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-Lie Theory and Control Systems Defined on Spheres+

-

'R;W. Brockett®

Abstract

ﬁé show iﬁ this paper that in constructiné a ﬁheory for the most

elementary class of control problems defined on spheres, some results
>from Lie theory play a natural role. In particular to understand con~-
trollability, optimal control, and certain properties of etochestic _
equations, Lie theoretic ;deas are needed.. The framework cousidered

here isAprobably the ﬁost natural departure from the usual linear syeﬁem/
'vecter space problems which have dominated the control systems literature.
For this reason our results are comparea with those preQiously available

for the finite dimensional vector space case,
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‘our carlier paper [1].

1. Introduction

Spegifiq resﬁlts about control systems whose state spaces are
spheres have been . useful in undcrstanding problems in energy Eonversion.
controlled rigid body dynamics.. etc. Some ei(’amples are mentioned in
Here weAwork out in more éetail; and in greater
generality, the theory for a class of problems of this type and'compare
out fesults with the case where the state space is a vector space. To
carry out this program reqﬁires gome results from Lie‘tﬂeory, Lie groups
There haé been‘no attempt here to discuss the

acting on spheres, ete.

most general setting in which techniques which we .ugse are applicable.

Instead we have taken the sphere problems as a model and have studied a tange

of control-theoretic questions in that setting. A number of possible
generalizations will be apparent. .

To begin with we méncion some well knownlfacts aﬁout linear system
theory. Wé do this to make the paper a little more accessible to thoée
not familiar with control problems and to sensitize the reader to certain
issues importarnt in control. For % more'complete:account and references
to the literature one éan consult [2] for the deterministic results and
{31 for the stochastic results.

Linear svstem theory deals with the pair of eduations

2(6) = Ax(t) + Bu(t) ; y(t) = Cx(t) gy

where %X denotes a time derivative. It is assumed that x(t) € 1Rn, uli) € 7Rm
and y(t) e'ﬂfp. For simﬂlici:y we take A,B,C to be constant matrices.

One calls u the control, x the state and y the output. The theorv of linear

Ay

g

" minimizes

system £s° extensive but for our present purposes we point out only
" the following five results.

) (1.1 is said to be controllable if for every X, and il in 7RP

" and every ty ">  there exists a piccewise continuous control u(+) such

tha: 1f x(0) = xo then x(t ) =% A necessary and sufficient condition
for controllability is that Rank(B, AB,...A lB) = n vhere , indicates a

column.partition.

11y (Q.1) is said to be observable i1f for every %y ¢ Xy and every

. tl > 0 the outputs corresponding to Xy and %, differ on the interval

[0 tll. A necessary and sufficient concition for observability is that
rank (C;CA;...CA )'- n where ; indicates a row partition.
. 111} If (1.1) 4s controllable then for every given x, and X in 7&“

and gvery~t1 > 0 there exists a piecewise continuous control u defined on

at t =« t, and

[O,tlI vhich transfers the state from x, at ;‘=.0 to x 1

1

. £
n(t) = f u' (t)u(t)de (1.2)
. 0 .

'felétive:to all other’piecewisé Eontinﬁous controls which accomplish
the same transfer.

iv) If there exists a linear feedback control law u = Fx sgch that
X = (A&BF)x has a null solution which 1s asymptotically stable ther there

con:rol law u, = Kx such that im x(t) = o and the functional
o

ne J‘:)'_u'(b)u(t) + r"*)y(t)dt

is minimized by setting u(t) = hx(t)

exists.a
iy,



. thbught of as the action integral in a mechanics problem then the case
v) .if (1.1) is controllable and if the differential equation X = Ax

. - treated fn control thecory allovs for the possibility of certain zero

is asymptotically stable then the assoclated stochastic equation (for  masses provided there are appropriate linear constraints between position

notstion gsee [3]). . _ and velocity. It can also be thought of as a limiting case of an uncom

L dx(t) = Ax(t)ac + Bdw(t) . (1.3) T strained dynamical problem where certain masses and agsociated energies go

. - ’ - . " to infinity;t‘fhis second interpretation is generally more useful. Remarks
has a unique invariant Gausslan measure which has zero mean and variance i : .

