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ELECTRIC ARC DISCHARGE DAMAGE TO ION THRUSTER GRIDS

by Dale D. Beebe, Shigeo Nakanishi, and Robert C. Finke

Lewis Research Center

SUMMARY

Arcs representative of those occurring between the grids of a mercury ion thruster
were simulated. Parameters affecting an arc and the resulting damage were studied.
Parameters investigated were arc energy, arc duration, and grid geometry. Arc atten-
uation techniques were also investigated. Potentially serious damage occurred at all
energy levels representative of actual thruster operating conditions. Of the grids tested,
the lowest open area configuration sustained the least damage for given conditions. At
a fixed energy level, a long duration discharge caused greater damage than a short dis-
charge. Attenuation of arc current using various impedances proved to be effective in
reducing arc damage. Faults were also deliberately caused using chips of sputtered
materials formed during the operation of an actual thruster. These faults were cleared
with no serious grid damage resulting using the principles and methods developed in this
study.

INTRODUCTION

A satellite in synchronous orbit requires small thrusters for attitude control and
stationkeeping. Electric ion thrusters with millinewton thrust are very attractive for
these functions on a satellite with a mission of 5 to 10 years because equivalent gas ex-
pulsion systems require propellant masses up to 20 percent of the vehicle mass (ref. 1).
The mercury electron bombardment thruster has been developed in an 8-centimeter ver-
sion for these applications, with design emphasis being placed on reliability and stability
(ref. 2).

An accelerating potential of approximately 1200 volts is necessary to obtain the spe-
cific impulse required by these mission applications. High-voltage arcs may occur be-
tween the accelerating electrodes if they become thermally distorted or are shorted by
sputtered metallic flakes. These high-voltage arcs may extinguish the thruster dis-
charge (ref. 3) and may cause damage to thruster components. Such effects must be



minimized in order to retain thruster reliability and lifetime.
The purpose of this investigation was to determine the relation between high-voltage

power supply characteristics and their effects on arc transients and the resulting thrust-
er grid surface damage.

Grid arcing was simulated under controlled conditions, and the damage was evalu-
ated. The parameters varied were the amount of energy discharged, the grid geometry,
and the duration of the discharge. The damage was thus related to the power supply
characteristics and the grid configuration. Finally, methods of attenuating such arcs
were investigated.

Preventing or minimizing arc damage to thruster grids is of particular concern be-
cause high-performance thrusters require very thin screen grids with narrow webs.
The results of these experiments can serve as guidelines in the design of power proces-
sors and grid configurations for ion thrusters. These experiments are also pertinent to
the problem of clearing grid faults. When a thruster grid system is shorted by a
metallic flake of sputtered material, this particle must be vaporized without damaging
the grids for recovery of normal thruster operation.

APPARATUS AND PROCEDURE

Standard Test Methods

A typical 8-centimeter mercury electron-bombardment-thruster grid system is
shown in figure 1. The closely spaced screen and accelerator grid structure is indi-
cated by the arrow. Figure 2 is a simplified electrical schematic diagram showing the
connection points of the high-voltage power supplies. A negative accelerator potential
V^ is applied directly to the accelerator grid. The positive net accelerating potential
Vj is applied to the anode of the ionization chamber. The screen grid is electrically
connected to the thruster body and the cathode is 35 to 45 volts negative with respect to
the anode by virtue of the discharge voltage, AVj.

The high-voltage system in this experiment was a capacitor bank charged to thruster
potentials through a resistance large enough to provide adequate isolation from the
power supply. Samples of dished grid pairs connected to the capacitors were pushed
together until an arc occurred. The simulation did not include, the ion-chamber dis-
charge plasma and was done in an atmospheric environment.

