


## TRIANGULATION OF

MULTISTATION CAMERA DATA
TO LOCATE A CURVED LINE IN SPACE
by Clifford L. Fricke
Langley Research Center
Hampton, Va. 23665


*For sale by the National Technical Information Service, Springfield, Virginia 22151

# TRIANGULATION OF MULTISTATION CAMERA DATA TO LOCATE A CURVED LINE IN SPACE 

By Clifford L. Fricke<br>Langley Research Center

## SUMMARY

A method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A leastsquares criterion is used to insure the best fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its width is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the Earth's magnetic field line at very high altitudes.

## INTRODUCTION

A unique and powerful tool in magnetospheric studies involves the deposition of barium vapor at a point in the magnetosphere through the use of chemicals or explosives carried aloft by rockets. The barium atoms are rapidly ionized by sunlight and thus form a barium ion cloud which extends along the magnetic field line and becomes "frozen" to it. The barium ion cloud, on account of its resonant scattering of sunlight, is visible to ground sites when viewed against the night sky and hence serves to delineate the magnetic field line over a considerable arc length. This condition permits a determination of magnetic field line orientation and shape. From the motion of the cloud one may obtain the convective motion of magnetospheric plasma and hence the electric fields which drive such motions.

The accuracy of locating an object in the distant magnetosphere by triangulation methods is extremely limited by the relatively short baselines available. In the case of the barium ion cloud (ref. 1), even though the observation sites were widely dispersed on the Earth, the cloud altitude was about five times the baseline distance. Hence, it was necessary to use every means possible to improve the accuracy such as calibration for distortion in the cameras, orientation of cameras using stars in the photographs, and the use of more than two observation sites.

Existing triangulation methods were limited in one respect or another: methods using several observation sites triangulated only on points (refs. 2 and 3) and methods which triangulated on lines could use only two observation sites (refs. 4 to 6). Table I shows a comparison of the various methods.

In view of these limitations, it was desired to develop a triangulation method which allows for a cloud that is curved in space, extends over a large arc, and is to be photographed at several observation sites. The difficulty in obtaining a solution by triangulating on an extended object from several sites lies in the fact that the intersection of the several surfaces defined by the necessarily inaccurate data from several sites does not determine a unique line in space. Thus, some criterion is needed to determine the most probable solution when all the data are taken into account.

Methods already exist (refs. 7 to 9 ) for precise conversion of images on photographs to pointing directions from each site, such as azimuth as a function of elevation. This note describes a method and a computer program that find the most probable line solution from input data on azimuth as a function of elevation from several observation sites.

## FORTRAN VARIABLES AND SYMBOLS

FORTRAN variables are the same as algebraic symbols, except that they are underlined when used in equations in the text.

A equatorial radius, 6378.166 km ; in subroutine SUMRES, angle in radians used to weight residuals

AZ(L,N) azimuth angle from site $L$, data point $N$
$a, b, c \quad$ coefficients in quadratic equation
$\mathrm{B} \quad$ polar radius, 6356.784 km
$B C(I, L, N)$ Ith coefficient in least-squares fit for site $L$, data point $N$

CLAT geocentric latitude

CR geocentric radius
$\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ coefficients in least-squares fit to data for azimuth as a function of elevation (az-el)

| D | residual (minimum angle between point $P$ and az-el curve) |
| :--- | :--- |
| D(L) | residual from site $L$ |
| DA | increment given to PLON |
| DC | discriminant of cubic equation |
| DDA $\quad$ interpolation correction given to PLON to give minimum point |  |
| DEG $\quad$ degrees per radian |  |
| DIST(L) angle between point $P$ and end data point on az-el curve, site L |  |
| DNA $\quad$ altitude increment |  |
| DR $\quad$ increment given to PLAT |  |

DX,DY, DZ axes in topocentric coordinate system; on horizontal plane in easterly direction, on horizontal plane in northerly direction, and in vertical direction perpendicular to horizontal plane, respectively

E root-mean-square residual; in subroutine GGRGCN, ratio $\mathrm{A}^{2} / \mathrm{B}^{2}$
$\mathrm{E}(\mathrm{N}) \quad$ minimum root-mean-square residual with respect to both latitude and longitude; thus, the solution at point N is defined

EL(L,N) elevation angle from site $L$, data point $N$

EM minimum root-mean-square residual (with variable longitude) for a given latitude

E1,E2,E3 in subroutine LONMIN, root-mean-square residual for three consecutive longitudes

F flattening factor, $1 / 298.3$; in subroutine SUMRES, weighting factor depending on DIST(L)

GLAT geographic latitude

GLON geographic or geocentric longitude

H geographic altitude, km

HI altitude of first estimated trial point

IN number of iterations in subroutine MINISOL (usually 3)

IS
number of sites using data points on the end of az-el curve

L observation site number

LP index to designate line ( $L P=1$ ) or point ( $L P=2$ ) solution

N in program LARC, data point number, or solution point number; in subroutine RESDUE, data point nearest the trial point (PAZ,PEL)

NBL number of az-el data points (used for $\mathrm{NB}(\mathrm{L})$ )

NB(L) number of az-el data points from site $L$
$N C(L, N) \quad a z-e l$ data point number of site $L$ used to obtain solution point $N$

ND index used to increment solution point number N by $\pm 1$

NO number of az-el data points used in least-squares fit

NP(L) data point number nearest solution point from site L

NS number of observation sites

NV particular data point within the set NO

N1 smallest solution point number
N2 largest solution point number
$P, Q, R \quad$ coefficients in cubic equation

| PAZ | azimuth of point $P$ |
| :---: | :---: |
| PEL | elevation of point $\mathbf{P}$ |
| PI | $\pi$ |
| PLAT | geocentric latitude of point $P$ |
| PLATG | geographic latitude of point $P$ |
| PLATI | geographic latitude of first estimated trial point $P$ |
| PLON | longitude of point $\mathbf{P}$ |
| PLONI | longitude of first estimated trial point $P$ |
| PR | geocentric radius of point $P$ |
| R | radius of revolution of spheroid |
| RA | range from observation site $S$ to point $P$ |
| RAD | radians per degree |
| RP | projection of geocentric radius on equatorial plane |
| SH(L) | altitude of observation site $L$ |
| SLAT(L) | geographic latitude of observation site L |
| SLON(L) | longitude of observation site L |
| SR | radius from Z -axis of observation site |
| TALT(N) | altitude of solution point N |
| TLAT(N) | geographic latitude of solution point N |
| TLON(L) | longitude of solution point N |

WT(L) weighting factor for observation site $L$
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ geocentric coordinate axes; in equatorial plane in direction of Greenwich, in equatorial plane directed to make a right-handed system, and in direction of north pole perpendicular to equatorial plane, respectively

XA, YA,ZA geocentric components of line-of-sight vector from observation site $S$ to
trial point $P$

XD angle between point $P$ and data point on az-el curve

XP,YP,ZP geocentric components of trial point $\mathbf{P}$

XS,YS,ZS geocentric components of observation site S

X1,Y1 independent and dependent variables, respectively, in least-squares curve fit to az-el data
$\phi, \theta, \psi \quad$ Eulerian rotation angles

## GENERAL DISCUSSION OF MULTISTATION TRIANGULATION

## Case of a Point Object

Consider first the simple case of a point object in space observed from several sites. (Fig. 1 illustrates the case of three sites.) In general, the measured lines of sight will not intersect because of errors in measuring the pointing direction from each site. One would expect the probable error in pointing to be the same at each site, where the error in pointing is defined as the angle between the measured direction and the actual direction of the object. In order to find the most probable solution, consider a trial solution point $P$ in space and define the residual from a site as the angle between the measured direction from that site and the direction of the trial solution ( $\mathrm{D}(1), \mathrm{D}(2)$, and $\mathrm{D}(3)$ in fig. 1). The most probable solution, if it is assumed that pointing errors at each site are random, then, would be the one which minimizes the sum of the squares of the residuals $\quad D(1)^{2}+D(2)^{2}+D(3)^{2}$. (See ref. 10, pp. 107-109.)