. : . : e of the same fype apply to equation (1.3) where existance of a smooth~ -—
Q satisfying : ) . . : S : . . : )
. : ! o ‘ crarsition density is well known if B is invertible whercas the same is true,
. . | .
QA + A'Q = -BB' o (1.4) o :
. . : . but for rather more subtle reasons, if we assume controllability instead

In this paper we establish analogs for each of these results for .of invertibility of B.

systems of the type .
‘ B m . . v" . .
x(t) = (A+ ] u (£)B)x(t) 5 y(t) = Cx(t) (1,5)
41 : : .

Qhere A,BI;PZ,...,Bm are skew symmetric.matrices and tﬂe systéﬁ can be
tﬂough: °£.és evolving on the sphere ||x(t)]]| = ||x¢0)]|}.

One siggif;cant point in the linear theory is that the matrix B is

_ generally not iﬁvettible and cases for which it 1s inveriible are so inffequent R v . A . ~f{

as to be virtually without interest. If B is invertible then by an ‘ ' : . _: o .

appropriate choice of basis equation (1.1) becomes - o

x(t) = Ax(t) + u(t) : (1.6) l" N
and controllability is automatic. Horeover, in this case pfoblems 111) A 'if
and iv) are easily reduced to variational problems of the classical type s : . : L oo . .
’ ¢ o - i ) } - ) . .
n= J 1 L(x,x)dt. . 1.7) " ) . ce K ' 15' " ey T - . ’ T
o | . ) . X . . . .

with L quadratic in x and % and L, . positive definite. Control theory
works vith';he more general "degenerate" case where L** is only nonnegative

definite but certain constraints are in effect. ~If the above integral is




2. Controllability

Onevof the main areas of applicability of Lie theory inicoﬁérol has
been that of determining the set of points reachable along: solution
curves of x(t) = f(x(:),u(t),:’ for the set of all.piecéwise continuous
controls u(+).. For studies of this kind see references [4=7]). If the

control equatiods are of the form

n : " )
x(t) = (A + iZ_ u (OB)x(E) 5 x() eR® (2D
-] . . . .

then the system typically evolves on a manifold in 7Rﬁ' The determination
of the set of points reachable from a given point x, can be accomplished
by the deternination of the sct of matrices reachable from the identity

for the matrix equation . T

X(t) = (A + 1§1 u ()BIX(E) ; X(0) = I (2.2)

and then lgtting this set act on x, via crdinary matrix--vector multiplication.
Equation (2.2) can be thought of as defining a control problem on a matrix
Lie group. TheﬁueSti§nof determining vhat matrices are reachable from

the identity along solutions of (2.2) has been the subject of a number of
papers fl, 7-10]. Following Jurdjevic and Sussﬁann; we term sistems ;f the
form of (2.2) right invariant. This is appropriate because fhe vector fields

defined on the G2(n) by the right side of (2.2) are invariant under the trans—-

lation defined by right multiplication with an clement of GR(n). We will say T

that equatien (2.2) is controllable on a group € if any two poiﬁts in € can

- be joined by a solution curve generated by some piecewise continuous control

.u(o).

£

whose Hermetian length is oae. But this set is just a set of vectors with

Suppose that A and Bl,Bz....,Bﬁ'arehall oskew symmetric. Then
regardlecs of the choice of u the solutions of equation (2:1) remain

on the sphere defined by llx(t)l] = ||x€0)]]. -We will say that the

- system (2.1) is controllable on the sphere if any two points on the sphére

be joined by a solution curve generated by some piecewise continuous

- curve u(:), Phrased another way, the system is qontrollable 1f the set

of matrices reachable from the identity along solutions of (2.2) act

transitively on Sn_l. From earlier results [10] we know that since the

. motion is confined to a subgroup of SO(n) the set of matrices reachable

from I is the matrix Lie group consisting of all the matrnices which can
be expressed as products of the foxﬁ exp nl exp Hz,...explln vhere Hl,
Hz,...,Hn belong to the pie algebra generated by A,Bl,Bz,...Bn.

Now of course the orthogonal group SG(n) acts transitively on Sn-l
so that if the algebra generated by A,Bl,Bz,...,Bm is the full set of

skew symmetric matrices then the system (2.1) is controllable on Sn—}.

-1
However there are certain subgroups of SO(n) which act transitively on s"
as well, The real compact forms of the classical Lie groups are all
candidates. The results are well known [11] but we repeat them here.

