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FOREWORD

This technical report presents the results of an investigation of rotating and

positive displacement pumps for low thrust rocket engines. The program conducted

by Rocketdyne, a Division of North American Rockwell, during the period of July

1968 to Harch 1971, was authorized by the Lewis Research Center of the National

Aeronautics and Space Administration (NASA) under Contract N_3-12022. The NASA

project manager was Mr. W. Britsch.

This report is submitted as Rocketdyne report number R-8494, in two volumes:

• I. Pump Evaluation and Design

II. Pump Fabrication and Testing
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INTRODUCTION

Studies of future space missions show the requirement for relatively low thrust

(i000 to I0,000 Ib, 4448 to 44,480 N), high specific-impulse rocket engines in

upper stages for orbital maneuvering and instrument package landers. For long-

duration missions, or for vehicles having limited tankage volume, the use of high

energy, space-storable propellant combinations such as methane-FLOX {fluorine-

oxygen mixture) is desirable.

To realize the full potential of the high-energy propellants, it is necessary to

achieve the lowest practicable values for engine size and weight and tank weight,

thereby maximizing payload. A means for optimizing the performance, size and

weight of the vehicle is the use of a high-pressure, pump-fed engine cycle.

At the thrust level of 1000 lb (4448 N) and a chamber pressure of 1000 psia (689.5

X/cm 2) the PLOX flowrate is 12 gpm (7.57 x 10 -4 m3/s) assuming an attainable

specific impulse of 38S sec (377S Ns/kg) at a mixture ratio of S.75. A chamber

pressure of 1000 psia will require a pump discharge pressure of approximately

1500 psia (1030 N/cm2). Since the use of a separate low-speed inducer was not

considered practical for these small engines, the maximum speed of the pump was

limited primarily by cavitation requirements. The combination of flowrate, pres-

sure rise, and fluid density together with the allowable range of speeds places

the pump in the low specific speed regime where the predicted attainable effi-

ciencies for several types of centrifugal pumps are below those of the positive

displacement types.

The predicted efficiencies of centrifugal pumps available in the general litera-

ture are results obtained on pumps having flowrates in excess of 100 gpm (6.51 x

10-3mS/s). Extrapolation of these data to the flowrate required inherently

assumes both geometric and hydrodynamic similarities are maintained. In these

small size ranges, geometric similarity cannot be maintained. In contrast, the

low viscosity of fluorine makes it possible to maintain a high Reynolds No.
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despite the small size of the impeller. However, surface roughness and clearances

that are practicably attainable become a significant percentage of the character-

istic dimensions and can noticeably affect the efficiency. The inability to main-

tain geometric similarity can also make it difficult to attain the necessary cavi-

tation performance. Because of these uncertanties in predicting the efficiencies

and suction performance, test data were needed to establish the performance charac-

teristics of rotating pumps operating under the hydrodynamic conditions imposed by

these low-thrust rocket engines using high-energy propellants.

The capability of operating centrifugal pump impellers in fluorine mixtures was

previously established (Ref. 1 ). In those tests, the impeller cavity and the

bearing cavity were separated by a three-element seal to prevent mixing of the

organic lubricant and the FLOX mixtures. The desire to alleviate critical speed

problems in the 12-gpm (7.57 x 10 -4 m3/s) pump led to the decision to operate the

bearings in liquid fluorine, thus eliminating one seal. Although bearings have

been tested in fluorine, pump bearings have not previously been subjected to the

fluorine. Tests to determine the feasibility of this design approach are necessary.

The scope of the program consisted of the following four areas of effort:

1. Evaluation of various concepts of small, lightweight, efficient rotating

and positive displacement pumps, and on thebasis of this evaluation

select the best single design of positive displacement pump and the best

single design of rotating pump. (Task I and Task V)

2. Design the two selected concepts. (Task II and Task VI)

3. Fabricate and assemble two rotating and positive displacement pumps.

(Task III and Task VII)

4. Test the two pump designs in both Freon 12 and LF 2 to establish the

mechanical integrity, and determine the pump performance and operating

characteristics, and the fluorine compatibility of the drive elements

(Task IV and VIII)

R-8494-1
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Volume I of this report describes the work accomplished in areas (1) and (2) above.

Volume II describes the effort of (3) and (4).

For purposes of identification, the centrifugal pump was designated as "Mark 56

Pump" and the gear pump as "Mark 37 Pump."

R-8494-I
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SUMMARY

Rotating and positive displacement pumps of various types were studied for pumping

fluorine mixtures for low thln/st, high specific impulse rocket engines, with the

following specific requirements:

• Inlet Pressure 35 psia (2.41 x i05 N/m 2)

• Inlet Temperature 159 R (88.4 K)

• Discharge Pressure 1500 psia (l.0S x 107 N/m 2)

• Flow 12 gpm (7.57 x 10 -4 m3/s)

• Fluid Liquid Fluorine

Analysis and preliminary layouts were made of the following rotating pump concepts:

centrifugal pump, pitot, Barske, Tesla, and drag pumps. Comparison of the dif-

ferent concepts was made on the basis of performance, weight, reliability, cost

a_qd life. The centrifugal puunp was selected as the rotating pump concept most

suitable for this application. In a similar manner, positive displacement pumps

consisting of gear, vane, axial piston, radial piston, diaphragm and helirotor

types were evaluated. Re evaluation criteria indicated that the gear pump and

the vane pump were equally suitable candidates for this application. The gear

pump was selected because the rubbing velocities at the points of contact were

lower than those encountered in the vane pump.

Detailed analysis and design of the centrifugal and the gear pump were made and

two sets of hardware were fabricated for each of these pump types.

During the initial test in Freon-12, the mechanical difficulites encountered with

the gear pump precluded further test with it, and no further development of this

pump was undertaken. The remainder of the contract effort was limited to the

centrifugal pump.



The centrifugal pump was tested in Freon-12 for a total of 2.94 hours at speeds

up to 80,000 rpm with a maximum discharge pressure and flow of 2000 psig and 14.5

gpm, respectively. Thirty start sequences were conducted during these tests. The

overall efficiency at design flow was 52 percent. A maximum suction specific

speed of 36,500 was achieved.

Subsequently, the centrifugal pump was tested in liquid fluorine for an accumu-

lated time of 387 seconds under steady-state conditions at speeds up to 40,000 rpm

Some brief transient speed excursions to 104,000 rpm were encountered. During

these fluorine tests, the ball bearings experienced excessive wear rates. These

diametral wear rates were 0.004 in./hr (0.012 cm/hr) on the front bearing and

0.012 in./hr (0.030S cm/hr) on the rear bearing. (This is in contrast to the

Freon tests where no ball wear was experienced.) These wear rates are believed

to be the cause of rotor instabilities which precluded tests above 40,000 rpm.

Funding limitations did not permit resolution of the bearing wear problems. No

other deleterious effects due to the liquid fluorine were observed during these

limited tests.

R-8494-I

6



TASKI: ROTATINGPUMPEVALUATION

Evaluations of several types of rotating pumps were conducted to determine the

type best suited to the following requirements:

Pump Inlet Pressure, psig

Pump Inlet Temperature, R

(LF 2 Saturated at 20 psia, 1.38 x I0 S N/m 2)

Pump Exit Pressure, psia

Design Flowrate, gpm

Pumped Fluid

35 (2.41 x l0 s N/m2)-

IS9 (88.S K)

IS00 (i.03 x 107 N/m 2)

12 (7.57 x i0 -4 m3/s)

LF 2 (capability of FLOX operation)

A method was devised for comparing and rating the several t)rpes of rotating pumps

on an equal basis so that a valid selection could be made. Since the evaluation

must reflect the requirements of a deep space probe, primary emphasis in this

comparison was placed on performance, life, reliability, and cost. Each of the

first three catagories is defined in terms of those design parameters (criteria)

which have a material effect upon it. The criteria considered in each of the

primary catagories are as follows:

Performance Criteria

I. Hydraulic efficiency which is a measure of all the pump losses except

bearings and seals.

2. Mechanical efficiency representing pump bearing and seal losses.

3. Overall efficiency which takes account of the turbine drive efficiency.

4. Size and weight.

5. Friction which is an estimate of the frictional losses expected of the

different concepts.

R-8494-I
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Life Criteria

i. Seal load

2. Seal speed

3. Bearing load

4. Material compatibility

Reliability Criteria

i. Clearances and their effect on concept reliability

2. External leakage in terms of the number of external leakage paths

3. Rotatin_ component stress and vibration

Cost was evaluated with respect to the following parameters:

I. Development cost which represents an estimate of the cost of developing

each design. Estimate is based on component state of the art.

Rocketdyne past experience and a review of current industry effort.

2. Unit cost is an estimate of the cost of fabrication of each design.

The rotating pump rating system is shown in Table I.

The selection of the pump concepts to be evaluated was based on specific speed

and specific diameter limitations imposed by the available NPSH, required head

and flow, and fabrication capability. Figure I shows the approximate Ns-D s region

which is applicable for the desired pump performance. Pumps selected to be

evaluated were:

I. Centrifugal

2. Barske

R-8494-I
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TABLEI. ROTATINGPUMPRATINGSYSTEM

Performance (total points = 25)

Hydraulic Efficiency

Mechanical Efficiency

Overall Turbopump _ (turbine D x pump _)

Size and Weight

Friction

Life (total points = 20)

Seal Loads

Seal Speeds

Bearing Loads

Haterial Compatibility

Reliability (total points = 50)

Cleirances

External Leakage

Rotating Component Stress and Vibration

Pump Discharge Pressure Oscillations

Costs (total points = 25)

Development Costs

Unit Costs

i0

i0

5

S

15

i0
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3. Tesla

4. Drag

S. Pitot

A discussion of each of the concepts leading to a particular design to meet the

specified operating requirements follows.

CENTRIFUGAL PUMP

The type of pump most commonly used in rocket engines is the centrifugal pump.

It is ideally suited for the range of head rise and flowrate requirements of nor-

mal rocket engine thrust levels. For the low thrust levels being considered, the

pump discharge pressures desired are of the same magnitude as those of the larger

engines, but the mass flow is substantially reduced. The low flowrate relative

to the pump head rise dictates the use of a high operating speed if the specific

speed (Ns) is to be in a range that normally results in high pump efficiency.

Cavitation performance, however, imposes an upper limit on pump speed. The speeds

selected on the basis of cavitation performance are well below those for which

efficient operation is indicated on the Specific Speed [Ns)- Specific Diameter

(Ds) plot of Fig. I. Specific speed is defined here in its dimensionless form by:

N Ql/2

N s = kI H3/4 (I)

where N is the pump rotational speed (rpm), Q is the volumetric flowrate (gpm),

and H is the pump head rise (ft). The constant kI, required to make the expression

dimensionless, is derived as follows:

._(rad) 1 /min_ [___ [ft3_ 1 minll/2 [_i sec213/4k 1 = 2 ,r--_] 6-O _sec/ _gal! _6 s-'_J [_.2 ft J

3.66 x 10 -4 (ft]3/4 (la)

rain/ [mini
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Equation 1 indicates that if the design flowrate is decreased while maintaining

constant head, the pump speed must be increased to maintain constant specific

speed.

The specific diameter is defined in terms of the impeller diameter by:

D H I/4

Ds = k2 QI/2 (2)

If the impeller diameter, D, is expressed in feet, the constant, k 2, is obtained

as follows:

= " lft31 60 min 2.2

gal ,112

= .50.4 (rain)

(ft) (ft) I/4

i14
(2a)

An important factor which must be considered when discussing specific speed is the

speed limitations placed on the rotating assembly. The maximum speed of the pump

is generally limited by the bearing DN capability expressed in bore diameter times

rotative speed [mm'rpm). To date industry experience has been limited to a maxi-

mum DN value of 0.75 x 106 in fluorine. This value limits the centrifugal pump

speed and therefore limits the pump specific speed at required flowrates. The re-

quired specific speed of the pump for this application is 0.286 based on a maximum

pump speed of 75,000 rpm. With centrifugal pumps, as the specific speed decreases

below approximately 0.586, the maximum obtainable pump efficiency also decreases.

The N -D diagrams are applicable only to larger size pumps. This is due to the
s s

fact that test data used in the development of the N -D diagram came from rela-
s s

tively large pumps. The relationships of pump size to pump efficiency has been

R-8494-I
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discussed by Kittredge (Ref. 2 ). He presents efficiency conversion formulas

developed from many sources in an effort to predict prototype performance from

model data. The pump size ranges presented are from impeller diameters of 400 mm

(15.75 in.) to 100 mm (3.94 in.) which is larger than the pumps under study by a

factor o£ three. Figure 2 presents the pump efficiency as a function of impeller

diameter as developed by Rutschi and presented in the above reference. The data

shown are for a pump specific speed range o£ 0.366 to 0.732. I£ the impeller eye

diameter is used, the data show little dependence on specific speed. The impeller

eye-to-tip diameter ratio for these pumps, however, is somewhat small compared to

pumps for rocket engine applications requiring high suction performance.

The reduction in pump efficiency with the decrease in impeller size can be attri-

buted to changes in relative roughness and the changes in leakage flows between

high- and low-pressure regions. In scaling a large-diameter pump to a smaller

diameter, the requirement for dynamic and geometric similarity holds. This cannot

be attained by maintaining only the relationship:

full size model
(3)

This relationship must be maintained, but all dimensions must be scaled as well.

These dimensions include surface roughness and all internal pump clearances which,

in some instances, cannot be scaled. An example of this is in oxidizer pump appli-

cations where wear ring clearances are set by the criteria of rubbing possibilities

and material compatibility and cannot be scaled outside of these limits. Similarly,

the surface roughness can be reduced only to a certain extent and, thereafter, the

relative roughness will increase for smaller size pumps. These two effects cause

considerable difficulty in the determination of performance levels of small pumps

using information gained from pumps of larger dimension. At present, scale factors

used to predict efficiencies of small pumps do not utilize relative roughness and

wear ring clearance geometry relations as scale parameters. This makes them some-

what inadequate for use in this particular application.

R-8494-I

13



G'_

o

.

_-.,.._ _ '_"___

_
I

i

(,_
,r-

),u..-I._,,,,:,-DZ_fI,_C,_:

.0

-co

[-4 C_

H

:" CO

_O

-0

-aO

-_D

r,Q

t_

FQ

l:w

I)

I;

Q)

I
°_._

Q;

E

0

0
.i=I

CJ

_>,

I.I.

R-8494-1

14



The best known available data for pumps within the size indicated for this applica-

tion is shown in Fig. 3 . This curve, taken from Ref. 3 , is indicated as being

based on available data for pumps up to 4.0 inches (10.16 cm) in diameter, and the

souce has considerable experience in pumps of the size indicated. As in all in-

formation presently available, it is not stated whether the pumps are scaleable

from the standpoint of wear ring clearance and surface roughness.

Analytical £ffort

Rocketdyne has developed a centrifugal pump loss isolation program for digital

computers which is capable of predictin_ pump performance by calculation of spe-

cific pump losses. This program uses pump geometry.and flow input to calculate

internal loss mechanisms such as diffusion, skin friction and incidence and other

loss effects such as wear ring leakage, disk friction, scroll friction and momen-

tum, and diffuser losses. The use of this program provides a key to the effects

of size on such losses as wear ring leakage and internal skin friction by utiliz-

ing geometry and relative roughness. The loss coefficients are based on all

available data from studies found in literature surveys. Since internal clear-

ances in small pumps are relatively larger than those in pumps of significantly

larger diameter, friction coefficients are based on relative roughness and

Reynolds Number thus accounting for the increased frictional effects in the

smaller pumps. A breakdown of the loss components are presented in Fig. 4 for

the centrifugal pump configuration considered for this application. As indicated,

the efficiency is given as 58.7 percent at design flow. The same pump taken I0

times size sho_ an efficiency of 68.9 percent. In this calculation, the surface

finish was maintained at 125 microinches (3.175 m) for both pumps. The wear ring

clearance of the full size pump 1.3 inch (5.3 cm) impeller OD, was 0.003 inch

{0.076 mm) and that of the i0 times size pump 15.0 inch (33 cm) impeller OD, was

0.020 inch (0.508 n_n]. The impeller friction factor increased from 0.0146 in the

large pump to 0.0251 in the small pump due to relative roughness. Thus, friction

losses are increased by 72 percent.
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Preliminary Desi_.n

The most feasible centrifugal pump configuration found applicable to the require-

ments given is a design similar to that found in Fig. 5. This design consists of

a shrouded centrifugal impeller preceded by a low head, high suction specific

speed inducer. The impeller axial thrust is balanced by proper diameter wear

rings on the front and rear impeller shrouds. The volute consists of a single

discharge collector followed by a straight conical diffuser. This should provide

acceptable design point and off-design radial loads on the bearings.

Because of size limitations and friction loss effects, double scrolls or the dif-

fuser vanes shown in Fig. 5 did not prove practical.

The bearings will operate at a maximum DN of 0.75 x 106 and will be cooled with

liquid fluorine. The seal package separating the bearings contains two face

riding seals separated by a shaft seal with purged intermediate cavities. The

seal diameters must be maintained as small as possible to minimize the friction

losses.

Design Effort

Impeller Shrouds. A shrouded impeller was determined to be the best impeller

configuration for use with fluorine. Axial clearances have a significant effect

on the efficiency of an open face impeller. A clearance equal to 5 percent of

the average impeller passage height will result in an efficiency loss of approxi-

mately 5 percent of the zero clearance design efficiency, according to Eckart

(Ref. 4 ). The axial clearances of the pumps of this type must be large enough

that rubbing will not occur while the low specific speeds require that impeller

blade height be small. For this pump, the blade clearance to height ratio at im-

peller tip would be approximately 0.53 to eliminate rubbing. This makes the open

impeller undesirable. The shrouded impeller can operate with large axial clear-

ances and the leakage is controlled by radial clearances at the wear rings. Con-

trol of radial wear ring clearance can be achieved more reliably than close axial

blade to housing clearances on open face impellers.

R-8494-I
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Diffusion System. The use of a single volute followed by a straight conical dif-

fuser has many advantages from the basis of cost and ease of manufacture. How-

ever, in this system the friction losses are high due to the high velocities in

the collector or scroll. A method of reducing these losses in some cases is the

use of a vaned diffuser directly after the impeller discharge. With a vaned dif-

fuser the velocity is reduced efficiently before being collected with a resultant

savings by the reduction in scroll friction loss. Experience indicates that vaned

diffusers are desirable for specific speeds below 0.366 or when the head coeffi-

cient is greater than 0.6. For small pumps due to other loss penalties this head

coefficient limitation could be reduced to 0.5 or less.

However, calculations indicate that for this pump specifically, a vaned diffuser

will not improve efficiency since friction losses are also large in a vaned dif-

fuser due to relative'roughness limitations. The use of a vaneless space for

diffusion purposes before collection by the scroll results in increased losses

since friction losses are high also due to relative roughness and increased flow

path length. As a result it was decided not to use the diffuser vanes which are

sho_ in the preliminary sketch in Fig. S, but adopt a single discharge volute.