## Case of a Curved Object

Next, consider the problem of locating a curved line object in space which is illustrated in figure 2 for three observation sites. The curve for the azimuth as a function of elevation from a single site defines a conical surface in space. With data from only two
sites, intersection of the surfaces is unique, but with three or more sites, the intersections are no longer unique.

Generally, there is no distinguishable feature on any part of the cloud. The end points cannot be determined since they fade out gradually, and hence the location of the end depends on the exposure of the photograph, and brightness of the sky background. The center of the cloud length may sometimes be brighter, but it cannot be located accurately. Hence, if the curvature of the azimuth as a function of elevation is small, only errors perpendicular to the curve are important, since any error along the curve merely slides the curve on itself. It is reasonable to expect, then, that the probable error perpendicular to the surface defined by the az-el curve is the same for each site. Thus the residual of a trial point will be defined as the angle between the line of sight of that point and its projection on the conical surface defined by the curve for the variation of azimuth with elevation from the specified site. This angle, of course, represents the minimum angle between the line of sight to the trial point and any line of sight on the conical surface ( $D(1)$ in fig. 2). If the trial point is to lie on the most probable solution curve, then the sum of the squares of the residuals from all sites must be minimized. (This procedure is equivalent to minimization of the root-mean-square (rms) value of the residuals.)

It has been assumed throughout that the object is a line in space. If the object has lateral dimensions, then it must possess a center line which is identifiable as such from every observation site for the method to be applicable.

## Minimization of Root-Mean-Square Residuals

Even though the desired solution is a curved line in space, the method described in this paper successively solves for specific points on that line. For convenience, the independent variable is altitude (which will be converted to geocentric radius) so that each point will be at a selected altitude; if the cloud had extended beyond the magnetic equator, then the independent variable should be latitude in order to be single-valued.

Thus, consider a trial solution point $P$ which will remain at a fixed geocentric radius (which is essentially equivalent to a fixed altitude); the problem is to find the latitude and longitude which minimize the root-mean-square residuals. First, assume a trial latitude $A$ and vary the longitude along $A$ until a minimum root-mean-square residual $E M_{A}$ is found, as indicated in figure 3. Next, increment the latitude to some new value $B$, and again vary longitude until a minimum as indicated by $E_{B}$ is obtained. Thus EM, the minimum root-mean-square residual with variable longitude can be obtained as a function of latitude, and one can readily find the latitude that minimizes EM; this latitude and its corresponding minimizing longitude is the point at the selected altitude that lies on the
most probable solution curve. A description of the computer programs which use this method to find the most probable solution curve is given in the following sections.

## COMPUTER PROGRAMS

The main program, called LARC (listing and flow chart are given in appendix A), in addition to reading cards, processing data, and printing results, has the main function of iterating the altitude at desired preselected intervals. Program LARC calls subroutine MINISOL which first calls subroutine LONMIN in order to minimize the root-mean-square residuals with respect to longitude, and then iterates the latitude in order to find the minimizing latitude.

The subroutines will be discussed first and are listed in appendix B. FORTRAN variables in the computer programs will have the same name in the text, but when used in algebraic equations, they will be underlined.

Appendix C describes the geographic, geocentric, and topocentric coordinate systems. The conversion from geographic to geocentric (subroutine GGRGCN), as well as the formulas for the inverse conversion (subroutine GCNGGR), are also given in appendix C .

## Conversion From Geocentric to Topocentric Coordinates

Subroutine PAZEL converts a trial solution at a point $P$ (given in geocentric coordinates, PLAT, PLON, and PR) to local azimuth and elevation from an observation site $S$ with geographic coordinates SLAT, SLON, and SH. Figure 4 applies.

The first part of the program converts the observation site to geocentric coordinates XS, YS, and ZS by using the same method as in subroutine GGRGCN.

The geocentric coordinates of the trial point are converted to Cartesian coordinates XP, YP, and ZP. The geocentric coordinates of the line-of-sight vector from observation site $S$ to trial point $P$ are

$$
\left[\begin{array}{l}
X A \\
\underline{Y A} \\
\frac{Z A}{}
\end{array}\right]=\left[\begin{array}{l}
\frac{X P}{}-\underline{X S} \\
\underline{Y P}-\underline{Y S} \\
\underline{Z P}-\underline{Z S}
\end{array}\right]
$$

The geocentric axes $\mathrm{X}, \mathrm{Y}$, and Z can be brought into coincidence with axes $\mathrm{DX}, \mathrm{DY}$, and $D Z$ by rotation through the Eulerian angles

$$
\begin{aligned}
& \phi=\text { SLON }+90^{\circ} \\
& \theta=90^{\circ}-\text { SLAT } \\
& \psi=0
\end{aligned}
$$

Thus, from use of formulas derived in reference 11,

$$
\left[\begin{array}{l}
\underline{D X} \\
\underline{D Y} \\
\underline{D Z}
\end{array}\right]=\left[\begin{array}{ccc}
-\sin \underline{S L O N} & \cos \underline{S L O N} & 0 \\
-\sin \underline{S L A T} \cos \underline{S L O N} & -\sin \underline{S L A T} \sin \underline{S L O N} & \cos \underline{S L A T} \\
\cos \underline{S L A T} \cos \underline{S L O N} & \cos \underline{S L A T} \sin \underline{S L O N} & \sin \underline{S L A T}
\end{array}\right]\left[\begin{array}{l}
\underline{\mathrm{XA}} \\
\underline{\mathrm{YA}} \\
\underline{Z A}
\end{array}\right]
$$

Then the azimuth angle is

$$
\underline{\mathrm{AZ}}=\tan ^{-1} \underline{\underline{\mathrm{DX}}}
$$

and the elevation angle is

$$
\underline{E L}=\tan ^{-1} \frac{\underline{D Z}}{\left(\underline{D X}^{2}+\underline{D Y}^{2}\right)^{1 / 2}}
$$

Sorting of az-el Data
Since certain subroutines require the az-el data to be ordered from one end of the curve to the other, it is necessary to insure that they are. Subroutine SORT(L) sorts the az-el data from each site $L$, for convenience, in such a way that the first point from each site corresponds to the high altitude end of the cloud; this is accomplished by setting the variable

$$
\underline{X S}=-(-1)^{L}
$$

This particular equation, of course, was made to hold for a particular orientation of the cloud and a particular set of observation sites.

Since elevation was the independent variable and single-valued, the ordering was done in terms of that variable only.

## Computation of Second-Order Least-Squares Fit to <br> Successive az-el Curve Segments

The accurate computation of the residual is an important part of the triangulation method. The original az-el data, in a striving for accuracy, usually consists of many arbitrarily located closely spaced points along the curve, so that a least-squares curve fit can be used to reduce the random errors involved in measuring the cloud center line. A second-order fit is sufficient for defining a segment of the curve since only a short interval is needed in the vicinity of the trial point $P$. The number of points used in the curve fit is NO and depends on the number and quality of data points.

