

*For sale by the National Technical Information Service, Springfield, Virginia 22151

Page

SUMMARY 1
INTRODUCTION 2
OVERALL PROGRAM PROCEDURE 4
DETAILED PROGRAM PROCEDURE 8
STORAGE REQUIREMENTS 12
CONVENTIONS USED IN PROGRAM 12
LABELED COMMON BLOCKS 14
MAIN PROGRAM 15
SUBROUTINES 15
Subroutine INPUT 15
Subroutine INPLOT 15
Subroutine MESHO 16
Subroutine CROSCD 19
Subroutine PRECAL 20
Subroutine THETOM 22
Subroutine THIKOM 22
Subroutine LOSSOM 23
Subroutine MEPLOT 25
Subroutine PTBDRY 25
Subroutine VBDRY 25
Subroutine INIT 28
Subroutine COEF 28
Subroutine SOR 28
Subroutine NEWRHO 29
Subroutine OUTPU'T 33
Subroutine BLDVEL 38
Subroutine ILETE. 39
Subroutine TSONIN 40
Subroutine INDEV 40
Subroutine SLPLOT 41
Subroutine SVPLOT 41
Subroutine TVELCY 41
Function TOPF 45
Functions TIPF, RHOIPF, LAMDAF, RHOOPF, and RVTHTA 45
Subroutines CONTIN 46
Subroutine PABC 50
Subroutine INRSCT 50
Subroutine ROOT 52
Subroutine LININT 53
Subroutine SPLINE 58
Subroutine SPLINT 58
Subroutine SLOPES 59
MAIN DICTIONARY 59
PROGRAM LISTING 118
APPENDIXES
A - FINITE-DIFFERENCE FORM OF STREAM-FUNCTION EQUATION 192
B - MATCHING UPSTREAM AND DOWNSTREAM FLOW CONDITIONS TO STREAM-FUNCTION SOLUTION 197
C - CALCULATION OF PARTTAL DERIVATIVES OF THETA ON ORTHOGONAL MESH 198
D - LINEAR INTERPOLATION IN A QUADRILATERAL 201
E - SYMBOLS 207
REFERENCES 209

FORTRAN PROGRAM FOR CALCULATING VELOCITIES AND STREAMLINES ON THE HUB-SHROUD MID-CHANNEL FLOW SURFACE OF AN

AXIAL- OR MIXED-FLOW TURBOMACHINE

II - PROGRAMMER'S MANUAL
by Theodore Katsanis and William D. McNally
Lewis Research Center

SUMMARY

A FORTRAN-IV computer program, MERIDL, has been developed which obtains a subsonic or transonic, nonviscous flow solution on the hub-shroud mid-channel flow sur face of a turbomachine. The flow must be essentially subsonic, but there may be locally supersonic flow. The solution is for two-dimensional, adiabatic shock-free flow. The blade row may be fixed or rotating and may be twisted and leaned. The flow may be axial or mixed, up to approximately 45° from axial. Upstream and downstream flow conditions can vary from hub to shroud, and provision is made for an approximate cor rection for loss of stagnation pressure.

The basic analysis is based on the stream function and consists of the solution of the simultaneous, nonlinear, finite-difference equations of the stream function. This basic solution, however, is limited to strictly subsonic flow. When there is locally supersonic flow, a transonic solution must be obtained. The transonic solution is obtained by a combination of a finite-difference stream-function solution and a velocity -gradient solution. The finite-difference solution at a reduced mass flow provides information which is used to obtain a velocity-gradient solution at the full mass flow.

The program input consists of blade and flow channel geometry, upstream and downstream flow conditions from hub to shroud, and mass flow. The output includes streamline coordinates, flow angles, and velocities on the mid-channel flow surface; incidence and deviation angles at the blade leading and trailing edges; and approximations to the blade surface velocities. The output may also include input information for a blade-toblade flow analysis program.

The program is reported in two volumes with part I as the user's manual and part II as the programmer's manual. Part I contains all the information necessary to use the program as is. It explains the equations involved and the method of solution and gives a numerical example to illustrate the use of the program. This report, part II, contains all information necessary to understand the operation of the program. It explains the overall program procedure and gives a detailed description of all the subroutines. There is also a dictionary of variable names and a complete program listing.

INTRODUCTION

The design of blades for compressors and turbines ideally requires analysis methods for unsteady, rotational, three-dimensional, viscous flow through a turbomachine. Clearly, such solutions are impossible at the present time, even on the largest and fastest computers. The usual approach at present is to analyze only steady flows and to separate inviscid sulutions from viscous solutions. Three-dimensional inviscid solutions are just beginning to be contemplated for coming generations of computers. So at present, inviscid analyses usually involve a combination of several two-dimensional solutions on intersecting families of stream surfaces to obtain what is called a quasi-three-dimensional solution.

Since there are several choices of two-dimensional surfaces to analyze and many ways of combining them, there are many approaches to obtaining a quasi-threedimensional solution. Most two-dimensional solutions are either on a blade-to-blade surface of revolution (Wu's S_{1} surface, ref. 1) or on the meridional or mid-channel stream surface between two blades (Wu's S_{2} surface). However, when threedimensional effects are most important, significant information can often be obtained from a solution on a passage cross-sectional surface (normal to the flow). This is called a channel solution (see fig. 1).

Figure l. - Two-dimensional analysis surfaces in a turbomachine.

In this report a solution to the equations of flow on the meridional S_{2} surface is carried out. This solution surface is chosen when the turbomachine under consideration has significant variation in flow properties in the hub-shroud direction. A solution on the meridional surface will show this variation. The solution can be obtained either by the quasi-orthogonal method, which solves the velocity -gradient equation from hub to shroud on the meridional flow plane (ref. 2), or by a finite-difference method, which solves a finite-difference equation for stream function on the same flow plane. The quasi-orthogonal method is efficient in many cases and can obtain solutions into the transonic regime. However, there is difficulty in obtaining a solution when aspect ratios are above 1. Difficulties are also encountered with curved passages and low hub-tip ratio blades. For such cases, the most promising method is the finite-difference solution, but this solution is limited to completely subsonic flows.

Two finite-difference programs for flow on the mid-channel surface of a turbomachine have been reported in the literature (refs. 3 and 4). Since both are finitedifference methods, they are necessarily limited to subsonic flow cases. Marsh's method (ref. 3), termed the matrix throughflow method, closely follows the development given by $W u$ in reference 1. However, the computer program was not included in reference 3, nor is it available to the general user. Davis' program is provided in reference 4 but is limited to certain families of compressor blades and flow surfaces.

The method described in this report uses both the finite-difference and the quasiorthogonal (velocity gradient) methods, combined in a way which takes maximum advantage of both. The finite-difference method is used to obtain a subsonic flow solution. The velocity -gradient method is then used, if necessary, to extend the range of solutions into the transonic regime.

A computer program, MERIDL, has been written to perform these calculations. This program is written for axial- or mixed-flow turbomachines, both compressors and turbines, up to approximately 45° from axial. Upstream and downstream flow conditions can vary from hub to shroud. The solution is for compressible, shock-free flow, or incompressible flow. Provision is made for an approximate correction for loss of stagnation pressure through the blade row. The blade row may be either fixed or rotating and may be twisted and leaned. The blades can have high aspect ratio and arbitrary thickness distribution.

The solution obtained by this program also provides the information necessary for a more detailed blade shape analysis on blade-to-blade surfaces (fig. 1). A useful program for this purpose is TSONIC (ref. 5). Information needed to prepare all the input for TSONIC is calculated and printed by this program.

The MERIDL program has been implemented on the NASA Lewis time-sharing IBM-TSS /360-67 computer. For the numerical example of this report, storage of varia-
bles required 60000 words for a 21×41 grid of 861 points. Variable storage could be easily reduced by equivalencing of variables or by using a coarser mesh. Storage for the program code is 18000 words. This storage could be reduced by overlay of code. Run times for the program range from 3 to 15 minutes on IBM 360-67 equipment, depending upon the mesh size used and the compressibility of the flow.

The MERDL program is reported in two volumes, with the user's manual presented as part I in reference 6 and the programmer's manual presented as part II in this report. Part I contains all the information necessary to use the program as is. It explains the method of solution and gives a numerical example to illustrate the use of the program. Part I includes the sections METHOD OF ANALYSIS, DESCRIPTION OF INPUT AND OUTPUT, NUMERICAL EXAMPLE, and appendixes which derive the mathematical equations used. This report, part II, contains all information necessary to understand the operation of the program. It explains the overall program procedure and gives a detailed description of all the subroutines. There is also a dictionary of variable names and a complete program listing. The appendixes explain numerical techniques used and derive certain numerical algorithms. So, part II includes the sections OVERALL PROGRAM PEOCEDURE, DETAILED PROGRAM PROCEDURE, MAIN DICTIONARY, PROGRAM LISTING, and appendixes which derive the numerical methods used.

OVERALL PROGRAM PROCEDURE

This main section gives an overall view of the program calculation procedure. The next main section should be consulted for the detailed program procedure. Reference will be made to the proper section or appendix for the equations and their derivation or for the numerical techniques used.

The main program guides the overall flow of the program. All the main subroutines are called by it. Figure 2 is a flow chart for the main program.

The first step is to read and print out all the input data. This is done by the INPUT subroutine. Upstream and downstream flow conditions can be given either as a function of the streamline or as a function of radius. For program calculations, both the stream function and the radius are needed. INPUT estimates values of either stream function or radius, whichever was not given as input, based on the area distribution. These values are later adjusted with each iteration. The next step is to call INPLOT, which plots all the upstream and downstream input flow variables as well as the input blade sections from hub to tip.

The next subroutine is MESHO, which calculates the coordinates of the orthogonal

Figure 2. Flow chart of maln pragram.
mesh in the solution region. Details of the numerical technique are given in reference 7 . After this PRECAL is called to calculate quantities which remain fixed throughout the calculations. These quantities include the s and t mesh coordinates, hub and tip wall curvatures, and leading- and trailing-edge z - and rocoordinates at horizontal mesh lines. Subroutine PRECAL also calls THETOM, THIKOM, and LOSSOM. Subroutine THETOM calculates $\partial \theta / \partial \mathrm{s}$ and $\partial \theta / \partial \mathrm{t}$ at the orthogonal mesh points. (All symbols are defined in appendix E.) These partials are used to calculate the blade flow angle β and the tangential velocity W_{θ} after the meridional velocity W_{m} has been calculated. Subroutine THIKOM calculates the tangential blade thickness t_{θ} at the orthogonal mesh points. Subroutine LOSSOM calculates the ratio of actual to ideal relative stagnation pressure downstream of the blade and then distributes the loss linearly through the blade row from leading to trailing edge. The method of making loss corrections is discussed in appendix D of part I (ref. 6). Finally, PRECAL makes corrections in mass flow, wheel speed, and whirl for the reduced-mass-flow solution if the full-mass-flow solution cannot be obtained directly (i.e., when REDFAC <1.0).

Next MEPLOT is called to plot the meridional plane view of the blade and passage and to plot the orthogonal mesh. Then VBDRY is called to calculate the stream-function values along the upstream and downstream boundaries of the orthogonal mesh. This is done by using the velocity-gradient equation derived in appendix C of part I (ref. 6). Iteration is required to establish the correct temperature, density, and whirl to use in the velocity -gradient equation. Now INIT is called to initialize array variables as required for the first iteration. Most variables are set either to zero or to some value which will avoid division by zero later on.

At this point, everything is ready to solve the stream-function finite-difference equations. These equations are nonlinear. They are solved by an iterative procedure, with two levels of iteration. The inner iteration solves a linearized equation, and the outer iteration makes corrections to the linearized equation so that the solution converges to the solution of the original nonlinear equation. There are three subroutines called to obtain the solution to the linearized equation: COEF, SOR, and NEWRHO. Then there are four subroutines to print and plot this information and prepare for the next outer iteration: OUTPUT, INDEV, SLPLOT, and SVPLOT. These seven subroutines are repeated until convergence is obtained.

Subroutine COEF calculates the coefficients of the finite-difference equations. These coefficients are derived in appendix A. Because of the sensitivity of the calculations to the value of $\partial\left(r V_{\theta}\right) / \partial r$, this value is damped from iteration to iteration. Thus, only a portion of the predicted change in value is actually used. This portion is specified by the input value of DNEW.

Subroutine SOR solves the finite-difference equations for the stream function u by successive overrelaxation using an optimum overrelaxation factor (ORF). This is the inner iteration. The optimum overrelaxation factor is calculated by subroutine SOR on the first iteration. Subroutine NEWRHO calculates velocity components at each mesh point by differentiating the stream function numerically along the orthogonal mesh lines. These values are used to calculate new densities at each mesh point. When whirl is not given as input, NEWRHO also makes reinitialization calls to readjust the estimated values of stream function to go with the input temperature, density, and tangential velocity. See appendix B. Subroutine NEWRHO also calculates values of ξ and ζ (eqs. (A1) to (A3)) at the mesh points to be used in COEF on the next iteration. And NEWRHO checks the relative change in velocity from the previous iteration at each mesh point. The maximum relative change in velocity is checked to see if the solution is converged.

Now that a solution (converged or not) has been obtained, OUTPUT is called. Subroutine OUTPUT first calculates other velocity components and flow angles at all mesh points. Then OUTPUT calculates streamline curvature and critical velocity ratio at each mesh point. Subroutine BLDVEL is called to calculate the blade surface velocities, as explained in appendix G of part I (ref. 6). Also BLDVEL calculates the average blade-to-blade density to be used in NEWRHO in the next ieration. And BLDVEL calculates F_{r} at each point by using equation (A4). The radial vector F_{r} is used by COEF in calculating the coefficients of the finite-difference equations. After returning from BLDVEL, OUTPUT will print out data at the orthogonal mesh points, if desired. Then, if output is desired along streamlines, the necessary interpolation will be done and data will be printed for all streamlines. Similarly, interpolation will be done and data printed for hub-tip station lines.

After OUTPUT, INDEV is called. Subroutine INDEV calculates a correction to $\partial \theta / \partial s$ for a short distance into the blade to match the mean surface within the blade to the free-stream flow angles, both upstream and downstream. The method for doing this is described in appendix F of part I (ref. 6). Subroutine INDEV also calculates and prints out incidence and deviation angles if this is requested. If desired, SLPLOT will plot the streamlines and SVPLOT will plot the mean and blade surface velocities.

At this point, the main program will start a new iteration by going back to COEF if the solution has not converged. If the solution has converged, there are two possibilities. If REDFAC is 1 , the final solution has been obtained and the program is through. If there are data for another case, the program will start this case; otherwise the program is stopped. If REDFAC is less than 1 , the final approximate full-mass-flow solution will be calculated by TVELCY. First, the mass flow, rotational speed, and inlet and output whirl are restored to their full values. This requires reinitialization calls
of LAMDAF and RVTHTA for inlet and outlet whirl. Then TVELCY calculates $\partial \mathrm{W}_{\mathrm{m}} / \partial \mathrm{m}$ and $\partial \mathrm{W}_{\theta} / \partial \mathrm{m}$ for use in the velocity -gradient equation. These quantities are first calculated from the reduced-massoflow solution and then are adjusted by dividing by REDFAC. Now the velocity mgradient equation (derived in appendix C of part I (ref. 6)) is solved along each vertical mesh line. Iteration is required to establish the correct temperature, density, and whirl to use in the velocity-gradient equation. When TVELCY is through, TOUTPT is called. Subroutine TOUTPT is an alternate entry point for OUTPUT. The only difference is that the flow angles are considered to be known, and the velocity components are calculated from the velocity magnitude and the known flow angles. Then the same sequence of INDEV, SLPLOT, and SVPLOT is called as for the finite - difference solution. Normally, only the smaller (subsonic) of two possible solutions is obtained by TVELCY (part I, appendix C); but if desired, both the larger ("supersonic") and smaller solutions can be obtained. If both solutions are desired, TVELCX, TOUTPT, INDEV, SLPLOT, and SVPLOT are called again. This completes the program. If there are data for another case, the program will start on this case: otherwise the program is stopped.

DETAILED PROGRAM PROCEDURE

This main section gives the detailed program procedure for all the subroutines. The previous main section should be consulted for an overall view of the program calculation procedure.

Most of the subroutines in MERIDL use the same set of variables. These variables are all defined in the MAIN DICTIONARY. All subroutines are described prior to the main dictionary. First, the main subroutines and other subroutines which use the main dictionary are described, and then the remaining subroutines with special dictionaries are described.

The calling relation of all subroutines is shown in figure 3. Note that figure 3 is not a flow chart. A tabulation of all subroutines called and all COMMON blocks for each subroutine is given in table I.

The first subsections presented here describe the general aspects of the programs, including storage requirements, conventions used, and description of labeled COMMON blocks. They are followed by a detailed description of the subroutines.

Figure 3. - Calling relation of subroutines. Called subroutines are always below the calling subroutine. (This is not a flow chart.)
table i. - SUbroutine calls and common blocks

Subroutine name or entry point	COMMON blocks (a)	Called subroutines	Calling subroutines	Subroutine name or entry point	COMMON blocks (a)	Called subroutines	Calling subroutines
MERLD	/-- / /INPUTT/	INPUTINPLOT MESHO PRECAL MEPLOT VBDRY INIT COEF SOR NEWRHO OUTPUT INDEV SLPLOT SVPLOT TVELCY TOUTPT (OUTPUT)	None - main program	MEPLOT	/INPUTT/ /CALCON/ /PLTCOM/	PTBDRY Microfilm plot subroutines	MERIDL
				PTBDRY	/INPUTT/ /CALCON/ /PLTCOM/	SPLINT	MEPLOT SLPLOT
				VBDRY	/...-/ /inputt/ /CALCON/ /VARCOM/	TTPF RHOIPF LAMDAF TOPF RHOOPF RVTHTA CONTIN	MERIDL
				CONTIN	None	PABC	BDRY
INPUT	/---/ /INPUTT/ /CALCON/ /INTTTL/	SPLINT	MERIDL				TVELCY
				PABC	None	None	CONTIN
				tnet	/INPUTTT/	RHOMPF	MERIDL
INPLOT	/INPUTT/ /CALCON/ /INTITL/	$\begin{aligned} & \text { Microfilm plot } \\ & \text { subroutines } \\ & \text { SPLINT } \\ & \text { SPLINE } \end{aligned}$	MERIDL		/VARCOM/		
				COEF	$\begin{aligned} & /--/ / \\ & \text { /NPUTT/ } \end{aligned}$	None	MERIDL
MESHO	/INPUTT/ /CALCON/ /CROSCM/	CROSCD SPLINT SPLINE ROOT	MERIDL		/CALCON/ /VARCOM/		
				SOR	/-a/ /INPUTT/	None	MERIDL
CROSCD	/INPUTT/ /CROSCM/	None	MESHO ROOT				
Precal	/INPUTT/ /CALCON/	LAMNIT (LAMDAF) RVTNIT (RVTHTA) TIPNIT (TIPF) RHINIT (RHOIPF) RHONIT (RHOOPF) SPLINE INRSCT SPLINT THETOM THIKOM LOSSOM	MERIDL	NEWHHO	/---/ /INPUTT / /CALCON/ /VARCOM/	LAMNTT (LA MDAF) RVTNIT (RVTHTA) TIPNIT (TIPF) RHINIT (RHOPIF) RHONIT (RHOOPF) LAMDAF TIPF RHOIPF SLOPES SPLINE RVTHTA	MERIDL
THETOM	/INPUTT/ /CAlCON/ / INDCOM /	SPLINT SPLINE LININT	PRECAL	output (entry point TOUTPT	/---1 /INPUTT/ /CALCON/ /VARCOM/	SLOPES TIPF LAMDAF BLDVEL	MERIDL
THIKOM	/INPUTT/ /CALCON/	SPLINE LININT	PRECAL		/SLCOM/ /STACOM/	RVTHTA SPLINT LININT	
LOSSOM	/-… /NPPUTT/ /CALCON/	TIPF LAMDAF TOPF RHOIPF SPLINT	precal			ILETE TSONIN	
				TSONIN	/---/ /INPUTT / /CALCON/ /NARCOM/ /SLCOM/	SPLINE TIPF RHOPP F INRSCT LINENT SPLDNT	OUTPUT TOUTPT

table i. - Concluded. subroutine calls and common blocks

a.-.- denates an unlabeled COMMON block.

The MERIDL program has been implemented on the NASA Lewis time-sharing IBM-TSS / 360-67 computer. Storage for the program code is approximately 18000 words. For the numerical example of part I (ref. 6), storage of variables required approximately 60000 words for a 21×41 grid of 861 points. As dimensioned for a $100 \times 101 \mathrm{grid}$, storage of variables would require about 680000 words. The user can reduce the storage requirements for variables, as desired, by changing the dimensions. The main dictionary indicates how each variable should be dimensioned to reduce the storage required. This is indicated by reference to certain input variables, such as MM, MHT, NHUB, NTIP, NBLPL, NPPP, and so forth. The variables with the most significant effect on storage requirements are MM and MHT.

As an example, consider the two-dimensional array ALPHA. This variable is in the /VARCOM/ COMMON block and is dimensioned ALPHA $(100,101)$ in the program listing. In the main dictionary, it is listed as ALPHA (MM, MHTP1). Suppose that the maximum desired value for MM is 60 and that for MHT it is 40 . Since MHTP1 is MHT +1 , the maximum value for MHTP1 would be 41 . Then ALPHA should be dimensioned ALPHA $(60,41)$ 。

Similarly, all other dimensioned variables should have their dimension changed as required. Most dimensioned variables are in COMMON blocks, but there are a few which are dimensioned locally only. In addition, the calls to LININT must be changed to reflect any changes in the dimensions of the first two LININT arguments.

CONVENTIONS USED IN PROGRAM

For convenience, a number of conventions are used in naming variables and assigning subscripts.

In addition to the basic orthogonal mesh, there are four special mesh schemes used, as illustrated in figure 4. For each mesh, different conventions are used to indicate mesh position. The subscripts I and J are used to denote orthogonal mesh position. The I is used to denote the vertical mesh number, and the J is used to denote the horizontal mesh line number. The subscripts IS and JS are used in a similar manner to denote streamline mesh points, and IL and JL the station-line mesh points. Likewise, IN and JN denote points on the input blade sections, and KN and JN denote points on the alter-

(e) Alternate blade mesh.

Figure 4. - Five meshs used in MERIDL.
nate blade mesh located at 10 -percent-chord intervals in the THETOM subroutine. Note that I and IS take on the same values, as do JS and JL.

In variable names, I or IN indicates the inlet (upstream of blade) and O or OUT indicates the outlet. Variables ending with OM are generally variables defined on the orthogonal mesh.

Velocity components on the orthogonal mesh usually have SUB in the name, such as WSUBZ for W_{z}. Velocity components along streamlines end in SL (WZSL), while velocity components on station lines end in ST (WZST). The letters H or HUB in a var iable name indicate the hub, and T or TIP the tip. LE is used for leading edge and TE for trailing edge. The letters TH indicate a variable in the θ-direction, SURF a variable on a blade surface, and BL a variable in the blade region. In a variable name, TEM indicates a temporary variable; P is used to indicate a prime superscript, and PP double prime; D is used for derivative. Usually, several conventions are combined in each variable. For example, TIP is used for T_{i}^{\prime}, TPPTIP for $T^{\prime \prime} / T_{i}^{\prime}$, and DPDR is used for $\partial \mathrm{p} / \partial \mathbf{r}$.

All subroutines used for plotting have PLOT in the name. Variables used for plotting have PLT in the name.

LABELED COMMON BLOCKS

Most variables which are used in more than one subroutine are placed in labeled COMMON blocks. A brief description of each labeled block is given. The same variable names are used in different subroutines for every variable in a COMMON block. The labeled COMMON blocks are as follows:
/INPUTT / is used for all input quantities.
/CALCON / is used for calculated constants which are initially calculated and are not changed later.
/VARCOM/ is used for all orthogonal mesh point arrays which are changed in each iteration.
/SLCOM/ is used for output data along streamlines.
/STACOM/ is used for output data along station lines.
/INDCOM/ is used for quantities calculated by THETOM to be used by INDEV.
/PLTCOM/ is used to plot data for hub, shroud, and blade leading and trailing edges.
/CROSCM/ is used to store quantities required by CROSCD.
/INTITL/ is used to store the input title for use by INPLOT.
Table I shows which COMMON blocks are needed in each subroutine.

MAIN PROGRAM

The program is segmented into several main subroutines called by the main proram, as indicated in figure 3. The subroutines are called in sequence, except for the uter iteration and a switch to obtain a supersonic final solution. The outer iteration is loop consisting of calls to COEF, SOR, NEWRHO, OUTPUT, INDEV, SLPLOT, and 'VPLOT. This calling sequence and the outer iteration loop are shown more clearly in he flow chart for the main program, given in figure 2. Flow charts for some of the ubroutines are also given with the subroutine descriptions.

SUBROUTINES

Subroutine INPUT

Subroutine INP UT reads and prints all input data cards and initializes some varia les for use later in the program.

All input cards are first read and printed on the output listing in the same form and rder in which they are given. All array bounds are then checked to see if they are ithin limits, and some miscellaneous constants are initialized. Finally, estimates are nade of various required upstream and downstream flow conditions which were not given s input because other input options were used.

Subroutine INPLOT

Subroutine INPLOT makes microfilm plots of a portion of the given input data. By hecking these plots, the user can see if his input data have been given correctly and moothly. It is important that the plotted data be smooth, since spline curve fits of rese data are used extensively by the program.

Two main sections of input are plotted: the upstream and downstream flow condiions, and the input blade sections from hub to shroud. A separate plot is made of each f the three given distributions of upstream flow variables and two distributions of downtream flow variables from hub to shroud. On each plot, one data point is plotted at very 1 percent of stream function or radius from hub to shroud. The NIN and NOUT nput points are also marked. Each input blade section is then plotted, using only the inut points for plotting and marking. After each individual blade section is plotted, a mul~ ple plot is made of all sections together. Examples of all the plots are given in figures (a) to (g) of part I (ref. 6).

Subroutine INPLOT and the other plot routines, MEPLOT, SLPLOT, and SVPLOT, all rely heavily on the NASA lewis in-house microfilm plotting package described in reference 8. These four routines as well as PTBDRY, which is called by MEPLOT and SLPLOT, are self-contained and can be easily removed from MERIDL without disturbing the remainder of the calculations.

Subroutine MESHO

Subroutine MESHO calculates the coordinates of an orthogonal mesh covering the solution region from upstream to downstream of the blade row and from hub to shroud. Subroutine MESHO makes use of four other subroutines - ROOT, CROSCD, SPLINE, and SPLINT. A flow chart for MESHO is given in figure 5. The method used for generating the mesh is explained thoroughly in reference 7.

Subroutine MESHO begins with input geometry describing the hub and shroud of the flow passage and the numbers of mesh points desired in the horizontal and vertical directions. First, MESHO calculates the horizontal, or streamwise, orthogonals. It does this by extending lines vertically from each of the imput points on the hub to the shroud. Each of these lines is then divided into equal increments, the number depending upon the number of streamwise orthogonals. Streamwise spline curves are fit through the resulting points to give the horizontal orthogonals shown in figure 6.

Vertical orthogonal lines are then constructed one at a time, moving from left to right between each pair of adjacent horizontal orthogonals, proceeding from hub to shroud, as shown in figure 7. The procedure for calculating these lines, shown in fig ure 8, is analogous to a technique for solving ordinary differential equations known as the improved Euler method or Heun's method (ref. 9). Beginning at a known orthogonal mesh point on the lower orthogonal, a normal is constructed (line (1) in fig. 8) to the upper orthogonal. Then the intersection coordinates of this line with the upper orthogonal and the slope of the upper orthogonal at the intersection are calculated. ROOT and CROSCD are used in this process. Line (2) in figure 8 is then constructed in such a way that it is perpendicular to the tangent to the upper orthogonal at the intersection point and passes through the original starting point on the lower orthogonal. The coor dinates of the intersections of both lines (1) and (2) are now known on the upper orthogonal. The desired new orthogonal mesh point is the average of these two sets of coore dinates.

