done in arbitrarily small time. This is not the case for systems defined by
equation (2.1). Jurdjevic and Sussmann [7] give an example of a system defined on S^{2} which is controilable but certain transfers cannot be made in less than 1 unit of time. Thus if (1.1) is controllable on $\mathrm{S}^{\text {n }}$ the strongest statement we can make on the basis of the present analysis is that for t_{1} sufficiently large every state can be transferred to every other state in t_{1} units of time. Estimates on this time have not yet been worked out.

In the vector space case controllability is closely related to the concept of observability as mentioned in the introduction. In the present setting this is not the case at all. We say that the system

$$
\begin{equation*}
\dot{x}(t)=\left(A+\sum_{i=1}^{m} u_{i}(t) B_{q}\right) x(t) ; y(t)=\dot{C} x(t) \tag{2.9}
\end{equation*}
$$

is observable on $\mathrm{S}^{\mathrm{n}-1}$ if no two distinct initial states on S^{n}-1 give rise to the same response y for all controls $u(\cdot)$. The following theorem gives a necessary and sufficient condition for observability.

Theorem 2: Let $A, B_{1}, B_{2}, \ldots, B_{m}$ be a collection of skew symmetric
matrices and let c be a unit vector. The control system

$$
\dot{x}(t)=\left(A+\sum_{i=1}^{m} u_{i}(t) B_{i}\right) x(t) ; y(t)=c x(t)
$$

is observable on S^{n-1} if and only if the set of matrices $\left\{A, B_{1}, B_{2}, \ldots B_{m}, c c^{\prime}\right\}$.. are irreducible.

For a proof of this thecrem and more gencral results of this type see [13].

3. Optimal Control

Consider again the evolution equation (2.2) defined on matrix group \mathscr{G}. Let there be given a time $t_{1}>0$ and boundary conditions of the form $X(0)=X_{0} ; X\left(t_{1}\right)=X_{1}$. Suppose that in addition there Is given a functional which is of the action type

$$
\begin{equation*}
n_{1}=\frac{1}{2} \int_{t_{0}}^{t_{1}} \sum_{i=1}^{m} u_{i}^{2}(t) d t \tag{3.1}
\end{equation*}
$$

as opposed to the geodesic type

$$
\begin{equation*}
n_{i}=\int_{t_{0}}^{t_{1}}\left(\sum_{1=1}^{m} u_{i}^{2}(t)\right)^{1 / 2} d t \tag{3.2}
\end{equation*}
$$

Our problem is to determine if there exists a control u(.) such that the boundary conditions are met and the given functional is minimized and, If ouch a control cxists, to characterize it. Just as with controllability, there is an obvious connection between problems defined on a group and problems defined on a manifold on which that group acts. This would no longer be the casc if η dependend on x in a general way.

We wil? use the formalism of the maxinum principle of Pontryagin [14] ratiaer than the calculus of variations to attack this problem because it handies the degeneracy which is buile into the problem in a natural way Applied to the present problem, Pontryagin's maximum pincipie asserts that If $u(\cdot)$ is an optimizing control then there exists a matrix F such that
and H defined by

$$
\begin{equation*}
H(P, X, u)=\langle P, A X\rangle+\sum_{i=1}^{m} u_{i}\left\langle P, B_{i} X\right\rangle+\sum_{i=1}^{m} \frac{1}{2} u_{i}^{2} \tag{3.4}
\end{equation*}
$$

is minimized with respect to u by the optimal control. Thus we have the optimal control given by

$$
\begin{equation*}
u_{1}(t)=\left\langle-P(t), B_{1} X(t)\right\rangle \tag{3.5}
\end{equation*}
$$

This choice of ugives a pair of differential equations with split boundary: conditions

$$
\frac{d}{d t}\left[\begin{array}{l}
X(t) \tag{3.6}\\
P(t)
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
0 & -A^{\prime}
\end{array}\right]\left[\begin{array}{l}
X(t) \\
P(t)
\end{array}\right]+\sum_{i=1}^{m}\left\langle P_{, ~} B_{i} X\right\rangle\left[\begin{array}{cc}
B_{1} & 0 \\
0 & -B_{i}^{\prime}
\end{array}\right]\left[\begin{array}{l}
X(t) \\
P(t)
\end{array}\right]
$$