All grid samples used in the experiment were 1. 5-centimeter-diameter molybdenum
dished (convex) grids. The holes were etched into the material, 50 percent from each
side. Dished grids pairs were used because modern high-performance thrusters used
such a configuration. The grids were attached to heavy conductors, 1.90 centimeters



wide and 0. 130 centimeter thick, with silver solder to minimize circuit resistance..
Each grid pair was subjected to 20 arcs. This procedure was adopted because it

was sometimes difficult to detect the damage due to one arc. The potentials used cover-
ed a range from 500 to 3000 volts, which are representative of grid potentials in an
operating thruster. The apparatus used in these tests is shown in figure 3. The mech-
anism used to push the grids together consisted of a screw driven by a slow speed

c
motor. The screw moved an insulated rod at a measured rate of 2.5x10 meter per
second. The drive motor was reversed immediately after each arc. One of the con-
ductors attached to the grids passed through a current transformer connected to an os-
cilloscope for making an oscillograph of the current waveform. The grids were then
examined microscopically and photomicrographs were taken of the most seriously dam-
aged spots using appropriate magnification.

Arc Damage Tests

Energy level. - Using the apparatus of figure 3 and in the preceding section Stand-
ard Test Methods, a series of tests were conducted to study grid damage as a function
of the energy (initially stored in the capacitor bank) dissipated in the arc discharge.
The values of capacitance used ranged from 0.25 to 8 microfarad, which are representa-
tive of output circuit capacitors used in high-voltage power supplies for ion thrusters.
Two voltages were used in each case, 1500 and 3000 volts..

Grid geometries. - Three types of grid geometries were used in this experiment.
They will be referred to as types 1, 2, and 3, described as follows:

Type 1
Grid material Molybdenum
Grid thickness, cm 0.038
Hole shape • Circle
Hole diameter, cm 0. 190
Center-to-center hole spacing, cm 0.254
Open area, percent 51

Type 2
Grid material Molybdenum
Grid thickness, cm 0.0305
Hole shape Hexagon
Hole size, (face to face), cm 0.208
Center-to-center hole spacing, cm 0.254
Open area, percent 75



Type 3
Grid material Molybdenum
Grid thickness, cm 0.038
Hole shape Hexagon
Hole size (face to face), cm 0. 203
Center-to-center hole spacing, cm 0.234
Open area, percent 78

To determine the relative severity of arc damage, all three types of grids were
subjected to arcs with fixed initial conditions of voltage and capacitance. The capacitor
"used was S^nicrofarads and was charged to 1500 volts and 2.2 megohms. "Oscillographs
were taken, and the damage was evaluated as previously described.

Arc duration. - Tests were conducted to determine the dependence of grid damage
on the duration of the arc. At a fixed energy level of 1 joule, one set of grids was sub-
jected to a fast arc (lasting about 1 ^sec) using a 0.25-microfarad capacitor charged to
2. 83 kilovolts. A second set of grids was subjected to a slower arc (lasting about
30 Msec) using an 8-microfarad capacitor charged to 500 volts. Grid material type 2
was used in both tests.

Arc Characteristics Tests

Tjiruster simulation. - The atmospheric simulation of the thruster grid system did
not include the ion chamber plasma discharge operating in vacuum. To establish the
validity of the tests performed under atmospheric conditions, an arc having the same
initial conditions of voltage and capacitance as in the air test was established between
grids in a simulated thruster low-pressure mercury vapor environment. The apparatus
used in these thruster arc simulation tests is shown in figure 4. A flask with a pool of
mercury in the bottom was kept at 0° C by means of an ice bath. At 0 C the vapor
pressure of mercury is 2. 5x10"4 newton per square meter (1. 9x10 torr), which is
near the estimated pressure at the grids of an operating thruster (ref. 3). The flask
was sealed with a rubber stopper through which two copper tubes passed to support the
grids, the rubber stopper allowed the electrodes enough movement to open and close
the grid-to-grid gap. An 8-microfarad capacitor was charged to 1500 volts through a
270 000-ohm resistor. The grids were then slowly brought together until an arc occurred
in the gap between them. This test was repeated at atmospheric pressure. In both cases
oscillograph traces of the current pulses through the arc were made and compared.