This process of constructing vertical orthogonal links is continued until the shroud is reached by all vertical orthogonals. This completes the generation of the arthogonal mesh.

Notice in MESHO that the locations of the upstream and downstream boundaries of the orthogonal mesh at the hub are fixed by the inputs ZOMIN and ZOMOUT (fig. 7). The

Figure 5. - flow chart for MESHO.

Figure 6. - "Horizontal" orthogonals obtained by spline curve fitting.

Figure 7. - Process for generating "vertical" orthogonal links.

Figure 8. - Calculation procedure for a "vertica!" orthogonal link.
locations of these boundaries at the tip, however, cannot be given ahead of time and are totally dependent upon the orthogonal mesh generation procedure.

Axial distance between vertical orthogonal origins at the hub is determined by the number of mesh lines requested in the following three regions: MBI mesh lines upstream of the blade from ZOMIN to ZOMBI; MBO - MBI mesh lines from ZOMBI to ZOMBO; and MM - MBO mesh lines downstream of the blade from ZOMBO to ZOMOUT (fig. 7). The number of horizontal orthogonals is MHT +1 , which is the same in all three regions.

Subroutine CROSCD

The ROOT subroutine (p. 52) requires the calling of a special function or subroutine. In MERIDL, that routine is CROSCD. It is called by ROOT to calculate for a given z -coordinate the difference in r -coordinates of line (1) and the upper horizontal orthogonal in figure 8. (ROOT finds the z-coordinate where this difference shrinks to zero, that is, the intersection of the straight line (1) and the horizontal orthogonal curve.) The input argument for CROSCD is

Z value of z -coordinate in ROOT
The following two values are given as output:
RMR difference in r-coordinates of straight line and curve
SL1 slope of horizontal orthogonal at z
CROSCD uses the equations of a cubic spline curve to interpolate and calculate \mathbf{r} as
a function of z on the horizontal orthogonal. The spline curve information is transmitted to CROSCD from MESHO in the /CROSCM/ COMMON.

Subroutine PRECAL

Subroutine PRECAL calculates many of the fixed constants which will be needed by the subroutines in the outer iterative loop of MERIDL. Figure 9 gives a flow chart for PRECAL.

First, PRECAL initializes the subroutines for calculating upstream and downstream flow conditions. To do this it calls LAMDAF, RVTHTA, TIPF, RHOIPF, and RHOOPF, entering at the special entry points of these routines used for initialization.

The array of blade-to-blade spacing B (the BTH array) is then initialized to the blade pitch (in radians) at every point on the solution mesh. This array is modified in the blade region later in PRECAL when THIKOM and LOSSOM are called.

In the cases where output streamline values (FLFR array) were not read in ($\mathrm{NSL}=0$), PRECAL assigns eleven (11) values to FLFR from 0 to 1.0 , in increments of 0.1 . Also, if the given endpoints of FLFR do not equal 0 and 1.0, PRECAL adds these values as endpoints.

Then, PRECAL uses the $z=$ and r-coordinates of the orthogonal mesh (ZOM and ROM), calculated in MESHO, to calculate the s and t arrays (SOM and TOM) on the orthogonal mesh. Adjacent points are linked with straight line segments in this calculation of s and t, but the correction between arc length and chord length is not significant for adjacent points.

The curvatures of the hub and shroud profiles are then calculated where these profiles are intersected by the upstream and downstream boundaries of the orthogonal mesh. These curvatures are later required in the VBDRY subroutine.

The z - and r -coordinate arrays (ZLE, RLE and ZTE, RTE) are then set up at points which define the leading and trailing edges of the blade. These values are the first and last values for each blade plane from the ZBL and RBL blade-coordinate input arrays. The intersections of these leading and trailing edges with the hub and shroud are also calculated with INRSCT calls.

Various quantities are then calculated on the orthogonal mesh at or near the leading and trailing edges of the blade. With INRSCT calls, the \mathbf{z} - and r -coordinates of intersections of horizontal mesh lines with the blade edges are calculated. Vertical mesh line numbers (ILE and ITE) of mesh points which lie just within the blade leading and trailing edges are then calculated by comparing the z-coordinates of mesh points along the orthogonals with the z-coordinates of intersections of the orthogonals with the blade edges. The s-and t-coordinates are then calculated for the points where the horizontal mesh lines cross the blade edges.

Figure 9. - Flow chayt for PRECAL

Then PRECAL calls three other subroutines, THETOM, THIKOM, and LOSSOM. The THETOM routine calculates $\partial \theta / \partial s$ and $\partial \theta / \partial t$ at the orthogonal mesh points. Subroutine THIKOM makes corrections to the BTH array to account for blade thickness, and LOSSOM calculates the relative total pressure loss at the downstream boundary of the orthogonal mesh. This loss is distributed linearly through the blade row by making an additional correction to the BTH array.

Finally, in PRECAL, corrections are made to some upstream and downstream input arrays and corresponding boundary conditions in the case where a reduced-massflow solution is to be obtained (REDFAC <1.0). The wheel speed, mass flow, whirl, and tangential velocity are all reduced by REDFAC; and the upstream and downstream boundary conditions of whirl are reinitialized by LAMDAF and RVTHTA calls.

Subroutine THETOM

Subroutine THETOM calculates the gradients $\partial \theta / \partial s$ and $\partial \theta / \partial \mathrm{t}$ at the orthogonal mesh points which lie within the leading and trailing edges of the blade. This process is thoroughly described in appendix C.

Theta coordinates of the mean blade surface (THBL) are given at the input blade section points (ZBL, RBL). Gradients of the θ-coordinate are required in the $s-$ and t-directions at the orthogonal mesh points within the blade for use by the NEWRHO subroutine.

Subroutine THETOM makes use of the technique of defining an alternate mesh which is entirely contained within the blade on which $\partial \theta / \partial z$ and $\partial \theta / \partial \mathbf{r}$ are obtained. By interpolation, $\partial \theta / \partial \mathrm{z}$ and $\partial \theta / \partial \mathrm{r}$ are then obtained at the required orthogonal mesh points. Finally, $\partial \theta / \partial s$ and $\partial \theta / \partial t$ are calculated from $\partial \theta / \partial z$ and $\partial \theta / \partial \mathbf{r}$ at these points.

Subroutine THIKOM

Subroutine THIKOM calculates the blade thickness in the θ-direction at the points of the orthogonal mesh which lie within the blade edges. (Input blade thicknesses are not given at the orthogonal mesh points, nor are they given in the θ-direction. They are given normal to the blade mean camber line along each input blade section.)

THIKOM first calculates the s' -coordinate and then the angle κ between the mean camber line and the s^{\prime}-coordinate direction, as shown in figure 10. (The s^{\prime}-coordinate corresponds to the input blade section direction.) With these angles, approximate thicknesses in the tangential direction t_{θ} are calculated from thicknesses normal to the meanline t_{n} by the equation
i

$$
t_{\theta}=\frac{t_{n}}{\cos \kappa}
$$

This calculation is subject to error for highly cambered or highly staggered blade sections but is adequate here since t_{θ} is only used as a blockage correction to the BTH array.

After t_{θ} is obtained at the input points, LININT is called to interpolate and obtain it at the orthogonal mesh points. Then it is subtracted from the BTH array.

Figure 10. - Calculation of thickness in tangential direction.

Subroutine LOSSOM

Subroutine LOSSOM calculates the downstream relative total pressure loss and distributes it upstream through the blade row as an area correction. This correction is made to the BTH array. The loss.is calculated as 1 minus the ratio of actual to ideal relative total pressure along the hub-shroud input line downstream of the blade.

$$
\text { Loss }=1-\frac{p_{0}^{\prime \prime}}{\left(p_{0}^{\prime \prime}\right)_{\text {ideal }}^{\prime \prime}}
$$

In one input option, $p_{i}^{\prime}, T_{i}^{\prime}$, and p_{o}^{\prime} are given and T_{0}^{\prime} is then calculated from Euler's equation. Then using the relations

$$
\frac{\mathrm{p}_{0}^{\prime \prime}}{\mathrm{p}_{0}^{\prime}}=\left(\frac{\mathrm{T}_{0}^{\prime \prime}}{\mathrm{T}_{0}^{\prime}}\right)^{\gamma /(\gamma-1)}
$$

and

$$
\frac{\left(p_{o}^{\prime \prime}\right)_{\text {ideal }}}{p_{i}^{\prime}}=\left(\frac{T_{o}^{\prime \prime}}{T_{i}^{\prime}}\right)^{\gamma /(\gamma-1)}
$$

we form the ratio of actual to ideal relative total pressure

$$
\frac{p_{o}^{\prime \prime}}{\left(p_{o}^{\prime \prime}\right)_{i d e a l}}=\frac{p_{o}^{\prime}}{p_{i}^{\prime}}\left(\frac{T_{i}^{\prime}}{T_{o}^{\prime}}\right)^{\gamma /(\gamma-1)}
$$

There is an alternate input option where loss is given as input. In that case, relative total pressure ratio is calculated as

$$
\frac{p_{o}^{\prime \prime}}{\left(p_{o}^{\prime \prime}\right)_{\text {ideal }}}=1-\text { Loss }
$$

Subroutine LOSSOM then estimates the stream function, based on area, at points on the downstream boundary of the orthogonal mesh. Subroutine SPLINT is then called to interpolate the values of relative total pressure ratio at these same downstream boundary mesh points. From the interpolated values of pressure ratio, loss is computed by using the preceding equations. It is assumed that the horizontal mesh lines are close approximations to the actual streamlines. Thus, the loss is distributed along horizontal mesh lines. Along any mesh line, loss is assumed to be constant in the region downstream of the blade trailing edge and equal to the downstream boundary value. Between the blade leading and trailing edges, loss is distributed linearly from zero at the leading edge to full value at the trailing edge. It is assumed that no loss occurs upstream of the blade. Loss is included in the stream-function solution by reducing the value of B as follows:

$$
B_{\text {net }}=B(1-L o s s)
$$

where $B_{n e t}$ is the final value stored in the BTH array.

Subroutine MEPLOT makes two microfilm plots of the blade in the meridional plane. The first plot shows the input hub and shroud geometry and the blade leading and trailing edges. The edges are obtained from the ZBL and RBL input arrays. The second plot shows the same hub, shroud, and blade but with the generated orthogonal mesh super imposed on the solution region. Examples of these plots are given in figures $16(\mathrm{~h})$ and (i) of part I (ref. 6).

Prior to making these two plots, MEPLOT calls PTBDRY to obtain the boundary points to be plotted on the hub, the shroud, and the blade edges and to scale the plots.

Subroutine PTBDRY

Subroutine PTBDRY obtains coordinates used in plotting the hub, the shroud, and the blade edges by the two routines MEPLOT and SLPLOT. Using SPLINT calls, PTBDRY interpolates on the input arrays ZHUB, RHUB and ZTIP, RTIP to obtain 100 plotting points on both hub and shroud. The same is done with the blade leading and trailing edges. After the plot points are obtained, PTBDRY searches the range of values to be plotted for the maximum in both X - and Y -directions and adjusts the range of plotted points so that it is the same in both directions. The computed information is stored in the /PLTCOM/ COMMON.

Subroutine VBDRY

Subroutine VBDRY calculates the value of the stream function along the upstream and downstream boundaries of the mesh region. The calculation is based on the velocity gradient equation (C9) of part I (ref. 6).

There are four arguments for VBDRY so that the same coding can be used for either the upstream or downstream boundary. These arguments are LOC, TIPF, RHOIPF, and LAMDAF. The argument LOC is the value of I for the desired boundary, that is, $L O C=1$ on the upstream boundary and $L O C=M M$ on the downstream boundary. The other three arguments are function subroutines. That is, TIPF, RHOIPF, and LAMDAF will refer to the subroutines of the same name at the upstream boundary but will refer to TOPF, RHOOPF, and RVTHTA, respectively, at the downstream boundary. Figure 11 is a flow chart for VBDRY.

The first step is to set CURVH and CURVT to the value of the meridional curvature at the hub and tip. For this, values previously calculated in PRECAL are used. To

Figure 11. - Flow chart for VBDRY.
start the iterative procedure, a reasonable estimate of the hub relative velocity is needed (WHUB). This estimate is based on a onedimensional calculation. Before any coefficients for the velocity-gradient equation can be calculated, values for whirl and free-stream absolute stagnation temperature and density are needed. These are all functions of stream function. An initial value of stream function is estimated based on area distribution. Values for whirl and free-stream absolute stagnation temperature and density are then obtained from subroutines LAMDAF, TIPF, and RHOIPF and are stored in arrays.

Now the coefficients of the velocity-gradient equation (C9) of part I (ref. 6) can be calculated. Either equation (C10) or (C11) of part I will be used, whichever is appropriate. The curvature, $1 / r_{c}$, is assumed to vary linearly along the boundary. It is assumed that the boundary is normal to the streamlines so that $\alpha=\varphi$. The quantity $\cos \varphi$ has been previously calculated by MESHO.

After the coefficients are calculated, the velocity-gradient equation is solved numerically. WHUB is the initial value of W on the hub. The first iteration will use the value of WHUB calculated previously by VBDRY. Later iterations will use estimated values calculated by CONTIN. Once WHUB is specified, the numerical solution to the velocity-gradient equation is calculated by the Heun method (ref. 9). The equations used in the Heun method for this case are

$$
\left.\begin{array}{c}
W_{j+1}^{*}=W_{j}+(d W)_{j} \quad \text { first estimate of } W_{j+1} \\
W_{j+1}^{* *}=W_{j}+(d W)_{j+1}^{*} \quad \text { second estimate of } W_{j+1} \tag{1}\\
W_{j+1}=\frac{W_{j+1}^{*}+W_{j+1}^{* *}}{2} \quad \text { average of two estimates of } W_{j+1}
\end{array}\right\}
$$

where (dW) ${ }_{j}$ (eq. (C9) of part I) is evaluated at t_{j} and W_{j}, and where (dW) ${ }_{j+1}^{*}$ is evaluated at t_{j+1} and w_{j+1}^{*}. At the same time the solution of the velocity-gradient equa equation is being calculated, the mass flow integration is also being calculated by trapezoidal integration:

$$
\mathrm{w}=\int_{0}^{\mathrm{t}_{\mathrm{tip}}} \rho \mathrm{~W} \cos \beta \mathrm{rB} d \mathrm{t}
$$

The equations used in calculating the integrand are (B13), (C5), (C6), (C7), and (D4) of part I (ref. 6). At the end of the DO loop at statement 80, the integrated mass fIow, UOM (LOC, MHTPI), has been calculated for the specified value of WHUB. This value is checked to see if it is within the tolerance to MSFL. If not, CONTIN is called to provide the next estimate for WHUB. See CONTIN for a description of the procedure for finding the correct value for WHUB. Provision is made to adjust WHUB to avoid problems in calculating either β (if WHUB is too small) or T / T_{i}; (if WHUB is too large). (See eqs. (C6) or (B13) and (D4) of part I.) After a few iterations, usually four or five and not more than 100, a solution will be found that satisfies continuity. This completes the inner iteration of this subroutine. Then the values of the absolute stagnation tem-
perature T_{i}^{\prime} or T_{o}^{\prime}, the absolute stagnation density ρ_{i}^{\prime} or ρ_{0}^{\prime}, and the whirl λ or $\left(\mathrm{rV}_{\theta}\right)_{\mathrm{o}}$ are recalculated from the new stream-function values. If there is a significant change in any of these values, the solution will be repeated (REPEAT $=$. TRUE.).

When a final acceptable solution is found, the program returns to the main program. If the passage is choked or if an acceptable solution cannot be found in 1000 total iterations, the program will print an error message and stop. See the section Error Messages in part I (ref. 6) for suggestions on what to do when an error message is encountered.

Subroutine INIT

This subroutine initializes certain arrays in /VARCOM/. This is necessary to start the outer iteration running from COEF to SVPLOT. For the initial iteration, it is assumed that $\rho=\rho_{\mathrm{i}}^{\prime}$ throughout the passage. All other values are set to zero, except for W_{s}, W_{t}, and W_{z}, which are set to values which will avoid division by zero.

Subroutine COEF

Subroutine COEF calculates the coefficients a_{1}, a_{2}, a_{3}, and a_{4} and the constants k_{0} for the finite-difference equations. The finite-difference equation is (A5) or (A7). The coefficients are calculated by the procedure of equation (A8), and the constants are calculated by equation (A9). Within the blade row, the value of the constant k_{o} depends on $\partial\left(r V_{\theta}\right) / \partial r$. This gradient tends to be unstable with iteration, so that usually damping is required between iterations. The damping rate is controlled by the input variable DNEW. Suggestions for choosing proper values for DNEW are given in the INPUT section of part I (ref. 6). For every outer iteration, the maximum and minimum values of $\partial\left(r V_{\theta}\right) / \partial r$ and the maximum predicted change in $\partial\left(r V_{\theta}\right) / \partial r$ are calculated and printed. When it is indicated by the value of IDEBUG, the coefficients a_{i} and the constants k_{o} will be printed.

Subroutine SOR

Subroutine SOR solves the finite-difference equations (A5) by the method of overrelaxation (ref. 10). Equation (A5) holds at every interior point of the orthogonal mesh where the value of u is initially unknown. Thus, if there are n interior points, we have n equations with n unknowns. Equation (A5) is nonlinear but can be linearized by using values from the previous outer iteration for the nonlinear terms or factors.

SOR solves only the linearized equations.
The overrelaxation iteration is the inner iteration; it is optimized by using an optimum overrelaxation factor (ORF). The calculation of ORF is done only the first time that SOR is called. The optimum value for the overrelaxation factor Ω is estimated by using equations (B3) and (B1) of reference 11. At each interior point, $\mathrm{u}_{0}^{\mathrm{m}+1}$ is calculated from the values of u at the neighboring points by

$$
u_{o}^{m+1}=\sum_{i=1}^{4} a_{i} u_{i}
$$

where each u_{i} is the most recently calculated value for the point. To start, $u_{0}^{0}=1$ at the interior points and $u_{0}^{0}=0$ at the boundary points. The maximum (LMAX) and minimum (LMIN) values over all the interior mesh points of the ratio u_{0}^{m+1} / u_{0}^{m} are calculated for $m=1,2,3, \ldots$ until the LMAX and LMIN ratios are close to each other. Then the optimum overrelaxation factor (ORF) is calculated by ORF $=2 /(1+\sqrt{1-\text { LMAX }})$. The theory for calculating ORF is derived in refer ence 10 .

With an optimum value for the overrelaxation factor Ω, the solution to equation (A5) is calculated by overrelaxation by

$$
u_{o}^{m+1}=u_{o}^{m}+\Omega\left(\sum_{i=1}^{4} a_{i} u_{i}+k_{o}-u_{0}^{m}\right)
$$

where each u_{i} is the most recently calculated value at an interior point or is a boundary value. During each iteration, the maximum change of the stream function is calculated. When this maximum change is reduced below 10^{-5}, the iteration is stopped, and the current estimate of the stream function is accepted as the solution.

Subroutine NEWRHO

Subroutine NEWRHO calculates the velocity magnitude and components and the density at each point of the orthogonal mesh. Figure 12 is a flow chart for NEWRHO.

Normally, the upstream and downstream flow conditions, including whirl, are given as a function of the stream function. However, this information may be given as a function of position from hub to tip. In this case, an initial estimate of streamline position is made in PRECAL. Then adjustments are made in each iteration. This is done in

Figure 12. - Fiow chart for NEWRHO.

NEWRHO by reinitializing the subroutines for calculating upstream and downstream flow conditions (LAMDAF, RVTHTA, TIPF, RHOIPF, and RHOOPF). An explanation of how upstream and downstream flow conditions are matched to the stream function solution is given in appendix B.

The main function of NEWRHO is to calculate the partial derivatives of the stream function in the s - and t-directions. These partials are used to calculate the velocity components. These components, together with either the blade shape or the specified whirl, determine the relative velocity magnitude. With the relative velocity known, the density can be calculated. Subroutine NEWRHO calculates ξ and ζ for the next iteration.

The first major loop in NEWRHO calculates $\partial I / \partial s$ and $\partial p^{\prime \prime} / \partial s$. This is done by first calculating I and $p^{\prime \prime}$ along the horizontal mesh lines. The actual relative stagnation pressure $p^{\prime \prime}$ is calculated by

$$
\begin{equation*}
\mathrm{p}^{\prime \prime}=\mathrm{p}_{\mathrm{i}}^{\prime} \mathrm{RT}_{\mathrm{i}}^{\prime}\left(\frac{\mathrm{T}^{\prime \prime}}{\mathrm{T}_{\dot{i}}^{\prime}}\right)^{\gamma /(\gamma-1)}\left(1-\frac{\mathrm{p}_{\text {ideal }}^{\prime \prime}-\mathrm{p}^{\prime \prime}}{\mathrm{p}_{\text {ideal }}^{\prime}}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{T^{\prime \prime}}{T_{\dot{i}}^{\prime}}=1-\frac{2 \omega \lambda-(\omega r)^{2}}{2 c_{p} T_{\dot{i}}^{\prime}} \tag{3}
\end{equation*}
$$

Equation (3) is the same as equation (B13) of part I with $W=0$. The rothalpy I is calculated from equation (B7) of part I (ref. 6). Then, $\partial I / \partial s$ and $\partial p^{\prime \prime} / \partial s$ are calculated by calling the subroutine SLOPES.

The next loop calculates W_{t}. First, SPLINE is called to calculate $\partial u / \partial s$ along horizontal mesh lines. Then W_{t} is calculated by equation (G11) of part I.

The final major loop calculates partial derivatives in the t-direction and then calculates $W_{s}, W_{\theta}, V_{\theta}, W, \rho, \xi$, and ζ at every mesh point. The first inner loop calculates $T^{\prime \prime} / T_{i}^{\prime}$ and $p^{\prime \prime}$ by equations (3) and (2) along vertical mesh lines. The values of the t-coordinate and stream function u are also stored in temporary arrays. Then SPLINE is called to calculate $\partial u / \partial t$, and SLOPES is called twice to calculate $\partial I / \partial t$ and $\partial p^{\prime \prime} / \partial t$. The second inner loop performs the remaining calculations. Equation (G10) of part I is used to calculate W_{s}. Within the blade W_{θ} can be calculated from W_{s}, W_{t}, $\partial \theta / \partial s$, and $\partial \theta / \partial t$. Since

$$
\begin{gathered}
\mathbf{W}_{\theta}=\mathbf{W}_{\mathbf{m}} \tan \beta \\
\tan \beta=\mathbf{r} \frac{\mathrm{d} \theta}{\mathrm{dm}}=\mathbf{r}\left(\frac{\partial \theta}{\partial \mathbf{s}} \frac{\mathbf{d s}}{\mathrm{dm}}+\frac{\partial \theta}{\partial \mathrm{t}} \frac{\mathrm{dt}}{\mathrm{dm}}\right) \\
\frac{\mathrm{ds}}{\mathrm{dm}}=\frac{\mathbf{W}_{\mathbf{s}}}{\mathrm{W}_{\mathrm{m}}} \\
\frac{\mathrm{dt}}{\mathrm{dm}}=\frac{\mathbf{W}_{\mathbf{t}}}{\mathbf{W}_{\mathbf{m}}}
\end{gathered}
$$

we have

$$
\mathbf{W}_{\theta}=\mathbf{r}\left(\mathbf{W}_{\mathbf{s}} \frac{\partial \theta}{\partial \mathbf{s}}+\mathbf{W}_{\mathbf{t}} \frac{\partial \theta}{\partial \mathrm{t}}\right)
$$

within the blade. Outside the blade,

$$
\mathbf{W}_{\theta}=\left\{\begin{array}{l}
\frac{\lambda}{r}-\omega r \quad \text { upstream of blade } \\
\frac{\left(r V_{\theta}\right)_{0}}{r}-\omega r \quad \text { downstream of blade }
\end{array}\right.
$$

Then V_{θ} and W are calculated by

$$
\begin{gathered}
\mathrm{v}_{\theta}=\mathrm{W}_{\theta}+\omega \mathbf{r} \\
\mathrm{w}=\sqrt{\mathrm{W}_{\theta}^{2}+\mathrm{W}_{\mathrm{s}}^{2}+\mathrm{W}_{\mathrm{t}}^{2}}
\end{gathered}
$$

The ideal density ρ is calculated by

$$
\rho=\rho_{\mathrm{i}}^{\prime}\left(\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{i}}^{\prime}}\right)^{1 /(\gamma-1)}
$$

where T / T_{i}^{\prime} is calculated by equation (B13) of part I (ref. 6). Then $\partial p / \partial r$ and $\partial I / \partial r$ are calculated by

$$
\begin{aligned}
& \frac{\partial \mathbf{p}}{\partial \mathbf{r}}=\frac{\partial \mathbf{p}}{\partial \mathbf{s}} \sin \varphi+\frac{\partial \mathbf{p}}{\partial t} \cos \varphi \\
& \frac{\partial \mathbf{I}}{\partial \mathbf{r}}=\frac{\partial \mathbf{I}}{\partial \mathbf{s}} \sin \varphi+\frac{\partial \mathbf{I}}{\partial \mathrm{t}} \cos \varphi
\end{aligned}
$$

Relative total temperature $T^{\prime \prime}$ is also needed and is calculated from previously calculated values of $T^{\prime \prime} / T_{i}^{\prime}$ and T_{i}^{\prime}. This gives all the quantities needed to calculate ξ and ζ from equations (A2) and (A3) of part I.

After all calculations are done, the iteration number and the maximum relative change in velocity are printed. Also, if the solution is converged on velocity, the print control variables are set to 1 whenever a positive value is specified as input. This results in output being printed for each item asked for after convergence.

There are also two error messages for NEWRHO in case the velocity at some point becomes too large or if the upstream whirl is too large. Suggestions for correcting input are given in the section Error Messages in part I.

Subroutine OUTPUT

The OUTPUT subroutine calculates and prints all the major output data from MERIDL. A flow chart for OUTPUT is shown in figure 13. Depending upon the wishes of the user, OUTPUT has the potential for printing output on three separate sets of points. These points are illustrated in figure 14. Output may be obtained (1) at the or thogonal mesh points, (2) along streamlines where they are crossed by vertical orthogonal mesh lines, and (3) along streamlines where they are crossed by user-designated hub-shroud station lines. A detailed description of the output in each case is given in part I under Printed Output.

The printing of output is controlled by the iteration counter ITER and the input variables IMESH, ISLINE, and ISTATL. Because of the large volumes of output possible, it is only given at the locations requested by these variables and when ITER is an integer multiple of these variables.

No matter what the values of IMESH, ISLINE, and ISTATL, data are calculated at the orthogonal mesh points for every iteration. (Whether or not it is printed depends upon IMESH.) Output along streamlines and on station lines is then interpolated from the calculated data at the orthogonal mesh points if the values of ISLINE or ISTATL indicate that the user desires these outputs at the current iteration. Output along streamlines is also calculated if it is needed for plotting (controlled by IPLOT) or if it is needed for calculating the input to the TSONIC program (controlled by ITSON).

