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1 .O INTRODUCTION 

For the l a s t  several years TRW Systems Group, under cont rac t  

t o  NASA-ARC, has performed an extensive research and development program 

i n  va r i  able-conductance heat-pipe technology. The treatment has been 

comprehensi ve, i nvo l v ing  theore t i  sa l  and/or experimental studies i n  

hydrostat ics,  hydrodynamics, heat t rans fe r  i n t o  and out  o f  the pipe, f l ~ i d  

select ion, and mater ia ls  compat ib i l i t y ,  i n  addi t ior :  t o  the p r i nc ipa l  

subject o f  va r i  able-conductance cont ro l  techniques. E f f o r t s  were no t  

l i m i t e d  t o  ana ly t i ca l  work and laboratory experimentation, bu t  extended 
I 

by the development, f ab r i ca t i on  and t e s t  o f  spacecraft  hardware, h igh l igh ted  
i 

i n  the successfu? f l i g h t  o f  the Ames Heat Pipe Experiment on the OAO-C 0 
i 

spacecraft. i 
Most o f  the program's accomplishments have been previous 1 y 

documented i n  a ser ies o f  repor ts  and publ icat ions.  Ear ly  theore t ica l  and 

design developments appear i n  References 11-1, 1-2, 1-3, 1-4, 1-51. 

Later furdamental work was pub1 i shed i n  References [I -6, 1-7, 1 -81, Hardware 

development and app l ica t ion  e f f o r t s  were documented i n  References [I -9, 

1-1 0, 1-11], and a computer program f o r  desic l i n g  and p red i c t i ng  performance J 
of gas loaded heat pipes was presented i n  Reference [I -1 23. j 

i 
: 

This document represents the f i n a l  repor t  on the contract  

and presents the r e s u l t s  o f  TRW's l a t e s t  e f f o r t s .  It does not  attempt 

t o  present a1 1 o f  the work accomplished on the program, since most has 

been prev iously  published. However, t o  provide a summary o f  the program's 

scope and a guide as t o  the l oca t i on  o f  prev iously  published information, 

copies o f  the Tables o f  Contents o f  a l l  e a r l i e r  repor ts  are included i n  

the Appendi x . 

The p a r t i c u l a r  studies t h a t  are covered i n  t h i s  repor t  f a l l  

i n t o  four  areas as fo l lows:  

1) An experimental and theore t ica l  study was made 

o f  gas generation i n  methanol/stainless-steel 
heat pipes f o r  the purpose o f  establ  i s h i  ng a 

sca l ing  law f o r  the accelerated t e s t i n g  o f  such 

heat pipes (Section 2.0). 



The TRk GASPIPE computer program, prev iously  

developed on t h i s  contract  (Ref. [1-121 , was 

extended t o  inc lude two condenser sections 

w i t h  d i f f e r e n t  proper t ies,  which enables the 

program t o  be e a s i l y  appl ied t o  gas-loaded 

heat pipes having a secondary shor t  condenser 

( co ld  t rap)  adjacent t o  the gas reservo i r  as 

we1 1 as an adiabat ic  sect ion (Section 3). 

3) Theoret ical  and experimental work was car1.i ed 

out on the e f f e c t  o f  noncondensable gas on 

a r t e r i  a1 performance. Pressure f l uc tua t i ons  i n  

gas- load~d ammonia heat pipes were studied, and 

a glass heat pipe was fabr ica ted  t o  study a new 

method o f  vent ing noncondensable gas d u r i ~ g  prim- 

i n g  (Sect ion 4.0). 

4) Two research heat pipes (and two spares) were 

designed, fabr ica ted  and tested f o r  a f o r t h -  

coming GSFC sounding-rocket experiment t o  study 

a r t e r i a l  pr iming i n  zero g rav i t y .  These heat 

pipes have i n t e r 1 ; ~ l  thermistor  i n s t r u ~ e n t a t i  on 

tha t  provides in format ion on the  pr iming process 

(Sect ion 5.0). 



DEVELOPMENT OF GAS GENERATION SCALING LAWS FOR METHANOL/ 
STAINLESS-STEEL HEAT PIPES 

Heat pipes are r a p i d l y  becoming a serious design element 

i r ,  the sol u t i on  o f  many spacecraft thermal cont ro l  problems where 1 ong 

periods o f  t roub le  f ree  performance a m  reouired. For design purposes, 

therefore, there i s  i n t e r e s t  i n  determining methods f o r  est imat ing the 

operat ing : i fe t ime.  What i s  !neant by "cperat ing l i f e t i m e "  depends on t h e  

type o f  beat pipe and the req~ i rements  placed on i t  i n  a spec i f i c  appl i- 

cat'on. With high tenperature 1 i q u i d  metal heat pipes, f o r  exampl e, 

s t ruc tu ra l  f a i l u r e  sometimes occur and t h i s  i s  a well-defined t e n ~ i  ~ d t i C ' ! i  

o f  1 i f e .  I n  low temperature heat pipes appl icable t o  spacecraft thcrnlai 

contro l  , catastrophic f a i  lu res  r a r e l y  occur, Instead, heat-,,ice perforsiance 

continuously degrades as a r e s u l t  o f  (1 )  chemical react ion or deco'~;cs S t.1 ?r, 

o f  the working f l  u i d  w i t h  the  generation o f  noncondensable gas, o r  ( 2 )  

corrosion and erosion o f  the container and wick. 

I n  an ord inary heat p ipe a l l  noncondensable gas i s  swept t o  

the condenser end, forming a d i f f u s i o n  b a r r i e r  t o  vapor f low and e f f e c t i v e l y  

reducing the ava i lab le  condenser area. I n  gas contro l  led,  var iable conduc- 

tance heat pipes , the generation o f  a d d i t i ~ n a l  noncondensable gas raises 

the operat ing temperature o f  t he  heat pipe above design condit ions. Simi lar  

e f fec ts  can r e s u l t  from a change i n  the chemical composition o f  the working 

f l u i d  by v i r t u e  o f  a change i n  i t s  vapor pressure as a func t ion  o f  temperature 

Corrosion and erosion o f  the container and wick can he manifested 

as a change i n  the wet t ing  angle o f  the  working f l u i d  as wel l  as the 

permeabi l i ty,  porosi ty ,  o r  c a p i l l a r y  pore s ize  o f  the wick. S o l i d  

p rec ip i ta tes  resul  t i n g  from corros ion and erosion are transported by the 

f lowing l i q u i d  t o  t h t  evaporator region where they are deposited when 

the l i q u i d  vaporizes. This leads t o  increased resistance t o  f l u i d  f low 

i n  the evaporator, r e s u l t i n g  i n  a decrease i n  the  heat t ransport  capacity 

o f  the heat pipe. 

With these f a i  1 ure nechanisms , whew cont inual degradation 

occurs, the  operat ing l i f e t i m e  can be def ined as t h a t  per iod o f  t ime beyond 

which the operat ion o f  t he  heat p ipe i s  below design spec i f i ca t ions .  Some 

:?eat pipe labora tor ies  have been performing "1 i f e  t es t s "  under which heat 

pipes are held a t  normal operat ing condit ions f o r  many tho~sands o f  hobrs 



t o  determine the "operdt ing 1 i fetimes". This approach has 1 i m i  ted 

appl i cabi 1 i t y  , however, f o r  heat p i  pes whi ch are requi red t o  func t ion  

we l l  f o r  long periods o f  time. Progress i n  heat-pipe developmert w i l l  

be impeded i f  each time a new mater ia l  combination, f a b r i c a t i o n  technique, 

o r  cleaning procedure i s  used, 1 i f e  t es t s  o f  10,000 hours o r  more are 
required. There ex is ts  , therefore,  a major impetus f o r  understanding 

the chemical and corrosion mechanisms, and developing scal i ng 1 aws 

f o r  the I i fe-1 i m i  t i n g  processes. The need for  achieving very long 1 ived 

high re1 i a b i l  i t y  heat-pipe sys t~ms  i n  a rap id l y  charging technology 

necessitates the employment o f  accelerated t e s t i n g  techniques. 

This prograr was the second i n  a cont inuing e f f o r t  t o  under- 

stand compat ib i l i t y  problems as they r e l a t e  t o  heat-pipe operat ing 

1 i fe t imes.  The i n i t i a l  study [2-1, 2-21 i n  t h i s  ser ies was ca r r i ed  ou t  

using nickel/water heat pipes as a feasi  b i  1 i t y  demonstration t o  assess 

the d i f f i c u i t i e s  i n  es tab l ish ing  a scal ing law re la t i onsh ip  f o r  a 

spec i f i c  example. From a study o f  hydrogen evo lu t ion  i n  n i cke l  /water 

heat pipes mder  accelerated (h igh)  and reference ( low) operat ing 

condit ions i t  was found possible t o  dcc ~ r a t e l y  p red ic t ,  w i  ch a scal i ng 

law, the l i f e t i m e  c f  a heat pipe operat ing a t  reference condit ions from 

data taken a t  accelerated condit ions. It was also found t h a t  the same 

form o f  scal ing law cor re la ted  the  data o f  Pet r ick  [2-31 on sta in less-  

s tee l lwater  heat pipes. These r e s u l t s  suggested t h a t  the f ~ r m u l a t i o n  o f  

c c ? l  ing  1 aws f o r  accelerated t e s t i c g  o f  1 i f e - 1  i m i  t i  ng processes i s  indeed 

feas ib le  and t h a t  s i m i l a r  methocs r i g h t  be appl icable t o  c ther  heat-pipe 

systems as we l l .  

The present progr2111 i s  co~irerned k i t h  developing scal i ng 1 aws 

f c r  gas generation i n  s t a i  nless-steel/methanol heat pipes. Previ our l f f e  

t e s t i n g  o f  such heat pipes has shown t h i s  combination t o  be compatible 

up t o  14!i°F (63OC), bu t  gas generation has been observed i n  these heat 

p i  yes a t  higher temperatures. As s ta in1  ess-steel /methanol heat pipes 

represent the most desi rable combination f o r  many var iab l  e conductance 

heat pipes, i t  was important t h a t  a study be made of' t.he gas generation 

behavior a t  higher temperatures. Before t h i s  program was ca r r i ed  out ,  

even the high temperature l i m i t  o f  operat ion, hefore the  i n i t i a t i o n  o f  

s i g n i f i c a n t  gas generation, was unknown. 



.- 
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I . .  

The priil lary ob jec t ive  was t o  f o m u l a t e  an accurate scal ing 1 aw, 

based on a chemical and corros ion model of gas e v o l ~ t i o n  mechanisms , f o r  

stainless-steel/methanol heat pipes, which pred ic ts  tbe usable, 1 i fe t i rne 

a t  reference (low) operat ing condit ions from data taken a t  accelerated 

(high) operat ing condi t ions.  This method o f  accelerated 1 i f e  t e s t i o g  

i s  based on extrapol a t i o n  from accelerated condit ions to  p red i c t  behavior 

a t  reference (nomal )  condit ions. It i s  thus e x p l i c i t l y  a s s b .  ?t  the 

chemical and physical rrechanisms responsible f o r  heat-pipe . ~ r a d d  t 

a t  accelerated condit ions are the  same i n  nature a t  the refc?+.snce corldi t ions. 

S imi la r  ideas are used f o r  o ther  types o f  accelerated corrosion :e:tincj 

[Z-41. I t  i s  emphasized t h a t  t h i s  work was n o t  concerned w i t h  drh iev ins 

con~pr?ti t i 1  i t y  between s ta in less  steel  and methanol . However, s t r i c t  

contro l  was maifitairled over the  s t a r t i n g  mater ia ls  and fab r i ca t i an  

techniques, not  t o  e l im ina te  gas generation, but. t o  a1 low the separation 

o f  temperature and f l u i d  c i r c u l a t i o n  e f fec ts .  

