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I. INTRODUCTION

This report contains theoretical investigations on plasma processes

in the Kaufman ion thruster. The temporal development of the neutraliza-

tion of the ion beam by electron injection is analyzed in detail for dif-

ferent physical conditions. The purpose of the analyses is i) to under-

stand the formation of the steady-state, neutral ion beam, and ii) to

predict theoretically the most favorable conditions for neutralization

and the characteristic lengths and times required for neutralization.

Among other things, the investigations indicate that the neutralization

is brought about by nonlinear, discontinuous neutralization waves, and

that a complete neutralization (without a periodic space charge structure)

requires a strong intercomponent, collective momentum transfer between

the collisionless electron and ion beams, i.e. and irreversible dissi-

pation mechanism. Since the electron gas moves, relative to the ion

beam, with supersonic drift velocity, a two-stream instability results

which leads to a strong collective ("turbulent") momentum exchange be-

tween the electron and ion components. Macroscopically, this type of

intercomponent momentum transfer is described by Buneman's relaxation

frequency in the electrohydrodynamic equations for the electron-ion beam

system. This approach results in a quantitative, transient neutralization

theory and a neutralization length which is compatible with experiment.

CHAPTER II. The lateral neutralization of ion beams is treated by

standard mathematical methods for first order, nonlinear partial differen-

tial equations in the special case that the electrons are injected with a



-2-

density n equal to the ion density N. It is shown that the electron gas

moves in form of a discontinuous step wave into the ion beam leaving the

ion gas completely neutralized behind the head of the wave. The speed

of the neutralization front is considerably increased by application of

an auxiliary electric field in the direction opposite to the electron

motion.

CHAPTER III. By means of a von Mises transformation, a closed form

analytical solution is derived for the transient, lateral beam neutrali-

zation by electron injection with a density n different from the ion

density N. It is shown that the electron gas moves in form of a discon-

tinuous neutralization wave (1/2 < n /N < «) or neutralization shock wave
o

(0 < n /N < 1/2) into the ion beam at the indicated density ratios. The

neutralization wave produces a periodic over- and under-neutralization

in the ion space traversed if n 5^ N at the injection plane. After its

generation by the neutralization wave, the periodic space charge structure

remains stationary if a dissipation mechanism is not considered. In this

idealized, dissipation-free treatment of the transient neutralization

problem, a complete neutralization is achieved only if the electrons are

inj ected with a density n equal to the ion density N.

CHAPTER IV. A nonlinear theory of the longitudinal ion beam neutral-

ization is developed by means of the von Mises transformation in which inter-

component momentum transfer by strong collective interaction of the Buneman

type is considered as a dissipation mechanism. It is shown that the elec-

tron gas moves in form of a discontinuous, but damped neutralization wave

downstream the ion beam. As a result, the extent of the periodic over- and

under-neutralization produced by the neutralization wave decreases within
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a few relaxation lengths downstream of the neutralizing grid to zero.

In a typical case, it is shown that a complete neutralization of the

ion beam is obtained within a few centimeters downstream of the grid.

CHAPTER V. By means of the Lenard-Balescu equation, the inter-

component momentum transfer between stable, collisionless electron

and ion components is calculated. The stable velocity distribution

functions give rise to a momentum exchange between the electron and

ion components which is too weak to explain the anomalous short neu-

tralization lengths observed experimentally. For this reason, this

kinetic theory is applied exclusively to the electrical current trans-

port in stable, collisionless plasmas and a discussion of plasma

conductivity.

An investigation on neutralization shock waves has been initiated

in the same research period but is not included in this report. This

work will be communicated as soon as it has been completed.

The investigations contained in this report represent preliminary

results. The final (extended) versions of these investigations will be

communicated through publications in the applied physics literature at

a later date.



-4-

II. TRANSIENT ION NEUTRALIZATION BY ELECTRONS

ABSTRACT

The nonlinear initial-boundary-value problems describing the

lateral neutralization of ion beams for the cases that 1) an

auxiliary electric field accelerates the electrons into the ion

space, and 2) the electrons are injected into the ions space at

a prescribed current density are treated. Analytical solutions are

derived which give the position and speed of the neutralization

front in dependence of time, and the temporal development of the

electron density, velocity and electric fields during the

neutralization process.
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The problem of the spreading and neutralization of rarified ion

1-4)
beams is encountered in electrostatic propulsion systems. The

neutralization has been analyzed for the homogeneous ion beam model

0_Q\

in the one-dimensional steady-state case. These investigations

indicate that the electrons are distributed nonuniformly across the
o ON

beam and that the steady-state neutralization is incomplete.

In the following, the nonlinear initial-boundary-value problem

of the neutralization of a quasi-homogeneous ion beam is treated.

The purpose of the investigation is to understand the most elementary

physics of the temporal development of the neutralization process.

Two simple models are considered for this purpose, which permit the

study of the dependence of the neutralization on 1) the electron inject-

ion mechanism and 2) the auxiliary electric field which moves the elect-

rons of the neutralizer plasma into the ion space.

3—8
Following previous work on steady-state neutralization, a slab

type ion beam of width a and infinite length is considered, which is
O_Q

treated as homogeneous. The homogeneous ion beam model is not very

realistic but required for mathematical reasons in order to render an

analytical discussion feasable. The electrons are injected from the

side into the beam, -i.e. transverse to the beam velocity (Fig.l). This

3-4
arrangement is known as lateral neutralization . Only one-dimensional

electron motions transverse to the beam velocity are analyzed, i.e. down-

stream convection of electrons by the beam is disregarded.
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THEORETICAL PRINCIPLES

1 9)
The electron gas moves in form of a nonlinear wave fc < n /N < <*>)—

i o

or shock wave (0 <_ n /N < — ) — into the ion gas at the indicated ratios

of electron density n to ion density N . In order to achieve a

complete neutralization (n = N) , the condition n = N has to be

satisfied at the plane of electron injection. In this case, inertia.! ______

effects play no role in the macroscopic electron motion, provided that

the momentum relaxation time is small compared to the time it takes the

electrons to penetrate the ion beam.

With disregard of inertial effects, the field equations for the

-v •
drift velocity V and density, n of the electrons and the self-"

consistent electric field E are in presence of a homogeneous back-

ground (N) of ions:

V = (e/m) T E , (1)

(2)

wher

V-E = 4Tre(n-N) , (3)

T = (M/m)1/3 2TT/0) , u> = (4TTNe2/m)1/2 . (4)

T is the collective relaxation time of the momentum density nmv and

a) is the characteristic oscillation frequency of the electrons of

elementary charge e < 0(m = electron mass, M = ion mass).

Equation (1) is the simplified equation of electron motion which

results in the absence of inertial effects for the collisionless

electron-ion system [Eq. (4)]. A velocity field V is defined by

-> -»-
Eq. (1) only in regions where E ̂  0 , see Eqs. (2)-(3).
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A set of first order differential equations similar (but with a

collisional relaxation time) has previously been used in the analysis

12)
of the collection of electrons in the pulsed ion chamber,—and

electron conduction phenomena in solids.———. The Eqs{l)-(4) are

being applied herein to the transient, non-oscillatory (n = N)

neutralization of ion beams by electrons.
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NEUTRALIZATION IN AN ELECTRIC FIELD

-»•
As a model, an. ion beam (V) of homogeneous density N is

considered which is bounded in the planes x = 0 and X = a by grids

which are impermeable except to electrons, Fig. 1. At the beginning

of the neutralization, t = 0 , the adjacent space X < 0 is occupied

by a homogeneous plasma reservoir of electron ion density, n = N ,

and a potential difference U = <f>(a) - <f>(0) >_ 0 is quasi-instantaneously

applied to the grids at x = 0 and x = a. The auxiliary electric field

£ = -U/a represents a weak test field, i.e., the voltage U is assumed to

be extremely small compared to the voltage equivalent of the beam energy:

|e|u««yMV2 = 103 - 104 e-volt . (5)

Under the influence of the space charge field of the ions and

the auxiliary field E = -U/a , the electrons move through the grid

plane X = 0 into the ion space, 0 <^ * <_ a . In accordance with

Eqs. (l)-(4), the resulting neutralization process is described by

the nonlinear intial-boundary-value problem ;

H - - i <°E> • (6)

|| - =(n - 1) , (7)

where

n(x, t = 0) = H(- x) , (8)

1
/ E(x,t) dx = H(t) , (9)
o

and

a = 4TreaN/(-U/a) > 0 . (10)
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In Eqs. (6)-(9), n(x, t) , E(x, t) , x and t are nondimensional

variables which are related to the associated dimensional variables

[Eqs. (l)-(4)] by

n = n/N , E = E/(-U/a) , (11)

and

x = X/a , t = t/(-a/-~ T) . (12)
m 3.

The reference constants in Eqs. (11)-(12) have an evident physical

meaning, e.g., t = -a/(eUT/ma) is the transit time of an electron in

the field -U/a for the distance a .

Combining of Eqs. (6) and (7) yields for the derivative dn/dt

along the stream line of an electron fluid element

|1+ £ |B.= _an(n _ i) . (13)
at ox

The solution of Eq. (13), which satisfies the initial condition in

Eq. (8), is obviously:

n(x, t) = H[s(t) - x] , (14)

where

s(t = 0) = 0 , (15)

since

[ |f - E(x, t)] 6(s - x) = -aH(s - x)[H(s - x) - 1]

for x = s(t) , (16)

and

^ = E(s, t) (17)
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by Eqs. (13)-(14) and Eq. (1), respectively. It represents s(t) the

position coordinate of the neutralization front. It is seen from Eq.