The first sections of the OUTPUT routine calculate data on the orthogonal mesh. At the main entry to this routine, $\mathrm{W}_{\mathrm{s}}, \mathrm{W}_{\mathrm{t}}$, and W_{θ} are known from NEWRHO; and the other velocity components and flow angles are calculated as follows:

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{m}}=\sqrt{\mathrm{w}_{\mathrm{s}}^{2}+\mathrm{w}_{\mathrm{t}}^{2}} \\
& \sin (\alpha-\varphi)=\frac{\mathrm{W}_{\mathrm{t}}}{\mathrm{~W}_{\mathrm{m}}}
\end{aligned}
$$

Figure 13. - Flow chart for OUTPUT.

$$
\begin{gathered}
\cos (\alpha-\varphi)=\frac{\mathrm{W}_{\mathrm{S}}}{\mathrm{~W}_{\mathrm{m}}} \\
\mathrm{~W}_{\mathrm{z}}=\mathrm{W}_{\mathrm{s}} \cos \varphi-\mathrm{W}_{\mathrm{t}} \sin \varphi \\
\mathrm{~W}_{\mathrm{r}}=\mathrm{W}_{\mathrm{t}} \cos \varphi+\mathrm{W}_{\mathrm{s}} \sin \varphi \\
\alpha=\tan ^{-1}\left(\frac{\mathrm{~W}_{\mathrm{r}}}{\mathrm{~W}_{\mathrm{z}}}\right) \\
\beta=\tan ^{-1}\left(\frac{\mathrm{~W}_{\theta}}{\mathrm{W}_{\mathrm{m}}}\right)
\end{gathered}
$$

Figure 14. - Location of three major types of output.

This coding is followed by an entry point TOUTPT which is used only after TVELCY has been called to obtain transonic velocities (see the block diagram, fig. 2, when REDFAC <1.0). From this entry point, the velocity components are calculated some-
what differently since W has been recalculated by TVELCY, as well as β upstream and downstream of the blade. The angle α is assumed to be the same as in the final subsonic iteration. With W, β, and α known, the velocity components are now calculated as follows:

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{m}}=\mathrm{W} \cos \beta \\
& \mathrm{~W}_{\theta}=\mathrm{W} \sin \beta \\
& \mathrm{~W}_{\mathrm{z}}=\mathrm{W}_{\mathrm{m}} \cos \alpha \\
& \mathrm{~W}_{\mathrm{r}}=\mathrm{W}_{\mathrm{m}} \sin \alpha \\
& \mathrm{~V}_{\theta}=\mathrm{W}_{\theta}+\omega \mathrm{r}
\end{aligned}
$$

At this point in the program, all velocity components and flow angles have been calculated, regardless of the entry point. With velocity components and flow angles known, streamline curvature is obtained from

$$
\frac{1}{r_{c}}=\frac{d \alpha}{d m}=\frac{\partial \alpha}{\partial s} \cos (\alpha-\varphi)+\frac{\partial \alpha}{\partial t} \sin (\alpha-\varphi)
$$

Then critical velocity ratio is obtained from

$$
\begin{gathered}
T^{\prime \prime}=T_{i}-\frac{2 \omega \lambda-(\omega r)^{2}}{2 c_{p}} \\
\frac{W}{W_{C r}}=\frac{W}{\sqrt{\frac{2 \gamma R}{\gamma+1} T^{\prime \prime}}}
\end{gathered}
$$

The subroutine BLDVEL is then called to calculate and return an estimate of blade surface velocities. Finally, a check is made to see if the suction- and pressure-surface velocities have to be exchanged because of the orientation of the turbine or compressor. At this point, all desired information has been calculated on the orthogonal mesh and is printed if ITER is a multiple of IMESH.

The next section of the OUTPUT routine calculates output on the streamlines where they are intersected by vertical orthogonal mesh lines. This output is calculated only if ITER is a multiple of ISLINE, IPLOT, or ITSON. First, streamline z-and \mathbf{r}-coordinates are calculated. The m-coordinates are then calculated from these, using the $z=0$ point along a streamline to correspond to $m=0$. Interpolations are then made by using LININT and the orthogonal mesh data to obtain $W_{z}, W_{r}, W_{\theta}, W / W_{c r}$, and $1 / r_{c}$. By using variations of the preceding formulas, $\mathrm{W}_{\mathrm{m}}, \alpha, \beta$, and W are calculated from these values. Subroutine ILETE is called to establish which mesh points along streamlines are between the blade leading and trailing edges. Subroutine LININT is then used to obtain W_{l} and $W_{t r}$ at these points. Finally, this output is printed if ITER is a multiple of ISLINE.

The next section of the OUTP UT routine calculates output on user-designated hubshroud station lines where they inter sect the streamlines. This output is calculated and printed in the hub-shroud direction, in contrast to the throughflow direction of the previous two sets of output. It is only calculated if ITER is a multiple of ISTATL. The z - and r -coordinates of the station lines are calculated first. All "regular" station lines are straight lines (not necessarily radial) from the hub to the shroud. "Blade edge ${ }^{\prime \prime}$ station lines are those whose hub and tip coordinates correspond to the inter sections of the blade leading and trailing edges with the hub and tip. Coordinates along these station lines will follow these edges even when the edges are curved. After the $\mathbf{z -}$ and \mathbf{r}-coordinates are established, m-coordinates are calculated from these, again using $z=0$ as the reference for $m=0$. Interpolations are then made using LININT with the orthogonal mesh values to obtain $\mathrm{W}_{\mathrm{z}}, \mathrm{W}_{\mathrm{r}}, \mathrm{W}_{\theta}, \mathrm{W} / \mathrm{W}_{c r}$, and streamline curvature. The values of $\mathrm{W}_{\mathrm{m}}, \alpha, \beta$, and W are calculated from these. LININT is then called to obtain W_{l} and $W_{t r}$ for station lines which lie within the blade. The stationline output is then printed.

The final small section of OUTPUT calls the TSONIN subroutine to obtain input data for the TSONIC program (ref. 5). This call is only made if ITER is a multiple of ITSON.

Subroutine BLDVEL

This subroutine calculates blade-surface velocities and densities and F_{r}. First, $\partial\left(\mathbf{r} V_{\theta}\right) / \partial \mathrm{t}$ and $\partial\left(\mathrm{r} V_{\theta}\right) / \partial \mathrm{s}$ are calculated by using the SLOPES subroutine. Then, $\left[\mathrm{d}\left(\mathrm{rV} \mathrm{V}_{\theta}\right) / \mathrm{dm}\right] \mathrm{B} \cos \beta$ is calculated, and W_{2} and W_{tr} are calculated by equation (G4) of part I (ref. 6). From this, ρ_{l} and $\rho_{\text {tr }}$ are calculated by equations (B13) and (D4) of part I. The average density ρ_{av} is calculated by Simpson's rule

$$
\rho_{\mathrm{av}}=\frac{\rho_{l}+4 \rho_{\mathrm{mid}}+\rho_{\mathrm{tr}}}{6}
$$

This quantity is used in NEWRHO in the next iteration. Then, the predicted value of $\mathbf{F}_{\mathbf{r}}$ is calculated by

$$
\begin{equation*}
\mathbf{F}_{\mathbf{r}}=\frac{\mathbf{W}}{\mathbf{B}}\left(\frac{\partial \theta}{\partial \mathbf{s}} \sin \varphi+\frac{\partial \theta}{\partial t} \cos \varphi\right) \cdot \mathrm{DFDM} \tag{4}
\end{equation*}
$$

where

$$
\mathrm{DFDM}=-\mathrm{B} \cos \beta \frac{\partial\left(\mathrm{r} V_{\theta}\right)}{\partial \mathrm{m}}
$$

Equation (4) is obtained from equations (B23) and (G2) of part I (ref. 6): The new value for $F_{\mathbf{r}}$ is calculated from the old $\mathbf{F}_{\mathbf{r}}$ and the predicted value of $\mathbf{F}_{\mathbf{r}}$ by using the input damping factor FNEW, as explained in the section INPUT of part I.

At the end, the minimum and maximum predicted values of F_{r} and the maximum change in $\mathrm{F}_{\mathbf{r}}$ are calculated and printed. If debug output is requested, the arrays which change each iteration are printed.

Subroutine ILETE

The points where streamlines are intersected by the vertical orthogonal mesh lines are the streamline mesh points. These are, in general, different from the orthogonal mesh points. Subroutine ILETE calculates two integer arrays, ILS and ITS. They con-

Figure 15. - Location of ILS, ITS points by ILETE.
tain the numbers of the vertical mesh lines at the first intersection of a streamline with a vertical mesh line inside the blade region at the leading and trailing edges of the blades. These points are illustrated in figure 15. The ILS and ITS arrays are used in OUTPUT in the calculation of blade surface velocities along streamlines.

Subroutine TSONIN

Subroutine TSONIN generates and prints the data required as input to the TSONIC blade-to-blade analysis program (ref. 5). Subroutine TSONIN is only called when ITER is a multiple of ITSON. The data generated are printed for each of the stream surfaces from hub to shroud, using 1 percent of the mass flow about a streamline to define a stream surface or flow channel.

A complete description of the TSONIC input is given in the TSONIC report (ref. 5). The output generated in TSONIN is slightly different from what is required by TSONIC. These differences and the changes which have to be made to make these data acceptable to TSONIC are described in part 1.

Subroutine INDEV

Subroutine INDEV recalculates $\partial \theta / \partial s$ to allow for incidence and deviation. This means that the mid-channel flow surface differs from the blade mean camber line near the leading and trailing edges, so as to match the upstream and downstream flow angles. Figure 16 shows the procedure as applied to the leading edge. A similar correction is made at the trailing edge. A correction for blockage is made so as to satisfy both continuity and tangential momentum at blade leading and trailing edges.

The calculation starts at the hub and proceeds to successive horizontal mesh lines up to the tip. Both incidence and deviation corrections are calculated for each horizontal mesh line. The corrected $(\partial \theta / \partial \mathrm{s})$ bf of the blade leading or trailing edge is calculated from equations (F1) and (F2) of part I (ref. 6). These equations relate ($\partial \theta / \partial \mathrm{s}$) bf to the flow angles β_{bf} and β_{fs}.

The corrections to $\partial \theta / \partial \mathrm{s}$ are made so that the difference varies linearly from the blade leading or trailing edge for the distance specified in appendix F of part I. After the corrections are made, the incidence and deviation angles are printed if requested.

No correction is made to $\partial \theta / \partial \mathrm{t}$ since it is nearly normal to the flow.

Figure 16. - Corrected mid-channel flow surface. The corrected midchannel flow surface is used to calculate $(\partial \theta / \partial s)_{\text {bf }}$. Incidence $=$ $\beta_{b f}-\beta_{b}$.

Subroutine SLPLOT

Subroutine SLPLOT makes a microfilm plot of the streamlines in the hub-shroud meridional flow plane. The first small section of coding plots a separate frame of film identifying either a subsonic solution and iteration number or a transonic solution. The remaining coding plots the hub, shroud, and blade profiles in the meridional plane and then adds the streamlines to the same plot. An example of this piot is given in figure $16(\mathrm{j})$ of part 1 .

Subroutine SVPLOT

Subroutine SVPLOT makes microfilm plots of relative velocities on all streamlines from hub to shroud. These plots are only made when ITER is a multiple of IPLOT or when ITER = 1. A separate plot is made for the velocities on each streamline. These plots include mean flow velocities and blade surface velocities plotted against meridional coordinates. Examples of these plots are given in figures $16(\mathrm{k})$ and (l) of part I (ref. 6). After the separate streamline plots are made, three composite plots are made. The first contains the mean flow velocities for all streamlines. The second and third contain the suction-and pressure-surface velocities, respectively, for all streamlines.

Subroutine TVELCY

Subroutine TVELCY calculates the full-mass-flow, transonic solution when REDFAC is less than 1. The velocity-gradient equation developed in appendix C of part I is used to obtain the solution. Figure 17 is a flow chart for TVELCY.

Figure 17. - Flow chart for TVELCY.

The first step in the program is to restore the full value of mass flow, rotational speed, and inlet and outlet whirl. The subroutines LAMDAF and RVTHTA must then be reinitialized.

Next, $\partial \mathrm{W}_{\mathrm{m}} / \partial \mathrm{m}$ and $\partial \mathrm{W}_{\theta} / \partial \mathrm{m}$ are calculated. These are calculated from the partials with respect to s and t by using the angle $\alpha-\varphi$. Since the calculations are based on the reduced-mass-flow values of W_{m} and W_{θ}, the result must be divided by REDFAC to obtain the full-mass-flow values.

Statement 60 is the beginning of the outer DO loop. It starts at the upstream boundary and solves the velocity -gradient equation for each vertical mesh line. The initial estimate of W on the hub (WHUB) is set equal to the reduced-mass-flow value for W divided by REDFAC. For a given vertical line, the coefficients a, b, c, d, e, and f of the velocity-gradient equation (A7) of part I are calculated. The coefficients are cal $-\frac{1}{1}$ culated by equations (A8) to (A11) of part I. Of these coefficients, a, b, and d will not be changed after the initial calculation, so they are calculated first. The initial arrays for whirl, temperature, and density are calculated at the same time.

For each vertical mesh line, an inner and an outer iteration is required. Each outer iteration consists of solving the velocity -gradient equation for a given distribution of upstream and downstream flow conditions. The inner iteration solves the velocity-gradient equation by varying $W_{\text {hub }}$ at each inner iteration until continuity is satisfied. The outer iteration starts at statement 90 . None of the coefficients change during the inner iteration, so the remaining coefficients, c, e, and f, are calculated from equations (A9) to (A11) of part I before starting the inner iteration. Also, part of the integrand for the mass flow integration is calculated now. This part is RCARB, which is equal to $\rho_{\mathrm{i}}^{\prime} \cos (\alpha-\varphi) \mathrm{rB}$.

At statement 140, the inner iteration starts. First, initial values are set. The nu-
 in the DO 200 loop. Trial values of WHUB are used in the velocity-gradient equation, until the solution obtained results in the input mass flow across the vertical mesh line. The first iteration will use the value calculated by the statement after statement 60 . Later iterations will use estimated values calculated by CONTIN. Once WHUB is specified, the numerical solution to the velocity-gradient equation is calculated by the Heun method, as described for VBDRY. The solution procedure is the same, except that $d W$ in equation (1) is evaluated by equation (A7) of part I (ref. 6). The mass flow is calculated by trapezoidal integration of

$$
\begin{equation*}
\mathrm{w}=\int_{0}^{\mathrm{t}_{\mathrm{tip}}} \rho \mathrm{~W} \cos \beta \cos (\alpha-\varphi) \mathrm{rB} d \mathrm{t} \tag{5}
\end{equation*}
$$

As explained in appendix D of part I (ref. 6), ρ is the ideal density and B is reduced 0 reflect any loss of stagnation pressure.

The inner iteration ends when the velocity-gradient solution gives the correct mass flow in equation (5). (If the correct mass flow is not obtained in 100 iterations, an error message is printed, and the program goes to the next vertical line.) After the end of the inner iteration, at statement 250 , the upstream and downstream flow conditions are checked. If there is a significant change in the value of inlet or outlet stagnation temperature or density, or whirl, these values will be adjusted and the inner iteration will be repeated by going back to statement 90 , unless there has been a total of over 1000 iterations for a given vertical mesh line. The outer iteration is completed when there is no significant change in the solution, and the program goes to the next vertical line (the DO 280 loop). After all vertical lines have been completed, control is returned to the main program. If the blade is choked, a message is printed with the choking mass flow. .

Function TOPF

Function TOPF calculates downstream stagnation temperature T_{o}^{*} from the upstream stagnation temperature and the change in whirl. That is,

$$
T_{o}^{\prime}=T_{i}^{\prime}+\frac{\omega\left[\left(r V_{\theta}\right)_{o}-\lambda\right]}{\mathbf{c}_{\mathbf{p}}}
$$

The input argument (SF) is the value of the stream function (between 0 and 1). The function TOPF is then T_{o}^{\prime} for this streamline.

Functions TIPF, RHOIPF, LAMDAF, RHOOPF, and RVTHTA

These five routines are similar. Their purpose is to calculate one of the freestream quantities as a function of stream function. Interpolation is by means of a spline fit curve.

All these subroutines have an alternate entry point for initialization. The initializing call results in a SPLINE call to calculate the coefficients for the spline fit.

If the free-stream quantities are not given as input as a function of stream function (i.e., if LSFR $=1$), the stream function is first estimated and later iterated to be adjusted to the correct stream-function value. These adjustments to the stream function (SFIN and SFOUT) are done in LAMDAF and RVTHTA.

The input argument for all these subroutines is $S F$, which is the value of the stream function.

Subroutine CONTIN

Subroutine CONTIN is a curve-fitting routine. On each call the calling programs must furnish a point on the curve, and then CONTIN will specify the next value of the abscissa. The calling program must then calculate the ordinate corresponding to this abscissa. After three calls, a parabola is fitted through the three points, and this is used to estimate the abscissa where the desired ordinate will be obtained. XEST is the value of the abscissa, and YCALC is the value of the ordinate on each call. XEST is changed by CONTIN to return the next value of the abscissa to the calling program.

Figure 18 is a flow chart for CONTIN. Flow through the program is controlled by the value of IND. For each new case, IND is set to 1 by the calling program. Then CONTIN changes the value of IND on later calls. The significance of IND on the various calls is given in table II. XDEL is the maximum increment for the change in XEST. On the first two calls, usually XEST is increased by XDEL each time. The exception is when YCALC is greater than YGIV and the subsonic solution is desired ($\mathrm{JZ}=1$). Then XEST is decreased by XDEL each time.

On the third and later calls, there are always three points so that a parabola can be fitted through the three points. The parabolic coefficients are calculated by subroutine PABC. Anytime that XEST falls outside the range of previously calculated values, a shift is made until XEST is within the desired range.

When the parabolic curve is close to a straight line, equation (D13) is used instead of the quadratic formula. The reason for this is explained in appendix D.

Figure 19 illustrates the procedure for a typical case. On the first call to CONTIN, IND $=1$ and YCALC corresponding to XEST is furnished by the calling program. Suppose that YCALC is less than YGIV and that the subsonic solution is requested. Then XEST becomes XORIG, and YCALC becomes $Y(1)$ in figure 19. XORIG will be the origin for the curve fitting so that $X(1)=0$ in this case. Next CONTIN increases XEST by XDEL. Then a return is made to the calling program to obtain the YCALC which corresponds to this value of XEST. On the second call to CONTIN, the new value of YCALC becomes $\mathrm{Y}(2)$ and XEST - XORIG becomes $\mathrm{X}(2)$, as indicated in figure 19. Subroutine CONTIN increases XEST by XDEL again, and a return is made to obtain YCALC for the third time. On the third call to CONTIN, the new value of YCALC becomes $Y(3)$ and XEST - XORIG becomes $X(3)$. This gives the three points shown in figure 19. The curve shown represents the true curve of YCALC against XEST.

At this time, a check is made to determine whether the solution is within the range

Figure 18. - Flow chart for CONIN.

TAELE II. - SIGNIFICANCE OF IND IN VARIOUS
CALLS TO CONTIN

Value of IND	Call	Significance
1	First	First call
2	Second	$\mathrm{JZ}=1, \mathrm{YCALC}$ less than WTFL, or $\mathrm{JZ}=2$
3	Second	$J Z=1$ and YCALC greater than WTFL
4	Third	$\mathrm{IND}=2$ on second call
	Fourth or later	Right shift was made so that XEST will be within range of stored previous values.
5	Third	IND $=3$ on second call
	Fourth or later	Left shift was made so that XEST will be within range of stored previous values.
6	Fourth or later	Subsonic or supersonic solution is predicted by quadratic fit and is within range of solutions obtained.
7	Fourth or later	Choked flow is predicted by quadratic fit and is within range of solutions obtained.
10	Never	Choked solution found
11	Never	100 calls made but no solution found

Figure 19. - Starting procedure for CONTIN.
of the three points obtained. If not, additional points are calculated, and the three points are shifted as required. For example, in figure 19 , a shift to the right is required. In this case, point 2 would become point 1 , point 3 would become point 2 , and XEST would be increased by XDEL. This procedure is repeated until either the solution or the maximum point is within the range of the three points obtained.

Since the curve represents mass flow as a function of the velocity at some point, the curve will be of the type shown. The maximum point on the curve is the choking mass flow. This type of curve is approximated well by a quadratic curve. After it has been determined that a solution is within the range of the three points (i.e., $Y(1) \leq Y G I V \leq Y(3)$ for a subsonic solution), a parabola is fitted through the three points. This situation is illustrated in figure 20. The next value of XEST is deter -

Figure 20. - Approximating curve with a parabola.
mined by the point where the parabolic curve intersects the YGIV line. Then the return is made to obtain YCALC. If YCALC is sufficiently close to YGIV, this will be the solution. Otherwise, CONTIN is called again, XEST - XORIG becomes X(2), YCALC becomes $Y(2)$, and the procedure is repeated (as many as 100 times) until YCALC is sufficiently close to YGIV.

The detailed operation of subroutine CONTIN is given in figure 18 and table II. The calling statement for CONTIN is

CALL CONTIN(XEST, YCALC, IND, JZ, YGIV, XDEL)

The input variables for CONTIN are
XEST last value of X used to calculate YCALC
YCALC value of Y corresponding to XEST (calling program calculates YCALC)

IND controls sequence of calculation in CONTIN; calling program sets IND $=1$ to indicate a new solution

JZ
determines whether subsonic or supersonic solution will be obtained:
$\mathrm{JZ}=1$, subsonic solution $\mathrm{JZ}=2$, supersonic solution

YGIV value of Y desired for solution
XDEL maximum permissible change in XEST between iterations
The output variables for CONTIN are
XEST value of X to be used to calculate the next value for YCALC
IND used to control next iteration in CONTIN and to indicate when a choked solution is found or when no solution can be found (table II)

The internal variables for CONTIN are
ACB2
$a(c-y) / b^{2}$
APA coefficient a of X^{2} in quadratic fit
BPB coefficient b of X in quadratic fit
CPC constant C in quadratic fit
DISCR discriminant, $\sqrt{\mathrm{b}^{2}-4 a c}$
NCALL number of times CONTIN has been called for a given case
X
array of three values of XEST - XORIG
XORIG Value of XEST on initial call, modified by right or left shifts
XOSHFT amount of change of XORIG
$Y \quad$ array of three values of YCALC

Subroutine PABC

Subroutine PABC calculates coefficients A, B, and C of the parabola $y=A x^{2}+B x+C$ passing through three given X, Y points.

Subroutine INRSCT

Subroutine INRSCT calculates the coordinates of the point of intersection of two
spline curves lying on a common plane which are known to cross within the range of the end points of each. In a general $x-y$ coordinate system, the first spline curve is supplied to INRSCT as a function of x

$$
y=f(x)
$$

and the second as a function of y

$$
x=g(y)
$$

The solution technique consists of systematically constructing pairs of tangent slopes to the two curves and locating the points of intersection of the two slopes. Each intersection point provides new coordinates from which new slopes and an intersection are calculated. These intersections quickly converge to the intersection point of the original curves.

This technique is illustrated in figure 21. The original trial x-coordinate is always

Figure 21. - Procedure for calculating intersections in INRSCT.
midway between the end points for $f(x)$. This value is x_{1}, from which y_{1} and slope s_{1} are calculated by SPLINT. The calculated y_{i} is then used as input to SPLINT for $g(y)$. From this SPLINT call, x_{2} and s_{2} are calculated, as shown in figure 21. The intersection point of the two slopes is calculated from

$$
\begin{gathered}
x_{c}=x_{2}+\frac{s_{1} s_{2}\left(x_{2}-x_{1}\right)}{1-s_{1} s_{2}} \\
y_{c}=y_{1}+\frac{s_{1}\left(x_{2}-x_{1}\right)}{1-s_{1} s_{2}}
\end{gathered}
$$

Then x_{c} becomes x_{1} for the following iteration of this process.
To check convergence of this process, the distance is calculated between each pair of intersection points x_{c}, y_{c} for adjacent iterations. When this distance becomes less than the tolerance, an exit is made from INRSCT. Failing to meet the tolerance in 20 iterations causes an error message to be printed.

The calling statement for subroutine INRSCT is
CALL INRSCT(XCURV1, YCURV1,N1, XCURV2, YCURV2,N2, XCROSS, YCROSS)

The input arguments for INRSCT are
XCURV1(N1) $\quad x$-coordinates for $f(x)$
YCURV1(N1) y-coordinates for $y=f(x)$
XCURV2(N2) $\quad x$-coordinates for $x=g(y)$
YCURV2(N2) y-coordinates for $g(y)$
N1
number of spline points for $f(x)$
N2 number of spline points for $g(y)$
The output arguments for INRSCT are
XCROSS x-coordinate of intersection of two input curves
YCROSS $\quad y$-coordinate of intersection of two input curves

Subroutine ROOT

Subroutine ROOT finds a root for $f(x)=y$ by the bisection method. The function $f(x)$ must be defined on the interval $[a, b]$ by the subroutine FUNCT. FUNCT is a dummy name; any subroutine name may be used in the calling program. In MERIDL, FUNCT is CROSCD.

The interval is bisected 20 times by ROOT. This gives a resolution of x of 10^{-6} times the interval length. After the root has been located, the difference $f(x)-y$ is
checked to see if it is less than TOLERY. If not, a message is printed with details on the iterated calculations.

The calling statement for ROOT is

CALL ROOT(A , B, Y , FUNCT, TOLERY, X, DFX)
The input arguments for ROOT are
A
a
B b
$\mathbf{Y} \quad \mathbf{y}$
FUNCT external subroutine to calculate $f(x)$
TOLERY tolerance on solution (x is accepted as a root if $|f(x)-y|<$ TOLERY)
The output arguments for ROOT are
$X \quad$ value at x such that $f(x)=y$
DFX $\quad \mathbf{f}^{\prime}(\mathbf{x})$
The calling sequence for FUNCT must be
FUNCT(X, FX, DFX,

These arguments are defined as follows:

X	\mathbf{x}
FX	$f(\mathbf{x})$
DFX	$\mathbf{f}^{\prime}(\mathbf{x})$

Subroutine LININT

Subroutine LININT is a general-purpose subroutine for two-dimensional interpolation. It is called many times by several subroutines.

Subroutine LININT locates the point (x_{0}, y_{0}) in a two-dimensional mesh with coordinates stored in the x and y arrays. Then the value of z_{o} at x_{0}, y_{o} is interpolated from the z-array values corresponding to the x and y arrays. Figure 22 is a flow chart for LININT.

Figure 22. - Flow chart for LININT.

A typical mesh is shown in figure 23. The mesh need not be orthogonal; but it must consist of two sets of lines, with one set running more or less horizontally (never verti-

Figure 23. - Typical mesh for LININ.
cal) and the other set running more or less vertically (never horizontal). The number of vertical lines is NX, and I denotes the number of the line (running from 1 at the left to NX at the right). The number of horizontal lines is NY, and J denotes the number of the line (running from 1 at the bottom to NY at the top). The lines between mesh points are assumed to be straight lines.