2.1 Accelerated L i f e  Test ing 

2.1.1 Heat Pipe Mater ia ls  and Fabr ica t icn  

Sixteen heat pipes were fabr ica ted  using 304 sta in less-steel  

mater ia ls .  Fabr icat ion procedures which are standard a t  TRW f o r  c c ~ s t r u c t ? c n  

o f  s ta in1 ess-steel/methanol heat pipes were used i n  o rcer  t h a t  the ress'l t s  

of accelerated 1 i f e  t e s t i n g  would be d i r e c t l y  appl icable t o  actual heat 

pipes b u i l t  by TRW. Container tubes were 19.5" i n  length w i th  1/2" O.D. 

and 0.020" wal ls .  Two 1 ayers o f  150 mesn (2.6 m i l  diameter) screen were 

i n s t a l l e d  and the end caps were wachined from 112" O.C. rods. Closure 

tubes were cu t  f r o m  118" O.D. , 0.020" wa l l  tubing. Care was takerl t o  

er~sut-e t h a t  a1 1 the  heat pipes were as near ly  t. 3 same as possible i n  

terms o f  mater ia ls  and construct ion procedures. A1 1 contai ners were cu t  

from 304 s ta in less  steel  tube ~f the  same beat  nunher and the same was 

t rue  o f  the closure tub ing  and rods frow which the end caps were machined. 

Screens were cu t  from a s ing le  sheet o f  w i re  mesh. Weli ing was perforn;ed 

w i th  argon ill the tube using 308 sta in less-steel  welding rod  an^ care 

was taken t o  use the  same temperature and COI :. ~ t e  the weld i n  the satve 

length of  time f o r  each heat pipe. A f t e r  the screens were i n s t a l l e d  and 

the par ts  cleanec, one end cap was welded, and i n  t k i s  cond i t ion  a l l  the 

par ts  were vacuum f i r e d  f o r  1 hour a t  10DC°C below t o r r .  The m i s i n i n g  



welds were then completed and the  heat pipes were f i l l e d  h i t h  5.5 m l  o f  

niethanol (Matheson Coleman & Be1 1 , spectroqual i t y  grade c o ~ t a i  p i  ng a 
~r~axiniurr of' O.C5% hater )  and instrunenteci w i t h  6" heaters. A schematic 

diagram o f  a heat pipe prepared f o r  accelevated tes t i ng  i s  shown i n  
Figure 2-1. Af ter  f i 11 i ng, one heat p ipe was found t o  be unusable due 

t o  excess gas i n  the  pipe, probably r e s u l t i n g  from a leak during the 

f i l l i n g  procedure. A l l  o ther  heat pipes were found t o  conta in i n i t i a l l y  

only a small amount o f  gas. Eleven copper-constantan themocouples were 

placed a t  3/4" 'n tervals  along the  condenser, and one tkermocouple was 

placed i n  the adiabat ic  sect ion, f o r  t he  purpose o f  measuring the  non- 

condensable gas content by means o f  the  temperature p r o f i l e .  An add i t iona l  

thermocouple was placed on the end cap a t  the  heater end t o  t e s t  f o r  burn- 

out. I nsu la t i on  consisted o f  an inner  l aye r  o f  J-M micro- f ibers f e l t  and 

an outer  l aye r  o f  J-M aer~ tube .  

2.1.2 Mebsurement o f  Noncondensabl e Gas Evol u t i  02 

As ~cmcondensable gas i s  evolved dur ing operat ion o f  a heat 

pipe, i t  i s  ca r r i ed  t o  the  condenser end causing blockage and a consequent 

temperature p r o f i l e  along' the wa l l  . The amount o f  gas present may be 

calculated from the  temperature p r o f i l e  assuming idea l  gas behavior. I f  

the condenser end i s  d iv ided i n t o  N equal i n te rva l s  and the  temperature 

a t  the center o f  each i n t e r v a l  i s  Ti, then ~ n d e r  steady-state cond!"- . 
the number o f  1b moles o f  gas n i s  given by the idea l  gas law as: 

where A V  i s  the volume o f  each i n t e r v a l ,  R i s  the gas constant, and 

- 
Pgi - 'va - 'vi (2-2) 

i s  the p a r t i a l  pressure o f  gas a t  the  center o f  the ith i n t e r v a l .  I n  

(2-Z), PVa i s  the t o t a l  pressure ( the  vapor pressure corresponding t o  

the temperature i n  the adiabat ic  sect ion)  and Pvf i s  t he  vapor pressure 

i n  the ith i n t e r v a l .  

A computer program was used t o  ca lcu la te  the quan t i t y  o f  gas 

I n  a heat p ipe a t  any given t ime from the  measured steady-state wa l l  

temperitzure p r o f i l e .  This method I s  based on the assumption t h a t  the  

6 





L-J 
i 

wick surface temperature, and hence the vapor-gas mixture, i s  very close 

ta the wall temperature i n  the gas-blocba region o f  the condenser. This 

has been found t o  be a va l i d  assumptio I from the study o f  gas contro I 1  ea 

pipes 12-51. 

I n  practice, each pipe was divided i n t o  3/4" elements w i th  a 

thermocouple placed i n  the center of each in terva l .  The thermocouple 

temperature readings were input  d i r ec t l y  i n t o  the computer program, 

which carr ied out i;ie operations indicated by Eqs. (2-1) and (2-2) and 

pr inted out the t o t a l  rider o f  l b  moles o f  gas i n  the pipe. T r i a l  

calculations have indjcated tha t  the discrepancy between using a 0.5" 

element ar?d a 1 .On element was less than one percent. 

2.1.3 Res u l  t s  o f  Accelerated Test i np 

Based on previous studies o f  gas evolut ion i n  heat pipes 
f2-1 rhrough 2-3, 2-6, 2-73, i t  was assumed tha t  the gas generation ra te  

would be a strong function of tne operating (vapor) ternperdure. For 

t h i s  reason a l l  heat pipes were tested i n  a constant temperature chamber. 

The temperature o f  the chamber was unaffected by convective a i r  currents 

i n  the mom and could be held a t  50.5"~ o f  the set  point. 

I n i t i a l  accelerated 1 i f e  tes t ing was begun wi th three heat pipes 

operated a t  66OC, 9i°C, and i21°C. Other than a small amount o f  gas dhich 

was present f r o m  the f i 11 i ng procedure, no detectable addi ti onal amount 

was generated a f t e r  39 days o f  operation. I n i t i a l  tes t ing was then 

continued wi th  the temperature increased t o  177"C, 204°C and 232OC. 

Temperature p ro f i l e s  were read i ly  generated a t  these temperatures over 

a two week period, the gas evolut ion ra te  increasing wi th  increasing 

temperature. 

During i n i t i a l  test ing,  i t  was found tha t  burnout occurred a t  

temperatures above 204 "~  even w i th  the heat pipe i n  a ver t ica l  r e f l ux  

position. Thus data taken wi th  the heat pipe operated a t  232OC was not 

usable. Calculations o f  the vapor mass as a function o f  temperature 

indicate tha t  burnout above 204OC resulted from 1 i qu id  depletion. With 

the heat pipes operating a t  177'C and 204"C, the ti 1 t ( i n  the re f l ux  

posi t ion) was adjusted t o  the po in t  j u s t  above the angle which produced 

the s t a r t  o f  burnout, as evidenced by a r i s e  i n  the end-cay themcouple  



temperature. This proc~dure was used wi th  a l l  subsequent heat pipes t o  

ensure maximum f l u i d  flow i n  the wicks. 

After completing measurements on the i n i t i a l  set o f  heat pipes, 

which determined the temperature range o f  interest ,  a set o f  four heat 

pipes were operated ( i n  a re f lux  posi t ion) a t  essent ia l ly  the same 

temperature (179.2 - 179.3OC) but a t  d i f fe ren t  flow rates (11 .O, 12.4, 

16.4 and 19.6 watts), t o  investigate the poss ib i l i t y  o f  a f low ra te  

dependence i n  the gas generation rate. For a given pwer ,  the condenser 

length was adjusted t o  achieve the desired temperature. The resu l ts  are 

shown i n  Fiqure 2-2, where the curves are drawn t o  a least-squares f i t  

t o  the data (as wi th  a l l  subsequent graphs). The gas generation data 

indicates an i n i  t i a l  paraboli c time dependence, ( t ime) l l 2 ,  f o l  lowed by a 

l i near  time dependence af ter  the generation o f  approximately 6 x l b  

moles o f  gas. Although the power level  was varied by nearly a fac tor  o f  

2, no f l o w  ra te  dependence was apparent i n  the data. Thus, any high 

temperature flow rate dependence must be small , par t i cu la r l y  when compared 

t o  the temperature dependence. 

Having canpleted the invest igat ion o f  the f low ra te  dependence, 

the program was continued wi th  6 study o f  the time and temperature depen- 

dence. Because the i n i t i a l  studies had indicated tha t  the gas evolut ion 

ra te  i s  very low a t  low temperatures i t  was apparent tha t  the invest i -  

gation o f  heat pipes a t  t r u l y  reference (normal) operating conditions 

d id  not f i t  w i t h i n  the time frame o f  t h i s  program. Thus a l l  the 8 

remaining heat pipes were studied a t  a series o f  high (accelerated) 

temperatures. One o f  the 179.3OC heat pipes studied f o r  f low ra te  

dependence was included, g iv ing 9 heat pipes a t  the fo l lowing series 

o f  temperatures: 120.0, 130.0, 140.0, 149.9, 160.0, 170.2, 179.3, 

189.7, and 198.2OC. The indicated temperatures are average values o f  

recorded temperatures taken over the en t i  r e  exposure period a t  approximately 
+ 24 hour intervals. No temperature var iat ions greater than - 0.5"C were 

bserved ovel any s ign i f i can t  period of time. Only the three lowest 

temperature heat pipes could be operated i n  a heat pipe mode without 

burno~l+.. The remainder were operated i n  a re f lux  posi t ion.  A 3/4" 

condenser was exposed i n  each case g iv ing corresponding flaw rates o f  

7.0, 7.7, 8.9, 10.0, 10.7, 11.4, 12.6, 13.6 and 15.9 watts. 
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FIGURE 2-2. Gas evolution i n  methanol/stai nless-steel heat pipes operated 
a t  d l  f ferent  power levels t o  investigate the possl0i l i  t y  o f  a 
flow rate  dependence. 



The gas generation curves are shown i n  Figures 2-3 and 2-4. 

As w i th  the heat pipes studied f o r  f low r a t e  dependence, the  gas generation 

data appears t o  obey a parabol ic time dependence up t o  approximately 

6 x lo-' l b  mole o f  gas and a 1 inear t ime dependence beyond t h i s  po in t .  

Thus, the data points i n  Figure 2-4 are f i t t e d  t o  a parabol ic curve, 

wh i le  the  higher temperature data i n  Figure 2-3 are f i t t e d  t o  a i i n e a r  

time dependence above 6 x lo-' l b  mole and a parabol ic dependence below. 

The data from the 120°C heat p ipe i s  no t  included because i t s  behavior 

was s i g n i f i c a n t l y  d i f f e r e n t  than the other  heat pipes. It showed an 

abnormally high gas generation rate,  possib ly  resu l t i ng  from a very small 

leak o r  from impur i t ies  not contained i n  the  other  heat pipes. 

The sca t te r  i n  ~ n e  data appears t o  be greater  f o r  t he  lower 

temperature pipes i n  which only a small amount o f  gas was generated. 

This may r e s u l t  from the  f a c t  t h a t  the resu l t s  o f  the  conrputer program 

are q u i t e  sens i t i ve  t o  small var ia t ions  i n  the  thermocouple readings, 

p a r t i c u l a r l y  f o r  small amounts o f  gas (lo-' l b  mole range). Thus the  

parabol ic l e a s t  squares f i t s  i n  the  range o f  low gas content were no t  

as good (lower percent o f  determination) as the l i n e a r  f i t s  above 

6 x lo-' l b  mole. 