The single discharge volute has the disadvantage that bearing radial loads occur

at off design conditions. The radial load at off design conditions of this pump

is small due to the small impeller area exposed to the unbalanced pressure. There

is an optimum design of the scroll based on a tradeoff between the side-wall

friction loss on the collector and the momentum loss between the impeller dis-

charge and the entrance to the straight conical diffuser. This tradeoff requires

that the scroll be oversized from 120 to 180 percent over the area based on zero

scroll momentum loss. Figure 6 shows typical curves of volute friction ibss and

scroll momentum loss as a function of pump flow. The curve indicates an over-

sized volute gives more scroll momentum loss but less volute friction loss and

the total loss can be optimized at a given design flow point.
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PITOTPUSIP

Introduction

Pitot pumps are typical low specific speed pumps and are expected to give higher

efficiencies in the low specific speed regime than conventional (full emission or

partial emission) pumps. This is due to the design features of the Pitot pump

which tend to minimize the parasitic losses usually occurring between the back of

the rotor disk and the stationary housing in conventional pumps. This loss is

minimized by employing an "unconventional" pumping principle. A rotating liquid

ring is created inside a rotating drum and pressurized fluid is scooped from this

ring by stationary Pitot heads and ducted to the outside. This mode of operation

minimizes the internal losses within the rotating drum but does, however, provide

a large frictional area at the outside of the drum. This would create extremely

high windage losses if the drum rotates within a fluid which has the same density

as the pumpted liquid. In cases, however, where the density of the surrounding

medium is significantly lower than that of the pumped liquid, the outside windage

losses becomes small. It is only under these conditions that the Pitot pump can

exhibit higher efficiencies than conventional pumps in the low specific speed

regime.

Analysis

A principal cross section through a Pitot pump is presented in Fig. 7 which shows

a pitot pickup mounted on a stationary strut, operating within the rotating drum

which is filled with liquid. Radial vanes are protruding from the inner walls of

the rotating drum to create a rotating liquid ring.

For the purpose of this analysis it is assumed that the fluid rotates with the

impeller as a solid body. The static pressure within the rotating liquid ring

increases with the square of the peripheral speed:

2
U 2

H
static 2 gm
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where U2 denotes the pheripheral speed of the radial vane trailing edges, and

m denotes a slip factor which depends mainly on the number of vanes and the diam-

eter ratio D/d where D = outside diameter of the vanes and d is the inlet diameter.

The slip factor can be expressed by the approximate relation:

7T

m = 1 + d (S)

2z ( 1-59

This expression shows good accuracy for the straight radial vanes used in pitot

pumps.

If no fluid is extracted from the Pitot pickup, a high percentage of the velocity

head can be converted into pressure rise. In the ideal case, i.e., complete con-

version of velocity head into pressure, the total pressure will be twice the

static pressure:

2
U2

= --
Hth gm (6)

The actually recovered velocity head will decrease with increasing flowrates due

to the residual velocity head and due to the frictional losses so that the total

head will tend to decrease with increasing flow coefficient if the flow coeffi-

cient is defined by:

Cp

U 2
(7)

Cp denoting the velocity in the Pitot pickup.

The frictional losses can be determined by a loss analysis. Several loss sources

have to be accounted for: (1) the frictional losses within the drum and within

the Pitot tube and strut, (2) drag losses of the Pitot head and strut, and (3)

the windage losses on the outside of the drum. For this analysis, several geo-

metric parameters h_'e to be considered.
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These parameters are as follows:

D = diameter at which the Pitot pickup is located

d = inlet diameter of the housing

= diameter of the Pitot pickup

A = diameter of the Pitot body

B = axial extension of the rotating drum

b = axial extension of the radial vanes

a = spacing between the vanes

These parameters may be grouped into proportionality factors such as:

X = 4/6

Y = a/6

= B/6

K = dlA

The loss analysis may be done by using dimensionless coefficients, i.e., by re-

lating every individual head loss to a fictitious head. Thus, the head loss

coefficient, expressing the head loss experienced by the flow in going through

the bladed portion of the drum, is given by:

U2/g

(8)

where _R denotes a loss factor (which depends on the Reynolds Number) and Z the

blade number. Another loss is experienced in the channel within the Pitot tube,



strut, andexit duct wheretworight-angular bendsare encountered. These
lossesmaybe expressedby _herelation: i

qp= O2 _p (9)
2

where _p denotes a loss coefficient for the internal ducting. The actually de-

veloped head, expressed in terms of a head coefficient, can thus be expressed by:

Had _'_2 (l_d/D / Z

U2/g

(10)

where qth denotes the theoretical head coefficient which, from Eq. 8, is

qth = 1 (11?
m

Other losses _'hich have to be considered are the drag Of the Pitot pickup and of

the supporting strut, the losses occurring in the energy transfer from the fluid

within the vanes to the fluid surrounding the probe, and the wheel disk friction

on the external surfaces of the rotating pump casing. Of these losses, only the

external disk friction on the rotating casing has no effect on the pressure rise

produced by the pump, but it affects the power input to the pump required to gen-

erate the output head. The remaining losses mentioned above can reduce the fluid

velocity and the relative total head at the Pitot probe, thus requiring a higher

rotating speed to effect the desired pressure rise. One of the most important

criteria for the performance of the Pitot pump is the resistance coefficient for

the Pitot pickup and strut. Tentative values for this parameter can be found in

the literature (Ref. S ). These data indicate that the drag coefficient depends

on the body shape, varying from values of _D = 1.17 for a flat disk and _D = 0.1

for streamlined bodies. These values can claim validity only if it can be assumed

that the body is in a free stream. The Pitot pickup as well as the strut, how-

ever, are located between rotating vanes. Thus, the distance between Pitot body

and strut would be expected to become an influential parameter. For close dis-

tances, an interference drag will increase the overall drag loss. Guidelines for
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the total drag loss and its interrelation with distance can also be found in

Ref. S , which shows (Fig. 8) that compared to the free stream condition, the

drag coefficient approximately doubles when the distance between the struts is

equal to the width of the strut, and that the drag coefficient quadruples when

the distance is about 0.4 of the strut width.

The effect of the Pitot probe can be better understood from the following discus-

sion. First, assume that the pitot pickup is removed from the pump. If the impel-

ler is now filled with liquid and rotated, the whole fluid body within the impeller

can be assumed to rotate as a forced vortex due to the combined action of the vanes

and the viscous forces. However, when the stationary Pitot probe is introduced,

the central ring of fluid, which is not contained within the vanes but flows between

the strut and the vanes, will experience a viscous shear force due to the presence

of the probe and wake region behind the probe. This shear force introduces an

axial gradient in the tangential velocity, which increases with radius out to the

maximum radius of the strut, and a corresponding static pressure gradient. The

presence of this static pressure gradient causes a secondary flow phenomenon which

results in an outward flow of the fluid within the impeller vanes and an inward

flow of the fluid in the central ring [Fig. 9). If no other flow phenomena were

involved with the presence of the secondary flow, these secondary flows would not

affect the pump pressure rise, but would serve only to increase the power require-

ments. However, because of viscous forces acting on the Pitot probe, a wake con-

sisting of low-energy fluid is created behind the probe. The pressure difference

between the fluid in the central core and this wake region introduces a mixing of

these two fluid regimes which results in a relative total pressure deficit in the

plane of the Pitot head necessitating an increase in the wheel speed.

The increase in the power required to sustain the secondary flow in the central

core can be obtained by merely increasing the drag coefficient by a factor which

depends on the spacing between the strut and vane and on the depth of the vaned

portion of the impeller. With these assumptions, the loss associated with the

probe drag may be expressed by the coefficient:

X2 _D A

qd = m 3 (12)2
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where CD denotes the original strut drag coefficient and A the amplification factor

which is the inverse of the Pitot pump vane efficiency (A = I/r]B)

The wheel disk friction power loss at the outer part of the rotating drum is deter-

mined by using the relation derived in Ref. 6 -

p = 3 I
w U 2 DCD+SB) Sw yg _ (13)

where yg denotes the specific weight of the gas surrounding the rotating drum.

To convert the above expression into the form of a head loss coefficient, the terms

which define the head and flow coefficients are substituted into the equation

HP = QHyf, resulting in the expression:

,2

Hp , C14)

Then, substituting the terms of Eq. 14 for P in Eq. 13, and rearranging and clear-
W

ing terms results in the following expression for head loss coefficient due to wheel

disk friction:

where Bw denotes the friction coefficient, yg the specific weight of the gas medium

surrounding the housing, and YF the specific weight of the flow inside the Pitot

pump. Thus, the power input can be expressed by an input head coefficient of the

form:

Pc = qth + qD + qw (16)

and, consequently, the efficiency by:

qad

C

(17)
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Pitot P_mp Calculated Performance Data

Single Pitot Head. The relations just presented may now be used to calculate the

maximum obtainable efficiency as function of specific speed and specific diameter

by calculating the head coefficient and efficiency as function of flow coefficient

for different values of the geometrical parameters. The relations:

N : (18)
s qad3/4 (D/_)

(D/6) qadl/4
and D = (19)

s

convert the flow coefficient and head coefficient data into specific speed and

specific diameter for single-headed Pitot pumps.

Analysis of available Pitot performance data shows that conventional designs can

be identified by loss and drag coefficients (Ref. 7). With these data, an N -D
s s

diagram as shown in Fig. i0 is calculated which shows a maximum efficiency poten-

tim of about 37 percent occurring at specific speeds of about 0.116, desiring a

geometry factor of D/_ = 12. Additionally, lines of constant Thoma cavitation

parameter are shown defined as:

NPSH
= (20)

Had

This parameter is calculated on the basis of a drag wake coefficient (Ref. S )

assuming a width-to-length ratio (t/fs, Pig. 8) of the strut of 0.i0. Lines of

constant cavitation parameter shown in Fig. I0 indicate that the o values increase

with increasing specific speed, and that a value of o = 0.008 would be required

for specific speeds which give the highest efficiency. Assuming a rotational

speed of 30,000 rpm, this value would correspond to suction specific speed of less

than 12,000, which appears reasonable for a first approximation.
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Double Pilot Head. A disadvantage of the geometry considered so far is that only

one Pitot pickup is provided within the rotating liquid. Thus, a comparatively

high radial load may be generated. This radial load can be eliminated by provid-

ing two Pilot pickups. This increases the drag, thus increasing the required

power input. Using the same characteristic data (loss coefficients and drag coef-

ficients) as used for the single pickup type, the Ns-D s diagram for a double Pitot

pickup is calculated and shown in Fig. 11. Comparing these two diagrams, it be-

comes apparent that the efficiency potential for the double Pilot pickup is de-

creased by about 6 to 8 points, but that the suction specific speed and optimum

geometry factors are hardly affected. The optimum specific speed is increased

somewhat as would be expected.

Comparatively little research on Pitot pumps has been published in the available

literature. Thus, it is not obvious that the loss factors used for the analysis

are the minimum obtainable values. Actually, it can be speculated that the Pitot

drag coefficient may be decreased with further research. Assuming, for example,

that the drag coefficient ($D) can be reduced by a factor of 2, Fig. 12 results,

which shows a maximum efficiency potential of 42 percent (as compared to 28 per-

cent quoted in Fig. II). An even higher increase in efficiency, namely up to

r = SO percent, appears possible if the drag coefficient can be reduced to the ideal

value of 0.16 and still retain an amplification factor of 2.5 (Fig. 13). If the

amplification factor can be reduced to 1.4, a maximum efficiency of 60 percent is

calculated as shown in Fig. 14. The corresponding N -D diagram is given in
S S

Fig. 15 showing that the optimum specific speed is still between 0.078 and 0.116,

and that the values for the Thoma cavitation parameter are identical to those re-

ported for the higher drag coefficients.

The calculated data are summarized in Fig. 16 and 17 by showing the optimum spe-

cific diameter (defined as that spec/fic diameter at which the highest efficiency

is obtained)as function of specific speed for the different loss assumptions

together with the required values for the cavitation parameter. It is evident

that the optimum specific diameter changes little with the loss assumptions and

that the cavitation value is affected only to a minor degree. The associated

efficiency, however, changes qui'te drastically as shown in Fig. 16.
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Design Considerations. The approximate dimensions and the approximate efficiency

potential for the pump design requirements are found when it is considered that

the specific speed is directly proportional to the rotative speed (while holding

QI/2/H3/4 constant), and that the specific diameter is proportional to the diameter

of the pump. Thus, rotative speed scales and diameter scales can be superimposed

on the specific speed and specific diameter scales of Fig. 17. Assuming that the

maximum allowable value for the cavitation parameter is _ = 0.01, it results from

Fig. 17 that the maximum allowable speed is 40,000 rpm and that for this condition

a pitch line diameter of D = 2 inches (5.08 cm) will be required. The associated

specific speed in N = 0.155. Thus, an efficiency potential of _ = 0.275 is obtained
S

for a double-headed Pitot pump and D = 0.35 for a single-headed Pitot pump if high

drag coefficients (_D = 0.5) are encountered (Fig. 16). When a design configura-

tion can be developed where the drag coefficient is reduced to _D = 0.16, a spe-

cific speed of N = 0.116 (i.e. rotative speed of 30,000 rpm and a pitch line
5

diameter of 2.5 inches 66.4 cm) would be preferable because then an efficiency

potential of 50 percent is calculated for double-headed pumps and even higher val-

ues (_ = 0.64) when the amplification factor can be reduced. A sketch of a pro-

posed p_p configuration is presented in Fig. 18.

BARSKE PUMP

The Barske pump is a low specific speed pump having an open-face impeller and rad-

ial vanes. Its relatively high efficiency at low specific speed make this type of

pump eligible for consideration in this study.

The primary variables investigated for selection of pump size were the speed and

the flow coefficient. The pump speeds considered were N = 25,000, 50,000, and

74,000 rpm. Although a flow coefficient of 0.07 is a typical design value for

inducers, values of 0.09 and 0.11 were also investigated. For the specified flow-

rate and a given value of flow coefficient, the pump inlet diameter will vary so

that the product of speed (N) and inlet diameter (DI) remains a constant. The

variation of inlet diameter with speed for three values of design flow coefficient

is shown in Fig. 19. Equation 1 shows that because both design flow and head are

fixed and, therefore, are constant for this analysis, the pump specific speed will

vary linearly with speed, as shown in Fig. 20.
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In the Barske pump with a small emission angle, the flow in the pump is very

closely approximated by a forced vortex flow. Thus, the pump head can be deter-

mined by a relation of the form:

H = (U_- U_)/2g + _RU_/2g (21)

The first term represents the increase in stati_ pressure in a forced vortex. The

second term represents the portion of the velocity head which can be recovered.

The theoretical head of the pump is found assuming full recovery, i.e., _R = 1.0.

The correct value of _R will depend primarily on the losses encountered in enter-

ing and passing through the diffusion system downstream of the pump. Barske (Ref. 8 )

quotes values of _R from 0.2 to 0.6, the higher values being obtainable only under

favorable conditions of good surface finish, low liquid viscosity, and optimum

diffuser design.

From Eq. 21 and the famil_ar relationships between pump diameter, speed, and blade

velocity, an expression for the impeller discharge diameter can be derived:

2
(U_- U_)_R U2

H = +

2g 2g

2

_D
U =

2

2 2 ,.2 2
D2 D 1

2gH = 4 4 +

2 2
2 _o _o

gH : D 2 (_--- + R-'_ )

2 2

"_ D 2

R 4

w2D 2

2

2 2
2LO 2

gH = (I + CR)_-- D 2 _-- D1

2 (1 ÷ _R ) 2= D 2 - D 1

2
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2 (1 * _R) 22 = D2 - DI
6O

2 (1 . ;R) 2__ 2D2 = 2 * D1 (22)
a3

The dependence of the diameter D 2 on the flow coefficient #, as occurs through

the parameter DI, is actually small; and considering the lack of adequate informa-

tion on the value of _R' there is no need to investigate D2 as a function of ¢.

Therefore, the values of D 1 corresponding to @ = 0.07 are here used to study D 2.

The resulting values of D 2 are shown in Fig. 21 as a function of pump speed and

and the pressure recovery coefficient, _R"

The power output of the pump is given by

p = _H (25)

where & is the weight flowrate. The theoretical power (Pth) is found by using the

theoretical head in Eq. 25. The hydraulic efficiency can then be expressed as:

P

= Pth + PL (24)

where PL is the power loss due to fluid friction in the pump itself. This power

loss consists primarily of disk friction losses and is given by Barske (Ref. 8 ) as:

PL = 75(10-6)16--_.4_ vO'2 [I-_I 2"8 (D24"6 + 1"28 D14"6)
(25)

where y is the specific weight of the fluid and v is the kinematic viscosity.

Using the properties of fluorine, the efficiency was determined for various values

of pump speed and pressure recovery coefficient. The results are plotted in Fig. 22.

It must be kept in mind that _R is not a parameter which can be arbitrarily chosen,

rather, it is determined by the design, particularly that of the diffusion system.

With the high pump speeds and fluid velocities of the pump under consideration

here, the value of _R obtained can be expected to be no greater than 0.4.
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The basic principle observed in designing the blade heights is to attempt to main-

tain a uniform velocity in the direction of through flow. Thus, if D 1 is the inlet

diameter, then

2

Dlb I r = (7/4) D 1 (26)

where b I is the inlet blade height and r the assumed ratio of free area to total

area due to boundary layers. A free-area ratio of 0.8 is a commonly used value

for such calculations. For the discharge:

_b2D2 -> _blD1 (27)

Therefore,

D 1

b 2- _ b 1
(28)

Since the efficiency of the pump is strongly affected by the losses in the discharge

diffuser system, it is desirable to design this part of the pump to minimize these

losses. The most desirable diffuser would be a cone with an 8.0-degree (0.140 rad)

included angle (Ref. _. The diffuser inlet area should be sufficient to handle

the required flowrate at a velocity of approximately U2, the impeller tip speed.

The length of the diffuser is chosen to give the desired velocity at the diffuser

discharge but must not be excessive in length to avoid boundary layer buildup.

One question which has not been adequately answered and which appears to be beyond

the present capabilities is the effect on the efficiency of the emission angle of

the pump, i.e., the arc over which the fluid is allowed to be diffused, before it

is discharged. Barske's basic design (Ref. 8 ) had the diffuser inlet tapped di-

rectly off the toroidal scroll with no volute section to collect the flow before

its entrance into the diffuser. Rocketdyne felt that a volute section was required

to help minimize the losses. To calculate the percent of emission of the circum-

ferential perimeter robe used for the volute, the desired throughflow velocity

(Cm) at the impeller discharge was chosen and substituted into the following

equation:

Q-q-c= zD2blS (29)
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Using the basic design principles discussed above, the operating parameters shown

in Table II were selected for the Barske pump, A sketch of the pump configuration

is shown in Fig. 23.