(14) that the initial condition, Eq. (8), determines the form n(x, t)

of the solution for t ̂  0 . n(x, t) is a step function, which is

discontinuous at x = s(t) , Fig. 2.

Integration of Eq. (7) from x = s to x gives, under consideration

of Eqs. (14) and (17): ^

whence

E(x, t) = ̂ -4- a(s - x)[l -H(s - x)]

ff = H(t) + \ a(l - s)2 (19)

by substitution of Eq. (18) into the boundary condition in Eq. (9). The

solution of Eq. (19), which satisfies the initial condition in Eq. (15),

gives the position coordinate of the moving neutralization front:

s(t) = 1+ (2/a)1/2 tg[(a/2)1/2t-arctg(a/2)1/2] ̂ 0 ,

t >_Q .

(20)

It follows for the speed ds/dt of the neutralization front in the

external electric field:

^= cos~2[(a/2)1/2t-arctg(a/2)1/2] ^1 , t >_ 0 . (21)

The Eqs. (14) and (18), in which s(t) and ds/dt are given by Eqs.

(20) and (21), constitute the nondimensional solutions for the fields

n(x, t) , E(x, t) and v(x, t) .

The time required for the neutralization front s(t) to penetrate

the ion beam (0 <_ x <_ 1) is determined by s(t) = 1 . Accordingly,
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the dimensionless neutralization time is by Eq. (20)

tN = (2/a)
1/2 arc'tgCa/2)172 « | (2/a)1/2 , (a/2)1/2 » 1

(22)

Since t = > / * , *0 * Eo"
1 and a «u E1 [Eqs. (10)-(14)], the

dimensional neutralization time t^ decreases with increasing

E = -U/a .o

In Fig. 3, the dimensionless position coordinate s(t) of the

neutralization front is shown in dependence of the dimensionless time

t with a as a parameter [Eq. (20)]. The line s(t) = 1 intersects

with the s(t) curves at t = t«(a) , tN being larger for smaller

ct-values. As to the dependence on the auxiliary field E = -U/a ,

—1
it is noted that a *> E and t ̂  tE , i.e., that, for any given

dimensional time t the dimensional position coordinate 4(£) is

larger for larger E -values.

In Fig. 4, the dimensionless velocity ds/dt of the neutralization

front is shown in dependence of the dimensionless time t with a as

a parameter. It is seen that, for any t < t., , ds/dt is larger for

larger a-values. As to dependence on the auxiliary field EQ = -U/a ,

it is noted the dimensional velocity dA/dt = (a/t ) • ds/dt increases
o

with increasing E for any fixed instant t = tt , since t ^ Ee o J o o o

and a ̂  E .

In Fig. 5, the dimensionless neutralization time t is represented

versus a [Eq. (22)]. The dimensional neutralization time t^, = t -t

decreases with increasing E = -U/a , since t ^ E and a ̂  E

As a numerical illustration, consider a mercury ion beam. In this case:

a = 6.036 x 10~9 ̂ j- , r'1 = 1.249 x 102N1/2 ,
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*2 o -5*0 in"16 a2 Ml/2el uT= 2.369x10 r N'

Hence

1 ft —1 1 fl 1 9
a = 1.810 x 10 , T = 1.249 x 10 sec , .t = 7.107 x 10 sec

for a = 10 cm, N = 10 cm , and U = 10~ /300 cgsu. Accordingly,

the neutralisation time is by Eq. (22):

= 1.105 x 10 9, = 7.853 x 10 ? sec .

It is seen that the neutralization time is rather short, although

the driving test field is extremely weak. In this connection, it should

be noted that n(x,t) = 1 for x <_ s(t) [Eq. (14)], i.e., a net space

charge field does not exist behind the neutralization front s (t).

Because of the disregard of inertial effects in the electron

motion [Eq. (1)], the formulas derived in this section are only applicable

to situations in which the neutralization time is large compared to

the momentum relaxation time, » T .
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NEUTRALIZATION BY ELECTRON INJECTION

->
As a model, an ion beam (V) of homogeneous density N is

considered which is bounded in the planes X = 0 and X = a by grids
\

which are impermeable except to electrons, Fig. 6. Through the plane

X = 0 , electrons are injected quasi-instantaneously from the region

X <^ 0 with a density n = N , but an arbitrary current density

j = n ev at the beginning t = 0 of the neutralization (U = 0) .

In accordance with Eqs. (l)-)4), the associated neutralization

process is described by the . nonlinear initial -boundary -value problem:

||-»>T(n-l) , (24)

where

n(x, t = 0) = H(- x) , (25)

n(x = 0, t)v(x = 0, t) = H(t) , (26)

and T , u is defined in Eq. (4). In Eqs. (23)-(26), n(x, t) ,

E(x, t) , x and t are nondimensional variables which are related

to the associated dimensional variables [Eqs. (l)-(4)] by

n = n/N , v = U/VQ , E = E/(|-̂ ) , (27)

and

x = X/(vo/o>) , t = ut . (28)
y»

The reference constants in Eqs. (27)- (28) have an evident physical

meaning, e.g., E = mv /ex is the electric field that accelerates

an electron to the speed V in T seconds.
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Combining of Eqs. (23) and (24) yields for the derivative dn/dt

along the streamline of an electron fluid element

IB.+ E |2.= -a)Tn(n-l) . (29)
ot ox

The solution of Eq. (29), which satisfies the initial condition in Eq.

(25), is

n(x, t) = H[a(t) - x] , (30)

where

a(t = 0) = 0 , (31)

since

[̂  - E(x, t)] 6(a-x) = -arrH(a-x)[H(a-x) - 1]

for x = a(t) , (32)

and

£= E(a, t) (33)

by Eqs. (29)-(30) and Eq. (1), respectively. Equation (30) indicates

that the initial condition, Eq. (25), determines the form of n(x, t)

for t >_ 0 . The solution n(x, t) is a step function which is

discontinuous at x = cr(t) , the position of the neutralization front,

Fig. 6.

Integration of Eq. (24) from x = a to x gives, under

consideration of Eqs. (30) and (33):

E(x, t) = |2.+ ur(0-x)[l-H(o-x)] • (34)
dt
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The position a(t) of the neutralization front is determined by the

boundary condition in Eq. (26), which gives

H(CT){dT'f <"TO[l-H(a-x)} = H(t) (35)

by Eqs. (30) and (34). It follows by integration of Eq. (35), since

a(t) >_ 0 for t >_ 0:

a t
j H(a') da' = / H(t') dt1 . (36)
0 0

Hence, the position coordinate of the moving neutralization front is:

a(t) = t , t >_ 0 . (37)

The speed da/dt of the neutralization front is invariant (constant

electron injection velocity):

£ = 1 , t > 0 . (38)
dt —

The Eqs. (30) and (34), in which a(t) and da/dt are given by Eqs.

(37) and (38), constitute the nondimensional solutions for the fields

n(x, t) , E(x, t) and v(x, t).

The time required for the neutralization front a(t) to penetrate

the ion beam (0 £ x <_ aco/v ) is determined by a(t) = aco/VQ [Eq.

(28)]. Hence, the dimensionless neutralization time is by Eq. (37)

In Fig. 7, the (dimensionless) position coordinate a(t) and

speed da/dt of the moving neutralization front are shown versus t

in accordance with Eqs. (37) and (38), respectively.
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The dimensional speed of the neutralization front and the dimensional

neutralization time are by Eq. (38)-(39) and Eqs. (27)-(28):

. v = / /Ne (40)
o o

and

where V and / are the steady-state velocity and electrical currento o J J

density with which the electrons are injected [Eq. (26)]. Accordingly,

9 l-f'ol 7VQ = 2.082 x 10 — j2- = 6.246 x 10 cm/sec

and

—i n oM —7
t., = 4.803 x 10 u -SS- . i.eoi x 10 ' sec
TJ I • I

\J0\

Q o O O 7

for a = 10 cm, N = 10 cm , and \j \ = 10~ amp/cm = 3 x 10 cgsu.

The speed of the neutralization front da/dt is identical with

the speed u with which the electrons are injected (n =N) which, in

turn, determines the neutralization time ^L. In this case, the

neutralization time can be shorter than the momentum relaxation time if

the injection velocity is sufficiently large.
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REMARKS

Closed form analytical solutions have been obtained for the

nonlinear initial-boundary-value problems describing the transverse

neutralization of idealized ion beams in the cases that 1) a weak

auxiliary electric field pulls the electrons into the ion space, and

2) a constant electron current is injected through the neutralizer

plane. In order to achieve a complete neutralization, the electron

density at the neutralizer plane (x = 0) has been assumed to be equal

to the ion density (N). In the cases 1) and 2), the neutralization

occurs through an electron flow with a discontinuous front, ahead of

which the electron density is zero and behind of which the electron

density is equal to the ion density (discontinuous solutions).

In case 1), the speed of the neutralization front can be considerably

enhanced by increasing the intensity of the auxiliary electric field.

In case 2), the speed of the neutralization front is given by the

velocity with which the electrons are injected (the electron gas

behaves like an incompressible fluid).