2.2  Gas Generation Model and Analysis 

Stainless s tee l  i s  r e ~ o r t e d  t o  undergo uniform corros ion i n  

methanol a t  a small 1 inear  r a t e  ( less  than 0.1 mpy below 118OC) aft;,. 

long durat ion exposure [2-81. No studies o f  the i n i t i a l  corros ion 

behavior o r  o f  the temperature dependence o f  the corrosion r a t e  could 

be found i n  the l i t e r a t u r e .  I n  the presence o f  a ca ta lys t ,  methanol 

undergoes dehydrogenation t o  form formaldehyde gas and hydrogen gas 

[2- 91 : 

CHjOH + HCHO + Hp . (2-3) 

I f  oxygen i s  also present, the  ove ra l l  reac t ion  y i e l d s  formaldehyde 

and water 12-1 01 : 

CHPH + 1/2 O2 + HCHO + H20, (2-4) 

and oxidat ion o f  formaldehyde produces formic acid: 

HCHO + 1/2 O2 + HCOOH. (2-5) 
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Methanol/stainless-steel heat p i  pes might be expected t o  generate 

formal dehyde and hydrogen as noncondensahl e gases, and perhaps formic 

acid as the reaction proceeds. I n  fact ,  an analysis o f  the gas generated 

i n  methanol/stainless-steel heat p i ~ e s  1 i f e  tested f o r  5000 hours between 

42-55°C by kreeb [2-111 showed the presence o f  fonaldehyde p i  us m i  nor 

amounts o f  H2, CH4, and CO. 

The corrosion ra te  o f  sta in less steel  i n  formaldehyde i s  

s l i g h t l y  greater ( less than 2 mpy a t  24OC) [2-121 than i n  methanol, 

but  the rate increases by more than an order o f  magnitude i n  the presence 

o f  formic acid (20-50 mpy a t  52OC) [2-121. Uniform corrosion and p i t t i n g  

occur wi th both o f  these corrosion reactions 12-81, Micrographs o f  

sections o f  methanol /s ta i  nless-steel heat pipes 1 i fe  tested a t  5 7 O C  

f o r  5500 hours by Grol l  e t  al.  [2-131 showed the presence o f  a surface 

f i l m  (uniform corrosion) and gra in  boundary attack. A phenomenological 

gas generation model i s  considered below which incorporates corrosion and 

oxidation theory and contains parameters which may be determined by 

experiment. 

It i s  assumed tha t  uniform corrosion occurs a t  a l l  stainless- 

steel surfaces by the operation of a great number o f  microscopic galvanic 

ce l l s  [Z-141. The resu l ts  o f  t h i s  study indicate tha t  passivating f i l m  

growth wi th a parabolic time dependence probably occurs i n i t i a l l y  from 

the corrosion o f  the stainless-steel surface i n  the presence o f  methanol 

accompanied by the evolut ion o f  a proportional amount o f  noncondensable gas. 

Once the passivating f i l m  i s  formed, t h i s  corrosion product may then act 

as a catalyst  f o r  reactions (2-3) and (2-4), g iv ing a l i nea r  time dependence. 

Reaction (2-4) may predominate, w i th  the oxygen coming f r o m  the small water 

content o f  the methanol, based on the resu l ts  o f  Keeb [Z-111 who found 

formaldehyde t o  be the main consti tuent i n  the gas. Reaction (2-5) 

probably plays only a minor r o l e  i n  the corrosion processes. 

The t r ans i t i on  From the passivating region t o  the ca ta l y t i c  region 

should depend on the temperature and the amount o f  corrosion product present 

per u n i t  area (e f fec t ive  f i l m  thickness) or ,  equivalently, on the quanti ty 

nc/A, where nc i s  the c r i t i c a l  gas content and A i s  the in terna l  corroded 

surface area. Since the f i l m  o f  corrosion products may be porous and 

discontinuous, the appropriate area A may be d i f f i c u l t  t o  define. Thus, 
a c r i t i c a l  time -tc t o  the t r ans i t i on  point  can also be defined, as discussed 

l a te r ,  which may be a preferable c r i t e r i o n  f o r  the t rans i t ion.  



Generally accepted theories o f  f i l m  growth d-r ing oxidation o f  

metal surfaces assume d i f fus ion  through the f i l m  o f  cations away from the 

metal surface and anions toward the metal surface [2-15, 2-16]. The 
d i f fus ing  ions migrate from one pos i t ion o f  minimum potent ia l  Pnergy t o  

the next. I f  Q i s  the height o f  the ba r r i e r  between two potent ia l  energy 
minimums, the probabi l i ty  tha t  an ion w i  11 pass over the ba r r i e r  i s  

proportional t o  e -Q'kT, where Q i s  ca l led the act iva t ion energy, k i s  

Bol tzmann's constant, and T i s  the absolute temperature. This i s  the 

temperature dependence found experimentally i n  sol i d  s ta te  d i f fus ion  

[2-171. It should be mentioned t ha t  the simple in terpreta t ion o f  Q 

given above i s  only one o f  several physical interpretat ions,  which depend 

on the par t icu lars  o f  f i l m  growth theory. 

Oxidation theory 12-1 53 predicts passivati  ng f i l m  growth w i  11 

occur wi th  a parabolic time dependence and an exponent:al temperature 

dependence. Assuming a proport ional amount o f  gas i s  evolved i n the 
n A+, t <tc,  should process, gas generation i n  the passivating mgion, -I 

be given by 

where n i s  the number o f  l b  moles o f  gas, t i s  the time, A i s  the t o t a l  

internal  area o f  stainless steel i n  contact w i t h  the methanol (166.6 in2  f o r  these 
heat p i  oes) , and B1 i s  a constant character1 s t1  c o f  the corrosion process. ~ h i s  time 

dependence has been found t o  describe hydrogen evolut ion frm steel i n  bo i l i ng  

water [2-181 but i s  not  common t o  the (long duration) corrosion o f  metals 

generally. Various other forms o f  time dependencies are also predicted 

by theory depending on the par t i cu la r  assumptions made [2-19, 2-20]. Over 

long exposure periods, uniform corrosion w i t h  a l i nea r  time dependence 

occurs more c o m n l y .  

According t o  the gas generation model under consideration, a f t e r  

suf f ic ient  corrosion product has been produced t o  act as a cata lys t  f o r  

reactions (2-3) and (2-4) , equivalent to a quant i ty  o f  gas nc/A 1b mole per u n i t  

area a t  the t r ans i t i on  point,  fonnrldehyde and hydrogen are produced. These 
ca ta l y t i c  reactions are conslderrd to predomfnatt beyond the t rans i t i on  point,  

and would be expected t o  obey a I l rwr r ,  tfm depundence w i th  a character ist ic  
ac t iva t ion energy Q2, glv ing 



fo r  n / ~ ~ ~ k ,  t >tc, where B2 i s  a constant character ist ic  o f  the ca ta ly t i c  B 
F 

reaction. Here Q2 represents the potenti  a1 ba r r i e r  between react i  ng mol ecul es : i 
1 

on the ca ta l y t i c  surface. This temperature dependence i s  character ist ic  o f  

many physical and chemical reactions [2-151. The area A may actual ly  be 1 
somewhat la rqer  than geometrical in terna l  area depending on the surface i i 
roughness o f  the stainless steel  o r  corrosion product surfaces. i 

f 

With dry corrosion the act iva t ton energies are generally larger 

than wi th wet corrosion, as i s  apparent from the ac t i va t ion  mergies 

shown i n  lable 2-1. An explanation for t h i s  may be that  the e f fec t i ve  

potent ia l  ba r r i e r  i s  lowered by the e l e c t r i c  f i e l d  across the f i l m  

created by the local  corrosion c e l l  . 
The use of t h i s  gas generation model i n  accelerated l i f e  

tes t ing i s  tha t  the parameters B and Q ccn he determined experimentally 

from data taken under accelerated conditions by p l o t t i n g  l og  an vs. 

1/T. Having determined these parameters by measuring the gasat 

evolut ion a t  accelerated condi~ ionc the gas evolut ion a t  any time can 
be calculated from (2-6) and (2-7) ror  heat pipes operated under normal 

conditions.The quant i t ies tc and n,/A can be calculated from (2-8) and 
(2-g) , as discussed below. 

f 
Least squares f i t s  t o  the parabol ic data are p lo t ted n vs t1I2 

1 i n  Figures 2-5 through 2-7. Plo t t ing  log an vs /T resu l ts  i n  the zl / 2 
O b  - 

curve shown i n  Figure 2-8, ind icat ing gas generation i n  the passivating 

region s described by (2-6) . wi th i n  the accuracy o f  the data. Calculating 
t s  

the parameters Q, and B1 fm the slope and intercept, respectively, i 
resul ts i n  I 

1 

Q1 = 6.03 x jou l  er , 
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FIGURE 2-5. Gas generati on i n  metfranoljstai nless-steel heat pipes 
showing temperature dependence i n parabol i c reg1 on. 



O # 6 ,  179.2OC, I!.$ WATTS 
Q 17, 179,3OC, 12.4 WATTS 
0 # 8 ,  179.2"C, 16.4 WATTS 
&#9,  179.3OC. 19.6 WATTS 

FIGURE 2-6. Gas generation i n  nathanol/stainless--el heat pipes 
i n  parabol i c regi  on. 
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FIGURE 2-9. Accelerated testing data o f  n?@thanol/stainless-steel 
heat pipes i n  the l inear region, log + vs 

22 



A p l o t  o f  log 9 vs '/T i n  the l i near  region resu l ts  i n  the 

curve shown i n  Figure 2-9, showing good agreement wi th (2-7). Calculating 
the parameters for the gas generation behavior beyond the passirat ing 

region resu l ts  i n  

Q2 = 26.7 x Joules, 

B2 = 3.79 x lo5 l b  m l e / h r  in2. 

The t rans i t ion  po in t  tc between the passivating and ca ta ly t i c  

reeions may be defined as the po in t  beyond which ca ta ly t i c  reactions pre- 
an dominate, i .e., the time a t  which the gas generation rates, x, are equal. 

an Equating the slopes. x, o f  Eqs. (2-6) and (2-7) resul ts in :  

f o r  the c r i t i c a l  time. The c r i t i c a l  gas content per u n i t  area (equivalent 

t o  a c r i t i c a l  f i l m  thickness o f  corrosion products i n  t h i s  model) i s  found 

by subst i tut ing Eq. (2-8) i n t o  Eq. (2-6) : 

Thus, as the temperature increases, both tc and nc/A decrease. 

This i s  reasonable since less ca ta ly t i c  material would be required t o  obtain 
I. 
i a given gas generation ra te  as the temperature increases. The value o f  

nc . 6 x 10" 16-mole ("/A .L 3.6 x 10-l1 lb-mle/ in2) which war obrrrved 
'~ 

as the approximate value o f  the c r i t i c a l  gas content i n  the temperature j.; ,& .+ -;- ::., - - - .  
range 160-17g°C agrees reeiz~nably w l 1  w i th  Eq. (2-9). A t  170°C, Eq. (2-9) , .  

2 
: ,  

y ie lds n,/A = 4.3 x 1b-riole/in . I 



2.3 Concl us ions and Rec~nendat i  ons : 

The behavior of the gas evolut ion i n  methanol/stainless-steel 
heat pipes was found t o  depend on the amount o f  gas per u n i t  area generated 

during accelerated test ing.  Below a c r i t i c a l  value nc/A given by Eq. (2 -9 ) ,  

or c r i t i c a l  time tc given by Eq .  (2-8), the t tne  dependence i s  explained best 

by a parabolic function, ind icat ive  o f  the growth o f  a passivating f i l m  o f  

corrosion products. The data i n  t h i s  region can be correlated wi th  a model 

o f  f i l m  growth resu l t ing i n  Eq. (2-6), which contains parameters t o  be 

determined by experiment. Above the c r i t i c a l  po in t  given by Eqs. (2-8) 
and (2-9),  a l i near  time dependence was observed. I n  t h i s  region the 

data can be correlated w i th  a model o f  ca ta l y t i c  decomposition o f  methanol 

t o  formaldehyde and hydrogen on the surface o f  the corrosion products, 

resu l t ing i n  Eq. (2-7). No flow ra te  dependence was found w i t h i n  the 

accuracy o f  the data. I n  appl icat ion t o  other types o f  methanol/stainless- 

steel heat pipes, the gas generation may vary depending on the type o f  

stainless steel, the p u r i t y  o f  the methanol, and other factors; but i t  i s  

expected t ha t  the behavior could be explained by the same form o f  the Eqs. 

(2-6) and (2-7), v!i t h  associated c r i t i c a l  values (2-8) and (2-9), only 

the value o f  the parameters may change. 

Based on the resu l ts  o f  t h i s  and the previous study [2- l ]  i t 

appears tha t  t h i s  method o f  accelerated l i f e  t e s t i  ngs has a broad 

app l i cab t l i t y  t o  heat pipe systems, even when not  a great deal i s  

known concerning the actual gas evolut ion mechanisms. This method o f  

accelerated 1 i f e  tes t ing  can now be appl l ed  t o  other important types 

o f  heat pipes wi th  good probabi l i ty  o f  success. 