For example, it is clear that both the full unitary group and the special

unitsry group of dimension n act transitively on the set of complex n-vectors

-;'.:.\:,

'cdmponents (x,+/=1 y,) such that
” A i =

n
121 (xf + yi) =1 2.3)

which is a 2n-1 dimensional sphere. _Thus'by defining the realification [12]




Cpaes o oo

dimensional complex vectors only.

. -

. of the unftary algebras by the Lie algebra homomorphism

ReB ' ImB
- B—
ImB  ReB |

(2.4)

" we obtain a set of real matrices whose assoclated group acts transitively

20l

on S . The real compact form of Cn is the intersection of special

unitary group and the symplectic groups. Naturally this representation

is in terms of matrices of even dimension so that they can act on even

4n-1

compact form cf C acts on the sphere of dimension S ..

This action is known

to be transitive and of course we can add to the algebra real multiples of /_- 11

to get the "full quaterion-unitar; group” which acts transitively as well.
These four cases, each valid for all integer n, together with three particular
ones account for all poesibilitie The particular cases may be explained
as follews. The cxceptional algebra G2 adnits a 7 dimensional skew~
éymmettic representation whose exponential acts transitively on S6. The
spin representaticn of 30(7) is 8-dimensional and it acts transitively

on 57. The spin repregentation of S0(9) is 16 dimensional and it acts

15

transitively on S$77. Hith this explanation we can state the following result.

- Theorem 1: Let A Bl,...B be a collection of n by n skew symmetric

matrices. The control system

Tx(e) =~ A+ ug (£)B,)x(t) (2.5)
- i=1 .

is contiollable on Sn-l if the'algebra gencrated by A,Bl;BZ,.;.,Bm is

1) SO(n) for n= 0 mod 2‘ |
.7115 SO(n) or the realification of SU{n/2) or U(n) for nw=1l mod(2)'
411) The realification of Sp(n{?) fot n = 1 nod(4)

iv)..Gé if n'= 6, Spin (8) if n= 7 or Spin (l6) 1f n = 15..

Thus, by analogy with the unitary case, the real

in the algebra generated by A,B

" . the form: of the reachable set in a straightforward way.

Hoteoven;~if the Lie algebra is not one of these cases the system (2.8)

'Vis not controllable.

If the system is mot controllable cn Sn—l it is sometimes of interest

_ to compute exactly what points can be reached from a given initial state.

The determination of what points belong to this set is facilitated by
a knowledge ‘of the structure of the representation defined by the matrices

BZ""Bm' If this representation is not

ll

-drr:dicible then its reduction is clearly the first step in the determination

of the reachable set. The properties of the irreducitle pieces may reveal
For example, 1f

the evolution equation can be decomposed as - !

. . o .
= 1@al+a’@1+ u (1@3; + 3@ Dlx(t) (2.6)
o . : I Ch .
. then the: Kronecker product of the reachable group for
. o1, B 1
() = "+ [ u (©)B)X() 2.7
o . =]l .
" - and the neacheﬁle greup for
TX(t) = (A + Z u, (£)B] )x(c) (2.8)

i=1

contains the reachable group for equation (2.2). The reachable group will

. .

not, iﬁ=general)simply be the Kronecker product of the reachable groups unless -

the effects of the u's are decoupled.

For the linear evolution equation (1.1) it happens that if it is possible

to transfer any. state to any’ other state then this transfer can be done

in arbitrarily small time. .This 1s not the case for systems defined by

L




equation (2.1), Jurdjevic and Sussmann {[7] give aﬁ example of a system
defined on s which is concrollable but certain transfers cannot be

made in less than 1 unit of time, Thus 1if (1.1) is controllable on S"

".. the strongest statement we can make on the basis of the. present analysis

is that for tl sufficiently large every state can be transferred to every
other state in £y units of time. Estimates on this time have not yet been

worked out.

.

In the vecior_space case controllaﬁility is closely related to the
concept of observability as mentioned in the introduction. In the present

setting this is not the case at all. We say that the system

. Cm : T E
x(t) = (A+ ] u ()3)x(t) 5 y(t) = Cx(e) 2.9)
, : 1=3 o .