The main outcome of these simple theoretical considerations is that

a short, relaxation-free neutralization is possible if the electrons are

injected with a density equal to the ion density, n = N. In the

general case, n ^ N, the neutralization time is much longer because

9
of the occurrence of neutralization space charge waves , which exhibit

only a weak damping. As a mathematical result, it is pointed out that

the solutions of the nonlinear partial differential equations of first

order are discontinuous. More realistic, continuous solutions are to

be expected if effects associated with second order partial derivatives

are taken into consideration, such as diffusion.
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III. NONLINEAR ELECTRON-ION NEUTRALIZATION WAVES WITHOUT
DISSIPATION (LATERAL INJECTION)

ABSTRACT

The nonlinear boundary-value problem describing the dynamics of

an electron gas, which is injected with a prescribed current density

from a plane (emitter) into an ion gas, is solved in closed form by

means of a von Mises transformation. The electrons and ions are

assumed to interact predominantly through the selfconsistent space

charge field, while non-conservative forces are disregarded. It is

shown that the electron gas propagates in form of a regular nonlinear

wave (% < n /N < °°) or shock wave (0 < n /N < •=•) into the ion gas
o o £ °

at the indicated ratios of electron injection (n ) to ion (N)
o

density. Graphs of the electron density, velocity, and electric space

charge field in the neutralization wave are presented for various times,

as well as plots of the time-dependence of the position coordinate

of the neutralization front. The neutralization waves lead to a com-

plete neutralization i) if n = N at the injection plane, and ii) to

a spatially periodic over- and under-neutralization if n ^ N .

These results are strictly valid only for times which are small com-

pared to the relaxation time for the dissipative momentum transfer

between electrons and ions.
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The formation of an electrically neutral plasma by injection of

electrons into a rarefield ion gas is a nonlinear process in which

electron-ion interactions through the self-consistent space charge

field play a predominant role. In the final satages of the neutraliza-

tion, diffusion and dissipative, intercomponent momentum transfer become

significant as dispersion mechanism for periodic, local neutralization

unbalances.

As will be shown, the electron gas moves into a collisionless ion

gas in form of a nonlinear wave (% < n /N < <») or shock wave

(0 < n /N < Jj) at the indicated ratios of electron (n ) and ion (N)

densities. For this reason, it is distinguished between i) "nonlinear

neutralization waves" (no overtaking of particles) and ii) "neutraliza-

tion shock waves." Both phenomena exhibit a discontinuous neutralization

front (ahead of which the electron density is zero), which moves with

the "neutralization speed" into the ion space.

The nonlinear theory to be presented is concerned exclusively

with ordinary neutralization waves (^ < n /N < « at the injection

plane). The ions are assumed to be distributed homogeneously at the

beginning of the neutralization (initial condition). The redistribution

of the ions (Coulomb repulsion) during the period which the electrons

need to penetrate a distance of the order of several neutralization

wave lengths (x ) in the ion space is commonly negligible because

of the large inertia of the ions (m. » m ).
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Further, as the electrons proceed in neutralizing the ion gas,

the Coulomb repulsion is more and more weakened. It is recognized

that the ion gas can be treated as a homogeneous space charge

background for times which are large compared to the characteristic

period (t ) of the neutralization process.

The concept of a homogeneous ion gas with uniform drift velocity

bounded by a plane plate has been proposed as a model for an ion

1-2beam. In this respect, the neutralization wave theory is

applicable to the transient neutralization of ion beams of electro-

3-4static propulsion systems. The idealized theory should provide

a qualitative understanding of the neutralization of ion beams in

free space. Consideration of the inhomogeneity and spreading of free

ion beams does not seem to be mathematically feasible except by means

of a considerable numerical expenditure. The previous work has

been concerned with the steady-state neutralization of quasi-

1—2 5—6
homogeneous ion beams. '
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THEORETICAL PRINCIPLES
« •' • * .;'l'" . • •

Subject of the considerations is a collisionless electron gas

which is penetrating a quasi-homogeneous ion gas of density N . The

ion gas is limited to the slab space 0 .<_ x < °°( |y| < » , |z| < °°) .

The plane at x=0 serves as an emitter which injects' electrons at a
.-. .-.' ?.," i<"--GV-".t' •' '' '••. .*•.•:•. ' '••<.'• "- _} - V - ' ... - • -

prescribed current density j(t) as indicated in Fig. 1. The field

equations describing the density n(x,t) , velocity v(x,t) and

longitudinal space charge field E(x,t) are (electron charge =

e < 0 , electron mass = m) :

8v . 3v " e " ' V" --•-•.-:.'

(2)

= -47re(N - n) . (3)

The injection of the electrons through the plate at x=0 with the

current density j (t) = en(0,t)v(0,t) is taken into consideration

i . '
by means of the boundary conditions:

[n(x,t)v(x ,t)]= = j(t)/e > 0 (4)

n(x,t)x=Q = nQ . (5)

The continuity of the displacement and convection currents across

the interface at x=0 requires

[47 ̂ at'0 + e"(x,t)v(x,t)]x=0 = j (t) . (6)

The Eqs. (4)- (6) imply for the displacement current the boundary

condition, 8E(x,t)/3t = 0 for x = +0 .
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In Eq. (1), the pressure gradient has been neglected in comparison

to the electric field force (analogous to the zero-temperature

plasma approximation). The Eqs. (l)-(2) can be linearized by either
Q

transforming to Lagrangian coordinates or by introducing a stream

9
function in accordance with the von Mises transformation. Both

methods have been applied in the nonlinear theory of Langmuir

oscillations of plasmas of infinite extension and can be

extended to the analysis of nonlinear phenomena in non-neutral

particle gases of finite extension with proper boundary conditions.

The nonlinear boundary-value problem defined in Eqs.

(l)-(6) is subject to the von Mises transformation. Let a stream

function i|i = \Kx,t) be introduced, which automatically satisfies
/

Eq. (2), by the relations

it-o BY. 3i= _ B. m
3t N ' 9x N ' V '

The stream function is constant along the trajectories of the electron

fluid since

_
dt 9x

dx 9̂
dt 3t

n_ nv

x

If the Jacobian is J{ (x,t)/(ijj,t)} = [9x/9i|j] ^ 0 , it is possible

to change from the old (x,t) to the new (̂ ,t) independent

variables:

x = x(̂ ,t) , t=t ;

n(x,t) •*• n(̂ ,t) , E(x,t) •> E(\p,t) , v(x,t) -»• v(̂ ,t) . (9)

Since

dx _ 9x d)j; ^
dt 3ib dt 3

L
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jhr
3t (10)

3t

and

dv
dt

3v
9t

9v

x

hr dj 3v
dt 3t

3v
3t (ID

it follows that

3v 3v _ 32x
at v 3x = 3t2 (12)

Thus, by changing to the independent variables (̂ ,t) and

considering the interrelations in Eqs. (8), (9) and (12), the nonlinear

Eqs. (l)-(3) are reduced to the linear system:

3t
2 = m E >

where

(4TrNe2/m)'

(13)

(14)

(15)

is the electron plasma frequency. Integration of Eq. (14) from x=0

to x gives

.t) = -w2{i|. + x - [<KO,t) +-
mu)

Integration of Eqs. (2) and (3) from x=0 to x gives, under

consideration of Eq. (7), an equation physically equivalent to

Eq. (14),

(16)

(17)

where the integration "constant" is j(t) by Eq. (6). Integration
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of Eq. (17) from t=0 to t yields an alternate form of Eq. (16),

t
J E(<J),t) = -u>2{if) - [iKx.O) + -^ E(x»°)l ~ Ne / J(t')dt'} .

mm 0
(18)

A comparison of Eqs. (16) and (18) reveals that the various integration

"constants," if;(x,0) ,... ,E(0,t) , are related in a simple way to

x and j(t):

i / f\ \ i *"

moj
E(x,0) = -x , (19)

E(0,t) = |̂  / j(t')dt' . (20)
mio 0

Elimination of E(i{;,t) from Eq. (13) by means of Eq. (16)

or Eq. (18) reduces the nonlinear system in Eqs. (l)-(3) to an

inhomogeneous , linear oscillator equation for x = x(i|/,t):

^f- + o)2x = -w2>(/ + a)2 f (t) , (21)
3t

where

, t
f(t) = ̂ - / j(t')dt' . . (22)

ne 0

The general solution of Eq. (21) is by Lagrange's method of the form

x(4),t) = A(i);)sin ut + B(I(J)COS ait - if) + F(t) (23)

where
t

F(t) = u / f(t')sin u(t-t')dt' (24)
0

with F(0) = 0 and F'(0) = 0 . The functions A(i|)) and BflO are

integration "constants" which are determined by the respective

initial and/or boundary conditions for the fields n(x,t) and

v(x,t) , which are related to ijj(0,t) and <Kx,0) by Eq. (7):
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t
,t) - <P(0,0) = ± / tn(x,t')v(x,t')]x=0 dt' , (25)

and
1 x

Kx,0) - ip(0,0) = ̂  / [n(x',t)] dx' . (26)

By means of the general solution for x(ip,t) in Eq. (23), one

obtains E(ip,t) by substitution of x(ip,t) into Eq. (16), v(ip,t)

by partial differentiation 8/3t), of x(ip,t), and n(\l>,t) by

partial differentiation 9/3tp)fc of x(ip,t):

in o
E(^,t) = - — tx) [A(̂ )sin tot + B(i|0cos wt - f(t) + F(t)] ,

6 (27)

v(i(j,t) = co[A(iJj)cos cot - B(\p)sin cot] + F ' ( t ) , (28)

n(i|»ft) = N/[l - ̂ĵ - sin cot - ̂ ^- cos ut] . (29)dip dtp

The Eqs. (27)-(29) represent a parametric solution for the fields

E(x,t) , v(x,t) and n(x,t) in terms of ip and t . The function

ip = i(;(x,t) is given implicitly by Eq. (23).