In the second set of thruster arc simulation tests, the grids were examined for dam-
age after being subjected to 20 pulses from a 4-microfarad capacitor charge to 500 volts.
This test was repeated at atmospheric pressure. Damage was evaluated and compared



according to the Standard Test Methods section.
Reproducibility. - Another test was performed to check the reproducibility of the

experimental methods. Grid erosion could possibly cause individual arcs to have dif-
ferent characteristics invalidating any comparison between arc current waveforms going
through the same set of grids. A set of grids was arced 20 times, and an oscillograph
was taken of the 1st, 10th, and 20th current waveform during arcing. The waveforms
were compared to see if there was any change of arc characteristics.

Attenuation methods. - In an attempt to minimize the damaging effects of arcs, var-
ious impedances were placed in series with the grids. An 8-microfarad capacitor was
charged to 1000 volts and in separate tests was discharged through the circuits formed
by the grids, busbars, and a series impedance.
The impedances used were

(1) A short circuit
(2) A 60-millihenry, 250-ohm choke
(3) A 250-ohm noninductive resistor
(4) A 5-henry, 300-ohm choke
(5) A 300-ohm noninductive resistor.

To cause the discharge in these tests, a pool of mercury was raised beneath a set of
contacts until an arc occurred. This apparatus is shown in figure 5. Oscillograph
traces were taken of the current pulses and compared in each case.

Chip Clearing Test

Chips of sputtered metal obtained from the discharge chambers of operating thrust-
ers were dropped between a set of grids in air at operating potentials in order to simu-
late grid faults. The power supply connected to the grid had a 50 milliampere overcur-
rent trip that took 2 milliseconds to operate. These characteristics were similar to
those of the power conditioning of SERT II. The SERT II thrusters are believed to have
failed because of a grid short circuit (ref. 6). In the experiment reported herein, when
a fault occurred, an attempt was made to clear it using a capacitor in parallel with the
grids. The capacitor was charged from a 1500-volt supply through a large resistance.
In this way, the energy stored in the capacitor bank could vaporize the fault without
tripping protective circuits of the power supply.



RESULTS AND DISCUSSION

Grid Damage Effects

Arc energy. - The parameter studied in this test was the energy discharged through
the grid arc from the capacitor bank. The range of energy per pulse was from 0.28 to
36 joules.

For comparison with later figures, a photomicrograph of a clean, undamaged grid
is shown in figure 6. The graininess of the surface should be noted, as it is a property
of the undamaged surface and not caused by arcing. Of particular interest-are the
straight, even edges of the holes, which as will be shown later, are subject to the most
serious damage.

The photomicrographs of the typical damage done to the grids are shown in figures 7
to 14 along with the oscillographs of the pulses causing the damage. No detailed dis-
cussion of these figures is included herein, and examination of the photographs is left
to the reader. In most cases, only the positive grid is shown, since the negative grids
were damaged less severely than the positive grids. The value of the energy level,
capacitance, and voltage used to cause the damage in each case is given in each figure
legend. At all energy levels there was a polishing effect due to surface melting at the
spots where the arc occurred. Inside the shiny melted area, at the edges of the holes
in the grid, the metal formed long, uneven, ridgelike protrusions (see, e.g., fig. 10(a)).

Another significant form of damage was noticed in the 3-kilovolt, 1-microfarad
tests where a small pointed spike extended out about 0. 04 millimeter from the side of a
web as shown in figure 10(c). In the 2-microfarad, 1. 5-kilo volt case (fig. 11) crater-
like rings were formed on the molten section of the surface. Spikes about 0.04 milli-
meter long were also observed.

In the 8-microfarad tests (fig. 12) numerous spikes formed on the edges of the holes
in all the tests, the longest being about 0. 033 millimeter.

Grid chipping. - In a preliminary test, an unexpected phenomenon was observed.
In a test using a 0.25-microfarad capacitor at 1000 volts, where the initial positive pulse
duration was relatively short (<0.3 Msec), the grids exhibited a tendency to chip as well
as to form polished melted spots on their surface (fig. 14). This chipping was observed
only on the grids that were arced no more than three times. The same type of grid
allowed to arc 20 times with the same initial conditions showed no chipping effect. In-
stead, only the previously mentioned surface polishing effects were observed.

It is possible that the chipping occurred only with the first few arcs and that the ad-
ditional arcs polished the surface and obscured the holes left by the chips. Very few
chipped areas exhibited a polished surface. The largest dimension of a chip, judging
from the hole left by it, was about 0.27 millimeter. It was observed that a chip could
be removed by a single pulse (fig. 15).