1f no two distinct initial states on SP 1

0

is observable on Sn‘1 give rise

to the same response y for all controls u(-). The following theorem gives

a necessar§ and sufficient condition for observability,

Theorem 2: Let A, Bl’BZ""’Bm be a collection of skew symmetric

‘matrices and let ¢ be a unit vector.

The control system
n

Ry = (a+ ] u (©OB)x®) 5 y(e) = ex(o)

. : i=1 . :

is obsgrvable on s®
are irreducible.

For a proof of this thecrem and more general results of this type

see [13).

=1 if and only if the set of matrices {A’BI’BZ""Bm’CC'}

- of the form X(0) = Xo

. =30~

3. Optimal Control

Consider again the evolution equation (2.2) defined on matrix
group . Let there be given a time t, > 0 and boundary conditions
: X(tl) - Xl. Suppose that in addition there

i3 given'a functional which is of the action type

t. m oo .
ny n-% f 1 X uz(t)dt (3.1)
to i=1

as opposed to the geodesic type

t
n; = f (7 w26y 24 © 3.2
t il . .
Ovr problem I8 to determine if there.exists a control u(-) such that

the boundary conditions are met and the given functional is minimized and,

if such a control cxists, to characterlze it. Just as with controllability,

there is an obvious connection between problems defined on a group and problems

dcfined on & manifold on which that group acts, This would no longerAbe

e v s

the case 1£ n dependcnd on x in a general way.

We wiil ugse the formalism of the maxirum priﬁciple of-Pontryagin [14}
ratics then the calculus of variations to attack this problem because it
handlés the degeneracy which is buiit into the problem in a natural way.
Applied to the present problem, Pontryagin's maximum principle asserts that
i u(} ié an optimizing controi then there exists a matrix P such'fhat

i .

CB@) = -AP(e) - u (0)BIE(D) o (z.3)

1=l

~ end H defined by

m
H(P,X,u) = <P,AX> + Z u <P, B,X> + )
i=1 1=1

rolr
c
o

(3.4)

Yo
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is minimized with respect to u by the optimal control, Thus we have the

optimaI control given by

ui(t) = <P(8),BX(E)> - : (3.5)
This choice of u gives a pair of différential equations with split
boundary conditions - I o e
d1z®) fa o "x(c> n B, 0| |x®
%= . ) o+ <P,B.X> ! " {3.6)

P}l [0 -Af|Pr) =1 Yolo sl e

The problem can be reduced to a single quadratic équation with eplit - "_A‘ ) |
boundary' conditions by infroducing K= XP'., An easy calculation shows

that

K(t) = AK(E) + K(D)A' - lf <B{,K(t)>(B (KEHR(DBY)  (3.7)
So far everything is valid for an arbi:rary subgroup of G&4n)., 1If R A|
A Bl,Bzrhm.B are self contragredient thea a simplification occurs.,
In that case any solution of the differential equation for P can be

expressed in terms of a solution of the differential equation for X with

i
|
1
.nonsingular boundary conditions ie.P(t) = NX(t)¥ for some constant matrices . !‘
: i

M and N. Specializing to the skew symmetric case jives the follewing result.

Theorem 4: GSuppose that A,Bl,Bz,...Bm are skew symmetric n by n matrices

and suppose that there exists a plecewise continuous control u(+) which

. - . i ° -.,;\Ss"ﬂ:
transfers the state of the matrix system

. o . ) - .
X(t) = (A + Xl u, (£)B,)X(t) (3.8) S
C i=1 . ‘ Lo

from X at t = ﬁ to X1 at e~4 ti > Q. .Then there exists constant - N e ,w

matrices M .and N such that the solution of

' Ce e e . . T e - R P 4 P . -

* Cesart [15].

. : m ’ =
E(t) = (a+ ] <BX(WMF(ON BOX(D> 5 X(0) =X, (3.9)
) =1 o '

" passes throuzh4xl'a; t=c,. Moreover, there exists one such pair

M,N which minimizes ny relative to any other continuous u(+) which

stecrs: tlie system tovxl from Xo in the same period of time.

Proof= That there exists an optimal ccntrol follows from theorem 6 of

The rest follows from the meximum principle as discussed

_above..