-34-

NEUTRALIZATION WAVES

The boundary-value problem describing the motion of the electron

gas in the ion space x ̂  0 is defined in Eqs. (l)-(6). In order to

keep the mathematical expenditure a minimum, an electron current injection

corresponding to a step-impulse is considered:

j(t) = iQH(t) , (30)

where

H(t) =1, t ̂ +0 , (31)

and = 0, t <_ -0 ,

and

i E en v < 0 , (32)
o o o '

so that

a = Ne/i > 0 . (33)
o

Eq. (30) represents a quasi-instantaneous injection of the current

density i .

Since n(0,t)V(0,t) = j(t)/e is a known boundary-value [Eq. (30)],

Eq. (25) is relevant which gives

iKO.t) - iKO.O) = a"1 H(t)t = *(0,t) + — E(0,t) (34)
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by Eq. (20). Comparison of these relations indicates that E(0,t)

is constant,

— E(0,t) = iKO.O) = *„ , (35)
2 "

and 9E/9t =0 at x=0 . In the absence of surface charges at

x = +0 , it is 4) =0 and E(0,t) = 0 . Equation (34) is a relation

between ty and t at x = 0 ,

$ - 4» = a"1 H(t)t ; t = t , ijj = iKO,t) . (36)

Evaluation of Eqs. (22) and (24) for the current density in

Eq. (30) yields

f(t) = a"1 H(t)t , (37)

F(t) = — H(t)(u)t - sin cut) . (38)
IOO

The boundary conditions in Eqs. (4)-(5) give v(x=0,t) = v(ijj,t) ,

and upon application to Eq. (28),

AOJOcos wt - B(<JJ)sin ut = — [v(x=0,t) - F'(t)] , (39)

while

A(ij))sin lot + B(ij))cos ut = iji - F(t) . (40)

by Eq. (23) for x = 0 . One obtains by elimination from Eqs. (39)-(40),

under consideration of v(x=0,t) = (N/n )H(t)/a and Eq. (38):

AGJO = ty sin (or + — [1 - (1- —)cos OJT]H(T) , (41)
o too no

B(<JO = ij; cos IOT + — [(1- —)sin U T ] H ( T ) , (42)
o too no

where

TH(x) = a(i|> - ty ) > 0 , (43)
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since the structure of a function does not depend on the designation

of the independent variable (ty. ->• fy , t -»• T) .

Upon substitution for A(iJO , B(i|0 , and f(t) , F(t) , in

accordance with Eqs. (37)-(38) and Eqs. (41)-(42), respectively, one

obtains from Eqs. (27)-(29) the parametric solutions:

>t^ = -'(1- —)H(t)sin oi(t-T) + [H(t)-H(t)]sin cot + wa^ cos co(t-r) ,/ v J- / LL\ *• J 00.11 uj \u L 7 ' L 1J- V *• ./ 1A\ i- / I o J-ii LUU i uuu vy ».-mw/ea n t v / \ /j rQ

(44)

V'| V = H(t) -(1 )H(T)COS u)(t-T) + [H(T)-H(t)]cos cot - o>ai|> sin co(t-x) ,
l/o n o

o
(45)

nQj»,t) = H(T) :

H(x)-(l )H(T)COS co(t-j) —̂̂ sin cot-coo^ sin to(t-T) ,n n co o
o o

(46)

where

N(oax(4',t) = -coaijj + H(t)cot - (1- —)H(i)sin aj(t-T)
no

+ [H(x) - H(t)]sin o)t + waif) cos co(t-t) . , (47)

and T = T(̂ ) is given in Eq. (43). Equation (47) gives ^ = ̂ (x,t)

for every point (x,t) , where t = T for x = 0 [Eq. (35)].

For the purpose of discussion, it is suitable to introduce non-

dimensional variables and fields in accordance with the substitutions

x/x -»• x , t/t -*• t , iji/x -»• \l> ;
° ° ° (48)

E/E -> E , v/V ->- v , n/N -> n ;

x = 1/ua , t = l/o) , E = -mco/eo , V = l/o , N = N .

If in addition surface charges are absent (fy =0), the Eqs. (44)-(47)

become, for t > 0 and T >_ 0 :
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EG|),t) = -(l-"'-)sin(t-i|,) , (49)
o

v(Kt) = 1 -(1- ̂ -)cos(t-*) , (50)
o

-(1- —)cos(t-̂ )- — 6(i|))sin t] , (5L)
o o

where

xO|»,t) = (t-*) - (1- |~)sin(t-i|)) , * > 0 , (52)
o

and T has been eliminated by means of Eq. (43) for t > 0 , i.e.,

T >_ 0 and ij> >. 0 (iji = 0) . Note that in Eqs. (49)-(52), N and nQ

are the original, dimensionless densities.

The Eqs. (49)-(52) describe a regular nonlinear wave if

J = 3xG|i,t)/3* 1* 0 [nfy.t) ̂  • in Eq. (51)], i.e., if

0 < N/n < 2 , or: % < n /N < « . (53)
o o

The position x = x(t) of the head of the wave (neutralization front)

obtains from Eq. (47) as the limit x = x(4> -»• +0,t) ,

x(t) = t - (1- f-)sin t >_ 0 , t >. 0 . (54)
o

Accordingly, x = kir for t = kir, k = 0 , 1, 2, 3,..., while

x > t depending on t $ kir and N/n > 1 . The speed of the

neutralization front is

- ̂ )cos t = v(*,t) . (55)
o

It is seen that x(t) >_ 0 and dx(t)/dt > 0 for t >_ 0 since

0 < N/n < 2 by Eq. (53).

In Figs. 2, 3, and k the (nondimensional) fields n(x,t) ,

E(x,t) and v(x,t) are shown versus x with 0 £ t £ lOir and

o = N/n = 0.1 and 1.1 as parameters based on Eqs. (49)-(51). At
o
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a given time t = t , the neutralization wave has penetrated the

Ŝ  S*. A

region 0 <_ x <_ x(t) , where x(t) is the position of the neutralization

front at that time. The broken curve sections in Figs. 2-4 represent,

e.g., the neutralization front at time t = 2ir , where x(2ir) = 2ir

by Eq. (54). In Fig. 5, the position x(t) of the neutralization

front is shown for arbitrary times t with a as a parameter

[Eq. (54)].

In the region ahead of the neutralization front, x > x(t) , it is

T < 0 and, hence, \\i = 0 (i|» =0) or \l> = i|i (iji t 0) by Eq. (43).

Accordingly,the fields in the unneutralized ion space are by Eqs. (44-46):

n(x,t) = v(x,t) = 0 , E(x,t) = x-t , x > x(t) . (56)

The Eqs. (49)-(52) demonstrate (see Figs. 2-4) that the

neutralization wave produces an incomplete neutralization of the ions

in the region 0 < x < x(t) , if a = N/n 4 1 . In periodically
— — o

adjacent regions, an over- and under-neutralization is achieved (Fig. 2).

The association space charge field changes periodically its direction

(Fig. 3), while the velocity fields fluctuates periodically between

the values v+ = 1 ± [1 -(N/n )] , Fig. 4. If a = 1 , the

neutralization wave reduces to a step wave with a neutralization speed

dx(t)/dt = 1 [Eqs. (49)-(62) with N/n =1]. In the latter case,

A

a complete neutralization is observed [n(x,t) = 1 for 0 ̂ x x̂(t))].

The reference values x , t , E , V , and N defined
o o o o * o

in Eq. (48) determine the actual magnitude of the variables. As a

numerical example, consider an ion gas (N) and current (i )

density given by

9 —3 ~ —2 —2
N = 10 cm , i = 10 amp cm
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Hence :

x = 3.691 x 104 li |N~3/2 = 3.502 x 10~2 cmo ' o '

t = 1.773 x 10~5 N~1/2 = 5.607 x 10~10 sec

and

E = 2.227 x 10~4 li |N~1/2 = 2.113 x lO"1 cgsu = 6.339 x 101
o ' o '

volt cm ,

V - 2.082 x 109 li IN'1 = 6.246 x 107 cm sec'1,o ' o '

9 -3
N = N = 10 cm .
o

The values of x and t give the magnitude of the space and time

periods of the neutralization wave (V = x /t ) . The (positive)
o o o

amplitudes E , v+ , and n+ of the dimensional fields are by

Eqs. (49)-(51):

E = |(l-|-)Eo| , v+ - |[1 ± (1-|L)]V | , n± = |N/[ ± (1- £-)] |
O O O

(57),

In this idealized treatment of neutralization waves, dissipation

mechanisms have been disregarded. Consideration of dissipation would lead

to a damping of the wave amplitudes and thus to a dispersion of the local

space charge unbalances, i.e. to a complete neutralization. The most impor-

tant dissipation is caused by irreversible momentum exchange between the

electron and ion components. By means of a dimensional argument, one finds

from the intercomponent momentum relaxation time T and the characteristic

parameters i , N, e as order-of-magnitude of the relaxation length for

neutralization

X £• li /Ne|t . (58)
o
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IV. NONLINEAR THEORY GFi ELECTRON NEUTRALIZATION WAVES IN
ION BEAMS WITH DISSIPATION
(LONGITUDINAL INJECTION)

ABSTRACT

An analytical theory of nonlinear neutralization waves generated

by injection of electrons from a grid in direction of a homogeneous

ion beam of uniform velocity and infinite extension is presented.