3.0 GASPIPE EXTENSIONS 

The TRW GASPIPE comouter program, which was developed on the 

present contract and documented i n  Ref. [3-11, "User's Manual f o r  the TRW 

Gas p i  pe Program" , has been extended t o  i ncl ude two condenser sec ti ons . 
Since the new version o f  the program i s  described :Q detai 1 i n  the re j ibed 

user's manual, (Ref. [3-2]), i t  w i l l  su f f i ce  here t o  sumnarize the lrior;rams 

capabi 1 i t ies .  

The motivation f o r  extending the o r ig ina l  GASPIPE p rc  ;ra,n 

i s  the frequent design o f  heat pipes wi th  a second condenser section c a v i  ,.g 

as low an axia l  conductivi ty and e f fec t i ve  s ink temperature as possi5le. 

Such sections are used adjacent to the gas-reservoir entrance t o  minir i ze  

the pa r t i a l  pressure o f  the reservoir  v a p r ,  thus allowing smaller 

reservoirs and/or a t i g h t e r  control band. I n  the case o f  a wicked c o l l -  

reservoir design, the low-conductivity section minimizes heating o f  the 

reservoir by ax ia l  conduction from the act ive por t ion o f  the condenser. 

I n  the case o f  a non-wicked hot-reservoir design, wherein the pa r t i a l  

pressure ~f the reservoir  vapor i s  set  by the temperature of the nearest 

port ion o f  saturated wick, the low-conductivity section minimizes warming 

o f  t h i s  port ion. 

The o r ig ina l  GASPIPE program cannot t r ea t  such s i tuat ions i f  

the sink temperatures o f  the two condensers are unequal and the gas f ron t  

develobs i n  the condenser far thest  from the reservoir. I n  addition, the 

o r ig ina l  program i s  l im i t ed  to e i t he r  two condensers o r  one condenser and 

one adiabatic section, and many appl icat ions requi re two condensers and 

an adiabatic section. The extension o f  the program remedies these 

def i c i  enci es . 
The s i tua t ion  t o  which the revised program, GASPIPE 2, i s  appl ic- 

able i s  depicted schematically i n  Figure 3-1. I n  t h i s  f igure, the ax ia l  

conductivi ty o f  condenser 1 i s  minimized by the use o f  s lo t ted  f ins .  A l l  
parameters including the sink temperature t ha t  d e s ~ r i  be condenser 1 , can 

be set  d i f f e r e n t l y  from those describing condenser 2. Thus the f i ns  attached 

t o  condenser 1 may have a special coating t o  achieve a low e f fec t i ve  sink 

temperature, o r  the heat-pipe wal l  i t s e l f  may be thinner o r  even be a d i f f t r e n t  

material t o  achieve a low ax ia l  conductivity. A t yp ica l  condenser cross- 

section i s  shown i n  Figure 3-2. The program i s  not  l i m i t e d  t o  the geometry 

shown, non-ci rcu l  a r  and non-axisyra~letric configurations can also be studied. 
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a l l  the capabil i t tes of the or iginal  GASPIPE program, which allow one to: 1 
o Calculate the wall-temperature p r o f i l e  along a gas 

loaded heat pipe. 

o Calculate the amount o f  gas loading necessary t o  

obtain a desired evaporator temperature a t  a 

desi red heat 1 oad. 

o Calculate the heat load versus the evaporator 

temperature fo r  a f ixed amount o f  gas i n  the pipe. 

o Calculate the heat and mass transfer along the 
pipe, including the vapor-gas f ron t  region. 

o Calculate the heat leak when the condenser i s  

f i l l e d  with gas. 

o Calculate whether or  not freezing occurs i n  the 

condenser and, i f  so, a t  what rate. 

o Determine the i n fona t i on  required t o  size the gas 

reservai r of gas-control 1 ed heat p i  pes , 

The program contains numerous reservoir options that  a1 1 ow i t t o  be used 

f o r  hot o r  cold passive-control as w e l l  as heated-reservoir active- 

control heat p i  pes . 
GASPIPE 2 i s  based on a one-dimensional steady-sbte analysis 

that results i n  two simu! taneous f i rst-order ordinary d i f fe ren t ia l  

equations that govern ( i )  the mole fract ion o f  the noncondensable gas 

and ( i  i )  the vapor velocity. These are integrated with the forth-order 

Runge-Kutta routine. The addition o f  the second condenser section w i th  a 
d i f ferent  sink temperatwe required extensive modification t o  the or iginal  

program. Previoirsly, a single solution curve was obtained by numerical 

integration that could be translated w i  t h i n  the condenser u n t i l  a posit ion 

corresponding t o  the required heat flow o r  the required inventory was 

achieved. With a step change i n  condenser properties that  occurs wi th  

two condensers, translation i s  no longe? possible. An i n i t i a l  solution 

i s  obtained f o r  the case of complete gas blockage of the heat pipes by 

f i r s t  integrating once backward from the adiabatic section wi th  properties 



o f  condenser 2 and then repeatedly forward w i t h  propert ies o f  condenser 1 

u n t i l  proper condit ions are met a t  the i n te rsec t i on  of the two curves. The 

two curves are then t rans la ted u n t i l  t h e i r  i n te rsec t i on  coincides w i t h  the 

boundary between coridensers 1 and 2. With the i n i t i a l  gas-blocked p r o f i l e  as a - 
base, a so lu t i on  curve f o r  a non-gas-blocked region i s  obtained by se lec t -  

i n g  a po in t  along the gas-blocked curve, s l i g h t l y  perturbing the value o f  

the so lu t ion  a t  t h a t  po in t ,  and then in teg ra t i ng  towaru the evzporator. 

The so lu t ion  curve thus generated automatical ly seeks a condi t ion o f  no 

gas blockage. Solut ions are repeatedly obtained i n  t h i s  way, bu t  w i th  

d i f f e ren t  s t a r t i n g  po in ts  along the gas-blocked curve, u n t i l  e i t h e r  the 

calculated amount o f  noncondensable gas o r  the t o t a l  heat rejected agrees i 
w i t h  the spec i f ied  amount. I n  some cases, the cor rec t  so lu t ion  i s  obtained i 

i 

by repeated in tegra t ions  from the  beginning condenser 1 w i t h  su i tab le  adjustments 
) 

o f  the i n i t i a l  condit ions. For d e t a i l s  of the program, r e f e r  t o  the user 's  

manual a1 ready c i ted.  



4.0 PRIMING STUDIES 

Many heat-pipe appl icat ions requi re  both the high performance 

of  an a r t e r i  a1 design and the variable-conductance character ist ics obtained 

through the use o f  noncondensable gas. The presence o f  gas, however, can 

in ter fere  wi th the priming and operation o f  ar ter ies.  Part o f  our research 

task was t o  study a r t e r i a l  perfomance i n  the presence of  gas. 

During a r t e r i  a1 primi ~g , noncondensable gas can resu 1 t i n  

bubble entrapment. A t  TRW, we have developed an approach t o  vent gas 

through holes i n  a f o i  1-walled section of the ar tery  a t  the evaporator end. 

Our research task ca l l s  f o r  detai led study o f  t h i s  new solut ion o f  a r t e r i a l  

priming w i th  a glass heat pipe. As w i l l  be described presently, such an 

apparatus was fabr i  coted tha t  c losely approximates actual heat-pi pe 

configurations current ly i n  use. 

Noncondensable gas also causes problems i n  the operatio,! o f  

a r t e r i  a1 heat pipes wi th  amnonia. Pressure f luctuat ions w!lich only appear 

when there i s  some condenser blockage by no~condensable 3as, resu l t  i n  

depriming c f  ar ter ies.  Our research task also ca l l s  for  both a theoret- 

i c a l  and experiinental invest igat ion o f  the mechani sm o f  these f luctuat ions . 
4.1 Theoretical Study o f  Pressure Fluctuations i n  a Gas- 

Controlled Amnonia Heat Pipe 

Pressure f luctuat ions i n  gas-control led a m n i a  heat pipes 

were f i r s t  reported by Edzlstein, Roukis and Loose (Ref. [4-11). They 

observed 0.12 t o  0.14 psi  i r regu la r  f l uc tua t i o l~s  w i th  a period canying 1 
between 0.25 and 0.50 minutes i n  an amnonia heat pipe containing nitrogen I 
gas f o r  control o f  the act ive  condenser length. The pipe was approximately 

one inch i n  diameter w i th  a 46 inch long evaporator and an equally long 

condenser. The magni tude o f  the f luctuat ions increased sorewhat w i  t h  

heat load, but  was independent o f  tilt. Thefr nagni tude was su f f i c i en t  1 i  

t o  deprime the tunnel artery, which was the basis f o r  t h e i r  high perform- 

ance (1 50,000 watt-inch) heat pipe. With no control  gas present, they 

reported a marked decrease i n  amplitude and "number" (frequency?) o f  



osc i l l a t ions  so that  the pipe performed as desired. 

Simi lar  problems wi th the priming o f  a high-perfomance ammonia 

fieat pipe were encountered by TRW (Ref. 14-21). A pressure transducer was 

i ns ta l  l ed  and indicated excessive pressure f luctuat ions.  I n  t h i s  case 

the f luctuat ions,  whi le s t i l l  rather i r regu la r ,  were much more nearly 

periodic i n  nature wi th  a period o f  approximately 1.1 t o  1.2 minutes 

and an amplitude o f  approximately 0.31 1bf/in2 a t  low heat load. Data 

were obtained w i th  and without addi t ional  mass added t o  the evaporator 

as fol lows: 

Mass o f  Aluminum Steady Power Pressure-F1 uctuat i on 
on Evaporator Control Gas Watts Amp1 i t  ude 

bm 1bf/in2 -- 

Nope 100 < 0.02 

Argon 100 -0.07 
t i  3 - 0.45 
II 1 00 < 0.07 
I1 5 < 0.33 
II 1 00 c 0.15 
11 3 < 0.010 

Contrary t o  the experience reported by Edelstein, the most 

severe osc i l la t ions occurred a t  low heat loads. However, i n  these tes ts  

the condenser sink was massive, and the severe osci 1 la t ions  occurred when, 

a t  low heat loads, the gas f r on t  penetrated i n t o  the adiabatic section 

whose mass was only tha t  of a 0.50-inch outside diameter tube wi th  0.028- 

inch thickness and the diametral wick. 

4.1 .l Possible Osci 11 a t ion Mechani sins 

The long period o f  the ~ s c i l l a t i o ~ i s ,  15 t o  70 seconds, strongly 

sugyests a mechanism l im i t ed  by heat o r  mass-diffusion rates. The 

possibi l i t y  o f  grav i ty  waves playing a part, f o r  example, may be ruled 

out by considering the time scale for  such a mechanism 



where P i s  the density o f  the gas, D i s  the pipe d l  ameter, and g i s  the 

gravi tat iot la l  acceleration. Such considerations would ru l e  out w i th  

even greater force acoustic-resonanc~s phenomena whose period would be 

on the order o f  the pipe length divided by the acoustic veloci ty.  I n  

comparison, consider typ ica l  character is t ic  times f o r  d i f fus ion  

phenomena shown i n  Table 4-1. We w i l l  see presently tha t  the theoret ical  

period o f  the osc i l l a t i on  i s  o f  the same order o f  magnitude (wi th in  a 

fac tor  o f  4) as a character ist ic  delay time. Therefore, the times most 

i n  agreement wi th  the exper!mental ovservations are those f o r  phenomena 

1, 2, 3 and 5 i n  Table 4-1. 

