

TRIANGULATION OF MULTISTATION CAMERA DATA TO LOCATE A CURVED LINE IN SPACE

by Clifford L. Fricke Langley Research Center Hampton, Va. 23665

View metadata, citation and similar papers at core.ac.uk

II CORE

brouaht to vou bv

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1974

Triangulation, multistationUnclassified - UnlimitedIon cloudUnclassified - UnlimitedStereotriangulationStereotriangulationPhotogrammetryBallistic cameraMultistation triangulationSTAR Category 30					<u></u>
4. Title and Subtrie TRIANGULATION OF MULTISTATION CAMERA DATA TO LOCATE A CURVED LINE IN SPACE 5. Report Date 7. Authorful Clifford L. Fricke 6. Performing Organization Report No. L-9268 8. Performing Organization Removes and Address NASA Langley Research Center Hampton, Va. 23665 8. Performing Organization Report No. L-9268 12. Sponoring Agency Name and Address National Aeronautics and Space Administration Washington, D. C. 20546 11. Consuct or Grant No. 15. Supplementary Notes 13. Type of Report and Period Covered Technical Note 16. Astract A method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A least- squares criterion is used to insure the besi fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its with is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the Earth's magnetic field line at very high allitudes. 17. Key Words (Suggered by Authorisi) Triangulation, multistation Ion cloud Stereortriangulation triangulation 18. Distribution Stamment Unclassified – Unlimited Multistation triangulation Streeortriangulation triangulation 19. Security Caseff, Of this page 21. No. of Page 22. Pice*		2. Government Acces	sion No.	3. Recipient's Catalog	jNo.
TRIANGULATION OF MULTISTATION CAMERA DATA TO LOCATE A CURVED LINE IN SPACE 6. Performing Organization Code May 1974 7. Authorisi 8. Performing Organization Report No. L - 9268 8. Performing Organization Name and Address NASIO Langley Research Center Hampton, Va. 23665 8. Performing Organization Report No. L - 9268 12. Sponsoring Agreey Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 13. Type of Report and Period Covered Technical Note 13. Supplementary Notes 14. Soneoring Agreey Code 14. Soneoring Agreey Code 18. Autoret 15. Supplementary Notes 14. Soneoring Agreey Code 19. Method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A least- squares criterion is used to insure the best fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its width is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the Earth's magnetic field line at very high altitudes. 17. Key Words (Suggested by Autorisi) Triangulation, multistation Ion cloud Bereotriangulation triangulation 18. Distribution Statement Unclassified – Unlimited 19. Security Caseff, Of this report) 20. Security Caseff, of this page) 21. No of Page) 22. Price*			5 Benort Date	<u></u>	
LOCATE A CURVED LINE IN SPACE 9. Performing Organization Ode May 1974 7. Author(s) 8. Performing Organization Resport No. L - 9268 9. Performing Organization Name and Address NASA Langley Research Center Hampton, Va. 23665 10. Work Unit No. 12. Somering Agency Name and Address National Aeronautics and Space Administration Washington, D. C. 20546 13. Type of Report and Period Covered Technical Note 14. Abstract 13. Type of Report and Period Covered Technical Note 15. Supplementary Notes 14. Somering Agency Code 16. Abstract 14. Somering Agency Code 17. Key Words (Suggested by Author(s)) Triangulation, multisfation Ion cloud Stereortiangulation 18. Distribution Statement Unclassified – Unitimited Strace Category 30 17. Key Words (Suggested by Author(s)) Triangulation 18. Distribution Statement Unclassified – Unitimited Strace Category 30				a. Report bate	
Clifford L. Fricke L-9268 8. Performing Organization Name and Address NASA Langley Research Center Hampton, Va. 23665 10. Work Unit No. 12. Sponoring Agency Name and Address 879–11-36-01 National Aeronautics and Space Administration 13. Type of Report and Period Covered Technical Note 14. Soonoring Agency Code 15. Supplementary Noss 15. Supplementary Noss 16. Atstract 16. Atstract 17. Key Words (Supperted by Authoris)) Triangulation, multistation or cloud which traced out the Earth's magnetic field line at very high altitudes. 17. Key Words (Supperted by Authoris)) 18. Atstract 19. Key Words (Supperted by Authoris)) 10. Key Words (Supperted by Authoris)) 11. Key Words (Supperted by Authoris)) 12. Key Words (Supperted by Authoris)) 13. Triangulation, multistation Ion cloud which traced out the Earth's magnetic field line at very high altitudes. 19. Security Cashi, (of this report) 10. Statistic camera 10. Statistic in triangulation 10. Statistic camera			A DATA TO	• •	zation Code
10. Work Unit No. 10. Work Unit No. 8. Performing Organization Name and Address 879-11-36-01 NASA Langley Research Center 11. Contract or Grant No. Hampton, Va. 23665 13. Type of Report and Period Covered 12. Spentoring Agency Names and Address 13. Type of Report and Period Covered National Aeronautics and Space Administration 13. Type of Report and Period Covered 15. Supplementary Noses 14. Spontoring Agency Code 16. Atstract 14. Spontoring Agency Code 17. Kay Words (Suggetted by Authoria) 10. Distribution Statement 17. Kay Words (Suggetted by Authoria) 18. Distribution Statement 17. Kay Words (Suggetted by Authoria) 18. Distribution Statement 17. Kay Words (Suggetted by Authoria) 18. Distribution Statement 17. Kay Words (Suggetted by Authoria) 18. Distribution Statement 17. Kay Words (Suggetted by Authoria) 18. Distribution Statement 18. Supplementary high altitudes. 18. Distribution Statement 19. Security Casait, (of this propert) 20. Security Casait, (of this page) 19. Security Casait, (of this propert) 20. Security Casait, (of this page) 19. Security Casait, (of this page) 21. No. of Pages 22. Price* <td>7. Author(s)</td> <td></td> <td></td> <td>8. Performing Organiz</td> <th>ation Report No.</th>	7. Author(s)			8. Performing Organiz	ation Report No.
9. Performing Organization Name and Address 879-11-36-01 NASA Langley Research Center 11. Contract or Grant No. Hampton, Va. 23665 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 15. Supplementary Notes 16. Abstract A method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A least-squares criterion is used to insure the best fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its width is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the Earth's magnetic field line at very high altitudes. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Triangulation, multistation Ion cloud 18. Distribution Statement Maltistic camera Maltistiction triangulation Photogrammetry 20. Security Gaset, (of this pege) 19. Security Gaset, (of this report) 20. Security Gaset, (of this pege)	Clifford L. Fricke		L	L-9268	
NASA Langley Research Center Hampton, Va. 23665 0.09-01-30-01 11. Contract or Grant No. 11. Contract or Grant No. 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 13. Type of Report and Period Covered Technical Note 15. Supplementary Notes 14. Sponsoring Agency Code 16. Atstract A method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A least- squares criterion is used to insure the best fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its width is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the Earth's magnetic field line at very high altitudes. 17. Key Words (Suggested by Author(s)) Triangulation, multistation Ion cloud Stereotriangulation Photogrammetry Ballistic camera Multistation triangulation Photogrammetry Ballistic camera Multistation triangulation Divelopmetry Casef. (of this report) Balance field 21. No. of Page 22. Price [*]	9 Performing Organization Name and Add			10. Work Unit No.	
Hampton, Va. 23665 1. Contract or Grant No. 12. Sponoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 13. Type of Report and Period Covered Technical Note 15. Supplementary Notes 14. Sponoring Agency Code 16. Abstract 16. Abstract A method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A least- squares criterion is used to insure the best fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its width is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the Earth's magnetic field line at very high altitudes. 17. Key Work (Suggested by Authoris) Triangulation, multistation Ion cloud Stereotriangulation Photogrammetry Ballistic camera Multistation triangulation Multistation triangulation Photogrammetry Ballistic camera Multistation triangulation 18. Distribution Statement Unclassified – Unlimited StAR Category 30 19. Security Casef. (of this report) 20. Security Casef. (of this page) 21. No. of Page 22. Price*				879-11-36-	-01
12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Technical Note 12. Sponsoring Agency Name and Address 14. Sponsoring Agency Code National Aeronautics and Space Administration Washington, D.C. 20546 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 16. Abstract A method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A least-squares criterion is used to insure the best fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its width is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the Earth's magnetic field line at very high altitudes. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Triangulation, multistation for cloud 18. Distribution Statement Unclassified - Unlimited StAR Category 30 19. Security Classif, (of this report) 20. Security Classif, (of this page) 21. No. of Pages 22. Price*		er	[11. Contract or Grant	No.
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 Technical Note 14. Sponsoring Agency Code 14. Sponsoring Agency Code 15. Austract A method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A least- squares criterion is used to insure the best fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its width is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the Earth's magnetic field line at very high altitudes. 17. Key Words (Suggested by Authoris)) Triangulation, multistation Ion cloud Sterectoriangulation Photogrammetry Ballistic Camera Multistation triangulation 18. Distribution Statement Unclassified - Unlimited 19. Security Classif. (of this report) Unable of this report 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	Hampton, Va. 23665				
National Aeronautics and Space Administration Washington, D.C. 20546 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 16. Abstract A method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A least-squares criterion is used to insure the best fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its width is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the Earth's magnetic field line at very high altitudes. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Triangulation, multistation for cloud Inclassified – Unlimited Stereotriangulation Photogrammetry Ballistic camera Multistation triangulation 10. Security Classif. (d this page) 19. Security Classif. (d this report) 20. Security Classif. (d this page) 21. No. of Pages 22. Price*		· · · · · · · · · · · · · · · · · · ·		13. Type of Report ar	nd Period Covered
Washington, D.C. 20546 14. Sponsoring Agenty Cose 15. Supplementary Notes 16. Abstract A method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A least-squares criterion is used to insure the best fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its width is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the Earth's magnetic field line at very high altitudes. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Triangulation, multistation for cloud 18. Distribution Statement Unclassified – Unlimited STAR Category 30 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*				Technical	Note
Washington, D.C. 20546 15. Supplementary Notes 16. Abstract A method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A least-squares criterion is used to insure the best fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its width is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the Earth's magnetic field line at very high altitudes. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Triangulation, multistation fon cloud Inclassified – Unlimited Stereotriangulation Statement Photogrammetry Statement Multistation triangulation 20. Security Classif. (of this page) 19. Security Classif. (of this report) 21. No. of Pages 19. Security Classif. (of this page) 21. No. of Pages	National Aeronautics and Spac	e Administration		14. Sponsoring Agency	/ Code
16. Abstract A method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A least-squares criterion is used to insure the best fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its width is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the Earth's magnetic field line at very high altitudes. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Triangulation, multistation Ion cloud 18. Distribution Statement Unclassified - Unlimited STAR Category 30 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	Washington, D.C. 20546				
Triangulation, multistation Unclassified - Unlimited Ion cloud Unclassified - Unlimited Stereotriangulation Stare and	A method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A least- squares criterion is used to insure the best fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its width is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the Earth's magnetic field line at				
Unalogsified	Ion cloud Stereotriangulation Photogrammetry Ballistic camera			- Unlimited	R Category 30
Unclassified Unclassified \$3.25	19. Security Classif. (of this report)	20. Security Classif, (c	of this page}	21. No. of Pages	22. Price*
	Unclassified	Unclassifie	ed ·	43	\$3.25

* For sale by the National Technical Information Service, Springfield, Virginia 22151

TRIANGULATION OF MULTISTATION CAMERA DATA TO LOCATE

A CURVED LINE IN SPACE

By Clifford L. Fricke Langley Research Center

SUMMARY

A method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A leastsquares criterion is used to insure the best fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its width is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the Earth's magnetic field line at very high altitudes.