The electrons are assumed to interact with the ions through the self-

consistent space charge field and by strong collective interactions,

while diffusion in the pressure gradient is disregarded (zero-

temperature approximation). The associated nonlinear boundary-value

problem is solved in closed form by means of a von Mises transforma-

tion. It is shown that the electron gas moves into the ion space in

form of a discontinuous neutralization wave, which exhibits a periodic

field structure (incomplete neutralization). This periodic wave

structure is damped out by intercomponent momentum transfer, i.e.,

after a few relaxation lengths a quasi-neutral plasma results. The

relaxation scale in space agrees with neutralization experiments of

rarefied ion beams, if the collective momentum transfer between the

electron and ion streams is assumed to be of the Buneman type.
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A beam of positive ions attracts electrons from the surroundings,

such as system walls and rest gases of an incomplete vacuum. Thus, a

partial neutralization by electrons is a quite common phenomenon in

1-2
ion beams. In many technical applications, one is interested in

producing a complete neutralization of ion beams by electron injection

in order to reduce beam spreading and beam current limitations by

3-4
build-up of large space charge potentials.

The neutralization of a rarified ion beam by injection of an

electron-gas is a nonlinear process in which electron-ion interactions

through the self-consistent space charge field play a predominant role.

In the final stages of the neutralization intercomponent momentum trans-

fer and to some extent also diffusion resulting from pressure gradients

become significant as. despersion mechanisms of periodic, local neutral-

ization unbalances. As will be shown, the electron gas moves into a

collisionless ion beam in form of a nonlinear wave (1/2 $ n /N < °°)
o

or shock wave (0 < n /N < 1/2) at the indicated ratios of electron
o

injection (n ) and ion (N) densities. For this reason, it is

distinguished between i) "nonlinear neutralization waves" (no over-

taking of particles) and ii) "neutralization shock waves." Both .

phenomena exhibit a discontinuous neutralization front (ahead of which

the electron density is zero) , which moves with the "neutralization

speed" into the ion space.

As a model, a quasi-homogeneous ion beam if infinite extension is

considered, i.e. the density N and velocity V of the beam are

assumed to be uniform. The electrons are injected with a prescribed



-48-

current density j(t) in the downstream direction (j||V) . The

homogeneous ion beam model may be justified as i) a steady state

condition, and ii) an initial condition for the following reasons:

i) Since the beam is of infinite extension, a steady state exists

->
with a homogeneous ion density N and a uniform flow velocity V .

Because of the relatively large inertia of the ions (M » m) , the

perturbation of the homogeneity of the ion gas by injection of an

electron stream from a grid is negligible for a period which is large

compared to the characteristic time (t ) of the neutralization wave.

ii) The redistribution of the ions during the period which the

electrons need to penetrate a distance of the order of several neutral-

ization wave lengths (x ) in the ion space is negligible because of the

inertia of the ions (M » m) . Further, as the electrons proceed in

neutralizing the ion gas, the perturbing interactions through the

self-consistent field are reduced.

The homogeneous ion beam model is adequate for analyzing and

understanding the basic properties of transient neutralization waves.

The neutralization in a finite, inhomogeneous ion beam does not seem to

be treatable by analytical methods. The previous analytical work has

been concerned with steady-state electron-ion neutralization without

dissipation in homogeneous ion beams.
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NONLINEAR - BOUNDARY - VALUE PROBLEM

An ion gas of homogeneous density N and uniform velocity V

parallel to the x - axis is considered in the space |x| <^ °° , |y| <_ °° ,

|z| ̂ _ °° . This infinite ion beam is bisected by a permeable grid in

the plane x = 0 , from which electrons are ejected with the current

density j(t) in the direction of V (Fig. 1). The field equations

for the electron velocity v(x,t) , electron density n(x,t) , and the

selfconsistent electric field E(x,t) are :

3n

g = 47re(N-n) , (3)

where e > 0 is the elementary charge and m the electron mass .

The term -v(v-V) , describes the momentum transfer between the elec-

trons and ions (v = relaxation frequency) . The injection of electrons

with the current density j(t) into the ion beam from the grid plane

at x = 0 is taken into consideration by the boundary conditions:

[n(x,t) v(x,t)]x=Q = j(t)/(-e) , (4)

n(x>t)x=0 = no ' (5)

The semispace x < 0 is assumed to be shielded from electric dis-

placement currents by the grid at x = 0 . Accordingly, the continuity

of displacement and convection currents across the plane x = 0 gives

x>t) V(x't)]x=0
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The Eqs. (4) - (6) imply that the displacement current satisfies the

boundary condition , 3E(x,t)/3t = 0 for x = + 0 .

The electron and ion gases are assumed to be rarefied

(n, N < 10 cm ) and of low temperature (T < 10 °K) . The effects

of binary collisions and linear electron-wave interactions are not

discussed. Possible strong collective ("turbulence") momentum exchange

between the electron and ion streams is discussed based on Buneman's

8
relaxation frequency

v = (m/M)1/3u>/2ff , (7)

where

(4TrNe2/m)1/2 . (8)

The Eqs. (1) - (6) describe the nonlinear-boundary-value problem

of the transient neutralization process in the ion beam which takes

place in the region x ̂  0 . Thermal effects are not taken into

consideration.
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METHOD OF SOLUTION

The nonlinear-boundary-value problem defined in Eqs. (1) - ,

9-10
(6) is solvable in closed form by a von Mises transformation

Let a stream function i|i = iKx,t) be introduced, which automatically

satisfies Eq. (2), by the relations

nv
at 3x

n
N ' (9)

The stream function is constant along the trajectories of the electron

fluid since

dt 3x
dx _3ĵ
dt 3t

n . nv
(10)

The Jacobian is J{ [(x,t)/(4/ ,t)]} = 3x/3ip| ^ 0 for n(x,t) < » .

For such solutions, it is permitted to introduce (î ,t) as independent

variables in place of (x,t) :

x = x(i(;,t) ,

n(x,t)

t = t ,

, E(x,t) , v(x,t) (11)

Since

V -
dx

i *. i*.' , i. e.
3x
34)

dip 3x
. dt 3t

3x
3tt y>

3v
3t

2
3 x
^ 2 _ r .

and

dv
dt

_3v
3t x

3v
—3x

d\j> 3v
dt 3t 3t

(12)

(13)
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it follows that

2
9v , 9v 9 x
at + v K = 772 . •

O L

Thus, by changing to the independent variables (iji,t) and

considering the interrelations in Eqs . (10), (11), and (14), the

nonlinear Eqs. (l)-(3) are reduced to the linear system:

e 3E

m ̂

Integration of Eq. (16) from x = 0 to x gives

) = (O2{i|; + x - [*(0,t) - -£=• E(0,t)]} . (17)
m

Integration of Eqs. (2) and (3) from x = 0 to x gives, under

consideration of Eq. (6), an equation physically equivalent to Eq.

(16),

^f-eH-fi . j(t), (18)

where the integration "constant" is j(t) by Eq. (4). Integration of

Eq. (18) from t = 0 to t yields another form of Eq. (17),

t
- E(*,t) = o>{,J, - [l)(x,0) - -^o E(x,0)] +i- / j(t')dt'} .
m mu)Z We 0

(19)

A comparison of Eqs. (17) and (19) reveals that the various integration

"constants," i|;(x,0), ... , E(0,t) , are related in a simple way to

x and j(t) :
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iKx.O) - -2 E<x '°) " - x . (2°)
mu)

- t
iKO.t) --^E(0,t) = -^ / j ( t ' )d t ' . (21)

mto 0

Elimination of E(ijj,t) from Eq. (15) by means of Eq. (17) or

Eq. (19) reduces the nonlinear system in Eqs . (l)-(3) to an inhomo-

geneous, damped, linear oscillator equation for x = x(ij;,t) :

= W + u [ f ( t ) - i|>] (22)
9t

where

, t
f ( t ) = - fe / J ( t ' ) d t ' . (23)

By Lagrange's method, the general solution of Eq. (23) is for

to > v/2 [Eq. (7) ] :

x(ijj , t) = e [A.(^)sinftt + B(<Jj) cosfit] - ty + F(t) (24)

where

« a [u>2 - (v/2)2]% > 0 , (25)

and F(t) is a particular integral of the inhomogeneous differential

equation,

^-J + v £ + u>2F = vV + u)2f (t) , (26)

i.e.
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F(t) = - j£/%(t '>ev ( t ' - t ) / 2slnn<t ' - t )dt '
" 0

+ ^[1 - e'Vt/2(^ sinfit + cosnt)] , (27)
£. au

(0

with F(0) = 0 and F'(0) = 0 . A(i|») and B(<J>) are arbitrary

functions which are determined by the respective initial and/or

boundary conditions for n(x,t) and v(x,t) . By Eq. (9)

., t
iKO.t) - iKO.O) = ^ / [n(x,t')v(x,t')] dt' , (28)

0

and

1 x

Kx,0) - iKO.O) = ^/ [n(x',t)]tiBOdx' . (29)

interrelates the boundary (x=0) and initial (t=0) values of ij;(x,t)

to those of n(x,t) and v(x,t) .

By means of the general solution for x(i(j,t) in Eq. (24), one

obtains E(i|/,t) by substitution of x(i];,t) into Eq. (17), v(̂ ,t)

by partial differentiation 9/8t) of x(4»,t) [Eq. (12)], and n(4/,t)

by partial differentiation 9/3^) of x(ij;,t) [Eq. (9)] :

2

= e Vt

B(i|;)cosnt] - f ( t ) + F(t)} ,

(30)

, (31)at

n(*.t) - N { 1 - e [ - s i n n t + - cosnt]}'1. (32)
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The Eqs. (30) - (32) represent a parametric solution for the fields
,rv_

E(x,t) , v(x,t) , and n(x,t) in terms of ij; and t . The function

i|j = Mx»t) is given implicitly by Eq. (24).
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LONGITUDINAL NEUTRALIZATION WAVES

The theoretical investigation of neutralization waves generated

by electron injection into a homogeneous ion beam requires specification

of the time dependence of j(t). For mathematical convenience, an

electron injection from the grid plane x = 0 in the form of step-

impulse is considered:

j(t) = ioH(t) , t S 0 , (33)

where

H(t) - 1, t >.+0 ,

= 0, t <_ -0 , (34)

and

i = - en v < 0 . (35)o o o

Hence,

a = - Ne/i > 0 (36)o

This model corresponds to a quasi-instantaneous electron injection

with the current density i .