TABLE 4-1 

CHARACTERISTIC TIMES FOR 

D! FFUSION PHEIiOMNA 

PHENOMENON FORMULA FOR NUMERICAL VALUE OF 
CHARACTERISTIC TIME CHARACTERISTIC TIME 

1. Mass d i f fus ion  i n  the (pipe d i a m t e r j 2  - -  
gas phase through one (d i f fus ion  coef .) 
ins ide diameter 

2. Mass d i f fus ion i n  the (gas-front length),* 

gas phase through the (d i f fus ion  ccref.) 
gas f r o n t  

3. Mass d i f fus ion i n  the lw i ck  t h i c k n e s ~ '  

1 iqu i  d phase through (d i f fus ion  coef.) 

the wick thickness 

4. Heat d i f fus ion  i n  the (qrmve depth12 - 
l i q u i d  phase through (thermal d i f f u s i v i  ty )  

groove depth 

5, Heat d i f fus ion i n  the Jwick t h l c k n e r ~ ) ~  - 
l i q u i d  phase through (thermal d i f f u s i v i  t y )  

the diametral wick 

ha1 f thickness 

10 Sec. 

100 Sec. 

50 Sec. 

0.1 Sec. 

10 Sec. 



Three poss4'::e disturbances can be conceived on the basis o f  

t h i s  table: 

A. A disturbance based upon the time lag between a convective 

d is to r t ion  o f  the gas f r o n t  and i t s  re-establishment by 

di f fusion.  

B. A disturbance based upon a convective d is to r t ion  o f  the 

gas f r on t  and the consequent e f f ec t  upon dissoived gas i n  

the condensate which i n  turn t r iggers nucleation i n  the 

evaporator. 

C. A disturbance based upon the time lag between the f i  11 ing  

o f  a void i n  the diametral wick wi th l i q u i d  and the 

formation o f  a bubble by bo i l i ng  i n  the wick where i t  

contacts the wall .  

These three correspond w i th  Items (1 o r  2), (3), and (5) 

respectively i n  Table 4-1. Item (4) ,  which corresponds t o  per iodic bo 

bo i l i ng  i n  the grooves, i s  seen t o  have too f a s t  a character ist ic  time. 

Further consideration o f  the time necessary f o r  the l i q u i d  t o  

f low from condenser t o  evaporator would seem t o  el iminate disturbance B 

above. Further, whi le a diametral wick was used i n  the TRW experiments, 

a sp i ra l  a r t e r ~  was used i n  work o f  Ref.[4-11. The feed wicks o f  tha t  

pipe do not seem t o  have a configurat ion favoring bo i l i ng  w i th in  them, 

thus disturbance C seems un l ike ly .  Disturbance A above i s  thought most 
1 i kely , and we now consider a sinrpl if ied model o f  it. 

4.1.2 A Simpl i f ied Model 

I n  a heat pipe a pressure change dP i s  caused by (o r  accompanied 

by) a temperature change dT given by the Clausius-Clapeyron re1 ation, 



where h and M respect ive ly  are the  l a t e n t  heat and molecular weight 
f g 

o f  the working f l u i d ,  andd7 is  the universal gas constant. The observed 

f luctuar  . ~ n s  i n  dP:P are on the order o f  hence. the f l u c t u a t i o n  i n  

dT/T i s  on the order o f  The pressure and temperature f l u c t u a t i o n  

dre also accompanied by a prompt movement dz o f  t he  gas f r o n t .  I f  A, 
i s  the cross-sect ional vapor area o f  the condenser, and V i s  the t o t a l  

gas-blocked vol uvtu t h a t  contains N moles o f  vapor and gas a t  temperature 

Ts, then 

or ,  using (4 - I ) ,  we w r i t e  

The ~ovement o f  the  gas f r o n t  by dz opens up new heat- t ransfer  area so 

tha t  the heat- t ransfer  ra:e Q l o s t  i n  t he  (.ondenser goes up by dQl: 

or ,  using (Z), we w r i t e  

h M 
dQ1 = UP (T-T ) $f $ . KC 

Here, U i s  the heat - t rans fer  c o e f f i c i e n t  and P i s  t he  condenser 

perimeter. There i s  aiso a s l  i g h t l y  augmented heat t rans fe r  due t o  

the increase i n  T - TS, 

dQ2 = UPZ dT ( 4-4) 

where z i s  t he  ac t i ve  condenser length. We imagine t h a t  the l a t t e r  i s  

prompt i n  t e r m  o f  a few seconds w h i l e  the former may be delayed by  a 
t ime T o f  some tens o f  seconds o r  a minute due t o  the slowness w i t h  

which the gas d i f fuses  ou t  o f  the way o f  the  condensing vapors. 

The heat l oss  fm the condenser i n  t ime dT i s  21, = dQ1 dQ2, 

where we can w r i t e  as 



Here, To i s  the mean *lapor temperature, m d  from Eqs. (4-21, (4-3)  and 

(4-4), we have ( t o  f i rat order i n  T - To) 

and 

I n  order f o r  the  evaporator temperature T t 3  r i s e  by dT a quant i ty  

o f  heat dQeac i s  yromptly needed t c  heat the evaporator, adiabatic, and 

condenser masses : 

where m and c are the mass and spec i f i c  heat o f  the  evaporator, adiabat ic  

o r  condenser sections, which ara dist inguished by the subscripts ( )e ,  

i ), and ( ), respec;< i l l y ,  and LC i s  the  t ~ t a l  condenser lmgth. Tnere 

i s  also a delayed need o f  heat dQ, needed t o  warm the segment o f  condenser 

brcugtlt i n t o  szrvice: 

or, using (4-2), 

The st iady e l e c t r i c a l  heating o f  the e v a ~ o r a t o r  goes i n t o  supplying t h i s  

heat as wel l  as the heat losses [Eq. (4-511 during a i m p e r a t u r t  fluctua"con1, 

t h a t  i s  



T = T - To' 

The heat balance equation becomes 

Eq. (4-1 3) i s  a d i  f fe ren t i  al-difference equation which are discussed 

i n  Refs. [4-31 and [4-41. It anbodies a prompt e f fec t  o f  the thermal 

capacities o f  the evaporator ad1 abatic and condenser sections i n  res i  s t i  ng 

temperature change ( the f i r s t  t e n ) ,  a delayed e f fec t  o f  the t h e m 1  capacity i 

of the condenser exposed when the f ront  moves (the second term), a prompt 

effect o f  increased heat losses i n  the working port ion o f  the condenser when 
the vapor temperature r ises (the t h i r d  term) , a del wed e f fec t  o f  increased k 

heat loss due t o  movement o f  the f ron t  i n  exposing more condenser surface (the 
fourth and f i f t h  terms). This l a s t  factor i s  represented by the f i r s t -  ! 

order 1 inear term BT' ( t  - r )  representing exposure o f  new condenser i 

surface t o  the o l d  vapor temperature To and a second-order, nonlinear 
term [B/iTo - Ts)] T( t )  T '  ( t  - T )  representing the Increased heat 

transfer from new surface due t o  the r i s e  T '  i n  vapor temperature above 

To . This l a t t e r  I s  c lear ly  small and w i l l  be neglected when the equation 
I 

i s  examined f o r  what i t  says about the per iod o f  the disturbance. 



I n  ~ r d e r  t o  say anything about the  amp1 i tude o f  the  disturbance, 

i t  i s  necessary t o  r e t a i n  nonl inear  terms. That t he  on ly  nonl inear  

t e r n  shown i n  Eq .  (4-13) i s  the dominant one i s  no t  c lear .  I n  the course 

o f  der iv ing  Eq. (4-1 3j  many inherent ly  nonl i near terms were neglected; 

f o r  example, the  change i n  gas volume \I due t o  movement o f  the f r o n t  or. 

t o  the change i n  temperature T (taken t o  be To) i n  the  equations f o r  

the B and rd terms [Eqs. (4-7) and 0 -11 )  and (4-3)]. Since the f a c t o r  

o f  cancern i s  V/T and V decreases upcn increase i n  T, the two e f f e c t s  

are add i t i ve  rather  than se l f -cance l l  ing. Furthermore, i n  the t e c t s  o f  

Ref. ( 4 - I ) ,  spray cool ing was used, and r a d i a t i o n  i s  o f ten  an important 

heat-transfer mechanism i n  r e j e c t i n g  heat from the condenser i n  actual 

appl i c a t i  ons . Where e i t h e r  evaporation (spray cool i ng  ) o r  boi 1 i ng o r  

rad ia t i on  acts a t  the condenser, an increase i n  T - TS gives more than 

a proport ional increase i n  the heat ~ j e c t e d ,  and hence another source 

o f  n o r l i n e a r i t y  ar ises. A m i t i g a t i n g  fac to r  i n  favor  o f  re ta in ing  the  

nonl inear term o f  (4-13) fo r  an amplitude analys is  i s  t h a t  i t  has much 

the same form o f  a " s t i f f e n i n g  term" o f  a spring-mass system. 

4.1.3 Analysis o f  the E q u a t i o ~  

Much informat ion can be obtained from Eq. (4-13) i f  we s i m p l i f y  

i t  by neglect ing the nonl inear  term and considering the special  case 

d 3 0. I n  t h i s  case, we have 

We seek a so lu t ion  o f  the form 

where c = a + i L,. 

I f  a i s  pos i t i ve ,  our l i nea r i zed  theory pred ic ts  t h a t  the so lu t i on  w i l l  

hecane i n f i n i t e .  Ac tua l ly  , the f l uc tua t i ons  w i  11 be l i m i t e d  by nonl i n e a r i t i e s  

o r  other small e f f e c t s  t h a t  we have neglected. I f  a i s  negative, the 
so lu t ion  i s  damped and we do no t  expect f luc tua t ions .  



The character ist ic  equation i s  obtained by subst i tut ing 

Eq. (4-15) i n t o  (4-14): 

or  i n  terms o f  i t s  rea l  itad imaginary parts, 

r a + 1 + B e-OT cos UT = 0, P ( 4 - 1 7 )  

u T~ - B e-aT s i n  UT = 0 (4-18) 

We f i r s t  ask i f  there are any non-osci l latory solut ions (U = 0) 

tha t  are unstable (a > 0). BY se t t ing  o 0 i n  (4-17), we obtain 

Since 6 > 0, we deduce tha t  i f  the so lu t ion i s  non-oscil latory, then i t  

i s  stable. 

We now look f o r  an unstable (a > 0) osc i l l a to ry  solut ion 

(U > 0). From (4-1 7) we obtain 

According t o  t h i s  equation, f luctuat ions or ig inate ( U  = 0) a t  

B = 1 , i n  which case they have a period 2n/o = 2%. This resul t appl i es  

t o  a hypothetical heat pipe wi th  zero mass since we must have T = 0 t o  
P 

sat is fy Eq. (4-18) and hence allow such a solut ion. I n  the opposite 

1 i m i  t of a massive heat-pipe (r >> I ) ,  osc i l l a t ions  or ig inate  (a 0) P 
only ;f B >> 1, i n  which case we see from Eq. (4-20) they have a period 

2rh 4r, and from Eq. (4-18) the necessary value o f  B i s  WT 
F 



Since B i s  proport ional  to the gas-blocked volume, the fac t  I 
7 

t ha t  B has a c r i t i c a l  value a t  the onset o f  unstable o s c i l l a t i o n s  suggests j 
t h a t  a c r i i i c s l  gas-blocked velure Vcr ex is ts .  For a zem-mass heat pipe f 

( = 0) , which has a c r i t i c a l  value B = 1 , we have from Eqr . (4-1 1 and 4-12) 1 - 
f 

6 Ts s 
Vcr = '0 'c (massless heat p ipe) ,  

hfg To - Ts 

whereas f o r  a massive heat pipe (T >> I ) ,  which has a c r i t i c a l  value 
P 

B = U T ~ ,  we have from Eqs. (4-1 I ) ,  (4- 7 ) and (4-18) 

(massive hect pipe) 

Fluctuat ions i n  a heat pipe w i t h  gas-blocked volume smaller than i t s  

cr-i t i c a l  volume ai-e damped, whereas the converse i s  t rue  if the gas- 

blocked volume i s  la rger .  From the above expressions we see t h a t  a 

heat pipe becomes increasingly more unstable as the ac t i ve  condenser 

length z, approaches zero. I n  fact ,  our s i m p l i f i e d  theory pred ic ts  t h a t  

the massless heat pipe w i l l  be unstable even wi th  a small gas reservo i r  since 

as zo + 0, Vcr + 0. A low s ink temperature i s  a lso a destabl i z i n g  fac tor ,  t h a t  

i s ,  Vcr i s  more l i k e l y  t o  f a l l  below the gas-blocked volume i f  TS c< To. 
For a massive heat pipe, the c r i t i c a l  volume i s  inversely proport ional  

t o  the time lag. Therefore, a shor t  time l a g  favors s t a b i l i t y .  The 

time lag  can be decreased by increasing the gas d i  f f u s i  v i  ty i f  e i t h e r  

Item 1 or  2 o f  Table 4-1 governs o r  by decreasing the wa l l  thickness or  

conduct iv i ty  i f  Item 2 governs. 