At the outset, some value of I and J must be specified. Any value within the prescribed limits is legal. On repeated calls to LININT, usually the value from the preceding call is used. The values of I and J desired are the numbers shown at the bottom of figure 23. In this figure $I=4, J=3$. The procedure is to check to see on which side of each of the four boundary lines the point lies. The variables ABOVE and RIGHT are used to indicate the position. $A B O V E=-1$ indicates the point is below the bottom line, $A B O V E=0$ the point is between the bottom and top lines, and ABOVE $=1$ the point is above the top line. Similarly, RIGHT = $\mathbf{- 1}$ indicates the point is to the left of the left line, RIGHT $=0$, the point is between the left and right lines, and RIGHT $=1$ the point is to the right of the right line. Thus, when $\mathrm{ABOVE}=$ RIGHT $=0$, we have the correct mesh region. If not, I and/or J are incremented by plus or minus 1 to move to the proper adjacent region. In this way, eventually the proper region will be found. If the point lies entirely outside the region defined, the nearest mesh region to the point (x_{0}, y_{0}) will be found. In this case, extrapolation is required, and the variable EXTRAP is used to indicate the direction of extrapolation. EXTRAP is, dimensioned 2.
EXTRAP (1) corresponds to ABOVE, and EXTRAP (2) to RIGHT.
After the proper mesh-point region is found, interpolation between the function val-
ues at the four corners is used. The method used is described in appendix D. First, the quadratic coefficients are calculated by equation (D8) or (D10). Then, the quadratic equation (D7) or (D9) is solved either by the quadratic formula, or by the binomial expansion, equation (D13), as explained in appendix D.

The same coding is used to calculate both f_{x} and f_{y}. After these values are obtained, equation (D14) is used to calculate the interpolated value of z_{0}.

The calling statement for LININT is

CALL LININT(X, Y, Z, NX, NY, NDIMX, NDIMY, X0, Y0, Z0, I, J)

The input variables for LININT are

$X \quad$ two-dimensional array of x-coordinates of mesh points
$Y \quad$ two-dimensional array of y-coordinates of mesh points
Z two-dimensional array of z-function values at mesh points
NX number of mesh points in the x-direction
NY number of mesh points in the y-direction
NDIMX dimension of X, Y, and Z arrays in the x-direction
NDIMY dimension of X, Y, and Z arrays in the y-direction
X0 $\quad x$-coordinate of interpolation point
YO
y-coordinate of interpolation point
I initial guess at number of vertical mesh line to the left of (X0, Y0)
$J \quad$ initial guess at number of horizontal mesh line below ($\mathrm{X} 0, \mathrm{Y} 0$)
The output variables for LININT are
$\mathrm{ZO} \quad$ interpolated value of Z at ($\mathrm{X} 0, \mathrm{Y} 0$) number of vertical mesh line to the left of (X0, Y0)

J number of horizontal mesh line below (X0, Y0)
The internal variables for LININT are
ABOVE integer, 1 indicates (X0, Y0) is above the current I, J region, 0 within, and -1 below
ACB2 $\quad \mathrm{ac} / \mathrm{b}^{2}$ (eq. (D13))
CASE used to indicate whether F1 or F2 is the proper solution
DISCR discriminate, b^{2} - $4 a c$ (eq. (D7) or (D9))

EXTRAP
FA
array to indicate extrapolation either horizontally or vertically -b/2a (eq. (D7) or (D9))
$F B \quad \sqrt{\left(b^{2}-4 a c\right)} / 2 a \quad$ (eq. (D7) or (D9))
FF $\quad f_{x}$ or f_{y}
FX
FY
F1
F2
IJEX
IN
JN
QA
QB
QC
RIGHT

X01
X02
X13
X21
X42
Y01
Y02
Y13
Y 21
Y42
f_{x}
f_{y}
$\left(-b-\sqrt{b^{2}-4 a c}\right) / 2 a$
$\left(-b+\sqrt{b^{2}-4 a c}\right) / 2 a$
indicator, first or second pass through coding to calculate f_{x} or f_{y}
new value for I
new value for J
a (eq. (D8) or (D10))
b (eq. (D8) or (D10))
c (eq. (D8) or (D10))
integer, 1 indicates $X 0, Y 0$ is to the right of the current I, J region, 0 within, and -1 left
x_{01} (see appendix D for notation)
x_{02} or x_{03}
x_{13} or x_{12}
x_{21} or x_{31}
x_{42} or x_{43}
y_{01}
y_{02} or y_{03}
y_{13} or y_{12}
y_{21} or y_{31}
y_{42} or y_{43}

Subroutine SPLINE calculates the first and second derivatives of a cubic spline curve at the spline points. SPLINE solves a tridiagonal matrix given in reference 12 to obtain the coefficients for the piecewise cubic polynomial function giving the spline fit curve. The SPLINE routine is based on the end-point condition that the second derivative at either end point is one-half that of the next spline point.

The calling statement for SPLNNE is
CALL SPLINE(X,Y,N,SLOPE, EM)

The input variables for SPLINE are
\mathbf{X} array of ordinates
$\mathbf{Y} \quad$ array of function values corresponding to \mathbf{X}
$\mathrm{N} \quad$ number of X and Y values given
The output variables for SPLINE are
SLOPE array of first derivatives
EM array of second derivatives

Subroutine SPLINT

Subroutine SPLINT is used for interpolation, including interpolation of the derivative. The interpolation is based on the cubic spline curve, with the same end conditions as SPLINE. The alternate entry point, SPLENT, allows for interpolation at a new set of points based on the spline curve of the previous SPLINE call.

The input variables for SPLINT are
$\mathbf{X} \quad$ array of spline point ordinates
$\mathbf{Y} \quad$ array of function values at spline points
$\mathrm{N} \quad$ number of X and Y values given
Z array of ordinates at which interpolated values and derivatives are desired
MAX number of Z values given
The output variables for SPLINT are
YINT array of interpolated function values
DYDX array of interpolated derivatives

Subroutine SLOPES

Subroutine SLOPES calculates the first derivatives (slopes) based on a parabolic fit through three adjacent points. This subroutine is used when the input points may not be sufficiently smooth for the SPLINE subroutine.
\cdots The calling statement for subroutine SLOPES is

> CALL SLOPES(X,Y,N,SLOPE)

The input arguments for SLOPES are
$X \quad$ array of ordinates
Y array of function values corresponding to X
$\mathrm{N} \quad$ number of X and Y values given
The output variable for SLOPES is
SLOPE array of first derivatives

MAIN DICTIONARY

The main dictionary for MERIDL is given in this section. It contains the definitions of variables for all the principal subroutines (from INPUT to RVTHTA, see table of contents) of the program. The remaining subroutines (CONTIN to SLOPES) are of a general-purpose nature and have their own local dictionaries included in their descriptions.

All important variables are included in the main dictionary. These include all COMMON variables, any dimensioned variables in the subroutines, and all important undimensioned variables. Only locally used undimensioned variables of minor impor tance are not included.

The names of all dimensioned variables are followed by the variables which deter mine what the dimensions should be. For example, the three-dimensional array A is dimensioned $A(4,100,101)$ in the /VARCOM/ COMMON but is listed as A (4, MM, MHTP1) in the dictionary. This enables the user to easily alter the dimension of A (and reduce the program's variable storage) if he knows maximum limits to MM and MHTP1 for his application. See the section STORAGE REQUIREMENTS for further explanation.

The dictionary also indicates the COMMON blocks or the subroutines in which each variable is used. Variables in COMMON are used in many subroutines. The COMMON blocks are listed for each subroutine in table I.

Variable name	COMMON block	Subroutine	Description and comments
A		MESHO	left-hand boundary on an interval of z-coordinate, m
A(4, MM, MHTP1)	VARCOM		coefficients of finitedifference equation (A7) for stream function, \mathbf{u}
A0		COEF	a_{0} (eq. (A8))
AA (MHTP1)		VBDRY	```coefficients, a, of velocity- gradient equation ((C9), part I)```
AAA (NHUB)		MESHO	dummy array of slopes of a spline fit of horizontal rows in RRAD array
AAA (100)		PTBDRY	dummy array of slopes of spline fit curves
AAA (MHTP1 or MM)		NEWRHO	dummy array used in SPLINE calls
AAA(MHTP1 or NOSTAT or NSL or 20)		OUTPUT	dummy array used in SPLINT calls
AAA (NIN or NOUT)		LAMDAF RVTHTA	dummy array used in SPLINT calls
AANDK(integer variable)		TSONIN	input for TSONIC (ref. 5)
ALPHA (MM, MHTP1)	VARCOM		α at orthogonal mesh points, rad
ALPHLE		INDEV	$\alpha_{1 \mathrm{e}}, \mathrm{rad}$
ALPHTE		INDEV	$\alpha_{\text {te }}, \mathrm{rad}$
ALPSL(MM, NSL)	SLCOM		α at points along streamlines where they cross vertical mesh lines, rad

Variable name	COMMON block	Subroutine	Description and comments
ALPST(NSL, NOSTAT)	STACOM		α at points along station lines where they cross streamlines, rad
ALVERT(MHTP1)		OUTPUT	temporary storage for values of α from ALPHA array on vertical mesh lines, rad
ANG(NPPP)		INPLOT THIKOM TSONIN	angles from meridional plane of blade-section mean camber lines at blade-section input points, rad
ANGR(11,NBLPL)		THETOM	angles with respect to radius of hub-shroud lines of alternate mesh (fig. 26), rad
ANGZ (11; NBLPL)		THETOM	angles with respect to z-axis of input blade sections at alternate mesh points (fig. 26), rad
AR	INPUTT		input gas constant, \mathbf{R}, $\mathrm{J} /(\mathrm{kg})(\mathrm{K})$
ATVEL(MHTP1)	-	TVELCY	coefficients, a, of velocitygradient equation ((A 7), part I) at orthogonal mesh points along vertical mesh lines
B		MESHO	right-hand boundary on interval of z -coordinate, m
$\mathrm{BB}(\mathrm{MHTP1})$		VBDRY	```coefficients, b, of velocity- gradient equation ((C9), part I)```

Variable name	COMMON block	Subroutine	Description and comments
BDY(4)		VBDRY	variable containing words INLET and OUTLET used in printing error message
BESP (MM)		TSONIN	normal thicknesses of a stream channel, at MR, RMSP points, printed as input for TSONIC (ref. 5), m
BETA(MM, MHTP1)	VARCOM		β at orthogonal mesh points, rad
BETAI		TSONIN	```\betai (input to TSONIC, ref. 5), deg```
BETAO		TSONIN	```\betao (input to TSONIC, ref. 5), deg```
BETSL(MM, NSL)	SLCOM		β at points along streamlines where they cross vertical mesh lines, rad
BETST(NSL, NOSTAT)	STACOM		β at points along station lines where they cross streamlines, rad
BLDAT(integer variable)		TSONIN	input for TSONIC (ref. 5)
BLDCRD		INDEV	true blade chord along a horizontal mesh line, m
BLDEV		INDEV	deviation angle, corrected for blockage, where a horizontal mesh line intersects trailing edge $\left(\beta_{\mathrm{bf}}-\beta_{\mathrm{b}}\right)_{\mathrm{te}}$, deg

Variable name	COMMON block	Subroutine	Description and comments
BLINC		INDEV	incidence angle, corrected for blockage, where a horizontal mesh line intersects leading edge $\left(\beta_{b f}-\beta_{b}\right)_{l e}$, deg
BLNK		INPLOT	blank word used in some plot titles
BRNG		INPLOT SVPLOT	bottom or lower range of values on a given plot
BTABLD		INDEV	blade mean camber line angle at leading or trailing edge, β_{b}, rad
BTFSLE		INDEV	upstream flow angle, β_{f}, extrapolated linearly along a horizontal mesh line to blade leading edge, rad
BTESTE		INDEV	downstream flow angle, β_{f}, extrapolated linearly along a horizontal mesh line back to blade trailing edge, rad
$\mathrm{BTH}(\mathrm{MM}, \mathrm{MHTP1})$	CALCON		B at orthogonal mesh points, rad (These values are corrected for total pressure loss through the blade row.)
BTHLE		INDEV	B_{le}, rad
BTHSL		TSONIN	B along a streamline, rad
BTHTE		INDEV	$\mathrm{B}_{\text {te }}$, rad

Variable name	COMMON block	Subroutine	Description and comments
BTVEL(MHTP1)		TVELCY	coefficients, b, of velocity gradient equation ((A7), part 1) at orthogonal mesh points along vertical mesh lines
C1		COEF	c_{1} (eq. (A8))
C2		COEF	c_{2} (eq. (A8))
CAMP(MM, MHTP1)	VARCOM		$\cos (\alpha-\varphi)$ at orthogonal mesh points
CAMPLE		INDEV	$\cos (\alpha-\varphi)_{l e}$
CAMPTE		INDEV	$\cos (\alpha-\varphi)_{\text {te }}$
CBETA		TVELCY	$\boldsymbol{\operatorname { c o s }} \beta$
CCA (MHTP1)		VBDRY	```coefficients, ca, of velocity-gradient equation ((C9), part I)```
CCB(MHTP1)		VBDRY	```coefficients, c}\mp@subsup{c}{b}{}\mathrm{ , of velocity -gradient equation ((C9), part I)```
CHANGE		SOR	change in value of stream function at a mesh point during an overrelaxation iteration
CHFL		TVELCY	choking mass flow for a vertical orthogonal mesh line, kg /sec
CHLIM		TVELCY	minimum choking mass flow per passage, $\mathrm{kg} / \mathrm{sec}$

\begin{tabular}{|c|c|c|c|}
\hline Variable name \& \begin{tabular}{l}
COMMON \\
block
\end{tabular} \& Subroutine \& Description and comments \\
\hline CHORDF \& \& TSONIN \& length of blade section along streamline in m-direction (input to TSONLC, ref. 5), m \\
\hline COSBTA \& \& VBDRY \& \(\cos \beta\) \\
\hline CP \& CALCON \& \& \(\mathrm{c}_{\mathrm{p}}, \mathrm{J} /(\mathrm{kg})(\mathrm{K})\) \\
\hline CPHI(MM, MHTP1) \& CALCON \& \& \(\cos (\varphi)\) at orthogonal mesh points \\
\hline CPHILE \& \& INDEV \& \(\cos \left(\varphi_{1 \mathrm{e}}\right)\) \\
\hline CPHITE \& \& INDEV \& \(\cos \left(\varphi_{\text {te }}\right)\) \\
\hline CPTIP(MHTP1) \& \& TVELCY \& \(2 c_{p} T_{i}^{\prime}\) at orthogonal mesh points along vertical mesh lines, \((\mathrm{N})(\mathrm{m}) / \mathrm{kg}\) \\
\hline CTVEL(MHTP1)

\vdots \& \& TVELCY \& coefficients, c, of velocitygradient equation ((A7), part I) at orthogonal mesh points along vertical mesh lines

\hline CURV(MM, MHTP1) \& VARCOM \& \& $1 / r_{c}$ at orthogonal mesh points, $1 / \mathrm{m}$

\hline CURVH \& \& VBDRY \& CURVHI or CURVHO, $1 / \mathrm{m}$

\hline CURVHI \& CALCON \& \& curvature of hub at point where it is intersected by first (upstream) vertical orthogonal mesh line, $1 / \mathrm{m}$

\hline CURVHO \& CALCON \& \& curvature of hub at point where it is intersected by last (downstream) vertical orthogonal mesh line $1 / \mathrm{m}$

\hline
\end{tabular}

Variable name	COMMON block	Subroutine	Description and comments
CURVSL(MM, NSL)	SLCOM		$1 / r_{c}$ at points along streamlines where they cross vertical orthogonal mesh lines, $1 / \mathrm{m}$
CURVST(NSL, NOSTAT)	STACOM		$1 / r_{c}$ at points along sta $=$ tion lines where they cross streamlines, $1 / \mathrm{m}$
CURVT		VBDRY	CURVTI or CURVTO, $1 / \mathrm{m}$
CURVTI	CALCON		curvature of shroud at point where it is intersected by first (upstream) vertical orthogonal mesh line, $1 / \mathrm{m}$
CURVTO	CALCON		curvature of shroud at point where it is intersected by last (downstream) vertical orthogonal mesh line, $1 / \mathrm{m}$
D1		COEF	d_{1} (eq. (A8))
D2		COEF	d_{2} (eq. (A8))
DALDS(MM)		OUTPUT	```\partial\alpha/\partials at mesh points along horizontal mesh lines, rad/m```
DALDT(MM, MHTP1)		OUTPUT	$\partial \alpha / \partial \mathrm{t}$ at orthogonal mesh points, $\mathrm{rad} / \mathrm{m}$
DALVER(MHTP1)		OUTPUT	$\partial \alpha / \partial t$ at mesh points along vertical mesh lines, rad/m
DBL		TSONIN	one-half of tangential blade thickness (in radians) at intersection of a streamline with blade leading or trailing edge

Variable name	COMMON block	Subroutine	Description and comments
DCHANG		COEF	maximum value of change in estimated values of $\partial\left(\mathbf{r} V_{\theta}\right) / \partial \mathbf{r}$ at a mesh point between any two outer iterations, m/sec
DEGRAD		OUTPUT INDEV	conversion constant from radians to degrees
DEL		INPLOT	increment between plotted stream function or radius points
DELCH		OUTPUT	1 percent of average meridional chord length of blade, m
DELM		TSONTN	increment of meridional dis tance, m
DELMAX		VBDRY TVELCY	increment for $W_{\text {hub }}$ at each iteration to satisfy continuity, m/sec
DELR		MESHO PTBDRY OUTPUT	increment in \mathbf{r}-coordinate, m
DELRHO(MM, MHTP1)	VARCOM		difference in density, between suction and pressure surfaces, at orthogonal mesh points, $\mathrm{kg} / \mathrm{m}^{3}$
DELRNG ${ }^{\text {* }}$		INPLOT	maximum range of points on a plot in either bottom-top or left-right directions
DELRTH		INPLOT	plotted blade spacing of a blade section, m

Variable name
COMMON block
DELT
DELZ
DENS
DENTOL
DFDM(MM, MHTP1)

DFDS(MM)

DFDT(MM, MHTP1)

DFVERT(MHTP1)

DIDR
DIDS(MM, MHTP1)

DIDT(MHTP 1)

DIST(NPPP)

BLDVEL $\quad \partial\left(r V_{\theta}\right) / \partial t$ at orthogonal

INPLOT
MESHO PTBDRY THETOM
OUTPUT
TVELCY
TSONIN

BLDVEL

BLDVEL

NEWRHO
NEWRHO

NEWRHO

THIKOM
TSONIN

Description and comments tangential blade thickness, m increment in $z=$ coordinate, m n

$\rho_{\mathrm{i}}^{\prime}$ or $\rho_{0}^{\prime}, \mathrm{kg} / \mathrm{m}^{3}$
density tolerance (input for TSONIC, ref. 5)
$-\mathrm{B} \cos \beta\left[\mathrm{d}\left(\mathrm{r} \mathrm{V}_{\theta}\right) / \mathrm{dm}\right]$ at orthogonal mesh points (eq. (4)), m/sec
$\partial\left(\mathrm{rV}_{\theta}\right) / \partial s$ at mesh points along horizontal mesh lines, $\mathrm{m} / \mathrm{sec}$ mesh points, m/sec
$\partial\left(\mathrm{rV}_{\theta}\right) / \partial \mathrm{t}$ at mesh points along vertical mesh lines, m/sec
$\partial I / \partial r, m / \sec ^{2}$
$\partial I / \partial s$ at orthogonal mesh points, $\mathrm{m} / \mathrm{sec}^{2}$
$\partial I / \partial t$ at mesh points along vertical mesh lines, $\mathrm{m} / \mathrm{sec}^{2}$
distances on meridional plane along lines connecting input blade-section points (ZBL,RBL) , m

Variable name	COMMON block	Subroutine	Description and comments
DISTLE		INDEV	distance along horizontal mesh line from leading edge of blade for which a blade shape correction is made for incidence, m
DISTTE		INDEV	distance along horizontal mesh line from trailing edge of blade for which a blade shape correction is made for deviation, m
DLAM		TVELCY	change in rV_{θ} between points on vertical mesh lines, $\mathrm{m}^{2} / \mathrm{sec}$
DLDU(MM, MHTP1)	VARCOM		gradients of rV_{θ} with respect to stream function, $\mathrm{d}\left(\mathrm{rV}_{\theta}\right) / \mathrm{du}$, at orthogonal mesh points, $\mathrm{m}^{2} / \mathrm{sec}$ (This array is only defined and used in regions outside of blade row.)
DMAX		COEF	maximum calculated value of $\partial\left(\mathbf{r V}_{\theta}\right) / \partial \mathbf{r}$ at any mesh point, $\mathrm{m} / \mathrm{sec}$
DMD2		PTBDRY	expansion distance on smaller range of a plot
DMIN	*	COEF	minimum calculated value of $\partial\left(r V_{\theta}\right) / \partial \mathbf{r}$ at any mesh point, m/sec
DNEW	INPUTT		input damping factor on calculation of $\partial\left(\mathrm{rV}_{\theta}\right) / \partial \mathbf{r}$ within blade row from outer iteration to outer iteration

Variable name	COMMON block	Subroutine	Description and comments
DPDR		NEWRHO	$\partial p^{\prime \prime} / \partial r, N / m^{3}$
DPDS(MM, MHTP1)		NEWRHO	$\partial p^{\prime \prime} / \partial s$ at orthogonal mesh points, $\mathrm{N} / \mathrm{m}^{3}$
DPDT(MHTP1)		NEWRHO	$\partial p^{\prime \prime} / \partial t$ at mesh points along vertical mesh lines, $\mathrm{N} / \mathrm{m}^{3}$
DPREL		TVELCY	change in $\mathrm{p}^{\prime \prime}$ between points on vertical mesh lines, $\mathrm{N} / \mathrm{m}^{2}$
DRBL		TSONIN	tangential blade thickness at intersection of a meridional streamline with blade leading or trailing edge, m
DRBTH		THIKOM	interpolated value of tangential blade thickness, m
DRTHBL(NPPP, NBLPL)		THIKOM TSONIN	tangential blade thickness at ZBL, RBL input points, m
DTDRLE		INDEV	$(\partial \theta / \partial \mathrm{r})_{\mathrm{le}}, \mathrm{rad} / \mathrm{m}$
DTDROM		THETOM	$\partial \theta / \partial \mathbf{r}$ on orthogonal mesh, $\mathrm{rad} / \mathrm{m}$
DTDRTE		INDEV	$(\partial \theta / \partial \mathrm{r})_{\text {te }}, \mathrm{rad} / \mathrm{m}$
DTDS(NPPP)		THIKOM TSONIN	$\partial \theta / \partial \mathrm{s}, \mathrm{rad} / \mathrm{m}$
DTDSFL		INDEV	$(\partial \theta / \partial s)_{\mathrm{bf}}$ at leading or trailing edge, rad $/ \mathrm{m}$

Variable name	COMMON block	Subroutine .	Description and comments
DTDSLE(MHTP1)	\because	INDEV	$\partial \theta / \partial s$ of mid-channel flow surface at points where horizontal mesh lines cross leading edge of blade, $\mathrm{rad} / \mathrm{m}$
DTDSTE(MHTP1)		INDEV	$\partial \theta / \partial s$ of mid-channel flow surface at points where horizontal mesh lines cross trailing edge of blade, $\mathrm{rad} / \mathrm{m}$
DTDTLE		INDEV	$(\partial \theta / \partial \mathrm{t})_{l e}, \mathrm{rad} / \mathrm{m}$
DTDTTE		INDEV	$(\partial \theta / \partial \mathrm{t})_{\text {te }}, \mathrm{rad} / \mathrm{m}$
DTDZLE		INDEV	$(\partial \theta / \partial \mathrm{z})_{l e}, \mathrm{rad} / \mathrm{m}$
DTDZOM		THETOM	$\partial \theta / \partial z$ on orthogonal mesh, $\mathrm{rad} / \mathrm{m}$
DTDZTE		INDEV	$(\partial \theta / \partial \mathrm{z})_{\text {te }}, \mathrm{rad} / \mathrm{m}$
DTHDM(NPPP)		INPLOT	$\partial \theta / \partial s^{\prime}$ used to estimate blade angle to calculate tangential blade thickness from TNBL, rad/m
DTHDR(11,NBLPL)	INDCOM		$\partial \theta / \partial \mathbf{r}$ on alternate blade mesh (fig. 26), rad/m
DTHDS(MM, MHTP1)	CALCON		$\partial \theta / \partial s$ at orthogonal mesh points, rad/m
DTHDSP(11,NBLPL)		THETOM	$\partial \theta / \partial s^{+}$on alternate blade mesh (fig. 26), rad/m
DTHDT(MM, MHTP1)	CALCON		$\partial \theta / \partial t$ at orthogonal mesh points, rad/m

COMMON block

DTHDTP(11,NBLPL)	THETOM	$\partial \theta / \partial t^{\prime}$ on alternate blade mesh (fig. 26), rad/m
DTHDZ(11,NBLPL)	INDCOM	$\partial \theta / \partial z$ on alternate blade mesh (fig. 26), rad/m
DTIP	TVELCY	change in T_{i} between points on vertical mesh lines, K
DTPP	TVELCY	change in $\mathrm{T}^{\prime \prime}$ between points on vertical mesh lines, K
DTVEL(MHTP1)	TVELCY	coefficients, d, of velocitygradient equation ((A7), part I) at mesh points along vertical mesh lines
DUDS(MM)	NEWRHO	$\partial \mathrm{u} / \partial \mathrm{s}$ along horizontal mesh lines, $1 / \mathrm{m}$
DUDT(MHTP1)	NEWRHO	$\partial u / \partial \mathrm{t}$ at mesh points along vertical mesh lines, $1 / \mathrm{m}$
DVDRT	COEF	updated estimate of $\partial\left(r V_{\theta}\right) / \partial \mathbf{r}$ at a mesh point, $\mathrm{m} / \mathrm{sec}$
DVTHDR(MM, MHTP1)	COEF	$\partial\left(r V_{\theta}\right) / \partial \mathbf{r}$ at orthogonal mesh points, m/sec
DWMDM(MM, MHTP1)	TVELCY	$\mathrm{dW}_{\mathrm{m}} / \mathrm{dm}$ at orthogonal mesh points, $1 / \mathrm{sec}$
DWMDS(MM)	TVELCY	$\partial W_{m} / \partial s$ along horizontal mesh lines, $1 / \mathrm{sec}$
DWMDT(MM, MHTP 1)	TVELCY	$\partial W_{m} / \partial t$ at orthogonal mesh points, $1 / \mathrm{sec}$
DWMVER(MHTP1)	TVELCY	$\partial W_{m} / \partial t$ along vertical mesh lines, $1 / \mathrm{sec}$

| Variable name | COMMON
 block | Subroutine |
| :--- | :---: | :---: | | Description and comments |
| :---: |
| DWTDM(MM, MHTP1) |

Variable name	COMMON block	Subroutine	Description and comments
EOP		INPLOT MEPLOT SLPLOT SVPLOT	end of plot indicator $(E O P=1.0)$
ERROR		SOR	maximum absolute value of change in u at any point for an overrelaxation iter. ation
ERSOR(interger variable)		TSONIN	input for TSONIC (ref. 5)
ETVEL(MHTP1)		TVELCY	coefficients, e, of velocity gradient equation ((A7), part I) at mesh points along vertical mesh lines
EXPON	CALCON		$1 /(\gamma-1)$
EXTRAP		INDEV	distance along horizontal mesh line from blade leading or trailing edge to first mesh point outside of blade, m
FCHANG		BLDVEL	maximum value of change in F_{r} at any mesh point between any two outer itera tions
FLFR(NSL)	INPUTT		input values of stream function designating streamlines along which output is to be printed
FMAX		BLDVEL	maximum new predicted value of $\mathbf{F}_{\mathbf{r}}$ at any mesh point during an outer iteration