TABLE II. BARSKE PUMP DIMENSIONS

Pump Speed N =

Inlet Diameter D 1 =

Discharge Diameter D 2 =

Shaft Diameter D =
s

Inlet Blade Height b I =

Discharge Blade Height b 2 =

Diffuser Inlet Diameter =

Diffuser Length =

Diffuser Discharge Diameter =

SO,O00 rpm

0.686 in. (1.741 cm)

1.64 in. (4.17 cm)

0.375 in. (0.952 cm)

0.218 in. (0.554 cm)

0.102 in. _0.259 cm)

0.1175 in. (0.2980 cm)

0.75 in. (1.90 cm)

0.234in. [0.594 cm)
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TESLA PUHP

The Tes]a pump, an unconventional low specific speed pumping device, is similar

to the centrifugal pump with the exception of the rotor configuration. _e Tesia

pump rotor consists of many closely spaced disks as shown schematically in Fig. 24.

_e flow enters axially, flows through the narrow spaces between rotor disks, and

disci_arges radially into a collector with a low radial flow component.

The p_ping action in a Tesla pump is due to shear forces that produce peripheral

flow velocities which approach that of the disk velocity at the rotor tip. As a

consequence, the highest obtainable head coefficient is unity {Ref. I0).

: _ (30)
U
tlp

The Tesla pump operates at maximum efficiency in a specific speed regime of

7.75 x 10-5 :o 9.51 x 10 -2. This relatively low specific speed is realized from

the fact thai the rotor flow channels are extremely narrow and that the radial

flow component in the rotor channel is low.

The range of specific diameter corresponding to the maximum efficiency operation

is 24 to 24,000. The N -D relation for maximum efficiency is shown graphically
s s

in Fig. 23.

The .,s-Ds diagram reveals a pertinent characteristic of the Tesla pump. This

ci_aracteristic is thal for high pressure ratios or high head requirements at low

rotational speeds, an extremely large rOtOr diameter is required for maximum

efficiency.

Figure 26, in conjunction with Fig. 27, presents the efficiency characteristics as

a f_ncrion of geometry, flow range, and rotational speed requirements. Theoret-

ically, the rotor efficiency may be as high as 50 to 70 percent at any specific

speed, limited only by the parameter B as defined on the figures.

R-8494-I

5O



• i- ROT,_TI;',;G _"HS KS

[.
__L._INLE T

Figure 24. Schematic o£ Tesla Pump

R-8494-1

51



r.-4

3

10 _

10 _

10 2

10

t i

-i I

oL
10 -4 10-3 10 .2 10 -1

SPECIFIC SPEED, i_
S

m

Figure 25. Specific Diameter of the Tesla Pump

R-8494-I

52



i

II

_-I-- "

0

l

+

0d
O--

%-

0

_0 -
vii

m

m

_l. • • •

%
P

Io
ql.

i I
, , j o

Q

0

%

_2
Z

D'J

0

0
01-1

cU

ul

0

°_

0

eL

U_

+,,4

R-8494-1

$3



C-4

0

r--?

H

r_

0

0

Z

.6

.4

.2

A* = 10
2O

4O

7O

200/_ .....
/

lOO0

0

1.0 .8 .6

RADIUS RATIO, R/R.
i

.4 .2 0

_.= ROTOR EFFICIENCY

A* 81T_(R/R_ 2 2= -) PT

# = (D/aZ)J
t

Re*/8Z2

PT= (_2)_

9, = r,.rD/v
e

Figure 27. Calculated E£ficiency of the Tes-la Pump as a Function of Radius
Ratio and Flow Factor (According to Ref. 10)

/

R-_494-1

54



Due to the unconventional design concept and limited literature available, an

analytical effort was performed to determine the effects of viscosity, Reynolds

number, rotational speed, blade number, etc., on the efficiency and operating

characteristics of the Tesla pump.

A critical dimension for this type of pump is the spacing of the rotor blades.

The blade spacing parameter, a, is derived in Ref. II and 12 and can be expressed

as :

a v_-- K (51)

where K = 4 for laminar flow. It can be seen that blade spacing is only a func-

tion of viscosity and rotational speed. The optimum blade spacing for a laminar

flow regime then becomes:

a = 4 _ (32)

This equation suggests that the Reynolds number becomes a significant criterion

for pump performance, since _ is proportional to the Reynolds number. Laminar

flow requires a low local Reynolds number withint the rotor passages. The local

Reynolds number may be expressed as:

[U(r)disk [u(r)] 2a
= (33)

eloca I

where :

U(r)disk = local tangential velocity of the disk at any given radius

Cu(r) = average tangential velocity in the gap as defined by:

1 Cu(r, n)dn (33a)Cu(r) = a

Then, for low Reynolds number, high viscosity and i_ blade spacing is required.

These effects are presented in Fig. 28.
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Optimum blade number for the Tessla pump must be considered. ReferencelO indi-

cates that specific speed and specific diameter are related to the blade number

as follows :

KI @1/2 m3/4
C34)

1/'2

L\ az I /12

[ <"i"]K2 Drip
and D = 2Z 8Z 2 (3S)

S

¢112 m114

where ¢ = discharge flow coefficient.

U .

m =

(Cu)fluid

D . = rotor tip diameter
tzp

Re* = peripheral Reynolds number, Utip Drip

_J

(_6)

KI,K 2 : constants

These equations can be solved for Z:

DI/2 *I/4K. N R
s tip eZ =

m3/4¢i/2al/2
(37)

Figure 29 indicates the effect of vane spacing (a), and viscosity (u), on vane

number (Z).

Reasonable rotor axial length necessitates a reasonable number of blades, since

the spacing, a, and blade thickness are set by fabrication capabilities. Axial

length must not be excessive because of bearing overhang, maintenance of axial

clearances, and structural limitations.
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Equation 51 may be simplified by substitution:

Re = = L 229 J =K,

AUt ip (Z_Dtipa) (NDtip) (448)

_;1/4 112
• Dti _

1/4

I/2
= K_

QI/2

zll2Dtipal/2Nl_ 12

_,, ._QI/2 D 112 _I14 O 112 ZII2 all2 NIl2
" tip tip Drip

113/4 1/4 m3/4 QI/2 al/2

2
_, N7/4

' Dti P

H3/4 vll4 m3/4

K4,;7/2 4• Dtip

Z = H3/2 vl/2 m3/2 (38)

'" K', K", _" and K4 are all constants, which implies that small blade num-where _3'

bets derive from low rotational speeds, small tip diameters, high heads, and high

viscosity fluids. However, the N -D relation has limited low speeds to extremely
s s

large rotor diameters. For the application being considered, liquid fluorine is

specified as the pump fluid, which because of its low viscosity, forces the blade

number to be excessive. It appears that the Tesla pump is more applicable to

pumping more viscous fluids, at very low speeds and large tip diameters.

Figure 30 compares the calculated performance of the Tesla to that of the con-

ventional centrifugal pump. The _ and q vs ¢ curve indicates that the Tesla pump

has efficiencies that approach centrifugal pump efficiencies at very low flow

coefficients. At flow coefficients normally encountered the Tesla is much less

efficient than centrifugal pumps (Ref. 15).
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Pre liminar_ Design

After the analytical effort was made to determine the Tesla pump performance

characteristics, a preliminary design was conceived. A sketch of this design

is found on Fig. 31.

Design information and test data on the Tessla pump performance are very limited

and, as a result, theory was heavily relied on to produce the preliminary design.

A reasonable operating point (_ and _) was chosen after giving consideration to

Fig. 50. Radius ratio and _ad were obtained from Fig. 27, and rotational speed

chosen. Blade spacing and thickness are set by fabrication capabilities and are

about 0.020 inch (0.508 nun) and 0.040 inch (1.016 mm), respectively, which allowed

a choice of the required blade number, k'igh speeds [60,000 to i00,000 rpm) resulted
J

in very small rotor diameters but an excessive axial length. A speed of 50,000

rpm was chosen which resulted in a more reasonable rotor diameter and axial length.

The tapered inlet passage was designed to give a constant axial velocity just prior

to entering each blade passage. Axial and radial loads were calculated and found

to be small and no problem could be foreseen in thrust balance and bearing loads.

Due to the relatively long axial length, the collector design presented a problem

but a scroll collector with a single discharge seemed feasible. The diffusion

efficiency will be adversely effected by the required length of the collector and

conical diffuser.

Problems and Possible Solutions

Stud} of the present technology, design parameters, characteristics, and unusual

configuration has revealed several problem areas. These areas include performance

limitations, present fabrication capabilities, structural limitations, and seal

and bearing development.

The _4 -D diagram indicates a large rotor diameter is required for low speeds at
s s

maximum efficiency in order to generate high pressure differentials. This, how-

ever, forces the axial length to be excessive, as can be seen in Eq. 58 . T_e
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blade number required increases with the fourth power of blade diameter. The low

viscosity of LF 2 further increases the axial length. As a result, the Tesla pump

is characterized by its long rotor required for this application. The Tesla pump

therefore, is more applicable to pumping very viscous fluids at low speeds.

The Tessla pump is capable of high rotor efficiencies but at extremely low flow

coefficients. At flow coefficients expected for this application, the Tesla pump

does not offer outstanding efficiencies or head coefficients. Suction performance

is good and there is no apparent cavitation problem in the Tesla pump.

The blades of the rotor must be spaced very. closely to obtain satisfactory, per-

formance when pumping low viscosity LF 2. Fabrication capabilities limit this

spacing to 0.020 inch [0.508 mm) which is not sufficient to decrease the axial

length to any degree.

The rather long axial length over which the flow leaving the blades must be

collected imposes collector design problems, among which are diffusion and momentum

losses. A scroll collector with a single discharge appears to be a feasible solu-

tion to some of these problems as shown in Fig. 31.

Information concerning the design, performance, and test data is extremely limited,

and additional development effort would definitely be required.

DRAG PUT.IP

The drag pump, a low specific speed pumping device, is of the regenerative type

and derives its name from the pumping action. The drag pump rotor consists of a

disk with many short radial blades as shown schematically in Fig. 32. The flow

enters radially and is carried within the blade passages around the disk and dis-

charged radially through a port.

There are two conflicting theories of drag pump principle. One theory is that the

pumping of the fluid is due to purely centrifugal action. The other concerns a
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complex friction drag action. The flow pattern is a qombination of a peripheral

component and a circulatory component extending from the rotor hub to the rotor

tip within the rotor and returning from the tip to the hub in the channel. In

either case, the pumping action is regenerative and head coefficients greater

than one can be expected (Ref. 14 ).

"13e drag pump operates at maximum efficiency in a specific speed regime of 9 x 10"-

to 23.3 x 10 -2 . The range of specific diameter corresponding to the maximum effi-

ciency operation is 2.38 to 23.8. The Ns-D relation of the drag pump is presenteds

in Fig. 33 and 34. Note that the drag pump operating range closely resembles that

for the Pitot pump.

The efficiency may be expressed as a function of head, fluid viscosity, and

rotational speed as (Ref. 1S ):

1-K1

• _)_
(39)

where KiK 2 > I/3, or the efficiency may be expressed as (Ref. 14 ) :

:[i× (x-l)
(40)

wh e re

x = i/,

), = casing drag
rot or drag

Reference 14 states that optimum performance occurs at X = 2 and k = .I, i.e.,

max. = 45%. It is evident that _ must be small (large rotor drag) and X, large

(Io_' tip speeds).
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For a specific speed less than 0.09, the drag pump yields higher efficiencies

than the conventional centrifugal pump (including both the full and partial admi-

ssion) for _ 2 and _ = 2 to 2.5 {Fig. 54).

Equation 39 above indicates the effect of viscosity on efficiency. Drag pumps,

evidently, are more efficient pumping highly viscous fluids at low speeds. As

stated before, LF 2 is of relatively low viscosity. High viscosity increases rotor

drag which would reduce _ and further improve the efficiency according to Eq. 40 .

For a given flow the rotor drag is a function of blade number and, in general,

efficiency and head increase with the blade number (Ref. 14 ).

lligh pressure ratios require a large ratio of rotor drag area to through flow

area so that Utip/C m is comparatively small, according to Ref. 14 . This, of

course, limits the rotor to low tip speeds.

There is only limited information available on the design of the drag pump and

even less test data available for verification of the present theories. For this

reason, the preliminary design of the drag pump involved scaling a commercial

pump of known performance. X and D were maintained and the efficiency wass s

adjusted to include sizing effects according to Ref. 2 Figure 55 is the pre-

liminary design sketch.

Che calculated axial load was negligible but the radial load on the bearings

proved to be quite considerable because of the inlet and discharge configuration.

To help reduce these loads, staging was considered. Two stages proved adequate

and were capable of balancing the radial loads to within a tolerable level. Also,

the two stages allowed a decrease in shaft speed and tip diameter which increased

the predicted efficiency slightly.

Problems

The drag pump presents several problems concerning its low efficiency, high radial

loads, complexity of multistaging, sensitivity to axial clearances, high rubbing

speeds, and suction performance.
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Even though the drag pump has low efficiency, it is of quite simple design and

inexpensive to fabricate. However, minimum axial clearances are required to reduce

the leakage which includes leakage between the inlet and exit port, between the

rotor hub and casing, and shaft leakage. This total leakage may be as great as

15 to 20% of the delivered flow. The leakage is extremely sensitive to axial

clearance.

Reference 14 states that optimum axial clearance to blade width ratio should be

0.01 to 0.02. Then, for the preliminary design (blade width of 0.18 inch, 0.46

cm) the axial clearance becomes approximately 0.002 inch (0.0508 n_). This tight

clearance introduces possibilities of rubbing at speeds approaching the rotor tip

velocity.

The high relative velocity between the incoming fluid and the rotor will result

in poor suction performance. No data concerning suction performance are presently

available.

The preliminary analysis and design has revealed that the drag pump suffers from

low efficiencies and poor suction performance. Even though it appears to be of

simple design and inexpensive to fabricate, the drag pump seems to be more suitable

for pumping quite viscous, nonreactive fluids at low" tip speeds and lower specific

speed requirements.

PUMP EVALUATION (ROTATING)

The data generated for the various pump concepts are stm=narized in Tables III and

IV.

Utilizing the design data, an evaluation of the technology level of each design

to establish development costs and a cost analysis based on the layout drawings,

the rating matrix of Table V was completed.

On the basis of the rating matrix of Table V, the centrifugal pump was selected

as the best rotating pump concept for this application.
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TASK II: ROTATING PU_ DESIGN

The final design effort consisted of finalizing the hydrodynamic design of the

inducer, impeller, and related flow passages and finalizing the mechanical design

of the pump assembly including bearing and seal packages. A discussion of this

effort follows.

HYDRODYNAMIC DESIGN

Several unique problems were influencing factors in the hydrodynamic design of the

pump. The leakage flow in a pump of this size is a major problem since the leakage

paths return the fluid to the impeller eye. Provisions must be made for this

effect on the impeller inlet fluid angle to maintain adequate incidence angles.

The leakage flow was calculated as being 60 percent of the delivered flow (7.2

gpm, 4.55 x 10 -4 mS�s) or 37.5 percent of the total flow pumped by the impeller.

The inducer preceding the impeller will not be affected by this additional flow

and, therefore, will be of correspondingly smaller diameter than the impeller eye

diameter. The inducer design information is presented in Table VI. The inducer

is a low head coefficient, high suction performance inducer developing 157 feet

{42 m) of head with a suction specific speed of 11.9 based on dimensionless units

at 75,000 rpm. The inducer is a helical design with variable lead, having an in-

let tip blade angle of 7 degrees (0.122 tad) and discharge tip blade angle of 9

degrees (0.157 rad). The blade angle versus axial distance from leading edge is

presented in Fig. 56. Based on the minimum required NPSH to the inducer of 16

feet [4.88 m), plus the expected inducer head rise, the impeller suction specific

speed needs to be 2.75 in dimensionless units. This is well within current

practice.

The impeller selected is a six-vane, shrouded, centrifugal impeller. The impeller

discharge blade angle is 25 degrees (0.436 rad) measured from the tangential dir-

ection. A steeper blade angle at discharge would produce a positive head versus

flow curve slope at the low flowrates resulting in possible instabilities. The

impeller design information is presented on Table VII. The impeller tip speed is

426 ft/sec (130 m/s) which is not exceedingly high for pumps of this type. The
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TABLE VI. INDUCER DESIGN INFORMATION

Type

Speed

Plow

Developed Head

NPSH, minimum

Required Suction Specific Speed

Blade Angle, Inlet Tip

Blade Angle, Discharge Tip

Solidity

Inlet Flow Coefficient

Numver of Vanes

Inlet Tip Diameter

Inlet Hub Diameter

Discharge Tip Diameter

Discharge Hub Diameter (blading)

Vane Thickness, Tip

Vane Thickness (0.27-inch

diameter)

Cant Angle

Variable lead helix

75,000 rpm

12 Kpm (7.57 x 10-4 mS/s)

137 feet (41.76 m)

16 feet (4.88 m)

11.9

7.0 (0.12 tad)

9.0 (0.16 tad)

_2.5

0.07

3

0.64 inch (1.626 cm)

0.27 inch (0.686 cm)

0.64 inch (1.626 cm)

0.404 inch (I.026 cm)

0.010 inch (0.254 mm)

0.020 inch C0.508 mm)

15 degrees (0.262 tad)
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TABLEVII. IMPELLERDESIGNINFORMATION

Type of Impeller

Speed

Through Flow

Leakage Flow

Pump Head

Specific Speed

Required Suction Specific Speed

Blade Angle, Discharge

Blade Angle, Inlet Tip

Blade Angle, Inlet Hub

Discharge Fluid Angle

Inlet Flow Coefficient

Discharge Flow Coefficient

Number of Vanes

Impeller Eye Diameter

Impeller Discharge Diameter

Discharge Tip Width

Shrouded radial

75,000 rpm

12.0 grpm (7.57 x 10 -4 m3/s)

7.2 Epm (4.54 x 10 -4 m3/s)

2265 feet (690.4 m)

0.364 (total flow)

2.78

25 degrees (0.44 rad_

19 degrees (0.33 tad)

27 degrees (0.47 tad)

12.8 degrees (0.22 rad)

0.1023

0.052 (negligible blockage)

6

0.75 inch (1.905 cm)

1.30 inches (3.302 cm)

0.044 inch (0.112 cm)
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60-percent leakage flow (37.5 percent of total flow) mentioned previously enters

the impeller eye from the front wear ring and also from bleed holes in the impeller

hub which set the balance cavity pressure. This flow at inlet was assumed to have

a tangential velocity C u of one-half the rotor velocity. The impeller inlet blade

angle requirement was determined utilizing this assumption in conjunction with the

inducer discharge flow pattern and blade blockage. It was assumed that the impeller

inlet blade angle would be set at zero incident angle.

Figure 37 presents the meridional cross section of the impeller scaled 20 times

size. The horizontal reference line is parallel to the shaft centerline, but is

located 4 inches CI0.1 cm) above it on this 20 times size drawing. The stream-

lines 1 through 4 are also indicated.

