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ABSTRACT

We consider models of stellar winds in which the dynamic
expansion of a corona is driven by Alfvén waves propagating
outward aleong radial magnetic field lines. In the presence of
Alfvén waves, a coronal expansion can exist for a broad range
of reference conditions which would, in the absence of waves,
lead to static configurations. Wind models in which the accel-
eration mechanism is due to Alfvén waves alone exhibit lower
mass fluxes and higher energies per particle as compared to
wind models in which the acceleration is due to thermal processes.
For example, winds driven by Alfvén waves exhibit streaming ve-
locities at infinity which may vary between the escape velocity
at the coronal base and the geometrical mean of the escape
velocity and the speed of light. We derive upper and lower
limits for the allowed energy fluxes and mass fluxes associated

with these winds.
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I. INTRODUCTION

The properties of stellar winds which are thermally
driven have been the subject of extensive theoretical investi-
gation over the last fifteen years. Dynamical models of such
winds have become increasingly sophisticated, including effects
due to the two fluid nature of the plasma, magnetic fields and
stellar rotation, the inhibition of thermal conductivity, the
propagation and damping of hydromagnetic waves in the expanding
solar corona, ahd many others. For comprehensive reviews of
these topics, see the articles by Parker {(1971) and Barmes (1973},

or the book by Hundhausen (1972).
Recently, Belcher (1971, 1972), and, iridependently, Alaz-

raki and Couturier (1971) have considered modifications of
polytrope wind meodels due to the presence of undamped Alfvén
waves propagating outward along radial magnetic field lines.
The interaction of the waves with the streaming plasma produces
an outward pressure gradient, analogous to that of a radiation
pressure, which results in a radial acceleration of the wind.
In this manner, undamped wave energy fluxes propagating out-
ward into an expanding corona are completely transformed into
enhanced streaming energy fluxes of the wind at large distances
from the star. Parker {(1965) was the first to suggest that
uridamped Alfvén waves could affect the dynamics of the solar
wind. However, detailed considerations of the problem were

not undertaken until obsérvational evidence suggested that

Alfvén waves generated cleose to the sun are in fact present
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at 1 a.u. (Coleman 1967, Unti and Neugebauer 1968, Belcher
et al. 1969, Belcher and Davis 1971). Since the original one
fluid traatments, various authors have also considered the
effects of Alfvénic wave pressures in two fluid models (Hollweg
1973a), the modifications due to non-WKB terms in one fluid
models (Hollweg 1973b), and the effects of finite and large |
amplitude Alfvén waves in one fluid models (Whang 1973, Barnes
and Hollweg 1973). Hollweg (1972) has also considered possible
generation mechanisms for these waves in the solar chromosphere.
For obvious historical reasons, the initial treatments
of wave pressures are primarily concerned with situations in
which the Alfvén wave energy flux across the base of the corona \
is less than the conductive flux of thermal energy - that is,
the addition of wave pressures is considered to be a modification
of an essentially thermal process. In the opposite extreme,
however, Alazraki and Couturier (1971) point out that wind
solutions to the equations of motion always exist as long as
the wave energy flux is non-zero, even if the conductive flux
of thermal energy is identically zero. Such wave driven winds
may exhibit large energies per particle at infinity, in con-
junction with small mass fluxes (Belcher 1971). It is thus
possible for Alfvén waves alone to drive a coronal expansion,
and the properties of winds produced in this manner may be very
different from those of thermally driven winds. In the present
pPaper, we investigate in detail the characteristics of stellar
winds which are primarily driven by low-frequency, outwardly-

propagating Alfvén waves generated close to a star. The thermal
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properties of the plasma are represented by a polytrope relation
between density and pressure, and we consider only thermal
parameters which in the absence of waves would result in static
atmospheres. For a given set of initial parameters (wave
strengths, temperatures, densities, and so on) at some reference
level close to the star,; we wish to determine whether or not
the dynamical expansion of the atmosphere into a stellar wind is
possible, and, if so, to ascertain the mass and energy fluxes
associated with that wind. We assume that all generation
mechanisms for the Alfvén waves (e.g., convective zones) occur
inside the reference level, and that there is no damping of the
waves external toc the reference level. As we shall see, there
are a broad range of wind solutions pessible.

Before proceeding with the detailed mathematics, we offer
some rationale for the formulation we use. First, to keep the
calculation tractable, we consider only radial streaming in the
presence of a rédial magnetic field, with no stellar rotation.
Second, the winds we shall encpunter may exhibit rapid decreases
in mass density outward from the reference level, whereas the
magnetic field strength decreases less rapidly, as 1/r%. con-
sequently, the Alfvén velocity in the low density, field
dominated plasma may be high, and we must insure that it does
not exceed c, the speed of light. As we shall show, the fact
that both Alazraki and Couturier (1971) and Belcher (1971)
allow the Alfvén velocity to be arbitrarily large invalidates
their results at low mass fluxes. Third, in some limits we

shall encounter winds with arbitrarily large energies per particle
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far from the star, in conjunction with very low mass fluxes.
Although the physical validity of these solutions is guestion-
able, we must allow for the possibility of relativistic streaming
velocities at infinity to handle the limits properly. Finally

we shall find circumstances in which wind solutions formally
exist even for tightly bound atmospheres near massive objects
with high escape velocities. Thus our initial approach should
allow for escape velocfties, Alfvén velocities, and radial
streaming velocities which may be comparable to the speed of
light. We consider only situations in which the local sound
velocity and the transverse velocity perturbation associated

with the wave are small compared to the speed of light. To
insure the validity of our relativistic limits, and for the

rigor and novelty of the approach, we derive our basic wind
equations using the covariant formulation of magnetohydrodynamics.
For the reader unfamiliar with this formalism, we sketch in an
appendix the derivation of the non-relativistic limits of our

equations, using the more familiar descriptions of MHD.



-5

II. MATHEMATICAL FORMULATION

a) The Covariant Equations of Motion
We consider the relativistic magnetohydrodynamic
equations appropriate for an ionized, highly conducting fluid
in the presence of electromagnetic fields, following closely
the formulation of Greenberg (1971). The space-time metric
tensor gpv {Greek indices take the values 0§, 1, 2, 3} is

defined such that

2 _ B v
ds® = gUU dx" dx {(IT.1)

with the contravariant four-velocity given by
dx"

Mo - M =
U~ = as with U Uu + 1 (II.2)

We take the coordinates (xo, xl, x2, x3) to be (ct, ¥, 6, )

in the usual spherical polar sense, and assume that the metric
tensor guv is determined solely by the presence of a spherically
symmetric body of mass M. If G is the gravitational constant
and c the speed of light, then we define the "escape velocity"

cBg such that

2 _
Be = Z (IT.3)
rc
and we take
_ _ 2
n =1 Be {(II.4)
-We choose the Schwarzschild metric: god =1, gil = -1/n,

— 2 =_2'2 = .
9yp = rl, 933 r<sin“fg, and guv 0 for u#v
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The antisymmetric electromagnetic field tensor Fuu is

(cf. Landau and Lifshitz, 1971, Chapter 10)

Hy
Fio =~ Bj Fi12 = " 4 sin ©
H2 sin © ,
Flg =+ —=——— F,3=-H r® sino

where E' and H? are space vectors (Latin indices take only
the values 1, 2, 3}). The three-dimensional metric tensor

is - Iik If J* is the four-current density, and g is the

(IL.5)

determinant of the tensor Iipr then Maxwell's equations have

the form
anu N BFA 3th _ o
axA Bxu ax“
L P 41 v
Y - rv = FVU.1 ==z J
g Bxu L g - ~

The electromagnetic energy-momentum tensor Suu is given

by
v _ 1 |_ VA 1 0w CA
Su T 4T [ Fu)\ F * 2 Gu Foa F ]

We take p to be the isotropic pressure of the fluid,

(II-6a)

(I1I-6b)

(I1.7)

£

to be the rest energy density of the fluid, and p* to be the

local rest mass density. The stress-energy tensor i L for

a fully ionized fluid in the presence of an electromagnetic

field is



oV = (¢ + p) u? UY - pg"V + s¥Y (II.8)

The equation of motion of the fluid is

uv —
T sy 0 (11.9)

Following Greenberg (1971), we use the expression for MY
given by equation (II.8) to write the space components of

egquation (II.2) as

o= pMo 3R 1 puo VA
(e + p) UT U -\ h 3x0 17 h ng F % (11.10)

where

n*V AN ¢ Ll i

=9
The equation of continuity of rest-mass takes the form

(p* U”),v =0 (II.11)

If pg is the local charge density and ¢ the electrical
conductivity of the fluid, then the invariant form of Ohm's

law in magnetohydrodynamics is

J¥ = o2 g’ - ¢ Y2 u, (II1.12)

We will assume that o is sufficiently large that the electric
field in the co-moving frame is essentially zero; that is, we

make the assumption that

u

U™ F =0 (II.13)

AH

With this assumption, the local joule heating is zero, and we
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may take a polytrope relation between p and p*

p « (p*)? (II.14)

The time component of equation (II.9) implies that the energy

density € is given by [cf. equation (15) of Greenberg]

S

If we define ch to be the local speed of sound, then

B 2 = --—-E-—-u (II-lS)
s )
p*c
and we find that
B 2
2 s
E + p = p¥c?(l + — 1) (II.16)
Equations (II.l) - (II.l6é) represent the basic set of fluid

equations for collisionless plasma. We shall now specialize

these equations to the problem at hand.

b) Radial Dependence of Wave Amplitudes in the WKB

Approximation

We seek solutions to the above equations which exhibit
steady-state radial streaming, a radial background magnetic
field, and time-dependent transverse fluctuations in field and
velocity which are locally Alfvénic and outwardly-propagating.
Qur procedure is as follows. We decompeose our covariant
equations into radial components and components transverse
to the radial. The eikonal {or WKB) method (Weinberg 1962)

is applied to the transverse equations to obtain the local
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dispersion relation and the wave amplitudes as functions of
radius, density, radial velocity, and radial magnetic field.
Once these expressions are known, we can write the radial
component of the momentum equation and the conserved energy
flux equation as functions of radius, density, and radial
velocity alone.