INTRODUCTION

A unique and powerful tool in magnetospheric studies involves the deposition of barium vapor at a point in the magnetosphere through the use of chemicals or explosives carried aloft by rockets. The barium atoms are rapidly ionized by sunlight and thus form a barium ion cloud which extends along the magnetic field line and becomes "frozen" to it. The barium ion cloud, on account of its resonant scattering of sunlight, is visible to ground sites when viewed against the night sky and hence serves to delineate the magnetic field line over a considerable arc length. This condition permits a determination of magnetic field line orientation and shape. From the motion of the cloud one may obtain the convective motion of magnetospheric plasma and hence the electric fields which drive such motions.

The accuracy of locating an object in the distant magnetosphere by triangulation methods is extremely limited by the relatively short baselines available. In the case of the barium ion cloud (ref. 1), even though the observation sites were widely dispersed on the Earth, the cloud altitude was about five times the baseline distance. Hence, it was necessary to use every means possible to improve the accuracy such as calibration for distortion in the cameras, orientation of cameras using stars in the photographs, and the use of more than two observation sites. Existing triangulation methods were limited in one respect or another: methods using several observation sites triangulated only on points (refs. 2 and 3) and methods which triangulated on lines could use only two observation sites (refs. 4 to 6). Table I shows a comparison of the various methods.

In view of these limitations, it was desired to develop a triangulation method which allows for a cloud that is curved in space, extends over a large arc, and is to be photographed at several observation sites. The difficulty in obtaining a solution by triangulating on an extended object from several sites lies in the fact that the intersection of the several surfaces defined by the necessarily inaccurate data from several sites does not determine a unique line in space. Thus, some criterion is needed to determine the most probable solution when all the data are taken into account.

Methods already exist (refs. 7 to 9) for precise conversion of images on photographs to pointing directions from each site, such as azimuth as a function of elevation. This note describes a method and a computer program that find the most probable line solution from input data on azimuth as a function of elevation from several observation sites.

FORTRAN VARIABLES AND SYMBOLS

FORTRAN variables are the same as algebraic symbols, except that they are underlined when used in equations in the text.

A	equatorial radius, 6378.166 km; in subroutine SUMRES, angle in radians used to weight residuals
AZ(L,N)	azimuth angle from site L, data point N
a,b,c	coefficients in quadratic equation
В	polar radius, 6356.784 km
BC(I,L,N)	Ith coefficient in least-squares fit for site L, data point N
CLAT	geocentric latitude
CR	geocentric radius
C1,C2,C3	coefficients in least-squares fit to data for azimuth as a function of elevation (az-el)

D	residual (minimum angle between point P and az-el curve)
D(L)	residual from site L
DA	increment given to PLON
DC	discriminant of cubic equation
DDA	interpolation correction given to PLON to give minimum point
DEG	degrees per radian
DIST(L)	angle between point P and end data point on az-el curve, site L
DNA	altitude increment
DR	increment given to PLAT
DX,DY,DZ	axes in topocentric coordinate system; on horizontal plane in easterly direc- tion, on horizontal plane in northerly direction, and in vertical direction perpendicular to horizontal plane, respectively
Е	root-mean-square residual; in subroutine GGRGCN, ratio A^2/B^2
E(N)	minimum root-mean-square residual with respect to both latitude and longi- tude; thus, the solution at point N is defined
EL(L,N)	elevation angle from site L, data point N
EM	minimum root-mean-square residual (with variable longitude) for a given latitude
E1,E2,E3	in subroutine LONMIN, root-mean-square residual for three consecutive longitudes
F	flattening factor, $1/298.3$; in subroutine SUMRES, weighting factor depending on DIST(L)
GLAT	geographic latitude

GLON	geographic or geocentric longitude
н	geographic altitude, km
ні	altitude of first estimated trial point
IN	number of iterations in subroutine MINISOL (usually 3)
IS	number of sites using data points on the end of az-el curve
L	observation site number
LP	index to designate line $(LP=1)$ or point $(LP=2)$ solution
Ν	in program LARC, data point number, or solution point number; in subroutine RESDUE, data point nearest the trial point (PAZ,PEL)
NBL	number of az-el data points (used for NB(L))
NB(L)	number of az-el data points from site L
NC(L,N)	az-el data point number of site L used to obtain solution point N
ND	index used to increment solution point number N by ± 1
NO	number of az-el data points used in least-squares fit
NP(L)	data point number nearest solution point from site L
NS	number of observation sites
NV	particular data point within the set NO
N1	smallest solution point number
N2	largest solution point number
P,Q,R	coefficients in cubic equation

PAZ	azimuth of point P
PEL	elevation of point P
PI	π
PLAT	geocentric latitude of point P
PLATG	geographic latitude of point P
PLATI	geographic latitude of first estimated trial point P
PLON	longitude of point P
PLONI	longitude of first estimated trial point P
PR	geocentric radius of point P
R	radius of revolution of spheroid
RA	range from observation site S to point P
RAD	radians per degree
RP	projection of geocentric radius on equatorial plane
SH(L)	altitude of observation site L
SLAT(L)	geographic latitude of observation site L
SLON(L)	longitude of observation site L
SR	radius from Z-axis of observation site
TALT(N)	altitude of solution point N
TLAT(N)	geographic latitude of solution point N
TLON(L)	longitude of solution point N

.

- WT(L) weighting factor for observation site L
- X,Y,Z geocentric coordinate axes; in equatorial plane in direction of Greenwich, in equatorial plane directed to make a right-handed system, and in direction of north pole perpendicular to equatorial plane, respectively
- XA,YA,ZA geocentric components of line-of-sight vector from observation site S to trial point P
- XD angle between point P and data point on az-el curve
- XP,YP,ZP geocentric components of trial point P
- XS,YS,ZS geocentric components of observation site S
- X1,Y1 independent and dependent variables, respectively, in least-squares curve fit to az-el data
- ϕ, θ, ψ Eulerian rotation angles

GENERAL DISCUSSION OF MULTISTATION TRIANGULATION

Case of a Point Object

Consider first the simple case of a point object in space observed from several sites. (Fig. 1 illustrates the case of three sites.) In general, the measured lines of sight will not intersect because of errors in measuring the pointing direction from each site. One would expect the probable error in pointing to be the same at each site, where the error in pointing is defined as the angle between the measured direction and the actual direction of the object. In order to find the most probable solution, consider a trial solution point P in space and define the residual from a site as the angle between the measured direction from that site and the direction of the trial solution (D(1), D(2), and D(3) in fig. 1). The most probable solution, if it is assumed that pointing errors at each site are random, then, would be the one which minimizes the sum of the squares of the residuals $D(1)^2 + D(2)^2 + D(3)^2$. (See ref. 10, pp. 107-109.)

Case of a Curved Object

Next, consider the problem of locating a curved line object in space which is illustrated in figure 2 for three observation sites. The curve for the azimuth as a function of elevation from a single site defines a conical surface in space. With data from only two sites, intersection of the surfaces is unique, but with three or more sites, the intersections are no longer unique.

Generally, there is no distinguishable feature on any part of the cloud. The end points cannot be determined since they fade out gradually, and hence the location of the end depends on the exposure of the photograph, and brightness of the sky background. The center of the cloud length may sometimes be brighter, but it cannot be located accurately. Hence, if the curvature of the azimuth as a function of elevation is small, only errors perpendicular to the curve are important, since any error along the curve merely slides the curve on itself. It is reasonable to expect, then, that the probable error perpendicular to the surface defined by the az-el curve is the same for each site. Thus the residual of a trial point will be defined as the angle between the line of sight of that point and its projection on the conical surface defined by the curve for the variation of azimuth with elevation from the specified site. This angle, of course, represents the minimum angle between the line of sight to the trial point and any line of sight on the conical surface (D(1) in fig. 2). If the trial point is to lie on the most probable solution curve, then the sum of the squares of the residuals from all sites must be minimized. (This procedure is equivalent to minimization of the root-mean-square (rms) value of the residuals.)

It has been assumed throughout that the object is a line in space. If the object has lateral dimensions, then it must possess a center line which is identifiable as such from every observation site for the method to be applicable.

Minimization of Root-Mean-Square Residuals

Even though the desired solution is a curved line in space, the method described in this paper successively solves for specific points on that line. For convenience, the independent variable is altitude (which will be converted to geocentric radius) so that each point will be at a selected altitude; if the cloud had extended beyond the magnetic equator, then the independent variable should be latitude in order to be single-valued.

Thus, consider a trial solution point P which will remain at a fixed geocentric radius (which is essentially equivalent to a fixed altitude); the problem is to find the latitude and longitude which minimize the root-mean-square residuals. First, assume a trial latitude A and vary the longitude along A until a minimum root-mean-square residual EM_A is found, as indicated in figure 3. Next, increment the latitude to some new value B, and again vary longitude until a minimum as indicated by EM_B is obtained. Thus EM, the minimum root-mean-square residual with variable longitude can be obtained as a function of latitude, and one can readily find the latitude that minimizes EM; this latitude and its corresponding minimizing longitude is the point at the selected altitude that lies on the

most probable solution curve. A description of the computer programs which use this method to find the most probable solution curve is given in the following sections.

COMPUTER PROGRAMS

The main program, called LARC (listing and flow chart are given in appendix A), in addition to reading cards, processing data, and printing results, has the main function of iterating the altitude at desired preselected intervals. Program LARC calls subroutine MINISOL which first calls subroutine LONMIN in order to minimize the root-mean-square residuals with respect to longitude, and then iterates the latitude in order to find the minimizing latitude.

The subroutines will be discussed first and are listed in appendix B. FORTRAN variables in the computer programs will have the same name in the text, but when used in algebraic equations, they will be underlined.

Appendix C describes the geographic, geocentric, and topocentric coordinate systems. The conversion from geographic to geocentric (subroutine GGRGCN), as well as the formulas for the inverse conversion (subroutine GCNGGR), are also given in appendix C.

Conversion From Geocentric to Topocentric Coordinates

Subroutine PAZEL converts a trial solution at a point P (given in <u>geocentric</u> coordinates, PLAT, PLON, and PR) to local azimuth and elevation from an observation site S with <u>geographic</u> coordinates SLAT, SLON, and SH. Figure 4 applies.

The first part of the program converts the observation site to geocentric coordinates XS, YS, and ZS by using the same method as in subroutine GGRGCN.

The geocentric coordinates of the trial point are converted to Cartesian coordinates XP, YP, and ZP. The geocentric coordinates of the line-of-sight vector from observation site S to trial point P are

	}
$ \underline{\mathbf{Y}}\underline{\mathbf{A}} = \underline{\mathbf{Y}}\underline{\mathbf{P}} -$	<u>YS</u>
\underline{ZA} \underline{ZP} -	zs

The geocentric axes X, Y, and Z can be brought into coincidence with axes DX, DY, and DZ by rotation through the Eulerian angles

$$\phi = \underline{\text{SLON}} + 90^{\circ}$$
$$\theta = 90^{\circ} - \underline{\text{SLAT}}$$
$$\psi = 0$$

Thus, from use of formulas derived in reference 11,

$$\begin{bmatrix} \underline{DX} \\ \underline{DY} \\ \underline{DZ} \end{bmatrix} = \begin{bmatrix} -\sin \underline{SLON} & \cos \underline{SLON} & 0 \\ -\sin \underline{SLAT} \cos \underline{SLON} & -\sin \underline{SLAT} \sin \underline{SLON} & \cos \underline{SLAT} \\ \cos \underline{SLAT} \cos \underline{SLON} & \cos \underline{SLAT} \sin \underline{SLON} & \sin \underline{SLAT} \end{bmatrix} \begin{bmatrix} \underline{XA} \\ \underline{YA} \\ \underline{ZA} \end{bmatrix}$$

Then the azimuth angle is

$$\underline{AZ} = \tan^{-1} \frac{\underline{DX}}{\underline{DY}}$$

and the elevation angle is

$$\underline{\mathbf{EL}} = \tan^{-1} \frac{\underline{\mathbf{DZ}}}{\left(\underline{\mathbf{DX}}^2 + \underline{\mathbf{DY}}^2\right)^{1/2}}$$

Sorting of az-el Data

Since certain subroutines require the az-el data to be ordered from one end of the curve to the other, it is necessary to insure that they are. Subroutine SORT(L) sorts the az-el data from each site L, for convenience, in such a way that the first point from each site corresponds to the high altitude end of the cloud; this is accomplished by setting the variable

$$\underline{\mathbf{XS}} = -(-1)^{\mathbf{L}}$$

This particular equation, of course, was made to hold for a particular orientation of the cloud and a particular set of observation sites.