Figure 38 is the blade angle distribution for the four streamlines shown in Fig. 37.

On streamline No. 4, the angle goes above 27 degrees (0.471 tad} because a slight

S-shape is necessary. To eliminate the S-shape would require a lengthening of the

streamline to such an extent that the difference in wrap between streamlines No. 1

and No. 4 would be too great. This lengthening of the theoretical streamline (or

blade wrap} would result in an excessive vane leading edge forward sweep with a

proportional increase in flow area reduction or blockage. It would also require

a large deviation of the blades from being normal to the shrouds, which is under-

sirable from an efficiency standpoint due to the increased flow passage surface

area. All vanes are 0.020 inch _0.51 mm) thick starting at the inlet, increasing

to 0.028 inch [0.71 _n), and then decreasing to 0.020 inch (0.Sl mm) again at the

discharge. This will provide adequate structural rigidity of the vanes.

The relative velocities in the impeller were calculated using a computer program

described in Ref. 16. The average relative velocities of the flow in the three

stream tubes between the four streamlines previously described is presented in

Fig. 59. The flow is from right to left in the figure. The relative velocity

distribution is within limits considered by Kocketdyne to be good practice. The

vane pressure distribution is given in Fig. 40. The impeller blade loading program of
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Ref. 16 indicates the slip would result in a discharge fluid angle of 12.8 degrees

(0.223 rad) for a zero pressure difference from suction to pressure side at the

discharge. This is the value which was used in the blading analysis. According

to R. B. Furst (Ref. 17), Pfleiderer, and Stodola, the discharge fluid angle is

between 10.9 and 11.7 degrees (0.191 and 0.205 rad) if the pressure differential

across the vane at the discharge is not held at zero. These values show slightly

less slip than if the zero pressure differential criterion is maintained.

Wear rings are used on the front and back impeller shrouds to restrict leakage and

to obtain a net axial thrust of zero for the pump. The wear ring diametral clear-

ances are set at 0.003 to 0.004 inch (0.076 to 0.102 mm) to avoid contact of the

impeller with the wear ring. The axial thrust calculations indicate for a front

wear ring diameter of 0.830 inch (2.110 cm) the wear ring _:Jst be at 0.880 inch

(2.240 cm) in diameter to obtain zero axial thrust. The balance cavity pressure

is controlled by a set of bleed holes drilled axially through the impeller hub

connecting the impeller eye to the back casing.

To minimize the radial loads on the pump bearings, the volute around the periphery

of the impeller discharge was designed to provide constant radial pressure. The

volute flow area increases with length slightly faster than that required for con-

stant fluid velocity. This causes a slight amount of diffusion and pressure rise.

This pressure rise is calculated to be equal to the pressure losses experienced

by the fluid due to friction on the collector sidewalls. With this method, a con-

stant pressure is developed within the periphery of the collector eliminating

radial loads. The collector is connected to a single discharge conical diffuser

with an 8-degree (0.140 tad) included angle for efficient diffusion. Estimated

performance of final design is shown in Fig. 41.

MECHANICAL DESIGN

The pump consists of an inducer, impeller, volute and a discharge diffusion cone.

The final rotating pump configuration is shown in Fig. 42. It has a single shaft

mounted on two ball bearings. The bearings are separated by a bearing spacer on

the shaft. The inducer and impeller are overhung on one end of the shaft and the
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dynamic seals are outboard of the bearing on the other end of the shaft. The bear-

ings are lubricated by the pumped fluid. The seal package is of the conventional

design, a primary face riding seal, an intermediate purged shaft riding seal and

a secondary face riding seal. Due to the small pump size, an unconventional method

of volute construction was required.

Casting was chosen as the method of fabrication for the impeller because of its

small size. The physical properties of INCO 718 best met the impeller requirements;

therefore, all other parts except the bearings and seals were made of INCO 718 to

eliminate the problems of thermal contraction associated with the usage of differ-

ent materials at cryogenic temperatures. The bearing inner race, outer race, and

ball material is AISI 440-C. This material has shown in past usage to be the best

bearing material for cryogenic applications. The bearing ball cage material is

K Monel. The primary seal nose material is an aluminum oxide (AL203) plasma-sprayed

coating on a nickel-chrome mixture base running against the bearing inner race

coated with AL205. It has INCO 718 bellows. The intermediate seal is two BaF 2-

CaF 2 composite _sintered Inconel 600 with a BaF2-CaF 2 filler) floating gap, solid

rings, purged, running on a BaF2-CaF 2 coated surface of the INCO 718 shaft. The

secondary seal is a carbon PSN nose insert, INCO 718 bellows face type seal running

on a chrome-plated INCO 718 mating ring.

The shaft is made from an INCO 718 bar heat treated to a tensile strength of 180,000

to 200,000 psi (1240 x 106 to 1580 x 106 N/m2). It incorporates the mating surface

for the intermediate seal. The bearings, bearing spacer, and impeller are installed

on the shaft with a press fit. This type of assembly results in a stiffer shaft

raising the critical speed.

The impeller is an INC0 718 investiment casting. The selection of a cas_ing for

this part resulted from a study of several methods of manufacturing and was dic-

tated by the part size and the requirement of shrouding the vanes. The part cannot

be machined from a forging because of the large wrap angle of the vanes. Machining

an open face impeller was quite feasible but any method of bonding or attaching the

shroud to the thin vanes was impractical. The impeller is keyed to the shaft and

retained by the impeller nut. The impeller nut also maintains the preload in the

shaft.
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The inducer is machined from an INCO 718 forging and threaded to the shaft as a

nut. It pilots to the shaft on a machined internal pilot diameter. A washer

which is keyed to the shaft is sandwiched between the inducer hub and the impeller

nut. This washer is deformed into slots in both the inducer hub and the impeller

nut locking both into place.

The volute or scroll is machined in two halves--one half in the inlet and the

other half in the volute housing. The inlet half contains the pump inlet, the

front impeller seal land and the front half of the discharge scroll. The volute

housing contains the rear impeller seal land, the rear half of the discharge

scroll, and the discharg_ diffuser cone. Other parts contained in the volute

housing are described later. The inlet and volute housing are machined from

INCO 718 bar and plate stock, heat treated to a tensile strength of 180,000 to

200,000 psi (1240 x 106 to 1580 x 106 N/m2). The scroll portions of the inlet

are machined as concentric surfaces (Fig. 43). The scroll is obtained by machin-

ing the volute outer periphery on the volute housing as a spiral. The discharge

cone was offset by 9 degrees (0,157 tad) so a continuous flat split line could be

obtained for a proper sealing surface. The two halves are bolted together and a

standard K seal is used at the split line to prevent fluorine leakage.

The front bearing is an 8-mm bore angular contact ball bearing equipped with an

outer land riding cage. This bearing is a separable assembly with no ball retain-

ing lip on the low shoulder of the inner race. The second or rear bearing has

an 8-mm bore with a larger, nonstandard 0D of 1.0700 inches (2.7178 cm). It is

a split inner race bearing equipped with an outer land riding cage. The reason

for this nonstandard bearing was to reduce the shaft overhang by incorporating

the primary seal mating ring as the inner race of the bearing. The rear half

of the split inner race will have an AL203 coating on the primary seal side. It

will be lapped and polished and serve as the mating ring. The bearings are housed

in the volute housing. The rear bearing is held in the axial direction and the

preload is obtained by spring loading the outer race of the front bearing in the

aft direction. The bearings are submerged in and cooled by the pumped fluid.

A passageway is drilled in the volute housing which allows a metered amount of
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Figure 43. Centrifugal Pump Inlet and Volute Housing Sections
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coolant to flow from the impeller back face to the primary seal side of the aft

bearing. This coolant fluid flows through both bearings and is discharged behind

the inducer through holes drilled in the impeller hub.

The seal package is mounted to the volute housing. It is composed of a primary

face seal, a purged intermediate shaft seal, and a secondary face seal. The purge

gas enters the intermediate seal and flows in both directions, forward and aft,

along the shaft. This purge gas scavenges the seal leakage of the primary and

secondary seal overboard through separate seal drains.

The pump is mounted by a flange welded to the volute housing and sized to fit the

facility hardware.

DRIVE DESIGN

The drive system originally intended for the centrifugal pump (Fig. 44 ) con-

sisted of a commercial gas turbine coupled with a splined quill shaft to a

torquemeter, which in turn was coupled to the pump shaft with another quill

shaft. The turbine selected was an AiResearch Model T04 turbocharger turbine.

The torquemeter was manufactured by Himmelstein and Company (Model 3S-08T, 16-i).

This same basic drive train was subsequently used to drive a bearing and seal

tester shaft on the AMPS program (Ref.28). During this test program, severe

rotordynamic problems were encountered with the drive train, which eventually

resulted in structural damage to the torquemeter. In view of the above exper-

ience, it was decided to fabricate a low-cost aluminum breadboard turbine to

drive the centrifugal pump. The configuration of the breadboard turbine drive

is presented in Fig. 45. The aluminum turbine disk is mounted directly on

the pump shaft in place of the original drive spline. It incorporates six

straight radial vanes for gas path elements. The manifold is of welded alum-

inum breadboard construction, with four equally spaced drilled holes serving

as the nozzle. Ambient gaseous nitrogen is used as the driving fluid.
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In addition to simplifying the rotordynamics of the drive system, the inte-

grally mounted turbine drive has the advantage of simulating the concept of

an overhung turbine, which would be used in an actual engine application..

STRESS AND DYNAMIC ANALYSIS

The structural analysis of the centrifugal pump was based on the following

parameters:

PaT amet er

Speed, rpm

Power, hp

Torque, in.-Ib

Discharge Pressure, psi

Nominal

75,000

18.5 (13.8 kw)

15.5 (1.75 Nm)

1500 (1.034 x 107 N/m 2)

Maximum

82,500

26.4 (19.7 kw)

20.2 (2.28 Nm)

1800 (1.241 x 107 N/m 2)

All parts are structurally adequate for the imposed operating conditions. The

stresses reported herein are limit stresses, which are 20 percent greater than

the predicted maximum operating values. In many areas, material selection and

section thicknesses were based on thermal compatibility, or functional and

manufacturing requirements, rather than structural need.

Impeller

The impeller is made of cast INCO 718. The impeller backplate burst speed is

184,900 rpm, resulting in a safe operating speed of 138,700 rpm for the backplate

only. The Wanes are adequate for the maximum speed of 82,500 rpm. The inlet
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edge of the impeller vanes is the most highly stressed portion of the vanes. This

is due mainly to the relatively large overhanging inlet portion of the shroud

which serves as the impeller seal ring. The vane limit stress at the impeller

inlet is 93,900 psi (6.47 x 108 N/m2), which includes 16,900 psi (1.16 x 108 N/m 2]

direct centrifugal stress and 77,000 psi (5.31 x 108 N/m 2) centrifugal bending

stress. The vane shear stresses and shroud bending stresses are low. A summary

of the stresses and safety factors is presented in Fig. 46.

Inducer

The inducer is machined from wrought INCO 718 and is structurally adequate for

the imposed operating conditions. The hub stresses are low. The vane limit mean

stress is S0,000 ps i [5.45 x 108 N/m 2) at the critical point on the vane. The

corresponding limit alternating stress is 13,500 psi [9.17 x 107 N/m2). A summary

of the inducer stresses and factors of safety is presented in Fig. 47.

Shaft

The dynamic response of the shaft was predicted as part of the rotordynamic ana-

lysis. The results of this study indicated that the relationship between deflec-

tion at the coupling and moment at the critical section of the shaft varied with

speed, with a smaller moment for a given deflection resulting as the speed in-

creased. The shaft deflection limitations presented in Fig. 48 were generated

utilizing this information. The pump shaft, machined from wrought INCO 718, is

adequate for the imposed operating conditions providing the shaft deflections,

measured at the pump coupling, remain within the limits presented in Fig. 48. The

limit torsional stress in the shaft is 6100 psi (4.21 x 107 N/m2), and the axial

stress due to nut preload is 41,300 psi (2.85 x 108 N/m2). The shaft deflection

limit is based on a combined bending and axial preload stress of 77,700 psi (5.56

x 108 N/m2). The deflection will be monitored during testing with a Bently prox-

imity transducer.



Haterial:

Haterial Properties:

Property

Ftu, ksi

Fry, ksi

Elongation, percent

P/N RL001403E

Heat-treated, cast INCO 718

Room Temperature

140 (9.65 x 108 N/m 2)

100 (6.90 x 108 N/m 2)

12

Impeller Backplate Stress and Burst Speed:

Average Tangential Stress at 82,500 rpm

_aximum Tangential Stress

Burst Speed

Yield Speed (gross yielding)

Backplate Safe Operating Speed

_.laximum Radial Stress (Compressive stress

due to impeller fit on shaft; this occurs

-300 F (88.7 K)

150 (i.03 x 103 N/m 2)

112 (7.72 x 108 N/m 2)

12,150 psi (8.38 x 107 N/m')

22,320 psi (1.54 x 108 N/m 2)

184,900 rpm

214,300 rpm

138,700 rpm

-24,400 psi (-1.68 x 108 N/m 2)

at 0 rpm)

Limit Vane Stress: Direct Centrifugal Total

Wrap Angle, Centrifugal Bending Centrifugal Factor

degrees (OD Stress, Stress, Stress, of Safety

is zero degrees) ksi (107 N/m 2) ksi [107 N/m 2) ksi (107 N/m 2) on Ultimate

I0 0 78.5 (54.12) 78.5 (54.12) 1.9

40 5.6 (3.86) 42.8 (29.51) 48.4 (33.37) 3.1

80 6.1 (4.21) 60.7 (41.8S) 66.8 (46.06) 2.2

114 16.9 (ii.65) 77.0 (53.09) 93.9 (64.74) 1.6

Fluid bending stresses are less than 2700 psi (1.86 x 107 N/m 2) (limit), and they

subtract f_om t_e centrifugal stresses. Shroud Bending Stress, 12,200-psi limit
(8.41 x I0- N/m-)

:igure46. Centrifugal Pump Impeller Stress Analysis
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Haterial:

Material Properties:

Property

Ftu, ksi

Fty, ksi

Fte, ksi

Elongation, percent

P/N RL001402E

Heat-Treated, Wrought INCO 718.

Room Temperature

175 (1.21 x 109 N/m 2)

145 (i.0 x 109 N/m 2)

42 (2.9 x 108 N/m 2)

"A"

1300 F (88 J 7 K)

213 (1.47 x I09 N/m 2)

162 (1.12 x 109 N/m 2)

55 (3.79 x 108 N/m 2)

10 12

Limit Hub Stress:

Tangential Centrifugal Stress at Worst Section, Point "A":

Due to Blade Weight 2660 psi (1.83 x 107 N/m 2)

Due to Hub Weight 2310 psi (1.59 x 107 N/m 2)

Total 4970 psi (3.43 x 107 N/m 2)

Tangential Stress due to Pretorque of 15 in.-Ib (l.70Nm):

= 10,700 psi (7.38 x 107 N/m 2)

Limit Blade Stress:

Stress at Worst Stress Point

Direct Centrifugal Stress

Centrifugal Bending Stress

Fluid Bending Stress

Mean Stress

Alternating Stress

Combined Steady-Fatigue Failure Factor

of Safety

130 degree (2.27 tad) wrap

3.0 ksi (2.07 x 107 N/m 2)

-19.5 ksi (-1.34 x 108 N/m 2)

66.5 ksi [4.59 x 108 N/m 2)

SO.O ksi (3.45 x 108 N/m 2)

13.3 ksi (9.17 x 107 N/m 2)

2.0

Figure 47. Centrifugal Pump Inducer Stress Analysis
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The shaft limit stresses are summarized in Fig. 49. The safety factors are based

on room temperature properties. At operating %emperature the shaft will be colder

and the actual safety factors will be higher; since the safety factors were satis-

factory even for a conservative assumption of room temperature level, a detailed

heat transfer study to establish the actual levels was not required.

Volute and Inlet Housing

The volute and inlet housings are made of wrought INCO 718. The stresses in both

are low, and present no structural problem.

Bearing Preload l_asher

The bearing preload washer is made of wrought INCO 718. The washer dimensions

_ere selected to provide an axial load of 60 pounds (266.9 N) with an axial de-

flection of approximately 0.010 inch (0.254 mm). At the 60-pounds (266.9 N) load,

the maximum stress is below the allowable yield stress. The stresses are summar-

ized in Fig. 50.

_liscellaneous Components

All of the fasleners and other miscellaneous components have been selected to

provide adequate factors of safety for both the preload conditions and maximum

operating conditions.

ROTORDYX._HC MEALYSIS

The critical speeds of the rotating assemblies were calculated by a finite

element method. A series of concentrated masses and inertias (which include

the gyroscopic effect) connected by beam elements were used to model the rotor.

Bending and shear effects were included in the beam element formulation. The

radial stiffness of the bearings was treated as linear springs to ground.

Critical speeds predicted by this method have been verified on other programs
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Hateria1: Heat-treated, wrought INCO 718.

".aterial Properties at Room Temperature:

Ftu, ksi 180 (1.24 x 109 N/m 2)

Fry, ksi IS0 (l.0S x 109 N/m')

Fie, ksi 42 (2.90 x 108 N/m 2)

Limit Shaft Stress at Critical Section, Section A:

Steady Torsional Stress

Alternating Torsional Stress

Axial Preload Stress

Bending Stress

6100 psi (4.21 x 10' >(,In-)

300 psi (2.07 x 106 N/m 2)
9

_I,300 psi (2.85 x 108 X/m-)

The shaft deflection is limited as indicated in Fig. 49;

the combined bending and axial preload stress corresponding

to this limitation is 77,700 psi {5.36 x 108 N/m2).

Factor of Safety on Combined Stead}' and Fatigue Stress: 1.5

Limi: Combined Tension-Torsion Stress at Point "B" due to

Impeller Retaining Nut Load, 120,000 psi C8.27 x 108 N/m2).

Factor of Safety on Combined Tension-Torsion Stress: !.S

Figure 49. Centrifugal Pump Shaft Stress Analysis
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Material: Heat-treated, wrought IN(0 718

Material Properties:

Property

F ksi
tu'

F ksi
ty'

Room Temperature

175 (1.21 x 109 N/m 2)

145 (I.00 x 109 N/m 2)

Stress and Deflection for 60 Pounds (266.9 N) Load:

Deflection

6 = 0.086 inch (0.218 mm) to 0.0106 inch (0.269 _n)

Stress

_min = -140,000 psi (-9.65 x 108 N/m 2)

Cmax = 93,000 psi (6.41 x 108 N/m 2)

These stresses are less than yield strength.