In this section, we find the local wave amplitudes using
the short-wavelength approximation, often referred to as the
WKB approximation. We initially assume that the Alfvén waves
are linearly polarized in the ¢-direction, and then generalize
our results to the case of circular polarization. From Mgller
(1952, Chapter X), we may write the four-velocity u¥ of the
plasma as

v = T, 6 00 sy

where cf is (dx'/dt) and thus represents the contravariant
component of the radial spatial velocity; c6B is the transverse

velocity, and

2 —
r = (n - %——-662) g (II.17)

For transverse Alfvénic perturbations the density and field
strength perturbations are zeroc to first order. The conser-
vation of mass [equation (II.11) } implies that

d

I= (r?p*TR) = 0 _ (II.18)

If Hr is the covariant component of the time-independent
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radial field, then cne of the two non-trivial relations con-—

tained in equation (II.6a) 1is
=— {(r*B ) =0 (11.19)

. . 6 .
By assumption, the transverse contravariant component H is

Zero. If we take

g® = —SH
r sin @

then equation (II.13) implies that

Ef = g% =0
(I1.20)
& _ SE
E° =7
where
§E = BSH _ 45 (1I.21)
n r
From the second non-trivial relation in (II.6a) we have
1l 3 _ _ng3g
The 6-component of the space part of the equation of motion
lequation {II.10)} ) is
cot 9] SH'- SE® _ (e + p) T?68%] =0 (II.23)
471n P )
and the ¢-component of the same equation is
2 1 3_ Bl & 2 ap
(e + p) (T c 5 6B + . 37 (rTéB)]1 + T*B 6B 5T
q (II.24)
=Tl 3 13
o L 9g OB + ¢ 57 (roH)]
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Equations (II.22) and (II.24) can be solved for the WKB
amplitudes under the assumptions that: 1) the wavelengths are
small compared to local scale heights; 2) 4§63 and Bs are small
compared to one, so that we can ignore second order terms in
§B and Bs“ We do not assume that Be or B are small compared
to one. Since the solution to these equations is tedious we
refer the interested reader to Appendix A, and merely quote
the result. With the above assumptions, our solutions for the

fluctuating guantities take the form

§8(r,t) = 6B(r) exp [i(wt - S{r))]
SH(r,t) = SH(r) exp [i(wt - 8(r})] (I1.25)
SE(r,t) = SE(xr) exp [i(wt - 8(r})]

where @ 1s angular frequency and d5/dr is the wave number of

the wave. For notational convenience, we shall not distinguishr
between the full, rapidly varying functions of space and time,
such as 6B8(r,t), and their WKB amplitudes, sucnh as &3(r), which
are slowly varying functions of space alone. If the meaning is
not clear from context, we explicitly note the appropriate func-

tional dependence on space and time. We define the velocity cB_ as
a

B2 .
B, = [+ Ampte ;% © (II.26)
2
H
r
In the limit that Be is zero, cBa is simply the local Alfvén
velocity (see, for example,Harris 1957). If we let k = dS§/dr,

then ch, the phase velocity of the waves, is given by w/k,.
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For outwardly propagating waves, we then find
B + nB

Bp = I—:—EE;7H (I1.27)
In the limit that Be is zero {n = 1), the phase velocity ch
is the proper relativistic sum of the streaming velocity cB
and the local Alfvén velocity cBa. In the absence of streaming
and in the limit that p* goes to zero, the phase velocity of
the waves becomes equal to the local speed of light, nc. Note
that since B cannot exceed n [cf. equation (II.17) ] and Ba
cannot exceed one, the phase velocity of the waves cannot in
any circumstance exceed the local speed of light. The amplitudes

6H(r}, SE(r), and 6B(r) are simply related by

g = LSE
B
P (11.28)
SE(1 - B/BR.)
- - P
SB = T
h oy

We may verify that the 6-component of the momentum eguation [equa-

tion (IX.23)] is identically zero for 8E, 8H, and 6B related in

this way. The WKB solution for SE(r) is [see (A.1l6) in App. A}
r?8g?

2 = const {(II1.29)
a

The corresponding expressions for the radial dependence of
éH and 8B can be obtained from equation (II.28). In particular,
we find from equations {(I1.28) and (II.29) that

g 3 r?

8R% = const a (II.30)
r*(g + ng,)?
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In deriving equation (II.30), we have approximated 1/T? as
(n - 82/n). This is valid in the present context, since we
are writing an expression for a quantity already assumed to
be small, and thus need not include corregtions to that
expression which are of order 682 as compared to the leading
term. We cannot make this approximation unless our leading
terms are already small. It is also convenient to express 6R?
in an equivalent form. We note that the definition of Ba
[equation (II.26) ] implies that

Bz H2

a = L (II.31)
1 - 8.2 4mp*c?

Using the conservation of mass and magnetic flux, we obtain
from equations (II.30) and (I1.31) the form
- 2
BB (1 - 8,%)

882 = const (IT.32)
T*(g + ng, )’

in the above discussion, the ¢-polarization was chosen
because Alfvénic perturbations in this direction can be simul-
taneously fitted together in a consistent manner over the
surface of the entire sphere. This is not possible for waves
polarized in the f-direction (in particular, note the behavior
at the poles of a spherical polar coordinate syster). Locally,
however, the solutions should be valid for arbitrary polariza-
tions, and in particular in the eqguatorial plane of our
coordinate system, both 8- and ¢-polarizations obey the same

equations. For convenience, in the in what follows we shall take
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the waves as circularly polarized in the equatorial plane, with
the WKB amplitudes for circular polarization in the same form
as equations (II.28) through (II.32). The assumption of
circular polarization has the advantage that for monochromatic
waves, guantities such as §§(r,t)-§p(r,t), Qﬁ(r,t)k§ﬂ(r,t), etc.,
are no longer functions of time. In addition, field strength
and density perturbations are zero to all orders, with the
consequence that large-amplitude Alfvén wave solutions are
possible (for example, see the treatment by Barnes and Suffolk

1971).

¢} The Total Energy Flux
Having solved for the transverse wave amplitudes, we
now seek an egquation for the conservation of total energy flux
in the radial direction, including energy flux due to the
presence of Alfvén waves. We first note that the conserved

mass flux F,, is given by

M = T4

Fy = Anr?Tp*cR (11.33)

The time component of equation (II.%) is Tou'p = 0. Using

the expression for pHY given by equation (II.8), we have

D1Q
H

{4m2® [(e+p)I?Ben + 2= 6E 6HI} = 0 (IT.34)

The second term inside the brackets is just the radial
component of the Poynting vector. Using equations (II.1l6) and

(II.33}, we have that the total energy flux F_ is given by

E

2

= A2 S SE G§H
F. c FM[(l + E:T)Pn + —— (I1.35)

4nc?p*Tp
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This expression includes the energy flux due to the rest mass
energy associated with the mass flux FM‘ We consider the non-
relativistic reduction of equation (II.35) in a subsequent
paragraph.

For the moment, assume that we have wind solutions, and

let cB_ be the radial streaming velocity at infinity, with

Y, = (1 - Bmz)_%. Then for a given mass and total energy flux,
we have
F
Y. = 2E (I1.36)
c FM

The expression in brackets in eguation (II.35) is FE/CZFM

and is also constant along a streamline. We shall find it
convenient to write this expression in several ways. First,
from equation (II.28), SE 8H = néEz/Bp, with Bp given by

eguation (I1.27), and from equation (II.29) we have

L1}

where the subscript "o" refers to some reference level r . The

term in brackets in eguation (II.35) becomes

B.2 3B _* B (n + BB)
S __yrn + ° a 8 = const  (II.37)

(l+0f.‘-l' 2
%
B (4Tp *I B c?) B + nB_

We may also write this in terms of §f?. Using eguations (II.27)
and (II.28), we have

(n + BB_) (B + nB_)
SE §H = I'* 8R?2 Hr2 - (I1.38)
Ba
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From equations (II.31) and (II.38), we find that the term in

brackets in equation (II.35) can be written as

By’ (n + 88,) (B + nB)

(1 + —=)}I'n + I3 887 = const (I1.39)
@l B(1 - B2

By simple algebraic manipulation, we can also write equation

(I1.39) as
Bs2 §p2r?
(1 + ———)In + —— (B + np_)?
BBa(l - Ba )
(II.40)
s§pir? _
- Ba (B + nBa) = const

From equation (II.32) we zee that the second term in this

equation is constant, so that we have for any r the relation

B2 fo2r3
(1 + ——9)Tn - °“8‘ (B + nB,) = const (II.41)
a

d) The Radial Equation of Motion

We have obtained an expression for the conserved
energy flux in terms of background parameters alone, and thus
have found implicitly all solutions B(r) which satisfy that
equation. To facilitate the impesition of critical point
requirements, however, we need an explicit differential
equation for the streaming velocity B. We may ocbtain such an
equation by considering the radial component of equation

(II.10). Since we have assumed purely radial expansion with
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a polytrope relation between p and p*, we may also obtain an
equation for dB/dr by differentiating any of the above expres-
sions for the energy flux. We follow the latter course, using
equation (II.37). The differentiation is a straightforward
process, although tedious due to the fact that I is a compli-
cated function of B and p* [cf. equations (II.17), (II.Zz26),
and (II.30) ]. First, we write equation (II.18) for the

conservation of mass as

|5
|5

+
!

+ = 0 (IT.42)

[aT

r

1LY
|

1
*E

ol

r

In differentiating equation (II.37), we encounter terms
involving derivatives of p*, and we systematically eliminate
them in favor of derivatives of dB/dr and d4l'/dr, using equation
(IX.42). For example, we can easily show from equations (II.19)
and (II.26) that
a8, 1 dp* . 4

I N - 2y 4+ _dp® 4
T = 5 B, (1 B,Y) (p* a0t 7 (II1.43)

which is simply rewritten as

é, 1 148 ., 1 dr

- 2 = Yk £ YL
dr 2 Ba(l Ba ) (B dr T dr

{II.44)

H |

Proceeding in this fashion, and using simple relationships
such as dn/dr = Bez/r [cf. equation (II.4)], we write the

differential form of equation (II.37) as
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ar 2 - a 2 2 2cn2
H?[ﬂ{l t oI Bs ) + (nBa + 2BBa + n)r<ép-/2]
- 1 dg _ 2 2 _
= T —;[nfﬁsz rise (ﬂBa + 288a n) /2] (II.45)

2

1., 2 5 .\ _ 2 _ pi3gp2 2 _ g 2
- FIBPT(L + o—2—) - 2nIB_? - T?6B(n + 288_ + n8,% - B_2)]

To cobtain a differential equation for B alone, we
differentiate equation (II.17) for I' to cobtain dr/dr in terms
of dR/dr. Using equation (II.30) for §B?, we find after some

effort that the differential form of equation (II.17) is

2 2
ar e TTE T RET 1805 + 38,7 + n8 (7 + 8.1}

1 dp (rip* risp?
R R o L R R
. g.r? - 3en2
' 2 riss 5 2. o
i % { ez o fz) T 778 ipnﬁa)[s(l - 38.%) + 28,8 %~ nB (1 4 Ba" 1}

We now combine equations (II.45) and (II.46) to write an

equation for dB/dr alone in the form

dB _ (r,B)
ar ~ h (II1.47)

™K
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e) The Non-relativistic Reduction of the Egquations of
Motion

To demonstrate the correspondence between eguation
(II.47) and the familiar equation of motion for polytrope
winds, we consider this equation in the limit that B and Be
are small compared to one. We do not assume that Ba is small _
compared to one. Neglecting third order terms and higher in
small quantities in equations (II.45) and (II.46) [e.d., RSRZ,