Subroutine BCOEF(L,N) computes the three coefficients BC( $3, L, N$ ) for a secondorder least-squares curve fit from a given observation site numbered $L$, with the data point $N$ as an origin. The NO data points used in the curve fit are centered about the data point $N$ (except near the ends of the curve) and hence NO is an odd number. It is to be noted that the coefficients are calculated for every data point, of which there are $\mathrm{NB}(\mathrm{L})$.

An exact coordinate conversion to the point N as origin would involve the Eulerian angles $A Z$ and EL, but since the angular deviations from this origin will always be small, the two orthogonal angular components are

$$
\underline{\mathrm{X} 1}=\Delta \mathrm{EL}
$$

and

$$
\underline{\mathrm{Y} 1}=\Delta \underline{\mathrm{AZ}} \cos (\underline{\mathrm{EL}})
$$

as illustrated in figure 5. The independent variable in the quadratic formula for the particular data point NV within the set NO is

$$
\underline{X 1}=E L(\underline{L}, N V)-E L(\underline{L}, \underline{N})
$$

The dependent variable is

$$
\underline{Y 1}=(\underline{A Z}(\underline{L}, N V)-\underline{A Z}(\underline{L}, \underline{N})) \cos \frac{E L(\underline{L}, \underline{N})+E L(\underline{L}, \underline{N})}{2}
$$

## Computation of Residuals

Subroutine RESDUE(PAZ,PEL,L,D,XD) finds the residual D of a trial solution point when the azimuth PAZ and the elevation PEL of the line of sight from site $L$ to the trial point $P$ are given.

The first part of the subroutine finds the data point N which is nearest the trial point PAZ, PEL, starting with the point from the previous calculation which is stored in $\mathrm{NP}(\mathrm{L})$ as a first try.

The next part of the subroutine computes the residual. Point $P$ has the coordinates (with data point N as the origin)

$$
\begin{aligned}
& \underline{X 1}=\underline{P E L}-\underline{E L}(\underline{L}, \underline{N}) \\
& \underline{Y 1}=(\underline{P A Z}-\underline{A Z}(\underline{L}, \underline{N})) \cos \frac{P E L+\underline{E L}(\underline{L}, \underline{N})}{2}
\end{aligned}
$$

The second-order curve fit to the data points is

$$
\underline{\mathrm{Y}}=\underline{\mathrm{C}} 1+\underline{\mathrm{C}} \underline{\mathrm{x}}+\underline{\mathrm{C}} 3 \underline{\mathrm{x}}^{2}
$$

where

$$
\underline{\mathrm{C} 1}=\underline{\mathrm{BC}}(1, \underline{\mathrm{~L}}, \underline{\mathrm{~N}}), \ldots
$$

The distance between point $P$ and the curve is given by

$$
\underline{\mathrm{D}}^{2}=(\underline{\mathrm{X} 1}-\underline{\mathrm{X}})^{2}+(\underline{\mathrm{Y}} 1-\underline{Y})^{2}
$$

To find the minimum distance, differentiate $D^{2}$ and set the result equal to zero:

$$
(\underline{X 1}-\underline{X})+(\underline{Y} 1-\underline{Y}) \frac{d \underline{Y}}{d \underline{X}}=0
$$

Substitution for $\underline{Y}$ and $d \underline{Y} / d \underline{X}$ from the preceding equations gives the standard form for a cubic

$$
\underline{x}^{3}+\underline{P} \underline{x}^{2}+\underline{Q} \underline{X}+\underline{R}=0
$$

where

$$
\begin{aligned}
& \underline{\mathrm{P}}=\frac{1.5 \mathrm{C} 2}{\mathrm{C} 3} \\
& \underline{\mathrm{Q}}=\frac{1+\underline{\mathrm{C}}^{2}+2 \mathrm{C} 3(\mathrm{C} 1-\mathrm{Y} 1)}{2 \mathrm{C}^{2}} \\
& \underline{\mathrm{R}}=\frac{\mathrm{C} 2(\mathrm{C} 1-\mathrm{Y} 1)-\mathrm{X} 1}{2}
\end{aligned}
$$

The solution of this cubic equation is standard, but the type of solution depends on the value of the discriminant DC (as shown in the listing of subroutine RESDUE). If DC is greater than zero, there is one real root which is computed. If DC is less than zero, there are three real roots. The residual is thus

$$
\left.\underline{\mathrm{D}}=(\underline{\mathrm{Y}}-\underline{\mathrm{Y}})^{2}+(\underline{\mathrm{X}}-\underline{\mathrm{X} 1})^{2}\right)^{1 / 2}
$$

where $X$ is a real solution of the cubic, and $Y$ is the corresponding value from the equation for $Y$ given previously. The subroutine finds the real root which gives the smallest D.

For the case of a point solution, the subroutine is specialized with $L P=2$, which causes the subroutine RESDUE to go to statement 10 , and computes

$$
\begin{aligned}
& \underline{\mathrm{Y}}=\left(\underline{\mathrm{PAZ}}-\underline{\mathrm{AZ}}\left(\underline{\mathrm{~L}, \underline{\mathrm{~K}})) \cos \left(\frac{\mathrm{PEL}+\underline{\mathrm{EL}(\underline{\mathrm{~L}, \mathrm{~K})}}}{2}\right)} \begin{array}{l}
\underline{\mathrm{X}}=\underline{\mathrm{PEL}}-\underline{\mathrm{EL}(\underline{\mathrm{~L}}, \underline{\mathrm{~K}})} \\
\underline{\mathrm{D}}=\left(\underline{\mathrm{X}}^{2}+\underline{\mathrm{Y}}^{2}\right)^{1 / 2}
\end{array}, l\right.\right.
\end{aligned}
$$

where $A Z(L, K), E L(L, K)$ is the data point from site $L$.

## Calculation of Root Mean Square of Residuals

Subroutine SUMRES calls subroutine PAZEL to calculate azimuth and elevation for a trial point $P$, and then calls subroutine RESDUE to calculate the residual from each observation site. Then it computes the root-mean-square value of the residuals.

It usually happens that the cloud viewed at one site does not extend as far as from another site. Thus, it is desirable to extrapolate data from such sites, but with reduced weighting. Subroutine SUMRES reduces the weighting by the factor

$$
\frac{\underline{A}}{\underline{A}+\underline{\operatorname{DIST}(L)}}
$$

where DIST(L) is either zero or equal to DX, the distance between the trial az-el and the nearest data point $\mathrm{NP}(\mathrm{L})$ on the az-el curve, and $\underline{A}=0.5 / 57.3$ radians, a somewhat arbitrary fixed angle of $0.5^{\circ}$. Finally, $\operatorname{DIST}(\mathrm{L})$ is set equal to zero for the two sites having the smallest value of DIST(L).

## Variation of Longitude To Obtain Minimum Residuals

Subroutine LONMIN(PLAT,PLON,PR,DR,EM) finds the minimum value of the root-mean-square residuals EM as the longitude PLON is varied while keeping the geocentric latitude PLAT and radius PR constant.

The procedure is to increment PLON by DA (which is initially equal to DR ), changing directions when necessary to go through a minimum, calling SUMRES to calculate the root-mean-square residual. Consecutive root-mean-square values are labeled (and relabeled as PLON is incremented) E1, E2, and E3 so that when E2 is the smallest, the PLON which gives minimum can be approximated by using the following analysis.