FMIN		BLDVEL	mininum new predicted value of $\mathbf{F}_{\mathbf{r}}$ at any mesh point during an outer iteration
FNEW	INPUTT		input damping factor on calculation of $\mathbf{F}_{\mathbf{r}}$ from outer iteration to outer iteration
FR(MM, MHTP1)	VARCOM		$\mathrm{F}_{\mathbf{r}}$ at orthogonal mesh points (eq. (A4)), $\mathrm{m} / \mathrm{sec}^{2}$
FRAC		VBDRY	stream function, u, at mesh point on vertical boundary
FRT		BLDVEL	predicted value of $\mathbf{F}_{\mathbf{r}}$ at a mesh point
FST(MM, MHTP1)		BLDVEL	rV_{θ} at orthogonal mesh points, $\mathrm{m}^{2} / \mathrm{sec}$
FTVEL(MHTP1)		TVELCY	coefficients, f, of velocitygradient equation ((A 7), part I) at mesh points along vertical mesh lines
FVERT(MHTP1)		BLDVEL	temporary storage for values of $r V_{\theta}$ from FST array on vertical mesh lines, $\mathrm{m}^{2} / \mathrm{sec}$
GAM	INPUTT		input, γ
GRAD(101)		INPLOT	dummy array for derivatives calculated by SPLINT calls in INPLOT
GRAD(MHTP1)		LOSSOM	dummy array of derivatives calculated in SPLINT call

Variable name	COMMON block	Subroutine	Description and comments
H1		COEF	h_{1} (eq. (A8), fig. 24)
H2		COEF	h_{2} (eq. (A8), fig. 24)
H3		COEF	h_{3} (eq. (A8), fig. 24)
H4		COEF	h_{4} (eq. (A8), fig. 24)
IDEBUG	INPUTT		integer input indicating multiple of outer iterations at which debug output is printed
IEND	Blank		integer indicator of stage of solution to which program has proceeded: IEND = -1, prior to convergence of subsonic solution IEND $=0$, between convergence of subsonic solution and beginning of transonic solution IEND = 1, during first transonic solution with all velocities smaller than choking-mass-flow solution IEND = 2, during second transonic solution with all velocities greater than choking -mass-flow solution
IL		VBDRY	integer (1 or 3) to identify proper word in BDY array

Variable name	COMMON		
block		Subroutine	Description and comments
:---:			

Variable name	COMMON block	Subroutine	Description and comments
ISTATL	INPUTT		integer input indicating multiple of outer iterations at which major output is printed along station lines
ISUPER	INPUTT		integer input indicating whether only subsonic, or both subsonic and supersonic, solutions of velocity-gradient equation are to be calculated
ITE(MHTP1)	CALCON		vertical mesh line numbers of last mesh point inside blade region at trailing edge
ITER	Blank		outer iteration counter, incremented by 1 at beginning of each outer iteration
ITS(NSL)	SLCOM		vertical mesh line number of last intersection of a streamline with a vertical mesh line inside blade region at trailing edge
ITSON	INPUTT		integer input indicating multiple of outer iterations at which information is printed as input for TSONIC program (ref. 5)
JZ		VBDRY TVELCY	integer used to indicate to CONTIN that subsonic ($\mathrm{JZ}=1$) or supersonic ($J Z=2$) solution is desired

Variable name	COMMON block	Subroutine	Description and comments
\mathbf{K} (MM, MHTP1) (real variable)	VARCOM		k_{o} (eq. (A9)) at orthogonal mesh points
KNEW(real variable)		COEF	updated value of k_{o} (eq. (A9)) at a mesh point
LAMBDA(MHTP1) (real variable)		VBDRY TVELCY	```\lambda for mesh points along vertical mesh lines, m}\mp@subsup{}{}{2}/\textrm{sec```
LAMBDO(MHTP1) (real variable)		TVELCY	$\left(\mathrm{rV}_{\theta}\right)_{0}$, for mesh points along vertical mesh lines, $\mathrm{m}^{2} / \mathrm{sec}$
LAMDAI(real variable)		PRECAL LOSSOM	$\lambda, \mathrm{m}^{2} / \mathrm{sec}$
LAMIN(NIN) (real variable)	INPUTT		input values of λ at points along line from hub to shroud on which upstream flow conditions are given, $\mathrm{m}^{2} / \mathrm{sec}$
LAMOUT(NOUT) (real variable)	INPUTT		input values of $\left(\mathrm{rV}_{\theta}\right)_{0}$ at points along line from hub to shroud on which downstream flow conditions are given, $\mathrm{m}^{2} / \mathrm{sec}$
LAMVT	INPUTT		input integer (0 or 1) indicating whether upstream and downstream whirl (0) or tangential velocity (1) is given as input
LMAX(real variable)		SOR	maximum value of RATIO over all mesh points

Variable name	COMMON block	Subroutine	Description and comments
LMIN(real variable)		SOR	minimum value of RATIO over all mesh points
LOC		VBDRY	integer (1 or MM) indicating vertical mesh line number for which VBDRY is called
LOSOUT(NOUT) (real variable)	INPUTT		input fraction of absolute total pressure loss, at points along line from hub to shroud on which downstream flow conditions are given
LRNG(real variable)		INPLOT SVPLOT	left-most point of range of a plot
LSFR	INPUTT		input integer (0 or 1) indicating whether upstream and downstream flow conditions are input as a function of stream function (0) or radius (1)
LTPL	INPUTT	,	input integer (0 or 1) indicating whether downstream total pressure (0) or fractional loss of stagnation pressure (1) is given in input
MARK	CROSCM		marker in MESHO and CROSCD to indicate if CROSCD is being called for the first time

Variable name	COMMON block	Subroutine	Description and comments
MARK(NOSTAT)	,	OUTP UT	integers between 1 and 4 indicating whether output station lines are outside blade, within blade, or on leading or trailing edge
MBI	INPUTT		input number of vertical mesh lines from left boundary of orthogonal mesh (ZOMIN) to first point of mesh-size change (ZOMBI)
MBL(NPPP,NBLPL) (real variäble)		INPLOT	s'-coordinate, corresponding to ZBL and RBL, used for plotting input blade sections, m
MBLD		SVPLOT	number of suction-surface or pressure-surface velocities on a plot
MBO	INPUTT		input total number of vertical mesh lines from left boundary of orthogonal mesh (ZOMIN) to point of second mesh-size change (ZOMBO)
MCT	.	OUTPUT	integer (1 or 2) indicating whether a compressor (1) or a turbine (2) is being analyzed
MHT	INPUTT		input total number of horizontal mesh spaces from hub to shroud of orthogonal mesh; maximum of 100

Variable name	COMMON block	Subroutine	Description and comments
MHTP1	CALCON		MHT + 1
MLESP(5) (real variable)		TSONIN	m-coordinates of blade surface spline points near leading edge of a blade section, printed to make a layout to obtain input for TSONIC (ref. 5), m
MM	INPUTT		input total number of vertical mesh lines from left to right boundaries of orthogonal mesh (ZOMIN to ZOMOUT), maximum of 100
MMM1	CALCON		MM-1
MR(MM)(real variable)		TSONIN	m-coordinates of points defining a stream channel, printed as input for TSONIC (ref. 5), m
MSFL(real variable)	INPUTT		input total mass flow through entire circumferential annulus of machine, $\mathrm{kg} / \mathrm{sec}$
MSL(MM,NSL) (real variable)	SLCOM		m-coordinates of points along streamlines where they cross vertical mesh lines, m (Origin of m -coordinate along a streamline corresponds to point where $z=0$ along streamline.)

Variable name
COMMON block

MSP(MM) (real variable)

MST(NSL, NOSTAT)
(real variable)

MTEM(NOSTAT)
(real variable)

MTESP(5)
(real variable)

NBL

NBLPL

NBLPTS

TSONIN

OUTPUT

TSONIN

INPUTT

INPUTT

Variable name	COMMON block	Subroutine	Description and comments
NCOUNT		VBDRY TVELCY	total number of iterations or attempts at satisfying velocity-gradient equation
NHUB	INPUTT		number of input data points in ZHUB and RHUB arrays, maximum of 50
NIN	INPUTT		number of input data points in upstream arrays of flow properties (SFIN, RADIN, TIP, PRIP, LAMIN, VTHIN), maximum of 50
NOSTAT	INPUTT		input number of hub-shroud stations (located by coordinates in ZHST and ZTST) at which output is desired, maximum of 50
NOUT	INPUTT		number of input data points in downstream arrays of flow properties (SFOUT, RADOUT, PROP, LOSOUT, LAMOUT, VTHOUT), maximum of 50
NPPP	INPUTT		number of input data points per blade section or blade plane in ZBL, RBL, THBL, and TNBL arrays, maximum of 50
NREAD	Blank		integer number of input tape-reading unit of computer which is running MERIDL

Variable name	COMMON block	Subroutine	Description and comments
NRSP		TSONIN	input for TSONIC (ref. 5)
NSL	INPUTT		input number of streamlines from hub to shroud (designated by values in FLFR) at which output is desired, maximum of 50
NTIP	INPUTT		number of input data points in ZTIP and RTIP arrays, maximum of 50
NWRIT	Blank		integer number of output tape-writing unit of computer which is running MERIDL
OMEGA	INPUTT		input rotational speed, ω, $\mathrm{rad} / \mathrm{sec}$
ORF		SOR	overrelaxation factor
ORF		TSONIN	overrelaxation factor (input for TSONIC, ref. 5)
ORFMAX		SOR	current estimate for maximum value of ORF calculated using LMAX
ORFMIN		SOR	current estimate for minimum value of ORF calculated using LMIN
PHI		OUTPUT	φ, deg
PITCH	CALCON		$2 \pi / \mathrm{NBL}, \mathrm{rad}$
PLOSS(MM, MHTP1)	CALCON		fractional loss of relative total pressure at orthogonal mesh points

Variable name COMMON block

PLOSSL		TSONIN	fractional loss of relative total pressure at a ZSL, RSL point along a streamline
PLOSTE		INDEV	fractional loss of relative total pressure at blade trailing edge
PLTX(101)		INPLOT	temporary storage of x-plot coordinates of many arrays in INPLOT
PLTY(101)		INPLOT	temporary storage of y-plot coordinates of many arrays in INPLOT
PPTHBL(NPPP,NBLPL)		INPLOT	values of $r \theta$ for pressure surface of adjacent blade, used for plotting input blade sections, m
PRATIO(MHTP1)		LOSSOM	$\mathrm{p}_{\mathrm{o}}^{\prime \prime} /\left(\mathrm{p}_{\mathrm{o}}^{\prime \prime}\right)_{\text {ideal }}$ for each horizontal mesh line downstream of blade
PREL(MM or MHTP1)		NEWRHO TVELCY	$\mathrm{p}^{\prime \prime}$ at mesh points along horizontal or vertical mesh lines, $\mathrm{N} / \mathrm{m}^{2}$
PRELN		TVELCY	new $p^{\prime \prime}, \mathrm{N} / \mathrm{m}^{2}$
PRINP		PRECAL LOSSOM	$\mathrm{p}_{\mathrm{i}}^{\prime}, \mathrm{N} / \mathrm{m}^{2}$
PRIP(NIN)	INPUTT		input, $\mathrm{p}_{\mathrm{i}}^{\prime}$, at points along line from hub to shroud on which upstream flow conditions are given, $\mathrm{N} / \mathrm{m}^{2}$

Variable name	COMMON block	Subroutine	Description and comments
PROP(NOUT)	INPUTT		input, $\mathrm{p}_{\mathrm{o}}^{\prime}$, at points along line from hub to shroud on which downstream flow conditions are given, $\mathrm{N} / \mathrm{m}^{2}$
PTHBL(NPPP, NBLPL)		INPLOT	values of $\mathbf{r} \theta$ for pressure surface, used for plotting input blade sections, m
R1		MESHO	r-coordinate of intersection of line (1), fig. 8, with upper horizontal mesh line, m
R2		MESHO	r -coordinate of intersection of line (2), fig. 8, with upper horizontal mesh line, m
RADIN(NIN)	INPUTT		input r-coordinates of points along line from hub to shroud on which upstream flow conditions are given, m
RADOUT(NOUT)	INP UTT		input r -coordinates of points along line from hub to shroud on which downstream flow conditions are given, m
RATIO		SOR	u_{i}^{m+1} / u_{i}^{m} for use in eqs. (B2) and (B3) of ref. 11
RBL(NPPP , NBLPL)	INPUTT		input array of \mathbf{r}-coordinates, corresponding to ZBL, of points describing mean blade surface, m

Variable name
COMMON
block

RBLTEM(NBLPL)		OUTPUT	temporary storage for values in RLE and RTE arrays, m
RBRNG	PLTCOM		\mathbf{r}-coordinate of bottom boundary of a plot of meridional plane or orthogonal mesh, done in MEPLOT, m
RCARB(MHTP1)		TVELCY	$\begin{aligned} & \rho \cos (\alpha-\varphi) \mathrm{rB} \text { along a } \\ & \text { vertical mesh line (eq. (5)) } \\ & \mathrm{kg} / \mathrm{m}^{2} \end{aligned}$
RCURV		CROSCD	r-coordinate of horizontal mesh line at input z-coordinate, m
REDFAC	INPUTT		input factor used to reduce mass flow (MSFL) in order to assure subsonic flow throughout flow passage
REFR	CROSCM		reference r-coordinate in MESHO from which orthogonal mesh is extended by addition of another "'link,' m
REFSL	CROSCM		reference slope in MESHO of vertical link being extended from a known orthogonal mesh point to a new mesh point
REFZ	CROSCM		reference z-coordinate in MESHO from which orthogonal mesh is extended by addition of another "link, " m

Variable name	COMMON block	Subroutine	Description and comments
RELER		NEWRHO	maximum relative change in W at any mesh point between two outer iterations
RELTOP(NOUT)		PRECAL LOSSOM	$p_{i}^{\prime \prime} / p_{o}^{\prime \prime}$ at hub-shroud input points downstream of blade row
REPEAT		VBDRY TVELCY	logical variable indicating that velocity-gradient solution should be repeated with new values of TIPBDY, RHOIP, and LAMBDA
RHIN	CALCON		\mathbf{r}-coordinate of intersection with hub profile of line on which upstream flow conditions are given, m
RHO(MM, MHTP 1)	VARCOM		ρ, at orthogonal mesh points, $\mathrm{kg} / \mathrm{m}^{3}$
RHOA V(MM, MHTP1)	VARCOM		average density across flow channel from suction sur face to pressure surface, at orthogonal mesh points, $\mathrm{kg} / \mathrm{m}^{3}$
RHOIP(MHTP1)		VBDRY TVELCY	```\rho vertical mesh lines, kg/m}\mp@subsup{}{}{3```
RHOIP(NIN)		RHOIPF	ρ_{i}^{\prime} at input points of upstream flow conditions, $\mathrm{kg} / \mathrm{m}^{3}$
RHOIP		INIT	$\rho_{\mathrm{i}}^{\prime}$ at hub, $\mathrm{kg} / \mathrm{m}^{3}$

Variable name	COMMON block	Subroutine	Description and comments
RHOIP		TSONIN	$\begin{aligned} & \rho_{\mathrm{i}}^{+} \text {for a streamline, } \mathrm{kg} / \mathrm{m}^{3} \\ & \text { input for TSONIC (ref. } 5 \text {) } \end{aligned}$
RHOL		BLDVEL	$\rho_{\ell}, \mathrm{kg} / \mathrm{m}^{3}$
RHOOP(MHTP1)		TVELCY	ρ_{o}^{\prime} for mesh points along vertical mesh lines, $\mathrm{kg} / \mathrm{m}^{3}$
RHOOP(NOUT)		RHOOPF	```\rho stream flow conditions, kg/m}\mp@subsup{}{}{3```
RHOSL		TSONIN	ρ at a ZSL, RSL point along a streamline, $\mathrm{kg} / \mathrm{m}^{3}$
RHOT		BLDVEL	$\rho_{\text {tr }}, \mathrm{kg} / \mathrm{m}^{3}$
RHOUT	CALCON		\mathbf{r}-coordinate of intersection with hub profile of line on which downstream flow conditions are given, m
RHOW		VBDRY	$\mathrm{pW}, \mathrm{kg} /\left(\mathrm{m}^{2}\right)(\mathrm{sec})$
RHPLT(100)	PLTCOM		r-coordinates used for plotting hub profile, RHUB, in MEPLOT, m
RHUB(NHUB)	INPUTT		input r-coordinates of points defining hub or bottom boundary of flow channel, m
RILOM(MHTP1)		LAMDAF	radii for spline fit of stream function against radius
RLE(NBLPL)	CALCON		\mathbf{r}-coordinates of input blade section points (from RBL) defining leading edge of blade, m

'Variable name	COMMON block	Subroutine	Description and comments
' RLEH	CALCON		r-coordinate of inter section of leading edge of blade with hub profile, m
RLEOM(MHTP 1)	CALCON		r-coordinates of intersections of horizontal mesh lines with blade leading edge, m
RLEP		TSONIN	r-coordinate of point near leading edge of blade section along meridional streamline, m
RLESL		TSONIN	\mathbf{r}-coordinate of intersection of a streamline with leading edge of blade, m
RLET	CALCON		\mathbf{r}-coordinate of intersection of leading edge of blade with shroud profile, m
RLINE		CROSCD	r-coordinate on straight- line vertical orthogonal link at input z-coordinate, m
. RLPLT(100)	PLTCOM		r-coordinates used for plotting blade leading edge, RLE, in MEPLOT, m
RMEAN		VBDRY	mean radius $\left(\mathrm{r}_{\text {hub }}+\mathrm{r}_{\text {tip }}\right) / 2, \mathrm{~m}$
$\mathbf{R M R}$		MESHO CROSCD	RCURV - RLINE in CROSCD, m
RMSP(MM)		TSONIN	r-coordinates of points defining a stream channel, printed as input for TSONIC (ref. 5), m

ROLOM(MHTP1)		RVTHTA	radii for spline fit of stream function against radius
ROM(MM, MHTP 1)	CALCON	<	r-coordinates of orthogonal mesh, m
ROTI(MM or MHTP1)		NEWRHO	rothalpy, I, at mesh points along horizontal or vertical mesh lines, $\mathrm{m}^{2} / \mathrm{sec}^{2}$
RPC(11,NBLPL)	INDCOM		r-coordinates of alternate mesh (fig. 26)
RRAD(NHUB, MHTP1)		MESHO	\mathbf{r}-coordinates of points along radial lines from input points on hub profile to shroud profile, m
RRNG		INPLOT SVPLOT	right-most point of range of a plot
RRTHBL(NPPP, NBLPL)		INPLOT	values of $\mathbf{r} \theta$ coordinate of blade mean camber line of adjacent blade, used for plotting input blade sections, m
RSL(MM, NSL)	SLCOM		array of r-coordinates of points along streamlines where they cross vertical mesh lines, m
RSLTEM(NSL)		OUTP UT	temporary storage for calculated values to be put into RSL array, m
RSPLT(100)	PLTCOM		r-coordinates used for plotting shroud profiic, RTIP, in MEPLOT, m

Variable name

ROLOM(MHTP1)

ROM(MM, MHTP1)

ROTI(MM or MHTP1)

RPC(11,NBLPL)

RRAD(NHUB, MHTP1)

RSL(MM,NSL)

RSLTEM(NSL)

RSPLT(100)

COMMON block

Variable name	COMMON block	Subroutine	Description and comments
RST(NSL , NOSTAT)	STACOM		r-coordinates of points along station lines where they cross streamlines, m
RTE(NBLPL)	CALCON		r-coordinates of input blade section points (from RBL) defining trailing edge of blade, m
RTEH	CALCON		\mathbf{r}-coordinate of intersection of trailing edge of blade with hub profile, m
RTEM(10)		INPUT	temporary storage for \mathbf{r}-coordinates, m
RTEM(MM)		MEPLOT	temporary storage of r-coordinates from ROM for plotting, m
RTEM(NBLPL)		THETOM	temporary storage of r-coordinates from RPC, m
RTEM(MHTP1 or NOSTAT or 20)		OU̇TPU̇T	temporary storage for values from ROM array on vertical mesh lines; also temporary storage for values from RST array along station lines, m
RTEOM(MHTP1)	CALCON		r-coordinates of inter sections of horizontal mesh lines with blade trailing edge, m
RTEP		TSONIN	r-coordinate of point near trailing edge of blade section along meridional streamline, m

Variable name	COMMON block	Subroutine	Description and comments
RTESL		TSONTN	\mathbf{r}-coordinate of intersection of a streamline with trailing edge of blade, m
RTET	CALCON		r-coordinate of intersection of trailing edge of blade with shroud profile, m
RTHBL(NPPP, NBLPL)		INPLOT	$\mathbf{r} \theta$-coordinate of blade mean camber line, corresponding to points in ZBL, RBL, used for plotting input blade sections, m
RTIN	CALCON		calculated \mathbf{r}-coordinate of intersection with shroud profile of line on which upstream flow conditions are given, m
RTIP(NTIP)	INPUTT		input r-coordinates of points defining shroud or top boundary of flow channel, m
RTLEP1(5)		TSONIN	$\mathbf{r} \theta$ at blade suction-surface spline points near leading edge of a blade section, referenced to zero at leading edge, used to make a layout to obtain input for TSONIC (ref. 5), m

Variable name	\because	COMMON block	Subroutine	Description and comments
RTLEP2(5)		- $\quad .$.	TSONIN	$\mathbf{r} \theta$ at blade pressuresurface spline points near leading edge of a blade section, referenced to zero at leading edge; used to make a layout to obtain input for TSONIC (ref. 5), m
RTMP(NHUB)		CROSCM		temporary storage for portions of RRAD array in MESHO and CROSCD, m
RTOLER			VBDRY TVELCY	tolerance on relative error of subsequent calculated. values of integrated mass flow
RTOUT		CALCON		calculated r-coordinate of intersection with shroud profile of line on which downstream flow conditions are given, m
RTPLT(100)		PLTCOM		r-coordinate used for plotting blade trailing edge, RTE, in MEPLOT, m
RTRNG		PLTCOM		r-coordinate of top boundary of a plot of meridional plane or orthogonal mesh, done in MEPLOT, m

Variable name	COMMON block	Subroutine	Description and comments
RTTEP1(5)		TSONIN	r θ at blade suction-surface spline points near trailing edge of a blade section, referenced to zero at trailing edge, used to make a layout to obtain input for TSONIC (ref. 5), m
RTTEP2(5)		TSONIN	r θ at blade pressuresurface spline points near trailing edge of a blade section, referenced to zero at trailing edge, used to make a layout to obtain input for TSONIC (ref. 5), m
RVA		VBDRY	$\begin{aligned} & \rho_{\mathrm{j}} \mathrm{~W}_{\mathrm{j}} \cos \beta_{\mathrm{j}} 2 \pi \mathrm{r}_{\mathrm{j}} / \mathrm{NBL}, \\ & \mathrm{~kg} /(\mathrm{m})(\mathrm{sec}) \end{aligned}$
RVA		TVELCY	$\begin{aligned} & \rho_{\mathrm{j}} \mathrm{~W}_{\mathrm{j}} \cos \boldsymbol{\beta}_{\mathrm{j}} \cos (\alpha-\varphi)_{\mathbf{j}} \mathrm{r}_{\mathrm{j}} \mathrm{~B}_{\mathrm{j}}, \\ & \mathrm{~kg} /(\mathrm{m})(\mathrm{sec}) \end{aligned}$
RVAS		VBDRY	$\begin{aligned} & \rho_{\mathrm{j}+1} \mathrm{~W}_{\mathrm{j}+1} \cos \beta_{\mathrm{j}+1} 2 \pi \mathrm{r}_{\mathrm{j}+1} / \\ & \mathrm{NBL}, \mathrm{~kg} /(\mathrm{m})(\mathrm{sec}) \end{aligned}$
RVAS		TVELCY	$\begin{aligned} & \rho_{j+1} W_{j+1} \cos \beta_{j+1} \\ & \quad \cos (\alpha-\varphi)_{j+1} r_{j+1} B_{j+1} \\ & \quad \mathrm{~kg} /(\mathrm{m})(\mathrm{sec}) \end{aligned}$
SAL		TVELCY	$\sin \alpha$
SAMP(MM, MHTP1)	VARCOM		$\sin (\alpha-\varphi)$ at orthogonal mesh points
SAMPLE		INDEV	$\sin (\alpha-\varphi)_{l e}$
SAMPTE		INDEV	$\sin (\alpha-\varphi)_{\text {te }}$

| Variable name | COMMON
 block | Subroutine |
| :--- | :--- | :--- | | Description and comments |
| :---: |

Variable name	COMMON block	Subroutine	Description and comments
SLIDLE		INDEV	solidity at leading edge of blade where it is intersected by a horizontal mesh line
SLIDTE		INDEV	solidity at trailing edge of blade where it is intersected by a horizontal mesh line
SLOM(MM)		MESHO	slopes of horizontal mesh lines at mesh points
SLOPE(NIN or NOUT)		TIPF RHOIPF RHOOPF LAMDAF RVTHTA	derivatives of spline-fit curves
SOM(MM, MHTP1)	CALCON		s-coordinates of orthogonal mesh, m
SPHI(MM, MHTP1)	CALCON		$\sin \varphi$ at orthogonal mesh points
SPHILE		INDEV	$\sin \varphi_{1 e}$
SPHITE		INDEV	$\sin \varphi_{\text {te }}$
SPLNO1		TSONIN	input for TSONIC (ref. 5)
SPLNO2		TSONIN	input for TSONIC (ref. 5)
SRE(integer variable)	Blank		switch used to turn on and off printing of error or warning messages in some subroutines

: Variable name	COMMON block	Subroutine	Description and comments
SRW(integer variable)	Blank		switch used to turn on and off printing of debug information in some subroutines
SSTHBL(NPPP,NBLPL)		INPLOT	values of $\mathbf{r} \theta$ for suction surface of adjacent blade, used for plotting input blade sections, m
STEOM(MHTP1)	CALCON		s -coordinates of intersections of horizontal mesh lines with blade trailing edge, m
STHBL(NPPP, NBLPL)	\cdots	INPLOT	values of $\mathbf{r} \theta$ on suction surface, used for plotting input blade sections, m
STRFN(integer variable)		TSONIN	input for TSONIC (ref. 5)
SURVL(integer variable)		TSONIN	input for TSONIC (ref. 5)
SYM .		INPLOT MEPLOT SLPLOT SVPLOT	indicator used to select a special plot symbol from a table
SYN		MEPLOT	indicator used to select a special plot symbol from a table
SZRBL(NPPP)	\cdots	THETOM	arc length along input blade section in meridional plane, m
SZRPC(11 or NBLPL)		THETOM	arc length along vertical or horizontal lines of alternate mesh (fig. 26)

Variable name	COMMON block	Subroutine	Description and comments
TANBBL		INDEV	$\tan \beta_{b}$, tangent of blade mean camber line angle at leading or trailing edge
TANBFL		INDEV	$\tan \beta_{\mathrm{bf}}$, tangent of flow angle at leading or trailing edge, corrected for blockage
TEMPER		TVELCY	$\mathrm{T}_{\mathrm{i}}^{\prime}$ or $\mathrm{T}_{0}{ }^{p}, \mathrm{~K}$
TGROG	CALCON		$2 \gamma \mathrm{R} /(\gamma+1)$
THBL(NPPP , NBLPL)	INPUTT		input array of θ-coordinates, corresponding to RBL, ZBL, of points describing mean blade sur face, rad
THLEOM(MHTP1)	CALCON		θ-coordinates of intersections of horizontal mesh lines with blade leading edge, rad
THLESL		TSONIN	θ-coordinate of inter section of streamline with blade leading edge, rad
THPC(11, NBLPL)		THETOM	```0-coordinates of points on alternate mesh (fig. 26), rad```
THSL		TSONLN	θ-coordinate (relative to MERIDL origin, not TSONIC origin) of mean blade surface at points along meridional streamlines, rad

\begin{tabular}{|c|c|c|c|}
\hline Variable name \& \begin{tabular}{l}
COMMON \\
block
\end{tabular} \& Subroutine \& Description and comments \\
\hline THSP1(MM) \& \& TSONIN \& \(\theta\)-coordinates of blade suction-surface spline points, given as input for TSONIC (ref. 5), rad \\
\hline THSP 2(MM) \& \& TSONIN \& \(\theta\)-coordinates of blade pressure-surface spline points given as input to TSONIC, rad \\
\hline THETOM(MHTP1) \& CALCON \& \& \(\theta\)-coordinates of intersections of horizontal mesh lines with blade trailing edge, rad \\
\hline THTESL \& \& TSONIN