Bezasz, etc.], we find that in this limit d8/dr is given by

1 2 2 §R% 2

=~ B “-28 _° - (L + B_%) (B, + 38)
rag_ - ° S 2(B+B,) a a (1I.48)
8 dr 682

2 _ p2 _ 2 .
Bs £° + ZTE;E;T(l B ) (Ba + 3B)

We have kept terms of the form B8 8B*/(B + B,) (which at

first appear to be third order) in equation (II.48) because of
the possibility that B_ << B. Equation (II.48) can also be
derived by more familiar techniques. For the convenience of
the reader who is not at ease with the mathematical formalism
used above, we derive equation (II.48) in Appendix B using the
standard MHD eguations when not only §B and Bs but alsco B and
Be are small compared to one, with ﬁa unrestricted. In the
limit that Ba is small compared to one, equation (II.48)
reduces to the equations of motion used by Alazraki and Couturier
(1971) and Belcher (1971). If &B is zero, we ocbtain the
standard form for the equations of motion of polytrope stellar

winds.
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We also demonstrate the correspondence between our

expression for the total energy flux FE and its more familiar

forms. As above, we expand F, assuming that B and Be are small

E

compared to one, and neglect third order terms in small

quantities. In this limit, from equations (II.35) and (II.39)

we have
= 2 2 1l 2 2 o
Fp = c°Fy + 47r {08[2 c®p(B° + 68%) + ——7p
(11.49)
1l 2 2 32p2 B+ Ba
- 5 c?pB 2 1 + palsB }
1—sa2

In the limit that Ba is a small compared to one, this

expression for F_ reduces to that given by Belcher (1971,

E

equation 26b) except for the rest mass energy flux term, czFM.

For future convenience, we rearrange terms in equation (II.49)

to obtain the form

_ 2 2 l 2 _ 1 2
Fp = ¢'Fy + c*Fy [ 7 B 7 B, &
B, + 28(1 - §_2/2) (11507
+ 682 - ]
B(l - Ba )
where £ is given by
2 B2
E =1+ 652 - = 2 T = (I1.51)
Be Be

Note that the expression in brackets in equation (II.50) is

Y, - 1 in the situation that B and Be are small compared to one.
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III. NUMERICAL SOLUTIONS TO THE WIND EQUATIQONS

In the preceding section, we have set up and formally
solved the eguations of motion for the dynamic expansion of
a stellar corona. We now consider solutions to these equations
which satisfy given initial conditions at some reference level
T, close to a coronal base. Iﬁ this section we sketch a
general numerical algorithm for obtaining wind solutions for
given initial values. We exhibit a limited number of these
full numerical solutions, and note some of their characteristic
features. 1In Section IV, this qualitative information will
enable us to obtain approximate analytic solutions to the

critical point equations over some ranges of initial values.

We choose a value for the polytrope index a, and specify
at some reference level r, the escape velocity cBeo,
the Alfvén velocity cBao' the sound velocity cBSO, and the
velocity perturbation CSBO. If we alsc choose a value for
cBO, the radial velocity at X t+hen this wvalue of BO along
with the set of initial conditions in the combination
(Beo’ Bao 6502/8e02, Bsoz/seoz) is sufficient to determine
B as a function of r. This function is not necessarily a wind

~solution to equation (III.l), as we have imposed no critical

point requirements. To determine B(r). we first note that

egquation (II.39) for the conserved energy flux divided by the

mass flux is

B.Z (n + BB.) (B + nB))
(1 + —=—)Tn + §8°T° a2 2
G B(L - 8.°)
(III.1)
B2 (n. +B8B8.) (B_+mnB_)
=Te) 24 3 o 0" ao 0 o aoc
= {1+ JToNg * 88571y

-1 _ 2
o B (1 = 8,7
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1" L1

where the subscript "o" refers to the reference level. All
quantities on the right hand side of equation (III.l) can be
computed using our initial parameter set and Bo. On the left
hand side, for a given r, we easily compute the local escape
velocity using equation (II.3) in the form B8_* = B_ */%, where
we define Z as

o or
7z = T (IT1.2)

Of course, n at r is then 1 - Bez. We now guess a value B

for the radial velocity at r, and check to see if this value
satisfies equation (III.1). This process is complicated by

the fact that T at r depends on 88% at r, which in turn depends
on T at r in a complex way [cf. equations (II.17) and (II.30)].
To obtain an initial estimate of T we approximate I at r by

(n - Bz/n)-%. Using the conservation of mass [equation (II.18}],
we estimate p*/p _* at r to be POBO/FBZZ. Given an estimate of
p*/po* at r, we obtain an estimate of Ba at r using equation

(II.26) in the form

P = 1+ — 20 B g7 (III.3)
T Q
ao

We then compute a first estimate of 8% at r using egquation
(IT.32). We now improve our estimate of T at r by using this
estimate of 682 in equation (II.17). We then compute a new
estimate for p*/po* using the conservation of mass, and a new

estimate for Ba and 6B% using equations (III.3) and (II.32).
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This leads to a better estimate for I', and so on. This

process 1is iterated until the nth estimate of T differs from

h

the (n-1)® estimate by less than one part in 10'° The

square of the scund velocity at r [cf. equation (11.15)] is
then BSZ = Bsoz(p*/po*)a'l. Given our guess for B at r, we

have thus computed values for n, 5sz,sa, I, and Bsz at r.

We now check our guess for B by using these quantities to
determine if equation (III.1l) is satisfied. If not, we keep
guessing until we find a value of B that does satisfy

equation (III.1l). Thus, for a given BO and our initial wvalues,

we can determine B as a function of r.

We find the wind solution (if it exists)} by choosing Bo
such that B as a function of r passes through the critical
point of the differential equation (II.47). For a fixed
initial value set and variable BO, the critical point (rc, Bc)
is determinecd by the reguirement that,@ﬂrc,sc, BO) and
g&lrc, Bc, BO) simultaneously vanish (we have explicitly noted
the dependence of gfandﬁy on B,). In addition, (r_, B,) must
also lie on the solution B(r) which satisfies equation (III.1);
this reguirement imposes a third condition of the form
;H{rc, B BO) = 0. We thus have three transcendental equations

which determine the three guantities T g , and BO, and thus

c

t+he wind solution B(r). We refer to the combination
(Z2 _, Bc/Beo' BO/BeO), where Zc = rc/ro, as the solution set for

c
. N . . 2 z 2 2
the initial value set (Beo' Bao’ 680 /Beo . Bso /Beo ). We
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determine the solution set for a given initial value set in a
manner similar to the procedure used to determine B(r) from

equation (IXII.1). That is, we guess a solution set

L * .
(ZC, Bc/Beo' BO/BeO) compute the quantities PC, Pe /po , Bac'

s’ GBC and up exactly as described above (the subscript "c

B
refers to the critical point), and check our guess by seeing
rfsf,ﬂf, and ¥ simultaneocusly vanish. Thus, given our initial
value set and the additional critical point regquirement, we
determine the solution set and the wind soclution for B as a
function of r. Tor r, < r < r., we loock for solutions to
equation (III.1l) in the range BO < B < Bc’ and for r > Lot we
look for solutions in the range B > Bc'

In practice, of course, the transcendental equations which
determine a sclution set for a given initial value set are
involved, and it is impossible to guess a correct solution set
for these eguations a priocri. Computaticnally, our procedure
for finding solution sets always begins with a known soclution
for a given initial value set. To find a new solution set for
a different initial value set, we slowiy vary one of the initial
values and numerically follow the solution set into new regions
of solution space, starting from the known solution set. Since
our known solution set originally began with the Parker solutions
to the stellar wind equations, all of our numerical solutions
are in a real sense analytic continuations of Parker solutions
into new regions of initial value space.

Using this algorithm, we have computed full numerical

solutions for a large range of initial values, and we display
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some of these solutions to indicate their general characteristics.
We take EO to be the guantity £ as defined in equation (I11.51)
evaluated at the reference level. We recall that for Parker
polytrope winds to exist, we must satisfy the inequality
E%T Bsoz/Beoz >1. Since we are considering only conditions
under which thermally driven winds do not exist, the quantity Eo
is always positive. To minimize thermal effects, we take the
polytrope index o to be 5/3, the adiabatic value. We plot our
solution sets as functions of 6802/6602, with the remaining
initial values held fixed for a given curve. Figure 1 gives
values of Z_, B./B ./ and B_/B., as functions of 5602/8e02
for a value of log Bao fixed at - 4.0 (cBao = 30.0 km/sec) and
a value of log Beo equal to - 2.7 (cBeo = 598.6 km/sec). The
curves labeled A, B, and C are for values of log (Bsoz/Beoz)
equal to - 1.0, - 1.4, and - 3.0 (corresponding to sound
velocities of 189.3 km/sec, 119.4 km/sec, and 18.9 km/sec,
respectively). We can determine B8,/B,, as & function of
GBoz/Beoz’ and this is also pletted in Figure 1.

For these same initial values, we plot in Figure 2 the

E

which is vy~ 1. 1In considering the scales for the mass and

constants of motion F, and Fp - c’Fy,, and the quantity FE/CZFM- 1,

energy fluxes, we must remember that we have not yet completely
specified conditions at the reference level. Up to this point,
we have used the reference density and field only in the com-
bination 4wpo*/Hr02, and the reference level and stellar mass

only in the combination M/rO° These combinations are sufficient

for the solution of the critical point equations, but to express



_26_
cur mass and energy fluxes in grams/sec and ergs/sec, we must
in addition specify M (or ro) and po* (or HO). We choose to
consider our remaining independent variables as the stellar
mass Mo and the number density No (where No is the rest mass
density divided by the proton rest mass). Once these variables
are specified, we have that r. in centimeters is given by
3 x 10° M/Be02 if M is measured in solar masses, and HD2 in
gauss squared is given by 0.019 NOB:EY(l - Baoz) if N is
measured in number per cubic centimeter. It is clear from
equations (II.33} and (II.35) that both F_ and F

E M

tional to MZNO. To obtain absolute units in Figure 2, we choose

are propor-

M to be one solar mass and No to be 10%cm™®. Mass and energy
fluxes for other choices of M and N0 can be obtained by scaling
according to MZNO. For our present choices, with log B, = - 4.0
and log B, = - 2.7, we have r_ = 7.5 x 10!'? cm and H, = 0.14
gauss. For reference, we note that for the solar wind, mass

and energy fluxes are on the order of lO"*grams/sec and

3 x 10*7ergs/sec, respectively.