Figure S0. Centrifugal Pump Bearing Preload Washer Stress Analysis
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by rotor displacementmeasurementsandby accelerometermeasurements.Reso-
nant amplification of rotor unbalance response can be limited by avoiding steady-

state operation within ±20 percent of an)" synchronous critical mode. This cri-

terion reduces the dependency on damping and makes rotor response primarily a

function of unbalance which can be controlled. The bearing radial stiffness

values were calculated as a function of axial preload. The axial load will be

set during assembly by preloading the bearings against each other with a shimmed

Belleville spring.

The rotordynamic behavior of two candidate drive configurations were examined.

The initial configuration evaluated included a separate drive turbine connected

to the pump through two quill shafts and a torquemeter, as shown in Fig. 51.

The critical speeds for the various modes are shou_ in Table VIII and the critical

speed versus pump bearing spring rate is shown in Fig. 52. The mode shapes at

the calculated critical speeds are shown in Fig. 53 and Fig. 54 for pump bearing

spring rates of 104 Ib/in. (1.75 x 106 N/m) and i0 S ib/in. (17.5 x 106 N/_I),

respectively. In these figures, the maximum deflections are assigned a value

of unity and deflections at other points of the rotor are indicated as fractions

of the maximum deflection.

The presence of four critical speeds below the operating range indicated poten-

tial problems during speed buildup or at low-speed operation. Furthermore,

subsequent experience with a similar drive system showed that it would be dif-

ficult to maintain a long drive train of this type stable at high operating

speeds. As a result, the integral drive turbine concept shown in Fig. 4S was

adonted. The results of the critical speed analyses conducted for the integral

turbine rotor configuration are included in Fig. 55 through 58. For the pie-

dieted bearing spring rates of i05 ib/in. (17.5 x 106 N/m), only one critical

speed, at 27,900 rpm, was calculated below the operating speed of the pump.

REDUCTION IN POWER LOSSES USING GAS CAVITIES

In centrifugal pumps, a considerable amount of power can be absorbed in the rotor

housing space due to fluid friction and from leakage of high-pressure fluid back

to the pump inlet. In pumps of low specific speed and small dimension the leakage

R-8494-I
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TABLE VIII. CRITICAL SPEEDS FOR VARIOUS
MODES A.ND ESTIMATED BEARING SPRING RATES

Mode No. Critical Speed

K : 104 Ib/in.

22,700 rpm

26,600

40,700

44,400

53,800

117,600

K = i0 S ib/in.

26,600 rpm

40,700

53,000

53,800

113,600

121,800

V.

_=

120000

IO0000

80000

60000

40000

20000

0

T
+

I /

lO t'

MODE 6

MODE 5

OPERATING SPEED

MODE

MODE 3

MODE 2

MODE 1

L i i , I

10 5

PUMP BEARING SPRING RATE, K, Ib/in

Figure 52. Critical Speed vs Pump Bearing Spring Rate
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NOTE:
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Figure 56. Mark-36 Pump With Turbine Drive, Critical Speed
Mode Shapes
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Figure 57. Mark-36 Turbine Coupled to Vortec A*20 Dynamometer,
Critical Speeds
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NOTE •

1)
2)

3)

FORWARD SYNCHRONOUS PRECESSION ASSUMED

ALL HEARING SPRING RATES EQUAL 5 x i0 _ LB/IN

COUPLING AT DYNAMOMETER TREATED AS CONTINUOUS ELASTIC ELEMENT

SECOND CRITICAL = 2_I0_9 RPM
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Figure 58. Mark-S6 Turbine Coupled to Vortec A-29 Dynamometer,

Critical Speed Mode Shapes
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loss can be very high. A study has been made in an attempt to minimize the power

loss from these effects.

A close examination of the loss mechanisms would provide a clue as to a method

by which they may be reduced. Disk friction in a centrifugal pump requires that

power be used to rotate the fluid adjacent to the impeller shrouds. The average

velocity of this fluid is in the order of 50 percent of the angular velocity of

the shroud since the configuration of a centrifugal pump shroud approximates very

nearly a rotating disk surrounded by fluid and enclosed in a housing. The moment

due to frictional resistance on an enclosed rotating disk can be expressed by the

equation

T = I/2 %,I0_ 2 R5 C41)

where

= mass density of the fluid, slugs/ft 3

R = disk radius, ft

_M = moment coefficient

The moment coefficient is a function of disk-housing clearance, disk roughness

and Reynolds number. The Reynolds number CRe_ is defined as:

R2
R = -- (42)
e

The moment coefficient has been obtained experimentally by Daily and Nece (Ref. 18 )

and others (Ref. 19 and 2_. Data from these sources for smooth disks are pre-

sented in Fig. 59. Agreement among these sources is very good.

As is evident from Eq. 41 , the disk friction is greatly influenced by the angular

velocity and size of the pump. It would, therefore, be advantageous to reduce

these values in order to reduce the disk friction. For a given pump, the required

head and flow restrict the speed and diameter. In rocket propellant pumps high

speed and small diameters are more desirable. The size and speed fixes the power

loss due to disk friction for a given density and viscosity of the fluid acting on
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the shrouds. The operation of a gaseous cavity acting over the shrouds of an im-

peller could reduce friction loss considerably. Figure 60 presents disk friction

power loss on an impeller front shroud acting in fluorine as a function of tempera-

ture. The static front shroud pressure is 1500 psia (1.03 x 107 N/m 2) (well above

the critical point pressure). As the temperature increases the density decreases

resulting in a decreased power loss.

The maintenance of a stable gas cavity is a difficult problem. Calculations indi-

cate that seals would be necessary to entrap or maintain a gas cavity with the

requisite qualities of low density and high pressure. The low density is required

to minimize friction but the high pressure is necessary to maintain positive leak-

age from the cavity for stability. Both requirements could be satisfied by tapping

high pressure fluid from the pump discharge and passing it through a heat exchanger

to reduce its density. Assuming the gas cavity inner seal has a clearance of

0.0005 inch (0.0127 mm), the impeller eye leakage flow would be 0.0706 Ib/sec

(0.0525 Kg/s) at 760 R (422 K} or 8.5 percent by volume of the pump delivered

flow for a 12 Epm [7.57 x 10 -4 m3/s) fluorine pump. This leakage would be injec-

ted into the impeller inlet and could cause severe cavitation problems. An energy

balance indicates the mean inlet fluid temperature if completely mixed would be

increased from 159 R to 165 R (Be R to 92 K). This, in turn, would cause a mini-

mum increase in required inlet NPSH of 14.5 feet (4.4m) at the impeller eye.

Of prime importance to the study is the fact that the pump axial thrust balance

must be maintained. This requires that the pressure distribution and acting areas

on the front and rear impeller shrouds must be manipulated simultaneously to main-

tain this balance. Thrust balance limits the location of wear ring placement for

minimum power loss. A method designed to eliminate this restriction is the use of

a gas operated balance piston in the _,icinity of the seal package which would con-

trol axial thrust. This would allow the pump to be designed for optimum effi-

ciency since the gas cavity on the impeller shrouds is severely handicapped by

axial thrust control problems. The use of helium is ideal for the gas operated

balance piston pressurization due to its low density and inert qualities. This
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concept of a gas operated piston balanced pump is presented in Fig. 61. The

piston is located between the primary fluorine face seal and the turbine gas seal

with an intermediate floating gas seal on the piston outer diameter. Friction

losses of the seal and piston are small.

Figure 61 presents the impeller front shroud gas cavity used in conjunction with

a smooth rear shroud without a rear wear ring. The axial thrust imbalance is

taken up by the balance piston.

Data indicate that the disk friction is reduced when an open face impeller is used

in place of a shrouded impeller. This would result in a simpler design than the

gas cavity front shroud configuration, eliminate the heat exchanger requirement;

however, close axial clearances would be required to attain acceptable efficiency.

1"nis design is shown in Fig. 62. The gas operated balance piston is still used

to provide axial thrust balance and eliminate the rear wear ring leakage.

A breakdown of the power losses is shown in Table IX to indicate the changes in

loss values calculated for the several pump configurations shown. The advantages

presented are the low pressure differentials across the face seals and the small

friction power loss achieved while still obtaining an axial thrust balance. This

combined with improvements in hydraulic efficiency show fairly large overall effi-

ciency increases. These concepts although considered feasible, would require

additional development to achieve a reliable working system and are, therefore,

considered to be outside the scope of this contract.

BEARING AND SEAL POWER LOSSES

High relative power loss due to the pump bearing and seal package must be expected

in small pump systems of this type. The power absorbtion due to rubbing contact

at the seal face is proportional to the diameter and relative speed of the seal

face which is a function of seal cavity pressure. The loss relationship can be

expressed for a seal as:

Ploss _ DpN (43)
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TABLE IX. CENTRIFUGAL PtBIP POWER BREAKDOWN

Power

Delivered Fluid Power

Power Loss From Leakage of

Impeller Seals

Power Loss From Disk Friction on

Impeller Shrouds

Other Pump Power Losses:

Skin Friction, Incidence,
Diffusion, and Momentum Loss

Hydraulic Power

Friction Power

Face Seals

Shaft Seal

Bearings

Floating Seal

Balance Piston

Net Required Pump Power

Overall Pump Efficiency, percent

Present

Pump Impeller

Design (Fig. 62)

hp (kw) hp (kw)

10.40 (7.76) 10.40 (7.76)

2.69 (2.019 0.43 (0.52)

Balance Piston Pump !

IOpen Face Gas Cavity or
Front Shroud

(Fig. §i)

hp (kw)

10.40 (7.76)

0.38 (0.28)

1.77 (1.32) 0.91 i(0.6S) 1.07 (O.BO)

3.09 (2.31) 3.50 (2.61) 1.71 (1.28)

Additional Helium Purge Flow Required
for Balance Piston

17.95 (13.39) 15.24 (11.37) i3.s6 (10.12)

0.93 (0.69) 0.23 (0.17) 0.23 (0.17)

0.66 (0.49) ....

0.08 (0.06) 0.08 (0.06) 0.08 (0.06)

-- 0.05 (0.04) 0.03 (0.02)

-- 0.02 (0.01) 0.01 (0.01)

19.62 (14,64) 16.62 (12.40) 13.91 (10.38)

53.0 62.6 74.6

Ib/sec (g/s)

0.004 (1.816)

F

ib/sec (g/s)

0.004 (1.816)

R-8494-I

Ii7



where

Ploss = powerloss due to frictional resistance

D = seal face diameter

p = differential pressure across the seal

N = rotational speed of the seal

Table X presents toque values and power loss values for face and shaft seals at

several speeds, diameters, and cavity pressures. These values are scaled from

test data in dry GN 2.

An equivalent friction coefficient K can be expressed for a bearing which will

allow calculation of frictional torque that resists shaft rotation. The torque T

can be expressed by the relation:

T : KDF {44}

where

K = equivalent friction coefficient

D = bearing bore diameter

F = axial bearing load

The equivalent friction coefficient used here is 0.004, and bearing friction torque

and power loss values are presented in Table X (Ref. 21). The relationships shown

are used to determine the power requirements of the bearing and seal package. The

friction loss due to bearing coolant fluid churning was calculated as 0.01 in.-Ib

(0.001Nm), which is negligible.

R-8494-i

118



Z

Z

Z

Z

l

<
>

o

°.,

C_
.c..

x

<
[--

o

0

E

_'Z

¢-

_._

e_

_ C

w, E

Z

°r-I

L

E

_ o,-t

• o o °

• o o °

.[

Lt

C

0

C_

0

L

0

0
.el

_Z

O

O

"r.

i

•" _ X

_c'_
E

Z

._.-4

_b

E
°

°_ m.-
o_

oo,o

0
"r'_

0_._

• ,_ 0 _-._

_ _-.,,

_Z
0,.._

[...

0

1 "_

O

_ 4

U3

e-

Z

t_

O

0

ooo°

0000

00_
00_0

• . o o

gEEg

0000

0000
0000
0000

_00

C_
0

0

0

0

m e'-

>,O

O

¢-
°..-i _

_ O

O *_

• ._,4

_ O

r,

..-4

e"
,_,,4

O
e-"

e"

¢-

O

O

e-'

O

c.

/d

Z

R-8494-1

119/120



TASK V: POSITIVE DISPLACEmeNT PUMP EVALUATION

Design evaluations of a number of positive displacement pumps were made which led

to the selection of a gear pump as the concept best suited to meet the same require-

ments as the rotating pump which are as follows:

Pump inlet pressure, psia

Pump inlet temperature, R

Pump exit pressure, psia

Design flowrate, gpm

Pumped fluid

35 (2.41 xlO 5 N/m 2)

159 (88.5 K) (LF 2 saturated at 20 psia)

(1.4 xl0 S N/m 2)

1500 (I.03 xl07 N/m 2)

12 (7.57 xl0 "4 m3/s)

LF 2 (capability of FLOX operation)

To select the most suitable positive displacement pump, evaluation criteria and

rating system similar to those used to evaluate the rotating pumns were devised.

As shown in Table Xl, it consists of four major categories--performance life,

reliability, and cost:

Performance Criteria:

i. Volumetric efficiency

2. Hydraulic efficiency

3. Overall efficiency

4. Size and weight

5. Friction

Life Criteria:

I. Seal loads

2. Seal speeds

3. Bearing loads

4. _aterial compatibility
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TABLEXI. POSITIVEDISPLACEMENTPUMPRATINGCIIART

Performance(total points = 25)

VolumetricEfficiency, qv
Hydraulic Efficiency, nh
Overall Efficiency, no
Size andWeight
Friction

Life (total points = 20)

Seal Loads
Seal Speeds
BearingLeads
Haterial Comparability

Reliability (total points = 30)

Clearances

External Leakage

Valve Factor

Pump Discharge Pressure Oscillations

i0

i0

S

5

Costs (total points = 25)

Development Costs

Unit Costs

iS

i0
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Reliability Criteria:

I. Clearances (same as rotating pump)

2. External leakage (same as rotating pump)

3. Valve factor (accounts for increase in design complexity if

valves are required}

4. Pump discharge pressure oscillations (same as rotating pump)

Cost Criteria:

i. Development costs

2. Unit costs

The pump concepts to be evaluated were selected as representative of the types

currently in use and deemed capable of meeting the flow, head, and efficiency

requirements. Pumps selected to be evaluated were:

i. Gear

2. Piston (axial)

3. Piston (radial)

4. Vane

S. Diaphragm

6. Helirotor

A discussion of each of the positive displacement pump concepts follows.

GEAR PUHP

Introduction

Fluid in a gear pump is pumped in the open spaces between the gear teeth and the

casing. The teeth coming out of mesh create a suction which draws liquid from the

inlet line, filling the tooth spaces. Rotation of the gears carries the fluid in
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the tooth spacesfrom the inlet to the discharge side. The teeth mesh at the

discharge, displacing the fluid in the spaces and forcing it into the disc}large

line.

Gear pumps }lave an inherent advantage over other positive displacement pumps

because of their simplicity. Inlet and discharge valves are not required, but a

relief valve is normally included to limit the maximum pressure in the system.

Analysis

The gear pumps considered consisted o£ two meshing gears. Units containing three

or more gears have lower volumetric efficiencies, and in the flow range of interest

have no advantage over the taro gear units. To simpli$" the pump and to minimize

manufacturing costs, the configuration studies contained open gears o£ equal dimaete

In establishing the performance of ti_e gear pump, a significant paraJneter is the

volumetric efficiency, which is a measure of the leakage losses. Volumetric effi-

ciency (qv) is defined as:

QL
nv = i -- (45)QTH

where QL is the leakage (also referred to as "slip") in the pump, and QTH is ti_e

theoretical displacement of the pump, with zero leakage. For preliminary analysis

it is assumed that the fluid recirculated by the pump is the amount trapped between

the tip of a gear toot]: and the root circle of the tooti_ space when fully meshed.

The equation for the theoretical displacement then becomes:

(Do2D. D 2- I.D. ) _TLN

QTH - (4) (60) (46)

where

QTH is expressed in £t°/sec

DO. 0 = outside diameter of gear teeth, ft
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= working depth diameter (Do.D. '4x addendum), ft

= axial length of gear teeth, ft

N = rpm

The theoretical volume of liquid delivered per revolution, is given by:

(Do2D.- DI2D. ) trL

q = 4 (47)

where the terms are as defined above and q is expressed in ft 3 per revolution.

Equation 46 can then be expressed as:

QTH = _60 C48)

Substituting Eq. 48 into 45 will yield:

60 QL

qv = 1 q N (49)

To calculate the internal leakage, QL" tile Reynolds number in the gear to ]lousing

clearances }ms to be established. The expression for the Reynolds number for the

laminar flow region is (derivation given Appendix A):

P, = _ (so)
e 6U" £

where

Ap = differential pressure across l_ak path (lb/ft 2)

p = mass density (lb sec2/ft 4)

6 = clearance (ft)

= absolute viscosity (lb sec/ft 2)

£ = leak path length parallel flow (ft)
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To have a condition of laminar flow, the Reynolds number must be less than 4000.

Solving the above equazion for the clearance, 6, it is found that the condition

of laminar flow (Re <4000) is satisfied only if the clearance is smaller than

0.00015 inch (3.8 x 10"6m). Since the gear-to-housing clearances in the pump

are expected to be higher, the leakage flow will be of turbulent type.

In the turbulent flow regime the volumetric leakage flow is expressed by the fol-

lowing relationship (see Appendix A for derivation):

&p. S7 .43 61.72= g %V

QL 4.6 T'43 Ij'143 £.57
{51)

where the terms are as defined above, and

Q = volumetric flow, ft3/sec

g = gravitational constant (32.2 ft/sec')

w = leak path width, ft

= specific weight, ib/ft 5

Rewriting this equation to account for the various leakage paths in the gear pump

results in:

[2Wl 611.72 1.72 621.72 ]

.43 1.674D 6_ w 2
QL 4 6 &p. S7 g " * (52)

= " .43 143 J 7_5-7 + D.S7 57Y U" L"

L b

where the terms are as defined above, and

w I = gear tooth width, ft

61 = gear tip clearance (radial), ft

£i = leak path length along gear tip, ft

D = gear diameter, ft

6_ = axial clearance, ft

£2 = leak path length at mesh, ft

w 2 = leak path width at mesh, ft
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The first term in the parenthesis reflects the leak path at the gear tip, the

second term at gear side and the third term at the gear mesh.

_hen this expression for leakage is substituted into Eq. 49, an expression for

volumetric efficiency in terms of pump geometry is obtained:

57 .45
4.6 _P" 60

nv = 1 - $
y.43 .143qN

1.67 D 621"72 w2 621"72
4-

57 .57
D" £3

2w I 611"7241 .57 *

J (53)

Using this equation, the plot of diameter versus axial clearance shown in Fig. 65

can be constructed. Ninety percent volumetric efficiency can be obtained with an

axial clearance of 0.0009 inch (2.286 x 10"5m), assuming that the radial clearance

is held constant at 0.0005 inch (1.27 x 10-Bm).

The effect of axial clearance on volumetric efficiency is shown in Fig.64 . This

plot is based on Eq. 53, using a fixed gear geometry with only the axial clearance

of the gear changing. The volumetric efficiency improves if the axial location of

the gears is such that the total axial clearance is split on either side of the

gears. This effect also is indicated in Fig.64 .