\ddots \& θ-coordinate of intersection of meridional streamline with blade trailing edge, rad

\hline TINP \& \& PRECAL LOSSOM \& $\mathrm{T}_{\mathbf{i}}^{\prime}, \mathrm{K}$

\hline TIP (NIN) \& INPUTT \& \& input T_{i}^{\prime} at points along the line from hub to shroud on which upstream flow condi tions are given, K

\hline TIPBDY(MHTP1) \& \& VBDRY \& T_{i}^{\prime} at points on upstream or downstream boundary of orthogonal mesh, K -

\hline TIPT(MHTP1) \& \& TVELCY \& T_{i} at points along vertical mesh lines, K

\hline TIPTEM \& \& TSONIN \& ```
Ti}\mathrm{ along a streamline, K,
input TIP for TSONIC
(ref. 5)

``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Variable name & COMMON & Subroutine & Description and comments \\
\hline TITLEI(20) & INTITL & & alphanumerical contents of input title card \\
\hline TITL1 \({ }^{\text {(9) }}\) & & INPLOT & plot title INLET ABSOLUTE TOTAL TEMPERATURE \\
\hline TITL1(15) & & MEPLOT & plot title HUB, SHROUD, AND BLADE BOUNDARIES IN MERIDIONAL PLANE \\
\hline TITLI(10) & & SLPLOT & \begin{tabular}{l}
plot title STREAMLINE \\
PLOT IN MERIDIONAL \\
PLANE
\end{tabular} \\
\hline TITL1(12) & & SVPLOT & plot title MERIDIONAL AND SURFACE RELATIVE VELOCITIES \\
\hline TITL2(8) & & INPLOT & plot title INLET ABSOLUTE TOTAL PRESSURE \\
\hline TITL2(10) & & MEPLOT & plot title ORTHOGONAL MESH IN MERIDIONAL PLANE \\
\hline TITL2(3) & & SLPLOT & plot title Z DIRECTION \\
\hline TITL2(9) & & SVPLOT & plot title STREAMLINE NO.
\[
\mathbf{X X X X}, \mathrm{U}=\mathbf{X X X X X X X X}
\] \\
\hline TITL3(5) & & INPLOT & plot title INLET ABSOLUTE WHIRL \\
\hline TITL3(3) & & MEPLOT & plot title Z DIRECTION \\
\hline TITL3(3) & & SLPLOT & plot title R DIRECTION \\
\hline TITL3(14) & & SVPLOT & \begin{tabular}{l}
plot title MERIDIONAL \\
RELATIVE VELOCITIES \\
FOR ALL STREAMLINES
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Variable name & \begin{tabular}{l}
COMMON \\
block
\end{tabular} & Subroutine \({ }^{\text {' }}\) & Description and comments \\
\hline TITL4(9) & & INPLOT & plot title INLET ABSOLUTE TANGENTIAL VELOCITY \\
\hline TITL4(3) & & MEPLOT & plot title R DIRECTION , \(\quad\). \\
\hline TITL4(11) & & SLPLOT & ```
plot title SUBSONIC
    SOLUTION, ITERATION
    NO. XXXX
``` \\
\hline TITL4(15) & & SVPLOT & \begin{tabular}{l}
plot title SUCTION SURFACE \\
RELATIVE VELOCITIES \\
FOR ALL STREAMLINES
\end{tabular} \\
\hline TITL5(8) & & INPLOT & \begin{tabular}{l}
plot title OUTLET \\
ABSOLUTE TOTAL \\
PRESSURE
\end{tabular} \\
\hline TITL5(5) & & SLPLOT & plot title TRANSONIC SOLUTION \\
\hline TITL5(16) & & SVPLOT & plot title PRESSURE SURFACE RELATIVE VELOCITIES FOR ALL STREAMLINES \\
\hline TITL6(9) . . . & , & INPLOT & \begin{tabular}{l}
plot title OUTLET \\
ABSOLUTE TOTAL \\
PRESSURE LOSS
\end{tabular} \\
\hline TITL6(6) & & SVPLOT & plot title MERIDIONAL COORDINATE \\
\hline TITL7(6) & & INPLOT & \begin{tabular}{l}
plot title OUTLET \\
ABSOLUTE WHIRL
\end{tabular} \\
\hline TITL7(2) & & SVPLOT & plot title VELOCITY \\
\hline TITL8(9) & & INPLOT & \begin{tabular}{l}
plot title OUTLET \\
ABSOLUTE TANGENTIAL \\
VELOCITY
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lcc}
Variable name & \begin{tabular}{c}
COMMON \\
block
\end{tabular} & Subroutine
\end{tabular} Description and comments
\begin{tabular}{|c|c|c|c|}
\hline Variable name & COMMON block & Subroutine & Description and comments \\
\hline TITL25(9) , & & INPLOT & \begin{tabular}{l}
plot title TANGENTIAL \\
COORDINATE - \\
RADIUS*THETA
\end{tabular} \\
\hline TLEREF & & TSONIN & \(\theta\)-coordinate of leading edge of blade, relative to TSONIC origin (ref. 5), rad \\
\hline TNBL(NPPP,NBLPL) & INPUTT & & input array of blade normal thicknesses, corresponding to ZBL, RBL coordinates, \(m\) \\
\hline TOLER & & MESHO & tolerance used in ROOT calls \\
\hline TOLER . . & & \begin{tabular}{l}
TIPF \\
RHOIPF \\
RHOOPF \\
LAMDAF \\
RVTHTA
\end{tabular} & tolerance for a point close to a spline point \\
\hline TOM(MM, MHTP1) & CALCON & & t-coordinates of orthogonal mesh, m \\
\hline TOP(MHTP1) & & TVELCY & \(T_{o}^{\prime}\) at points along vertical mesh lines, \(K\) \\
\hline TOP & & PRECAL LOSSOM & \(\mathrm{T}_{\mathrm{O}}, \mathrm{K}\) \\
\hline TPP : & & \begin{tabular}{l}
NEWRHO \\
TVELCY \\
OUTPUT
\end{tabular} & T'' at a mesh point, K \\
\hline TPPN & & TVELCY & new \(\mathrm{T}^{\prime \prime}\), K \\
\hline TPPTIP(MM or MHTP1) & & NEWRHO & \(T^{\prime \prime} / T_{i}^{\prime}\) along vertical or horizontal mesh lines \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Variable name & \begin{tabular}{l}
COMMON \\
block
\end{tabular} & Subroutine & Description and comments \\
\hline TRNG & & \begin{tabular}{l}
INPLOT \\
SVPLOT
\end{tabular} & top or upper range of values on a given plot \\
\hline TTEM(NBLPL) & & PRECAL THETOM & temporary storage of \(\theta\)-coordinates, rad \\
\hline TTEREF & & TSONIN & \(\theta\)-coordinate of trailing edge of blade, relative to TSONIC origin (ref. 5), rad \\
\hline TTIP & & \begin{tabular}{l}
VBDRY \\
NEWRHO \\
BLDVEL \\
TVELCY
\end{tabular} & T/ \(\mathrm{T}_{i}\) \\
\hline TVERT(MHTP1) & & NEWRHO BLDVEL OUTPUT TVELCY & temporary storage for values from TOM array on a vertical mesh line, m \\
\hline TWLMR(MHTP1) & & TVELCY & \(2 \omega \lambda-(\omega r)^{2}\) at points along vertical mesh lines, \(\mathrm{m}^{2} / \mathrm{sec}^{2}\) \\
\hline TWLMR & & \begin{tabular}{l}
VBDRY \\
NEWRHO \\
BLDVEL
\end{tabular} & \(2 \omega \lambda-(\omega r)^{2}, \mathrm{~m}^{2} / \mathrm{sec}^{2}\) \\
\hline UBDEV & & INDEV & deviation angle, neglecting blockage correction, where horizontal orthogonal intersects blade, \(\left(\beta_{f s}-\beta_{b}\right)_{\text {te }}\), deg \\
\hline UBINC & & INDEV & incidence angle, neglecting blockage correction, where horizontal orthogonal intersects blade, \(\left(\beta_{f s}-\beta_{b}\right)_{l e}\), deg \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Variable name & \begin{tabular}{l}
COMMON \\
block
\end{tabular} & Subroutine & Description and comments \\
\hline VTHIN(NIN) & INPUTT & & input values of \(\left(\mathrm{V}_{\theta}\right)_{i}\) at points along line from hub to shroud on which upstream flow conditions are given, \(\mathrm{m} / \mathrm{sec}\) \\
\hline VTHOUT(NOUT) & INPUTT & & input values of \(\left(\mathrm{V}_{\theta}\right)_{0}\) at points along line from hub to shroud on which downstream flow conditions are given, \(\mathrm{m} / \mathrm{sec}\) \\
\hline W(MM, MHTP1) & VARCOM & & W at orthogonal mesh points, \(\mathrm{m} / \mathrm{sec}\) \\
\hline WAS & & \begin{tabular}{l}
VBDRY \\
TVELCY
\end{tabular} & first estimate of \(W_{j+1}\) at next mesh point along vertical mesh line (eq. (1)), \(\mathrm{W}_{\mathrm{j}+1}^{*}, \mathrm{~m} / \mathrm{sec}\) \\
\hline WASS & & \begin{tabular}{l}
VBDRY \\
TVELCY
\end{tabular} & second estimate of \(\mathrm{W}_{\mathrm{j}+1}\) at next mesh point along vertical mesh line (eq. (1)), \(\mathrm{w}_{\mathrm{j}+1}^{* *}, \mathrm{~m} / \mathrm{sec}\) \\
\hline WBDRY(MHTP1) & & VBDRY & W on upstream or downstream boundary of orthogonal mesh, calculated by velocity-gradient equation ((C9), part I), \(\mathrm{m} / \mathrm{sec}\) \\
\hline WFLF & & VBDRY & \begin{tabular}{l}
\[
\left(r^{2}-r_{\text {hub }}^{2}\right) /\left(r_{\text {tip }}^{2}-r_{\text {hub }}^{2}\right)
\] \\
area fraction, estimate of stream function at radius, \(\mathbf{r}\)
\end{tabular} \\
\hline WHIRL & & TVELCY & \[
\lambda \text { or }\left(r V_{\theta}\right)_{o}, \mathrm{~m}^{2} / \mathrm{sec}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\therefore\) Variable name & \begin{tabular}{l}
COMMON \\
block
\end{tabular} & Subroutine & Description and comments \\
\hline WHUB & & \begin{tabular}{l}
VBDRY \\
TVELCY
\end{tabular} & estimate of \(\mathrm{W}_{\text {hub }}\), \(\mathrm{m} / \mathrm{sec}\) \\
\hline WLSSL(MM, NSL) & SLCOM & & \(W_{l}\) at points along streamlines where they cross ver tical mesh lines, \(\mathrm{m} / \mathrm{sec}\) \\
\hline WLSST(NSL, NOSTAT) & STACOM & & \(W_{l}\) at points along station lines where they cross streamlines, \(\mathrm{m} / \mathrm{sec}\) \\
\hline WLSURF(MM, MHTP1) & VARCOM & & \(\mathrm{w}_{l}\) on orthogonal mesh, \(\mathrm{m} / \mathrm{sec}\) \\
\hline WMSL(MM, NSL) & SLCOM & & \(\mathrm{W}_{\mathrm{m}}\) at points where streamlines cross vertical mesh lines, \(\mathrm{m} / \mathrm{sec}\) \\
\hline WMST(NSL, NOSTAT) & STACOM & & \(\mathrm{W}_{\mathrm{m}}\) at points where station lines cross streamlines, \(\mathrm{m} / \mathrm{sec}\) \\
\hline WMVERT(MHTP1) & & TVELCY & temporary storage for values from WSUBM array on vertical mesh lines, \(\mathrm{m} / \mathrm{sec}\) \\
\hline WRSL(MM, NSL & SLCOM & & \(\mathrm{W}_{\mathrm{r}}\) at points where streamlines cross vertical mesh lines, \(\mathrm{m} / \mathrm{sec}\) \\
\hline WRST(NSL, NOSTAT) & STACOM & & \(\mathrm{W}_{\mathrm{r}}\) at points where station lines cross streamlines, \(\mathrm{m} / \mathrm{sec}\) \\
\hline WSL(MM, NSL) & SLCOM & & W at points where streamlines cross vertical mesh lines, \(\mathrm{m} / \mathrm{sec}\) \\
\hline WSM & & VBDRY & \(\mathrm{W}_{\mathrm{S}}\) at mean radius, m/sec \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Variable name & \begin{tabular}{l}
COMMON \\
block
\end{tabular} & Subroutine & Description and comments \\
\hline WSQ & & \begin{tabular}{l}
VBDRY \\
NEWRHO \\
TVELCY
\end{tabular} & \(\mathrm{w}^{2}, \mathrm{~m}^{2} / \mathrm{sec}^{2}\) \\
\hline WSQ & & BLDVEL & \[
\mathrm{w}_{l}^{2} \text { or } \mathrm{w}_{\mathrm{tr}}^{2}, \mathrm{~m}^{2} / \mathrm{sec}^{2}
\] \\
\hline WST(NSL, NOSTAT) & STACOM & & W at points where station lines cross streamlines, \(\mathrm{m} / \mathrm{sec}\) \\
\hline WSUBM(MM, MHTP1) & VARCOM & & \(\mathrm{W}_{\mathrm{m}}\) at orthogonal mesh points, m/sec \\
\hline WSUBR(MM, MHTP1) & VARCOM & & \(W_{r}\) at orthogonal mesh points, \(\mathrm{m} / \mathrm{sec}\) \\
\hline WSUBS(MM, MHTP1) & VARCOM & & \(\mathrm{W}_{\mathrm{s}}\) at orthogonal mesh points, \(\mathrm{m} / \mathrm{sec}\) \\
\hline WSUBT(MM, MHTP1) & VARCOM & & \(\mathrm{W}_{\mathrm{t}}\) at orthogonal mesh. points, \(\mathrm{m} / \mathrm{sec}\) \\
\hline WSUBZ(MM, MHTP1) & VARCOM & & \(W_{z}\) ât orthogonal mesh points, \(\mathrm{m} / \mathrm{sec}\) \\
\hline WTEMP & & NEWRHO & new calculated value of \(W\) at a mesh point, \(\mathrm{m} / \mathrm{sec}\) \\
\hline WTFL & & TSONIN & mass flow per blade in a stream sheet, \(\mathrm{kg} / \mathrm{sec}\), input to TSONIC (ref., 5) \\
\hline WTH(MM, MHTP1) & VARCOM & & \(\mathrm{W}_{\theta}\) at orthogonal mesh points, m/sec \\
\hline WTHETA & & \begin{tabular}{l}
VBDRY \\
TVELCY
\end{tabular} & \(\mathrm{w}_{\theta}, \mathrm{m} / \mathrm{sec}\) \\
\hline WTHSL(MM,NSL) & SLCOM & & \(\mathrm{W}_{\theta}\) at points where streamlines cross vertical mesh lines, \(\mathrm{m} / \mathrm{sec}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Variable name & \begin{tabular}{l}
COMMON \\
block
\end{tabular} & Subroutine & Description and comments \\
\hline XIOMT & & NEWRHO & new estimated value of \(\xi\) at a mesh point \\
\hline XNEW & & NEWRHO & percentage of new calculated value of XIOMT used in updating XIOM \\
\hline Z & & CROSCD & reference z -coordinate, m \\
\hline Z1 & & MESHO & z-coordinate of intersection of line (1), fig. 8, with upper horizontal mesh line, \(m\) \\
\hline Z2 & & MESHO & z -coordinate of intersection of line (2), fig. 8, with upper horizontal mesh line, \(m\) \\
\hline ZBL(NPPP,NBLPL) & INPUTT & & input array of z -coordinates of points describing blade surface, m \\
\hline ZBLTEM(NBLPL) & & OUTPUT & temporary storage for values in ZLE and ZTE arrays, m \\
\hline ZEROM & & OUTPUT & translation distance on m -coordinate so that \(\mathrm{m}=0\) corresponds to \(\mathrm{z}=0, \mathrm{~m}\) \\
\hline ZETOM(MM, MHTP1) & VARCOM & & \(\zeta\) at orthogonal mesh points (eq. (A3)), m/sec \({ }^{2}\) \\
\hline ZETOMT & & NEWRHO & new estimated value of \(\zeta\) at a mesh point \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Variable name & \begin{tabular}{l}
COMMON \\
block
\end{tabular} & Subroutine & Description and comments \\
\hline ZLEOM(MHTP1) & CALCON & & z -coordinates of intersections of horizontal mesh lines with blade leading edge, m \\
\hline ZLESL & & TSONIN & \(z\)-coordinate of intersection of a streamline with leading edge of blade, m \\
\hline ZLET & & PRECAL & z -coordinate of intersection of leading edge of blade with shroud profile, m \\
\hline ZLPLT(100) & PLTCOM & & z-coordinates used for plotting blade leading edge, ZLE, in MEPLOT, m \\
\hline ZLRNG & PLTCOM & & \(z\)-coordinate of left-hand boundary of a plot of meridional plane or orthogonal mesh, done in MEPLOT, m \\
\hline ZNEW & & NEWRHO & percentage of new calculated value of ZETOMT used in updating ZETOM \\
\hline ZOLOM & & RVTHTA & z -coordinate corresponding to ROLOM \\
\hline ZOM(MM, MHTP1) & CALCON & & z -coordinates of orthogonal mesh, m \\
\hline ZOMBI & INPUTT & & input z -coordinate of intersection of vertical mesh line with hub profile where first change in mesh spacing occurs (MBI), m \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Variable name & \begin{tabular}{l}
COMMON \\
block
\end{tabular} & Subroutine & Description and comments \\
\hline ZOMBO & INPUTT & & input \(z\)-coordinate of intersection of vertical mesh line with hub profile where second change in mesh spacing occurs (MBO), m \\
\hline ZOMIN & INPUTT & & input z -coordinate of inter section of left boundary of orthogonal mesh with hub profile, m \\
\hline ZOMOUT & INPUTT & & input z -coordinate of inter section of right boundary of orthogonal mesh (MM) with hub profile, m \\
\hline ZPC(11,NBLPL) & INDCOM & & z-coordinates of points of alternate mesh (fig. 26) \\
\hline ZRRNG & PLTCOM & & z-coordinate of right-hand boundary of a plot of meridional plane or orthogonal mesh, done in MEPLOT, m \\
\hline ZSL(MM, NSL) & SLCOM & & z -coordinates of points where streamlines cross vertical mesh lines, m \\
\hline ZSLTEM(NSL) & & OUTPUT & temporary storage for calculated values to be put into ZSL array, m \\
\hline ZSPL & & ILETE & z-coordinate on leading or trailing edge of blade corresponding to a streamline, \(m\) \\
\hline ZSPLT(100) & PLTCOM & & z-coordinates used for plotting shroud profile, ZTIP, in MEPLOT, \(m\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Variable name & \begin{tabular}{l}
COMMON \\
block
\end{tabular} & Subroutine & Description and comments \\
\hline ZST(NSL, NOSTAT) & STACOM & & z -coordinates of points where station lines cross streamlines, m \\
\hline ZTE(NBLPL) & CALCON & & \(z\)-coordinates of input blade section points (from ZBL) defining trailing edge of blade, m \\
\hline ZTEH & & PRECAL & z -coordinate of intersection of trailing edge of blade with hub profile, m \\
\hline ZTEM(10) & & INPUT & temporary storage for z-coordinate, m \\
\hline ZTEM (MM) & & MEPLOT & temporary storage of z-coordinates from ZOM for plotting, \(m\) \\
\hline ZTEM(NBLPL) & & THETOM & temporary storage of z-coordinates from ZPC, m \\
\hline ZTEM(MHTP1 or NOSTAT or 20) & & OUTPUT & temporary storage for values from ZOM array on vertical mesh lines; also temporary storage for values from ZST array along station lines, m \\
\hline ZTEOM(MHTP1) & CALCON & & z-coordinates of intersections of horizontal mesh lines with blade trailing edge, m \\
\hline ZTESL & & TSONIN & z -coordinate of intersection of a streamline with trailing edge of blade, \(m\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Variable name & \begin{tabular}{l}
COMMON \\
block
\end{tabular} & Subroutine & Description and comments \\
\hline ZTET & & PRECAL & z -coordinate of intersection of trailing edge of blade with shroud profile, m \\
\hline ZTIN & INPUTT & & input z -coordinate of intersection of line on which upstream flow conditions are given with shroud profile, m \\
\hline ZTIP(NTIP) & INPUTT & & input z-coordinates of points defining shroud or top boundary of flow channel, m \\
\hline ZTOUT & INPUTT & & input z -coordinate of intersection of line on which downstream flow conditions are given with shroud profile, m \\
\hline ZTPLT(100) & PLTCOM & & z-coordinate used for plotting blade trailing edge, ZTE, in MEPLOT, m \\
\hline ZTST(NOSTAT) & INPUTT & & input z -coordinates of intersections of hub-shroud output station lines with shroud profile, m \\
\hline
\end{tabular}
```

            COMMON SRW,SRE,ITER,IEND,NREAD,NWRIT
            CCNMCN/INPITTT/GAM, AR,MS FL,OMEGA,REDFAC,VELTOL, FNEW, DNEW,MBI,MBO,
            MM, MHT, NRL, NHUR,NTIP,NIN,NCUT,NBLPL,NPPP,NOST AT,NSL, LSFR,
            L.TPL, LAMVT,IMESH,ISLINE,ISTATL,IPECT, ISUPER,ITSON,IDERUG*
            IOMIN, ZONPI, 7CNRC, TOMOUT, ZHIN, IT IN, ZHOUT, TTOUT, IHUR(50),
                RHUR(50), ITIP(50), RTIP(50),SFIN(50), RADIN(50),TIP(50),PRIP(50).
                LAMIN(50), VTHIN(50), SFOUT(50), RAOOUT(50),PROP(50),LOSOUT(50).
    6 LAMOUT(50).VTHOUT (50), 2HST (50), 2TST(50), FLFR(50),
    7 7RL(50,50),RRL(50,50),THBL(50,50),TNBL(50,50)
        EXTERNAL TIPF,TOPF,RHOIPF,RHOOPF,LAMDAF,RVTHTA
        INTEGER SRW,SRE
        10 IEND= -1
            ITER=0
    C
C--READ ANO PLOT INPUT DATA
CALL INPUT
CALL INPLDT
C
C--CENERATE ORTHOGONAL MESH
CALL MESHO
C
C--CALCULATE ALL PREL IMINARY FIXED CONSTANTS
CALL PRECAL
C
C--PLOT ORTHOGONAL MESH
CALL MEPLOT
C
C--CALCULATE STREAM FUNCTION ON UPSTREAM AND DOWNSTREAM
C--ROUNCARIES OF THE ORTHOGONAL MESF
CALL VBDRY(I, TIPF,RHOIPF ,LANDAF)
CALL VRDRY(MM,TOPF,RHOOPF,RVTHTA)
C
C--CALCULATE COEFFICIENTS, SOLVE DIFFERENTIAL EQUATICNS FOR STREAM
C--FUNCTION, ANC COMPUTE NEW VELOCITIES AND DENSITIES
CALL INIT
20 ITER = ITER+1
CALL CCEF
CALL SER
CALL NENRHO
C
C--CALCIJLAYE AND PRINT mAjOR DUTPUT DATA
CALL DUTPUT
CALL INDEV
C
C--fLCT STREAMLINES ANC PLOT VELOCITIES
CALL SLPLOT
CALL SVPLOT
IF (IEND.LT.O) GC TO 20
IF (REDFAC.EO.I.O) GO TO 10
C
C--CBTAIN TRANSONIC SCLUTION WITH FULL MASS FLOW
30 CALL TVELCY
IF IISUPER.EQ.2) CO TO 10
REDFAC = 1.0

```
```

        CALL TCUTPT
        CALL INDEV
        CALL SLPLOT
        CALL SVPLOT
        IF (ISUPER.EQ.O) EE TO 10
        ISUPER = 0
        CC TE 30
        FAO
    SURROUTINE INPUT
    C
C--INPUT READS ANO PRINTS ALL INPUT CATA CARDS
C
CCMMCN SRW,SRE, ITER,IENC,NREAC,NWRIT
CENMDN/INPUTT/GAM,AR,MSFL,OMEGA, REDFAC,VELTOL, FNEW,DNEW,MBI,MBO,
MM,MHT,NBL,NHUB,NTIP,NIN,NCLT,NRLPL,NPPP,NCSTAT,NSL,LSFR,
LTPL,LAMVT,IMESH,ISLINE,ISTATL,IPLOT,I SUPER,ITSON,IDEBUG*
7CNIN, ZCNBI, ZCNEO,7CNCUT,ZFIN, ZTIN, ZHOUT, ?TCUT, ZHUE(50),
RHUP(50), TTIP(50),RTIP(50),SFIN(50),RADIN(50),TIP(50),PRIP{50).
LAMIN(50), VTHIN(50), SFOUT(50), RADOUT(50), PROP(50),LOSOUT(5C).
LAMOUT(50), VTHCUT(50), 7HST(50), TTST(50), FLFR(50),
7 RL (50,50),RBL(50,50),THAL(50,50), TNBL(50,5C)
CCMMON/CALCON/MMMI,MHTPI,CP, EXPON,TGROG,PITCH,CURVHI,CURVTI ,
1 CURVHO,CURVTO,RHIN,RTIN,RHCUT,RTCUT,RLEH,RLET,RTEH,RTET,
2 TLE{50), RLE{501,ZTE(50),RTE{50), ZLEOM(101},RLECM(101),
3 SLEOM(101),THLECM(LO1), ZTEON(101), RTEOM(101), STEOM(101),
4 THTEOM(101),ILE{101),ITE(1C1),7OM(100,101),RCN(100,101),
5 SOM(100,101),TOM(100,101), RTH(100+101),DTHOS{100,101).
6 DTHOT(100,101),PLOSS\$100,101),CPHI(100,101%,SFF1(100,101)
COMMON/INTITL/TITLEI(2O)
DIMENSION TTEM(10),RTEM(10), DYOX(10)
REAL MSFL,LAMIN,LAMDUT,LCSOUT
C
C--READ ANC PRINT INPIUT CATA
C
NRFAD = 5
NWRIT = 6
10 WRITE(NWRIT,1000)
READ (NRFAC,1050) (TITLEI(I), I=1,20)
WRITE(NWRIT,1050) (TITLEI(I),I=1,20)
WRITE(NWRIT,1100)
REAO (NREAD,1C3O) GAM,AR,MSFL,CMEGA,REDFAC,VELTCL,FNEH,DNEW
IF (RECFAC.IE.0.) REDFAC=1.0
TF (VELTOL.LE.O.) VELTCL=.OL
IF (FNEW.LE.O.) FNEW=0.5
IF IDNEW.LE.O.) CNEW=0.5
VFLTOL = VELTOL*ANINI(FNEW,ONEW)
WRITE(NWRIT, 1040) GAM, AR,MSFL,OMEGA,REDFAC,VELTOL,FNEW,DNEW
WRITE{NWRIT.1110)
READ INREAD,IO101 MRI,MRO,MM,NHT,NRL,NHUR,NTIP,NIA,NCUT,NBLPL,
INFPP,NOSTAT,NSL
WRTTE(NWRIT,IC2O) NBI,MBE,MM,NHT,NBL,NHUB,NTIP,NIN,NCUT,NBLPL,
1NPPP,NOSTAT,NSL
WPITE(NWRIT,1120)
REAO (NREAD,1010) LSFR,LTPL,LANVT

```
```