The problem can be reduced to a single quadratic equation with spilt boundary conditions by introducing $K=X P^{\prime}$. An easy calculation shows that

$$
\dot{X}(t)=A K(t)+K(t) A^{\prime}-\sum_{i=1}^{m}\left\langle\dot{B}_{1}^{\prime}, K(t)\right\rangle\left(B_{i} K(t)+K(t) B_{i}^{\prime}\right)
$$

So far everything is valid for an arbitrary subgroup of $G l(n)$. If
$A, B_{1}, B_{2}, \ldots \ldots B_{m}$ are self contragredient then a simplification occurs. In that case any solution of the differential equation for P can be expressed in terms of a solution of the differential equation for x with nonsingular boundary conditions; fe. $P(t)=N X(t) M$ for some constant matrices H and $\mathrm{N}_{\text {. }}$ Specializing to the skew symuetric case gives the following result. Theorem 4: Suppose that $A, B_{1}, B_{2}, \ldots B_{m}$ are skew symetric n by n matrices and suppose that there exists a piecewise continuous control $u(\cdot)$ which transfers the state of the matrix system

$$
\begin{equation*}
\dot{X}(t)=\left(A+\sum_{i=1}^{m} u_{i}(t) B_{i}\right) X(t) \tag{3.8}
\end{equation*}
$$

from X_{0} at $t_{0}=0$ to X_{1} at $t t_{i}>0_{0}$ Then there exists constant matrices M and $I f$ such that the solution of

$$
\begin{equation*}
\ddot{x}(t)=\left(A+\sum_{1=1}^{m}\left\langle B_{1}, x(t) M X^{\prime}(t) N B_{1}\right) x(t)\right\rangle ; x(0)=x_{0} \tag{3.9}
\end{equation*}
$$

passes through X_{1} at $t=t_{1}$. Moreover, there exists one such pair M, N which minimizes η_{1} relative to any other continuous u(.) which steers the system to X_{1} from X_{0} in the same period of time.

Proof: That there exists an optimal control follows from theorem 6 of Cesari [15]. The rest follows from the maximum principle as discussed above.

There is an alternative point of view available for these problems which makes a Ifttle closer contact with both physics and fie theory but which. is not so useful here. Consider the right-invariant control equation: in $S O(n)$ with control Ω

$$
\begin{equation*}
\dot{E}(t)=\Omega(t) x(t) ; X(0)=x_{0} \tag{3.10}
\end{equation*}
$$

Let the problem be to pick Ω in the space of skew symmetric matrices such that: $X\left(L_{1}\right)=I_{1}$ and the trace form

$$
\begin{equation*}
\eta=\int_{0}^{t}-\operatorname{tr} \cdot\left(I^{-1} \Omega\right)^{2} d t \tag{3.11}
\end{equation*}
$$

is minimized. Elementary variational arguments with due regard for the admissibility of variations lead to the Eulcr equation

$$
\begin{equation*}
\dot{\Omega}=\Omega I \Omega I^{-1}-I^{-1} \Omega I \Omega \tag{3.12}
\end{equation*}
$$

In $S O$ (3) this matrix equation is equivalent to the familiar Euler equations for a rigic body

$$
\begin{align*}
& I_{1} \dot{\omega}_{1}=\left(I_{2}-I_{3}\right) \omega_{2} \dot{\omega}_{3} \tag{3.13}\\
& I_{2} \dot{\omega}_{2}=\left(I_{3}-I_{1}\right) \omega_{1} \omega_{3} \\
& I_{3} \dot{\omega}_{3}=\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}
\end{align*}
$$

which, after all, come from minimizing the action integral on $\mathrm{SO}(3)$.
(Note that the kinetic energy of a rigid body can be expressed by the trace form (det I) $\operatorname{tr}\left(I^{-1} \Omega\right)^{2}$ where I is the usual inertia tensor. See [2] page 64. Incidentally, this also serves to define the degree of difficulty of actually solving the control problem mentioned above. Since it is well known that the solution of the Euler equations generally involves elliptic functions, the solution of the optimal control problems cannot be expressed in terms of elementary functions except in special cases.

Ey far the simplest special case on $S O(n)$ occurs when η_{1} is the negative of the integral of the Killing form. That is given $X(0)$ and $X(1)$ and given the evolution equation

$$
\dot{X}(t)=\sum_{i=1}^{n(n-1) / 2} u_{1}(t) B_{i} X(\dot{t}) ; X \in S O(n)
$$

where $E_{i}=-B_{i}^{\prime}$ and for all 1 and j

$$
\begin{equation*}
\left\langle B_{i}, B_{j}\right\rangle=t r B_{i} B_{i}^{\prime}=\delta_{I j} \tag{3.15}
\end{equation*}
$$

one finds that the optimal trajectory is

$$
\begin{equation*}
X(t)=e^{? t} X(0) \tag{3.16}
\end{equation*}
$$

where Ω is the solution of $e^{\Omega}=x(1) X^{-1}(\eta)$ which has the smallest Frobenius norm.