Since elevation was the independent variable and single-valued, the ordering was done in terms of that variable only.

Computation of Second-Order Least-Squares Fit to Successive az-el Curve Segments

The accurate computation of the residual is an important part of the triangulation method. The original az-el data, in a striving for accuracy, usually consists of many arbitrarily located closely spaced points along the curve, so that a least-squares curve fit can be used to reduce the random errors involved in measuring the cloud center line. A second-order fit is sufficient for defining a segment of the curve since only a short interval is needed in the vicinity of the trial point P. The number of points used in the curve fit is NO and depends on the number and quality of data points.

Subroutine BCOEF(L,N) computes the three coefficients BC(3,L,N) for a secondorder least-squares curve fit from a given observation site numbered L, with the data point N as an origin. The NO data points used in the curve fit are centered about the data point N (except near the ends of the curve) and hence NO is an odd number. It is to be noted that the coefficients are calculated for every data point, of which there are NB(L).

An exact coordinate conversion to the point N as origin would involve the Eulerian angles AZ and EL, but since the angular deviations from this origin will always be small, the two orthogonal angular components are

$$X1 = \Delta EL$$

and

$$\underline{Y1} = \Delta \underline{AZ} \cos (\underline{EL})$$

as illustrated in figure 5. The independent variable in the quadratic formula for the particular data point NV within the set NO is

$$\underline{X1} = \underline{EL}(\underline{L},\underline{NV}) - \underline{EL}(\underline{L},\underline{N})$$

The dependent variable is

$$\underline{Y1} = (\underline{AZ}(\underline{L},\underline{NV}) - \underline{AZ}(\underline{L},\underline{N}))\cos \frac{\underline{EL}(\underline{L},\underline{N}) + \underline{EL}(\underline{L},\underline{N})}{2}$$

Computation of Residuals

Subroutine RESDUE(PAZ,PEL,L,D,XD) finds the residual D of a trial solution point when the azimuth PAZ and the elevation PEL of the line of sight from site L to the trial point P are given.

The first part of the subroutine finds the data point N which is nearest the trial point PAZ, PEL, starting with the point from the previous calculation which is stored in NP(L) as a first try.

The next part of the subroutine computes the residual. Point P has the coordinates (with data point N as the origin)

$$\underline{\mathbf{X1}} = \underline{\mathbf{PEL}} - \underline{\mathbf{EL}}(\underline{\mathbf{L}},\underline{\mathbf{N}})$$

$$\underline{Y1} = (\underline{PAZ} - \underline{AZ}(\underline{L},\underline{N}))\cos \frac{\underline{PEL} + \underline{EL}(\underline{L},\underline{N})}{2}$$

The second-order curve fit to the data points is

$$\underline{\mathbf{Y}} = \underline{\mathbf{C1}} + \underline{\mathbf{C2}} \ \underline{\mathbf{X}} + \underline{\mathbf{C3}} \ \underline{\mathbf{X}}^2$$

where

$$\underline{C1} = \underline{BC}(1,\underline{L},\underline{N}), \ldots$$

The distance between point P and the curve is given by

$$\underline{\mathbf{D}}^{2} = (\underline{\mathbf{X}}\underline{\mathbf{1}} - \underline{\mathbf{X}})^{2} + (\underline{\mathbf{Y}}\underline{\mathbf{1}} - \underline{\mathbf{Y}})^{2}$$

To find the minimum distance, differentiate D^2 and set the result equal to zero:

$$(\underline{X1} - \underline{X}) + (\underline{Y1} - \underline{Y}) \frac{d\underline{Y}}{dX} = 0$$

Substitution for \underline{Y} and $d\underline{Y}/d\underline{X}$ from the preceding equations gives the standard form for a cubic

$$\underline{\mathbf{X}}^3 + \underline{\mathbf{P}} \ \underline{\mathbf{X}}^2 + \underline{\mathbf{Q}} \ \underline{\mathbf{X}} + \underline{\mathbf{R}} = \mathbf{0}$$

where

$$\underline{P} = \frac{1.5\underline{C2}}{\underline{C3}}$$

$$\underline{Q} = \frac{1 + \underline{C2}^2 + 2\underline{C3}(\underline{C1} - \underline{Y1})}{2\underline{C3}^2}$$

$$\underline{R} = \frac{\underline{C2}(\underline{C1} - \underline{Y1}) - \underline{X1}}{2\underline{C3}^2}$$

The solution of this cubic equation is standard, but the type of solution depends on the value of the discriminant DC (as shown in the listing of subroutine RESDUE). If DC is greater than zero, there is one real root which is computed. If DC is less than zero, there are three real roots. The residual is thus

$$\underline{\mathbf{D}} = \left((\underline{\mathbf{Y}} - \underline{\mathbf{Y}}\underline{\mathbf{1}})^2 + (\underline{\mathbf{X}} - \underline{\mathbf{X}}\underline{\mathbf{1}})^2 \right)^{1/2}$$

where X is a real solution of the cubic, and Y is the corresponding value from the equation for Y given previously. The subroutine finds the real root which gives the smallest D.

For the case of a point solution, the subroutine is specialized with LP = 2, which causes the subroutine RESDUE to go to statement 10, and computes

$$\underline{Y} = (\underline{PAZ} - \underline{AZ}(\underline{L},\underline{K}))\cos\left(\frac{\underline{PEL} + \underline{EL}(\underline{L},\underline{K})}{2}\right)$$
$$\underline{X} = \underline{PEL} - \underline{EL}(\underline{L},\underline{K})$$
$$\underline{D} = \left(\underline{X}^{2} + \underline{Y}^{2}\right)^{1/2}$$

where AZ(L,K), EL(L,K) is the data point from site L.

Calculation of Root Mean Square of Residuals

Subroutine SUMRES calls subroutine PAZEL to calculate azimuth and elevation for a trial point P, and then calls subroutine RESDUE to calculate the residual from each observation site. Then it computes the root-mean-square value of the residuals.

It usually happens that the cloud viewed at one site does not extend as far as from another site. Thus, it is desirable to extrapolate data from such sites, but with reduced weighting. Subroutine SUMRES reduces the weighting by the factor

$$\frac{\underline{A}}{A + \text{DIST}(L)}$$

where DIST(L) is either zero or equal to DX, the distance between the trial az-el and the nearest data point NP(L) on the az-el curve, and $\underline{A} = 0.5/57.3$ radians, a somewhat arbitrary fixed angle of 0.5°. Finally, DIST(L) is set equal to zero for the two sites having the smallest value of DIST(L).

Variation of Longitude To Obtain Minimum Residuals

Subroutine LONMIN(PLAT,PLON,PR,DR,EM) finds the minimum value of the rootmean-square residuals EM as the longitude PLON is varied while keeping the geocentric latitude PLAT and radius PR constant.

The procedure is to increment PLON by DA (which is initially equal to DR), changing directions when necessary to go through a minimum, calling SUMRES to calculate the root-mean-square residual. Consecutive root-mean-square values are labeled (and relabeled as PLON is incremented) E1, E2, and E3 so that when E2 is the smallest, the PLON which gives minimum can be approximated by using the following analysis.

Assume that the root-mean-square residual E is a second-order function of the longitude DA:

$$\underline{\mathbf{E}} = \mathbf{a} + \mathbf{b}\underline{\mathbf{D}}\underline{\mathbf{A}} + \mathbf{c}\underline{\mathbf{D}}\underline{\mathbf{A}}^2$$

For minimum E, the longitude is

$$\frac{\text{DDA}}{\text{DDA}} = -\frac{\text{b}}{2\text{c}}$$

From the three values E1, E2, and E3, and the corresponding longitudes -DA, 0, and DA (using the longitude of the middle point as origin) one can obtain by substitution into E

$$b = -\frac{\underline{E1} - \underline{E3}}{2\underline{DA}}$$
$$c = \frac{\underline{E3} + \underline{E1} - 2\underline{E2}}{2\underline{DA}^2}$$

from which the longitude (relative to point 2) for minimum root-mean-square residuals is

$$\underline{\text{DDA}} = \frac{(\underline{\text{E1}} - \underline{\text{E3}})\underline{\text{DA}}}{2(\underline{\text{E1}} - 2\underline{\text{E2}} + \underline{\text{E3}})}$$

The increment DA is then decreased by a factor of 10, and the procedure is repeated one time.

Minimization With Latitude

Subroutine MINISOL(PLAT, PLON, PR, DR, IN, E) starts with the trial point PLAT, PLON, PR and while keeping PR fixed, varies PLAT. For each PLAT, LONMIN is called to find the minimum root-mean-square residuals with respect to PLON.

When three consecutive minimum root-mean-square residuals E1, E2, and E3 are found so that E2 is the least, then an approximation is made (same method as in LONMIN, except independent variable is now latitude DR) to determine the PLAT for minimum residual. The increment DR is then decreased and the procedure is repeated until IN iterations are made (typically three, with consecutive DR values of 0.1° , 0.01° , and 0.001°). Upon returning to LARC, the new values of PLAT and PLON give the solution at the particular PR.

Program LARC

The main program is program LARC, which first reads in the observation site data cards in geographic coordinates. For each pass through the program, a triangulation is made at one instant of time by using az-el data from simultaneous photographs at each site; thus a solution curve of latitude and longitude as functions of altitude is obtained.

After the time is read in, azimuth and elevation data cards from each site are read and stored in AZ(L,N) and EL(L,N); L refers to the site number and N to the data point number. Then subroutine SORT(L) sorts the data into either increasing or decreasing elevation angles.

The BC(I,L,N) coefficients are then calculated for each site L and for every data point N by calling the BCOEF subroutine.

t

The first estimated solution is chosen near the center of the cloud; since the first estimate may be far from the solution, it is better to start in a region where the data have the best quality. An integral 100-km value of altitude is used and is read from a data card. The first solution point is labeled N = 50 with altitude increments DNA = 100 km corresponding to increments of 1 in N, where N now refers to a solution point and not a data point. Subsequent trial solutions use the previous solution point.

One of the main difficulties in the solution occurs near the ends of the cloud. Because of differences in exposure, range of cloud, orientation, and visual conditions, the cloud visibility may extend farther at one site than at another. Subroutine SUMRES will automatically extrapolate curves when necessary, but will give less weight to the extrapolated parts. Hence a procedure is needed to stop the calculation when the solution curve is going beyond the data from every observation site. This procedure is accomplished with the index IS which is equal to the number of sites using a data point on the end of the curve in subroutine RESDUE. When all sites except one are extrapolated beyond the end of the az-el curve, then the solution is stopped, and started again at the middle ($N \approx 50$) with the altitude now incremented downward.