Assume that the root-mean-square residual $E$ is a second-order function of the longitude DA:

$$
\underline{E}=a+b D A+c D A^{2}
$$

For minimum $E$, the longitude is

$$
\underline{\mathrm{DDA}}=-\frac{\mathrm{b}}{2 \mathrm{c}}
$$

From the three values E1, E2, and E3, and the corresponding longitudes -DA, 0 , and DA (using the longitude of the middle point as origin) one can obtain by substitution into E

$$
\begin{aligned}
& \mathrm{b}=-\frac{\mathrm{E} 1-\mathrm{E} 3}{2 \mathrm{DA}} \\
& \mathrm{c}=\frac{\mathrm{E} 3+\mathrm{E} 1-2 \mathrm{E} 2}{2 \mathrm{DA}^{2}}
\end{aligned}
$$

from which the longitude (relative to point 2) for minimum root-mean-square residuals is

$$
\mathrm{DDA}=\frac{(\mathrm{E} 1-\mathrm{E} 3) \mathrm{DA}}{2(\mathrm{E} 1-2 \mathrm{E} 2+\mathrm{E} 3)}
$$

The increment DA is then decreased by a factor of 10 , and the procedure is repeated one time.

## Minimization With Latitude

Subroutine MINISOL(PLAT,PLON, PR,DR,IN,E) starts with the trial point PLAT, PLON, PR and while keeping PR fixed, varies PLAT. For each PLAT, LONMIN is called to find the minimum root-mean-square residuals with respect to PLON.

When three consecutive minimum root-mean-square residuals E1, E2, and E3 are found so that E2 is the least, then an approximation is made (same method as in LONMIN, except independent variable is now latitude $D R$ ) to determine the PLAT for minimum residual. The increment DR is then decreased and the procedure is repeated until IN iterations are made (typically three, with consecutive $D R$ values of $0.1^{\circ}, 0.01^{\circ}$, and $0.001^{\circ}$ ). Upon returning to LARC, the new values of PLAT and PLON give the solution at the particular PR.

## Program LARC

The main program is program LARC, which first reads in the observation site data cards in geographic coordinates. For each pass through the program, a triangulation is made at one instant of time by using az-el data from simultaneous photographs at each site; thus a solution curve of latitude and longitude as functions of altitude is obtained.

After the time is read in, azimuth and elevation data cards from each site are read and stored in $A Z(L, N)$ and $E L(L, N)$; L refers to the site number and $N$ to the data point number. Then subroutine SORT(L) sorts the data into either increasing or decreasing elevation angles.

The $B C(I, L, N)$ coefficients are then calculated for each site $L$ and for every data point $N$ by calling the BCOEF subroutine.

The first estimated solution is chosen near the center of the cloud; since the first estimate may be far from the solution, it is better to start in a region where the data have the best quality. An integral $100-\mathrm{km}$ value of altitude is used and is read from a data card. The first solution point is labeled $N=50$ with altitude increments $D N A=100 \mathrm{~km}$ corresponding to increments of 1 in $N$, where $N$ now refers to a solution point and not a data point. Subsequent trial solutions use the previous solution point.

One of the main difficulties in the solution occurs near the ends of the cloud. Because of differences in exposure, range of cloud, orientation, and visual conditions, the cloud visibility may extend farther at one site than at another. Subroutine SUMRES will automatically extrapolate curves when necessary, but will give less weight to the extrapolated parts. Hence a procedure is needed to stop the calculation when the solution curve is going beyond the data from every observation site. This procedure is accomplished with the index IS which is equal to the number of sites using a data point on the end of the curve in subroutine RESDUE. When all sites except one are extrapolated beyond the end of the az-el curve, then the solution is stopped, and started again at the middle ( $\mathrm{N}=50$ ) with the altitude now incremented downward.

Solutions are stored in TLAT(N), TLON(N), and TALT(N). For each solution point, the point on the az-el curve for each site is stored in $\mathrm{NC}(\mathrm{L}, \mathrm{N})$ and the root-mean-square residuals are stored in $E(N)$ in units of degrees. Finally, the solution is printed out.

## ILLUSTRATIVE CASE

As an example, actual data from the barium ion release of September 21, 1971, will be given. Three observation sites were used: (1) Mt. Hopkins, Arizona; (2) Cerro Morado, Chile; and (3) Wallops Island, Virginia. (Coordinates are given at beginning of table II.) Table II shows a printout of the az-el input data for the time 3 hrs 18 min 10 sec UT ( 13.307 min after release). There were 36 data points from site 1,75 from site 2 , and 28 from site 3. The number of points NO used in the least-squares fit was 25 , which represents about $1.7^{\circ}$ of arc when viewed from site 2 , and $2.7^{\circ}$ when viewed from the other two sites.

Table III shows the final solution. Total central processor time for the job on the Control Data Corporation model 6600 computer was 19.5 seconds. A test was made to see how many iterations were made in the solution. For this case, SUMRES was called a total of 2922 times, or on the average, 104 times for each solution point at each altitude. The root-mean-square residuals were of the order of $0.0045^{\circ}$.

## CONCLUDING REMARKS

A computer program for the triangulation of azimuth-elevation (az-el) data from several observation sites has been presented. Because of the relatively short baseline used and the high accuracy required, it was necessary to make a special effort to reduce the effects of random errors. This reduction was accomplished by using several observation sites and many data points from each site.

An optimal solution was achieved by requiring the minimization of the root-meansquare residual of all the sites and by using a least-squares curve fit to the az-el data. An illustrative example using three observation sites was given for an actual barium cloud. The root-mean-square residuals were of the order of $0.005^{\circ}$.

Langley Research Center,
National Aeronautics and Space Administration, Hampton, Va., February 6, 1974.

## APPENDIX A

## PROGRAM ILARC

## Program Listing

The listing and flow chart for program LARC are presented in this appendix.


## APPENDIX A - Continued



## APPENDIX A - Continued



## APPENDIX A - Concluded

## Program LARC Flow Chart



## APPENDIX B

## SUBPROGRAMS

## SUBREUTINE GGRGCNIGLAT,H,CLAT,CRI

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |



SUBROUTINE GCNGGK(CLAT,CR,GLAT,H)
*** SUBH DUTINE TJ CJNVERT GETCENTRIC LATITUDE CLAT AND GEOCENTRIC RAIDUS CR TC GEGRAPHIC LATITUOE GLAT AND ALTITUDE H.

```
A=6379.106 $ F =1./298.3
F=CR-A*A*F/2.*(1.-CJS(2.*CLAT)+.5*(F/40-A*F/CR)*(COS(4.*CLAT)-1.1)
GLAT=CLAT+A*F/CR*SIN(2*CLAT)+(A#F/CR)**2#(1.-CR/4./A)*SIN(4.*CLAT)
QETURNJ E END
```

SUBPDUFIVE PAZELISLAT,SLON,SH,PLAT,PLON,PR,AL,ELI
$C$.
C\#\#**女OIVEN AN TBG SITE S IN GEOGRAPHIC COORDINATESI AND
C A PSIST D (IN GEDCENTRIC CDOROINATESI IN SPACE FIND THE

```
    A=637801t6 . ह R=6356.784 ... E=B#R/A/\triangle
    Y=A/SQPT(1.+E*TAN(SLAT)**21 & ZSR*ENTANTSLAT)
```

    CDMPITE GFDCENTRIC CARTESIAN COMPONENTS DE DBS SITE S
    \(S R=R+S H=C O S(S L A T) \quad \quad \quad Z S=Z+S H * S I N(S L A T)\)
    \(X S=S R * C O S(S L S N) \quad\) \& \(\quad Y=S R * S I N(S L O N I\)
    GCODUTE GEOCENTRIC CARTFSIAN COMPCNENTS CF PCINT P
    \(A P=P Q+C \operatorname{CO}(P L A T) * \operatorname{COS}(P L O N)\)
    \(\because P=P \& * C C(P L A T) * S I W(P L C N) \quad\) \& \(\quad Z P=P R * S I A(P L A T)\)
    * GOPITE COMPRNENTS VF VETOR DIRECTION FROM SITES TO POINTP
$X A=X P-X S \quad$ S $Y A=Y P-Y S \quad \& \quad Z A=Z P-Z S$
* ChVERT TT. TOPUCENTRIC CARTESIAN CCMPONENTS
$L X=-X A * S I: N S L C A 1+Y A * C T S$ SSDN!