We turn :ov to applying the above results to the problem of optimizing trajectories on sphares. Note that trajectories on spheres can be optimized for fixed end points by solving an associated right invariant group problea and then picking the minimizing elcment in tile group for
transferring x_{0} to x_{1}. The following theorem expresses this.
Theorem 5: Let $A, B_{1}, B_{2}, \ldots, B_{m}$ be skew symactric matrices. Suppose that the system

$$
\begin{equation*}
\dot{x}(t)=\left(\Lambda+\sum_{1=1}^{n} u_{i}(t) B_{1}\right) x(t) \tag{3.17}
\end{equation*}
$$

is controllable on S^{n}. Then given a sufficiently large time $t_{1}>0$ and given points x_{0} and x_{1} in s^{n-1}, there exists a control which transfers the system from x_{0} at $t=0$ to x_{1} at $t=t_{1}$ and minimizes

$$
\begin{equation*}
n=\int_{0}^{t} 1 u^{\prime}(t) u(t) d t \tag{3.18}
\end{equation*}
$$

Mor:əver, there exists a matrix K_{0} such that the optimal control is given by $u_{i}(t)=\left\langle K(v), B_{i}\right\rangle$ where K is defined by the matrix differential equation

$$
\begin{equation*}
\dot{K}(t)=[A, K(t)]+\sum_{i=1}^{m}\left\langle K(t), B_{i}\right\rangle\left[F(t), B_{i}\right] ; K(0)=K_{0} \tag{3.19}
\end{equation*}
$$

We complete this section on optimal control with a result of the type which piays a najor role in inear system theory in connection with the ;eyulator problem.

Theorem 6: Let A and B be n by n skew symmetric matrices and consider the system

$$
\begin{equation*}
\dot{x}(t)=\dot{A} x(t)+u(t) B x(t) \tag{3.20}
\end{equation*}
$$

Let a be a unit vector in the null space of A such that A and Ba's' are a pair of matrices which act irreducibly on the orthogonal complement of the one dimensional subspace defined by a. Then the control law $u(t)=$ $a^{t} B x(t)$ steers the system from any initial state $x_{0},-a$ to a and minimizes the integral

$$
n=\int_{0}^{\infty} u^{2}(t)+\left[a^{\prime} B x(t)\right]^{2} d t
$$

relative to any other continuous control u(.).
Proof: We can write η as

$$
\eta=\int_{0}^{\infty} u^{2}(t)-2 a^{\prime} \dot{x}(t)+\left[a^{\prime} B x(t)\right]^{2} d t+\left.2 a^{\prime} x(t)\right|_{0} ^{\infty}
$$

since $A a=0$ we have

$$
\eta=\int_{0}^{\infty}\left(u(t)-a^{\prime} B x(t)\right)^{2} d t+\left.2 a^{\prime} x(t)\right|_{0} ^{\infty}
$$

Thus if the control law $u(t)=a^{\prime} B x(t)$ actually drives the state x to
a then it is optimal. However, observing that $a^{\prime} x(t)$ has a derivative along the given solution which is equal to $-\left[a^{\prime} B x(t)\right]^{2}$, we see by LaSalle's theoren (see e.g. [2]) that the solution $x=$ a can fail to be stable if and only if $a^{\prime} D e^{A t} x$ vanishes identically for some $x \neq \pm$. By looking at the derivatives at $t=0$ we see that this can happen if and only if ($\mathrm{Ba}, \mathrm{ABa}, \ldots \mathrm{A}^{\mathrm{n}-1_{B a} \text {) fails to spar the orthogonal complement of the one }}$ dimensional subspace defined by a.

4. Stochastic Differential Equations

We consider now a third aspect of control theory on spheres. This has to do with the analog of property (v) mentioned in the introduction. What we show is that controllability.implies the existance of a unique invariant measure for a stochastic equation on S^{n-1}. We use Ito notation for stochastic differential equations. Wong [3] can be consulted for an explanation of both the mathematics and the notation.