    GRTTF(AWRIT,1020) &SFR,LTPL.LAMVT
    WRYTE(NKRIT,1130)
    REAO (NREAD,1030)
    WRITEINWRIT. 1040I
    WRITE(NWRIT,1140)
    REAE (NREAO,1030)
    WRITE(NWRIT,1040)
    WRITE(NWRIT.1150)
    REAN (NREAC,1030)
    *RITE{NWRIT,1040)
    WRITE(NWRIT.1160)
    REAC (NREAC,1030)
    WRITE(NWRTT,1040)
    WRITE{NWRIT,1170)
    READ (NREAD,1030)
    WRITE(NWRIT.1040)
    WRITE\NWRIT,1180)
    REAC (NREAC,1030)
    WRITE(NWRIT,1040)
    IF ILSFR.EO.1) GO
    WRITE(NWRIT,1190)
    READ (NREAD,1030)
    WRITEINWRIT.10401
    GT TE 30
    20 WRITE(NWRIT,1200)
REAN (NREAD, 1030) (RADIN(I),I=1,NIN)
WRITE{NWRIT,1040} (RADIN\II,I=I,NIN)
30 WRITE(NWRIT,1210)
READ (NREAD,10301
WRITE{N\&RIT,1040)
WRITE| NWRIT,1220)
READ (NREAD, 1030) (PRIP(I),I=I,NIN)
WRITEGNWRIT,1040} (PRIP{I\,I=1,NIN)
IF (LAMVT.EQ.1) GO TO 4C
WFITE{NWRIT,1230\
READ (NREAD.1030)
WRITEPNWRIT,1040)
GC TO }5
40 WRITE\NWRIT,1240)
READ (NREAD,1030% \&VTMEN\I|, =1,NIN\
WRITE(NWRIT,1040) (VTHIN{I),I=1,NIN)
C WRITE(NWRIT.1250)
READ (NREAD,103C)
HRITE{NWRIT,1040)
IF (LSFR.EO.1) GO
WRITE(NWR IT.1260)
READ (NREAD.1030)
WRITEINWRIT.10401
GC TC 70
\epsilon0 WRITE\NWRIT,1270)
READ (NREAD,1030)
WRTTE(NWRIT,1040)
70 IF ILTPL.EO.11 GO
WRITEINWRIT.12801
READ (NREAD,1030) (PROP(II,I=1,NOUT)
WRTTEINWRIT,1040% (PROP(I),I=1,NOUT)
CR TC 90
8C WRITE(NKRIT,1290)
READ (NREAO, 1030) (LOSOUT(I),I=1,NOUT)
WFITE(NWRIT,1040) (LOSOUT(I),I=1,NOUT)

```
```

    GO IF (LAMVT.FC.1J Gr T0 100
    WRITE (NWRIT,130C)
    READ (NRFAC,1030) (LAMOUT.II), I=1,NOUT)
    WRITE{NWRIT+104C) (LANCUT(T), T=1,NOUT)
    GO TO 110
    100 WRITE(NWRIT,1310)
    RFAD (NREAD,1030) (VTHOUTYI),I=1,N(UUT)
    WRITE(NWRIT,1040) (VTHOUTII),I=1,NOUT)
    11C WRITE(NWRIT,1320)
    DO 120 JN=1,NRLPL
    READ (NREAD,1030) (TBL(IN,JNY,IN=1,NPPP)
    120 HPITE(NWRIT,1040)
    WRT TE NWRIT, 1330)
    CC. 130 JN=1,NBLPI.
    READ (NREAD,1030)
    130 WRITE(NWRIT.1040)
    WRITE(NWRIT.1340)
    DC 140 JN=1,NRLFL
    READ (NREAC,1030) (THBL(IN,JN),IN=1,NPPP)
    140 WRITE(NWRIT.1040)
    WRITE(NHRIT,1350)
    DO 150 JN=1,NRLPL
    REAC (NREAC,1030) (TNRL(IN,JN),IN=1,NPPP)
    150 WRITE{NWRIT,1040) (TNRL(IN,JN) I IN=1,NPPP)
    IF (NOSTAT.EO.O) GO TO 160
    WRITE{NWRTT,1360)
    READ (NREAD,1030) (ZHSTII},I=1,NCSTAT)
    WRITE{NWRIT,1040) (ZHST(I), I= 1,NOSTAT)
    *RITE(NWRIT.1370)
    READ (NREAD,1030) (2TST\I),I=1,NOSTAT)
    WRITE{NWRIT,1040) {ITST{I|,I=1,NOSTAT|
    160 IF (NSL.EQ.0) GO TO 170
    WRITEINWRIT,1380)
    REAO (NREAC,1030) (FLFR(I),I=1,NSL)
    WRITE(NWRIT,1040) (FLFRII).I=1,NSL)
    170 WRITE(NWRIT,1390)
    READ (NREAN,1010) IMESH,ISLINE,ISTATL,IPLOT,ISUPER,ITSON,IDEBUG
    WRITE(NWRIT,1020) IMESH,ISLINE,ISTATL.IFLOT,ISUPER,ITSON, IDEQUJG
    WRITEINWRIT,1000)
    IF {NM.LE.100.AND.MHT.LE.100.AND.NHHE.LE.50.AND.NTIP.LE.SO.AND.
    ININ.LE. 50.AND.NOUT.LE. 5C.AND.NPLPL.LE.50.AND.NPPF.LE.5O.AND.
    2NCSTAT.LE.50.ANC.NSL.LE.50.AND.LSFR.GE.O.AND.LSFR.LE. 1.AND.
    3LTPL.GE.O.AND.LTPL.LE.L.AND.LAMVT.GE.O.AND.LAMVT LEE.IV GO TO 180
    WRITE{NWRIT,1400)
    STOP
    C
C--CALCULATE MISCELLANEOUS CONSTANTS
C
1PO MMM1 = MM-1
M+TPI= MHT +1
EXPCN= 1./(GAM-1.1
CP = AR GA N\#E XPON
TCROG= 2.*RAM*AR/(GAM+1.)
PITCH= 2.*3.1415927/FLOAT(NBL)
MSFL = MSFL/FLOAT(NBL)
C
C--ASSUNE VALUES FOR IHIN,ITIN, ZHOUT,AND ZTOUT
C--IF THEY WERE NOT GIVEN AS INPUT
C

```
```

            IF (LSFR.EC.I) CO TO 200
            IF ITHIN.NF.O..OR.ITIN.NE.O.1 GC TO 190
            7HIN = 7חM IN
            7TIN = 7OMIN
    1CC IF ITHOUT.NE.O..ER.ZTOUT.NE.O.I GE TC 200
    7HOUT = ZOMOUT
    7TCUT = 7.OMCUT
    C
C--CALCULATE ESTIMATED UPSTREAM AND COWNSTREAM VALUES CF
C--STREAN FUNCTIIEN, IF RACIUS WAS GIVEN AS INPUT
C
2CO 7TEM(1)= 2HIN
ZTEM(2)= IHCUT
CALL SPLINT{ZHUR,RHUB,NHUB,ZTEM,2, RTEM, OYDX)
RHIN= RTEM{1}
RHOUT= RTEM(2)
7TEM(1)= YTIN
7TEM(2)= 2TOUT
CALL SPLINT (TTIP,RTIP,NTIP, ITEM,2,RTEM,DYDX)
RTIN= RTEM(1)
RTOUT= RTEM{2)
RINSG=RTIN**2-RHIN**2
ROUTSO = RTOUT**2-RHOUT**2
IF ILSFR.EO.OI GO TO 230
OO 210 J=1,NIN
210 SFIN(J) = (RADIN(J)**2-RHIN**2I/RINSO
DC 220 J=1, NOUT
220 SFOUT(J) = (RADCUT (J)**2-RHOUT**2)/ROUTSO
GO TO 260
C
C--CALCULATE ESTIMATED UPSTREAN ANC CONNSTREAM VALUES OF
C--RADIUS, IF STREAM FUNCTION WAS GIVEN AS INPUT
C
230 DC 240 J=1,NIN
240 RADIN(J) = SQRT(RHIN**2+SFIN(J)*RINSC)
CO 250 J=1,NOUT
250 RACOUT(J)=SCRT{RHOUT**2+SFCUT(J)*ROUTSO)
C
C--CALCULATE ESTIMATEL UPSTREAM AND OOWNSTREAM TANGENTIAL VELOCITIES.
C-IF WHIRL WAS GIVEN AS INPUT
C
260 IF PLAMVT.EQ.1) GO TO 290
OO 270 J=1,NIN
270 VTHIN(J) = LAMIN(J)/RADIN(J)
DC 29O j=1. NOUT
2\&OVTHOUR(J) = LAMCUTPJ)/RADOUT(J)
IF (LSFR.EQ.1) LAMVT=1
RETURN
C
C--CALCUR ATE ESTIMATED UPSTREAM AND DOWNSTREAM WHIRL.
C--IF TANGENTIAL VELOCITY WAS GIVEN AS INPUT
C
2G0 DO 300 J=1,NIN
300 LAMIA(J) = RADIN{J\*VTHIN(J)
DC 310 J=1,NOUT
310 LAMOUT(J) = RADOUT(JI*VTHOUTP J)
C
C--FORMAT STATEMENTS
C

```

1000
1 CIO FRRMAT 11615
1020 FORMAT \(\{2 \mathrm{X}, 16(2 \mathrm{X}, \mathrm{I} 5)\}\)
1030 FERMAT (8F10.5)
1040 FCRMAT (1X,8G16.7)
1050 FORMAT (20A4)
1100 FCRMAT \(/ / / / 4 X, 2\) OHEENERAL INPIUT DATA/7X, 3HGAM, \(14 X, 2 H A R, 13 X\),
\(14 \mathrm{HMSFL}, 11 \mathrm{X}, 5 \mathrm{HOMEGA}, 11 \mathrm{X}, 6 \mathrm{HREDFAC}, 10 \mathrm{X}, 6 \mathrm{HVELTCL}, 10 \mathrm{X}, 4 \mathrm{FFNEW}, 11 \mathrm{X}\),
24HCNEW)
1110 FCRNAT \(195 \mu \quad \therefore\) MBI MBI : MM MHT NBL NHUB NTIP
1 NIN NOUT NBLPL NPPP NCSTAT NSL)
1120 FORMAT (25 H LSFR LTPL LAMVT)
1130 FCRMAT \(/ / / / 4 X, 29 H H U B\) AND SHRCUB INPUT EATA/7X.5HZOMIN. \(11 X\),
\(15 \mathrm{HZOMBI}, 11 \mathrm{X}, 5 \mathrm{H} 7 \mathrm{CMBO}, 10 \mathrm{X}, 6 \mathrm{HZCNCUT})\)
1140 FORMAT \((7 X, 11 H 7\) HUB ARRAY)
1150 FCRMAT (\(7 X, 11 H R H U R\) ARRAY)
11 © FORMAT \((7 X, 11 H\) TTIP ARRAY)
1170 FORMAT (TX, IIHRTIP ARRAYI
1180 FRRMAT \(/ / / / 4 X, 21 H U P S T R E A M\) INFUT CATA/7X,4HZHIN,11X,4HZTINI
1190 FORMAT (\(7 \mathrm{X}, 1 \mathrm{IHSFIN}\) ARRAY)
1200 FCRMAT \((7 X, 12 H R A C I N\) ARRAY)
1210 FCRMAT (\(7 \mathrm{X}, 1\) OHTIP ARRAY)
1220 FORMAT (\(7 \mathrm{X}, 11\) HPRIP ARRAY)
1230 FCRNAT (\(7 \mathrm{X}, 12\) HL AM IN ARRAY)
1240 FCRNAT (\(7 \mathrm{X}, 12\) HVTHIN ARRAY)
1250 FORMAT (///4X, 23HDOWNSTREAM INPUT DATA/7X,5HZHCUT,IOX,5HZTCUT)
1260 FCRMAT \(17 X, 12 H S F O U T\) ARRAY
1270 FORMAT \((7 \times, 13 H R A D C U T\) ARRAY)
1280 FORMAT \((7 \mathrm{X}, 11\) HPROP ARRAY)
1290 FERMAT (\(7 \times 13\) HLCSCUT ARRAY)
1300 FORMAT (\(7 \times 13\), 13 LAMCUT ARRAY)
1310 FORMAT \{TX, \(13 H V T H O U Y:\) ARRAY)
1320 FCRMAT \(/ / / / 4 X, 54 H 8 L A D E\) MEAN CAMBER LINE ANC THICKNESS INPUT
1 [ATA/7X,10H7RL ARRAYI
1330 FORMAT (\(7 \mathrm{X}, 10 H\) RBL ARRAY)
1340 FORMAT \((7 \times, 11 H T H B L\) ARRAY)
1350 FORMAT (\(7 \mathrm{X}, 11 H T N B L\) ARRAV)
1360 FCRMAT \(/ / / / 4 X\) - 31 HCUTPITT STATICN LOCATIDN CATA/7X, \(11 H Z H S T\) - ARRAY 1)

1370 FORMAT 17 X , 11H7TST ARRAY)
\(13 E 0\) FORMAT \(/ / / / 4 X, 4 O H O U T P I T T\) STREAMLINE FLOW FRACT ION DATA/7X,IIHFL IFR ARRAY)
1390 FGRMAT \(/ / / / 4 X, 2 B H O U T P U T\) PRINT CONTROL DATA/EX, \(48 H I M E S H\) ISLINE. IISTATL IPLOT ISUPER ITSON ICEBUGI
1400 FOPMAT \(194 \mathrm{H} 1 \mathrm{MM}, \mathrm{MHT}, \mathrm{NHUR}, \mathrm{NTIP}, N I N, N O U T, N B L P L, N P P F, N C S T A T, N S L, L S F R\), 1LTPL, ER LAMVT IS TOO LARGE OR TOO SMALL) RETURN
ENE

C
C-INPLOT PLOTS THE UPSTREAM AND DONNSTREAM INPUT FLOW VARIABLES C--AS WELL AS THE INPUT BLADE SECTICNS FROM HUB:TO SHROUD
C

COMMTN/ INPUTT/GAM,AR,MSFL, OMEGA,REDFAC, VELTOL,FNEW,ONEW,MBI, MBO,
1 MM, MHT, NBL, NHIIA, NT ID,NIN, NCUT, NBLPL,NPPP, NOSTAT,NSL, LSSR ,
2 LTPL,LAMVT, IMESH,I SLINE, ISTATL, IFLQT,ISUPER, ITSCN,IDEQUG,
3 TOMIN, ZCMBI, ZOMED, ZOMOUT, ZHIN,ZTIN,ZHOUT,ZTCUT, ZHUB(50),
4 RHUR(50),7TIP(50),RTIP(50),SFIN(50), RADIN(50),TIP(50),PRIP(50),
5 LAMIN(50), VTHIN(50), SFOUT (5C), RADCUT (50), PR (P (50), LOS CUT (50),
6 LAMOUTP(50), VTHOUT(50), ZWST(50), TTST(50),FLFR(SO),
\(7 \quad 7 \mathrm{BL}(50,50), \operatorname{RBL}(50,50)\), THBL \((50,50)\), TNAL \((50,50)\)
COMMON/CALCON/MMM 1,MHTP1,CP, E XPON, TGROG, PITCH, CURVHI, CURVTI,
1 CURVHO, CURVTC, RHIN, RT IN, RHOUT, RTDUT, RLEH, RLET, RTEH,RTET,
2 TLE(50), RLE(50), TTE(50), RTE(50), ZLEOM(101), RLEOM(101),
3 SLEOM(101), THLEOM(101), 2 TECM(101),RTEOM(101), STEOM(101),
4 THTEQM(101),ILE(101), ITE(101), \(70 \mathrm{M}(100,101)\), ROM(100,101),
5 SSMA 100,1011 , TOMY 100,101\()\), BTH(100,101), DTHES(100,101),
6 DTHDT(100. 101), PLOSS(100, 101), CPHI(100,101), SPHI(100,101) COMMEN/INTITL/TITLEI(2O)
DIMENSION NBL \((50,50), R T H B L(50,50)\), STHPL \((50,50)\), PTHPL \((50,50)\), RRTHEL (50,50), SSTHAL \(\mathbf{~ 5 0 , 5 0 1 , P P T H B L ~} 150,50)\), DTHDM(50), ANG(50), PLTX(101), PLTY\{101), GRAC(101), TITL1(9), TITL2(8), TITL3(5), TITL4(9), TITL5(8), TITL6(9), TITLT(6), TITL8(9), TITL10(13), TITL11(6), TITL12(6), TITL13(4), TITL14(2), TITL15(5), TITLI6(5), TITLI7(5), TITL18(5), TITL19(5), TITL 20(5), TITL21(5), IITL22(5), TITL24(10), TITL25(9)
real mblilamin,lamout, los Cut, Lrng
DATA TITLI/' INL','ET A','BSCL',"UTE ', 'TOTA",'L TE', 'MPER', "ATUR* 1, 'E \(1 /\)
 1/
CATA TITL3/'INLE', 'T AB', 'SOLU', 'TE W', HHRL'/
 1, 'TY \(1 /\)
DATA TITLS/'CUYL",'ET A', 'BSOL', 'UTE ', 'TOTA','L PR', 'ESSU', 'RE \(1 /\)
 1.00ss \(1 /\)

DATA TIYL7/'DUTL•, 'ET A','BSOL','UTE ", 'WHIR', 'L "/
DATA TITLB/'NUTL', 'ET A', 'RSOL', 'UTE ', 'TANG', 'ENTI','AL V', "ELOC'
1, "ITY \(\%\)

DATA TITLI2/'COMB','INED'," BLA'.'DE S','ECTI','CNS '/
OATA TITLI3/'STRE', \({ }^{\circ} A M\) FO, 'UNCT', 'ION of
DATA TITL14/' RA'. DIUS'/

DATA YITLIG/'INPU','T AR', 'RAY ',' - PR', 'ID \(1 /\)

OATA TITL18/'INPU','T AR', 'RAY ',"- VT','HIN ",
DATA TITLIO/'INPU','T AR','RAY ',' - PR','OP \(1 /\)
DATA TITL 20/'INPU','T AR','RAY •,'- LOP 'SOUT'/
DATA TITL21/'INPU','T AR', 'RAY ', "- LA','MOUT'/
DATA TITL22/'INDU','T AR','RAY ',"- VT',"HCUT'/

1'CCOR', DINA', 'TE \(/\)

1'US*T', 'HETA'/
DATA ELNK/! \(\quad /\)
DATA SYM/'X'/
IF (IPLOTALE.O) RETURN
```

    CAIL LRSIZE{0.0.20.0.0.0,10.0)
    CALL LRCHST(4)
    CALL LRLEGNITITLEI,80.0.1.0,5.0,1.0)
    CALL LRCHSz12)
    CALL LRSIZEI0.0,10.0.0.0.10.0)
    CALL LRMDN
    CALL LRXLEGIBLNK,1)
    CALL LRMOFF
    c
C--PREPARE FOR PLOTTINE DF INLET CONOITIONS
C
IF (LSFR.EQ.1) GO TO 20
PLTY(1) = SFIN(1)
PLTY(101) = SFINININ)
DEL = (SFIN(NIN)-SFIN(1)\/100.
OC 10 J=2,100
10 PLTY(J) = PLTY(J-1)+DEL
BRNG = AMINI(SFIN(1),SFDUT(1))
TRNG = AMAXI(SFIN(NIN),SFOUT(NCUT))
GO TO 40
20 PLTY(1) = RADIN(1)
PLTY(101) = RADINENIN)
DEL = (RADIN(NIN:-RADIN(1))/100.
DC 30 J=2,100
30 PLTY(J) = PLTY(J-1)+DEL
BRNG = AMINl(RADIN(1),RADOUT(1))
TRNG = AMAXI(RADINININ),RADOUT(NOUTI:
c
C--plot inlet absolute total temperature
C
40 LRNG = TIP(1)
RRNG = TIP{1)
DC 50 J=1,NIN
LRNG = AMINIILRNG,TIP(JI)
50 RRNG = AMAXI(RRNG.TIP(J))
CALL LRMRGN(1.0,1.0,2.0,1.0)
CALL LRANGE(LRNG,RRNG,BRNG,TRNG)
CALL LRGRID(1,1,11.0,11.0)
CALL LRCHS7(4)
CALL LRLEGN(TITLI,36,0;1,0,0.5;0.0)
CALL LRCHS 2(2)
CALL LRLEGN(TITL15,20,0,4.0,1,3,0.0)
IF (LSFR.EQ.0) CALL LRLEGN(TITL13,16,1,0.2,4.2,0.0)
IF (LSFR.EQ.1) CALL LRLEGN(TITL14;8,1,0.2,4.7,0.0)
CALL LRCHSZ(4)
IF (LSFR.EO.O) CALL SPLINTY SFIN,TIP,NIN,PLTY,101,FLTX,GRAD)
IF (LSFR.EQ.1) CALL SPLINT(RACIN,TIP,NIN,PLTY,101,PLTX,GRAD)
CALL LRCURVIPLTX,PLTY,101,2,SYN,0.01
IF ILSFR.EQ.01 CALL LRCURV(TIP,SFIN,NIN,4,SYN,1.0)
IF (LSFR.EQ.1) CALL LRCURVITIP,RA[IN,NIN,4,SYM,1.0)
C
C--pLOT INLET ABSOLUTE TOTAL PRESSURE
c
LRNG = PRIP{1)
RRNG = PRIP(1)
OC 60 J=1,NIN

```
```

    LRNG = AMINI\LRNG,PRIP\J\)
    60 RRNG = AMAXI{RRNG,PRIP{J)}
    CALL LRANGE (TRNG&RRNG&RRNG,TRNE:
    CALL LRLEGNTTITL2,32,0,1.6.0.5,0.0)
    CALI. LRCHS7(2)
    CALL LRLEGN(TITL16,20,0,4.0,1,3,0.0)
    IF (LSFR.EG.0) CALL LRLEGN(TITLI3.16,1,0.2,4.2,0.0)
    IF (LSFR.EG.1) CALL LRLEGN(TITL14,8,1,0.2,4.7.0.C)
    CALL LRCHS7(4)
    IF (LSFR.EO.O) CALL SPLINT(SFIN,PRIP,NIN,PLTY,101,PLTX,GRAD)
    IF (LSFR.EQ.I) CALL SPLINTYRADIN,PRIP,NIN,PLTY,IOI,PLTX,GRADI
    CALL LRCURV(PLTX,PLTY,101,2,SY*,0.0)
    IF (LSFR.EQ.0) CALL LRCURVIPRIP,SFIN,NIN,4,SYM,1.0)
    IF (LSFR.EG.I\ CALL LRCURVIPRIP,RADIN,NIN,4,SYM,1.0I
    C
C--FLOT INLET ABSOLUTE WHIRL
C
IF (LAMVT.EO.1) GO TO 80
LRNG = LAM IN{1]
RRNG = LAMIN\1I
DO 70 J=1,NIN
LRNG = AMINI(LRNG.LAMIN(J))
70 RRNG = AMAXI(RRNG,LAMINPJ))
CALL LRANGE \LRNG,RRNG,RRNG,TRNG)
CALL LRLEGN(TITL3,20,0,2.5,0.5,0.0)
CALL LRCHSZ(2)
CALL LRLEGN(TITL17,20,0,4.0,1.3,0.0)
IF (LSFR.EC.O) CALL LRLEGN(TITLI3,16,1,0.2,4.2,0.0)
IF (LSFR.FO.1) CALL LRLEGN(TITLI4,8,1,0.2.4.7,0.0)
CALL LRCHS \ (4)
IF (LSFR.EG.O) CALL SPLINT(SFIN,LAMIN,NIN,PLTY,ICI,PLTX,GRAD)
IF {LSFR.EO.I) CALL SPLINTIRACIN,LANIN,NIN,PLTY,101,PLTX,GRAC)
CALL LRCURV\PLTX,PLTY,101,2,SYM,O.0)
IF (LSFR.EO.OI CALL LRCURVILAMIN,SFIN,NIN,4,SYM,1.0)
IF (LSFR.EO.1) CALL LRCURV(LAMIN,RADIN,NIN,4,SYN,1.0)
GC TC 120
C
COOPLOT INLET ABSOLUTE TANGENTIAL VELOCITY
C
SO RRNG = UTATNALD
RRNG = VTHIN(1)
DO 90 J=1.N IN
LRNG = AM[NI{LRNG,VTHIN(J)]
GO RRNG = AMAXI(RRNG,VTHIN(J))
CALL LRANGE(LRNG, RRNG, BRNG*TRNG)
CALL LRLEGN(TITI4,36,0,1.1,0.5,0.0)
CALL LRCHST(2)
CALL LRLEGN(TITL18,20,0.4.0,1.3,0.0)
IF (LSFR.EQ.0) CALL LRLEGN(TITL13,16,1,0.2,4.2,0.0)
IF (LSFR.EO.1) CALL LRLEGN(TITL14,8,1,0.2,4.7.C.C)
CALL IRCHSZ(4)
IF (LSFR.EO.O) CALL SPLINTISFIN,LAMIN,NIN, PLTY,IOI,PLTX,GRAC)
IF ILSFR.EO.II CALL SPLINT(RADIN,LANIN,NIN,PLTY,ICI,PETX,GRAD)
RINSG = RTIN**2-RHIN**2
DO 100 J=1,101
IF (LSFR.EQ.0) PLTX(J)=PLTX(J)/SORT(RHIN** 2*PLTY(J)*RINSQ)
100 IF (LSFR.EQ.1) PLTX(J)=PLTX(J)/PLTY(J)
CALL LRCURV(PLTX,PLTY,101,2,SYN,C.0)
If (LSFR.ES.O) CALL LRCURVIVTHIN,SFIN,NIN,4,SYN,1.0)

```

IF (LSFR.EO.1) CALL LRCURVYUTHIN,RACIN,NIN,4,5YM,1,0)
```