When rd i s  non-zero i n  Eq. (4-1 3) much the sane reasoning 

applies, but  Vcr i s  increased. Approximately, the c r i t i c a l  volune i s  

given by 



Since both T and Td art. inverse ly  propor t ional  t o  z0 [Eqs. (4-6) ,  (4-8)  
P 

ana (4-9)] ,  Vcrremains f i n i t e  as zo approaches zero. The e f f e c t  of 

inc lud ing  the Td term i n  the l i nea r i zed  analys is  does not  change the 

preceeding q u a l i t a t i v e  discussions; i t  merely increases the s ize  o f  the 

c r i t i c a l  volume. 

The theore t ica l  model may be summarized as fol lows 

o A d i f f us ion  time-lag phenomenon i s  thougilt t o  govern. 

The re-establ ishment by d i f f us ion  o f  a convect ively 

d i s t o r t e d  vapor-gas f r o n t  i s  thought t o  be the mechanism 

of the lag. 

o The per iod  o f  i n s t a b i l i t y  ranges from 2 t o  4 times 

the d i f f u s i o n  time lag. 

o A gas-blocked volune greater  than a c r i t i c a l  volume 

"cr i s  necessary f o r  f l uc tua t i ons  t o  occur. Vcr  
increases w i t h  increasing thermal mass and decreases 

w i  t h  decreasi ng s i nk temperature. 

o The heat pipe tends t o  be more unstable a t  low 

power l eve l s  when the ac t i ve  condenser length i s  

small. A massless heat p ipe i s  always unstable a t  

low power, bu t  thermal mass can s t a b i l i z e  a t  a1 1 

powers. 

o A high mass-d i f fus iv i  t y  cont ro l  gas such as helium 

and low a x i a l l y  conducting condenser wa l l  such as 

s ta in less  s tee l  favor  s t a b i l i t y .  
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4.2 Experimental Heasurements o f  Pressure Fluctuations 

The theoret ical  model of pressure f luctuat ions i s  based on a 

d i f fus ive  time lag i n  the establishment o f  a vapor-gas f r on t  i n  response 
t o  a change i n  vapor temperature. As a crucia l  qua l i ta t i ve  t es t  o f  the 

model , a series o f  pressure-f 1 uctuation measurements were made i v i  th 

a heat pipe containing as the control  gas f i r s t  argon, which has a 

re l a t i ve l y  low d i f f u s i v i t y  and then helium, which has a re la t i ve ly  h igh  

d i f f u s i v i t y .  The d i f fus ive time l ag  f o r  helium should be much shorter 

thalr the lag f o r  argon; thus i f  the postulated model i s  correct, the 

change o f  control gas should have a marked e f f ec t  on the f luctuat ions.  

Tho specif icat ions o f  the t e s t  setup are containzd i n  Table 4-2. 

The heat pipe used !or the experiment was a stainless-steel two-artery 

slab-wick design, 62.15 inches long and 0.5 inches i n  diameter. The arter ies 
were never primed during the tests, but  su f f i c i en t  heat-transfer capacity 
i n  excess of 80 watts was obtained i n  a leve l  or ientat ion.  

Pressure f luctuat ions were measured wi th  a 5-psia 
di f ferent ia l  pressure transducer, both sides o f  which were connected t o  

the feed tube i n  the heat-pipe reservoir.  One leg  o f  the connection i s  

f i t t e d  wi th a valve tha t  i s  closed when measurements are being made and 

open otherwise. The output from the transducer i s  recorded wi th  a s t r i s -  

chart recorder. Kuns were made a t  low power, i n  which case the gas f r on t  

extends i n t o  the adiabatic section, and a t  intermediate power, i n  which 

case the f r on t  i s  i n  the condenser. 

Typical f l uc tua t ion  measurements are showti i n  Figs. 4-1 and 

4-2. With argon a t  the low-power o f  3 watts (Fig. 4- I ) ,  the pressure 

trace varied slowly and randomly, t y p i c a l l y  a t  a ra te  o f  .05 psilminute 
except a t  discrete points when the trace suddenly recorded a marked r i s e  

o r  f a l l  o f  approximately .35 ps i  i n  less than ha l f  a minute. Such an 
* 

is01 ated surge i s  shown i n  the Figure (4-1 ) . Only two surges were 

recorded i n  a 31 minute in terva l .  A t  a higher power o f  10 watts, the 

front was s t i l l  i n  the adiabatic section, and while the trace i s  s im i la r  

t o  tha t  a t  3 wztts, s i x  iso la ted surges were recorded i n  44 minutes. These 

surges al ternately increased and decreased. I n  comparison, a t  the low 



Specifications o f  the Test Setup 

f o r  Pressure Fluctuation Measurements 

Heat-pipe dimensions (a1 1 materials stainless steel ) : 

Outside diameter 

Hal 1 thickness 

Internal  grooves 

Evaporator 1 ength 

Adiabatic length 

Condenser 1 ength 

Cross-sectional area 

o f  vapor space 

Reservoir volume 

Arter ies (2) 

Wick 

Test conditions: 

0.5 inches 

0.028 inches 

150/i nch 
23 inches 

16.75 inches 

25 inches 

.I064 square inches 

8.72 cubic inches 
.063 inch I.D. 
.OW inch slab 

Thermal r es i  stance between 
condenser saddle and heat sink - 1 /32 x 1 .5 x 25 inch Teflon. 

Condenser saddle - .I275 lb,,,/fnch o f  aluminum. 

Set po in t  - w i th  the sink and reservoir  
a t  )O°F, su f f i c i en t  gas was 
added t o  give a 70°F vapor 
temperature a t  67 watts. 
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TIME (MINUTES) 

FIGURE 4-2. Pressure fluctuations a t  higher p m r  (67 watts) with the 
vapor-gas f ront  i n the condenser real  on. 



power of 3 watts w i th  he1 ium as the  contro l  gas, no surges were observed. 

However, as seen i n  F ig.  4-1, the  t race i s  character ized by f a i r l y  regu lar  

o s c i l l  at ions o f  about 7 cycles per minute around a randbmly varying mean 

pressure. 

A t  the higher power, 67 watts, i n  which case approximately one 

four th  o f  the condenser i s  act ive,  the s i t u a t i o n  i s  somewhat reversed. 

As seen i n  Fig. 4-2, no surges were observed w i th  argon, however, some 

were observed w i th  helium. Also, the  o s c i l l a t i o n s  w i t h  helicm are more 

pronounced and o f  a higher frequency (17 cycles/minute) a t  t he  higher 

power. 

The primary concl usion o f  the experimental measurements i s  

t ha t  the type o f  contro l  gas, as the theory predicts,  has a marked e f f e c t  

on the f luc tuat ions .  This st rongly suggests t h a t  a d i f f u s i o n  time l a g  plays 

a c ruc ia l  r o l e  i n  the f l  uctuatfon mechanism. We cannot concl ude, however, 

t h a t  pressure f 1 uc tuat i  ons are we1 1 understood. For example , we observed 

pressure surges, t h a t  have no counterpart i n  the theore t ica l  model. Further 

experimental research i s  required t o  v e r i f y  the  key physical parameters t h a t  

e f f e c t  the  f luctuat ions and t o  assess the  magnitude o f  f luc tuat ions  t h a t  

can be to1 erated wi thout  i n t e r f e r i n g  w i t h  a r t e r i a l  operation. It may then 

be possible t o  design an a r t e r i a l  variable-conductance heat pipe w i t h  

a m n i a  as the working f l u i d .  

4.3 Priminq Studies w i t h  a Glass Heat Pipe 

A method has been developed a t  TRW t o  prevent entrapment o f  

a gas bubble during a r t e r i a l  priming. The noncondensable gas i s  vented 

through cap i l la ry -s ize  holes i n  a f o i l - w a l l e d  sect ion o f  a r te ry  a t  the 

evaporator end. L iqu id  cannot p lug the  holes i n  the  f o i l  and thus prevent 

venting, because the  f o i l  i s  sized so t h i n  t h a t  the menisci on e i t h e r  s ide 

o f  a potent ia l  p lug would coalesce. 

Part  o f  our research task was t o  fab r i ca te  a glass heat pipe 

and use i t  t o  study pr iming w i t h  t h i s  new approach. Several aspects of 

a r t e r i a l  pr iming can e f f e c t i v e l y  be studied w i t h  a glass heat pipe. For 

example, venting gas a t  the evaporator end o f  t he  a r te ry  r e l i e s  on priming 

proceeding uniformly from the  condenser end t o  the  evaporator end. I f  

a bubble i s  trapped a t  some pos i t i on  along the  a r te ry  o ther  than a t  the 



evaporator end, then i t  would f i r s t  have t o  be convected t o  tha t  end 

before i t  could vent. Convection o f  a bubble f o r  various heat loads 

can be observed d i r e c t l y  w i th  the glass heat pipe. Another process t o  

be studied i s  pr iming uoder a load. For a g ivsn evaporator e levat ion,  

we can use the glass heat pipe t o  f i n d  the  maximum heat load under which 

priming w i l l  occur. Other d e t a i l s  o f  the  pr iming process can be studjed 

such as the minimum c a p i l l a r y  hole s ize i n  the f o i l  t h a t  w i l l  s t i l l  vent 

gas, and whether i n  some circumstances, the f o i  1-walled po r t i on  o f  the 

ar te ry  can be flooded by a pool of excess 1 i q u i d  and hesce be unable t9 
vent gas. We were unable t o  answer these c ruc ia l  questions because funds 

on the contract  were exhausted before the studies could be car r ied  out.  

Fabr icat ion o f  the  apparatus i s  essen t i a l l y  complete. As shown 

i n  Fig. 4-3, the  main s t ruc tu re  consis ts  o f  a 0.752 i n .  O.D. and 0.515 i ~ .  I o. 
glass tube, 43 inches long, w i t h  machined s ta in less-s tee l  end f i t t i n g s .  

The heat pipe i s  held i n  a p lex ig lass  cradle, which a lso serves as a 

safety sh ie ld  when ammonia i s  used as the working f l u i d .  

The heat p ipe  i s  designed f o r  study o f  the  ar te r ia l /s lab-w ick  

conf igurat ion. Cross sect ions i n  the  evaporator and condenser sect ions 
are shown i n  Fig. 4-4. The a r t e r y  i s  mounted on one s ide o f  the  slab 

wick, and a 1/8-inch diameter s ta in less-steel  sheathed heater ~ i t h  a 12- i  nch 

heated sect ion i s  inser ted  i n t o  a double-layer screen casing t h a t  i s  spot 

welded t o  the  other  s ide o f  the wick. The unheated end o f  the  heater passes 

through and i s  brazed i n t o  the evaporator end cap. I n  the condenser region, 

a s ta in less-steel  cool ing loop extends along the  opposite s ide o f  the wick 

as the ar tery.  It passes through and i s  brazed i n t o  the  condenser end cap. 

A 1 /16-inch 0. D. s ta in1 ess-steel sheathed thermocoupl e extends i n t o  the  

adiabat ic  sect ion so the vapor temperature can be monitored. A fea ture  o f  

t h i s  design i s  t h a t  it c lose ly  models actual  a r te r ia l /s lab-w ick  heat pipes 

such as the ones t o  be used i n  the  r o c k e t - f l i g h t  experiment as described i n  

the next sect ion. 



FIGURE 4-3.  Gldss heat -pipe  appara tus  
w i t h  safety  s h i e l d  ~emaved. 

0.752 INCH O.D. 
fGLAS1 TUBE 0.515 INCH 1 .D. 

SLAB WICK / f- 

CONDENSER CROSS SECTION EVAPORATOR CROSS SECTION 

FIGURE 4-4. Cross section of  the glass heat p i p e  i n  
the condenser and evaporator reg4 ons . 