$\because Z=+X A * C S(S L A T) * C D S(S L T)+Y A * C S(S L A T) \neq S I N(S L C)+Z A * S I N(S I A T I$
COMPIJTE AZ-FL ORRECTIDN
$a Z=A T$ AN $2(1) X, O Y 1$
$\angle L=A T A M 21 D Z, S Q R T(D X W X+D Y O Y 11$
RETUR * * ENT


## APPENDIX B - Continued





```
SURPRUTIVE मCDEF(L,N)
```



```
L. MFSICN \(\quad 4(3,3), P(3), C(50,3) \in 1 P(3)\)
```


\# IEAST SUUARES CIRVE FIT TM THE AZ-EL DATA_AT EVFRY DATA PCINT N.

* THE G QNOTATIOUSES NO DATA POIVTS CENTEKEG ABOUT N, EXCEPT AT THE ENDS
: HHFE NO ENH DUINTS ARE USEDO THEINOEPEAOENT VARIABLE IS
* EL(I, PIV)-EL(I,N) WHERE IV IS WITHINTHE SET NX



## APPENDIX B－Continued

ne 2） $1=1$ ，in
THF CTFFFICIENTS B AKF STCRED IA BC． BC（I，L，N）$=\mathrm{Cl}$（I） IF（N，EOONGTOPRINT $301, L, N, N$
301 FORM4T\＆ $5 L=12 * \quad N=* 14 * \quad N D=131$
FETURG $4=\mathrm{AD}$

かとなと




ff（ipoFJ．21 G7 Th 10
＊＊＊＊＊FIGR pITNT ；WRER MA CURVF CLJSEST TO GIVEN DAL PFL



1
$\because 51=959$




$n=-1$ \＆$\because=0+\cdots)$ \＆$\quad D 5 N=05 \Pi$
（，：T： 1
$2 \quad=1-\because(9) \quad \therefore \quad \therefore \rho(1)=0$


$$
\therefore 1=0 E-T G, H) \quad Y \mid=(P A L-A Z(L, N)) \times C \leq S(P E L+E L(1, N 1 / 20)
$$



＊：GLCOLBT THE COFFFICIENTS TAF THE CURIC
$F=10=\% 2 / C 3 \quad * \quad G=110+C 2 * C 2+20 *(3 *(C T-Y 1)) / 20 / C 3 / C 3$
$\therefore=(C, L=(C 1-Y 1)-A 1) / 2 \cdot / C .3 / C 3$


\％IF OISRIMIAMT IS LFSS THAN ZERU，THFRE ARE THRFE RFAL ROTTS
［F（）Colfoうol St TO＝



$Y=C 1+(C 2+C 3 \times X)+X \quad$ o $\quad 0 S=(Y-Y 1) \neq(Y-Y 1)+(X-X 1) *(X-X 1)$


is
＊COMMTE SHI THREC RFAL RJTS AND FIMD THE SMALEST：－－
： $0 \quad 1=1,3$


1F（nsobegtas）ass＝0s
$\theta$ GuTINJE
$\therefore=5 \mathrm{OR}^{2}(\mathrm{DSO})$ \＆RETURN
＊＊
$13 \quad+=1$




## APPENDIX B－Continued

```
SUAROUTINE SUMRES(PLAT,PLON,PR&E)
****CIVEN A PDINT, CALCULATL TIUE ROOT-MEAN-SQUARE OF THE RESIDUALS FROM
* DLSSFRUATIUNSITFS.
    &幺***IF THE POINT IS DEF THE END OF THE AL-EL CURVE DF A SITEPTHEN THE WT FACTCR 
    ****FWILLD[MINISH THE PESIDUAL FRNM THAT SITE AS DETERMINED BY DISTQ THE
    ****AVGULAR DISTANCS FPOM THE END OF THE CURVEO HOWEVER FDR THE TWDSSITES
    ####WIICH HAVE THE LEAST OTSTANCE FROM THE END, NAKE DIST=OR SO THAT F=I& WHICH
    ******GIVES FUULLWT.
```



```
    GGMON/LINF/A2(5,190),FLIE,190),BC(3,5,19O1,NP(5,INN(5),LP
        ()MENSIUY 1(5), IST(E)
        A =O/DEG
        B) 1 J=1yNS
        F I NO=0
* FINO PAZ ANDPEL OF POINT
```



```
* CALCJLATE RFSIDIJAL
        CALL RESTUECPAZ,PEL,J,D(JJ,XD)
        IF(NO(J).EQ: ,OR,NP(J, EQ.NB(J)] IND=\overline{1}
        ()!ST(j)=[ND)
```



```
*****SIRT DIST INTOINCREASING DFDER
    1) 10゙J=1,k NFIDIST(J)-0IST(J+11) 100,100,10
    1)10j J=1,k * IFIDIST(J)-0IST11+111 100,100,10
10 FENO=UIST(j)
    * OTEM=D(j)
        \ST(J)=0IST(J+1)
        DIST(J+1)=TEMD
```



```
    F}=A/(\hat{A}+\)ST(L)
    * CALCULATE RAS RESINUAL
2 E=E+(D(L)*NTM)*F)*2
    E=SQRT(E/NS)
    EETURU * END
```

    SUOP:JTINE LE'MIIfLAT,PLEN;PRGOREMI
    





* HIG GIVLS THE MVIMIN IWITH RESPECT TO PLONT RNS RESIDUALEM.
* Thet decrease da avD REPEAT the procenure。


Iu: $T=\hat{i} \cdot T+1$
* $\begin{aligned} & \text { FIFI HoS KESIDIAL FMO FIRST PMINT. }\end{aligned}$
A AL S SMOES PLAT, PLOP, PP, E1)
"I =A! I +
$P L{ }^{*}=P-\because!+M A$ क CALL SUMRES (PLAT,PLON,PR,EZ)
$I=\because!+1$

    - も $1=0$ Lin: $+0 A$
2
$P L \therefore=0!\because i+17 A$
$1=1 \cdot \overline{1}$




## APPENDIX B - Concluded

* FKi:A THREE 5 ESIUUALS FIND NEW PLMM FOR MIMIUM RESIDUAE

CALL SMMRES (MLAT, PLSN\&PR, FN)
IFl:!. (E. IJ) POINT t, NI

TFST Fr. 2 ITFRATIMNS

IfCRASESTHD STRE
$\therefore A=1) A 120$
- H H に
-M!