Besides damaging the grids, these chips could aggravate the problem of flakes and
chips of sputtered conductive material, which cause shorting between thruster grids.
From this test, it is seen that some damage occurred at all the energy levels tested.

Grid geometry. - The tests were performed on grid geometry types 1, 2, and 3.
Oscillographs of the current pulses through each of the three types of grid material are
shown in figure 16. The same apparatus and initial conditions of capacitance, voltage,
and energy level (9 J) were used for all three cases. The current pulses varied slightly
among the three types of material, which variation indicates some depedence of arc char-
acteristics on the grid structure used. All waveforms shown were found to be repeatable.

The typical damage done to materials of types 1, 2, and 3 is shown in figures 17 to
19. The results show that grid type 1 undergoes far less serious damage for discharges
of fixed energy level than either types 2 or 3. The damage sustained by grid types 2
and 3 was very nearly the same: The material had been eroded to a depth of approxi-
mately 20 percent of the thickness of the grid. In all cases small spikes formed on the
edges of the holes. On grid types 2 and 3 the spikes were about 0. 05 millimeter long.

Other protrusions were formed on types 2 and 3 by material that seemed to be
"peeled back" from the center of the damage. These protrusions extended about
0.01 millimeter on each side of the web. The smaller damage sustained by grid type 1
is probably due to the better heat'conducting characteristics of the lower open area,
thicker webbed material.

Arc duration. - Tests were made to determine the effects of arc duration on grid
damage. For an initial energy level of 1 joule, the results of a long and short arc are
shown in figures 20 and 21. At a given energy level, a longer lasting arc at a lower
voltage is much more damaging than a faster, higher voltage arc (see figs.). The fast
arc (^1 ;usec) did little more than polish the surface; the slower arc (^30 jusec) eroded
much of the surface and caused 0.051 millimeter spikes to form. These observations,
together with those of the previous tests, indicate that for clearing faults (i. e., clearing
out small pieces of sputtered materials and surface irregularities causing arcs), a high-
voltage, low-capacitance discharge would be more desirable than a low-voltage, high-
capacitance discharge.

Arc Characteristics

-Arc environment. - The parameter studied in this test was the environment sur-
4

rounding the grid. In one case the environment was mercury vapor near 1. 33x10 new-



tons per square meter; in the other it was air at atmospheric pressure. The current
waveform of an arc occurring in mercury vapor at a measured pressure of
0. 439x10" newtons per square meter is shown in figure 22. The current waveform of
an arc sustained by the same apparatus in atmospheric conditions is shown in figure 23.
The four parts of each figure are oscillographs taken at increasing sweep rates. The
waveforms of both cases are very nearly the same in amplitude as well as frequency.
To aid in the interpretation of the oscillographs, it should be noted that the current
waveform comprised two parts. The first part was li cycles of a sine wave lasting
about 10 microseconds and having a maximum amplitude of several thousand amperes
(figs. 22(d) and 23(d)). The second part was an exponential rise starting at -140 am-
peres and lasting about 3 milliseconds (figs. 22(a) and 23(a)). The damage sustained by4
the grids at about 1.33x10 newton per square meter of mercury vapor is presented
in figure 24(a). The damage done to the same type of grid material on the same appara-
tus at atmospheric conditions is shown in figure 24(b). The damage was nearly the same
for both cases, but perhaps slightly worse in the mercury vapor case. This may be due
to the fact that the arcs all occurred in one spot in the mercury vapor test, while in the
atmospheric test the arcs occurred in two different locations.

It is inferred from these results that arcs occurring in the atmosphere closely ap-
proximate thruster arcing. Therefore, the experimental data taken at atmospheric con-
ditions provides results that are applicable to the actual conditions in an operating
thruster.

Reproducibility. - This test was conducted to see if the current waveform of an arc
on a given set of grids change within 20 consecutive arcs. Oscillographs of the 1st,
10th, and 20th waveforms were produced and showed identical waveforms. Since the
waveforms are identical, any differences observed in the current waveforms of an
arc on one set of grids within at least 20 arcs is due to the change in some factor other
than the surface condition of a given set of grids.