WUBLE LAYER 
SCREEN CASINl 

ROD HEATER 



5.0 SOUNDING-ROCKET EXPERIMENT 

l 'he GSFC soundi ng-rocket heat -p i  pe experiment scnedul ed f o r  

1974 provi t les a unique f i r s t  oppor tun i t y  f o r  a zero-grav ' ty  t e s t  o f  

the  mechanism o f  menisci ccalescence t o  vent noncondensable gas dur ing  

a r t e r i a l  p r im ing .  Pa r t  o f  our  research task was t o  design, f a b r i c a t e  

and t e s t  two research heat  pipe'; (and two spares) f o r  t h e  f l i g h t  

experiment . 
The experiment i s  e s p e c i a l l y  cha l leng ing  i n  t h a t  o n l y  s i x  

~ i n u t e s  i n  zero g r a v i t y  are a v a i l a b l e  f o r  p r im ing  and thsn  apply ing 

a heat load t o  ve r iCy  t h a t  a primed s t a t e  was zchieved. I n  add i t i on ,  

there are unce r t a i n t i es  as t o  whetner tne s o - z a i i ~ ? .  ''~$29 o f fp r t "  d!! 

i n t e r f e r e  w i t n  p r i r ~ ~ i n q .  I f ,  a t  t he  i n s t a n t  o f  rocket-engine shct-doiin, 
a surge o f  excess l i q u i d  a r r i v e s  a t  the  evaporator be fo re  t h e  a r t e r y  

primes, t he  evaporator end of  t he  a r t e r y  may f i l l  w i t h  l i q u i d  and prevent  

vent ing.  Our task i s  n o t  on l y  t o  t e s t  whether o r  no t  t he  heat  p ipe primes, 

bu t  a lso  t o  ob ta i n  some c r u c i a l  in format ion on the  i n t e r n a l  cond i t i ons  of 

the  heat  p i pe  dur ing  the  experiment. Thus, each heat p i pe  has one o f  two 

otherwise i d e n t i c a l  a r t e r i e s  instrumented a t  t he  evaporator  end w i t h  a 

m in ia tu re  the rmis to r .  The thermis to r ,  which i s  e l  e c t r i c h l l y  heated, i s  

markedly cob le r  when submerged i n  1 i q u i d  than when i n  vapor. As such, i t  

detects  t he  presence o r  absence o f  1 i q u i d  i n  t h e  pr i rn i  ng f o i l .  I n  t h i s  

way, the  research heat pipes a re  designed t o  overcome a nagging d i f f i c u l t y  
?f a r t e r i a l  heat p ipes,  t h a t  o f  d iagnosing t h ~  cause o f  unsuccessful pr iming. 

Pr iming f a i l u r e  can have several  causes, however, they gene ra l l y  fa1  1 i n t o  

one o f  two categor ies 1 i s t e d  below. 

Two Categories c~f Pr iming F a i l u r e  

1. Evaporator s t ress  too  h i gh  f o r  p r im ing  due t o  

o i n s u f f i c i e n t  f l u i d  i n  t h e  heat p ipe 

o t oo  l a r g e  a r es i dua l  heat l oad  dur ing  p r im ing  

o t o o  l a r g e  o f  a h y d r o s t a t i c  l o a d  due t o  adverse 

c t > i e n t a t i  on i n  an a x e l  e r a t i o n  f i e 1  d 



2. Entrapment o f  noncondensable gas due t o  

o f a i l u r e  t o  vent the gas t h r c ~ g h  the pr iming f o i l  

o a gas bubble a t  some loca t i on  i n  +he ar te ry  

o t , ~ e r  than the evaporator end. 

I f ,  during the  prirniqg period, l i q u i d  -- i s  not  detected a t  the 

evaporator end o f  the ar te ry ,  then pr iming f a i l u r e  i s  a t t r i b u t e d  t o  the 

f i r s t  category, excessire ev r r ) ra to r  stress. '  I f ,  on the o ther  hand, 

1 i q u i d  - i s  detected, we conclude t h a t  the st ress was low ?nough f o r  

priming t o  take place, and a subsequent f a i  l u r e  o f  the uninstrumented 

funct ional  a r te ry  i s  a t t r i b u t e d  t o  the second categary, entrapment of 

noncondensable gas, 

The thermistor  i n ~ t v u n e n t ~ a t i o n  a1 so provides a means o f  

ve r i f y i ng  t h a t  a s u f f i c i e n t  heat load i s  appl ied when we t e s t  f o r  the 

primed s ta te  of the funct ional a r te ry .  I f  the thermistor  detects t h a t  

1 i q u i d  recedes (which i t  should, due t o  the la rge  pore i n  the 

i n s t r u ~ ~ s n t e d  a r t f r y ) ,  then the heat load i s  s u f f i c i e n t  t o  empty the 

funct ional  a r te ry  i i ;;?!wing i s  unsuccersful . I f  subsf quent ly a 

burnout does not  occur, then t h t  primed s t a t e  of the  funct ional  a r te ry  

i s  v e r i f i x l .  

The d iagnost ic  l o g i c  i s  sumnarized i n  Figure 5-1. The heavy 

l ine  represents successful pr iming and v e r i f i c a t i o n  o f  such. 

?ascr ip t ion  o f  the Heat Pipes - 
As shown i n  Figul-2 5-2, the  heat pipes a r e  ~f an ;irterial!slab- 

wick conf igurat ion. The i r  spec i f i ca t ions  are  1 i s t e d  i r ,  Table 5-1. The 

two heat pipes t o  be used i n  the  f l i g h t  experiment d i f f e r  only  irr the  

deta i  1s o f  t h e i r  pr iming f o i  1 s. For the heat p ipe designated X-2, :he 

ac t ive  length o f  the  pr iming f o i l  i s  1.5 inches, the  holes are ill s p i r t l  

rows, and the end on the  funct ional  a r t e r y  i s  crimped closed, whereas 

f o r  t he  heat p ipe designated X-1 , t h e  ac t i ve  length  i s  0.375 inches, 

I .  A re1 a t i v e  1 arge pore o f  comparable s i ze  t o  t h e  a r t e r y  diameter i s  
provlded j u s t  behind the thermistor  t o  insure t h a t  gas vents from 
the fnstrumented ar te ry .  
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TABLE 5-1 

SPECIFICATION OF THE RESEARCH HEAT PIPES 

Tube (304 stainless-steel) : 

Length - 36 inches 

Outside diameter - 0.5 inches 

Wal; thickness - 0.028 inches 

In terna l  threads - 150 per inch 

Slab-wick (304 stainless-steel X-13 f e l  t metal) : 

Thickness - 0.050 inches 

Fiber diameter - 0.00085 inches 

Porosi t y  - 84% 

Arter ies (304 stainless-steel 150-mesh scl.een) : 

Inside diameter - 0.063 inches 

Height from bottom o f  slab wick - 0.170 inches 

Priming f o i  1s (304 sta in less-steel)  : 

Thickness - 0.0005 inches 

Diameter o f  holes - 0.010 inches 

Hole spacing i t ,  row - 0.032 inches 

Row spacing - 0.075 inches 

1.50 inches for  Configuration X-2 

ve length 0.375 inches f o r  Confl gura t i  on X-1 

I 1 7 O  sp i ra l s  f o r  Configuration X-2 
" O l e  pattern s t ra igh t  f o r  Configuration X-1 



TABLE 5.1 (cont.  ) 

Thermistor (Veco, p a r t  No. 32A7) : 

Bead diameter - .013 inches 

Leads - .001 inch p lat inum 

Resistance a t  25°C - 2000 51 

F l i g h t  heat s ink:  aluminum block 12" X 1.32" X 1.32" 

F l i g h t  heater: 10 inches long and beginning 2 inches 

from the evaporator end 

F l i g h t  thermistor  loca t ions  : 

Thermistor No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Distance from evaporator end 

3 inches 

7 

16 

20 

25 

30 

35 

on heat s ink 

on heat s ink 



the holes are i n  s t ra ight  rows and the end i s  closed w i th  a plug. The 

X-2 configuration priming f o i l  i s  a design s im i la r  t o  that  used on the 

Canadian Technology Satel l  i t e  (CTS) program. The X-1 configurat ion 

priming f o i l  i s  an experimental design tha t  mpresents an attempt t o  

improve the ruggedness and minimize the chance o f  trapping a gas bubble 

i n  the l a s t  ins tant  o f  priming the f o i l  i t s e l f .  

The instrumentation consists o f  a bead-type thermistor that  

i s  held a t  the apex o f  the conical end o f  a cy l ind r i ca l  t e f l on  plug, 

(.073-inch diameter, .4-inch long) which i n  turn f i t s  i n t o  the end of  

one o f  the priming f ~ i l s .  The .001-inch platinum leads from the bead 

pass through two 0.008" diameter holes that  run the length o f  the p l  ~ g .  

The plug is held i n  the end o f  the priming f o i l  by a band o f  heat-shrink 

tubing. The thermistor leads are connected t o  the prongs o f  an e lec t r i ca l  

feed through i n  the heat-pipe end cap w i th  0.007-inch nickel wire. 

Connections are made wi th spot welds. The nickel  wire i s  mechanically 

secured t o  the outer end of the te f lon plug w i th  another band o f  heat- 

shrink tubing. 

5.2 Fabrication H i  qhl ights  

Some problems arose dur i  ng fabr icat ion,  which are discussed 

here so they can be avoided i n  fu ture  projects. 

We o r i g i na l l y  planned t o  use a miniature hot-wire probe 

instead o f  a thermistor as the l i q u i d  sensor. During the breadboard 

test,  however, we discovered tha t  methanol attacked the solder t ha t  

secures the hot-wire element t o  the support prongs. A f t e r  a 12-hour 

submersion i n  methanol, the hot wire detached. A t  t h i s  po in t  we decided 

t o  use a thermistor. 

Because o f  the incompati b i i  i t y  of methanol and solder, we 

could not solder the e lec t r i ca l  feed-through i n t o  the heat-pipe end cap. 

We t r i e d  he1 i -arc  welding, but the heat generated resulted i n  the cracking 

of the glass insulat ion.  Laser welding, which generates 1 i t t l e  heat, was 

also t r i ed ,  however, we found t ha t  the weld bead had microscopic cracks 
tha t  resulted from the d i ss im i l a r i t y  of Inconel o f  the feed-through and 

the stainless-steel end cap. The solut ion was the use of a pure-lead 

braze a f t e r  both parts were f i r s t  gold plated. As a f i n a l  assembly step, 

the end cap was 1 aser we1 ded t o  the heat pipe. 



Another problem occurred as the  r e s u l t  o f  vacuwn f i r i n g .  Since 

we d i d  not  want t o  subject the thermistor  i n s t a l l a t i o n  t o  the vacuunl- 

f i r i n g  temperature, we planned t o  vacuum f i r e  before the thermistor  was 

i n s t a l  led. The evaporator end o f  the  wick was l e f t  extended approximately 

one inch from the  tube, t he  heat pipes were vacuum f i r e d ,  and the  thermistor  

was i n s t a l l e d .  We then planned t o  p u l l  the  wick the  f i n a l  distance i n t o  

the tube i n  the  usual manner, however, vacuum f i r i n g  resu l ted  i n  seizure. 

Only a f t e r  p u l l i n g  w i t h  excessive force, were we able t o  p u l l  a wick i n t o  

one o f  the heat pipes. The other  three heat pipes were completed by 

c u t t i n g  o f f  the condenser end o f  tube and we ld i rg  a shor t  piece o f  tube 

t o  the  evaporator end w i t h  the  use o f  a sleeve over the  j o i n t .  

5.3 F i  1 1 Deterird na t  i on 

An i n i t i a l  f l u i d  f i l l  o f  .0390 l bm o f  methanol was calculated 

by TRW's MULTIWICK computer program t o  g i ve  the maximum heat load under 

which pr iming w i  11 occur i n  zero g r a v i t y  wi thout  a vapor-space slug. 

MULTIWICK also calculated t h a t  .0390 lbm o f  methanol would be more than 

s u f f i c i e n t  t o  prime i n  ear th  g rav i t y .  I n  the computer ca lcu lat ions,  

however, we d i d  not take i n t o  account an e f f e c t  t h a t  was observed i n  

a sub-scale glass-tube pr iming tes t ;  t h a t  the  s t ress  required t o  prime the 

f o i  l-wal l e d  po r t i on  o f  an a r te ry  i s  somewhat lower than tha t  requi red t o  

prime the screen-walled por t ion .  I n  i n i t i a l  t es t s ,  pr iming was d i f f i c u l t  

t o  achieve. The problem was solved by increasing the  amount o f  methanol 

t o  .0487 1 bm. This amount corresponds t o  the maximum i n  zero g r a v i t y  

t h a t  w i  11 no t  r e s u l t  i n  a vapor-space s lug w i t h  zero heat load. Under 

load, however, some slugging w i l l  occur. 