There is an alternative point of view available for these problems

- which makes. a Iittle closer conﬁact with both physics and Lie theory

!
but which is not so useful here. Consider the right-invariant control °

equatiom: in SO(n) with control

L) = X ; X(O0) = X, (3.10)

Let ihe‘problem be to pick 9 in the space of skew symmetric matrices

" guch that: X(g? X and the trace form

t -
ne= J Ler ln)zdt (3.11)
40

is minimized. Elenenfary variational arguments with due regard for the
admissibiliey of variations lead to the Euler equation

< Q= me‘l

- lomn Gay -
’ Toemg
In 80(3) this matrix equation is equival(nt to the familiar Euler
. eouatio1s for.a rigic body
‘11‘7‘1 = “2’13)‘”2"";; (3.13)

. ,12&2 = (13—11)m1m3

a8y = (IpTuje, R
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vhich, after all, come from minimizing the action integral on S0(3). transferr&ng x, to Xy, The fqllowingltheérem expresses this.

(Rote that the kinetic energy of a rigid body can be expressed by _ o R . Theorem 5: Let A,Bl,Bz,...,Bm be skew symmetric matrices. Suppose
the trace forn (det I)tr(I-lﬂ)z where I is the usual inertia tensor. ’ R o ‘_‘ that the system

) . . T . - n .
See [2] page 64. Incidéntally, this also serves to- define the degree i - » %(t) = (A + Z ui(t)Bi)x(t) . (3.17)
of difficulty of actually solving the contxol problem mentioned above. L ! 1=1

. ) . is controllable on ST, Then given a sufficiently large time t1'> 0 and given points
Since it is well known that the solution of the Euler equations generally

. ) . : x, and %y in Sn-l, there exiéts a control which transfers the system from
involves elliptic functions, the solution of the optimal control problems . ‘ .

. ”xo at t = 0 to X atts= £ and minimizes
cannot be expressed in terms of elementary functions except in special e

i i

. o ' ‘ ‘ _ ‘ ‘ . '

cases. o ’ ' ‘ . : : . oo : ne= [ L ureedueyae : (3.18)

By far the simplest gspecial case on SO(n) occurs when n is the A . ’ o ¢ i
negative of the integral of the Killing form. That is given X(0) and . . - ‘Morzover, there exists a matrix Ko such that th? optimal
X(1) and given the evolution equation ) . e A control is given by ui(t) = <K(t)}Bi> where K. 1s defined by the matrix
n(n-1)/2 : . e differential equation
x(t) = I u(e)BX(®) ;5 Xesom) (3.14) m
| 1=1 . C : E 3 o K(e)= [A,K(0)] + [ <R(c),B>[K(6),B,] 5 K(0) = K, (3.19)

. where B, = -B! and for all i and } - - ' . ' o oo : A=l

We completé this section on optimal control with a result of the

> = tr'BB =6, (3.15) 8

. '<B,,B
h 51’ 3 3 . ) L ) type which plays a nmejor role in linear system theory in connection with
. | L .
3 : ! N : -
one finds that the optimal trajectory is R the regulator problem.
- . ‘i
TOX(t) = thx(o) . (3.16) { Theorem 6: Let A and B be n by n skew symmetric matrices and consider
" k} ., T B - . - : R . < N the system : - ) ] : -
0 R R ' : S P t o

where 2 is the solution of e = X(1)X “(N) which has'thc smallest Frobenius ,{2‘£$$ A k() = Ax(t) + u(t)Bx(t) .20 S,

norr. : ' .iét a2 be 2 unit vector in tﬁe ﬂull space of A such that A and Baa'B' are a
We turn uov to applying the above results to the problem of i i pair of matrices which act irreducibly on the orthogonal complement of
optimizing :rajsgtbrieg'on spheres. Note that t;a;ectories on spheres can be i . the one dimensional subspace defined by a. Then the control law u(t) =
optimized for fixed end péints by solving an associated right invariant ' ' a'Bx(t) sEngts the systen from any {nitial staée X, ¢ -2 to & and piniizes
group problén gnd thén picking the qinimizing elcmeyt 1?v:he group for o E the tategral . : ,

ST gt eNe T er e paremie Sea e me e e b e e e b g an o AR e e e et e e oe e s ey e wil s cr e -
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ne r w?(e) + [a'Bx(t) )2t
0 .
relative to any other continuous control u(ﬂ).