There are characteristic features of the curves presented
in Figures 1 and 2 that are common to all of the numerical
solutions obtained. First, the curves are not too sensitive
to the temperature parameter Bsoz/seoz' particularly when this
ratio is small compared to one. Note that for moderate wave
amplitudes, the energy flux Fp - c2FM is essentially independent
of temperature. Second, there is a broad range over which ocur

solutions exhibit power law dependencies on the wave amplitude



...2 7“,
i ially constant
GBO/BeO, In this range, Bc/seo and Zc are essentially P

FM and BO/B

- z 2y -1, fut reference, we call
Y., 1 goes as (680 /Beo ) For future '

L 4 - 2 2 2 d
oo 90 as 8B /B ", Fg c*F, goes as 8B _"/B_ ", an

this power law regime the intermediate wave amplitude range.

As we move toward lower wave amplitudes, we eventually encounter
an abrupt, low-amplitude cutoff in our dynamic solutions, at
which BO and the mass flux abruptly fall to zero and the enerqgy
flux is well behaved, sc that Y, — 1 goes to infinity. This
abrupt cutoff occurs as 6802/6602 approaches 4Ba0£03/27 from
above (for the curves A, B, and C in Figure 1, the cutoff occurs
at 68 */B, . % = 5.1 x 107%, 1.31 x 107 %,and 1.47 x 1075,
respectively). For wave amplitudes below this cutoff, wind
solutions do not exist, but static solutions are possible, as

we shall see later on. As we move toward higher wave amplitudes,
We encounter two different phenomena, depending on whether Bao

is substantially greater than or smaller than Beo“ In the case
Bao > Beo (not shown), the power law behavior of the intermediate
range holds until 6802/8602 becomes comparable to one, at which
peint Bo/Beo and rc/rO approach one. If we move substantially
beyond this limit, r, becomes less than r, and BO exceeds Beo'

In the case Bao < Beo’ the power law behavior holds until
6802/8802 approaches g, /B . As is evident from Figure 2,

Fp - czFM no longer increases as 6802/8802 beyond this point,

and in fact begins to decrease, with rc/rO increasing. Thus,

as 6802/6802 becomes comparable to the smaller of 1 and

Bao/ﬂeo ; our simple power law dependencies disappear, and we



28w

refer to this regime as the strong wave amplitude region.

Having determined the value of BO/Beo for a given set of
initial values, we can compute B(r), p*{(r), and so on, using the
algorithm previously described. 1In Figure -3, we show typical
wind profiles for solution points on curve A of Bo in Figure 1,
as marked. The profiles 1 through 5 in Figure 3 are for
Beo’/Beo. = 0.1 and log (6B _2?/B_ %) = - 1.8, - 2.8, - 3.8, - 4.68,
and - 5.32, respectively (corresponding to 0580 = 7>.4, 23.8, 7.5,
2.7 and 1.3 km/sec, respectively). The last amplitude in this
series is below the cutoff for dynamic solutions, and the
corresponding profiles represent static solutions, as discussed
in Section V. Figure 3a gives profiles of p*/po* and B/Beo as
functions of r/ro, and Figure 3b shows Ba and GB/Ba as functions
of r/ro. We note that dH/H is equal to - SB/B. if B << 1, so

a
that the profile of GB/Ba is essentially alsc that of &H/H.

{L
r

y B and the

Figure 3¢ gives the wave amplitude 88 divide
€o

ratio of the transverse velocity to the radial velocity, SB/B.

in Figure 3d we plot the Alfvénic Mach number B/B,, and the

total wave energy flux A, normalized to its value at r,. The

energy flux A includes all terms in the total energy flux which

are proportional to the squares of wave amplitudes. The vertical

line on each curve marks the location of the critical points.
Except for the strong wave amplitude case (curve 1), the

radial profiles exhibit rapid decreases in density at a radial

distance which in the absence of waves would be the top of a

static atmosphere, with correspondingly rapid increases in Ba,
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B, and 58. Beyond this point, the density begins to fall off
as 1/r?, the velocity increases slowly, approaching the constant
cBw, and 8§ and Ba eventually begin to decrease, approaching
zero far from the star. For future reference, we point out some
of the prominent characteristics of the profiles corresponding
to the intermediate range of wave amplitudes (curves 2, 3,
and 4). First, because of the rapid decrease in density, Bs
at the critical point is small compared to B and §B there,
even if Bs were much greater than these guantities at the
reference level. Second, from Figure 3d we see that B is
much less than Ba both at the reference level and the critical
point. Finally, and most importantly, we donsistently‘find
that §B and B are approximately equal at the critical point,
with a value close to the escape velocity there, regardless
of their initial values at the reference level. Because of
this property, the different profiles of &8 and B in Figures 3a
and 3¢ are hard to separate; in general, the lower the values of
58 and B very close to the star, the higher their values very
far from the star. From F;gure 3d, we see that the transfer
of wave energy flux tc kinetic streaming energy flux takes place
gradually, with no steep gradients, and with essentially all of
the wave flux at r_ going to streaming energy far from the star.

As 6802/Be02 decreases toward the low amplitude cutoff,
the density profiles become increasingly rarefied, with the
Alfvén velocity at the critical point approaching c. Beyond

the critical point, 8§ and 8 regquire much greater distances
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for significant decrease, and B approaches its limiting velocity
much more slowly. As GBoz/Beo2 approaches the smaller of 1 and
Bao/seo r the density profiles fall off less rapidly, and the
gradients in B and Ba are correspondingly diminished. Above
this point, either Bo becomes comparable to Beo (1f Bao >R )

eo

or Bc becomes comparable to Bac (if Bao < Beo).
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IV. APPROXIMATE SCLUTIONS TO THE CRITICAL POINT

EQUATIONS IN SPECIAL CASES

a) Basic Assumptions

With experience based on the full numerical solutions
presented above, we seek approximate analytic expressions for
our solutions (Zc, Bc/Beo' BO/BEO) over variocus range of
initial conditions. At the ocutset, we limit ourselves here
to cases for which Beo << 1 and Bao << 1. Additional limita-
tions on the ranges of our initial values will appear as we
proceed. To obtain analytic solutions, we make reasonable
assumptions as to conditions at the critical level and
reference level, and we list the assumptions below. After

finding solutions, we a posteriori check the validity of these

assumptions.

Assumption A: B << Ba’at the critical level and at the
reference level.

With this assumption, B must be small compared to one at
the critical point. Since we have already assumed that Be is
small comparxed to one, the non-relativistic eguation of motion
(II.48) is appropriate, and our critical point occurs when both
the numerator and denominator of this equation are zero.
Dropping terms such as 6BZB/Ba (third order small by assumption),
the critical point equations become

B 2 68c2

- 2 _ 2
7 BSC 7 (1 + Sac ) (IV.1)
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and

2 . g 2 = e (1 - B8_.2) (IV.2)
B h 4 ac .

Note that we have not assumed Bac to be small compared to one.

We may combine equations (IV.1l) and (IV.2) to obtain

B..2 (1 -8_72% 2p_ 2
8 2 _ ic ac + ac B 2 (IvV.3)

2 2 5C
(1+ 8,0 1+8,,

For the integrated form of the eguation of motion, we use

equation (II.41). To second order in small gquantities, we

have

B’ + 0B B2 - 28 2a=p 2468 %-B2 - _2_g 2 (IV. 4)

ec c c a—-1l "se eo o o a-1 "so

To find 68% at the critical point, we use equation (II.30).

Under our present assumpticns, neglecting terms of order

2 »

580 Bo/Bao’ etc., we obtain

2 2
2 . 2 c
6B.° = 6B.® B_. B (IV.5)

ao

Assumption B: 802 << [Beoz + 6802 - 23802/(d - 1)

With this assumption, we may drop Bo2 on the right-hand
side of eqguation (IV.4). We take Eo to be the guantity £ as
defined in equation (II.51), evaluated at the reference lewvel.
As we have noted previously, we only consider situations in

which go > 0. Then egquation (IV.4) becomes
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B =g %K (IV.86)

Assumption C: 852 << B? at the critical point.

This condition is one of the novel properties of wave
driven winds. In thermally driven winds, of course, Bsz is on
the order of B? at the critical point. The dynamical rationale
for this condition will become clear when we consider the
transverse velocity céf at the critical point. With this
assumption, we may drop the terms containing BSC2 from the
right-hand side of equation (IV.3) and from the left—hana side
of equations (IV.1l) and (IV.6). As we shall see below, the
only time this is not justified is when Bac is extremely close

to 1. Eguation (IV.3) is thus taken to be

Bag? (1= By?)

g 2 = =€ (IV.7)
C 4 2
(1L + Bac )
Equation (IV.l) is
B 2
88,7 = —=C \ (IV.8B)
1+ 8_ 2
ac

and equation (IV.6) becomes

2 2 — 2 '
Bec + 6BC BC2 E‘eo EO (IV,Q)
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Using equations (IV.7) and (IV.8) in (IV.9), and remembering

that Becz = B_ %/2 , we obtain an equation for Z. as a function

C
of Bac and £

7+ SBacz

z, = . Ea (IV.10)
41+ 8.7 &,
We now solve for Bac in terms of the conditions at the
reference level by equating the expression for GBC from
equation (IV.5) with that in egquation (IV.8). If we define
the variable Xo by
§B_*°
y = 27 _1 ° (IV.11)
° 4 g g3 g 2
ao-o eo
where Eo is defined by equation (II.51), then the resulting
eguation may be written as
48_ (7 + 58_2)°
Xo ——o e =1 (IV.12)
(12)2(1 + 8_ %)
Equation (IV.12) determines Bac as a function of the initial
conditions. Given Bac’ we immediately have Zc from equation
(Iv.10), and from (IV.7) we find that
X
B (1 - B__%)
= = 1 ac (IV.13)

> X
eo 23 (1 + Bacz)
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To complete our solution, we need an expression for Bo/seo‘

From the conservation of mass, we have

. = = 7 2 ' (IV.14)

Using equation (III.3}, we obtainpc*/po*as a function of B,
and Zc, so that eguation (IV.1l4) becomes

3/ 4 B 2

2

ac ) ao 1

2 5
ZZCIE

B (L -8

It

(IV.15)

ee (1 +8,.0% Pac

At this point, we have completely solved the critical
point egquations under the limiting assumptions A, B, and C.