SURFGTAE MIMSCCPLATRPLONQPR,DR,IN,EI

* 4 \&** SUBEUUTIGE F? FIVO A SOLUTION $G Y$ NINIMIZING THE RMS OF THE PESIRUALS
* IF ALL SITFS WHILE KEEPING PR FIXFD.
****** NORLMENT DIAT BY OP CALLING LONMIN TO FIND THE MINIMUM RNS OF RESIDUALS
* ( 4 US THE COREESPDNDING PLDN)

HCR EACH PLAT, UNTIL EZ IS THE IEAST TF THE CDNSECUTIVE MINIUMRMS
FFSIDIALS FI,E2,F3.
ISIHG THESE RESIDUALS COPQTE APPROXIMATE PLAT WHICH GIVES THE $M_{1}$ UIUY (WITH RESPECT TR BOTH PLAT AND PLDNI QFSIDUAL E.
THEA DECREASF DF AMO REITERATEO
$\mathrm{PI}=30141502653589$. f DEG=190.191
$I T=7$
$14=0 R \ldots \quad . \quad . \quad . \quad I=0$
CAND FIEST PLON UHICH MINLMZES
HLAT=PLAT +DP $\quad$ Q CALL LOVMINPLAT, RLIN,PR,DA,E 21
IF(EZOLTAFI MOTC 3

* ESSEZ * EZ=FI \& EI=ES $\quad$ \& $\quad$ \& $=-n R$

PLAT=PLAT+OR
FLAT = PLAT + DR

- CALL LENMINCDAT,PIDNQPQ,DA,E3)
$\therefore 1=11+1$
TFIT.GE-2J) 6त Tr 5

FKTM THAEE RESJDUAS FIND NEW PLAT FGQ MINIMM RMS RESIDUAL.


IFST FRR NS. LF ITERATIONS, AND DECREASE STED
CONTIME
$+=0$
CHTOR -


## APPENDIX C <br> COORDINATE SYSTEMS AND CONVERSIONS

This appendix will describe the coordinate systems used and the subroutines involved.

## Earth Model

For the purpose of triangulating from widely dispersed stations over the Earth's surface, the Fischer spheroid was adopted since it is believed to provide the best available global fit to the actual geoid. The relevant parameters are


For this model, the deflection of the vertical, that is, the angle between the normal to the geoid and the normal to the Fischer spheroid nowhere exceeds 30 arc seconds which is sufficiently accurate for the present purposes, since pointing directions used in triangulation are referenced to the stars rather than to a local horizon.

Geographical Coordinate System
The geographical coordinate system is the conventional system of latitude, longitude, and altitude. Figure 6 shows an exaggerated spheroidal surface corresponding to the Earth's sea-level surface. The geographic latitude GLAT of a point $P$ is the angle between the equatorial plane and a line drawn from $P$ perpendicular to the spheroidal surface. The altitude $H$ is measured from the surface at point $G$ to the point $P$. The longitude GLON is measured eastward from Greenwich.

## Geocentric Coordinate System

In this system, O is the Earth's center in figure 6. The X -axis is directed toward the intersection of Greenwich meridian with the equator. The $Y$-axis is directed toward $90^{\circ}$ east longitude in the equatorial plane, and $Z$ is directed toward the north geographic pole. The point $P$ is also located by the geocentric longitude GLON, geocentric latitude CLAT, and radius CR from the Earth's center.

## Topocentric Coordinates

This is a local system with center at some observation site $S$ (see fig. 4) with the DX,DY plane coincident with the horizontal plane, with DX directed toward east, DY directed toward north, and DZ directed vertically (that is, perpendicular to the surface of the spheroid). In the polar version, a point $P$ is located by azimuth angle $A Z$ measured clockwise from DY (north), and elevation angle EL measured up from the horizontal plane, and range $R A$ measured from $S$ to $P$.

## Conversion From Geographic to Geocentric

This conversion is accomplished by using subroutine GGRGCN. Reference to figure 4 shows that the point $G$ on the spheroid follows the equation

$$
\frac{\underline{\mathrm{R}}^{2}}{\underline{\mathrm{~A}}^{2}}+\frac{\underline{Z}^{2}}{\underline{\mathrm{~B}}^{2}}=1
$$

where

$$
\underline{\mathrm{R}}^{2}=\underline{\mathrm{x}}^{2}+\underline{\mathrm{Y}}^{2}
$$

The slope on the ellipse is

$$
\frac{\mathrm{d} \underline{Z}}{\mathrm{dR}}=-\frac{\underline{B}^{2} \underline{R}}{\underline{A}^{2} \underline{Z}}
$$

hence

$$
\tan \underline{G L A T}=\frac{\underline{A}^{2} \underline{Z}}{\underline{B}^{2} \underline{R}}
$$

or

$$
\underline{Z}=\underline{R} \underline{E} \tan \underline{G L A T}
$$

where

$$
\underline{\mathrm{E}}=\frac{\mathrm{B}^{2}}{\underline{\mathrm{~A}}^{2}}
$$

## APPENDIX C - Concluded

Substitution in the original equation gives

$$
\underline{R}=\frac{\underline{\mathrm{A}}}{\sqrt{1+\underline{E} \tan ^{2} \underline{G L A T}}}
$$

The geocentric coordinates of point $P$ are then

$$
\begin{aligned}
& \underline{R P}=\underline{R}+\underline{H} \cos \underline{G L A T} \\
& \underline{Z P}=\underline{Z}+\underline{H} \sin \underline{G L A T} \\
& \underline{C R}=\sqrt{\underline{R P}^{2}+\underline{Z P}} \\
& \underline{C L A T}=\tan ^{-1} \frac{Z P}{\underline{C R}}
\end{aligned}
$$

Geocentric to Geographic Conversion
This inverse conversion cannot be obtained explicitly. Subroutine GCNGGR uses the following approximate formulas derived in reference 12.

The altitude is given by

$$
\underline{H}=\underline{C R}-\underline{A}+\frac{1}{2} \underline{A} \underline{F}\left[1-\cos (2 \underline{C L A T})+\frac{1}{2}\left(\frac{F}{4}-\frac{A F}{\underline{C R}}\right)(\cos (4 \underline{C L A T})-1)\right]
$$

where CLAT is the geocentric latitude and CR is the geocentric radius.
The geographic latitude is given by

$$
\underline{\mathrm{GLAT}}=\underline{\mathrm{CLAT}}+\frac{\underline{\mathrm{A} F}}{\underline{\mathrm{CR}}} \sin (\underline{(2 \mathrm{CLAT}})+\left(\frac{\frac{\mathrm{A}}{\mathrm{~F}}}{\underline{\mathrm{CR}}}\right)^{2}\left(1-\frac{\mathrm{CR}}{4 \mathrm{~A}}\right) \sin (\underline{4 \mathrm{CLAT})}
$$

It should be noted that all angles must be expressed in radians.