Arc simulation. - To establish the validity of the seemingly large values of current
recorded on the oscillographs of this study, an analog computer simulation was run with
the arc represented as a short circuit. In figure 25(a) the oscillograph of the current
pulse through a set of grids is shown. The analog simulation of a similar current pulse
is shown in figure 25(b). The plots do not compare exactly, as the experimental circuit-
element values result from the distributed impedances in a typical grid arc setup, ex-
clusive of the source capacitor and the simulation of figure 25(b) used slightly larger
values for these parameters. The analog simulation did verify the high-current values
recorded. A rigorous analog simulation of the experimental arc obviously exists for
some combination of R, L, and C between those used to obtain the transients of fig-
ures 25.

Arc attenuation. - The 1500-ampere current pulse of figure 25(a) was experimental-
ly decreased to a few amperes by using various inductances and resistances as ballasts.
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However, the arc duration was increased from about 8 microseconds in the unballasted
case to about 7 milliseconds in the ballasted cases.

The 60-millihenry, 245-ohm choke attenuated the peak arc current to about 2.7 am-
peres (fig. 26). A 250-ohm noninductive resistor similarly attenuated the current, but
the amplitude of its current pulse was 25 percent higher than that of the pulse through
the choke (fig. 27). The choke also rounded the peak of the pulse and increased its rise-
time. The 60-millihenry, 245-ohm air core case also matched closely with its analog
computer simulation (fig. 28). A few hand calculated values to check the computer plot
are included in figure 29 (see appendix). A few points from the oscillograph of figure 26
are also plotted on the curve. All three sets of values agree reasonably well.

The current pulse through the 5-henry, 300-ohm choke (fig. 28) did not agree with
the analytical results. Because the choke had an iron core and was rated for a maxi-
mum of 100 milliamperes, the 2-ampere pulse saturated its core, thus changing its
characteristics considerably. This case was tested, however, because a similar choke
had been used in a thruster test to eliminate neutralizer quenching during grid arcs
(ref. 5). The analog computer simulation of this case is shown in figure 30 along with
a few hand calculated points serving as a check on the simulation. Although the hand
calculation and the analog simulation agree favorably, in practice, the theoretical tran-
sient current is never realized because of saturation effects.

As shown by the oscillographs of figures 27 and 31, a ballast resistor may be ade-
quate for limiting the amplitude of the arc. The net effects of a slower current rise and
attenuation of the higher frequency components of the arc transient particularly with
regard to neutralizer stability are not known at this time. As shown in figure 32, grid
damage occurs even with the arc current attenuated to a 3-ampere level. The damage
was due to an arc from an 8 microfarad capacitor charged to 1000 volts and ballasted
by a 250-ohm resistor. Although the amplitude of the current pulse was low, the dura-
tion of the pulse (3 Msec) was much longer than that of the pulse in the unattenuated case
(8 /usec). The damage observed here is much less, however, than that occurring in the
1.5-kilovolt, 8-microfarad, unballasted case (fig. 18). In view of the information
available at this time, a simple ballast resistor used in series with the grids is an ef-
fective means of attenuating the arc current and the resulting grid damage.

Chip Clearing Test

Causing faults. - When a chip was dropped between the grids, a short occurred.
The chip would sometimes weld in place forming a smooth spike on the positive grid,
and the overcurrent protection would shut off the power supply (see fig. 33). Most of
the faults caused in this manner would be vaporized by the current surge that turned



off the power supply, and the supply would reset without additional arcing. However, a
small percentage of the fault causing chips would cause a permanent fault that would
prevent the supply from resetting. About 100 single chips had to be dropped between a
set of grids until a permanent fault occurred. A fault was considered permanent if it
did not vaporize after the power supply had been tripped 30 times. The power supply
was tripped as many as 100 times by a single fault. A pure short caused by metallic
contact between both grids (a chip) was observed only once during the tests. In this
particular case, a chip landed on the top grid and stopped. When another chip was
dropped through the grids it simultaneously tripped the power supply and caused the
other chip to become lodged between the grids while the power suppfy was off. The
power supply would not reset. The chip was removed using a 0. 5 microfarad capacitor
charged to 1500 volts. The capacitor was discharged through the grids, vaporizing the
chip, with no significant grid damage.