Given the initial values (B__ ., B_ . 6802/8602, 6502/8602),

we compute the parameter Xo using the definitions in eguations
(I1.5) and (IV.1ll). Given X ¢ We then find that value of Bac
between zero and cne which satisfies equation (IV.12) [if it
exists]. The solution for (Zc' Bc/Beo' BO/BeO) follows

immediately from equations (IV.10), (IV.13), and (IV.15). To
demonstrate the range over which these expressions are valid,

we plot in Figure 1 the analytic solutions along with the full
numerical solutions for Bo/Beo and rc/r0 as functions of 6502/8e02’
with 6502/8802 = ,1. The analytic results from the above equations
are indicated by dots. Our approximate analytic results are indis-
tinguishable from the numerical results at low and moderate wave
amplitudes, but at high wave amplitudes there is considerable dis-

agreement between the two. In the following sections, we consider

these regimes in more detail, in particular the low-amplitude
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cutoff in our expressions, and the differentiation between

"moderate"” and "high" wave amplitudes.

b) The Low-Amplitude Cutoff

We examine the regions in initial parameter space near
the abrupt, low-amplitude cutoff in BO and Bc when considered
as functions of 6802/8e02 (e.g., the left-most segments of
the curves in Figure 1 and 2). From equations (IV.7) and (IV.15),
it is obvious that these cutoffs occur as Bac approaches one
(or, equivalently, as pc* approaches zero). From equation
(Iv.12), B, becomes one when X, is one. If we take 1 - Bacz
to be small and expand equation (IV.12) to first order in this

small guantity, we obtain

- g 2 - 4 -
1-Be® = 3 (X, -1 (IV.16)

Using this form in equations (IV.10), (IV.13), and (1V.15),

we have
3
2 = —_—
c 2¢
B (3 1
c o 72
= = [—= (x. - 1)] (IV.17)
Beo 9 (o}
o L g 22yt ¥ (x, - 1 7%
co ac 3 o o]
As we show below, these solutions are valid in the ranges of
initial parameters satisfying
g " (EEQ)6 g v 2% oy L1 (IV.18)
o B ao Xo ' i
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To find the constants of motion for these solutions, we

evaluate the expressions for EM and FE

(I1.35)] at the reference level. Since BO and Beo are much

[equations (II.33) and

less than one at r , we use the non-relativistic form for FE
given in equation (II.50). If we insert the solutions (IV.17)
into (II.50), we find that the third term in (II.50) is much
larger than the first two. The energy flux Fp, is to an
excellent approximation given by

= 2 2.3 2 *
Fo CoFy + 4TrrO c Bao 680 Po (IV.19)

The second term in equation (IV.19) is just the radial
component of the Poynting flux associated with the Alfvén
waves at r,: Note that all of the wave energy flux at r,
appears at infinity in the form of streaming energy flux. The

mass flux is simply 4mr_?p

% . . .
o Po ceo, with BO given by equation

(IV.17). The quantity y_- 1 is given by the third term
inside the brackets in equation (II.50), and since BO << Bao,

we have

Yo - 1 =882 <22 (IV.20)

Evaluating this expression for the solutions given by equation
(IV.17), and remembering that these expressions are valid only

when Xo is very close to one, we have to a good approximation

. 3 _ '
Yo — 1 % I Beogo (Xo 1) (Iv.21)
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The restrictions on the range of applicability for the
sclutions in equations (IV. 17) arise from the reguirement

that our solutions must satisfy a posteriori the assumptions

A, B, and C under which they were derived. The requirement
that |xo-l|<<1_easily satisfies both A and B. Assumption C
is more difficult to satisfy, for the following reason. Using
(III.3) and assuming {IV.1l6) and (IV.l7) to be valid, we find

that the density at the critical point is

< = - 2 (2 5
5—? = 2()(0 l) Bao (3) EO (IV.22)
Since Bscz = Bsoz(pc*/po*)a—l' we see that Bscz goes to zero as

a-1

(Xg ~ 1) as ¥, approaches one. However, if o is less than 2,

according to equation (IV.17), Bc2 goes to zero faster than this,

? is usually much

as (x0 - 1). Aas a consaquence, even though Bsc
smaller than BCZ, in the limit of extremely low density pc* (xo
extremely c¢lose to one), Bscz becomes comparable to Bcz. Taking o
to be 5/3, we can derive the lower limit in inequality (IV.18) from
equations (IV.1l7) and (IV.22), and the requirement that (xo—l)

be large enough to insure that Bsc2<<5c2. For all cases

considered here, the lower limit given by inequality (IV.18) is
extremely small, so that Xo must be very close to unity before
assumption C is violated. For example, none of our numerical
solutions near cutoff even approach the lower limit in inequality
(IV.18), so that the region below this limit and above Xo = 1

is very narrow.
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For completeness, however, we give (but do not derive)
the solutions appropriate to the situation when the lower limit
in inequality (IV.18) is badly violated (e.g., Bscz >> Bcz)n In
this circumstance, we assume that Bac is so close to one that
the second term on the right hand side of eguation (IV.3)
dominates our expression for Bc2° In this approximation, if
%4

we keep terms in equation (IV.6) only to order (l—BaCZ) {in

2
particular, neglecting (l—Bacz) as compared to (l-Bacz)’é), we

find that
3
A = e
o 2£o
B £ 1
c o /2
— = | (x. - 1) 1 (IV.23)
Beo 12 o
3
BO _ Beo }-__ (x _ 1)2
Beo Bso? 28 °°
This solution is valid in the limited region of initial
parameter space defined by
B 8 7
0 < x, - 1 << 505 (=2 g * 2 (IV.24)

Beo ao 392

The upper limit in inequality (IV.24) derives from the reguire-
ment that the second term on the right hand side of equation
(IV. 3) be much larger than the first. The expression for FE

in this range is still given by equation {(IVv.19). The mass

flux 1is proportional to Bo’ as before, and y_ - 1 is



-40-

3 2 3
to 8ao Bso 28 (IV.25)
2 1y 2
27 By (Xo 1)

Yo = 1 =

In deriving the lower limit in expression (IV.18) and the
equations {(IV.23), (Iv.24), and (IV.25), we have for con-
venience assumed o = 5/3. All other equations in this paper
are for arbitrary values of «.

The above expressions [eguation (IV.17) in the range
{(Iv.18), and equation {IV.23) in the range {(IV.24)] exhibit
all of the cutoff properties of the numerical solutions in
Figures 1 and 2. The mass flux goes to zeroc as xo+l, Y, - 1
goes to infinity as Xo+l, and the energy flux is well-behaved
and approaches a well defined limit at cutoff. If we take
Xo= l, we see from equation (IV.19) that the minimum energy

flux we can get from the system in the form of a wind is

3 2
Beogo [ 4ﬂr0 cBeo T ] (IV.26)

The term in brackets is the energy flux that would arise if
the reference magnetic field energy density were convected at

the escape velocity cBeo. We let Wo denote this energy flux:

(IvV.27)
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¢) The Intermediate Amplitude Case
We now consider regimes where our initial wave
amplitudes are well above the cutoff point, e.g., when the
parameter Xo defined in eguation (IV.1ll) is well above one.
In this regime, Bac as given by equation (IV.1l2) is small

compared to one, and we have

_ 6 2
Bac = (7) Y— (IV.28)
o
Eguations (IV.10), (Iv.1l3), and (IV.15) then give
7
2 - ———
c 450
g8 £ %
L = L (IV.29)
a0 714
Bo_l 27,.%,7.¢ 4. % -7, SR,
T3 (—g) (g) (3)
eo g
eo

The numerical factor in the expression for Bo/seo is approxi-
mately 3.55. These expressions are valid in the regions de-

fined by

2
58,

< MINI(1, B_ae)
Beoz eo

(IV.30)

[ =
~J
™0
oY
A

ao

The symbol MIN (a,b) denotes the smaller of the quantities
a and b. The lower limit here insures that we are well
away from cutoff, with XD>>1 and Bac<<1. The upper limits

stem from assumption A (Bc<<8ac) and from assumption B
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(BO<<Beo). Assumption C is easily satisfied, and in
particular
B .2 _1, B2 8B ¥
°€ = 14.8 £ 7* 82 (9 (IV.31)
B2 © B2 Beo
c eo

We point out that if 680/Bao<<].and 560/8e0<< 1, then the
upper limit in inequality (IV.30) is automatically satisfied.

We again evaluate the constants of motion at the reference
level. Within the range defined by expression (IV.30), the third
term is equation (II.50) for FE at r, is again much larger
than the first two. For the intermediate case, our expression
for Fp is simply the sum of caFM and the wave energy flux at r,
[cf. equation (IV.19)]. Again we note that all of the wave energy

flux at r, appears at infinity in the form of streaming energy

flux. The mass flux Fy is 4ﬂrnzpn*cBn, as before, and

3

B
Y, - 1= 0.28 eoz Boo 50}3 (1Iv.32)
5B
o

To obtain some idea as to the allowed range of the constants
of motion, we let 6832/8602 vary between the limits imposed by

inequality (IV.30). Within these limits, Fp = czFM varies

over the range

B
7 5038e0 W, < Fp - czFM < 2W_ MIN(L, EEQJ {Iv.33)
a0

NI(D
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and is proportional to 6602/8e02‘ The mass flux F, varies

between

W W B 2
0,16 £ 72 9 cp <« T:1 0y, 89 (IV.34)
°© 2 M og_ g P 8"

and is proporticnal to GBO“/BeO“, The term Wo/c2 [cf. equation
(Iv.27)] in expression (IV.34) is the mass flux which would arise
if the equivalent mass density Hoz/anc2 were convected outward
from r, with velocity cBeo° The gquantity vy ~ 1 varies between

the approximate limits

’ B
¥ _ 2. A ao
2.0 BEOEO > Y 1> 0°28860 EO MAX (1, E;;J (IV.35)

The symbol MAX(a,b) denotes the larger of the guantities a
and b. The upper limit here has been assumed to be much less

than one, so that y_ - 1 = B _?/2. If V_is cB, and V_ is

o
cByr then inequality (IV.35) can be written as
2.0 & u YoV >V > § oy MAX (1 -B—""-c—’) {IV.36)
* o eo oo o eo ' Beo *

In the intermediate range of wave amplitudes, we thus expect
to find streaming velocities at infinity in the range given
by ineguality (IV.36), with an inverse dependence on 630/860,
All of these functional dependencies on BBo/BeO agree with
the power law behavior we expect on the basis of the full
numerical solutions for the intermediate range of wave

amplitudes (Figures 1 and 2).
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d) The Strong Amplitude Case

In the strong amplitude case, when our initial wave
amplitudes are greater than the upper limit given by inequality
(IV.30), we have not been able to derive explicit analytic ex-
pressions. In the case that Sao > Beo' we see from equation
(Iv.29) that BO becomes comparable to Beo as the wave amplitude
approaches the upper end of the intermediate amplitude range.
This is an unrealistic situation for a reference level near the
coronal base. In the case that Bao < Beo' the wind becomes super-
Alfvénic at the critical point as 6802/8e02 exceeds Bao/seo'
Assumption A above is no longer justified, and our intermediate
range solutions are inappropriate. In the strong amplitude
regime, we note that in the expression for the energy flux given
by equation (II.50), we can no longer neglect the - 1/2 Bezg
term, since even at the upper end of the intermediate amplitude
range it is becoming comparable to the third term. The quali-
tative behavior to be expected would be a decrease in FE—czFM
as 6802/[3&02 increases beyond Bao/seo' since we are now
subtracting two terms of comparable magnitude, and indeed this
is the behavior our numerical sclutions for Bao<<Beo exhibit
in the strong amplitude domain {cf. Figure 2). Other than
qualitative statements, however, we must rely on our numerical

solutions in this range of wave amplitudes.
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e) The Alfvénic Critical Point