## REFERENCES

1. Adamson, D.; Fricke, C. L.; Long, S. A. T.; Landon, W. F.; and Ridge, D. L.: Preliminary Analysis of NASA Optical Data Obtained in Barium Ion Cloud Experiment of September 21, 1971. J. Geophys. Res., vol. 78, no. 25, Sept. 1, 1973, pp. 5769-5784.
2. Brown, Duane C.: A Solution to the General Problem of Multiple Station Analytical Stereotriangulation. AFMTC-TR-58-8, U.S. Air Force, Feb. 1958. (Available from DDC as AD 134278.)
3. Hogge, John E.: Three Ballistic Camera Data Reduction Methods Applicable to Reentry Experiments. NASA TN D-4260, 1967.
4. Lloyd, K. H.: Concise Method for Photogrammetry of Objects in the Sky. WRE-TN-72, Aust. Def. Sci. Serv., Aug. 1971.
5. Whipple, Fred L.; and Jacchia, Luigi G.: Reduction Methods for Photographic Meteor Trails. Smithsonian Contrib. Astrophys., vol. 1, no. 2, 1957, pp. 183-206.
6. Justus, C. G.; Edwards, H. D.; and Fuller, R. N.: Analysis Techniques for Determining Mass Motions in the Upper Atmosphere From Chemical Releases.
AFCRL-64-187, U.S. Air Force, Jan. 1964. (Available from DDC as AD 435678.)
7. Brown, Duane C.: A Treatment of Analytical Photogrammetry. AFMTC-TR-57-22, U.S. Air Force, Aug. 1957. (Available from DDC as AD 124144.)
8. Brown, Duane C.: An Advanced Reduction and Calibration for Photogrammetric Cameras. AFCRL-64-40, U.S. Air Force, Jan. 1964.
9. Harp, Bill F.: Photogrammetric Calibration of the NASA-Wallops Island Image Intensifier System. Contract No. NAS 6-2066, DBA Systems, Inc., May 15, 1972. (Available as NASA CR-137455.)
10. Beers, Yardley: Introduction to the Theory of Error. Second ed., Addison-Wesley Pub. Co., Inc., c. 1957.
11. Goldstein, Herbert: Classical Mechanics. Addison-Wesley Pub. Co., Inc., c. 1959.
12. Long, Sheila Ann T.: Derivation of Transformation Formulas Between Geocentric and Geodetic Coordinates for Nonzero Altitudes. NASA TN D-7522, 1974.

TABLE I.- COMPARISON OF VARIOUS TRIANGULATION METHODS

| Reference | Author's <br> name | Type of <br> object | Number of <br> observation sites | Method of solution |
| :---: | :--- | :--- | :---: | :--- |
| 2 | Brown | Point | Many | Least-squares method |
| 3 | Hogge | Point <br> Straight line | Several <br> 2 | Least-squares method <br> Intersection of ray from one site with <br> plane from other site |
| Intersection of ray from one site with |  |  |  |  |
| surface defined by 3d order least- |  |  |  |  |
| squares fit to data from other site |  |  |  |  |$|$| Curved line |
| :--- |
| 4 |