Let $w_{1}, w_{2}, \ldots, w_{m}$ denote independent Wiener (Brownian motion) processes of unity variance. In giving a precise meaning to differential equations in which something like "white noise" appea:s K. Ito [16] invented what has proven to be a very successful calculus' in which the standard differertiation rule is significantly modified insofar as differentials of Wiener processes are concerned. In this calculus $\mathrm{dw}_{1} \mathrm{dw}_{\mathrm{j}}=$ $\delta_{i f} d t$, a first order tem; $d v_{1} d t$, and $(d t)^{2}$ are both higher than first order. We discuss the implication of this in one important special case. If x and y are vectors satisfying the Ito differential equations

$$
\begin{align*}
& d x(t)=A x(t) d t+B x(t) d w(t) \tag{4.1}\\
& d y(t)=F x(t) d t+G y(t) d w(t) \tag{4.2}
\end{align*}
$$

Then $z(t)=x(t) y^{\prime}(t)$ satisfies the Ito equation

$$
\begin{equation*}
d u(t)=\left(A z(t)+z(t) F^{\prime}+B z(t) G\right) d t+(B z(t)+z(t) G) d w \tag{4.3}
\end{equation*}
$$

The only other fact we noed about lo equations concerns the associated mean equation. If x and y satisfy equations (4.1) and (4.2) then $\bar{x}(t)=\mathcal{E} x(t)$ and $\bar{y}(t)=\mathcal{E} y(t)$ satisfy the ordinary differential equation

$$
\begin{align*}
& \frac{d}{d t} \bar{x}(t)=\overline{\Lambda x}(t) \tag{4.4}\\
& \frac{d}{d t} \bar{y}(t)=\overline{F y}(t) \tag{4.5}
\end{align*}
$$

We will see that these two results permit the derivation of equations for all moments and imply that the moment equations are decoupled from each other.

Recall that the number of linearly indepencent degree p forms in a variables is given by

$$
\begin{equation*}
N(n, p)=\binom{n+p-1}{p} \tag{4.6}
\end{equation*}
$$

We can therefore associate with each n tuple ($x_{1}, x_{2}, \ldots, x_{n}$) a $N(n, p)$-tuple $x^{[p]}=\left(x_{1}^{p}, \sqrt{p} x_{1}^{p-1} x_{2}, \ldots, x_{n}^{p}\right)$ where the coefficients are chosen in ouch a : way as to validate the equality

$$
\begin{equation*}
\|x[p]\|^{2}=\|x\|^{2 p} \tag{4.7}
\end{equation*}
$$

It is clear that if x satisfics an ordinary differential equation which is Incear, say

$$
\begin{equation*}
\frac{d}{d t} x(t)=A x(t) \tag{4,8}
\end{equation*}
$$

then $x^{[p]}$ also satisfies a linear differential equation

$$
\begin{equation*}
\frac{d}{d t} x^{[p]}(t)=A^{[p]} x(t) . \tag{4.9}
\end{equation*}
$$

We regard this as a definition of $A^{[p]}$. It is related to the classical idea of an induced representation. Of course if there are controls present a similar set of equations follow; i.c. equation (2.1) implies
$\frac{d}{d t} x^{[p]}(t)=A^{[t]]_{x}\{p]}(t)+\sum_{i=1}^{m} u_{i}(t) B_{i}^{[p]_{2 i}[p]}(t)$
Similar remarks hold for stochastic equations of the type under consideration here, provided suitable allowance is rade for the Ito calculus. Associated with the Ito equation

$$
\begin{equation*}
d x(t)=A x(t) d t+\sum_{i=1}^{m} B_{i} x(t) d w_{i} \tag{4.11}
\end{equation*}
$$

is the family of equations

$$
\begin{equation*}
d x^{[p]}(t)=\left(\left(A-\sum_{i=1}^{m} \frac{1}{2} B_{1}^{2}\right)^{[p]}+\frac{1}{2}\left(B_{1}^{[p]}\right)^{2}\right) x(t) d t+\sum_{1=1}^{m} B_{1}^{[p]} x(t) d w_{1} \tag{4.12}
\end{equation*}
$$