Solutions are stored in TLAT(N), TLON(N), and TALT(N). For each solution point, the point on the az-el curve for each site is stored in NC(L,N) and the root-mean-square residuals are stored in E(N) in units of degrees. Finally, the solution is printed out.

ILLUSTRATIVE CASE

As an example, actual data from the barium ion release of September 21, 1971, will be given. Three observation sites were used: (1) Mt. Hopkins, Arizona; (2) Cerro Morado, Chile; and (3) Wallops Island, Virginia. (Coordinates are given at beginning of table II.) Table II shows a printout of the az-el input data for the time 3 hrs 18 min 10 sec UT (13.307 min after release). There were 36 data points from site 1, 75 from site 2, and 28 from site 3. The number of points NO used in the least-squares fit was 25, which represents about 1.7° of arc when viewed from site 2, and 2.7° when viewed from the other two sites.

Table III shows the final solution. Total central processor time for the job on the Control Data Corporation model 6600 computer was 19.5 seconds. A test was made to see how many iterations were made in the solution. For this case, SUMRES was called a total of 2922 times, or on the average, 104 times for each solution point at each altitude. The root-mean-square residuals were of the order of 0.0045^o.

CONCLUDING REMARKS

A computer program for the triangulation of azimuth-elevation (az-el) data from several observation sites has been presented. Because of the relatively short baseline used and the high accuracy required, it was necessary to make a special effort to reduce the effects of random errors. This reduction was accomplished by using several observation sites and many data points from each site.

An optimal solution was achieved by requiring the minimization of the root-meansquare residual of all the sites and by using a least-squares curve fit to the az-el data. An illustrative example using three observation sites was given for an actual barium cloud. The root-mean-square residuals were of the order of 0.005° .

Langley Research Center,

National Aeronautics and Space Administration, Hampton, Va., February 6, 1974.

APPENDIX A

PROGRAM LARC

Program Listing

The listing and flow chart for program LARC are presented in this appendix.

	PROGRAM LARC(INPUT, OUTPUT)
C	
** *	THIS PROGRAM SOLVES THE PROBLEM OF LOCATING A CURVED LINE IN SPACE GIVEN
*	SIMULTANEOUS AZ-EL DATA FROM SEVERAL OBSERVATION SITES. THE METHOD FINDS
*	SUCCESSIVE LAT AND LON POINTS AT SELECTED ALTITUDE INCREMENTS. EACH POINT
*	IS VARIED IN BOTH LONGITUDE AND LATITUDE IN ORDER TO MINIMIZE THE RMS
*	RESIDUALS FROM ALL THE OBS SITES.
rt.	THE RESIDUALS ARE COMPUTED USING A 2ND DRDER LEAST SQUARES CURVE FIT TO
*	THE AZ-EL DATA IN THE VICINITY OF EACH TRIAL POINT.
*	THE PROGRAM FINDS A COMPLETE CURVED LINE SOLUTION FOR SEVERAL EPOCHS
*	DR TIMES
C	
	61MENSION TLAT(99), TLON(99), TALT(99)
	DIMENSION E(99), NC(5, 99)
-	COMMON/SITES/NS, SLAT(5), SLON(5), SH(5), WT(5), VEG
	CGMMON/LINE/AZ(5,190),EL(5,190),BC(3,5,190),NP(5),NB(5),LP
	F=6371.2 \$ P1=3.1415926535398 \$ RAD=P1/180 \$ DEG=1/RAD
*	SET IN ALTITUDE INCREMENT
	ONA=100.
	WT(1)=WT(2)=WT(3)=WT(4)=WT(5)=1.
≭	FEAD IN NUMBER OF OBS SITES
م .	
10	PEAD 10,05 FORMAT(IS)
10 *	
· · · · · ·	PRINT OUT NO OF OBS SITES
101	PRINT 101,NS FORMAT(%1*12* STATION TRIANGULATION*/)
101 ***	
	READ IN GEOGRAPHIC COORDINATES (IN DEGREES AND KM) FOR EACH SITE AND
**	CONVERT TO RADIANS
	D(C11 L=1,NS
	FEAD 12, SLAT(LI, SLON(LI, SH(L)
12	FOPMAT(2F20.10,F10.21
	PRINT 112, SLAT(L), SLCN(L), SH(L)
112	FORMAT(* SLAT=*F9.4* SLON=*F9.4* SALT=*F8.4)
	SLAT(L)=SLAT(L)*RAD \$ SLON(L)=SLON(L)*RAD
11	CONTINUE
	CHIS IS BEGINNING OF SOLUTION FOR EACH EPCCH OR TIME.
*	READ IN TIME
116	READ 111, 1HR, MIN, SEC
111	FURMAT(115,13,F7.1)
**	IF TIME CARD IS BLANK, STOPTHE LAST EPOCH HAS BEEN PROCESSED.
	IF(IHR.EQ.01 STOP
*	PRINT TIME
	FRINT 110,1HK,MIN,SEC
110	FORMAT(*171ME*15* HR*15* MIN*F7.1* SEC*)
11) *	
	INITIALIZE STARTING POINT FOR LATER SEARCH ON AZ-EL CURVE

APPENDIX A – Continued

×	PEAD IDENTIFICATION INFORMATION ON DATA CARD, WHICH HAS COLUMN 10 BLANK.
*	IN SAME CARD ALSO READ AZ-FL FOR ONE DATA POINT.
	Neg
115	FEAD 23, LST, IS1, 152, TIME, AZ1 ,EL1
23	EDDMAT (CY.11 ATO.AZ ATO DOV 2011 AL
*	IF LST (COLUMN 10) IS NOT BLANK, END OF AZ-EL DATA FOR THIS SITE IS
*	INDICATED.
	IF(LST.NE.J) G0 T0 22
	R=N+1 \$ RB(1)=N
*	STORE AZELL DATA AND DEVALT AT CL. AND EDENTIFICATION INCOMP
	STOPE AZ-EL DATA AND PRINT AZ; EL; AND IDENTIFICATION INFORMATION AZ(L,N)=AZ1 + EL(L,N)=EL1
	(DIN, TARKAR, NATEL AN CEED AN LET TER TAKE
123	E DEMATI * STA *I2* PT *I3* AZ=*F0.4* EL=*F0.4,A10,A6,A10)
125 *:	CONVERTIEL TO RADIANS
~	
	PUT AZ IN PROPER QUADRANT AND COVERT TO RADIANS
ጙ	PDT AZ IN PROPER QUADRANT AND COVERT TO RADIANS
	IF (AZ(L,'I).GT.185.) AZ(L,N)=AZ(L,N)-360.
	Λ2((, N)=Λ2((, N)*RA)
	60 TO 113
22	LONTINUE
*	SORT AZ-EL DATA IN OPDER OF FL
	CALL SORT(L)
21	CONTINUE
	0(13 L=1,6S * N8L=N8(L)
	00 13 N=1,NBL
2) 6	COMPUTE COEFFICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY
☆	PATA PHUT FOR CACH ORS SITE.
13	CALL BCCEF(L, T)
*	GIE LP=1 IS FOR A LINE SOLUTION. IN IS NO. OF ITERATIONS IN MINISOL.
	1P-1 4 IN=3
* .	LEAD FIRST ESTIMATED PLAT AND PLOM IN GEOGRAPHIC DEGREES AT A SELECTED
ಸ್ಕ	ALTITUDE HI AND PRINT OUT. HI SHOULD BE INTEGRAL MULTIPLES OF ALTITUDE
ń.	INCREMENT.
	FEAD 131, PLATG, PLON, HI
131	F.F.YAT(2F10.))
	TRI IT 114, PEATG, PETN, HE
114	FORMAT(*JESTIMATED TRIAL POINT LAT=*F6.3* LON=*F7.3* ALT=*F6
-	\$
ж	
	INITIALIZE T AND NO SO THAT FIRST SOLUTION POINT IS N=50 AND ALTITUDE WILL
**	1 YONE ASE.
	N=49
	$\frac{1}{1} \frac{1}{1} = \frac{1}{1} $
* *	STAFTING PLACE FOR ALTITUDE INCREASING OR DECREASING
115	PLATG=PLATI & PLEN=PLONI & H=HI
放然的 化 建分子	ASTARTING PLACE FOR EACH SOLUTION POINT
14	$(R = o 1 \times R \Delta i)$
¥	LT CD EMF/LT M

APPENDIX A - Continued

	CALL GORGEN(PLATG, H, PLAT, PR)
*	FIND SOLUTION POINT, I.E. PLAT AND PLON WHICH MINIMIZES RMS RESIDUAL
*	AT RADIUS PR
	LALL MINISUL (PLAT, PLON, PR, DR, IN, E(N))
*	CONVERT BACK TO GEOGRAPHIC AND DEGREES AND STORE ANSWERS
· · · ·	LALL GENEGR(PLAT, PR, PLATG, TALT(N)) \$ TLAT(N) = PLATG*DEG
	TLON(N)=PLON*DEG
*	FOR EACH SITE STORE DATA POINT NUMBER WHICH IS NEAREST THE SOLUTION
*	DETERMINE NO. OF SITES WHICH ARE USING END POINT DATA
141	C(L, N)=NP(L)
2.4 7	1 S = j
	00 16 K=1,NS
	IF(NP(K).LE.1) IS=IS+1
	IF(MP(K), GF, NB(K)) IS=IS+1
16	CONTINUE
*	IF ALL BUT ONE SITE USED END-POINT DATA, JUMP OUT OF LOOP.
	IF(IS.GE.NS-1) GO TO 15
*	IF PMS RESIDUAL IS TOO GREAT JUMP OUT OF LOOP
	IF(E(N) . GT. 0.131 GO TO 15
*	IF N IS TOC LARGE JUMP OUT OF LOOP
-	IF(N.ED.99.CR.N.EC.1) GO TO 15
*	INCREMENT H, GO TO 14 AND START NEXT SOLUTION POINT
	1.=H+DNA*ND \$ GO TO 14
*	IF ALTITUDE IS DECREASING JUMP OUT OF LOOP. ENTIRE LINE SOLUTION IS
*	NOX FINISHED
15	IFIND.EQ1) GO TO 331
*	RESET N AND NO TO START AT CENTER AND DECREASE ALTITUDE
	V2=N \$ N=51 \$ ND=-1
1	
331	N1=N PRINT TIME AS HEADING FOR COMPLETE SOLUTION PRINT-OUT
*	
	PRINT 382, IHR, MIN, SEC FORMAT(*1TIME *12* HRS *12* MIN *F5.1* SEC*)
382	
2.0	PRINT 38 FORMAT(* LINE SQLUTION*)
38	PRINT 39
	FORMAT (* DALTITUDE LATITUDE LONGITUDE RMS RES PTS ON AZ
39	\$-FE CURVE*)
3 *	PRINT OUT TOTAL NO. OF DATA PTS. FOR EACH SITE
*	PRINT 342, (NB(L), L=1, NS)
342	FORMAT(52X, 515)
	PRINT OUT SOLUTION POINTS FOR EACH N
	D0 34 M=N1 N2
	PRINT 36, TALT (N), TLAT (N), TLON (N), E(N), INC(L, N), L=1, NS)
36	FORMAT(F9.0, F12.3, F13.3, F11.4, 112, 415)
34	
35	
	END