As can be seen from Fig. 63 and 64, close axial clearances must be maintained.

Due to these clearances, shaft bending must be held to a minimum. To minimize

shaft bending, the bearings for each gear must be placed one above the other as

close to the gears as possible. The anticipated high radial loads together with

bearing stiffness (pounds load divided by radial deflection) and life requirements

indicate roller bearings are required.

Bearing radial load is obtained by:

F : (DoD) (e) (aP) (54)
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where

F = radial load, ib

DOD = outside diameter of gear, ft

L = axial length of gear, ft

_P = delta pressure across gear, Ib/ft 2

The radial load on the bearings can be reduced by increasing the pump speed and

thereby reducing the required gear diameter, llowever, a maximum satisfactory

operating speed exists above which the possibility of cavitation occurring in the

pumping cavity is theoretically possible. According to I_ilson (Ref.22), cavitation

results if ti_e liquid cannot keep up with the moving element. The inlet pressure

to the pump provide s the only energy available to accelerate the fluid. Thorough

tests on gear pumps have indicated a consistent relationship for cavitation occur-

ring (Ref. 22):

QLC

QTH

where

QLC =

QTH =

P
a

P.
1

P
V

V
P

Y

C

flow loss due to cavitation, ft3/sec

theoretical pump flow, ft3/sec

= atmospheric pressure, Ib/ft 2

= pump inlet pressure, Ib/ft 2

= vapor pressure of fluid, ib/ft"

= velocity of gear tip, ft/sec

= specific weight, ib/ft 3

= cavitation factor (V2-VI)/V p
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If zero cavitation is assumed, then QLc/QT = 0, and the equation can be rewritten:

Pag (Pi -aPV)p2) : i (s6)

Again according to Wilson [Ref.22), the cavitation factor, C, for a well-designed

gear pump is about 0.4. Using this and known values for Pa' Pi' Pv' and y, Eq. 56

can be solved for V . Then, for a given gear diameter, only one rotational speed
P

satisfied the relationship:

where

v : N (S7)
_-6-_ DOD

N

6O - rotational speed, rev/sec

DOD = gear diameter, ft

V : velocity, ft/sec

This speed is the maximum speed at _'hich a pump _vith a given gear diameter can be

operated _,ithout cavitation occurring. This maximum speed then establishes the

amount of bearing radial load by setting the minimum diameter of the gear.

The relationship of gear tip diameter and gear width (axial length) to the required

speed to meet a delivered flow of 12 gpm is shown in Fig. 65. Also plotted are

bearing radial loads and the cavitation limit line. Operation at speed to the right

of this line will result in cavitation unless the inlet pressure to the pump is in-

creased above the present 15 psi above the fluid vapor pressure.

The losses in a gear pump are slip (or leakage) losses and torque losses. The

leakage losses }lave been discussed above. The torque losses are of three types:

I. Those that result from viscous shear in the leak paths at the gear tips

and ends.

R-8494-I

i31



[....

r_

'T
J

2

2.5

2.3

2.1

1.9

1.7

1.5

1.3

1.1

.9

.7

600
(2669N)

500 Ibf

,,_ (2224 N:

J • , , I I , I , ,

:-C./";,0 6000 _CCO 10,000 12,000 14,000 16,000

_PEED,

Figure 65. Gear Diameter as a Function of Speed

R-8494-1



2. Those due to friction originating at the contact of surfaces moving rela-

tive to eaci_ other. These occur where deflections are of the same order

of magnitude as clearances between adjacent parts.

3. Those that arise on surfaces that are in close contact but _ich are in-

dependent of the unbalanced pressure forces, e.g., shaft seals. In many

practical cases this force is small compared to the other torque losses,

and for the purposes of this analysis was considered equal to zero.

Viscous torque is defined as:

T V = CDq_N (58)

Friction torque is defined as:

T_ = Cf 2_--AP (59)

Ideal torque is defined as:

aPq (60)Ti = 2

where:

CD = viscous drag coefficient

Cf = friction coefficient

q = displacement, ft3/rev

U = viscosity, ib sec/ft 2

N = rotational speed, rev/sec

T = torque, ft-lb

_P = differential pressure, Ib/ft 2



The total torque can then be stated as,

Apq uN Cf _ Ap (61)T : 2T + CDq +

The problem then arises as to the value of the viscous drag coefficient. The work

done by Wilson assumes that all flow is in the laminar flow region. However, it

has previously been determined that all flow paths, including leakage paths when

pumping LF 2 are in the turbulent flow region. Because of problems encountered in

calculating viscous drag with turbulent flow, the viscous drag coefficient was

calculated for first approximation by assuming laminar flow was present. This is

a conservative assumption since the fluid friction factor for smooth walls is

lower for turbulent flm;. The various losses are presented in Fig. 66.

There are two potential mechanical problem areas associated with this pump. The

first is running roller bearings in LF 2 with a high radial load. Since little

experience has been accumulated relative to this, the determination of the extent

of the problem will have to await actual testing

The second potential problem is running gears in LF 2. This problem centers around

sliding contact between ti_e gear sides and the stationary housing and between the

meshing gear teetil. According to Schmidt (Ref. 23), in the presence of pure fluorine

metals form a fluoride film on the surface. Fluoride films, like the oxide films

that form on aluminum in air, are so closely bonded to the metal surface that they

are considered "in" rather than "on" the surface of the metal. Tills film acts to

inhibit further attack of the base metal. As wear occurs, this film is replaced.

However, the film thickness is usually measured in angstroms and may not be replaced

as rapidly as the wear rate.

Studies have indicated that platings such as aluminum oxide (A1205) have been used

satisfactorily for dynamic seal noses. Ho_vever, the material is extremely brittle

and should be applied as a thin coating only. The A1203 coating appears to be ti_e

best solution for plating the housing opposite the gear sides. The extent of the
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problem in the meshing gear teeth is not known. The gears will be lightly loaded

with a relatively low Hertz stress, but whether this is low enough to preclude the

loss of the protective fluoride film that forms upon contact with pure fluorine

also will have to be determined by testing.

A preliminary layout of the gear pump is shown in Fig. 67.

VANE P_4P

Introduction

In a typical vane pump, the fluid is pumped between vanes _hich form part of the

rotor and which are free to slide radially relative to the rotor. The fluid is

admitted to the cavity formed by adjacent vanes through an inlet port. The rotor

is positioned eccentrically with respect to the housing in such a manner that when

the vanes sweep past a discharge port the volume enclosed between adjacent vanes

is reduced and the trapped fluid is forced into the discharge port. The vanes are

kept in contact with the housing by centrifugal force. In addition, the roots of

the vane guides are subjected to high pressure from the discharge to provide addi-

tional contact load, if required.

No valves are required for the inlet and discharge porZs but a relief valve is

usually installed for over-pressure protection. This relief valve vents the dis-

charge flow to the suction side of the pump.

Analysis

Due to the low viscosity of liquid fluorine a fluid wedge hydrodynamic bearing

cannot be set up between the sliding vane and the cam ring of a vane pump while

pumping LF 2. Therefore, the friction at this contact location will be of the dry

friction type. This requires the vanes to be radially pressure balanced so a

proper trade off between friction loss and slip loss [leakage flow) will be obtained.

This design is also restricted by the radial load that can be tolerated by the vane

and the heat generation caused by friction.
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The magnitude of the frictional heat generation is assumed to be proportional to

the vane radial load against the cam ring. These frictional forces produce a

resistive torque that converts input power to frictional heat. The friction heat

generation in the vanes and can ring is estimated to be i.i x lO-2Btu/sec (11.6

watt) based on radial vane loads of 2 pounds (8.9 N) and a coefficient of friction

of 0.12 (Ref. 23). This amount of heat generation would increase the fluid temper-

ature about 0.i F (0.18 K) at the nominal pump flow if all the energy was trans-

ferred to the fluid.

The above estimates are based on data from Ref. 25, assuming the use of Kentanium

sliding against aluminum oxide. Because of the presence of fluorine a fluoride

film coating is formed on the surfaces which improves the dry lubricating proper-

ties of the materials. However, it is imperative to achieve proper load balancing

of the sealing vanes to prevent high or uneven face loading, which can cause ex-

cessive seal wear and local fragmentation. One criteria that can be used to

evaluate the severit F of loading is the "pV" factor, the product of contacting

load per unit area and sliding relative velocity. This product is proportional to

the heat generated if the coefficient of friction is assumed independent of load

and velocity. Using this criteria, it appears that the greatest problems would be

encountered in balancing ti_e vane radial loads.

Anal/sis of th= flow conditions for the gear pump disclosed that for clearances

in excess of 0.00015 inch (0.00038 ram) the leakage flow would be of _he turbulent

type. This analysis is also applicable for the vane pump, and since the clearances

are expected to be higher than 0.00015 inch for the vane pum1_, the leakage flows

will be calculated using turbulent flow relationships. The general expression for

turbulent flow between two parallel plates is (see Appendix A for derivation):

.43 .72

: g w (61)QL 4.6 Ap'57 61
.143 43 57

U Y" £"

where

QL = volumetric leakage, ft3/sec

AP = pressure differential, lb/ft 2
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g --

6 =

W =

p --

£ =

gravitational constant,

clearance, ft

width of leak path, ft

viscosity, ib sec/ft 2

length of leak path, ft

2
ft/sec

Adapting the above expression for the actual leak paths in a vane pump and sub-

stituting into the equation for volumetric efficiency,

60Q L

nv = 1 - q---_

yields the following relationship:

nv = 1 - 4.6 AP "57 .43 60 1 61 + __2w2 621 + 1.67 D

y.43 _1"143 qN £1"57 £2"57 D'57

C62)

Where the first term in the bracket accounts for leakage around the ends of the

vanes, the second represents leakage at the dividing seals and the third at the

rotor ends. The second term is assumed constant. This assumption is made because

the effect of the clearance at this location is secondary to the influence of the

other two. The dividing seals separate the inlet and discharge ports. They are

the minimum radial clearance between the rotor and the eccentric cam ring which

minimizes the leakage from the high- to the low-pressure side of the pump.

Equation 62 is presented graphically in Fig. 68. As shown, with the assumptions

made, an efficiency of better than 90 percent can be obtained with 0.00035 inch

(8.89 xl0 -6 m) axial clearance. Figure 69 shows the effect of rotor axial clearance

on performance. If the rotor moves from the center to a position of zero clearance

on one end, the efficiency will decrease 5 percent. The loss in efficiency due to

axial wear is 4 percent per 0.0001 inch (2.54 xl0 -6 m), whereas the vane w_ar in

the radial direction is not expected to cause a performance change due to a clearance

increase since the vanes move out radially as wear occurs thereby keeping the leakage

rate constant.
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The various hydraulic and mechanical losses are presented in Fig. 70. The dry

friction loss is based on the best available loss estimates of seal and bearing

drag with vane radial loads set at 3 pounds (13.3 N). The viscous loss was esti-

mated by the same method used for the gear pump.

Expected problem areas for this pump concept include balancing of vane radial loads.

This must be a compromise between high contact loads with the cam ring (with atten-

dant wear and heat generation) and a high leakage rate at the vane tips (with

attendant volumetric efficiency loss). The vane speed is expected to be so low

that centrifugal forces will be negligible. Therefore, balancing radial forces

could be accomplished by bleeding high pressure fluid into the cavity at the base

of each vane or by using springs between the rotor and each vane. Careful analysis

in this area is required, for without being able to generate a hydrodynamic bearing,

the materials themselves must provide the lubrication and using the thin fluoride

film generated by the presence of fluorine.

A preliminary layout of the vane pump is shown in Fig. 71 .

PISTON PUHP

Two types of piston pumps were analyzed. They are the radial outflow and axial

configuration.

Axial Piston Pump

The reciprocating action of the pistons in the axial pump is obtained by rotating

the shaft and the cylinder block simultaneously on separate center lines That

intersect at a low angle. Since the high axial thrust load of the cylinder block

cannot be transmitted through the universal joint conventionally used in this type

of pump, this required that the load be transmitted through a large single ball

the center of which is located at the centerline intersection point. The cylinder

block is then driven by a set of bevel gears.
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The valving for the intake and discharge is obtained in the conventional manner

for this type of pump. The cylinder block with its port slots rotates past station-

ary inlet and discharge ports. The rotating port slots are aligned with the sta-

tionary intake and discharge ports during the intake and discharge strokes of the

pistons, respectively.

The main thrust bearings on the shaft are lubricated and cooled by high pressure

fluid from the discharge port. The two bearings on the rotating cylinder block

and the thrust ball are lubricated and cooled by high pressure leakage past the

pistons in the cylinder head. The gears are submerged in fluid and the gear case

vents to the inlet port.

Radial Outflow Piston Pump

The pistons in the radial outflow pump receive their reciprocating motion from an

eccentric bearing machined as an integral part of the shaft. The pistons are

assembled to a split clevis type ring. The two ring halves are riveted together

and this piston and clevis ring assembly is pressed on the outer race of the

eccentric bearing. The outer race of this bearing, with clevis ring pressed on,

acts as a cam to produce the reciprocating motion of the piston.

The cylinder head includes a double check valve. The inlet and discharge portions

of this valve are pressure actuated.

The bearings are lubricated by the pumped fluid. A bleed port is drilled from

the discharge collecting manifold to the cavity between the primary seal and the

adjacent bearing. The fluid from this cavity flows through all three bearings

and combined with the piston leakage cools and lubricates all internal moving

parts.
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Performance

Leakage in the piston pumps is in the turbulent flow regime; this weight flow is

defined by:

4.6(AP -y)O'ST_D N 61"72 g.43

P (63)
w£ = £0.57 _0.143

The theoretical weight flow is described by:

2
Dp SyNn

WTH = 240
C64)

Volumetric efficiency is defined:

w£

rlv = 1
WTH

Therefore, upon substituting Eq. 63 and 64 into 65:

(65)

* .43
n = i - ll0S 61"72( p)0.S7 L _ (66)

v £0.$7 D U0.143 ¥0.43 nS
P

Where L* accounts for the percentage of time when AP exists.

The graphical presentation of volumetric efficiency is shown in Fig. 72 for the

axial pump and Fig. 73 for the radial outflow. As shown, there appears to be no

advantage of one above the other from a volumetric efficiency standpoint. The

dependency of efficiency on piston clearance is presented in Fig. 74 for fixed

geometry pumps. This figure shows that wear affects the radial outflow pump slightly

more than the axial pump. However, there still appears to be no significant per-

formance advantage of one over the other.
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Figures 75 and 76 present losses and overall efficiencies for the two piston pump

configurations. The dry friction loss is shown for the axial pump with the assump-

tion that the cylinder barrel is pressure balanced.

The potential problem areas associated with the radial outflow piston pump are

valves, piston rubbing, side loads due to the cam, and weight. _Vhen valves are

introduced into a design, their reliability becomes important. This is related

to wear of sealing and seat surfaces and seizure or failure. These may be mini-

mized by maintaining low loads and simplicity of design. Piston rubbing may be

tolerated only with reduced loads.

The axial pump has high axial loads which require pressure balancing for some of

the components. This must be accomplished otherwise intolerable high wear rates

ma}- result. Side loads on the pistons must also be minimized in order to reduce

weaT.

Preliminary layout of the axial piston pump is shown in Fig. 77, and the radial

piston pump in Fig. 78.

HELIROTOR PU,_P

The moving elements of this type of pump consist of two rotors with helical lobes,

intermeshing with each other and placed in a housing, such that a number of separate

interlobe spaces are formed. The fluid is admitted at one end through a properly

located port opening, filling each open helical interlobe space completely from

inlet to outlet end, there confined by the end plate.

As the moving elements rotate, the intake to the interlobe space is closed off by

the inlet-end plate and, with further rotation, the rotors intermesh so that the

length and volume of the interlobe space is progressively reduced, resulting in

a positive displacement of fluid.
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Several design configurations for helirotor pumps can be considered, Fig. '79

(Ref.24). Conventional designs have male rotors with three to four lobes coupled

with female rotors having four to six lobes. A small lobe number allows a great

depth of the pumping passages, i.e., gives large capacity for given rotor diameters.

But if the number of lobes is reduced, the root of the female rotor becomes small

so that excessive deflections of the lobes at high pressure differentials can be

expected. Since a comparatively large pressure ratio is required for the subject

design, a high number of female and male lobes is desired. It appears that a

combination of four male lobes coupled with six female lobes placed on rotors

which have the same outer diameter, and with a speed ratio of the male to the

female rotor of 3 to 2 is a suitable combination. To relieve the torque on the

timing gear to the maximum possible degree, it appears advantageous to use the

lobe geometry specified in the Nilsson patent (U.S. patent No. 2622787 issued

December 23, 1942, Ref. 25). This geometry also allows use of a sealing strip at

the tip of the lobe, thus relieving tolerance requirements for the fabrication of

the male and female rotor. With wraparound angles of the male lobe from 1S0

(2.62 rad) to 300 (5.24 rad), the ratio of rotor width to diameter should be unit>"

to reduce the radiaI load to a minimum.

The calculations for the geometry are made on the following basis:

The theoretical flowrate follows the relation

A_

e (67)
QTH -- 6---5---

where A denotes the effective pumping area, L the length of the rotor and N the
e

rotational speed. The effective area can be calculated based on geometry as a

percentage of the square of the diameter, when holding the number of lobes constant.

For the selected configuration this relationship is:

A
e

D 2
- 0.462 -_ C (68)
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Figure 79. Typical Helirotor Configurations
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The leakage flow through a gap for turbulent flow condition can be presented in

the form:

L 0.143yo, j
(69)

where 6 denotes the gap, £ the length of the leakage path, D the mean diameter
m

of the leakage gap, and _ the absolute viscosity. The volumetric efficiency then

follows the relation:

0.57
.43

QL 4.661"72 60 g
nv = I- -- = I- m

QTH U0.143 £0.57 C*. D 2 L N y.43 (70)

For the convenience of the calculations, Eq. 70 can be simplified by letting

(£ = L) and unifying powers which are approximately the same:

r]v = I-V Y _*_ 60 x 4.6 (71)
DN 0. 143 C*

where @* denotes a restriction factor which depends on the particular configuration

of the leakage path. Available test data indicate that this restriction factor

will have a numerical value of @* = 0.38. Equation 71 shows that for a given

pressure rise, the volumetric efficiency depends on the ratio of clearance to flow

path length, or since L/D = I, on the ratio of clearance to rotor diameter, the

rotative speed and the diameter itself. Introducing the design specifications

into EQ. 71 , the final equation for the volumetric efficiency reads (i = D):

1.88 x I06(6/D) 1"6
nv = I- ND (72)

where N is expressed in rpm and D in ft.
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Assuming different rotative speeds, the required rotor diameter can be calculated

as function of the clearance and, thus, as function of rotor diameter. Figure 80

is a plot of the calculated data and shows that a clearance of 0.0025 in. (5.842 x

10-5m) is required when a volumetric efficiency of 80 percent is desired, and that

a clearance o£ 0.005 in. (1.27 x 10-4m) reduces the obtainable volumetric efficiency

to values in the range of 52 to 58 percent. The rotor diameter increases with

decreasing rotative speed and increasing clearance, as was to be expected. Checking

the Reynolds Number o£ the leakage flow in the rotor clearances it is found that

in all cases the leakage flow is in the turbulent flow regime.