Clearing faulted grids. - Grids were cleared using the arrangement shown in fig-
ure 34. A capacitor was charged from a 1500-volt supply through a large resistance
until the breakdown potential was reached. In this manner, the energy from the capaci-
tor bank would cause an arc to occur without tripping the supply. The capacitor would
then recharge until another arc occurred. This breakdown would repeat until the fault

7
was cleared. A large resistance of 2x10 ohms and a small capacitance of 0. 02 micro-
farad were effective in clearing faults without serious grid damage. The charge-
discharge cycle would repeat itself for a few seconds until the fault was gone. A smaller
resistance of 470 kilohms was used with the 0. 02 microfarad capacitor, but the charging
time was insufficient to permit the grid surface to transfer the heat away between arcs,
and serious grid damage resulted. Larger charging time constants were obtained using
capacitances of 0. 5, 8. 0, and 10. 0 microfarads with a 470 000-ohm resistor. Fault
clearing with these component values resulted in no serious grid damage, but the re-
sults of the arc duration test indicate that the longer lasting arcs produced by larger
values of capacitance are potentially damaging to grids. Figure 35 shows the surface
of a positive screen grid after removal of a fault. An attractive flight technique for re-
moval of grid shorting chips would be a switching system which would charge a properly-
sized capacitor and then switch it in to the shorted screen-accelerator grid circuit,
vaporizing the chip.

CONCLUSIONS

Arcs occurring between mercury ion thrusters grids were simulated and studied.
Damage resulting from such arcs was related to power conditioning and grid geometries
by varying arc energy and duration and grid geometry. Attenuation of arc damage was

10



also studied. Potentially serious grid damage occurred at all energy levels representa-
tive of actual thruster operating conditions. Thinner webbed, high open area grids were
damaged far more severely than the thicker webbed, low open area, grids. Most of the
damage observed was due to melting of the grid surfaces and the resulting distortion of
these molten surfaces. At a fixed energy level, longer duration, lower voltage arcs
were more damaging than short duration, high voltage arcs. This information should
be helpful in developing future methods of clearing grids, which are faulted by chips of
sputtered material during thruster operation. These principles have already been ap-
plied successfully to clearing grid-to-grid shorts in recent thruster life tests (ref. 7).

Ballasts and chokes greatly reduced the current amplitude and resulting damage of
the arc but at the same time increased the time duration of the arc.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, January 11, 1974,
502-04.
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APPENDIX - MATHEMATICAL VERIFICATION OF OSCILLOGRAPHS

A mathematical analysis of the arc circuit, done to verify the accuracy of the oscil-
lographs, is presented in this appendix. Since the arc involved was nearly instantaneous
with very high currents, it was represented as a direct short. On this basis the follow-
ing analysis was performed.

The Q of a typical circuit (including busbars) was measured and used to obtain the
parameters necessary for an analog computer simulation and for hand calculations. In
this case, the circuit parameters were as follows:

Capacitance, C, MF ................ . . . . ........ 0. 46
Circuit, Q, dimensionless ......................... 8. 84

- - - -fi
Frequency, w, rad/sec . . . . . . ... . ... ........... 2.38x10
Inductance, L, H . ......................... 0.385X10"6

Damping ratio, £, dimensionless ........... ........... 0.13
Resistance, R, ohm ............................ 0. 234
Initial voltage, VQ, kV . . ......................... 1. 5

For the hand calculations these parameters are used in the relation for the under-
damped oscillatory case (see ref. 4)

where i(t) peak was determined by setting the first derivative of i(t) equal to zero,
solving for the time and substituting it back in the original equation. It was found that

t. - 0.61x10"6 sec
peak

W - 135° A

These values agree with the oscillograph of this case in figure 36. The computer simu-
lation of this case is presented in figure 36(b). A similar method was used in the case
of figure 29 with good results. A check on the computer plot of figure 29 was made
using the relation (see ref. 4)

12



i ( t ) = e

Using the initial conditions, it can be shown that K^ = -K-.. Taking the first derivative
of i(t) and using the relation (see ref. 4), it was found that Kj = 5. 95. Thus, the equa-
tion can be used to obtain the points shown in figure 29. Data are also shown plotted
from the oscillograph of an arc occurring in a circuit with these parameters. The os-
cillograph from which those points were taken is shown in figure 27.