A comparison of the Eqs. (21) and (28) indicates that E(0,t) is

a constant independent of j(t),

(e/mo)2)E(0,t) = ̂ (0,0) = \l>

In absence of surface charges at x = 0 , it is E(0,t) = 0 and
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The boundary-value n(x=0,t)v(x=0,t) = -j(t)/e is known through

Eqs. (33) and (35). Accordingly, Eq. (28) is relevant which gives

= <Kx=0,t) . (37)

The boundary conditions in Eqs. (4) - (5) give v(x-0, t)= -j(t)/n e ,

and upon application to Eq. (31)

A(i)cosfit - B(*)slnflt = fi~1eVt/2{ ̂ - F(t)] - 1&- - F'(t)}
o

(38)
since

\ ) t /9 ~
A(\|>)sinnt + B(4>)cosnt = e ' [4. - F(t)] (39)

by Eq. (24) for x = 0 . The Eqs. (38) - (39) represent two independent

relations from which one obtains by elimination:

ft 1eVT/2{ |t^ - F(T)] - &&- - F'(T)}cosnT , (40)
o

and

= eVT/2[<|; - F(T)]COS

- F(T)] - - - F'(T)}sinfiT (41)
o

where

o(^ - 4< ) = f(x) , (42)

since the structure of a function does not depend on the designation of

the independent variable (i|» ->• 1(1) . In Eqs. (40) - (41) , T is a

function of ty defined by Eq. (42).
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With the current density j(t) given by Eq. (33), the associated

functions f(t) and F(t) in Eqs. (23) and (27) become

f ( t ) = a 1H(t)t , (43)

2

F(t) = ̂  H(t){%t - -) + e~Vt/2[(l - 2 ̂ )sinnt + ̂  cosfit]}
O" u) CO 2. i

0) u)

!! - ( ^sinfit + cosfit)e~Vt/2] . (44)

Substitution of Eqs. (33) and (43) - (44) into Eqs. (40) and (41)

yields :

- igln _ N_ _ y 2 _ vV
oii n _ 2_

o 2uj

H(T) - ]
0CO 0)

- 2(v/2u,)2] + - (45)
2to

and

n 0_2 2
o 20. co

OtO CO

-~-H(T) + ^|
0cO (0

(46)

where

T H(T) = a(tp - i|»o) > 0 (47)

by Eq. (42).
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Upon substitution for A(i|/) , B(̂ ), and f(t), F(t) , in

accordance with Eqs. (45) - (46) and Eqs. (43) - (44), respectively,

one obtains from Eqs. (30) - (32) the parametric solutions:

mu) /ofie
(48)

. H(t) - (1 --
o

jj-)H(T) - 2aV]
o

H(x)[H(T) - e - - { ( l - -)H(T)coaB(t-T)

(49)

o

— )H(T) - (v/fl)aV
no

, (50)
n fio

where :

fitH(t) - a«4» - (vn/u>2)[H(t) - aV]

—- 2(v/2w)2]H(T) + 2(v/2w)2aV - (v/2n)o«* }e v(t
n o
o

{(vfi/ui)2[H(T) - oV] + ofli|) }e~v(t~T)/2cosn(t-r) (51)

by Eq. (24). In Eqs. (48) - (51), T = (i|>) is given by Eq. (47).

Eq. (51) gives ip = t|j(x,t) for every point (x,t) of the wave. The

boundary condition iKx=0,t) in Eq. (37) is satisfied by Eq. (51)

since t = T for x = 0 .

Let nondimensional variables and fields be introduced by the

substitutions:
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x/x -»• x , t/t -> t , T/t -> T , ijj/x -> i|/ ,
o o o o

E/E -> E , v/V -* v , V/V -»• V , n/N •* n ,
o o o o

(52)

where

2
x E 1/ofi , t = 1/fi , E = mco /afie , V = I/a , N = N .

o o o o o

(53)

Further, if surface charges are absent (^ = 0) , the Eqs. (49) - (51)

become, for t > 0 and T > 0 :

E(̂ ,t) = fy + x(\Jj,t) - t , (54)

2 — J'
a - 2V)e~3(1~3 } '^-^sinCt-tl;) , (55)

2 -^
2

9 lx _ft /I _R^\~'2f

+ e(l-g )"2(1 + a - 2V)sin(t-ip)] - a6(ip)e PU P ; sint)

(56)
where

_ [1 . a - 2 B ( l - V ) ] e - - -

- - 2 " % - t - ^ ) , (57)

and

= T , ^(x,t) > 0 (T > 0) , (58)



-61-

by Eq. (47). The dimensionless constants are defined as

a = N/n , 6 = v/2u (59)o

Eq. (57) gives ^ = î (x,t) , where iKx,t) > 0 by Eq. (58), for

every point x of that region x > 0 which is occupied by electrons
s* ŝ

at time t . The limit, î (x,t) = 0 , defines a function x = x(t) ,

which represents the moving position coordinate of the front of the

electron gas. By Eqs. (54) - (56), the fields E(̂ ,t) , v(^,t) , and

n(̂ ,t) depend exclusively on (t-ij)) , i.e. on x by Eq. (57).' The

spatially periodic field configuration, which grows with the speed

dx(t)/dt into the space x £ 0 , represents a (nonlinear)

"neutralization wave".

The Eqs. (54) - (58) are based on a nonlinear transformation which

exists if J = 3x(i(i,t)/9i|> 1 0 or n(i|),t) < ~ in Eq. (56), i.e. if

0 < a < 2 + e, or: -T— < n /N < °° ,

2 j, (60)
e = exp[B(l-6 ) 2ir] - 1 « 1

since the extrema of n(ifi,t) occur when sin(t-i) = 0 . The

position x(t) of the neutralization front is obtained from Eq. (57)

as the limit x(t) = x(y -> 0, t) ,

x(t) = t - 20(l-e2)3s(l-V)

2 -J-'
)>

2t{[i - a - 26
2(l-V)]sint

- 2e(l-62)32(l-V)cost} > 0, t > 0 , (61)



-62-

by Eq. (60). It follows for the speed of the neutralization front,

2 -
t[(l-ct)cost + eU-eV^U + a - 2V)sint]

at •

(62)

In the region ahead of the neutralization front, x > x(t) , it

is T < 0 and \L> = 0 (<Jj =0) or ib = constant (tl> =f 0) .
o o

Accordingly,

n(x,t) = 0 , v(x,t) = 0 , x > x(t) , (63)

and

E(x,t) = E[x(t),t] + x - x(t) = x - t , x > x(t) , (64)

by Eq. (54), is the space charge field in the unneutralized ion space.

In Figs. 2, 3, and 4, the nondimensional fields n(x,t) , E(x,t) ,

and v(x,t) [Eqs. (54) - (56)] of the neutralization wave are shown

versus 0 < x s x(t) at time t = lOir , with a = 0.1, 1.1 and

2 1/3 _3
V = 10 a as parameters, and 6 = (m/M) /4ir = 1.107 x 10 for

2 k
mercury ions. Accordingly, it is x(t = lOu) = lOir - 2g(l-3 ) x

2 ̂  "
(l-V){l-exp[-e(l-B )210ir]} = lOir . For other times t = t , the

/\ s* /̂

fields of the neutralization wave exist only up to the point x = x(t) ,

e.g., the broken lines in Figs. 2-4 represent the neutralization front

at time t = 2ir . The position coordinate x(t) of the neutralization

front is given in dependence of t with a = 0.1, 1.1, and V/a =

2 -3
10 as parameters (6 = 1.107 x 10 ) in Fig. 5.
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The momentum transfer between the electron gas and the ion beam

[g-terms in Eqs. (54) - (56)] results in i) an amplitude asymmetry

which is clearly visible in the case a = 1.1 of Figs. 2-4, and ii)

.damping of the standing wave amplitudes as shown in Figs. 2-4.

According to Eqs. (54) - (57), the wave fields exhibit for large x

the symptotic behavior :

n(x,t) -> 1, v(x,t) -> 1 ,

2 1/2
E(x,t) + -2g(l-g ) ' (1-V) , for x » x , (65)

where

= (l-g2)1/2/3 . (66)

is the nondimensional length of relaxation. Accordingly, the inter-

component momentum exchange leads to a dissipation of the standing wave

structure a few relaxation lengths x downstream of the injection

plane (x = 0). This result means that a complete neutralization is

achieved after a length Ax - 3x for injection ratios a = n /N £ 1.

The dimensional length of relaxation is by Eq. (53)

xc = (l-g
2)1/2xo/g = (2/v)|lJ/Ne . (67)

For neutralization experiments, it is noted that the relaxation length

x decreases with increasing ion density N and decreasing electron

current i . Note that the neutralization remains incomplete in the

region 0 < x < x at all times if a = N/n i- 1.
— ~ c o

In Figs. 6 and 7, the spatial attenuation of the nondimensional
i

amplitude of the electron density field n(x,t) is shown at times

t > 103iT for a = 0.1, 1.1, V = 102a, and 3 = 1-107 x 10~3. [In the

special case, a = N/n = 1, practically a relaxation free neutraliza-

tion results within the wave, since n(x,t) = 1 by Eq . (56) for
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0 _< x < x(t) if gV « 1.] It is seen that the ion gas is essen-

3
tially neutralized at the point x = 10 IT where n = 1.