Proof: We can write 1 as

.n= I: uz(t)-Za'i(t) + [a'Bx(t)]zdt+Za'x(t)| |
. ' 0

" since Aa = 0 we have

- r (u(t)-a'Bx(t))zdt+2a'x(t)| '
0 0

Tﬂus it the contfol law u(t) = a'Bx(t) éctually driveé the s:afe ¥ to
a then it is optimal. However, observing that a';(t) has a derivative
along the given solution.which 1s equal to -[a'Bx(t)]z, we see by
LaSalle's theorem (see e.g. [2]) that the solution‘x = a can faii to be
gtable if and only 1if a'Be*®x vanishes ide;tically for some x # ta,

By looking at the derivatives at t = 0 ée see that this can ﬂa?pen if

o~1 |
ard only i1f (Ba,ABa,...A  “Ba) fails to span thg orthogonal complement of the cne

dimensional subspace defined by a.

4. Stochastic Differential Equations
We coﬁsidet now a third éspect of control theory on spheres.

This has to do with the analog of property (v)Amentioned in the intro-

_ duction. What we show is that controllability.implies the existance

) n-1
of a unique invariant measure for a stochastic equation on §° =, We use

. vIto notation for stochastic differential equations. Wong {3} can be

consulted for an explanation of both the mathemarics and the notation.

Let Wy sWgseeea ¥y denote independent Wiener (Brownian ﬁotion)
processes of unity varianée. In giving a precise meaning to differencialv

" equations in which gomething like "white noise" apﬁea:s K. Ito [16]
-inpvented what has prdven.td be a very -successful calculus'in vhich the
§tandard differertiation rule is significantly modified insofar as
differentials of W;ene? processes are concerned. In this calculys dwiduJ =
Gijdt, a first order temm; dwidt, and (dt-)2 are both higher than first

order. We discuss the implication of this in one important special case.

If x and y are vectors satisfying the Ito differential equations

cx(t) = Ax(t)de + Bx(t)dw(t) ChD

dy(t) = Fx(t)dt + Gy(t)dw(t) ' : (4.2) )

Then z(t) = x(t)y'(t) satisfies the Ito equation

. dz(t) = (Az{t)+z(£)F" + Bz(t)C)dt + (Bz(t)+z(t)C)dw 4.3) -
The only other fact we nced about Ito equations concerns the associated
mean edudtion. If x and y satisfy equations (4.1) and (4.2) then R

Cx(e) = Ex(t) and ;(t) = ny(tj satisfy the ordinary differential equation

.

3%3?(«) - £%(t) ' (4.4)

£I® = FHE© g .5)
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We will see that these two results permit the dcrivaciqn of equations
for all moments and imply that the moment eguatibns are.dec9upléd.f;om
each other. A

Recall that the number of linearly independent degrec P forms in

variables is given by

o (7

(4.6)

Ve cén therefore associate with each n tuple (xl.xz,;..,xn) a N(n,p)-tuple

-1
x[P) = (xg, P xg %
way as to validate the equality

lehs.]ll.2 - |1x] % )

It is clear that if x‘satisfies an drdinary differential equation which

is 12 rear, say

—: x(t? = Ax(t)

(4.8)
then x[P] also satisfies a linear differential equation
2 <Py = alPlecey. 4.9

We regard this as a definition of A[p]. It 1s related to the classical
idca of an induced representation.

a similar set of equations follow; i.e. equation (2.1) implies
. . m
2Pl = aPLLIe + T o sl
1=l

Similar remarks hold for stochastic equations of the type under
consideration here, provided suitable allowance is made for the Ito

Asgociated with the Ito equation ) R

dx(t) = Ax(t)dt + 2 B x(t)dw, (4.11)

{m]

3

2,...,xg) where the coefficlents are chosen in such 2

"(4.10)

e taprs p e g SR S e i e o s s v ey et ey es gy 7o

.

Of course if thare are controls present

by [lx(e) ] = [[x@]] for a1t x(0).

-1-
is the fahily of equations
Pl = ceae T 1 pyIpd L 1 plpdy2 T 0p)
dx' Ti(t) = (A 1§1 3 Bi) +3 (Bi. ) )x(;)dt+ 121131 x(c)dw1

A o ' (4.12)
The derivation of this is a urraightforward exercise using the properties

of dw, outlined above. Finally, we have thc moment equations associated

with (4.11)

LI (B[pl)2> pl (4.13)

20t

o ]
&Py = (a- ¥
. {=]

where ;Fp](t) = E.xr?](t)- Compare with reference 17.