13
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Figure 5. - Apparatus used in arc attenuation tests.
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(a) Positive grid.

0.5 mm

(b) Pulse causing damage.

Figure 8. • Grid damage caused by 0.25 microfarad, 3 kilovolt arcs.
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(a) Positive grid.

0.5 mm

(b) Pulse causing damage.

Figure 9. - Grid damage caused by 1 microfarad, 1.5 kilovolts, and 1.12 joules per pulse.
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0.5 mm
(a) Positive grid.

•t•••••••••^•••••••H

_
0.1 mm

(b) Pulse causing damage. (c) Spike formed on grid.

Figure 10. - Grid damage caused by 1 microfarad, 3 kilovolts, and 4.5 joules per pulse.
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(a) Magnification, X45.

(b) Magnification, xioo

6 ' ° K"°volts, capacitance
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0.5 mm

Figure 18. - Grid geometry test damage. Grid type 2 positive grid.
Initial voltage, 1.5 kilovolts; capacitance, 8 microfarads.

0.5 mm

Figure 19. - Grid geometry test damage. Type 3 positive grid. Initial
voltage, 1.5 kilovolts; capacitance, 8 microfarads.
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Figure 22. - Simulated thruster arc current pulses occurring in mercury
vapor at vapor pressure of 0.33X10'4 torr.

Figure 23. • Simulated thruster arc current pulses at atmospheric
pressure.
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0.5 mm j*fLT " Ĵ
1' *H. 0.5mm

(a) Arc damage with mercury vapor present. (b) Arc damage occurring at atmospheric pressure.

Figure 24. - Damage resulting from current pulses shown in figures 22 and 23.
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(a) Experimental arc.

8001—

0

-200

V

1
3 1

1 1 1. 1
2 3 4 5

Time, ^sec

1 1
6 7

(b) Analog computer plot of RLC circuit. Capacitance,
1 microfarad; inductance, 4 microhenry; resis-
tance, 1 ohm; initial voltage, 1 kilovolt.

Figure 25. - Current waveform of arc with no series impedance.

Figure 26. • Arc attenuation test current pulse with 60-millihenry,
245-ohm choke in series.
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Figure 27. • Arc attenuation test current pulse with 250-ohm, non-
inductive resistance in series.

Figure 28. - Arc attenuation test current pulse with 5-henry, 300-ohm
choke.

O Hand calculated points for
Vn • 1000 volts

Plotted from oscillograph

3 1 2 3 4 5 6 7 1
Time, msec

Figure 29. -Analog computer plot of RLC circuit Capacitance,
8 microfarads; inductancd, 60 microhenries; resistance,
250ohms ; initial voltage, Ikilovolt.
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O Hand calculated values

0 20 40 60 100 120 140 160 180 200 220 240 260
Time, Msec

Figure 30. - Analog computer plot of RLC circuit. Capacitance, 8 microfarads; inductance, 5 henries;
resistance, 300 ohms-, initial voltage, 1 kilovolt.

Figure 31. - Arc attenuation test current pulse with 300-ohm non-
inductive resistor in series.

0.5 mm

Figure 32. - Arc damage to grid from arc attenuated using 250 ohm non-
inductive resistor. Initial voltage, 1 kilovolt; current, 8 microfarads.
X45.
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Fault

Capacitor

Figure 34. • Apparatus used to clear faulted grids.

0.5 mm

Figure 35. • Grid surface after removal of metallic chip
fault.
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(b) Analog simulation.

Figure 36. • Current pulse occurring with 0.46-microfarad capacitance, 0.385-microhenry inductance, and 0.234 ohm resistance.
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