Previous correspondence with the Stratos Corporation, a licensee of the Svenska

Rotor Haskiner Company, indicates that the minimum feasible rotor diameter is

about 1.2 in. (3.048 x 10-2m). This limit is also implied in Ref, 24. Projecting

this fabrication limit into Fig. 80, it becomes apparent that a comparatively low

speed of 4000 rpm and small rotor clearances will have to be selected to obtain

high volumetric efficiencies, and that higher rotative speeds and rotor clearances

reduce the maximum obtainable efficiency significantly.

Figure 81 shows the calculated radial and axial load per rotor when the simplifying

assumption is made that the full pressure differential is effective on the projected

thrust areas of the male and female rotor. This diagram shows that comparatively

high loads, 1650 ib (7340 N) to 1850 ib (8250 N), are generated for rotors with a

diameter of 1.2 inch (3.048 x 10"2m). The axial load increases with the square of

the diameter, while the radial load increases as a linear function of diameter.

Thus, considerably smaller loads can be obtained if rotor diameters of less than

1.2 in. (3.048 x 10"2m) can be fabricated.

The third curve shown in Fig. 81 is the capacity limit curve for roller bearings.

As evidenced from the relation of this curve to the load curves, the diameter of

the helirotor pump must be much less than 1.2 in. (3.048 x 10-2m). Therefore,

with 1500 psia (103.42 x 10 -5 N/m 2) discharge pressurej the bearing loads are too

high to be carried satisfactorily. Because the high bearing loads require too

large a bearing relative to the rotor diameter, this pump configuration is elimi-

nated from further consideration.
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DIAPHRAG_I PL%IP

Introduction

A diaphragm pump achieves its pumping from displacement of fluid by flexing a metal

diaphragm. It has the advantage of minimum moving contact between parts in the

fluid being pumped. If the valve poppets are supported on flexures so that valve

guides are not required, the only moving contact part exposed to the pumped fluid

would occur at the valve seats.

In a typical arrangement, diaphragms are arranged in pairs around an eccentric and

operate in the same way as double-acting cylinders. A diaphragm is attached to

each side of the reciprocating bodies. £ach radially outward stroke of the recip-

rocating body is a discharge stroke for the outer diaphragm and a suction stroke

for the inner diaphragm, while each radially inward stroke of the reciprocating

body is a discharge stroke for the inner diaphragm and a suction stroke for the

outer diaphragm.

During the initial investigation of this pump concept, it became apparent that

this concept would be somewhat larger in overall size and considerably heavier

than other positive displacement pump concepts. It also appeared that procurement

and development costs would be higher than less complex pumps. These factors lead

to the conclusion that the diaphragm pump would end up at the bottom of the positive

displacement pump rating scale. As a result, only a minimum design and analysis

effort was expended to allow a higher degree of effort on more promising concepts.

Analysis

From the standpoint of mechanical complexity, specific speed, specific diameter

and weight, five double acting diaphragms or cylinders appears to be a maximum

practical number. Using this as a basis, the following design results for a 12

gpm, 1500 psia discharge pressure pump (Ref. 2@:

Stroke 0.015 in. max (5.81 x lO-4m)

Number of cylinders 5, double acting
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Clearance volume (max)

Stroking speed

Estimated volumetric efficiency

Estimated mechanical efficiency

Diaphragm thickness

Piston diameter

Diaphragm convolution radius

Specific Speed

Specific Diameter

Hydraulic power

Input power

Maximum envelope diameter

Length

0.007 in. 3 (1.1471 x lO'7m 5)

3000 cycles/min or 30,000 total
strokes/min

65%

30%

0.008 in. (2.032 x lO'4m)

5 in. (7.62 x lO-2m)

0.25 in. (6.35 x lO'3m)

0.48

33.2

10.3 hp (7680.709 w) 7.7 kw

34.2 hp C25502.936 w) 25.5 kw

16 in. C4.064 x lo'lm)

8 in. (2.032 x lo'lm)

This design results in comparatively high specific speed and specific diameter.

This in turn results in as 1.arge diaphragm load. The diaphragm suggested for this

pump is a single convolution type often used in pressure-actuated control mechanisms.

All of the flexure occurs in the convolution and the center portion of the diaphragm

can be rigid. The convolution has a disadvantage in that it can withstand high

differential pressure in one direction only but has an advantage of having a rigid

center. The stress in the diaphragm is given by the equation:

where

o = _ - kEf h (73)
• bCiLu

= differential pressure, Ib/in. 2

= radius of convolution, in.

= thickness of diaphragm, in.

= consist

= modulus of elasticity, 1b/in. 2

= deflection from flat position, in.

= diaphragm effective radius, in.

: Poisson's ratio

_p

b

h

k

E

f

a

t_
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For this design, a bending stress in the diaphragm of 37,000 psi (2.551 x 10BN/m 2)

is calculated, yielding a combined stress of 74,000 psi ($.102 x IOBN/m2). It

would be expected that a life of $ hours can be obtained even if it is considered

that surge pressure loading due to valve response time could cause the combined

stress to reach values of 80,000 to 90,000 psi (5.5 xlOBN/m 2 to 6.2 xlOBN/m2).

The bearing loads in the diaphragm pump are extremely high due to the large bore

and short stroke. The force opposing stroking is about 10,600 lbs (47,100 N) and

may reach values of 12,000 to 13,000 lbs (53,400 to 57,800 N) due to ,urge over-

pressures. These forces can be coped with only when i very large diameter ball

or roller bearing are used.

Another effect of using a large bore and short stroke is that the ratio of the

clearance volume to the displacement volu_e must be large in comparison to con-

ventiona_ piston pumps. Because of heat transfer and pu_ inefficiency_ the fluid

that remains in the pu_p chamber after the exhaust stroke has a higher telperature

than the fluid in the inlet line. After a large number of strokes, the temperature

of the remaining fluid may have risen to the point that its vapor pressure is

greater than the inlet pressure and vapor m_" form during the inlet stroke. This

will restrict the flow on succeeding exhaust strokes as the fluid is no longer

incompressible. A minimu_ clearance volume is therefore essential.

The 1o_ mechanica] efficienc) is due mainly to the high bearing losses. They are

estimated to contribute about 65 percent of the mechanical losses, the remaining

35 percent being caused by ca_ lift losses.

This t>pe of pu_p would be better suited if the discharge pressure were decreased

because this would decrease the bearing loads and make the unit more reliable and

decrease the _eight. A decrease in both pressure and £1ow would be reflected in

s_aller size and lighter weight.

A preliminar>" layout of the diaphragm pump is shown in Fig. Bg.
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PUMP EVALUATION

Preliminary analysis was completed on all six of the pump concepts. The analysis

consisted of establishing operating sneeds, estimating volumetric, hydraulic and

overall efficiencies, and _nalytically determining cavitation performance. Pre-

liminary layouts were then made of each concept which established design criteria

including bearing size, bearing loads, seal configuration and seal rubbing speed.

The layouts were also used to calculate the overall weiRht of each. On the basis

of this analysis the helirotor pump was dropped from further consideration because

of the difficulty of providing sufficient bearing capacity consistent with the

rotor diameter and because of the problem of maintaining the required clearances

to stay within a reasonable efficiency.

The analysis and design data for the other concepts is summarized in Table XII

and from this data the rating matrix of Table XIII was generated. As can be seen,

the gear and the vane pump had the highest overall rating. These results were

reviewed with NASA-Lewis Research Center and as a result of the review, a decision

was made to stud}' high speeds for the gear pump and the axial piston pump.

Higher Speed Axial Piston Pump

Increasing the rotating speed of the axial piston pump from 4000 rnm to i0,000 rl_m

resulted in offsetting criteria effects such that the overall ratin_ was increased

by only one point. The rating went from 70 to 71 (see Table XIII). The criteria

which had an effect on the rating were overall efficiency which decreased from

76 percent to 72 percent mainly due to increased churning losses at the higher

speed. The face seal rubbing velocity which increased from 24.5 ft/sec [7.4676

m/s 2) to 61.2 ft/sec (18.654 m/s 2) and the shaft seal rubbinR velocity which in-

creased from 32.5 ft/sec {9.906 m/s 2) to 81.3 ft/sec [24.78 m/s2). The increased

rubbing velocities, which have an adverse effect on the rating, are due to a com-

bination of the increased rotating speed and the inability, because of design and

mechanical restrictions, to reduce the seal and shaft size inversely and propor-

tionally as the speed increases. The bearing axial load on the other hand was
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TABLE XIII. RATING MATRIX POSITIVE DISPLACEMENT PtBIPS

Criteria

Performance (total points = 2S)

Volumetric

Hydraulic

Overall

Size and Weight

Friction

Life (to_al points = 20)

Seal Loads

Seal Speed

Bearing Load

Cavitation Performance

Points

Allowed Gear

Piston Piston

Axial Radial Vane Diaphragm

Reliability <total points = 309

Clearances

External Leakage

Valve Factor

Pressure Oscillation

Cost (total points = 25)

Development Costs

Unit Costs

Total I00

5 S S 3 5 4

5 5 4 3 S 1

5 5 4 3 5 1

5 4 3 2 5 1

5 4 2 3 2 5

5 5 5 5 5 5

5 4 2 3 4 5

5 3 1 4 5 1

4 1 3 4 2 5

i0 2 6 6 2 I0

I0 6 8 I0 4 2

5 5 S 2 5 2

5 4 2 3 4 2

15 IS 12 9 15 6

I0 i0 8 6 I0 6

78 70 66 78 56
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markedlyreduced(from ii00 ib (4900N) to approximately 475 Ib (2110 N)) which

was enough to offset, on the rating matrix, the adverse effects of the efficiency

decrease and increase in rubbin_ velocities. The effect of speed on axial load

for various piston diameters and strokes is shown in Fig. 83. Since the overall

rating of the higher speed axial piston pump increased by only one noint, it did

did not alter its position on the rating matrix with respect to the other concepts.

Higher Speed Gear Pump

The effects of increasing the rotating speed of the gear hump were also investi-

gated and the relationshin of performance and _ear geometry, is presented in Fig. 84.

A cavitation limit line is also presented in the figure and is based on the amount

of energy required to accelerate the fluid up to the gear tip sDeed with an inlet

static pressure of 15 psi (i.03 x 105 N/m 2) above vapor pressure. Oneration to

the right of this line will require a boost pump. This figure indicates tha_ to

obtain high efficiency the larger gear diameters are required.

According to Fig. 84 to maintain efficiencies in excess of 85 percent without a

boost pump, and to allow some margin from the cavitation limit line, a speed on

the order of 6000 rpm would be a maximum. The geometry required would be a _ear

diameter of 1.77 in. (3.7338 x lO-2m) and a width of .40 in. (1.016 x lO-2m).

This configuration (Fig. 85) would weigh II.9 ibm (5.40 kg). In the boost numn

region of operation, as shown in Fig. 84, an efficiency of 85 percent can be main-

tained at a speed of 9000 rpm. A hump of this configuration is shown in FiR. 86.

A boost pump configuration designed to operate at 9000 rnm with a gear geometry,

of 0.3 in. (7.62 x lO-Sm) width and 1.40 in. (3.556 x lO'2m) diameter will weigh

11.6 Ibm (5.26 kg).

Considering the pump by itself indicates that the weight reduction of 0.5 ibm

(0.136 kg) is insufficient to justify the added complexity associated with the

boost pump configuration. However, it should be noted that the weight of the

drive unit is reduced at higher speeds. Taking these two factors together may

increase the weight savings to a point to make the increased complexity of the

boost pump configuration justifiable. However, considering the pump only, the con-

figuration without a boost feature is preferable.
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As a result of these studies, a gear puny, unboosted, was selected as the design

best suited to this avplication, and Task VI, the final design of the gear rump,

described in the following rages, was undertaken.
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TASKVI: POSITIVE DISPLACEMENT PUMP DESIGN

On r.he basis o£ the preceeding Vositive displacement pump concept analysis, two

configurations, the gear and vane pumps, placed highest on the rating matrix,

Table XIV. The results of this analysis were presented to NASA for final review

and approval.

The configuration chosen was the gear pump. Therefore the task remaining was to

finalize the design. The following reiterates the performance requirements for

the pump:

Pump inlet pressure 35 psia

Pump inlet temperature 159 R

Pumv exit pressure 1500 psia

Design flowrate 12 gpm

Pumped fluid LF 2

(2.41 x i05 N/m 2)

(88. S K)

(I.03 x 107 N/m 3)

(7.57 x 10 "4 m3/s)

Cwith caoability of FLOX

operation)

During the Positive Displacement Pump Evaluation section study of this report

(Task V), a nLanber of general conclusions were reached relative to the best con-

figuration of the gear Dump:

i. Two spur gears of equal size should be used.

2. Roller bearings with a slight internal interference fit should be used.

5. The bearings for each of the two gears should be placed one above the

other to minimize shaft deflections.

4. A maximmn rotating speed exists for a given gear diameter in order to

preclude cavitation in the pumoing cavity.

Using the above as ground rules, the specific design of the pump proceeded,

GEAR DESIGN

A pressure angle of 25 degrees (0.45655 tad) was selected because it will' minimize

the amount of trapped fluid between the meshing teeth and will provide a larger

pumping volume than either a 14-I/2- or 20 degree standard pressure angle.
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Nineteethhergear were selected since a small number of teeth increases the

theoretical displacement in relation to the slip (leakage). Further, nine is the

minimum number of teeth that can be used without requiring tooth undercuttin_ to

prevent tooth-to-tooth interference.

The recommendations of the American Gear Hanufacturers Association (A_'4A) were

followed relative to the relationshi_ of the gear addendum to diametral pitch.

The preferred relationshiv, and the one actually used) was (Ref. 27):

where

Addendum = 1.25/P d (74}

Pd =

n --

D

n

diametral pitch =

number of teeth

= _itch diameter

From bearing catalogs the relationsh£_ of the roller bearing OD's and ID's (also

shaft OD) was determined to be

where

= * 4 (75)DB l,S Ds ,

DB : bearing diameter, ft

D = shaft diameter, ft
s

The shaft diameter is determined by torque considerations. To complete this

analysis, design layouts indicated a relationshi_ between the bearings and gear

OD's would be,

where

1.34 DB = DOD = 1.2D (76)

DOD =

D =

outside diameter of gear, ft

pitch diameter, ft
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To determine a gear radial tip clearance that will preclude rubbing, the deflec-

tions that affect this clearance were required. The shear and bending deformations

of the shaft due to the pressure loading on the gears were calculated as:

Radial Deflection

In j

Idler Shaft 0.00042 0.0107

Driver Shaft 0.00039 0.0099

In addition, the bearing deflections and detail part stackup tolerance was esti-

mated to be 0.0007 inch (1.778 xl0"Sm). The total of all estimated deflections

then are 0.00112 inch (2.84 x 16 -5 m) at the idler gear OD and 0.00107 inch

(2.72 xlO "5 m) at the driver gear OD,

The design a_proach used with regard to the axial clearance was to annly a coating

of aluminum oxide on the stationary parts adjacent to the gears and set the total

clearance ¢o 0.0001 inch (2.54 x 10 -6 m) minimu_ and 0.0003 inch (7.62 x 10 -6 m)

maximum. It is anticipated that the gears will wear away hart of the aluminum

oxide during operation; however, this annroach is exnected to result in smaller

internal leakage than if the clearance were set at an arbitrarily lar_er value.

Performance and overall pump size is dependent on gear size. The relationship of

performance and gear geometry, established by the equations developed in the Gear

Pump Evaluation section (Eq. 46, 55, and 56), is shown in Fig. 87 . A cavitation

limit line is also presented in the figure and is based on the amount of energy

required to accelerate the fluid up to the gear tip speed with an inlet static

pressure of 1S psi (1.05 x 105 N/m 2) above vapor pressure. Operation to the

right of this line will require a boost pump. This figure indicates that to ob-

tain high efficiency the larger gear diameters are required.

According to Fig. 87 , to maintain ef£iciencies in excess of 85 percent without

a boost pump and to allow some margin from the cavitation limit line, a speed on

the order of 5,000 r_m is a maximum. The geometry required is a gear diameter of
_9

1.90 inch (4.826 xlO " m) and a width of .334 inch (8.484 x lO-Sm). This config-

uration (Fig. 88) would weigh 11.9 Ibm (5.40 kg).
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The meshing teeth traD fluid and return this fluid back to the inlet. This fluid

is subcooled. When the travped fluid returns to the inlet through the relief,

the fluid will follow a constant enthalpy nrocess. The temperature of the travped

fluid can be calculated by:

where

F_

C _n
P

FHP = developed fluid horsepower

= mass flowrate, Ib/sec

(77)

n = overall efficiency

Asstming an overall efficiency of 75 percent results in a AT of 11 F (6.12 K).

Following a constant enthalpy nrocess from a voint 11 F (6.12 K) and 1SO0 psi

(1.034 xl07 N/m 2) above inlet conditions to the referenced inlet conditions gives

a fluid quality of 0.178. The liquid density returning to the inlet is 91.2 Ibm/_t 3

(1460 kg/m3); the vavor density is 0.85 Ibm/ft 3 (15.6 kg/m3). These three conditions

lead to a density of the mixture of 46 Ibm/ft 3 (737 kg/m3). The density of the

fluid while it was trapped at 1500 psi (including correction for bulk modulus) was

93 Ibm/ft 3 (1490 kg/m3). This indicates a density ratio of two. The amount of

fluid trapped per tooth space is 0.00225 in. 5 (3.6871 xl0 -8 m3). The total volume

of fluid being pumped in a tooth svace is 0.0694 in. 3 (1.1373 xl0 "6 m3). Since

the trapped volume will double when the fluid is exposed to inlet conditions, a

full charge will not enter during the inlet cycle. The gear width must then be

increased to make up this decrease. The volume increase required will be the ratio

of the expanded volume to the total volume, which is $.3 vercent. The gear width

now required to meet the required delivered volumetric flow is 0.350 inch (8.89

xl0-3m).
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_TERIALS SELECTION

The entire pump is manufactured from INCO 718 material with the exception of the

bearings and seals. The bearing material is 440C. Past experience and tests

indicate that 440C material is superior to other alloys for bearings operating in

a cryogenic liquid. AISI 440C was considered for the gears but was rejected

because of its brittleness which could result in gear tooth chipping. The dynamic

seals are INCO 718 with alumin_ oxide (AI203) flame sprayed on the seal nose.

The seal mating rings are KI62B (Kermsmetal).