In terms of the Ito calculus when can the matrix stochastic equation

, dX(t) = AX(t)de + Z dw, (£)B,X(t)
{=]

(4.14)

be thought of as evelving the grthogonal group? This will be the case

vhen the associated vector eauation (4.11) evolves on the sphere defined

Using the facts outlined above

°

ve see that d(x'x) = 0 if and only 41f for all Z

2
i

a-(a+ i)

By = =By 3 A+%B 5 By (4.15)

. Thus these are the conditions under which equation (4.14) evolves in the

.

orthogonal group and the conditions under which (4.11) evolves on the

'pphere.

It is apvarent that the weasurn asssciated with the uniform density

on the sphere 15 an invariant measure for the process defined by equation

ﬁé.ll). Since the area of the (n-1)-sphere is 2n“/2/r(n/2) the uniforn density

is a o R

LT a0 = Tty 2 T e
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The corresponding values of the odd moments are -zero by symmctry but thg
even mozents. are not. The followiﬁg theorem shows that'all the moments
" approach the poments - associated with a uniform distribution if we have

controllability. Incidentally, equation (4;13) provides a means for actuallyh

’

computing the moments for all time in terms of their values at t = O.

Theorem 7: Suppose that A'BI’BZ""Bm are all skew gymmettic and suppose that

(4.17)

. m
Sk e (At T ou (£)B)x(t)
i=1

is controliable on Sn—l. ‘Then the solution of the Ito differential

equation defined on the sphere

:

(4.18)

m m

dx(t) = (A~ J % Bi)x(t)dt + 7 Bix(t)dwi
i=1 . i=1 )

is such that all moments appreash the moments associated with a unifornm -

distriﬁution on the n-1 sphere as t approaches infinity.

Proof: First of ali, note the shift in notation from (4.11) to (4.18).

In (4.11),A—-% ZBi is playing the role played by A alone here.v It 1is l

ndt'difficult to show that because A’Bl'BZ""Bm are skew symmetric it

follows that A[p], B{p],ng],...éip] are also ske; symmetric. A second

observation concerns stability; 'If A = -A" and Bi = -Bi then all

solutions of the ordinary differential eqpation

T o1 o2 " vas -
x(t) = (A + 2 = B )x(t) (4.19)

. 24 )
i=]
. are bounded. Moreover, each solution approaches zero as t approaches

infinity provided BieAtx does not vanish identically for any x # 0 and

' A
there will exist nonzero vectors such that Bie % vanishes identically

if and only 4f A and B1 can be put in the form

~

- ‘-i:’-\-L;;‘ o

. »
~2Q - .
¥ )
’ Al 0 - . Bi 0
0'A8 = O'Bie = (4.20)
- 0 Az 0 0
. To prove the firét of these facts we notice that since A = ~A'
. 2 b4 2
3¢ =% == T [[Bxe)|] (4.21)
i=1 .

Thus by LaSalle's theorem (see e.g. {2]) the solution either goes to zero

.or else there is a solution along which llBix(t)ll vanishes identicélly

) fof all i, That solution would have to be of the fom eAtxo. As for the

-—conditions on A and'Bi, they follow from considering tie subspace of

. vectors such that.BieAtx vanishes, gogether with 1ts ortﬂogonél complement,
making use of th2 skew symmetry of A’Bl’ﬁZ";'Bm‘

Clearly controllability implies that all solutions of the mean
equation aﬁproach zero.as :‘approachcs Infinity becéu;e-cqptrollable
systems cannot be decomposed ﬁs indicated. 4s for the higher moments,

. we must distinguish between the even and odd cases. 'For the 6dd cases
- 1f there/is a décompoéition then controllability of the equafion 417
is clearly.impossible. For the even moments, we have 1n_;iew of

the identity le[plllz = ]]x[lzp, a'decomposiéion of the type giveﬂ by

© equation (4.20) but with the zero block in Bi being one dimensional.

Thg one dimensional subspace defines the steady state value of the b
even moments. On the orthogonal complement the equation (4.18) is . o

asymptoticilly stabie. These romarks are related to some well known

- properties of orthogonal representations of Lie algebras.,
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