The reference values x , t , E , V , and N defined in Eq. (53)
o o o o o

determine the characteristic scales and actual magnitude of the fields

of the neutralization wave. As a numerical example, consider a

mercury ion beam and an electron injection current for which:

N = 109 cm~3, i = 10~3 amps cm~2, g = 1.107 x 10~3

Hence:

4 2 -1/2, , -3/2 -3
x = 3.691 x 10 (1-g ) i N = 3.502 x 10 cm
o o

-1/2 -1/2
t - 1.773 x 10 (1-g ) N = 5.607 x 10 sec

-4 2 1/2, , -1/2 -2 0 -1
E = 2.227 x 10 (1-3) |i |N = 2.113 x 10 cgsu = 6.339 x 10 volt cm ,

V = 2.082 x 109|i |N •"• = 6.246 x 106 cm sec 'L
o o

9 -3
N = N = 10 cm
o

and

-3/2
x - 3.691 x lO4?"1]! IN = 3.163 x 10° cm
c ' o'
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V. INTERCOMPONENT MOMENTUM TRANSPORT AND ELECTRICAL
CONDUCTIVITY OF COLLISIONLESS PLASMA

ABSTRACT

Based on the Lenard-Balescu equation, the interaction integral
»

for the intercomponent momentum transfer in a two-component, collisionless

plasma is evaluated in closed form. The distribution functions of the

electrons and ions are represented in form of nonisothermal, displaced

Maxwellians corresponding to the 5-moment-approximation. As an

application, the transport of electrical current in an electric field

is discussed for infrasonic up to sonic electron-ion drift velocities.
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In a fully ionized plasma, the interaction radius of an electron

or ion is of the order of magnitude of the Debye radius, D . In many

plasmas of technical interest, such as glow discharges and high

temperature, fully ionized gases, the Debye radius is large compared to

-1/3the mean particle distance, D » n , where n is the electron or

ion density. In this case, a charged particle interacts simultaneously

with many particles of the plasma, since the sphere of interaction

contains a large number N of electrons and ions,

N ~ nD3 » 1 .

A kinetic equation which takes into consideration the many-particle

1 2interactions in collisionless plasmas is that of Lenard and Balescu .

1-2The formal mathematical deductions of this kinetic equation apparently

give no meaningful explanations of its,physical foundations and its

applicability to nonequilibrium situations in general. In the following,

an application of the LB-equation is made which has the purpose of
i

determining the linear momentum exchange between the electron and ion

components and the associated electrical conductivity of a collisionless

plasma. Since the LB-integro-differential equation can not be integrated

in closed form because of its mathematical complexity, a simple plasma

model is chosen by means of which intercomponent nonequilibrium effects

can be studied as known from similar investigations based on the Boltzmann

3-4equation . The electron and ion components are assumed to be in an

approximate thermal equilibrium at their respective temperature

(Tr j Tg) in their individual center of mass system (<vr> ^ <vs>).

The drift velocity between these components can be subsonic or

supersonic,
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1 m (<v > - <v >)2 5 KT /m
2 rs r s > rs rs

where m and T are the reduced mass and temperature. Thisrs rs f

idealized theory should give information on the dependence of the

intercomponent momentum transfer on the thermal nonequilibrium,

T - T ^ 0 , and on the intercomponent drift velocity, <g > = <v > - <v >r s rs r s

At proper supersonic drift velocities, the collective interactions will

become turbulent in the plasma (two-stream instability). In this drift

velocity region, the LB-equation is expected to break down or to give

at best an approximate result with logarithmic accuracy.
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THEORETICAL PRINCIPLES

The many particle collisions in a plasma can be regarded essentially

as binary collisions complicated by the effects of the surrounding many-

particle medium which becomes polarized by the respective interacting

particle. If the time-dependent polarization of the plasma produced by

this "test" particle is Fourier-analyzed, it is seen that the many

particle collisions are equivalent to an interaction of the test

particle with electrostatic waves (non-relativistic). Evidently, these

interactions occur at wave numbers k or impact parameters p(p ~ k )

for which

kD » 1 , p « D ,

where D is the Debye radius. The change of the distribution function

f = f (v ) of particles of type "r" as a result of many-body

interactions with particles of type "s" is of the form

.^--^-•U •3v

j , is the flux of r-particles in velocity space which can be derived

intuitively from the concept of a diffusion in velocity space ,

„„ 4« f 9f f 3f ^

^

s s

where

max kk6(k-v - k»v )

4,
kmink l
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e(k,o>) is the longitudinal dielectric constant (|v | « c) of the

plasma-*,

- (k' . (4)
r,s g T oi-k-v. av-

is P

1-2Equation (1), together with Eqs. (2)-(4), represents the LB-equation

for a fully ionized plasma consisting of an electron (r) and ion (s)

component. [The sign tr in Eq. (4) indicates that in the integration

-»•-»• ->•
the pole o)-k'v0 = 0 in the complex v -plane is to be traversed from

p P

below.]

The order of magnitude of the dielectric constant is estimated by

evaluating the integral in Eq . (4) formally for a Maxwellian distribution

of g-particles which gives

.<.„
r,s k DD k-v -k«vnis r p

- 2 2 2
where D0 = 4im e /KT . Since the average expression <$> is of the order

P p p p

one for the equilibrium distribution and of the same magnitude for

nonequilibrium distributions of 3-particles, the dielectric constant

can be replaced by unity except in the case where f is unstable ,
P

e(k,u = k-v ) = 1 , kV t k2D2 » 1 . (6)r p

The integration of Eq. (13) produces the (many-particle) interaction

logarithm

max ,. k
Ars k . mmmm

since
'1

k . = D' , k = KT /le e I , (8)
tn^n ' mav vc ' re I ' '
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where

D = (4Tr I neeS/KT f)~* ' (9)

r,s p P p

In Eq. (8), k . corresponds to the maximum impact parameter

p^ = D , i.e., k . represents an extrapolation of the inequality

in Eq. (6) which is permitted in view of the weak, logarithmic

k-dependence of A , Eq. (7).
ITS

By combining Eqs. (3) and (6), an approximation to the tensor U

is obtained which will be used exclusively further on,

k
max -+ •+ _,_ ,_

"U . /// ̂ 6(£.v -£4 )<£ . do)
k

, 't r skmm

The distribution functions of the charged particle species r and s

are assumed to be displaced, nonisothermal Maxwellians (5 - moment

3-4approximation) ,

f tf ) = n A)3/2 /VV'V' =
r r r i: s r=s

In addition, let some frequently used abbreviations be defined in

3-4advance"

T T
m = m m / ( m + m ) , T =m (— + —) ,rs r s v r s' ' rs rssm m 'r s

a = m /2KT , a=a , a = a a / ( a + a ) . (12)r r r s r=s rs r s r s

In connection with the analytical developments, the so-called error

function is encountered which is defined by

-L- x -t2
$(x) = 2u 2 / e C dt (13)

0
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*(*)

2
^

(14)

C-l)01

.̂
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INTERCOMPONENT MOMENTUM TRANSPORT

The force density exerted by the s -component on the r-component

through particle-wave interactions is according to Eqs. (1) and (2)

The 5 -moment-approximation to the distribution functions in Eq. (11)

give

2n „m + m -*• r sv 2 ' Lm v r r ' m x s s 'J
s 3v r 8v IT r s

s r

r /•*••*• \ 2 /•*• •*• N2, / n_x' exp[-ar(vr-<vr>) - as(vs-<vs>) ] . (17)

Let thermal velocities c , c . the relative velocity g , andr s 7 Brs

the reduced thermal velocity c be introduced by:
ITS

c =v - <v > , c^ = v - < v > ; (18)r r r s s s *

g = v - v ,g =-g ; (19)6rs r s ' 6sr Brs '

a a-»• r s ->• , r s - » - • * • - » • . .c = c + c , c = c . (20)rs a r a s sr rss r

Hence,

and

'r ' Ss irs - <«„ •

' = - ̂ ^ * <8» ' (22)

- * • - » • - » • - » • ,„„»
c - c = g - < g > . (23)
r s &rs 6rs
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Since the Jacobians are J, = |[3(v ,v )/3(c ,c )]I =1 and
X IT S L S

J, = |[3(c ,c )/8(c ,g )]| = 1 , the velocity space elements in the
fc IT S rS ITS

various variables equal,

dv dv = dc dc = dc dg . (24)r s r s rs 6rs v '

By means of Eqs. (18)-(22), the bracket expressions in Eq. (17) are

transformed as

a a a a a
r •» s -»• _ x_r §_..->• , _£§,•*• -»• » /25\

*W ^ *VI « '«« T« *̂ O »»* "̂ *̂  &̂ *>m r m s m m rs m rs °rsr s r s rs

and

a c2 + a c2 = (a + a )c2 + a (g - <g >)2 (26)r r s s r s rs rs &rs srs

The relations c = c (v ,v ) and g = g__(v ,v ) are given in
i S i S i & i & i & i o

Eqs. (20) and (19), respectively. Hence, the divergence operator becomes

^ \

The tensor U in Eq. (10) is evaluated by means of spherical coordinates

(1,9,<{>) with the polar axis parallel to g (k = k/k) ,rs
k 0+_». 1 max ,, IT 2ir

U = / ? / / k° k° <S(cose)sined6d<j)S i < crs k . oomm

->• ->-
11 •*-* "> 7 o S g

= TKA /g ) / [Fsln 6 + (2 cosZ9 - sin 9) " rs] 6(cos6)sin6 d9 ,
rS rS o gZ6rs

i.e.,

8rs

where A is defined in Eq. (7), and 6, . = 1 or 0 for i = jrs ij

or i i j .