Since the experiment concerns pr iming i n  the  presence o f  non- 

condensable gas, 1.87 x lo-' l b  moles o f  a mixture o f  902 n i t rogen and 

10% he1 ium were added t o  each heat pipe. This amount r e s u l t s  : 

approximately one-i nch o f  condenser blockage. 

5.4 S teady-State Capaci ty Tests 

Steady-state capacity t e s t s  were ca r r i ed  out  and the r e s u l t s  

are sumnarized i n  Figure 5-3. The theo re t i ca l  p red ic t ions  based on 

MULTIWICK are Shown as we l l .  Each o f  the fou r  heat pipes were tested 

w i t h  primed a r te r i es  a t  1 .O-inch and 0.25-inch elevat ions, however, 





only one was tested w i th  f a i l e d  ar ter ies.  Agreement between the theoretical 

predict ions and the experimental resu l ts  are general l y  good except i n  the 

case o f  0.25-inch elevation where predict ions are generally too high by 20%. 

5.5 Priming Tests wi th the Thermistor Instrumentation 

The electronic c i r c u i t  f o r  the thermistor i s  par t i cu la r l y  

simple; i t  consists o f  a 3000-ohm res is to r  and a 28-volt  power supply i n  

series wi th the thermistor. The c i r c u i t  output i s  the voltage across the 

thermistor. The output voltage i s  approximately 3.7 vo l ts  when the ar ter ies  

are primed and 1.2 vo l t s  when deprimed. Sometimes, howe>er, i n  the primed 

state bo i l i ng  occurs a t  the bead, i n  which case the output osc i l la tes  

rapid ly about some mean voltage greater than 3.5 volts. I n  the deprimed 

state, d iscrete intermediate output voltages occur tha t  are a t t r i bu ted  t o  

partia: cooling o f  the thermistor bead by small l i q u i d  f i l l e t s  around it. 

With su f f i c i en t  evaporator stress these f i ! l e t s  are not  replenished f ro~n  

neighboring l i q u i d  and they evaporate, which resul tr i n  the !ow 1.2-vol t 

output. Typical ly, x.,zr, the ar tery  deprimes by, say, elevating the 

evaporator end, the output voltage f i r s t  drops from 3.7 vo l ts  t o  an i n te r -  

m d i  ate va i ve of 2.4 vol ts,  and then again t o  1.2 vo l ts  a f t e r  the f i  1 l e t s  

evaporate. 

Priming tests were carr ied out  by slowly lowering the evaporator 

end of the heat pipe i n  0.1-inch steps u n t i l  the output voltage from the 

h a t  pipe indicated t ha t  a primed s ta te  was achieved. To check t ha t  the 

uni nstrumented funct i ona i artery had a1 so primed, 75 watts were appl i ed , 
which resu l ts  i n  a burnout i f  i t  had not, Of the four heat pipes, i n  tw 

(X-1A and X-2C) the functional ar ter ies  had not  y e t  primed. Further 

test ing showed tha t  a lower evaporator elevatdon by cpproximately 0.2 

inches was required t o  prime the functional ar ter ies  i n  these :ases. 

These discrepencies can be a t t r ibuted t o  the differences incurred during 

fabr icat icn  o f  the ar ter ies,  and the e f f ec t  mentioned e a r l i e r  (Section 5.3) 
o f  the reluctance o f  the l i q u i d  i n  the screen-walled port ion of the ar tery  

t o  enter the f o i  1-wal led  port ion. Jn the case of heat pipe X-2C, the 

e f f ec t  o f  thermistor cooling by 1 i quid f i  1 l e t s  ,wund the thermistor 

appears t o  be greater than the other heat pipes t o  the e x t e ~ t  tha t  i t  

i s  not  c lear  whether the thermistor i s  detect ing a primed s ta te  o r  f i l l e t s .  

Based on !:he above considerations, we have recomnemded tha t  heat pipes 



X-1B and X-2D be designated as the primary ones f o r  f l i g h t .  The back-up 

heat pipes X-1A and X-2C have been reconmended f o r  the q u a l i f i c a t i o n  

v ib ra t i on  tests.  

Transient Tests w i th  the F l i g h t  P w e r  P r o f i l e  

The power p r o f i l e  t o  be used i n  the experiment i s  shown i n  

Fi gure 5-4 be1 cw : 

TIME (MINUTES) 7 ~ - r o c  

FIGURE 5-4. P w e r  p r o f i l e  f o r  the f l i g h t  experiment. 

The durat ion o f  the zero-grkvi t y  per iod i s  expected t o  be 6 minutes. 

During the f i r s t  h a l f  minute, 100 watts i s  appl ied t o  move excess l i q u i d  

t o  the condenser end o f  the heat pipe. This amount o f  heat i s  s l ~ f f i c i e n t  

t o  t rans fer  12% o f  the t o t a l  amount o f  methanol. The zero-power per iod 

from t=.5 minutes t o  t=2 minutes i s  f o r  priming. During the remainder 

or the zero-gravi t y  period, 100 watts are again applied. I f  the funct ional  

a r te ry  has not  sucessfu l ly  primed, a burrlout w i l l  occur. 

Each heat pipe was tested repeatedly i n  the laboratory w i t h  

the proposed power p r o f i l e .  To e l iminate the cont r ibu t ion  o f  puddle f lw, 
which i s  not  present i n  zero-gravity, the evaporator end o f  the heat pipe 

i s  elevated .5 inches f o r  the f i n a l  103-watt period. During the t rans ient  

tests, both temperature and thermistor voltage were recorded. The r e s u l t  

o f  the t rans ient  t e s t  f o r  heat p ipe X-2D i s  shown i n  Figure 5-5. 

I n i t i a l l y  the evaporator end i s  ra ised approximately 10 inches 

t o  ensure the a r t e r i e s  are i n  an unprimed state. A t  t=O minutes, the 

heat p ipe i s  leveled and 100 watts i s  applied. The vapor temperature 

responds rap id l y  t o  the heat i npu t  and the thermistor  voltage remains low, 
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i n d i c a t i n g  tha t  the a r t e r i e s  are remaining unprimed. A t  ts.5 minutes 

the heat 1 oad i s  dropped t o  zero, The thermistor  output vol tage begins 

t o  cl imb as f i l l e t s  form around the thermistor  bead. Then abrupt ly  a t  

ts.8 minutes, the instrumented a r te ry  primes. F i lm b o i l i n g  occurs a t  

the thermistor  bead, as evidenced by the o s c i l  l a t i o n s  u n t i l  t-1.3 minutes. 

A t  t=2 minutes, 100 watts i s  appl ied and the evaporator i s  elevated t o  

.5  inches. A t  t=2.3 minutes the instrumented a r te ry  deprimes, as evidenc- 

ed by the step drop i n  thermistor  voltage. The funct ional  a r te ry  continues 

t o  operate, and the temperature d i f fe rence between the vapor 2nd cdndenser 

a t ta ins  a steady-state value by t14 minutes. A t  t =  4.8 minutes, f i l l e t s  

around the thermi s t o r  bead break away, and the thermistor  vol  tage steps 

down again. The t e s t  terminates a t  t=6 minutes. 

Several t es t s  were run when the func t iona l  a r te ry  was 

i n ten t i ona l  l y  deprimed a f t e r  t 1 minutes, and subsequently the evaporator 

temperature exceeds 200°F i n  less  than one minute. 

5.7 Real-Time Power P r o f i l e  Override 

We w i  11 have the opportuni ty  t o  monitor data from the heat pipes 

during the f l i g h t  and, i f  necessary, overr ide the preprogrammed power 

p r o f i  1 e. The data t o  be moni tored i s : 

o Evaporator temperature TI measured by 

thermistor  No. 1 ( lozated 3 inches from 

the evaporator end). 

o Adiabat ic temperature T3 measured ~y thermistor  

No. 3 ( located 16 inches from the evaporator 

end ) . 
o The vol tage VTH across the thermistor.  

The rea l  -time cont ro l  we requ i re  i s  t o  overr ide the  programed power 

p r o f i l e  w i t h  a zero-power comnand f o r  any desi red time i n t e r v a l  . The 

overr ide w i  11 be exercised i f  c e r t a i n  condi t ions appear as the data i s  

monitored, A l i s t  o f  the most probable anomalies i s  given below: 

1. VTH 3 0 ( thermistor  shorted). 

2. VTH E 28 vol  t s  ( t h e m i  s t o r  lead broken). 



3. It takes longer than 2 minutes f o r  VTH t o  jump 

2nd ind ica te  a primed- state. 

4. A prime i s  indicated (VTH >3  v o l t s )  a t  t = 0. 

5. An a r te ry  dunp (drop i n  VTH) i s  not  indicated. 

6. VTH i s  a t  some intermediate value o r  f luc tuates  i n  

such a way t h a t  i t  i s  d i f f i c u l t  t o  i n te rp re t .  

7. TI - T3 i s  no t  equal t o  zero a t  t = 0. 

8. TI - T3 does not  drop t o  zero by t = 2 minutes. 

9. A burnout occurs a f t e r  t = 2 minutes, (TI-T3 .20°F) 

10. T1 - T3 m y  c ~ n t i n u ~ u s l y  increase a f t e r  t = 2 minutes 

but  no t  exceed 20°F. 

O f  the above anomalies, we want t o  overr ide the programed power p r o f i l e  

i n  three cases: Nos. 3, 8 and 9 above. The response t o  these anomalies 

are as fo l lows:  

Anomaly Response 

3 I f  VTH does not  r i s e  above 3.0 v o l t s  

by t = 2 minutes, extend zero-power 

per iod t o  t = 3 minutes - o r  u n t i l  VTH 

does exceed 3.0 vo l ts .  

I f  A T  i s  greater than 3°F a t  t = 

2 minutes , extend zero-power per iod 

t o  t = 3minutes - or u n t i l  AT i s  less 

than 3°F. 

I f ,  a f t e r  t = 2 minutes and before 
t = 4 minutes, A?' exceeds 20°F, 

then command zero power u n t i l  t = 

5 minutes, 

The f i r s t  two responses above extend the priming per iod an ex t ra  minute 

if there i s  evidence t h a t  condit ions f o r  priming have not  been achieved. 

The l a s t  response I s  an attempt a t  a second t r y  t o  p r t m  the a r t e r l e s  I f  
a burnout occurs. 
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7.0 NOMENCLATURE 

Section 2: 

Area 

Mu1 t i  p l  i cat i ve constant 

Boltzmann's constant 

Number o f  moles 

Par t ia l  pressure o f  gas 

Par t ia l  pressure o f  vapor 

Act ivat ion energy 

Gas constant 

Temperature 

T i  me 

Vol ume 

Refers t o  adiabatic section 

( - Refers t o  t rans i t ion  from parabolic t o  l i nea r  
time dependence 

( )i- Refers t o  i th in terva l  

( Refers t o  passivation period 

( )*- Refers t o  period beyond passivatiun 

Section 4: 

Cross-sectional vapor area i n  condenser 

Constant 

Specif ic heat 

Di f fusion coef f ic ient  

Gravitational constant 

Latent heat 

Condenser 1 ength 

Mass 

Molecular weight 

Number o f  moles 

Pressure (also perimeter o f  heat-transfer area) 

Heat 

Thermal resistance o f  condenser 

Universal gas constant 

Temperature 

Time 



Heat-transfer coeff ic ient  
Total gas-bl ocked vol ua 
Length o f  active portion o f  condenser 
Complex coeff ic ient  o f  t i n  exponent o f  assuned 
solution (Eq. (4-5)]. 
Real and imaginary parts o f  r 
Constants (dimensions of time) 
Time lag  

Refers to adiabatic section 
Refers t o  condenser section 

Refers to  evaporator section 
Time r a t e  
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The Tables o f  Content o f  previous research reports follow. 
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