Program LARC Flow Chart

20

APPENDIX B

SUBPROGRAMS

SUBREUTINE GGRGCN (GLAT, H, CLAT, CR)	
*** SUBROUTINE TO CONVERT GEOGRAPHIC LATITUDE GLAT AND ALTITUDE H *** TO GEOCENTRIC LATITUDE CLAT, AND RADIUS CR	
A=6379.165 \$ B=6356.784 \$ E=B*B/A/A F=A/SQRT(1.+F*TAN(GLAT)**2) \$ Z=R*E*TAN(GLAT) FP=R+H*COS(GLAT) \$ ZP=Z+H*SIN(GLAT) CR=SQRT(RP*RP+ZP*ZP) \$ CLAT=ATAN2(ZP,RP) RETURN \$ ENO	
SUBRCUTINE GONGGR (CLAT, CR, GLAT, H)	
*** SUBPOUTINE TO CONVERT GENCENTRIC LATITUDE CLAT AND GEOCENTRIC RADIUS CR TO CEOGRAPHIC LATITUDE GLAT AND ALTITUDE H.	
A=6378.106 \$ F=1./298.3 H=CR~A+4*F/2.*(1C)S(2.*CLAT)+.5*(F/4A*F/CR)*(COS(4.*CLAT)~1.) CLAT=CLAT+A*F/CR*SIN(2*CLAT)+(A*F/CR)**2*(1CR/4./A)*SIN(4.*CLAT) SETUR'1 5 END	· ·
SUBROUTINE PAZEL (SLAT, SLON, SH, PLAT, PLON, PR, AZ, EL)	 -
C C*****GIVEN AN OBS SITE S (IN GEOGRAPHIC COORDINATES) AND C A PLINT P (IN GEOGENTRIC COORDINATES) IN SPACE, FIND THE C LINE-OF-SIGHT (AZ,EL) FROM S TO P	
C A=6378,164 \$ B=6356,784 \$ E=B*B/A/A R=A/SQRT(1,+E*TAN(SLAT)**2) \$ Z=R*E*TAN(SLAT) * COMPUTE GEOCENTRIC CARTESIAN COMPONENTS OF ODS SITE S	
SR=R+SH*COS(SLAT) \$ ZS=Z+SH*SIN(SLAT) XS=SR*COS(SLON) \$ YS=SR*SIN(SLON)	
<pre># COMPUTE GEDCENTRIC CARTESIAN COMPONENTS OF POINT P</pre>	
* COMPOTE COMPONENTS OF VECTOR DIRECTION FROM SITE S TO POINT P XA=XP-XS \$ YA=YP-YS \$ ZA=ZP-ZS	
* CINVERT TO TOPOCENTRIC CARTESIAN COMPONENTS EX=-XA*SIN(SLCN)+YA*COS(SLON) OY=-XA*SIN(SLAT)*COS(SLON)-YA*SIN(SLAT)*SIN(SLON)+ZA*COS(SLAT) DZ=+XA*COS(SLAT)*COS(SLON)+YA*COS(SLAT)*SIN(SLCN)+ZA*SIN(SLAT)	
* COMPUTE AZ-FL DIRECTION AZ=ATAN2(DX,DY) {L=ATAN2(DZ,SQRT(DX+DY*DY))	·
RETURA \$ END	

APPENDIX B – Continued

SURROUTINE SORT(L) CCMMUN7LINE/AZ(5, 190), EL(5, 190), BC(3, 5, 190), NP(5), NB(51, LP ******THIS SUBFOULINE SCOTS AZEL DATA IN EITHER INCREASING OR DECREASING VALUES * OF EL, DEPENDING ON THE VALUE OF L, SO THAT FIRST VALUE ALWAYS CORRESPONDS TO THE HIGH ALTITUDE END OF THE CLOUD. 14 XS AUST BE MUDIFIED FOR A DIFFERENT SITE CONFIGURATION OR CLOUD かがが PRIENTATION. *
 AS=-(-1₀)**L
 \$ N=NB(L)

 °C
 10C

 I=1,1
 \$ K=N-L
 1 IF FLEVATION ANGLE OF ONE POINT IS EQUAL TO THAT OF ANOTHER, EXCHANGE THE ONE POINT WITH THE VERY LAST POINT ON THE LIST, AND DECREASE THE TOTAL NUMBER OF DATA POINTS BY 1. OF 13: J=1,K \$ IF((EL(L,J)-EL(L,J+1))*XS) 100, 20,10 -----:h: 70 ħ, 4

 F B(L) = NB(L) = 1

 TFL=EL(L,J)

 FL(L,J)=EL(L,N)

 FL(L,J)=FFL

 SC(L,N)=TFL

 SC(L)

 TN 1

 ▶∂(()=NB(ψ)=1 20
 TFL=UL(L,J)
 \$ TAZ=4Z(L,J)

 UL(L,J)=ht(L,J+1)
 \$ AZ(L,J+1)=TAZ

 UL(L,J+1)=TFL
 \$ AZ(L,J+1)=TAZ
 1. CONTINUE 100 FFTJRT ♣ END SUBROUTINE ACREF(L,N) _____ COMMEN/LINE/AZ(5,190), EL(5,190), BC(3,5,190), NP(5), NB(5), LP UIMENSION A(3,3), B(3), C(5C,3), IP(3) ******THIS SUBPOUTINE COMPUTES THE THREE COEFFICIENTS FOR A SECOND ORDER LEAST SQUARES CURVE FIT TO THE AZ-EL DATA AT EVERY DATA POINT N. THE COMPUTATION USES NO DATA POINTS CENTERED ABOUT N. EXCEPT AT THE ENDS ± ŕ,c VHEFE NO END POINTS ARE USED. THEINDEPENDENT VARIABLE IS **z**;: (L(I, NV)-EL(L, N) WHERE NV IS WITHIN THE SET NO. * / 0=25 M0=M0+2 ····· NO=10-2 1.3 LE THERE ARE FEWER THAN NO DATA POINTS, THEN DECREASE NO * * IF (HB(L).LT. MO) GO TO 10

 IF(IB(L),LT.MO) GO TO 10

 THE MIDDLE POINT OF THE SET NO, IS CALLED NM AND IS USUALLY THE SAME AS No

 M=3
 \$ NM=N

 M=3
 \$ NM=N

 SPACED NC POINTS FROM THE END.

 IF(H.LT.NC) NM=NC
 \$ IF(N.GT.NB(L)+1-NC) NM=NB(L)+1-NC

 \$\$ 7\$ * IF(N.LT.NC) NM=NC & IF(N.GT.NB(L)+1-NC) NM=NB(L)+1-NC THE FOLLOWING COMPUTES THE MATRICES A AND B WHICH ARE USED TO FIND THE 31:37 LEAST SQUARES FIT. X: DC 20 I=1,NO C(I,I)=1. DC 50 J=2, M & DC 50 I=1, ND & NV=NM-NC+1 25 C([,J)=C(I,J-1)*(EL(L,NV)-EL(L,N)) DC 100 I=1,M & DO 100 J=1,M & A(I,J)=0. DC 100 K=1,NC 50 _____
 00
 160
 160
 160

 A(I,J)=A(I,J)+C(K,I)*C(K,J)

 100
 150
 I=1,%

 5
 8(I)=0+

 100
 150
 K=1, VC

 *
 NV=NM+NC+K
 160 D(I)=B(I)+C(K,I)*(AZ(L,NV)-AZ(L,N))*COS((EL(L,N)+EL(L,NV))/2) SINED SULVES THE EDUATION AX-P THE SULVEY AND A 150 SINED SOLVES THE EQUATION AX=B. THE SOLUTION X IS RETURNED IN B, WHICH CONTAINS THE 3 COEFFICIENTS DESIRED. CALL SIMEG(A,M,B,1,D,1P,M,IS) * X: ¥

- Continued APPENNIX B

	APPENDIX B – Continued	Reproduced from
	DO 200 I=1,M	-nable om
*	THE CEFFFICIENTS B ARF STORED IN BC.	OPY.
200	8C([,L,N)=B(])	
	IF (N. EQ.NB(L)) PRINT 301, L, N, ND	
301	FORMAT(*OL=*12* N=*14* NO=*13)	
	FETURIN & END	

	UDALUTINE RESOUR (PAZ, PEL, L, D, XD)
	- CONCENTER KENDER KAFFELFUFAN AN UNDER DE
****	GIVEN AN EL AND AZ OF A POINT FROM STATION L, FIND THE
主体放力	DESIDUAL CANGULAR DISTANCE BETWEEN THE POINT AND THE AZ-EL CURVED
	COM 496/LINE/AZ(0,190), cL(5,190), BC(3,5,190), NP(5), NB(5), LP
	COMMONISTES/NS,SLAT(5),SLON(5),WT(5),DEG
مال بال بر الم	TE(LP.FJ.21 GD TO 16 The Point Pumber on curve closest to given paz pel
	(#:1='P(L) f "D=1
	+ SI/= ((PAZ-4Z(L,')))*COS(PEL))**2+(PEL-EL(L,N))**2
	IF(* aE0. 13(L)) 30≂-1
1	() S1 =9 SN
	1=1+40 (IE(G.ST. + H(L). OR. N.LT. 1) 60 TO 2
	SN=((3AZ-A7(L,4))*C(S(P(L))**2+(PEL-EL(L,N))**2
	1F(0S%LT+0S%) 60 T3 1 \$ 1F(N+6T+N1+11 G5 T6 2
	IF (%-LT- N1) GO TO 2
	D=+1 % N=N+VD % DSN=DSD
	Get TO 1
2	TERF-*(0) 4 GP(L)=N CMPJTE RESIDUAL FROM BC COFFFICIENTS CORRESPONDING TO N
18 YE 18 18 19 ($x_1 = P \in \{1, N\}$
	x1=*20=12101 p 11=(PA2 = A2 (C) N/PBC/03 (CPCC) (CCC)
	C1=8C(1,L,N) & C2=8C(2,L,N) & C3=8C(3,L,N)
*	CALCULATE THE COFFFICIENTS OF THE CUBIC
	F=1.5*C2/C3 * Q=(1.+C2*C2+2.*C3*(C1-Y1))/2./C3/C3
	$i = (2 = (01 - y1) - x1)/2 \cdot (03/03)$
	L=2-P*9/3. \$ B=(2.*P*P-9.*Q)*P/27.+R
	$\partial C = a \pi p / L_{o} + A \pm A / 27,$
$\mathbf{J}_{\mathbf{c}}^{t}$	IF DISCRIMINANT IS LESS THAN ZERO, THERE ARE THREE REAL ROOTS
	IF()C.LF.J.) SD TO F
*	DISCRIMINANT IS GREATER THAN ZERO, COMPUTE THE ONE REAL ROOT.
	<pre>FDC=SORT(DC1 # CA=+B/2.+RDC # CB=+B/2RDC # E=1./3. %=SIGN((ARS(CA))**E,CA)+SIGN((ABS(CB))**E,CB)-P/3.</pre>
	v=C1+(C2+C3*X)*X \$ DS=(Y-Y1)*(Y-Y1)*(X-X1)*(X-X1)
	S=SORT(DS) \$ PETURN
Ę	$PHI = ACOS(-P/2)/SQRT(-4 \times A \times A/27)$
-	1) S(=1) Jo
*	COMPUTE THE THREE REAL ROCTS AND FIND THE SMALLEST.
	90 f 1=1,3
	y=2. * SQRT (-4/3.) * C(S(PHI/3.+120.*(1-1)/DEG)-P/3.
	Y=C1+(C2+C3+X)+X \$ DS=(Y-Y1)+(X-X1)+(X-X1)
	1F(050.6T.0S) 0S0=0S
6	CONTINUE
	D=SQRT(DSC) f RETURN
	FIR A POINT SOLUTION LP=2, AND THE FOLLOWING IS USED
10	Y=(PAZ-AZ(L,K))*COS(EL(L,K))
	x=pEL-EL(L,K)
	A=011-2011,67 F 0=360100700,707