(28)
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The integral over v in Eq. (16) reduces to one over

->• ->• •+• -*"
c = v - <v > , since the term proportional to <v > vanishes by

Gauss's law. Since v arid, v are independent variables, ther - s
•* -»•

operator 3-/3v can be put under the dv;-integral. Thus, one
i S

obtains, under consideration of Eqs. (17) and (25)-(28),

+00
£ i *• *-1 i <-\* <• A f rF , =-4ire e ( a a / 7 r ) n n A I . . . Ir / s r s r s r s r s j '

^00

4 «a

cs 3 . 3

2,3/2
~i n yv j ... I
r s rs J_m

 J

* ^ ^ _ » . _ » . _ » .
(29)

rs rs

where

A E exp[-(ar+as)^s _ ars(^s-<|rs>)2] , (30)

r , - . + r
B = (m~ ' ̂ ~)[i --- 3 - 8rs] + ̂ ~[ - 3 - 8rs ' T~ ]

r s srs grs rs Bj.s
 6rs

(31)

Accordingly,

r a r 8 V r s ( l + 1 2 + 2 1 + 2 > (32)

where

c
a
s la, rs 3^ rs rs

rs

- -

(33)

r s -°° -°° 3c
ITS

/// ̂rs[/// ̂  ' ̂ r̂sl̂ rs ' ° ' (35)

8rs
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->• rs r r •*• 3 • * • - » • - » •
X 9 * * 1*Q *^ T"Q 1"Q* a

r -co rs 3g rs rs

rs

Now,

—2- .(AB) = 2A[-(a +a ) c - B + A - X^-] (37)
S rs mr ms grsrs

and

—— «(AB) = 2A{-a (g -<g > ) « BV*- rsxers &rs
8grs

a.., (g '<g_ >) a_ a (g -c )
, r J> ̂  1.O to s L. O\ J. O t. O T ̂  / *•» O \
+ [ o ( ) o J J (38;

rs grs r s grs

by Eqs. (30) and (31). Since A is an even function of c , it

follows
-*- -»- /•*••*•a T°° (g *<g >)(g *c )

t -KC f f -> "TG T"Q T"C Y"Qc« Lor IA r Lo 1.0 x.o i.o
= -2a I ... J Ac [ =1 r m ; ' rs 3

grs

(c *<g >)
__£s r̂ ]d̂  d̂  (39)

grs rs grs

and
/ • * - » • N 2 2a a +°° (g *<g >) <g >

•± o rs rs e t .-> r r
 8rs &rs &rs ,

Z2 = 2 ̂  5- / '''/ Agrs{ars[ 3 g—]
r rs - grs

 Brs

(g '<E >)VO — C
 6T-0 ' - > - » •

+
 rs

3
rs } dcrs dgrs . (40)

grs

Upon performing the dc -integrations, the Eqs. (39) and (40) reduce
ITS

to
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3/2 a2 /a -H» -a (g -<g >)2
IT __ rs s ttt rsV6rs 6rs '
m - , _, ,3/2rs (a +a )

rs rs -»• -°rs
- 8 rs g

and

3/2 a2 /a +«° -a (| -<g >)2TT _ __ rs r [ft rs 6rs 6rs ' -
m rsmrs (a +a )J// — rs

I. 8

_ _ ^
U r ^S to to T, TS t S - * -^ / / n \[ 3 -i— ] + 3 }dgrs (42)

8rs rs 8rs

Let a spherical coordinate system (g ,a,g) with the polar axisrs

parallel to <g > be introduced, in which
ITS

g = g (sina cosg, sina sing, cosa) ,
ITS ITS

2 (43)

dgrs = 8rs dgrs sina da dg '

and the substitutions,

T = cosa ,

x = a^ g , V = a'5 |<g >| . (44)
rs 6rs ' 'rs rs' 6rs '

These operations transform the Eqs. (41) and (42) to:

5/2 a /a

r s

and

* , »5/2 ars/ax

rs (a +a )
r s
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where
2 2+1 °° -(x +y -2y XT)

f t r s r s m , n ,= / / e x dx T dT .
T=-l X=0

,, -N(47)

By means of an obvious substitution, this integral is brought into the

form

+1
Gmn -

2 2
y (T -I)

where
2

e (49)

i.e.,

Ln=0 -y T'rs

Hence,

rs

?̂
- 1 1

Y ~ 1rs IT

rs

i ~Y1 rs

' rs

ITS

21

-Y
ITS / c o \

(52)

3 - 3y2 + 2y4
rs 'rs ir

23
rs - 3 'rs

rs T rs

and

,
= 2

rs

rs (ar+ag)

-3 TT
372 Yrs 2

1 2 "YrS

(54)
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Substitution of Eq. (54) into Eq. (32) gives the following expression

for the force density exerted by the s-component on the r-component:

?r/s = - ̂ rV̂ rŝ rs nr mr(<V ' %>> (55)

where

-Y2
rs] . (56)

t;l=f<5f>^^r8.
n = JL( !r!lL

 2
 A . (58)

rs 2^ KT ' rsrs

This result indicates that the intercomponent friction force

F , = -F , (action-reaction principle) is in general a transcendentalr / s s / IT

function of the drift velocity <g > = <v > - <v > [Eqs. (55)-(56)].
ITS IT S

The relaxation time T is an expression analogous in structure
ITS

o /

to that for binary Coulomb collisions ~ [Eq. (57)]. Q is the many-rs

body Coulomb transport cross section [Eqs. (58) and (7)].

The transcendental function M(y ) in Eq. (56) has the limiting
ITS

properties [Eqs. (14)-(15)]:

M(Yrs) = 1 , Yrs « 1 , (59)

M(Y ) = T V* Y~3 , Y » 1 . (60)rs 4 rs rs v

Accordingly,

= —T n m (<v > — <v >) Y « 1rs r r r s ' 'rs '

and

* -i i*h <\> " <:VF . = -T n m (———) — v » 1 (62}
r/s rs r r\ 3/2; , -»• ->• ,3 ' Yrs ^ ;

4a <v > - <v >rs ' r s '
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It is recognized that the intercomponent friction force i) increases

proportional to the drift velocity in the infrasonic region, JF . | *\» gIT / s rs

by Eq. (61), and ii) decreases inversely with the square of the drift
. f\

velocity in the suprasonic region, |F , | ̂  g by Eq. (62). It
r/ s ITS

should be noted that Eq. (62) is not an exact extrapolation to supra-

sonic drift velocities, since the LB-equation is no longer rigorously

applicable for supersonic drift velocities due to the appearance of

the two-stream instability (y > 1). The Eqs. (55) and (62) can
rs

be used, however, as approximations in the supersonic and suprasonic

region of drift velocities, respectively. As a justification, it is

noted that Eq. (55) and Eq. (62) give not only a qualitative but also

a quantitative description (within the experimental uncertainties) of

9
the so-called run-away-effeet.
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ELECTRICAL CONDUCTIVITY

In order to discuss the concept of electrical conductivity in a

simple way, a quasi-homogeneous steady-state electron-ion plasma

(r = e , s = i) is considered in a frame of reference in which an

electric field E exists but no magnetic field (B = 0). The electrical

current density,

" ' (63)

n . = n = n . e.=-e = e
i e ' i e

is related to the argument y defined in Eq. (44) by

Yei = J/J (64)

where

j = |J I , J - ne/a. =. (65)

In the steady-state of a quasi-homogeneous plasma the intercomponent

"*" "*" 7friction and electric force densities are in balance, F ,. - neE =

The corresponding Ohm's law is by Eqs. (55) and (63)-(64):

j M(j/JT) = a E , j < JT ,

where

a = (ne/me)Tei

and

2KT

e

2

ei

n Qei '

Aei • Aei m
e ̂

 mi

(66)

(67)

(68)

(69)
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by Eqs. (57)-(58) and (7). According to Eq. (66), the relation between

current density j and electric field E is nonlinear if. j is not

small compared to the thermal current density [Eq. (56)] .

In the infrasonic drift limit, j « j_ , a has the meaning

of an electrical conductivity [Eq. (67)]. If the electron drift

_J- - }-•
velocity is small compared to the thermal speed a".2 = (2KT /m ) 2 ,

61 6 G

Eq. (66) reduces to the familiar linear Ohm's law:

J = aE , j « JT . (70)

It should be noted that Eq. (66) is not applicable to suprasonic

drift velocities, j?<>JT • In the latter case, the run-away-effect

occurs, and an Ohm's law does no longer exist in steady state.

The results obtained in this investigation by means of the LB-

equation justify the use of the Boltzmann equation with a Rutherford

cross section in pla?ma kinetics as long as the dielectric constant

e(k,o>) can be approximated by one. It can be shown that the collective

effects are only important if the ratio of the electron to the ion
2

temperature is very large, T /T > 10 . A similar conclusion concerning

the significance of the collective contributions has been obtained in

connection with the thermal relaxation in anisotropic two-temperature

11 2
plasmas. It is noted that electron temperatures, T > 10 T , are ex-

tremely difficult to realize in fully ionized plasmas with stable dis-

tribution functions.
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