The derivation of this is a diraightforward exercise uging the properties of dw_{1} outlined above. Finally, we have the moment equations associated with (4.11)

$$
\begin{equation*}
d x^{[p]}(t)=\left(\left(A-\sum_{i=1}^{m} \frac{1}{2} B_{i}^{2}\right)^{[p]}+\frac{1}{2}\left(B_{i}^{[p]}\right)^{2}\right) x^{[p]} \tag{4.13}
\end{equation*}
$$

where $\bar{x}^{[p]}(t)=\varepsilon x^{[p]}(t)$. Compare with reference 17.
In tems of the Ito calculus when can the matrix stochastic equation

$$
\begin{equation*}
d X(t)=A X(t) d t+\sum_{1=1}^{m} d w_{1}(t) B_{1} X(t) \tag{4.14}
\end{equation*}
$$

be thought of as evolving the orthogonal group? This will be the case when the associated vector equation (4.11) evolves on the sphere defined by $\|x(t)\|=\|x(0)\|$ for all $x(0)$. Using the facts outined above we see thet $d\left(x^{\prime} x\right)=0$ if and only if for all 1

$$
\begin{equation*}
B_{i}=-B_{i}^{\prime} ; A+\frac{1}{2} B_{i}^{2}=-\left(A+\frac{1}{2} B_{i}^{2}\right)^{\prime} \tag{4.15}
\end{equation*}
$$

Thus these are the conditions under which equation (4.14) evolves in the orthogonal group and the conditions under which (4.11) evolves on the ophere.

It is apparent that the measure assaciated with the uniform density on the sphere is an invariant measure for the process defined by equation (4.11). Since the area of the ($n-1$)-sphere is $2 \pi^{\dot{n} / 2} / r(n / 2)$ the uniform density is

$$
\begin{equation*}
\rho_{0}(x)=r(11 / 2) / 2 \pi^{n / 2} \tag{4.16}
\end{equation*}
$$

The corresponding values of the odd moments are zero by symotry but the cven moments are not. The following theorem shows that all the moments approach the moments associated with a uniform distribution if we have controllability. Incidentally, equation (4.13) provides a means for actually. computing the moments for all time in terms of their values at $t=0$.
Theoren 7: Suppose that $A, B_{1}, B_{2}, \cdots B_{m}$ are all skew symmetric and suppose that

$$
\begin{equation*}
\dot{x}(t)=\left(A+\sum_{i=1}^{m} u_{i}(t) B_{i}\right) x(t) \tag{4.17}
\end{equation*}
$$

is controliable on s^{n-1}. Then the solution of the Ito differential equation defined on the sphere

$$
\begin{equation*}
d x(t)=\left(A-\sum_{i=1}^{m} \frac{1}{2} B_{i}^{2}\right) x(t) d t+\sum_{i=1}^{m} B_{i} x(t) d w_{i} \tag{4.18}
\end{equation*}
$$

is such that all moments appranh the moments associated with a uniform distribution on the $n-1$ sphere as t approaches infinity.
Proof: First of all, note the shift in notation from (4.11) to (4.18). In (4.11) A- $\frac{1}{2} E B_{i}^{2}$ is playing the role played by A alune here. It is not difficult to show that because $A, B_{1}, B_{2}, \ldots B_{m}$ are skew symunetric it follows that $A^{[p]}, B_{1}^{[p]}, B_{2}^{[p]}, \ldots M_{m}^{[p]}$ are also skew symetric. A second observation concems stability. If $A=-A^{\prime}$ and $E_{1}=-B_{i}^{\prime}$ then all solutions of the ordinary differential equation

$$
\begin{equation*}
\dot{x}(t)=\left(A+\sum_{1=1}^{m} \frac{1}{2} B_{1}^{2}\right) x(t) \tag{4.19}
\end{equation*}
$$

are bounded. Moreover, each solution approaches zero as t approaches infinity provided $E_{i} e^{A t} x$ doc:s not vanish identically for any $x \nRightarrow 0$ and there will exist nonzero vectors such that $B_{1} e^{A t} x$ vanishes identically if and only if A and B_{1} can be put in the form

$$
\theta^{\prime} A \theta=\left[\begin{array}{ll}
A_{1} & 0 \tag{4.20}\\
0 & A_{2}
\end{array}\right] \quad \theta^{\prime} B_{1} \theta=\left[\begin{array}{ll}
B_{1} & 0 \\
0 & 0
\end{array}\right]
$$

To prove the first of these facts we notice that since $A=-A^{\prime}$

$$
\begin{equation*}
\frac{d}{d t}\|x(t)\|^{2}=-\sum_{i=1}^{m}\left\|B_{i} x(t)\right\|^{2} \tag{4.21}
\end{equation*}
$$

Thus by LaSalie's theorem (sce e.g. [2]) the solutior efther goes to zero or else there is a solution along which $\left\|B_{1} x(t)\right\|$ vanishes identically for all 1. That solution would have to be of the form $e^{A t} x_{0}{ }^{\circ}$. As for the --conditions on A and B_{1}, they follow from considering the subspace of vectors such that $B_{1} e^{A t} x_{x}$ vanishes, together with its orthogonal complement, making use of the skew symmetry of $A, B_{1}, B_{2}, \ldots B_{m}$.