	SUBROUTINE SUMRES(PLAT, PLON, PR, E)
** **	GIVEN A POINT, CALCULATE THE ROOT-MEAN-SQUARE OF THE RESIDUALS FROM
*	ALL OBSERVATION SITES.
****	IF THE POINT IS OFF THE END OF THE AZ-EL CURVE DE A SITE, THEN THE WT FACTOR
****	F WILL DIMINISH THE RESIDUAL FROM THAT SITE AS DETERMINED BY DIST. THE
****	KANGULAR DISTANCE FROM THE END OF THE CURVE. HOWEVER, FOR THE TWO SITES
×x: ;; = ;	WHICH HAVE THE LEAST DISTANCE FROM THE END, MAKE DISTED, SO THAT FEL, WHICH
	«GIVES FULL WT.
	COM 40N/SITES/NS, SLAT (5), SLON (5), SH(5), WT(5), DEG
• ·	COMMON/LINF/A2(3,190),FL(5,190),BC(3,5,190),NP(5),NB(5),LP
	DIMENSION 0(5), DIST(5)
	A=•5/DEG
	DC 1 J=1,NS \$ IND=0
*	FIND PAZ AND PEL OF POINT
•	CALL PAZEL(SLAT(J),SLON(J),SH(J),PLAT,PLON,PR,PAZ,PEL)
*	CALCULATE RESIDUAL
	CALL RESOUE(PAZ, PEL, J, D(J), XD)
	IF(NP(J).EQ.1.UR.NP(J).EQ.NB(J)) [ND=1
1	0[\$T[j]=[ND#XD
****	SURT DIST INTO INCREASING ORDER
	00 100 I=1,NS
	DD 105 J=1,* * IF(DIST(J)-DIST(J+11) 130,100,10
10	TEMP=DIST(J) \$ DTEM=D(J)
	0[J]=D[J]=D[J]=D[J+L]
	DIST(J+1)=TEMP 6 D(J+1)=DTEM
100	CONTINUE \$ E=0
	DR 2 L=1,NS % IF(L.LE.2) DIST(L)=0.
	F=A/(A+DIST(L))
¥ .	CALCULATE RMS RESIDUAL
2	E=E+(D(L)*WT(L)*F)**2
	E=SQRT(E/NS)
	FETURA \$ END

	SUSPLIJT INE	LCTITLEPLAT, PLON, PR, DR, EM)	
**		PLAT AND PR, THIS SUBROUTINE FINDS PLON WHICH GIVES THE RESIDUAL EM.	
* ** **	HMS RESIDUAL HICH GIVES	ON BY DA UNITIL E2 IS THE LEAST <u>DE THE THREE CONSECUTIVE</u> S E1,E2,C3. USING THESE RESIDUALS <u>COMPUTE APPROXIMATE PLON</u> THE MINIMUM (WITH RESPECT TO PLON) <u>RMS RESIDUAL EM.</u> E DA AND REPEAT THE PROCEDURE.	
1 J *	* T=U * T=NT+1 * I+0 * INU NMS RES	535898 \$ DEG=180./PI \$ DA=DR IOUAL FOR FIRST POINT. PLAT, PL DM, PP, E1)	
3	MI±N1+1 PL.N=PLP0+DA + I=NI+1	<pre>\$ CALL SUMRES(PLAT,PLON,PR,E2) CT TC 3 \$ ES=E2 \$ E2=E1 \$ E1=ES \$ DA=-DA \$ CALL SUMRES(PLAT,PLON,PR,E3) GO TO 5</pre>	

24

APPENDIX B - Concluded

*	FROM THREE RESIDUALS FIND NEW PLON F	OR MINIMUM RESIDUAL
Ē	(DA=-(L3-E1)*DA/(E1-2*52+E3)/2. \$	PLON = PLON - DA + DUA
	LALL SUMRESIPLAT, PLON, PR, EM)	
	IF(71.GE.10) PRINT 6.NI	
Ċ	FORMATIX ITERATIONS IN LONMIN	
a,C	TEST FER 2 ITERATIONS	ويسرو ووسيس بسريس بالمتروسينين المستور المترور والمترور وال
	JE(UT_GEG2) GETURN	
÷	OFCELASE STEP SIZE	
	UA=DA/10.	
	60 TO 10	· · · · · · · · · · · · · · · · · · ·
	$_{\rm P}N()$	
· · ·		
	SUBREUTINE MINISCLIPLAL, PLUN, PR, DR,	[N, E]
		NUMBER OF THE DESTAND
***	*** SUBBOUTINE TO FIND A SOLUTION BY MI	NEWIZING THE KMS OF THE RENIDORES
*	FALL SITES, WHILE KEEPING PR FIXE	N TO FIND THE MINIMUM RMS OF RESIDUALS
		N TO FIND THE MINIMUM KAS DE REDIONED
*	(AND THE CORRESPONDING PLON)	T OF THE CONSECUTIVE MINIMUM DWS
· *	FOR EACH PLAT, UNTIL F2 IS THE LEAS	T OF THE CONSECUTIVE MINIMUM HAS
*	RESIDUALS F1,E2,F3.	
*	ISTEG THESE RESIDUALS COMPUTE APPRO	XIMATE PLAT WHICH GIVES THE
*	MINIMUM (WITH RESPECT TO BOTH PLAT	
*	THEM DECREASE DR AND REITERATE.	
		P1
	IT=0\$_DF≠.1	
1	DA = DR 5 LI = 0	
*	FIND FIRST PLAN WHICH MINIMIZES THE	
	CALL LON"IN(PLAT, PLGN, PR, DA, E11	
		IN(PLAT, PLON, PR, DA, E2)
		E2=F1 \$ E1=ES \$ DR=-DR
	PLAT=PLAT+OR	
3		IN(PLAT, PLAN, PR, DA, E3)
	<u>[]=[]+1</u>	
	IF(LI.GE.2)) GO TO 5	
	IF(E3.GT.E2) 00 TO 5 \$ E1=E2 \$	EZ=E3 5 GD 10 3
*	FREM THREE RESIDUALS FIND NEW PLAT	FOR MINIMUM RMS RESIDUAL.
5	UDR=-(E3-E1)*DR/(E1-2*E2+E3)/2. \$	PLAI=PLAI-DR+DDR
	CALL LONNIN(PLAT, PLON, PR, DA, E) 5	$IT = IT + 1 \qquad \$ DE = E * DE G$
*	TEST FOR NO. OF ITERATIONS, AND DEC	REASE STEP.
	IFILT.EQ.INI GD TO 6 \$	DR=DR*DF \$ GO TO 1
6	CONTINUE	
	+=DE	
	FETURN * END	

١

25

APPENDIX C

COORDINATE SYSTEMS AND CONVERSIONS

This appendix will describe the coordinate systems used and the subroutines involved.

Earth Model

For the purpose of triangulating from widely dispersed stations over the Earth's surface, the Fischer spheroid was adopted since it is believed to provide the best available global fit to the actual geoid. The relevant parameters are

Equatorial radius:	$\underline{A} = 6378.166 \text{ km}$
Polar radius:	$\underline{B} = 6356.784 \text{ km}$
Flattening factor:	$\underline{\mathbf{F}} = \frac{\underline{\mathbf{A}} - \underline{\mathbf{B}}}{\underline{\mathbf{A}}} = \frac{1}{298.3}$

For this model, the deflection of the vertical, that is, the angle between the normal to the geoid and the normal to the Fischer spheroid nowhere exceeds 30 arc seconds which is sufficiently accurate for the present purposes, since pointing directions used in triangulation are referenced to the stars rather than to a local horizon.

Geographical Coordinate System

The geographical coordinate system is the conventional system of latitude, longitude, and altitude. Figure 6 shows an exaggerated spheroidal surface corresponding to the Earth's sea-level surface. The geographic latitude GLAT of a point P is the angle between the equatorial plane and a line drawn from P perpendicular to the spheroidal surface. The altitude H is measured from the surface at point G to the point P. The longitude GLON is measured eastward from Greenwich.

Geocentric Coordinate System

In this system, O is the Earth's center in figure 6. The X-axis is directed toward the intersection of Greenwich meridian with the equator. The Y-axis is directed toward 90° east longitude in the equatorial plane, and Z is directed toward the north geographic pole. The point P is also located by the geocentric longitude GLON, geocentric latitude CLAT, and radius CR from the Earth's center.

APPENDIX C - Continued

Topocentric Coordinates

This is a local system with center at some observation site S (see fig. 4) with the DX,DY plane coincident with the horizontal plane, with DX directed toward east, DY directed toward north, and DZ directed vertically (that is, perpendicular to the surface of the spheroid). In the polar version, a point P is located by azimuth angle AZ measured clockwise from DY (north), and elevation angle EL measured up from the horizontal plane, and range RA measured from S to P.

Conversion From Geographic to Geocentric

This conversion is accomplished by using subroutine GGRGCN. Reference to figure 4 shows that the point G on the spheroid follows the equation

$$\frac{\underline{R}^2}{\underline{A}^2} + \frac{\underline{Z}^2}{\underline{B}^2} = 1$$

where

$$\underline{\mathbf{R}}^2 = \underline{\mathbf{X}}^2 + \underline{\mathbf{Y}}^2$$

The slope on the ellipse is

$$\frac{\mathrm{dZ}}{\mathrm{dR}} = -\frac{\mathrm{B}^2 \mathrm{R}}{\mathrm{A}^2 \mathrm{Z}}$$

hence

$$\tan \underline{\text{GLAT}} = \frac{\underline{A}^2 \underline{Z}}{\underline{B}^2 \underline{R}}$$

 \mathbf{or}

$$\underline{\mathbf{Z}} = \underline{\mathbf{R}} \underline{\mathbf{E}} \tan \underline{\mathbf{GLAT}}$$

where

$$\underline{\mathbf{E}} = \frac{\underline{\mathbf{B}}^2}{\underline{\mathbf{A}}^2}$$

Substitution in the original equation gives

$$\underline{\mathbf{R}} = \frac{\underline{\mathbf{A}}}{\sqrt{1 + \underline{\mathbf{E}} \tan^2 \underline{\mathbf{GLAT}}}}$$

The geocentric coordinates of point P are then

$$\underline{RP} = \underline{R} + \underline{H} \cos \underline{GLAT}$$
$$\underline{ZP} = \underline{Z} + \underline{H} \sin \underline{GLAT}$$
$$\underline{CR} = \sqrt{\underline{RP}^2 + \underline{ZP}^2}$$
$$\underline{CLAT} = \tan^{-1} \frac{\underline{ZP}}{\underline{CR}}$$

Geocentric to Geographic Conversion

This inverse conversion cannot be obtained explicitly. Subroutine GCNGGR uses the following approximate formulas derived in reference 12.

The altitude is given by

$$\underline{\mathbf{H}} = \underline{\mathbf{CR}} - \underline{\mathbf{A}} + \frac{1}{2} \underline{\mathbf{A}} \underline{\mathbf{F}} \left[1 - \cos\left(2\underline{\mathbf{CLAT}}\right) + \frac{1}{2} \left(\frac{\underline{\mathbf{F}}}{4} - \frac{\underline{\mathbf{A}} \underline{\mathbf{F}}}{\underline{\mathbf{CR}}} \right) \left(\cos\left(4\underline{\mathbf{CLAT}}\right) - 1 \right) \right]$$

where CLAT is the geocentric latitude and CR is the geocentric radius.