In the numeric and analytic solutions obtained above,
the energy flux associated with the waves decreases as we move
away from the coronal base, with a corresponding increase in
the streaming energy flux associated with the wind (cf.
Figure 3d). A physical scale of obvious importance in this
process is the radial distance from the star at which a signif-
icant fraction of the initial wave energy has been transferred
to streaming energy. It is easily shown that this distance
scale is on the order of the Alfvénic critical distance r, (by
definition, r, is that point at which the radial streaming
velocity is equal to the local Alfvén velocity). For example,
consider equation {(II.37) for the conserved energy flux divided
by the mass flux times c?. The second term in this eguation
is the wave Poynting flux divided by the mass flux times c?.
As long as BO<<Bao (i.e., the streaming is sub-Alfvénic at ro),
this term will decreaseby about a factor of 1/2 in going from
r, to r_. Of course, there are other wave terms in squation
(IT.37) in addition to the Poynting flux term, but similar con-
siderations apply as to the scale height over which these terms
show significant decrease. We see from our numerical solu-
tions (e.g., Figure 3d) that 2z, (i.e., ra/ro) increases as
GBO/BeO decreases. In the following paragraph, we derive
approximate expressions for za appropriate to the/intermediate
range of wave amplitudes. We have not been able to derive such
expressions for the strong amplitude and cutoff regimes, but

from our numerical solutions, it appears that Za is close to
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cone for strong wave amplitudes (if Bao < B__), and approches

eo
infinity as 680/6e0 approaches the low amplitude cutoff. This
circumstance again casts doubt on the physical significance
of solutions just above cutoff.

We now seek an approxXimate expression for Za in the inter-
mediate range of initial wave amplitudes. We recall that in

this range, # and Ba are always small compared to one, with

BO << Beo' From equation (II.30), we thus have, for any 2,

3

B 2
§B% = 8B 2 Ba Z (IV.37)
© Pao (B + Ba)2

and from eguation (III.3) and the conservation of mass

B = — (g—) {IV.38)

We also have Bo << B_ ., so that eguation (II.41) is, for

any Z,

{Iv.39)

We now evaluate equations (IV.37) through (IV.39) at Z_. From

equation (IV.38), we have that Ba at Za is given by

B = %— {IV.40)
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Using this expression in (IV.37), we obtain for 6g% at Z_

6802 Bao
4 B
o
From equation (IV.20), we see that §8? at Z, is just B_2/8.
Using these expressions in (IV.39) and neglecting the sound
velocity cBS, we obtain a fourth order equation for za of
the form
By’ B
eo _ _ao 1 3 2 - 2
° - - + 7 8., = Boo'Eg (IV.42)
a B Z
o a

For a rough estimate of Z_,,» we note that expression (IV.36)
indicates that Bmz is significantly greater than Beoz except

at the upper end of the intermediate amplitude range. If we

2

neglect terms involving B in equation (IV.42), we find that
I=Ye]

z 4 = ‘ (IV.43)

2
S 3B,

From eguation (IV.40) and (IV.43), we note that Bg? at Za is

38,°/8. Using equation (IV.29) for B, and (IV.20) for B,

equation (IV.43) becomes

2
3/

B R !
2, = 0.80 (=22 _£C )7 (IV.44)
eo GBOZ

Assuming that Bao< Beo’ we find that in the intermediate

range of wave amplitudes defined by expression (IV.30), Za varies
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3.3 Beo

The lower bound here is
end of the intermediate
we are not justified in

(IV.42). As long as we
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3/, _1
g /o 2, > 1 (IV.45)

suspect, as it occurs at the upper
amplitude range, and in this region
neglecting the Be02 terms in eguation

stay away from the upper limit in in-

equality (IV.30), however, equation (IV.44) for Z_ 1s reasonably

accurate, as may be verified by comparison with the full

numerical results in Figure 3d.
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V. STATIC ATMOSPHERES

We have found in previous sections that for initial
wave amplitudes below a certain minimum value defined by in-
equality (IV.30), wind solutions to the equations of motion
no longer exist. Since the mass flux of the dynamic solutions
decreases to zero as the initial wave amplitude decreases
toward the minimum value, it seems plausible to expect that
below this minimum value only static atmospheres occur. This
is indeed the case, as we shall demonstrate.

Even though the development in Section IIc above assumes
throughout that a dynamic expansion exists, we may extract the
equations appropriate to the static situation by taking the
limit B + 0. We do not use equation (II.39%) for this purpose
because of the singularity as 8 - 0, but rather equation (II.41).
In the limit that E is zero, we have
I B.%) (1-8_%)
J 1 - Bez — 5p2

(l_+

- 882r'%n = const. (V.1)

For simplicity we assume that 8e2<<l, so that this equation

to second order is

1 2 _ 1 2 _ 1 552
1+ a-1 Bs 2 e 2 B
(V.2)
- l 2 _ L 2 l_ 2
= 14 a=-1 Bso 2 Beo 2 580
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From equation (I1.30), 6B% in the limit B0 is

682 = §B 2 .._a'__. Zz (V-3)

where Z = r/ro. From equation (III.3) for p*/po*, we see
that Ba can be expressed as a function of 2 and p*/po. Of
course the sound velocity is Bsz = Bsoz(p*/pcf)a—l- With
these expressions, we can write equation (V.2) in terms of

p* and Z alone

2 _ 2
Beo 2 Y " )a l+ 580 2
2 a-1 “so B 2
Po” ao 1-B,0 p* Y,
[1- - z2"}
*
8a0 Po
— 2
= Boo &g (V.4)

where Eo is given by equation (II.51l). Equation (V.4) defines
p*/po* as a function of Z.

If a static atmosphere is to exist, we expect a top to
that atmosphere and we now consider whether there exists a ZT
such that ﬁ*(ZT) = 0. If such a point exists, we see from

equation (IXI.3) and (V.4) that it must satisfy the eguation

2 2
B 580

eo 2 2
+ 2 = B & (v.5)
Z.r Bao T ec o
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This cubic equation for Z. does not have a real root greater
thén one if Eo < 1. This is the regime of the thermally

driven wind solutions. If Eo > 0 and Xo 2 1l [cf. eguation
(IV.11)], there are alsc no real roots greater than one. This
is the regime of the wave-driven winds, as in Section IV.
However, if Eo > 0 and Xo < 1, there exists a real root greater
than one, and therefore a top to a static atmosphere. If we

define the angle ¢ such that

90° < ¢ < 180°

(V.6)
cos ¢ = - XOVz
then the top of the atmosphere occurs at
2 = —2— cos (£ + 240°) (V.7)
T 1/ 3
2 et
o*o

In the limit that 660 goes to zero, ¥, goes to zero, and

/2 -1

$ + 90° + xol » 80 that Z_ is approximately[1-2Bsoz/ﬁe02(a-l)]
This is the usual expression for the top of a gravitationally
contained polytrope atmosphere.

Thus, if the initial wave amplitudes are below the limit
given by Xo = 1, our atmosphere is static, with a density
profile given by equation (V.4) and a top & given by eguation
(v.7). The static density profile plotted in Figure 2 is

computed on the basis of these equations. In these configurations,

the static atmosphere is modified by the presence of the waves,
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but the waves propagate outward from r, with no decrease in
energy flux. They emerge from the top of the atmosphere
traveling at the speed of light in vacuum, with 6E® and &H?

subsequently decreasing as 1/r? [cf. equation (II.28)].
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VI. LIMITATIONS OF THE MODEL

Under various restrictive assumptions, we have formulated
and found solutions to a well-defined mathematical model of a
physical situation. Before summarizing the properties of these
solutions, we point out their probable defects and the pitfalls
involved in applying them to real astrophysical situations.
Firgst, the assumption of radial fields is a strong one, partic-
ularly in the circumstance that field pressures are large
compared to kinetic pressures, and closed field configurations
are to be expected. In such cases, gualitative properties of
our model will apply only in regions where the field lines are
close to radial for various reasons (most obviously, in the
polar regions of a magnetic dipole). We note that the crucial
feature which gives rise to the possibility of wave driven winds
is the rapid fall-off with radial distance of the density as
compared to the field strength, and the consequent rapid increase
of c§B, the transverse perturbation velocity, with radius. This
situation will obtain as long as H falls off inversely as a low
power of r, and it may not be unreasonable to expect wave-driven
expansion in the polar regions of a strong magnetic dipcle.
Short of a detailed calculation, however, we can only speculate.

For the MHD approximation to be valid, we must have wave
-freguencies which are small compared to cyclotron frequencies
and densities which are high enough to make the concept of a
fluid meaningful. For the latter reason, the dynamic solutions
just above cutoff, for which the mass flux approaches zero

(Section IVb), and the static solutions below cutoff, in which
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the density goes to zero at the atmospheric top (Section V),
should be viewed with c¢aution. 1In addition to this upper
limit on the frequency w, we must also satisfy a lower bound
of the form w >> 6V/r for all r, otherwise the transverse
particle displacement associated with the wave will be an
appreciable fraction of 2n1r. Since §V(r) increases much more
rapidly than r, reaching the local escape velocity within a few
stellar radii, this lower bound is not inconsequential, espe-
cially for small objects with high escape velocities.

We have ignored any pessibility of wave damping, even
though we may have a situation where the velocity perx-
turbation ecéBf increases dramatically with radius, approach-
ing the escape velocity in a distance on the order of a stellar
radius. However, we note that Ba also increases rapidly out-
ward,so that initially GB/Ba actually decreases with increasing
radius, as does 8H/H (see Figure 3). In addition, there are
reasons to believe that circularly polarized Alfvén waves in a
completely ionized, rarefied plasma are difficult to damp both
from an cbservational and theoretical standpoint (Belcher and
Davis, 1971; Barnes, 1966).

Finally, in retrospect, one of the strongest assumptions
we have made is that wavelengths are short compared to local
scale heights. In many of our numerical solutions (cf. Figure 3),
there are regions near the top of otherwise static atmospheres
in which wave amplitudes and radial velocities exhibit spectac-
ular increases over short distances and the short wavelength

approximation here becomes suspect, at the least. The situation
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improves somewhat if we depart from an adiabatic atmosphere

(. # 5/3), as this tends to smooth ocut the abrupt gradients,

and the proper inclusion of non-WKB terms would probably have

the same effect. It is not clear how the inclusion of such terms
would change the dynamical situation (energy and mass fluxes,
etc.), although we would hope for no qualitative changes. To
answer the guestion properly requires the numerical integration
of the full transverse eguations of motion, in conjunction with

the radial momentum equation.
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VII. SUMMARY

We have investigated the properties of stellar winds in
which the only source of energy flux is due to low freguency,
undamped Alfvén waves propagating outward along radial magnetic
field lines. The thermal properties of the plasma are described
Ly a polytrope relation, and we have considered only situations
which would lead te static atmospheres in the absence of waves.
Wwe have demonstrated that Alfvén waves of sufficiently large
amplitude are capable of driving the supersonic, super—-Alfvénic
expansion of the plasma, with a complete transfer of wave energy
flux near the star to streaming energy flux far from the star.