Since the gears and all housing components are fabricated from the same material,

IXCO 718, the potential problem o£ differential thermal contraction between Darts

in _oing from ambient to cryogenic temperature has been eliminated. In large

pum_, or _umDs where minor changes in radial or axial clearance is not siRnificant

this differential thermal contraction poses no problem. However, in this oumD con-

figuration, a ch_nRe in clearance of only I or 2 ten-thousandths of an inch can be

critical.

AXIAL THRUST

Unless compensated for, an axial thrust is generated within the gear pump. This

thrust originates from the seal nose loading on the seal mating rings and from the

pressure force on the internal end of the drive gear shaft. This latter force is

brought about by the fluid leaking past the gear ends and the fluid used to cool the

bearings. The maximum axial thrust calculated under these conditions is 18 Ibf

C80 X). This force on the drive shaft was thought to be excessive due to wear on

the aluminum oxide coatings on the side plates opposite the gears.

The method used to eliminate this axial thrust within the pump was to install a

pressure balance seal at the opposite end of the drive shaft from the primary and

secondary face riding seals. This seal accomplishes two purposes. First, the spring

load of the seal against its mating ring equals and opposes the combined spring load

of the primary and secondary seals. Secondly, it allows the pressure on the inter-

nal end of the drive shaft to approach zero thereby eliminating this pressure force.

The leakage from this seal is drained overboard. The positive displacement pump

final design is shown in Fig. 88.

5
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MECHANICALDESIGN

Rollerbearingsareusedbecauseof thehighhydraulicloads. Thebearingswill
havean internal interference fit sufficient to cause internal compressive bearing

loads that will always exceed the hydraulic loads. This prevents excessive bearing

deflections and gives better control on the gear outside diameter running clearance.

A modified 25 degree pressure angle suur gear will be used. The modification

changes the gear tooth profile from a true involute form. This modification was

required since the small number of teeth (nine) per gear is not consistent with

standard gear design for the outer diameter desired. Without modification, a

true involute design would have caused in 0.O015-inch (0.0381 mm} interference

between a meshing idler tooth and a driver tooth at the tooth root.

The nomenclature location of the following hardware descriptions can be found in

Fig. 88.

The internal running clearances must be held to a much smaller value than conven-

tional gear pumps because of the low viscosity of the fluid to be pumped. In

order to keep these clearances small the idler gear and the drive gear are machined

as an integral part of their respective shafts. The bearing inner races will then

be pressed on the gear shaft journals. The hearing inner races will then be groumd

concentric to the gear outside diameter and normal to the gear face. This will

result in only one tolerance between the gear outer diameter and the bearing inner

race roller journal thereby allowing closer control of the radial gear-to-housing

clearance.

The gear side plates will be flame sprayed with aluminum oxide in the areas where

the gear faces will rub. The roller bearings are mounted in the side plates to

give a minimum bearing span and reduce shaft gear deflection. The side plates are

spaced by a separator which controls the side or face running clearance of the

gears. The two side plates and separator will be rough machined and then assembled

with a shrink fit ring on the outside diameter with a single indexing dowel pin.
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Finish grinding will be accomplished on the three parts as an assembly, thus

controlling the bearing alignment and concentricity to within 0.0001 of an inch

(0.0254 xl0 "4 m).

The inlet housing incorporates both the inlet and discharge ports. It also retains

the pressure balance seal for the drive gear. The seal housing retains the dynamic

seals for the pump drive shaft. The pump mounting flange is also a part of the

seal housing. These two castings are bolted together on the outer periphery and

sandwich the gear housing matched assembly, thus restraining the gear side plate

deflections.

The bearings run submerged in the pumped fluid. Bearing coolant flow is obtained

from the fluid leakage between the gear faces and the side plates. A slight forced

coolant is also obtained from the trapped fluid at the gear mesh. This trapped

fluid is released by bleed holes in each of the side plates. These bleed holes

are located on the gear pitch line. The bleed holes direct the fluid to each of

the bearings.

The idler gear shaft has an axial hole through the center of the shaft. This

allows the coolant fluid pressure to equalize on both sides of the shaft and

bearings which helps to maintain a hydraulic balance of the gear. The drive shaft

gear hydraulic balancing is obtained by having two dyns_nic seals of the same nose

diameter--one each side of the gear--outboard of the bearings. These pressure

balancing cavities of both gears are cross drilled so equal pressure is obtained

on both gears {see Fig. 88). The bearing coolant flow passing through these cavi-

ties is returned to the £nlet line sufficiently far upstream of the pump to assure

that mixed phase flow does not occur at the pump inlet.

Two seals are used on the drive end o£ the shaft gear. The cavity between these

seals will be purged and drained overboard. The seal leakage from the pressure

balance seal on the opposite end of the drive gear will be drained into the same

overboard drain.



STRESS AND DYNAMIC A_NALYSIS

The structural analysis of the positive displacement LF 2 pump w_ based on the

following parameters:

Parameter Nominal Maximum

Speed, rpm SO00 SSO0

Power, hp_atts) 15 (11,185 W) 20 (14,914 W)

Torque, in.-Ib (Nm) 189 (21.35 Nm) 252 (28.47 Nm)

Discharge Pressure, psi (N/m 2) iSO0 (1.O54 xl07 N/m 2) 1500 (1.07 xl07 N/m 2)

All parts analyzed are structurally azlequate. The stresses reported herein are

limit stresses, which are 20 percent greater than the predicted maximum operating

values. In many areas, material selection and section thicknesses were based on

thermal compatibility, or functional and manufacturing requirements, and are more

than adequate from a structural standpoint.

Driver Shaft

The driver shaft is made of wrought INC0 718. The centrifugal stresses are insig-

nificant because of the low' speed. At the thread relief, the limit shear stress,

due to power torque, is 19,570 psi (1.34 xl08 N/m2), and the limit axial stress,

which is a function of the nut pretorque, is 55,500 psi (5.69 xl08 N/m2). The

factor of safety on limit combined steady and alternating stress is 2.2. A summary

of the stresses and factors of safety for locations at the thread relief (Section

A-A) and at the bearing shoulder Section B-B] are presented in Fig. 89.

Shaft Radial Deflections

The calculated radial deflections of the driver and idler shafts at the gear center

plane are 0.00039 in. (0.0099 mm) and 0,00042 in. (0.0107 mm) respectively. This

deflection includes the bending and shear deformation of the shafts only, and is

due to pressure-loading on the gear faces. The pressure distribution and directions

of deflections are shown in Fig. 90.
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A

Material :

Material Properties :

Prooertv

Ftu, ksi

Ft)., ksi

Fte, ksi

Limit Stress at Section A-A:

P/N RLOO1430E

Heat-treated, wrought INCO 718.

Axial Preload Stress

Steady Torsional Stress

Alternating Torsional Stress

Room Temperature

180 (1.241 xlO 9 N/m 2]

150 CI.034 xl09 N/m 2)

42 {2.896 xl09 N/m 2)

-300 F {88.7 K)

219 (l. Sl xlO 9 N/m 2)

166 C1.14 xl09 N/m 2)

56 {3.86 xl08 N/m 2)

$3500 psi {5.69 xl08 N/m 2)

19370 psi CI.34 xl08 N/m 2)

3480 psi (2.40 xl07 N/m 2)

Factor of safety on combined steady and fatigue stresses: 2.2

Limit Stress at 5ection B-B:

Axial Preload Stress

Pressure Bending Stress

Steady Torsional Stress

Alternating Torsional Stress

28460 psi (1.96 xlO 8 N/m 2)

15160 psi {l.OS xlO 8 N/m 2)

7500 psi {5.17 xl07 N/m 2]

1880 psi {1.30 xl07 N/m 2)

Factor of safety on combined steady and fatigue stress: 2.4

Figure 89. Sum_nary of Stresses and Factors of Safety at Thread Relief and at

the Bearing Shoulder for the Driver Shaft
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The pressure distribution and resultant shaft loads are as shown.

The shaft radial deflections are:

for the idler: SR = 0.00042 in, (0.0107 mm)

for the driver: S R = 0.00039 (0.0099 mm)

These include shear and bending deformations of the shaft, due to the

pressure loading on the gears. They occur at the center plane of the

gears•

Figure 90. Gear Pump Pressure Distribu$ion and Deflections
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Gear Housin_

The gear housing plates are made o£ wrought INCO 718. The stresses in the housings

are low, 20,700 psi (1.43 xlO 8 N/m 2) maximum. The main concern is the deflection

of the plates away from the gear faces. The calculated deflection is 0.0004 in.

C0.0102 mm} at the center of the plates, where the gears mesh. This deflection

calculation is based on a simplified model. A summary of the stresses and deflec-

tions is presented in Fig. 91.

Pump C_ ings

The pump casings are cast INCO 718. The pressure stresses in the casings are

small, less than 15,000 psi (1.03 xlO 8 N/m2}. These should present no structural

problems.

Miscellaneous

All the fasteners and other miscellaneous components have been selected to provide

adequate factors of safety.

Critical Speed _nal[sis

The gear pump was modeled to obtain a critical speed analysis. The results (shown

in Fig. 92) indicate that a critical speed could exist in the operating range of

the pump for very low values of the bearing radial spring rates. However due to

the internal interference fit of the roller bearings the actual bearing radial

spring rates (>106 lb/in. {1.75 xlO 8 N/m) with 0.0001 {0.00254 mm) inch internal

interference) Lre large enough to raise the lowest critical speed well above the

operating range. Thus, no critical speeds are in the operating range of the pump.

The pump was modeled by 22 mass stations connected by 21 elastic springs. The

shaft is supported by two bearings at the pump itself and two bearings in the

torquemeter. The results of the calculation are shown in Table XIV,
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circle

_lateri al :

_aterial Properties :

Pronerty

F
tu

F
ty

Heat treated wrought INCO 718.

Room Temperature

180 ksi (1.24 xlO 9 N/m 2)

150 ksi (1.03 xl09 N/m 2)

Pressure bendin_ stress:

Limit stress at bolt circle

Limit stress at point A

Factor of safety - high

20700 psi (1.45 xl08 N/m 2)

9500 psi (6.55 xl07 N/m 2)

Deflection at Centerline:

Eacx plate deflects 0.0004 in. (0.0102 man) in the direction

indicated by the arrows.

Figure 91. Summary of Gear Housing Stresses and Deflections
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Bearing Radial Stiffness lbf/in.

Figure 92. Gear Pump Critical Speed vs Bearing Sti££ness
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Mode

I

2

3

I

2

1

TABLE XIV. CRITICAL SPEEDS

Bearing Stiffness, lbf/in. Critical Speed, rpm

1,O00 3,800

6,160

25,100

I0,000 11,800

13,700

i00,000 28,600
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NO_._ENCLATUR E

ROTATING PUMP

A

A _

a

B

b

C
P

Cu

Cm

D
S

D

I)_

d

F

Fte

Ftu

Fry

a

H

Had

K1 , K2,.-.K n

k

m

_TPSlt

N
S

N

n

P

PL

Pth

P
C

P

q

Alplification factor I/_ B
!

Flow factor

$pacingbetween vanes or disks, feet

Axial extension of rotating pitot drum, feet

Vane height, feet

Pitot pickup velocity, fee%/sec.

Tangential fluid velocity, feet/sec.

Fluid meridional velocity, feet/see.

Specific diameter

Diameter, feet •

Proportionality factor, D/_

Characteristic diameter, feet

Axial force, lbs.

Endurance limit (fatigue strength), psi

Tensile ultimate strength, psi

Tensile yield strength, psi

Gravitational constant, ft2//sec.

Head rise, feet

Actual developed head, feet

Constants

Proportionality factor, d/&

Slip factor

Net positive suction head, feet

Specific speed

Rotative speed, rpw

Proportionality factor_ B/_

Power, ft-lb/sec.

Friction power loss, ft-lb/sec.

Theoretical po_er, ft-lh/sec.

Power coefficient

Static pressure, lbs/ft 2

Volumetric flow rate, gpm
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q

qL

qp

qad

%h

qD

%
R

Re

r

S

T

U

X

Y

Z

Head coefficient

Pitot drum blading bead loss coefficient

Internal ducting head loss coefficient

Actual developed head coefficient

Theoretical head coefficient

Pitot probe drag head loss coefficient

Wheel disk friction head loss coefficient

Radius, feet

Reynolds number, Ud/_

Ratio of free area to total area due to boundary layers

Emission ratio

Torque, f%-lbs

Rotor tangential velocity, ft/sec.

Weight flow rate, lb/sec.

Proportionality factor, _/_

Proportionality factor, a/_

Blade or disk number

_g

_f
£

'7

_r

T?,

Parameter relating blade number to specific speed

_eel friction loss coefficient

Specific weight of gas, lb/ft 3

Specific weight of fluid, lb/ft 5

Pitot pickup diameter, feet

Pitot pump loss coefficient

Internal duction loss coefficient

Drag coefficient

Efficiency,

Pitot vane efficiency

Blade spacing parameter

Drag ratio casing to rotor

Kinematic viscosity, ft2/sec.

Pressure recovery, coefficient

Disk friction moment coefficient

Circumference to diameter ratio
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f
6"

A

Subscripts

1

2

T0T

Static

Local

tip

Max.

_4ass density, slugs/f% 2

Thowa cavitation parameter, NPSH/Had

Flow coefficient, Cm/U

Head coefficient, ]_/U 2

Velocity ratio, 1/_

Rotational speed, radians/sec.

Diameter of pitot body, feet

Section 1 or inlet

Section 2 or discharge

Total

Static

Local parameter

tip or outer diameter

imum



POSITIVE DISPLACt_ENT _IP

a

A
e

b

C

CD

¢f

C
P

D

DB
DID

DOD

D
P

D
S

d

d t

d
V

l!

F

f

FlIP

Fte

Ftu

Fry

g

h

HPDE L

ItPI_ Q

k, k 1, k2...

L

L*

L
av

Diaphragm effective radius (in.)

Effective pumping area of helirotor pump

Radius of convolution in diaphrap (in.)

Brake horsepower

Cavitation factor

Viscous drag coefficient

Friction coefficient

Specific heat at constant pressure (BTU/lb-F)

Pitch diameter (ft)

Diameter of hearing (ft)

Inside diameter (ft) Working depth diameter for gear (ft)

Outside diameter (ft)

Diameter of piston (ft)

Diameter of shaft (ft)

Mean diameter (ft)

Radial height of gear teeth (ft)

Gear sooth tip _dth (or crown) in direction of rotation (ft)

Modulus of elasticity

Radial load (Ib)

Deflection of diaphragm from flat position (in.)

Fluid horsepower

Endurance limit (fatigue strength) (Ib/in 2)

Tensile ultimate strength (lb/in 2)

Tensile yield strength (Ib/in 2)

Acceleration due to gravity (32.2 ft/sec 2)

Thickness of diaphragm (in.)

Horsepower delivered

Horsepower required

Constants

Axial length (ft)

Percentage of time when _P exists in piston pump

Average width of gear teeth in direction of rotation (ft)
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LS

!

N

n

Pd

_P

P
a

P.
1

P
v

qL

QLC

q_

q

R
e

5

T

_T

Tf

T
1

T
v

U

V

V
p

w

w_
w

m

0-

Pitot pump strut length (ft)

Leak path length parallel flow (ft)

Rotational speed (rev./min.); also Newton

Number of teeth or number of pistons

Diametral pitch (ft "l)

Differential pressure (lb/ft 2)

Atmospheric pressure (lb/ft 2)

Inlet pressure (lb/ft 2)

Vapor pressure of fluid (lb/ft 2)

_a_e (slip)flo_ (ft3/sec)

Flow loss due to cavitation (ft3/sec)

Theoretical flow (ft3/sec)

Displacement, ft3/rev

Reynolds number

Stroke (ft)

Thickness Cft)

Torque (ft-lb}

Differential temperature (_F)

Friction torque (ft-lb)

Ideal torque (ft-lb)

Viscous torque (ft-lb)

Poisson's ratio

Velocity (ft/sec)

Velocity at tip (ft/sec)

Leak path width (ft)

Leakage flow, (lb/sec)

Average velocity in clearance (ft/sec)

Mass flowrate (lb/sec)

Clearance _ft)

0verall efficiency

Volumetric efficiency

Absolute or dynamic viscosity (lb-sec/ft 2)

Kinematic viscosity (ft2/sec)

Density (lb-secR/ft _ )

Stress (Ib/iu 2)

Specific weight (lb/ft 3)

Restriction factor
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APPENDIX A

DERIVATIONS

I_ZNOID8 NI3_ER FOR CLFARANCE GAP

General Reynolds number equation:

R =pvD
e

If we assume that W_, then

and _he expression for D becomes:

D = 2_

For the laminar region the flow through a clearance gap is given

by (Ref. 7):

q

where

W =

6-

e=

= w6 3,¢_P

12,u.

clearance width normal to the flow

clearance gap normal to flow

pressure differ_nt£al across leak path

absolute viscosity

leak path length parallel to flow

(1)

(II)
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Solving for average velocity in the above equation y_.eldm:

Substituting tbe expressions derived in equations II and III into

equation I results in:

where _is mass density.



FLO_ THROUGH CI.EARAAEE GAP

FLOW REGIHE

Head Ins in a circular cross section is given by the Dercy-Weisba¢h

equation:

V2 (IV)
KL" f_ 2---'_

where

I_ = head loss (ft)

f = friction factor

e = length parallel flow (ft)

d = cross section diameter (f¢)

V = average velocity (ft/sec)

g = gravitational constant (_2.2 ft/sec 2)

For a noncircular cross section "d" can be replaced by a %erm

includin E the hydraulic radius (_)

d = _R H

Area

R H = Wetted Perimeter

w&
= 2(_"-6)

2w6
d =

w÷6

or if W:_ _

d = 2_

Substituti_ the above expression into equation (_) yields:

H L = f_
(v)
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According to Blasius (Ref. 9) for turbulent flow with imootb

conduit walls the value of friction factor can be expressed as:

Furthermore

where

= mass density

R_ = hydraulic radius

/_t= absolute viscosity

Assuming that W>_ and therefore W _ W +_ will mod/fy the

above to:

Substituting the expression of equation WI into equation VI

= 16 25

(u)

(vii)

yields:

(_n)

This expression for friction factor can then be substituted into

equatio_ V, resulting in:

_¢..25_vl.75

HL = .o66_ "p_25 d.l.25

Substituting the expressions

and

g

into equation IX and solving for velocity VIII gives:

(_)
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V =
9.7_p.57 K._3 ,_.72

•_,_ E57

then

QL " AV=W_V-
_,.7 zg'"57 _.._3 w 61" 72

where

_L = leakage flow (ft3/sec)

_P = pressure drop (Ib/ft 2)

g = gravitational constant (ft/sec 2)

6 = clear.nee (ft)

W = width of leak path (ft)

,/t4.= viscosity (Ib sec/ft 2)

_r= ,p,_i_i_.eight(ih/_t3)

= length of leak path (ft)

(x)

_)
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