Clearly controllability implies that all solutions of the mean equation approach zero as t approaches infinity because controllable systems cannot be decomposed as indicated. Lis for the higher moments, we must distinguish between the even and odd cases. For the odd cases if therelis a decomposition then controllability of the equation (4.17) is clearly impossible. For the even momencs, we have in view of the identity $\left\|x^{[p]}\right\|^{2}=\|x\|^{2 p}$, a decomposition of the type given by equation (4.20) but with the zero block in B_{i} being one dimensional. The one dimensional subspace defines the steady state value of the even moments. On the orthogonal complement the equation (4.18) is asymptoticilly stabie. These romarks are related to some well known properties of orthogonal representations of Lie algebras.

1. R.N. Brocketr, "System Theory on Group Manifolds and Coset Spaces," SIMM J. on Control, Vol. 10, No. 2, May 1972, pp. 265-284.
2. R.W. Brockett, Finite Dimensfonal Linear Systems, J. Wiley, New York, 1970.
3. E. Wong, Stochastic Processes in Information and Dynamical Systems, Mchraw-hill, -9:1.
4. R. Hermann, "On the Accessibility Problem in Control Theory," International Sumnosium on Nonlinear Differential Eruetions and International Symposium on Nonlinear Differential Er,urtions an
5. C. Lobry, "Controlabilite des Systems non:Linearies," SIMM J. on Control, 8 (1970), pp. 573-605.
6. G.K. Haynes and H. Hemes, "Nenlinear Controllability via Lie Theory, " SIM J. on Control, 8 (1970), pp. 450-460.
7. J. Kucera, "Solution in Large of Control Problem: $\dot{x}=(A(1-u)+B u) x, "$ Czech. Math. J., 16 (1966), no.-91, pp. 600-623.
8. J. Kucera, "Solution in Large of Control Problem: $\dot{x}=(A u+B u) x, "$ Czech. Math. J., 17 (1967), no. 92, p.p. 91-96.
9. J. Kucera, "On Accessibility of Bilinear Systems," Czech. Math. J., 20, (1970), no. 95, pp. 160-168.
10. V. Jurdjevic and H.J. Sussmann, "Control Systems on Lie Groups," J. Differential Equations, Vol. 12, No. 2, (1972) pp
11. H. Samelson, "Topology of Lie Groups," Bul. American Math. Soc., Vol. 58 (1952), pp. 2-37.
12. H. Sameison, Notes on Lie Alsebras, Van Nestrand Reinhold Co., 1969.
13. R.W. Brockett, "On the Algebraic Structure of Bilinear Systens," Proc. of the Conf. on Variable Structure Systems, Academic Press, $\frac{\text { Proc. of the Conf }}{197.2 \text { (to appear). }}$
14. L.S. Pontryaşin, V. Boltyansł:1i, R. Gamkrelidze, and E. Mishchenko: The Mathematical Theory of Optinal Processes, Interscience Publisisers, Ine Mathematical
15. L. Cesari, "Existence Theorems for Optimal Solutions in Lagrange and Pontryagin Problems," SIAM J. Control $3(1965)$, 475-498.
16. K. Ito, "Stochastic Differential Equations on a Differentiable Manifold," Nagoya Math. J., 1, 35-47 (1950).
17. R.V. Brockett and J.C. Uillems, "Average Value Criteria for Stochastic Stability," proceedines of the IUTAM Sympasium (to appear'in the Springer Verlag Lecture Notes on Mathematics).

[^0]: *R.W. Brockett (Harvard University)
 Publication 72/55
 Department of Computing and Control Imperial College of Science and Technology London SW7 2BT

[^1]: this work was supported in part by the U.S. Office of Naval Research under the Joint Services Electronics Progran by Contract N00014-67-A-. 0298-00n6 and by the National Acronautics and Space Administration under Grant NGR 22-007-172. It was partially written while the author held a Senior Visiting Fellowship at Imperial College, London.
 *ivision of Eugineering and Applied Physics, Harvard University, Canbridge, Mass. 02138.