The process responsible for the acceleration of such winds
is intrinsically different from that which produces thermally
driven winds. To illustrate these differences, we discuss
briefly the features of the non-relativistic solutions. Let
us denote cf by V, cdB by &V, cBa by Va' ch by Vs' and cBe
by Vo« In the situation that V is much less than V_» which
is in turn much less than ¢, the differential equation for the

radial velocity V is (cf. equation II.48)

2 _ 2 2
_ 1 VS At s svi/a
2

<R
o,
H

(VII.1)
(Vv 2 + 8vi/4) -~ v?

In the absence of waves, this equation reduces to the familiar
polytrope form for the radial gradient of V. In the presence
of waves, the velocity perturbation §V complements the local

sound velocity VS, The dynamical effects of these two velocity
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terms are drastically different, however, because of their
differing behavior as a function of radial distance from the
coronal base. If p is the mass density and ¢ the poly-
trope index, then VS2 is proportional to (p)u—l. Thus Vs2 is
at best a constant (a = 1) and at worst decreases rapidly with
distance from the coronal base (g = 5/3). On the other hand,
close to the star the Alfvén wave amplitudes vary so as to
approximately conserve the wave energy flux 4nr?2 Va {p6V?).
As a consequence, 8V? is proportional to r? V_ close to the star
(cf. equation (IX.30) for V << Va). Since the density may
decrease outward as a high inverse power of r, with H falling
off only as 1/r?, the Alfvén velocity Va can increase sub-
stantially over its initial value at some reference level L.
Physically, the Alfvén waves are propagating outward into an
increasingly rarefied atmosphere, and to conserve energy flux
§V? must initially increase outward, rather than decrease, as
does Vsz.

The relative importance of the §V? and VS2 velocity terms
in equation (VII.1l) has a major influence on the nature of
the critical point solutions of this equation. In the absence
of waves, Parker (1963) has shown that equation (VII.1) will
have well-behaved wind solutions for initial values at the refer-

ence level r, in the range

v 2
& ; 1 < 502 < %‘- (ViI.2)

\Y
cO

The lower limit in this inequality represents the point below.
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which critical point scluticns to egquation (VII.1l) no longer
exist (the gravitational field is too strong to allow expansion
and the corona assumes a static configuration). The upper limit
represents the point abeove which conditions at the_céronal base
are no longer realistic (e.g., the streaming velocity is already
superscnic at ro). Consider the situation in which the lower
limit in inequality (VII.2) is violated. In the absence of waves
there will be no critical point solutions to equation (VII.1)
because Vs2 is never comparable to Vez° With waves, however,
there is still a possibility of a wind solution if 8V? at the

critical point is comparable to Ve2 there. Let the subscript

c" indicate evaluation at the critical point r, (if it exists).
The above discussion of the radial dependence of §V? implies
that for GVC2 to be comparable to vecz' we must have

2 2 2 s
GVO (rc/ro) (Vac/vao) comparable to Veo (ro/rc). Critical
point solutions of this nature do in fact exist, and usually
occur within a few stellar radii. For a given GVO, we require
that the density at r, be low enocugh (and thus the value of
Vac/Vao high enocugh) so that 6Vc is comparable to Vec‘ As GVO
becomes smaller, the density profiles become more rarefied, so
that ¢V still attains the escape velocity at r.. However,
this process cannct continue indefinitely, since the maximum

value possible for 6ch is on the order GVOZ (c/Va corre-

o)'

sponding to the limit that Vac is close to the speed of light
. . 2

(and assuming that r. is on the order of ro). If GVO (c/Vao)

is substantially below Veoz' §V_ can not reach the escape

velocity at X and critical point solutions do not exist.
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We note that Alazraki and Couturier (1971) and Belcher {1971}
allow arbitrarily large Alfvén velocities when considering,
the problem. In such a situation, GVC can reach vec no matter
how small SVO, as long as it is non-zero. As a result, these
authors incorrectly conclude that wind sclutions are always
possible if 5v02 > 0.

These heuristic arguments provide some gualitative insight
into the range of initial wave amplitudes necessary for the
production of Alfvén winds. If we assume that Veao and v,
are small compared to ¢, then our detailed mathematical
treatment indicates that well-behaved wind solutions exist for

initial wave amplitudes in the range

2
v &V

4 3 Aao (o]
ﬁ EO e . < MIN(].,

\Y eo
eo

Vao )

(VII.3)

where Eb is a factor of order unity for our purposes [cf. equa-
tion (II.51)]. We emphasize that inequality (VII.3) only applies
when the lower limit in inequality (VII.2) is violated (e.g., when
there are no Parker wind solutions). Under various assumptions,
we have cbtained approximate analytic solutions to the critical_
point eﬁuations for initial wave amplitudes in the range defined by
inequality (VII.3). We have referred to this range (which

does not include the lower limit) as the intermediate amplitude
range. Initial wave amplitudes just above and inclusive of the
lower limit of inequality (VII.3) are said to be in the cut-

off regime, as discussed below. Initial wave amplitudes below

this lower limit are too weak to drive the coronal expansion,
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and the atmosphere assumes a gravitationally bound, static
configuration. Wind solutions exist for initial wave ampli-
tudes above the upper limit in lnequality (VII.3) (referred to
as the strong amplitude regime), but they are such that either

v >V (if Vv > V_)or V. >V
a eo c -~ a

(if v < V_). The
o ~ eo o a

C &) eo

situation in which VO > Veo is clearly unrealistic for a
reference level at a coronal base. Although the situation in
which Vc > Vac at r, does not necessarily imply that conditions
at r are unrealistic, it does prevent us from obtaining
approximate analytic solutions to the critical point solutions.
We must rely on numerical solutions for wave amplitudes above
this limit, and as a consequence our understanding of the
properties of solutions in the strong amplitude regime is
limited. For wave amplitudes in the intermediate and cutoff
regimes, however, our understanding is detailed.

Before considering these properties, we note as an aside
that our choice of parameters for the specification of the
initial conditions at r, is neither unique nor necessarily
ideal. For example, since &V and v_ vary rapidly as functions
of radius, it may be difficult in practice to choose wvalues
fof them at a given point, since they are sensitive functions
of distance from the star. A guantity which may be more
appropriate as an initial wvalue is the Alfvén wave Poynting
flux at X 4ﬂr02(c GEO 6HD/4ﬂ), since this flux is essentially

constant close to the star. If we denote this flux by Fpo, and

let W_ be 471r 2 V (H ?2/87m), then over the range of wave
o o ‘eo ‘o
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amplitudes in equation (VII.3}, Fp0 varies between the limits

v Y
8 3 eo o] [=Ye)
27 F’o < Wo < Fp < ZWO MIN({(1, V__ao) (VII.4)

Well-behaved wind solutions will exist if the Poynting flux

associated with the Alfvén waves at ry lies in the range given

by expression (VII.4). This requirement on the Poynting flux

for the existence of well-behaved wind solutions is completely
equivalent to the requirement on the wave amplitudes given
above.

The properties of stellar winds which are of primary
interest are their energy fluxes, mass fluxes, and energies
per particle at infinity. For initial wave amplitudes in the
intermediate range, the streaming energy flux at infinity is
equal to the Poynting energy flux at the reference level, Fpo.
In this range, the energy flux at infinity therefore varies
between the limits of expression (VII.4) and is proportioqalﬂ

2 [ .
to GVb « The mass flux Fy in the intermediate range varies

between the limits yiven in expression (IV.34) and is proportiocnal
to 5V04‘ The lower limit in this expfeésion does not include the
abrupt decrease in mass flux as GVOZ approaches cutoff. The
limiting velocity V, of the wind for the intermediate range
varies between the limits given in inequality (IV.36) and is
proportiocnal to l/GVO . Again, the upper limit in this equa-
tion cdoes not include the violent behavior in the regime of

wave amplitudes just above cutoff. The distance required for

a significant transfer of the initial wave energy flux F ©
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to wind streaming energy flux is of the order of T, where

r, is the point at which the radial streaming velocity is
equal to the local Alfvén velocity (Section IVe). For the
intermediate range of wave amplitudes, assuming Vao < V‘ea,e

r, varies between the limits given in inegquality (IV.45}, and
is proportional to Gvo_yb, In the intermediate range, 75%

of the kinetic energy per particle at r. is associated with
the radial streaming velocity, and 25% is associated with the
transverse velocity of the wave.

As SVO closely approaches the lower limit in expression
(VII.3), the mass flux FM decreases abruptly toward zero, and
since the energy flux remains well-behaved, the energy per
particle at infinity increases abruptly toward infinity. In
the same limit, the distance T, goes'to infinity. Qualitatively,
this situation arises from the fact that just above cutoff the
Alfvén waves are able to drive a vanishingly small mass flux off
the star. At cutoff, we have a finite wave energy flux at r,
which is to be distributed at infinity among an infinitesimal
number of particles. Below cutoff, dynamic expansion is no
longer possible, and the atmosphere formally assumes a static
configuration. In the static case, the energy flux associated
with the waves is rigorously conserved, and appears at infinity
in the form of waves. As pointed out above, the physical sig-
nificance of the dynamic solutions just above cutoff, and the

static solutions below cutoff, are guestionable because of the

extremely low densities involved.
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For the purposes of numerical illustration, consider
: z 2 _ — _
a star with V_ /Veo = 0.1, a = 5/3, I, = 0.75. x10'' cm,

Vo = 599 km/sec, and Hy = 0.5 gauss. From expression (VII.4),
the initial Alfvén wave Poynting flux needed for the pro-
duction of an Alfvén wind lies between the limits 0.85 x

10%*% ergs/sec and 0.84 x 10%° ergs/sec. If we take a density
at r_ of 1 x 10° particles/cc, the Alfvén velocity v_ _ is

109 km/sec, and the intermediate range of wave amplitudes varies
between 2.3 km/sec and 256 km/sec. For wave amplitudes in

this range, we obtain the same streaming energy fluxes at in-
finity as Poynting fluxes ar T and mass fluxes between

the limits 3.1 x 10° gms/sec and 2.9 x 10'" gms/sec. The -
streaming velocities at infinity lie between 24,500 km/sec
andw km/sec.