# TABLE II. ~ INPUT DATA FOR ILLUSTRATIVE EXAMPLE 

## 3 STATION TRIANGULATION



TABLE II.- INPUT DATA FOR ILLUSTRATIVE EXAMPLE - Continued

| StA | 2 | PT | 10 | $A L=34707797$ | FL $=$ | 47.9017 | CHILE CAM | 0-3 | 3,19,10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STA | 2 | PT | $2 u$ | $\mathrm{AL}=349.7919$ | $E L=$ | 47.8341 | CHILE CAM | D-3 | 3,18,10 |
| STA | 2 | $\mu \mathrm{T}$ | 21 | $A Z=349.31957$ | $\mathrm{F}^{1}=$ | 47.7669 | CHILE CAM | - | $3,19,10$ |
| STA | 2 | PT | 22 | $\Lambda z=340.8234$ | $\mathrm{EL}_{\mathrm{L}}=$ | 47.6998 | CHILE CAM | 1) -3 | 3,18,10 |
| STA | 2 | PT | 23 | $A L=349.9379$ | $E L=$ | 47.6326 | CHILF CAM | 0-3 | 3,18,10 |
| STA | 2 | PT | 24 | VL= 349.8514 | $\mathrm{FL}=$ | 47.5647 | CHILE CAM | D-3 | 3,18,10 |
| S7A | 2 | PT | 25 | $A Z=340.9529$ | $F L=$ | 47.4974 | CHILECAM | D-3 | 3,18,10 |
| STA. | 2 | PT | 26 | $\mathrm{Az}=349.9782$ | $\mathrm{EL}=$ | $+7.4299$ | CHILE CAM | 0-3 | $3,18,10$ |
| STA | 2 | PT | 27 | $A L=349.9911$ | $\mathrm{EL}=$ | 47.3623 | CHILE CAM | - 0 - 3 | 3,18,10 |
| STA | 2 | PT | $2 \%$ | $A L=349.9025$ | FI = | 47.2944 | CHILE CAM | 7-3 | 3,18,10 |
| STA | 2 | PT | 25 | $A Z=349.9158$ | $E L=$ | 47.2261 | CHILE CAM | 1-3 | 3,18,10 |
| STA | 2 | PT | 30 | $A L=3 \div 9.928 t$ | $\mathrm{F}=$ | 47.1589 | CHILF CAM | [1-3 | $3,19,10$ |
| STA | 2 | PT | 31 | $\lambda Z=349.0418$ | $E L=$ | 47.0913 | CHIEE CAM | 0-3 | 3,18,10 |
| STA | 2 | UT | 32 | 人 $L=349.9535$ | $\mathrm{E}=$ | 47.0237 | CHILF CAM | 0-3 | 3,18,10 |
| STA | 2 | pT | 32 | $A Z=349.0677$ | $E!=$ | 46.9561 | CHILF CAM | 0-3 | 3,18,10 |
| STA | 2 | PT | 34 | $A L=349.8009$ | $E L=$ | 46.9992 | CHILE CAM | $12-3$ | $3,19,10$ |
| STA | 2 | PT | 35 | $n Z=345.9054$ | $E L=$ | 46.8210 | CHILECAC | 0-3 | 3,19,12 |
| $\bigcirc T A$ | 2. | PT | 30 | $A Z=350.0130$ | $E L=$ | 46.7535 | CHILE CAT | 1-3 | 3,18,10 |
| STA | 2 | PT | $3 ?$ | $n z=3=10.2245$ | $F L=$ | 48.6955 | Chile Cam | D-3 | 3,18.10 |
| Sta | 2 | $\mu \mathrm{T}$ | 33 | $A L=3000 \sqrt{30}$ | $F \mathrm{C}=$ | 46.6182 | CHILE CAP | D-3 | 3,18,10 |
| Sta | 2 | PT | 3 c | $\wedge L=35 \sim . j 45$ | $E L=$ | 4605506 | CHILE CAM | D-3 | 3,19,10 |
| STA | 2 | PT | 4 | $\wedge z=35.5 .5520$ | $\mathrm{El}=$ | 46.4829 | CHILE CAM | D- | $3,18,10$ |
| STA | 2 | PT | 41 | $A z=3500$ J05 | $5 L^{\circ}=$ | 4604146 | CHILE CAM | ก-3 | 3,18,10 |
| STA | 2 | PT | 42 | $\Delta L=350.3789$ | $\mathrm{EL}=$ | 46.3474 | CHIE CAM | 0-3 | 3,18,12 |
| STA | 2 | PT | 43 | $A \geq=350 . j 9 C 3$ | $\mathrm{FL}=$ | 46.2798 | CHILE CAM | --3 | 3,19,10 |
| STA | 2 | PT | 4 |  | $\bar{L}=$ | 40.2123 | CHILF CAM | 0-3 | 3,18,10 |
| STA | 2 | PT | 45 | $N=350.1193$ | $E L=$ | 46.1446 | CMILE CAM | n-3 | 3,19,10 |
| STA | 2 | PT | $1 t$ | $12=30.1340$ | $E L=$ | $4 t .0768$ | CHILE CAM | 0-3 | 3,18,10 |
| Sta | 2 | pT | 47 | $A I=350.1+19$ | FL $=$ | 46.0091 | CHILE CAM | 0-3 | 3,18,10 |
| STA | 2 | rT | 4.4 | $N=300.1504$ | $\mathrm{EL}_{2}=$ | 4.9418" | CHILE CAM | 0-3 | 3,18,10 |
| STA | 2 | PT | 4 \% | $A z=350.1643$ | $\mathrm{FL}_{2}=$ | 45.9742 | CHILE CAM | 0-3 | 3,18,10 |
| Sta | 2 | - ${ }^{\text {P }}$ | E゙\% | El $=35.30 .794$ | $\mathrm{EL}=$ | 450 C663 | CHILE CAM | D-3 | $3.18,10$ |
| STA | 2 | FT | 51 | HL = 35).1005 | $E L=$ | 45.7384 | CHILE CAM | D-3 | 3,18,15 |
| STA | 2 | PT | 52 | $12=350.2 .36$ | $51=$ | 45.6705 | CHILE CAM | 1)-3 | $3,10.10$ |
| STA | 2 | PT | 53 | $\dot{\mu L}=359.2156$ | Ci $=$ | 45.6025 | CHILE CAM | 0-3 | 3,18,10 |
| STA | 2 | PT | 34 | $A 2=350.2272$ | $\mathrm{FC}=$ | 45.5343 | CHILE CAM | 7-3 | $3,18,10$ |
| STA | 2 | PT | 55 | $\Delta t=3$-6. $2333^{\circ}$ | C | $4 \mathrm{E} \cdot 468.3$ | CHILE CAM | 12-3 | 3,18,10 |
| STA | 2 | PT | 56 | $07=370.5$ | T | 45.2994 | CHILF CAM | 0-3 | 3,13,10 |
| STA | 2 | PT | 5 | 42. $=351.2637$ | $\mathrm{EL}=$ | 45.33 ? | CHICE CAM | D-3 | $3,18,10$ |
| STA | 2 | PT | 58 | $n L=350.2761$ | $r i=$ | 45.2620 | CHILE CAM | ก-3 | 3,19,10 |
| STA | $?$ | PT | 50 | A1= 320.20370 | TL $=$ | 45.1934 | CHILF CAM | D-3 | 3,18,10 |
| STA | 2 | PT | $\epsilon$ | $47=350.2693$ | $\mathrm{CL}=$ | 451255 | CHILF CA | D-3 | 3,19,10 |
| STA | 2 | PT | $\dot{-1}$ | $12=320368$ | $\mathrm{FL}=$ | 45.5572 | CHILE CAM | 10-3 | 3,18,10 |
| STA | 2 | PT | éc | A2 $=301503196$ | FL= | 44.9896 | CHILE CAM | 1)-3 | 3,19,10 |
| STA | 2 | $\rho \mathrm{T}$ | $\bullet 3$ | $12=35 \sim 336$ | $\mathrm{Fl}=$ | 44.9218 | CHILE CAM | 7-3 | 3,18,10 |
| STA | 2 | OT | 6 | $4 l=350.3455$ | $\Gamma \mathrm{L}=$ | 44.9539 | CHILECA? | 5-3 | 3,19,10 |
| $\begin{aligned} & \text { STA } \\ & \text { STA } \end{aligned}$ | $\begin{array}{r} 2 \\ 2 \\ \hline \end{array}$ | $\begin{aligned} & \text { PT } \\ & \text { PT } \end{aligned}$ | $\begin{aligned} & 65 \\ & 8 t \end{aligned}$ | $\begin{aligned} & A Z=350.3578 \\ & A Z=350.3699 \end{aligned}$ | $\begin{aligned} & \mathrm{FL}= \\ & \mathrm{FL}= \end{aligned}$ | $\begin{aligned} & 44.7854 \\ & 44.7175 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { CHILE CAM } \\ & \text { CHILE CAM } \end{aligned}$ | $\begin{array}{r} 0-3 \\ 0-3 \end{array}$ | $\begin{aligned} & 3,18,10 \\ & 3,18,10 \end{aligned}$ |
| STA | 2 | PT | 67 | $A L=3503859$ | $F_{L}=$ | 44.6494 | CHILE CAM | D-3 | 3.18 .10 |
| STA | 2 | PT | 58 | $\Delta L=350.3951$. | PL | 4.4 .5811 | CHILE CAM | D-3 | 3,18,10 |
| STA | 2. | PT | 69 | $A z=350.4368$ | $\mathrm{FL}=$ | 44.5129 | CHILE CAM | D-3 | $3,18,10$ |
| STA | 2 | PT | 70 | $\Delta 7=352.4237$ | $E L=$ | 44.4445 | CHILE CAM | D-3 | 3,13,10 |
| STA | 2 | PT | 71 | $A Z=2504313$ | $\mathrm{FL}=$ | 44.3759 | CHILE CAM | D-3 | 3,19,10 |
| STA | 2 | PT | 72 | $A Z=350.4443$ | $E L=$ | 44.3071 | CHILE CAM | D-3 | 3, 19, 10 |
| STA | 2 | PT | 73 | $A Z=350.4596$ | $F L=$ | 44.2390 | CHILE CAM | - -3 | 3,13,10 |
| STA | 2 | PT | 74 | $A Z=350.4677$ | $F L=$ | 44.1734 | CHILE CAM | D-3 | 3,18,10 |
| STA | 2. | PT | 75 | $A 1=350.4797$ | $E L=$ | 44.1016 | CHILE CAM | D-3 | 3,19,10 |
| STA | 3 | $P \mathrm{P}$ | 1 | $\Delta \dot{L}=182.3043$ | $E L=$ | 50.5829 | $\triangle C$ WALLOPS | S $A C-$ | 3, 3, 18, 10 |
| STA | 3 | p T. | 2 | $A Z=19203085$ | ELE | 50.6989 | $\triangle C$ WALLJPS | S $A C$ | 3 3,19,10 |
| STA | 3. | PT | 3 | $A Z=182.3122$ | EL | 50.7940 | $A C$ WALLOPS | S AC- | 3 3, 18, 10 |
| STA | 3 | PT | 4 | $A L=142.3192$ | [ $\mathrm{L}=$ | 50.0019 | AC WALLOPS | $\triangle \bar{C}$ | 3 3,19,10 |

## TABLE II.- INPUT FOR ILLUSTRATIVE EXAMPLE - Concluded



## TABLE III.- SOLUTION FOR ILLUSTRATIVE EXAMPLE

Tint 3 HES 1 ? $\because$ IV lous SEC
LINE SOLUTICN



Figure 1.- Trial solution point $P$ in space as observed from three sites illustrating residuals $\mathrm{D}(1), \mathrm{D}(2)$, and $\mathrm{D}(3)$ due to errors in measuring lines of sight.


Figure 2.- Illustration of three surfaces defined by az-el data from three observation sites. For the trial point $P$, the residual for site 1 is $D(1)$.


Figure 3.- Illustration of minimization of root-mean-square residuals with varying PLON and PLAT. EM is the minimum root-mean-square residual for variable PLON at a fixed PLAT.


Figure 4.- Illustration of the relations between topocentric and geographic coordinates.


Figure 5.- Illustration of an approximate angular two-dimensional coordinate system with reference direction $S-N$, which is used in least-squares fit of az-el data and computation of residuals.


## (GREENWICH)

Figure 6.- Illustration of the Earth spheroid and the relations between geographic and geocentric coordinates.