The geographic latitude is given by

$$\underline{\text{GLAT}} = \underline{\text{CLAT}} + \frac{\underline{\text{A}} \underline{\textbf{F}}}{\underline{\text{CR}}} \sin \left(2\underline{\text{CLAT}}\right) + \left(\underline{\underline{\text{A}} \underline{\textbf{F}}}{\underline{\text{CR}}}\right)^2 \left(1 - \frac{\underline{\text{CR}}}{\underline{4\underline{\text{A}}}}\right) \sin \left(4\underline{\text{CLAT}}\right)$$

It should be noted that all angles must be expressed in radians.

REFERENCES

- Adamson, D.; Fricke, C. L.; Long, S. A. T.; Landon, W. F.; and Ridge, D. L.: Preliminary Analysis of NASA Optical Data Obtained in Barium Ion Cloud Experiment of September 21, 1971. J. Geophys. Res., vol. 78, no. 25, Sept. 1, 1973, pp. 5769-5784.
- Brown, Duane C.: A Solution to the General Problem of Multiple Station Analytical Stereotriangulation. AFMTC-TR-58-8, U.S. Air Force, Feb. 1958. (Available from DDC as AD 134278.)
- 3. Hogge, John E.: Three Ballistic Camera Data Reduction Methods Applicable to Reentry Experiments. NASA TN D-4260, 1967.
- 4. Lloyd, K. H.: Concise Method for Photogrammetry of Objects in the Sky. WRE-TN-72, Aust. Def. Sci. Serv., Aug. 1971.
- 5. Whipple, Fred L.; and Jacchia, Luigi G.: Reduction Methods for Photographic Meteor Trails. Smithsonian Contrib. Astrophys., vol. 1, no. 2, 1957, pp. 183-206.
- Justus, C. G.; Edwards, H. D.; and Fuller, R. N.: Analysis Techniques for Determining Mass Motions in the Upper Atmosphere From Chemical Releases. AFCRL-64-187, U.S. Air Force, Jan. 1964. (Available from DDC as AD 435678.)
- 7. Brown, Duane C.: A Treatment of Analytical Photogrammetry. AFMTC-TR-57-22, U.S. Air Force, Aug. 1957. (Available from DDC as AD 124144.)
- 8. Brown, Duane C.: An Advanced Reduction and Calibration for Photogrammetric Cameras. AFCRL-64-40, U.S. Air Force, Jan. 1964.
- 9. Harp, Bill F.: Photogrammetric Calibration of the NASA-Wallops Island Image Intensifier System. Contract No. NAS 6-2066, DBA Systems, Inc., May 15, 1972. (Available as NASA CR-137455.)
- Beers, Yardley: Introduction to the Theory of Error. Second ed., Addison-Wesley Pub. Co., Inc., c.1957.
- 11. Goldstein, Herbert: Classical Mechanics. Addison-Wesley Pub. Co., Inc., c.1959.
- 12. Long, Sheila Ann T.: Derivation of Transformation Formulas Between Geocentric and Geodetic Coordinates for Nonzero Altitudes. NASA TN D-7522, 1974.

TABLE I.- COMPARISON OF VARIOUS TRIANGULATION METHODS

Reference	Author's name	Type of object	Number of observation sites	Method of solution
2	Brown	Point	Many	Least-squares method
3	Hogge	Point Straight line	Several 2	Least-squares method Intersection of ray from one site with
		Curved line	2	plane from other site Intersection of ray from one site with surface defined by 3d order least- squares fit to data from other site
4	Lloyd	Points	2	Midpoint of minimum skew distance between rays from each site
		Straight line	2	Intersection of two planes
		Curved line	2	Intersection of ray from one site with surface from other site
5	Whipple	Straight line	2	Intersection of two planes
6	Justus	Point	2	Equal residuals
		Curved line	2	Intersection of ray from one site with surface from other site

TABLE II. - INPUT DATA FOR ILLUSTRATIVE EXAMPLE

3 STATION TRIANGULATION

		• /4 •			Contraction			en e	
	ST A	т 🖶	-31.6	952	SLON=-110.8774				
			-30.		- SEUN	SAL			
	SLA				SLON= -70.7673				-
	SLA	1 -	37.9	1224	SLON= -75.4717	SAL	=0100	6	
	TIME		3 HR	1	8 MIN 10.0 SEC				
	STA	1	- 9 T		8 <u>M1N 10.0 SEC</u> AZ = 119.0452				
. — · –	STA-		PT	$\frac{1}{2}$ -		- <u>EL = - 4</u>	302138 MI	T HEPKINS CA: C-2 3,19,1	
		1	· • · · · · · · · · · · · · · · · · · ·	2	AZ= 119.1804	EL= 4	3.2385 MI	T HOPKINS CAM C-2 3,18,1	··
	STA	- <u>+</u>	<u>PT</u>	3	AZ= 119.2919	EL = 4	3.1431 MI	T HOPKINS CAM C-2 3,18,1	
	<u>STA</u>	<u> </u>	<u>PT</u>	4	AZ = 119.4330	<u>EL= 4</u>	<u>3-0773 M</u>	T HOPKINS CAM C-2 3, 18,1	
	STA	1	PT	5	AZ = 119.5394	<u> </u>	<u>3.0121 MI</u>	1 HOPKINS CAM C-2 3,18,1	
	STA_	1	PT	<u> </u>	AZ = 119.6648	_EL= _4	2.9467 MI	T HOPKINS CAM C-2 3,18,1	
	STA	1.	<u><u><u>PT</u></u></u>		AZ = 119.8046		2.8824 MT	T HOPKINS CAN C-2 3,18,1	
	STA	-	PT	8	<u>AZ = 119.9364</u>	FL = 4	2.8175 MI	T HOPKINS CAM C-2 3,13,1	
	STA	1	<u>. P</u> T.		AZ = 120.0767	EL= 4	2.7521 MT	T HOPKINS CAM C-2 3,18,1	· · · · –
	STA	1	<u>PT</u>	10	AZ = 120.1941	<u>EL= 4</u>	<u>2.6968</u> M1	T HOPKINS CAM C-2 3,18,1	<u>.</u>
	STA	1	PT	11	AZ= 126.311)	EL = 4	2.6210 MT	T HOPKINS CAM C-2 3,18,1	
	STA	1	PT	12	AZ= 120.4449	EL= 4	2.5552 MT	T HOPKINS CAM C-2 3,18,1	
	5 T A 5 T A	1	PT PT	13	AZ = 120.5667	El = 4	2.4893 MT	T HOPKINS CAM C-2 3,18,1	
		1		14	AZ = 120.6786	EL = 4	2.4229 MI	T HOPKINS CAM C-2 3,18,1	
	STA	1	PT	15	AZ = 120.7976	EL= 4	2.3568 MT	T HOPKINS CAM C-2 3,18,1	
• ••	STA	1	PT	16	$AZ = 120 \cdot 223$	<u>EL= 4</u>	2.2899 MI	T HOPKINS CAM C-2 3,18,1	
	STA	1	PT	17	AZ = 121.0436	FL= 4	202229 MI	T HEPKINS CAM C-2 3,19,1	
	STA	1	PT	13	AZ = 121.1714	EL= 4	2 1265 1	T HOPKINS CAM C-2 3, 18, 1	
	STA	1	PT	19	AZ = 121.2812	EL = 4	2.0399 MI	T HOPKINS CAM C-2 3,18,1	
	STA	1	PT.	20) 21	AZ = 121.4022	EL = 4	2.0228 MI	T HOPKINS CAM C-2 3, 18,1	· ·· ··-·
	STA	1	PŤ	21	AZ = 121.5237			T HOPKINS CAM C-2 3,19,1	
	STA STA	1.	PT	22	AZ = 121.6460			T HOPKINS CAM C-2 3,18,1	·
	STA	1	PT		$\frac{AZ = 121.7643}{AZ = 121.8680}$			T HOPKINS CAM C-2 3,18,1	
	STA	1	PT	24	AZ= 121.39944	EL = 4	1 (0/0 11	T HOPKINS CAM C-2 3,18,1	
	STA	1	PT	26	4Z = 122.1165	EL= 4	1,6193 MT	T HIPKINS CAM C-2 3,18,1	
	STA	1	PT	27	AZ= 122.2271	<u>- 51 - 4</u> 51 - 4	1 5604 MT	T HOPKINS CAM C-2 3,18,1	
	STA	1	PT	28	AZ = 122.3316	EL= 4	1 2470 T	T HOPKINS CAM C-2 3,18,1 T HOPKINS CAM C-2 3,18,1	
	STA	1	PT	29	AZ= 122.5518 AZ= 122.4629		1.4121 MT	$\frac{1}{1} + \frac{1}{100} \times \frac{1}{1$	
	STA	1	PT	30	AZ = 122.5736			T HOPKINS CAM C-2 3,18,1	·· ·
	STA	1	ρţ		AZ = 122.6864		1.2748 MT		
	STA	ī	PT	31 32	AZ = 122.8324	EL= 4		T HOPKINS CAM $C-2$ 3,18,1	
	STA	î	PT	33	AZ= 122.9165	EL = 4	1.1368 MT	T HOPKINS CAM C-2 3,18,1	
•	STA	1	РТ	34	AZ = 123.0379			T HOPKINS CAM C-2 3,13,1	
	STA	1	PT	35	AZ = 123.1260	EL = 4	1.0014 41	T HOPKINS CAM C-2 3,18,1	-
	STA	1	РΤ	36	AZ = 123.2700			T HOPKINS CAM C-2 3,18,1	
•	STA	2	РŤ	1	AZ= 349.5335			HILE CAM D-3 3,18,10	
·	S T A	2	ΡŢ	2	AZ= 349.5519			HILE CA* D-3 3,18,10	
-	STA T	ž	ΤΡ̈́Τ΄	3	AZ= 349.5525			HILE CAM D-3 3,19,10	
	STA	z	РТ	4	AZ = 349.5813			HILE CAM D-3 3,18,10	
·· •	STA	2	PT	5	AZ= 349.5991			TILE CAM D-3 3,18,10	
		2	ΡŤ	Ê	AZ= 349.6055			HILE CAM D-3 3,18,10	
	5 T A	2	PT		4Z= 349.6160			HILE CAM D-3 3,19,10	<u> </u>
	STA	2	PΤ	9	AZ= 349.6280			HILE CAM D-3 3,18,10	
	STA	2	PT	ġ	AZ= 349.5405			HILE CAM D-3 3,18,10	
	STA	2	PT	10	AZ = 349.6550			HILE CAM 0-3 _ 3,18,10	
	STA	2	₽T	11	AZ= 349.6689			HILE CAM D-3 3,18,10	
	STA	Z	PT	12	AZ= 349.0859			HILF CAM D-3 3,18,10	
	STA	2	Tq	13	AZ= 349.6937			HILE CAM D-3 3,18,10	
	STA	2	PT	14	AZ= 349,7075			HILE CAM D-3 3,19,10	
	STA	2	ΡT	15	AZ= 349.7223			HILE CAM D-3 3.18.10	
	STA	ź	PT	16	AZ= 349,7396			HILE CAM D-3 3,18,10	• • • • •
	STA	2	ΡŤ	17	AZ= 349.7549			HILE CAM 0-3 3,18,10	••• • ·-
	STA	2	ρŢ	19	AZ = 349.7651			ILE CAM D-3 3,18,10	
	.	-	- 1	* '	SE PERMICE	, ц. Т	ryrydd on	ひききか がだい 焼いが 上げすき笑きたみ パンパン・ション・・	