In conclusion, we note several points in comparing Alfvén
winde with thermally driven winds. To obtain winds in the
thermal polytrope models, the sound velocity at the coronal base
must be on the corder of the escape velocity there, and the
limiting velocity at infinity is of the same order. In Alfvén
winds, the initial transverse velocity GVO can be small compared
to the escape velocity, by as much as a factor of orxder /V;;7E,
and the limiting velocity at infinity can be large compared to
the escape velocity, by as much as a factor of order /37523.
Even in tightly bound atmospheres with small initial wave ampli-
tudes (Gvo2 << VSD2 << Veoz)‘ rarefied, energetic wind solutions
may exist. The existence of such winds even in these extreme

situations is closely related to the collective nature of the

acceleration process, in which the energy input required to
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maintain the low velocity, transverse motions of a great many
ionized particles at a coronal base is ultimately transferred
to the high velocity, radial streaming of relatively few
particles far from the star. As a result, wave driven winds
can exist even in tightly bound situations, and may exhibit
relatively high energies per particle at infinity. It is this
gqualitative concept of the acceleration mechanism that we wish
to emphasize, rather than the quanfitative details of the solu-

tions we have presented.
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Appendix A

We solve eqﬁations (IT.22) and (II.24) for the WKB wave
amplitudes under the assumptions: 1) the wavelengths are
small compared to the local scale heights; 2) &8 and BS are
small compared to one, so that we may neglect second order and
higher terms in &8 and BS, With these assumptions, we can
immediately drop the last term on the left hand side of

equation (II.24), and replace I everywhere by 7y, where
2y .
y = (n - %— % - , (A.1)

Strictly speaking, to justify this approximation, we must re-
guire that 68 be small compared to 1l/y rather than 1, but for
our purposes Y can be taken to be close to unity.

We may also replace (e + p) in equation (II.24) by p*c?, so

that equation (II.Z24) becomes

prc? [y2 = 268 + EL & (xyep)]

3t
{A.2)
H
“ﬁ‘[i—n%ﬁ“’%g—r(réﬂ” =0
We eliminate 6B from this equation by using equation (II.21)
in the form
sg = L[ BESE _ sp ) (a.3)
H n
r
For convenience, we introduce a new variable dh defined
oy
5h=§-§ (a.4)
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Using equations (A.3) and (A.4) in (A.2), we cobtain after some

manipulation an equation for éh and 6E alone, as follows

H?.
S SRR O B PR
[ ¥ anorcin 1 3 ST Y8 =%
nH* 2.2 dJ d 4Bvy?
+[——--r—-—sy]-a—6h=—6E[syal+J—] (A.5)
dmprc? r r r
as H,* 3y2p2 d
+ 8h [ BY® 3= - + 2 +ysza-l£]
4rp*cir

Equation (II.22) is our second equation for éh and S8E, and

has the form

2 2 _ _SE |
ﬁ6h+a—r-6E— (A.6)

Q-

We now apply'the method described by Weinberg (1962)
to obtain the WKB amplitudes (see also Belcher 1971b). Let L
be the scale height for variations in p*, g, and Hr‘ We write

§E and éh in the form

SE(r,t) = [dEl(r) + u6E2(r) + u26E3(r) + ... )expli{wt - S(r)]
Shir,t) = [Ghl(r) + u6h2(r) + u26h3(r) + ...]expli(wt - S(r)](A.7)
where

k=28 W= 2L (A.8)

GG -
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The parameter p is the ratio of the wavelength to the scale
height L, and is assumed to be small. The qguantities 6El, 6E2,
dhl, etc., are also assumed to have écale heights on the order
of L. We insert equation (A.7) into eguations (A.5) and (A.6),
and keep only terms to first order in pu . If we place zeroth
order terms in y on the left hand side, and first order terms

on the right hand side, we obtain the equations

iw . o _ iw ,
- Z5 8hy + ik 8E; = - u [- Z* 6h, + ik OE,]
(A.8)
[ W G
r dr 1
and
. H_?
- 22 (y* + —E—) SE; + i2y?Bk 6E;
dmp*en
nH, * iw Hr2
+ ik (—=— - 8%y*) 8hy = - ul- = (y* + ————) $E,
4nprc? dmp*cin
nH_?
+ i2y2Bk SE, + ik( - 8%y%) &h,]
2 2 2
dtp¥c
cony tpye 88 . T -
1 dr dnprcr r r
_ dy , 4By*; _ 5. 25 &
SE) [By g¢ + =1 - 2v7B Fp OF,
nH_?
- (—E— - 8%y?) & 6n (A.10)
4mp*c? r

—g -
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where we have assumed that r > L. The zeroth-order approxi-
mation is obtained by assuming the right hand sides of (A.9)
and (A.10) are zero. Using Ba as defined by equation (II.26),

we find that

B + ni
=W - _____a
p T ok T TFEE_/m (.11
and
SEl
§h, = T (A.12)
p

We have chosen the sign in equation (A.1l) for outwardly
propagating waves.

To obtain the first-order solutions, we insert the zeroth
order solutions (A.1l) and (A.1l2) into equations (A.9) and
(A.10). To eliminate the quantities 6E2 and Ghz, we then
multiply equation (A.9) by (nHr2/41Tp*c2 - Bzyz)/sp and add it
to equation (A.10). This leaves us with a differential equation

for GEl of the form

a - 2,2 Q__ 2 (_i__
B T G sz B ) gz (£SEp) + 2v%8 Fx OE;
a
ne_* dE 2
—2a  _gz,2y 4 1 dy , 4By
PSR e (gt v emy ey G+ B
a p
GE B 2 2.0 -
1 Y
o B (87" Gz - Z_HEE—? ;M vt G <o (A.13)
a

~C¥-
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To solve equation (A.13), we write all derivatives cf the
form dg/dr, dy/dr, dBa/dr, and so on, in terms of dp*/dr. For

example, we have from equation (4.1} that

dy _ ,» (B d8 _ 1 82y dn

dr Y Iy & 5 (1 + " ) ar | (A.14)
We also have [cf. eguation (II.18)}]

2,1 dp*  1dy 1aB .

=+ 5% dr + Y ar tFar - 0 (A.15)

From f{A.14) and (A.15) we can obtain expressions for das/dr
and dy/dr in terms of dp*/dr alone. From the definition of
Ba' we also can obtain an expression for dBa/dr in terms of
do*/dr [cf. equation (II.43)]. Proceeding in this manner, we

eliminate all derivatives in eguation (A.13) except those of

p* and GEl. After a tedious process, we obtain the eguation

- 2
1 Ba dp*
1 I % ar

S
6El dr

+ —— (Afle)

The solution to this equation is (II.29). We obtain expressions
for the radial dependence of GHl and 681 by using eguation

(II1.29) in conjunction with eguations (A.3), (A.4) and (A.12).

~¢5-
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Appendix B

We sketch a derivation of the non-relativistic equation
(Ir.48) in the limit that B8 and B, are small compared to one,
with no restrictions on Ba. The possibility that Ba may be
close to one means that we must keep time derivatives of E
in Maxwell's equations. For a non-relativistic MHD plasma
with fluid velocity V, density p, magnetic field H, and
electric field E, in the presencé of a spherically symmetric

gravitational potential ¢, the relevant eguations are

pBe v+ Tp 4 pl0 + qm B x (T XH-ggp Bl =0 (B.1)
yxg;%-g-gg=o (B.2)
E+SVxH =0 (B.3)

If we assume that V = V(r)é_  + §vir,t)é  and

¢

H= H(r)ér + 6H(r,t)é¢ , then from equation (B.3) we immediately
have E = SE(r,t)ée, with 8E = (V8H - HSV)/c. The ¢-component

of equation {B.l) is

3 0 -
-8—t- §V + -a—i_- (I(SV) = SE (B'4)

HI<
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The ¢-component of eguation (B.2) is

d 1l 3 -
ﬁ 6H + T 3¢ (réE) = 0 (B.5)

Q-

Thus, our perturbation quantities satisfy equations which are
the non-relativistic limits of equations (II.21), (II.22),
and (II.24). Hence, the WKB solutions to equations (B.4) and
(B.5) are the non-relativistic limits of the solutions given
by equations (II.27) throﬁgh (I1.32). For convenience, we
now assume our perturbations are circularly polarized in the
equatorial plane of a spherical polar coordinate system.

The radial component of equation (B.l) may be written

as
av _ &v¥  1dp , 4¢ 1 3
Var rtoar tar t Tnoc 3E (E x H),
(B.6)
+ [H x (Vv xH) + E x (V x E)} = 0
4mp - ~ TR ~ ~ = =y
where we have used equation (B.2). Our assumption of circular
polarization implies that E x H is time-independent, so that
equation (B.6) becomes
QE 1dp 2 2y _ 2
v ar p dr + dr rp [4ﬂ (60 + 6E7) V=]
(B.7)
1l 4
Tip dr [8H® + GE*] =0

17/~
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We may write equation {B.7) in terms of dB/dr alone by using
the conservation of mass and eguation (II.29%) for the radial
dependences of the transverse perturbations in terms of p, v,

and r. In particular, we note that in this limit

aB (L - B_ %)

a 1 dg
: = [ — (2B + 8_) - =] (B.8)
dr (1 + BBa)2 28 dr a r

After some tedious manipulations, we recover equation ({IT1.48)

for dv/dr, neglecting third order terms in small guantities.

7L~
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Figure 1.

Figure 2.

Figure 3.

FIGURE CAPTIONS

Critical.point solutions (rc/ro, Bc/seo’ BO/BeD)

as functions of 6802/8802 for values of Bsoz/seoz
equal to 0.1, 0.040, and 0.001 (curves labeled A, B,
and C, respectively). The Alfvén velocity cBao

and the escape velocity CBeo are constant, with

B = 0.0001 and B, = 0.0020. The limiting velocity

ao

of the wind at infinity is cf, . The dotted curves
represent analytic results derived in Section IV
under various approximations (see text). The scale
for r_/r, is to the right and the scale for all

other guantities is to the left.

Energy flux and mass flux as functions of 6602/6802

for the same values of Bsoz/Beoz’ B,,r and B as

ao

in Figure 1. We alsoc plot FE/CZF -~ 1, which is

M
Yoo — L+

The curves labeled 1 through 4 correspond to the
values of 6802/8e02 indicated on curve A of B_/B__

in Figure 1. The curves labeled 5 are for a value

of 6802/6802 indicated by a vertical stub on the axis
in Figure 1 (this point is below the cutoff for dy-
namic solutions). The guantity 8502/836 is 0.1, with
R = 0.0001 and Beo = 0.0020. We plot different

ao

variables as functions of radial distance from the

— 7L



reference level r,: {a) The mass density normalized
to its value at X and the radial streaming velocity
divided by the escape velocity at x,i {(b) The Alfvén
velocity divided by ¢, and the transverse velocity
divided by the Alfvén velocity; {(c) The transverse
velocity divided by the escape velocity at e and
the transverse velocity divided by the radial velocity.
(d) The Alfvén wave energy flux A norrmalized to its
value at ro, and the radial Alfvénic mach number.

The scales for the various gquantities are to the

left or to the right, as indicated. Vertical stubs
on the curves indicate the location of the critical

points.
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