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' ABSTRACT
U )

SThis correspondence discusses the parallel and pipeline organization

= of fast unitary transforms algorithms such as the 
Fast Fourier Transform

and points out the efficiency of a combined parallel-pipeline 
processor

a of a transform such as the Haar transform in which (2 -1) 
hardware

-'ri
Z a "butterflies" generate a transform of order 2n every computation 

cycle.

H4
M4-I

.U

https://ntrs.nasa.gov/search.jsp?R=19740015041 2020-03-23T10:06:36+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42896466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Algorithms for all fast unitary transforms, such as .the Fast Fourier

transform (FFT), fast Walsh-Hadamard transform (FWT) and other fast

unitary transform [1], require n stages of computation for transforms of

order 2n . Each stage of computation can be in turn decomposed into at

most 2
n -1 "butterflies" [2], each performing a rotation by a matrix of

order 2. Some or all of the butterflies at one stage of computation can

operate in parallel (see [3], [4] for FFT) and fast unitary transforms

have thus a greater potential in applications with the development of

low cost parallel circuitry. For example, we show in Fig. la the FFT

Cooley-Tukey algorithm of order 4 with 2 butterflies in each of its 2

stages of computation. If T seconds is the time required to perform a

butterfly operation, each stage can be performed in T seconds with the

highest possible degree of parallelism which uses 2 
n - butterflies. Thus,

a transform of order 2n can be performed in nt seconds as compared to

n2n-T seconds with sequential computation (which requires only one

butterfly).

If a number of successive transforms have to be computed, it is

possible to increase further the throughput rate with several transformers

working simultaneously, each operating on a different input vector and

each possibly at a different stage of computation (see [5] for FFT):

this is generally referred to as a pipeline organization. Parallel and

pipeline organizations can be combined conveniently with n2 n-(at most)

butterflies working in parallel and one transform of order 2n is obtained

every T seconds on the average. Fig. lb shows a possible organization of

the FFT Cooley-Tukey algorithm of order 4. All stages of this pipeline

algorithm are identical: the 2 first butterflies perform the first stage
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of Fig. la and the 2 last butterflies perform-the second stage. 
The

input vector is entered in the first 4 cells 
and its FFT transform

obtained in the same cells after 2 cycles. This algorithm can be wired-

in and will give the transform coefficients in any order 
but it requires

a large amount of hardware and requires the access at its 
input of two

sets of n2" storage cells.1

Some transforms, however, do not require 2
n -1 butterflies at each

stage of computation and then a pipeline algorithm 
can be implemented with

much less hardware. We consider now in particular a pipeline algorithm

for the Fast Haar Transform.(FHT). Although less known, the FHT is

closely related to the FWT [6], has a fast algorithm [7], is certainly a

transform of interest for signal encoding [8], [9] and other applica-

tions [10]. A pipeline-parallel algorithm for the FHT requires only

(2 -1) butterflies and still produces a transform of order 2
n at every

cycle. We show in Fig. 2a the Haar matrix of order 8 and in 
Fig. 2b a

possible organization of the FHT of the same order. The number of butter-

flies decreases for successive stages and this is the property which can

be exploited in a pipeline processor. In Fig. 3, we show a stage of a

possible organization of the pipeline FHT of order 8.

Many other transforms can have similar pipeline algorithms with

reduced amount of hardware: the Modified generalized discrete transforms

[11], the WFH transforms [1], the Slant Haar transforms [12] and other

generalized Slant transforms [13]. In all cases, the pipeline-parallel

algorithm needed to perform a transform of order 2
n in one cycle is the

total number of butterflies appearing in the flow diagram of the algorithm.

By contrast, parallel processing requires the maximum number of butterflies

needed at any stage.
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FOOTNOTE

1The computation can be also performed "in place" with n2
n storage cells

only followed by cyclic shifts by 2n cells.

CAPTIONS

Fig. la : FFT Cooley-Tukey Algorithm of order 4

Fig. lb : Pipeline FFT Cooley-Tukey Algorithm of order 4

Fig. 2a : Haar matrix of order 8

Fig. 2b : Fast Haar Transform of order 8

Fig. 3 : Pipeline Fast Haar Transform of order 8.
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