TABLE II. - INPUT DATA FOR ILLUSTRATIVE EXAMPLE - Continued

S	TΑ	2	ΡT	19	A Z =	347.7	797	EL =	47.9317	CHILE	CAM D-	3 3,19,10
5	TΛ	2	ΡT	25	ΛZ =	349.7	918	EL≓	47.8341	CHILE	CAM D-	3 3,18,10
S	T۸	2	PΤ	21	AZ =	349.3	059	E1 =	47.7669	CHILE	CAM D-	3 3,19,10
	ΤĄ	2	ΡŤ	22		340.8	÷.	EL=	47.6998			
	ΤA	ž	PT	23		349.9		EL =	47.6326			
	TA	2	PT	24		349.8		Ε <u></u> Ε	47.5647			
				25		349.9			47,4974			2 2 10 10
	T A	2	PΤ					<u> </u>				
	TA TA	2	PT	26		349.9		ELE	47.4299			· · · · · · · · · · · · · · · · · · ·
	TA	2	₽T	27		349.8		EL =	47.3620			
	ΤA	2	PT	28		349.9		FLF	47.2944			
	ΤA	2	ΡŢ	2 °	-	349.9		EL=	47.2261			
	TΑ	2	ΡT	30		349.9		Et =	47.1589	CHILF	CAM D-	
S	ΤA	2	РŤ	31		349.9		EL =	47.0913			
5	ŤA	2	ΡŢ	32		349.9		CL =	47.0237			
S	ΤA	2	РТ	33		349.0		EL=	46.9561	CHILF	CAM D-	
S	ΤA	2	ΡΤ	34	Δ <u>Z</u> =	349.0	9.09	EĹ≠	46,9992			
S	TΛ	2	ΡT	35	ΔΖ=	349.9	954	EL≠	46.8210	CHÍLË	CAM D-	3 3,19,10
د	TA	2	ΡŢ	30	ΛZ =	350.0	130	EL≠	46.7535	ĊĤIĹĖ	CAM D-	3 3,18,10
	TΑ	2	ΡT	37		350.0		FL=	46.6855			
	ŤΑ	2	ΡT	33		350.)		₽Ĺ₽	46.6182			3 3,18,10
	ΤA	2	ΡŢ	36		350.0		EL =	46.5506			
	TA		PŤ	4 j		353.3		EL≠	46.4829			
	TA	2 2	ΡŤ	41	Δ7=	350 . 0	, 55		46.4146			
	TA	2	ΡT	42		350,0			46.3474			
	TA	2	PΥ	43		350.0			46.2798			
	TA	2	ΡŤ			334.1	AND A DRIVE AND A	THE R. LEWIS CO., LANSING MICH.	40.2123			
			PT						46.1446			
	1 A T A	2		45		350 . 1 350 . 1		. <u>EL</u> ≠ 				
		2	PT	4 6	<u>^ 2</u> =				46.0768			
	TA TA	2	PT	47	ΔΖ=	350.1		FL=	46.0091			
	ΤΑ	2	PT	4,9		350.1		61=	45.9418			
	TA TA	2	PT	40		350.1		51=	45.8742			
	ŤΑ	2	ρŢ.	50		350.1		EC =	45.8063			
	TA	2	PT	51		350.1		EL≠	45.7384			
	ТΑ	2	ΡŤ	52		35102		EL=	45.6705			
	ŤΑ	2	РΤ	53		350.2		בן ב	45.6025			
	TΔ	2	₽T	54		350.2		FL=	45.5343			
	TΔ	2	ΡT	55		350.2		5 C =	45.4663	CHILE	CAM D-	
	TΑ	2	PT '	56 [°] '		350.2		FL=				• •
S	TΔ	2	PΤ	57	∆ 7 =	353.2	637	Ël'≐	45.3302			
5	ΔT	2	ΡŦ	58	$\Delta Z =$	350.2	761	`` ⊆Ĺ =``	45.2620	CHILE	CAM N-	3 3,19,10
S	TΛ	2	ΡŤ	59	$\Delta Z =$	336.Ż	870	<u> </u>	45.1934	CHILE	CAM D-	3 3,18,10
S	TΑ	2	РТ	έĽ	471=	333.2	6931	FL =	45,1255	CHILF	CAM D-	3 3,19,10
S	TΔ	2	PT	ė1	∆Z ≓	350.3	<u>ة ون</u>	F[=				
Ś	ŤΑ ΄	2	ΡŤ	62		340.3		FLF	44.9396		CAM D-	
	TΑ	2	ΡŢ	53		355.3			44.9218			
	ΤA	2	ΤŪ	64		350.3		Г.L =	44.8539			
	TA	2	PT	65		350.3						
-									44.7854			
		<u>2</u>	PT	_66		<u>350.3</u>						
	<u><u>TA</u></u>	2	PT	. 67		350.3		<u>F1 =</u>	44.6494			
	TA	2	PT	68		350.3						
	TA	2	PT	69		350.4			44.5129			
	TA TA	2	<u> </u>	<u>70</u>		350.4		ELE	44.4445			
	TA	2	<u>_ P T</u>	71		350.4		FL =				
	TA	2	PT	72		350.4		EL =	44.3071			
	<u>TA</u>	2	PT	73		350.4		FL=	44.2390			
	TA	2	PT	74	A <u>Z</u> =	350.4	677	FL=	44.1734	CHILE	CAM D-	3 3,18,10
	ΤA	2	₽Ť_	. 75	A <u>/</u> =	350.4	797	EL =	44.1016	CHILE	CAM D-	3 3,19,10
	TA	3	PT	1	Δ <u>Ζ</u> =	182.3	<u>343</u>	EL =				C-3 3,18,10
S_	TΑ	3	ΡŢ	2		192.3		EL =	50.6889	AC WAL	LOPS A	C-3 3,13,10
	ΤA	3	PT	3	AZ =	182.3	122	ĘŁ≃	50.7940	AC WAI	LOPS A	C-3 3,18,10
\$	TA	3	ΡT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		192.3		Et =	50,9019	AC WAI	LOPS A	C-3 3,19,10

TABLE II.- INPUT FOR ILLUSTRATIVE EXAMPLE - Concluded

STA	3	PT 5	4Z =	182.3341	Ë⊾≖	51.0146 AC WALLOPS AC-3 3,18,10
STA	3	PT 6	ΛZ =	182.3490	EL=	51.1274 AC WALLOPS AC-3 3,18,10
STA	3	PT	A7 =	192.3511	EL=	51.2318 AC WALLOPS AC-3 3,19,10
STA	3	PT		182,3554	EL=	51.3366 AC WALLOPS AC-3 3,18,10
STA	3	PT S		192.3001	EL =	51.4417 AC WALLOPS AC-3 3,18,10
STA	3	PT 10		182.3723	EL =	51.5526 AC WALLOPS AC-3 3,18,10
STA	3	PT 11		192.3921	FL =	51.6622 AC WALLOPS AC-3 3,18,10
S TA	3	PT 12	ΔΖ=	192.3891	EL=	51.7683 AC WALLOPS AC-3 3.18.10
STA	3	PT 13	ΔZ =	182.3953	EL=	51.8749 AC WALLOPS AC-3 3,18,10
STA	3	PT 14	<u>Δ 7</u> =	182.4013	FL=	51.9808 AC WALLUPS AC-3 3.18.10
STA	3	PT 15		192.4039	EL=	52.0844 AC WALLOPS AC-3 3,18,10
STA	3	PT 16	AZ=	192.4213	EL =	52.1985 AC WALLOPS AC-3 3.18.10
STA	3	PT 1	47=	182.4277	EL=	52.3046 AC WALLOPS AC-3 3.18,10
STA	3	PT 1	ΔZ =	182.4363	EL =	52.4123 AC WALLOPS AC-3 3,18,10
S Τ Α	3	PT 19		182.4439	EL =	52.5196 AC WALLOPS AC-3 3.18.10
STA	3	PT 20) <u> </u>	182,4526	ELŦ	52.6272 AC WALLOPS AC-3 3,18,10
STA	3	PT 2	ΔZ =	182.4655	FL =	52.7376 AC WALLIPS AC-3 3,18,10
STA	3	PT 22	AZ=	182.4709	EL=	52.8434 AC WALLOPS AC-3 3,18,10
STA	3	PT 2.	5 A Z =	182.4764	EL =	52.9492 AC WALLOPS AC-3 3.18.10
STA	3	PT 2	+ AZ =	182.4972	€L≠	53.0580 AC WALLOPS AC-3 3,18,10
STA	3	PT 2	AZ =	182.4923	EL=	53.1636 AC WALLOPS AC-3 3.18,10
SΤΑ	3	PT 26	AZ =	182,5001	EL =	53.2708 AC WALLOPS AC-3 3,18,10
STA	3	PT 2	7 AŻ=	182.5079	ΕL =	53.3786 AC WALLOPS AC-3 3.18.10
STA	3	PT 28	3 AZ =	182.5226	EL =	53.4904 AC WALLOPS AC-3 3,18,10
	•••					
L= 1		N= 36	=С.И	25		
L ≂ 2		N= 75	MÜ≃	25		
L= 3		N= 28	= G M	25		
ESTI	ΜΔΤ	ED TRIA	POINT	LAT= 6	150	LON=-76.770 ALT= 31500

TABLE III. - SOLUTION FOR ILLUSTRATIVE EXAMPLE

	HRS 18 MIN	10.0 SEC		
LINE SOLUT	10.00		· · _	
ALTITUDE	LATITUDE	LONGITUDÈ	RMS RES	PTS ON AZ-EL CURVE
				36 75 29
3.2.0	9.121	-76.763	.0024	35 75 28
30300	7, 378	-76.763	.0024	34 72 29
304C J	7.856	-76.763	.0025	34 72 29 32 69 28
30500	7. Lao	-76.762	₀ 0027	31 67 28
30600	7 . 556	-76.762	.0029	30 64 28
30700	7.415	-76.162	.0033	29 61 28
39800	7.219	-76.762	•))39	27 59 28
30900	7.137	-76,761	.0040	26 55 27
31003	7.003	-76.760	o 2044	25 54 25
31100	6.369	-76.759	•0046	24 51 24
31200	c.728	-76,758	• C 44	22 48 23
31300	<	-76.756	•0047	21 46 22
31400	6.467	-76.755	.0051	20 44 20
31500	∿ ⊿ 32?	-76.754	.0054	19 41 19
31600	· • 132	-76,752	.0057	17 38 18
51700	Co 639	-76.751	.0058i	16 35 16
31360	20 39 G	-76,750	.0061	15 33 15
31900	5.751	-76.749	.0062	13 30 13
32000	5. CC 3	-76.748	.0058	12 27 12
32100	5 . 4 . P	-76,747	0055	10 24 11
32200	t.31C	-76.740	.0053	<u> </u>
32500	.111	-75.745	.0048	8 19 8
32400	S.CII	-76.745	oU342	6 16 6
32500	4 o 26 7	-76.744	• 3342	5 14 5
32600	4.725	-76,742	• UU44	4 11 4
3270)	4 . 584	-76.741	• 0048	2 5 2
0 ت28د	4.477	-76,739	052 ء	1 ó 1

Figure 1.- Trial solution point P in space as observed from three sites illustrating residuals D(1), D(2), and D(3) due to errors in measuring lines of sight.

Figure 2.- Illustration of three surfaces defined by az-el data from three observation sites. For the trial point P, the residual for site 1 is D(l).

Figure 3.- Illustration of minimization of root-mean-square residuals with varying PLON and PLAT. EM is the minimum root-mean-square residual for variable PLON at a fixed PLAT.

Figure 4.- Illustration of the relations between topocentric and geographic coordinates.

Figure 5.- Illustration of an approximate angular two-dimensional coordinate system with reference direction S-N, which is used in least-squares fit of az-el data and computation of residuals.

Figure 6.- Illustration of the Earth spheroid and the relations between geographic and geocentric coordinates.