C
C--PREDARE FOR PLCTTING OF OUTLET CONDITIONS
C
110 IF ILSFR.EQ.1) GO TO 130
PLTY(1) = SFOUT (1)
PLTY(1O1) = SFCUT {NDUTI
DEL = {SFOUTINOUTI-SFOUT(1)//ICO.
DC 120 J=2,100
120 PLTY(J) = PLTY(J-1)+DEL
GO TO 150
130 P{TY(1) = RACCUT(1)
PLTY{101) = RADOUT(NOUT)
DEL = {RADOUT\NOUT\-RADNUTY 1/\/100.
DC 140 J=2.100
140 PLTY(J) = PLTY(J-1)+DEL
C
C--PLOT CUTLET ARSOLUTE TOTAL PRESSURE
C
150 IF (LTPL.EG.1) GO TO 170
LRNG = PRGP(1)
RRNG = PROP{1)
OC 160 J=1, NOUT
LRNG = AMIN1(LRNG,PROP{J)]
160 RRNG = AMAXIIRRNG,PROP(J)I
CALL LRANGE(LRNG,RRNG, BRNG, TRNCI
CALL LRLEGN{TITL5,32,0,1.5,0.5,0.0)
CALL LRCHST(2)
CALL LRLEGNITITL19, 20,0,4.0,1.3,0.0)
IF (LSFR.EQ.0) CALL LRLEGN(TITL13,16,1;0.2,4.2,0.0)
IF (LSFR.EO.1) CALL LRLEGNITITLI4,8,1,0.2,4.7,0.C).
CALL LRCHSZ(4)
IF(ILSFR.EQ.0) CALL SPLINT(SFCUT,PRCP,NCUT, PLTY,IOL,PLTX,GRAC)
IF {LSFR.EO.II CALL SPLINTYRADOUT;PROP,NOUT;PLTY;IOL,PLTX,GRAO\
CALL LRCURY(PLTX,PLTY,101,2,SYN,0.0)
IF (LSFR.FO.O) CALL LRCURVIPRCP;SFOUT,NOUT,4,SYM,1.0)
IF ILSFR.EQ.1) CALL LRCURVIPROP,RADOUT,NOUT,4,SYM,1.0)
GOTO 190
C
C--PLOT DIITLET ABSOLUTE TOTAL PRESSURE LOSS
C
170 LRNG = LOSOUTIIJ
RRNG = LOSOUT(1)
DC 180 J=1,NOUT
LRNG = AMIN1(LRNG,LOSOUT(J))
180 RRNG = AMAXI(RRNG,LOSDUTIJ))
CALL LRANGE ILRNG,RRNG,BRNG,TRNG!
CALL LRLEGN(TITL6,36,0,1.0.0.5,0.0)
CALL LRCHSZ{2)
CALL LRLEGN(TITL20,20,0.4.0,1,3,0.0)
IF (LSFR.EQ.0) CALL LRLEGN\TITL13,16,1,0.2,4.2,0.0)
IF (LSFR.EG.1) CALL LRLEGN(TITLI4,8,1,0.2,4.7,0.C)
CALL LRCHST(4)
IF (LSFR.EQ.O) CALL SPLINTP SFOUT,LOSOUT,NOUT,PLTY,IOL,PLTX,GRACI
IF {LSFR.EO.I) CALL SPLINTYRACOUT,LOSOUT,NOUT, PLTY, 1OL,PLTX,GRAD)
CALL LRCUR V(PLTX,PLTY,101,2,SYN,0.0)
IF (LSFR.EO.0) CALL LRCURVILOSOUT,SFCUT,NCUT,4,SYM,1.0)
IF (LSFR.EG.I) CALL LRCURV (LOSCUT, RACOUT,NOUT; 4,SYM,1.0)

```
```

C
C--fLOT OUTIET ARSOLUTE WHIRL
C
1CCIF (LAMVT.FQ.1) GO TO 210
LRNG = LAMOUTI1)
RRNG = LAMCUT (I)
DO 200 J=1,NOUT
LRNG = AMINI{LRNG,LAMOUT(SI)
200 RRNG = AMAX1(RRNG,LAMOUT(J)|
CALL LRANGEPLRNG,RRNG, BRNG, TRNG)
CALL LRLEGNITITL7,24,0,2.0,0.5,0.01
CALL LRCHST(2)
CALL LRLEGNPTITL21.20,0,4.0.1.3.0.01
IF (LSFR.FQ.O) CALL LRLEGN(TITLI.3,16,1,0.2,4.2,0.0)
IF (LSFR.EO.1) CALL LRLFGNITITL14,8,1.0.2,4.7.0.0)
CALL LRCHS7(4)
IF (LSFR.EG.O) CALL SPLINT(SFCUT,LAMOUT,NOUT,PLTY, 1O1,PLTX,GRAD)
IF (LSFR.EG.1) CALL SPLINT(RACCUT,LANCUT,NCUT,FLTY,1OI,PLTX,GRAC!
CALL LRCURV(PLTX,PLTY,101,2,SYM,0,0)
IF (LSFR,EQ.O) CALL LRCURV(LAMOUT,SFOUT,NOUT,4,SYM,1.0)
IF (LSFR.EG\&1) CALL LRCURV(LAMCUT,RADOUT,NOUT,4,SYN,1.0)
GCTC 240
C
C--PLOT OUTLET ABSOLUTE TANGENTIAL VELOCITY
C
210 LRNG = VTHCUTI1)
RRNG = VTHOUTI1)
OO 220 J=1,NOUT
LRNG = AMINI(LRNG,VTHOUT(I))
220 RRNG = AMAXIIRRNG,VTHCUT(J):
CALL LRANGE{LRNG,RRNG, ERNG,TRNG)
CALL LRLEGNITITL8,36,0,1.0.0.5,0.0)
CALL LRCHST(2)
CALL LRLEGN(TITL22,20,0.4.0,1.3,0.0)
IF (LSFR.EG.O) CALL LRLEGN{TITL13,16,1,0.2,4.2,0.0)
IF (LSFR.EQ.1) CALL LRLEGNITITLI4,8,1,0.2,4.7,C.C)
CALL LRCHS7(4)
IF ILSFR.EO.OS CALL SPLINTISFCUT,LARCUT,NOUT, PLTY, IOI, PLTX,GRADI
IF {LSFR.EO.1\ CALL SPLINTYRADOUT,LAMOUT,NOUT,PLTY,101,PLTX,GRAD)
RCUYSO = RTCUY*\&2-RHOUF**2
DO 230 J=1,101
IF {LSFR.EQ.O! PLTX(J)=PLTX{J)/SORT(RHOUT**2*PLTY(J)*ROUTSQS
230 IF (LSFR.EQ.1) PLTX(J)=FLTX(J)/PLTY(J)
CALL LRCURV(PLTX,PLTY,101,2,SYM,0.0)
IF (LSFR.EC.O) CALL LRCURV(VTHOUT,SFOUT,NOUT,4,SYM,1.0)
IF (LSFR.ES.II CALL LRCURVPVTHCUT,RACOUT,NOUT,4;SYM,1.0)
C
C--flot inPUT BlaCE SECTIONS
C
c--calCllate rlade secticn plct cecreinates along mericidenal plane
240 DC 250 SN=1,NBLPL
NRL(I,JN) = 7RL(I,JN)
OO 250 IN=2,NPPP
250 MRL(IN,JN) = MPL([N-1,JN) +SQRT((ZBL([N,JN)-7BL(IN-1,JN))**2+
1(RRL{IN,JN)-RRL(IN-1,JNI)**2)
C--CALCILLATE TANGENTIAL PLOT COORDINATES
DC 260 JN=1,NALPL
CALL SPLINF(MRL(1,JN), THRL(1,JN),NPPP,DTHCM, ANC)
DELRTH = (RRL(1,JN)+RRL{NPPP,JN))/2.*PITCH

```
```

            OC 260 IN=1,NPPO
            ANR(IN) = ATAN{RBL(IN,JN)*DTHC*{IN)}
            CELT = TNRL(IN,JN)/COS(ANG(IN))
            RTHPL(IN,JN) = RPL({N,JN}#THRL(IN*JN)
            STHRL(TN,JN) = RTHBL(IN,JN} +DELT/2.
            PTHPL(IN,JNI = RTHEL(IN,JN\-CELT/Z.
            RRTHRI\IN,JN)= RTHBL(IN,JN) + EELRTH
            SSTHBL{IN,JN} = STHBL{IN,JN)+DELRTH
    26C PPTHRL(IN,JN)= PTMRL(IN,JN) +EELRTN
    C--CALCULATE RANGE OF PLOTS, AND SET UP FER PLOTTING INCIVICUAL
C--PLADE SECTIONS
LRNG =MBL(1,1)
RRNG = MRL{NPPP,1)
BRNG = PTHPL(1,1)
TRNG = SSTHBL(NPPP,NBLPL)
OC 270 IN=1,NBLPL
LRNG = AMINI{LRNC,MBL(I,JN))
RRNG = AMAXI(RRNG,MBL(NPPP,JN))
DO 270 IN=1.NPPP
BFNG = AMINI(BRNG,PTHBL\IN,JNI)
270 TRNG = AMAXI(TRNG,SSTHBL\IN,JN|)
RRTEM = RRNG
OELLR = RRNG-LRNE
DELRT = TRAG-RRNG
DELRNG = AMAXIPDELLR,DELBT)
RRNG = LRNG+DELRNG
TRNG = BRNG+DELRNG
CALL LRANGE(LRNG,RRNG,BRNG,TRNG)
C--PLOT PLADE SECTIONS AND SHOW SOLIDITY
CALL LRLEGNITITL10,52,0,2.7,0.7,0.01
DO 280 JN=1,NRLPL
CALL LRCHS 7(3)
CALL LRCNVT(SN,1, TITLII(6),1,4,0)
CALL LRLEGN(TITL11,24,0.3.0,9.5,0.0)
CALL LRCHS7(2)
CALL LRLEGN(TITL24,40,0,2.8,1.3,0.0)
CALL LRLFGN(TITL25,36,1,0.2.3.3.0.0)
CALL LRCHSZ(4)
CALL LRCURV(MBL(1,JN),RTHBL(1,JN),NPPP,2;SYM,0.0)
CALL LRCURV(MBL (1,JN),RTHRL(1,JN),NPPP,4,SYM,0.0)
CALL LRCURV(MRL(1,JN),STHBL(1,JN),NPPP, 2,SYM,0.01
CALL LRCURV(MRL(1,JN),PTHBL(1,JN),NPPPF,2,SYM,0.0)
CALL LRCISRV(MBL (1,JN),RRTHBL (1,JN),NPPP,2,SYM,C.C)
CALL LRCURV{MBL\1,JN), RRTHBL(1,JN1,NPPP,4,SYM,0.01
CALL LRC,IRVIMBL(1,JN),SSTHPL(1,JN),NPPP,2,SYN,0.O)
280 CALL LRCISV (MPL (1,JN),PPTHBL (1,JN1,NPPP,2,SYM,1.C)
C--CALClLATE RANGE OF PLCT, AND SET UP FOR PLOT CF MULTIPLE
C--BLADE SECTIONS
RRNG = RRTEM
TRNG = STHBL(NPPP,NELPL)
NO }790\mathrm{ \N = 1,NBLPL
OC 290 IN=1,NPPP
290 TRNG = AMAXI(TRNG,STHRL(IN, JNI)
DELRT = TRNG-RRNF;
DELRNG = AMAXI(CELLR,DELBT)
RRNG = LRNG+DELRNG
TRNG = BRNG+DELRNG
CALL LRANGE(LRNG,RRNG,BRNG,TRNG)
C--PLOT MULTIPLF BLACE SECTIONS

```

CALL LRTRIC(3,3,11.C,11.0)
CALL LRCHS C(3)
CALL LRLE GN(TITL12,24,0.,3.4,9.5,0.0)
CALL ERCHST(2)
CALL LRLEGN(TITL24,40.0.2.8.1.3,0.01
CALL LRLEFNTTITL25,36,1,0.2,3.3,0.0)
CALL LRCHS744)
ECP \(=0.0\)
DO \(300 \mathrm{JN}=1, \mathrm{NR} L P L\)
IF (JN.EO.NBLPL) EOP \(=1.0\)
CALL LRCURV(MRL(1,JN), RTHRL (1, JN), NPPP, 2, SYM, 0.0)
CALL LRCURV(MBL (1, JN), RTHBL (1, JN) ,NPPP, \(4, S Y M, 0.0\}\)
CALL LRCURV (MPL (\(1, J N\)), STHBL \((1, J N), N P P P, 2, S Y M, 0.0)\)
3 CO CALL LRCURV(MBL (1, JN), PTHRL (1, JN), NPPP, \(2, S Y M, E C P)\)
CALL LRCURV(ZRL, RBL, 0, 1, SYM, 1,0)
RETURN
END

SURR OUTINE MESHO
```

C
C--NESHC CALCULATES COCROINATES OF AN CRTHCGONAL MESF
C-~COVERING THE SOLUTION REGION
C
CONMON/INPUTT/GAM,AR,MSFL,DMECA,REOFAC,VELTOL,FNEW, DNEW,MBI,MBO,
l MM,MHT,NBL,NHUB,NTIP,NIN,NOUT,NBLPL,NPPP,NESTAT,NSL,LSFR.
LITPL,LAMVT, IMESH,ISLINE,ISTATL, IPLOT,ISUPER,ITSON,IDEBUG,
3 7OMIN,ZOMBI,ZOMBO, ZONOIIT, ZHIN, ZTIN, ZHCUT, ITCUT, ZHUP(50),
4 RHUB{50),7TIP{50),RTIP{50),SFIN(50),RADIN(50),TIP(50),PRIP(50),
5 LAMIN(50), VTHIN(50), SFOHT (50), RACOUT (50), PROP(50),LOSOUT(50).
\& LAmOUT(50), VTHCUT(50:, ZHST(50), 2TST(50), FLFR(50),
7 Z PL { 50,50),RBL(50,50), THBL(50,50), TNB\&(50,5C)
COMMON/CALCON/MMM1, MHT P1,CP, EXPON, T CROG,PITCH,CURVHI,CURVTI,
C UR VHO,C URVTO,RHIN,RTIN,RHOUT, RTOUT,RLEEH, RIET, RTEH, RTET,
7LE{50), RLE{50), ZTE{50),RTE(50), ZLEOM(101), RLECM(101).
SLEO*{101), THLEOM{101%, 2TECM(101},RTEOM{101), STEOM(101).
THTEOMPIOI),ILE(101), ITE(101),ZOM(100,101), RON(100,101).
SNM\&100,101%,TOM1100,101%, 8THP100,101%,DTHDS\100,101%,
6 DTHDT(100,101),PLOSS(100,101),CPHI(100,101),S PHI(100,101)
COMMON/CROSCM/RTMP(100), SDRIV(100),REFZ,REFR,REFSL,NARK
OINEASICN RRAD(100,101),SLOM(100), AAA(100)
EXTERNAL CROSCD
MARK = 1
CALL CROSCC(TCMII,I),RMR,SLI)
MARK = 0
C
C--STORE RRAD ON HUB CONTOUR
DO 10 I=1, NHUB
10 RRAD(I, 1)= RHUB(I)
C
C--CALCULATE RRAD ON SHRCUD CONTOUR
CALL SPLINT (TYIP,RTIP,NTIP, ZHUB,NHUB,RRAD(1,MHTP11,AAA)
C
C--COMPUTE RRAD ON RADIAL LINES FROM HUB TO TIP
OC 20 I=1,NHUR
DELR = (RRAD(I;MHTPI)-RRAC(I,I))/FLCAT(MHT)

```

Dत \(20 \mathrm{~J}=2\), MHT
\(20 \operatorname{RRAD}(I, j)=\operatorname{RRAD}(I, J-I)+\) CELR
C
C--COMPLTE ZOM ON HUR
MPINI = MRI-1
DELT= (7OMBI-7CMIA)/FLCAT(MEIMI)
70M(1,1)= 2OMIN
DC \(30 \mathrm{I}=2 . \mathrm{MBI}\)
\(302 C M(I, 1)=7 C M(1-1,1)+D E L 7\)
DELT = (ZOMRO-7OMRI)/FLOAT(MBO-MBI)
\(M P I P I=M R I+I\)
DC \(40 \mathrm{I}=\mathrm{MPIPI}, \mathrm{MRO}\)
\(4070 \mathrm{M}(\mathrm{I}, 1)=7 \mathrm{OM}(1-1,1)+0 \mathrm{EL}\) ?
DELT \(=(70 M C U T-20 M B O) /\) FLCAT (MM-MBO)
\(M \mathrm{MOP}_{1}=\mathrm{MBC+1}\)
DO \(50 \quad I=M\) ROP \(1, M M\)
\(507 \mathrm{CM}(\mathrm{I}+1)=7 \mathrm{DM}(1-1,1)+\) DELZ
C
C--COMPUTE ENTRIES TO ZOM AND ROM ROW BY ROW FROM HUB TO SHROUD C

DO \(150 \mathrm{~J}=2\), MHTPI
C
C--CALCULATE R-COORCINATES, SLOPES, ANO ANGLES OF PREVIOUS ROW CALL SPLINT(ZHUB,RRAD(1,J-1), NHUR, ZCM\{1,J-11,MF,ROM(1,J-1),SLOM)
\(0060 \mathrm{I}=1\), mm
CPHI(1, J-1) \(=1 . / S\) QRT \(\{1-+S L O M(I) * * 2)\)
60.SPHI(I,J-1) = SLOM(I)*CPHI(I.J-I)

C
C--CALCULATE RTMP, ANC SECOND CERIVATIVES, SORIV, ON PRESENT ROW
DO \(70.1=1\), NHUB
70 RTMP(I)= RRAD(I;J)
CALL SPLINE (7HUB, RTMP, NHUB, AAA,SORIV)
C
C--MOVE ALONG PRESENT ROW, ONE POINT AT A TIME, LOCATING ZCM
C--CCORDINATES OF ORTHOGONAL MESH POINTS ALONG THE ROW
OC 140 I \(=1\), MM
REF7 \(=\) 70M(I,J-1)
REFR \(=\operatorname{ROM}\{I, J-1\}\)
DE 80.K=2, NHUR
IF (ZHUB(K)-LT.ZOM(I,Jー1)) GO T0 80
DELR \(=\) RRAC(K-1, J\}-RRAD\{K-1, J-1)-\{ZOM(I, J-1)-7HUB\{K-1) \()\)
1(7HUR(K)-7HUB(K-1))*(RRAD(K-1,J)-RRAD(K-1,J-1)-RRAC(K,J)*
2RRAC(K, J-1)
GC TC 90
80 CONTINUE
90 IF (ABS(SLOM(I)).LE.0.0001) GO TO 120
C
C--LOCATE INTERSECTICN CF LINE NORMAL TO PREVIOUS ROW WITH PRESENT ROH
REFSL= \(=1 . /\) SLOM(I)
DELZ = DELR/REFSL
IF (ABS(REFSL).GT. 10.) DELZ=DELR/SIGN\{10., REFSI)
IF (REFSL.LT.O.1 GO TO 100
\(A=2 C M\{I, J-1)\)
\(B=A+2.0\) * DFL. 7
GC TC 110
\(100 B=7 C M(I+J-1)\)
\(A=B+2.0\) *DELZ
110 TCLER= DELR/110.
IF(ABSISLDN(II).LE..OI) TOLER = TCLER/ABS(SLCMPI))*.01
```

    CALL ROOT (A,B,O-OCOSCO,TOLER&T1:SL1%
    R1= REFR+REFSL*(Z|-REFZ)
    GO TN 130
    C
C--LCCATE INTERSECTION IF NORMAL TO PREVIOUS ROW IS RACIAL
120 REFSL=0.
CALL CROSCO(ZOM(I,J-1),RMR,SLI)
71= ZCM(I,J-1)
R1= RMR
C
C--CALCULATE FINAL LOCATION OF ZOM
130 12= (70M(I,J-1)+(RCM(I ,J-1)-R1)*SL1+Z1*SL1**2)/(1.*SL1**2)
R2= R1+SL1*(72-21)
14C 7CM(I,J)= (71+22)/2.
150 CONTINUE
C
C--CALCULATE R-COORCINATES, SLOPES, AND ANGLES OF FINAL ROW
CALL SPLINT(ZHUB,RRAD(I,MHTPI),NHUB,ZCM(1,MHTP1),MM,
IROM(1,MHTP1),SLOM)
DC 160 I=1,NM
CPHI{I,MHTPI)=1./SORT(1.+SLCM(I)**2)
160 SPHI{I,MHTPI)=SLOM{I\*CPHI(I,MHTPII
RETURN
END
SUPROUTINE CROSCE(Z,RMR,SLII
C
C--CROSCD CALCULATES R AS A FUNCTION OF }2\mathrm{ ALONG A CURVE AND ITS
C--INTERSECT ING STRAIGHT LINE, AND COMPUTES THE DIFFERENCE BETWEEN THE
C--VALUES OF R ON THE STRAIGHT LINE AND CURVE FOR A GIVEN VALUE OF Z
C
COMMON/INPUTT/GAM,AR,MSFL,OMEGA,REDFAC, VELTOL,FNEH,DNEW,MBI,NBC.
1 MM,MHT, NBL, NHUB,NTIP,NIN, NOUT, NBLPL, NPPP,NOSTAT,NSL, LSFR,
L LTPL\&LAMVT,IMESH,ISLINE,ISTATL,IPLOT,ISUPER,ITSCN,IDEBUG %
3 TCMIN, ZOMBI, ZOMBD, ZOMOUT, ZHIN,ZTIN,ZHOUT,ZTOUT, ZHUB (50),

```

```

    5 LAMTN(50), VTHIN(50), SFOUT(50), RADOUT(50), PRCP(50),LOSCUT(50).
    6 LAMDUT (50),VTHOUT (50), 2HST (50), ZTST(50), FLFR(50),
    7 ZRL(50,50), RBL(50,50),THBL(50,50),TNBL (50,50)
    COMMON/CROSCM/RTMP(100), SDRIV (100), REFZ,REFR,REFSL,MARK
    IF(MARK.EQ.1) RETURN
    C
C--LCCATE POSITION OF Z IN ZHUB ARRAY
DO }10I=2\mathrm{ , NHUB
IF (7.LE.ZHUB(II) GO TO 20
10 CRNTINUE
C
C--COMPUTE R-COORDINATE (RCURV) AND SLOPE (SLI) ON THE CURVE
C--FOR THE GIVEN VALUE CF ?
20DEL7 = ZHUB(I)-ZHUBII-1)
SEI = SDRIVII\
SCI1 = SDRIV(I-1)
ZHMZ= ZHUR(I)-Z
ZMZH=Z-ZHUR(I-1)
RTI = RTMPIII/DELZ

```
```

        KTII = RTMP{I-1)/DELT
        RCURV=SDI1*ZFMZ**3/6./DELZ+SDI*ZMZH**3/6./DELZ+(RTI-SDI*DELT/6.)
        1*7M7H+(RTII-SCI1*DELI//6.)*2HM7
    SLI= -SDII*IHMZ**2/2./DELZ + SCI*ZMZH**2/2./DELZ + RTI - RTII -
        1 SSDI - SDI1)&DELT/6.
    IF (REFSL.EG.O.1 GC TO 30
    C
C--COMPUTE R-COORDINATE (RLINEI ON STRAIGHT LINE
C-~FOR GIVEN VALUE OF ?
RLINE= REFR+REFSL*{Z-REFT)
C
C--CCMPUTE CIFFERENCE IA R-COCRDINATES
RMR = RCURV-RLINE
RETURN
C
C--SPECIAL CASE FCR RACIAL STRAIGHT LINE
30 RMR = RCURV
RETURN
END

```

SUBROUTINE PRECAL
```

c--precal calculates many of the reguirec fixec ccnstants

```
C. CCMMON/INPUTT/GAM, AR,MSFL,OMEGA,REDFAC, VELTOL,FNEW,ONEW,MBI, NBO,
 1 MM, MHT, NBL, NHUP, NT IP, NIN, NOUT, NBLPL, NPPP, NOSTAT, NSL,LSFR,
 2 LTPL, LAMVT, IMESH, I SLINE, ISTATL, I PLCT, ISUPER, ITSCN, IDEBUG,
 3 ZOMIN, 20 MBI, ZOMBO, ZOMOUT, ZHIN, ZTIN,ZHOUT, ZTCUT, ZHUB(50),
 4 RHUB(50), ?TIP(50),RTIP(50),SFIN(50), RADIN(50), TIP (50), PRIP(50),
 5 LAMIN(50i, VTHIN(50), SFOUT (50), RADOUT (50), PRCP (50), LCSCUT(50),
 6 LAMGUT(50), VTHOUT (50), 2HST(50), ITST(50), FLFR(S0),
 7 TRL(50,50\()\), RRL \((50,50)\), THBL \((50,50)\), TNBL \((50,50)\)
COMMON/CALCON /MMM I, MHTP 1,CP, EXPON, TGREG, PI TCH, CURVHI, CURVTI,
 1 CURVHO, CURVTC, RHIN, RTIN, RHOUT, RTOUT, RLEK, RLET, RTEH,RTET,
 2 7LE 50), RLE (50), 7 TE(50), RTEP50), ZLECM(101), RLECM(101),
 3 SLECM(101), THLEOM (101), ITEOM(1011, RTEDM(101), STEOM(101),
 4 THTEOM(101),ILE(101),ITE(101), ZOM(100,101), RCM (100, 101),
 5 SOM(100,101), TOM(100,101),BTH(100,101),0THOS(100,101),
 6 DTHDT (100,101), PL CSS (100,101), CPHI(100,101), SPHI(100,101)
DIMENSION D Y X (100), DYOX2(100), TTEN(100), RELTCP(50)
 REAL MSFL, LAMDAF, LAMIN, LAMDUT, LAMDAI LOSOUT
c
C--INITIALIZE TIPF, RHCIPF, LAMDAF, RHOOPF, AND RVTHTA
c.
 Call lamnit
 CALL RVTNIT
 CALL TIPNIT
 CALL RHINIT
C--CALCULATE PROP, if LCSOUT WAS GIVEN AS IAPUT
 IF ILTPL.ED.O) GO TO 20
 OR \(10 \mathrm{~J}=1\), NCUT
 TINP = TIPFPSFDUT(J)
 LAMDAI = LAMDAFSSFOUT(J),1,11
 TCP = TOPF(SFCUT (J)
 PRIND \(=\) RHOIPF(SFCUT(J))*AR*TIAP
```

            RFLTR.P(J) = 1.-1.OSOUT(J)
    10 PROP(I) = RELTCP{I)&PRINP*(TOP/TINP)**(GAM#EXPON)
    2O CALL RHONIT
    C
C--INITIALITE THE BYH ARRAY
C
O\cap 30 s=1,MNTPI
Dr 30 I=1,MM
3C RTH(I\&D)= PITCH
C
C--INITIALITE THE FLfR ARRAY IF IT WAS NOT READ IN
C
IF (NSL.GE. II GO T0 50
NSL = 11
FLFR\1)=0.
FLFR(11)=1.0
0\ 40 J=2,10
4CFIFR(J)=FLFR(J-1)+0.1
GO TO 80
C
C--SET END PCINTS FOR FLFR ARRAY
C
50 IF (FLFR(1).EQ.O.) GO TO 70
TEMP1 =0.
DO 60 JL=1,NSL
TEMP2 = FLFR\JL\
FLFR(JL) = TEMPI
60 TEMP1 = TEMP2
NSL = NSL+1
FLFR(NSL) = TEMPL
70 IF (FLFR{NSL).EQ. 1.0) GO TO 80
NSL = NSL+1
FLFR(NSL) = 1.0
C
C--CALCULATE SOM FROM THE ZOM,ROM ARFAYS
C
80 DO 90 J=1,MHTP1
SCM(1,J) = 0.
DO CO l=2,Mm
co SOM(I,J)= SOM(I-I,J)+SORT((ZOM(I,J)-ZCM(I-1,J))**2+(ROM(I,J)-
lR(N{(-1,N|)*क2)
C
C--CALCULATE TOM FROM THE IOM,ROM ARRAYS
C
OO 100 I=1,MM
TOM{I,1)=0.
OC 100 J=2,MHTPL
1GOTOM(I,J)= TOM(I,J~1)+SORT({ZOM{I,J)-2CM(I,J-1))**2+{ROM(I,J)-
IROM(I;J-1))**2)
C
C--CALClLATE CURVATURES ON HUB AND SHRCUC
C--AT ENTS OF ORTHOGONAL MESH
C
CALL SPLINE (7OM(1,1),RON{1,1),MN, EYCX,OYCX2}
CURVHI= DYDXZ(1)/(1.+DYDX(1)**2)**1.5
CURVHN= DY CX2(MM)/(1.+DYDX(MM)**2)**1.5
CALL SPLINE{TOM{1,MHTPII,ROM(1,NHTP1),MM,CYOX,CYEX2)
CURVTI= DYCX2(1)/(1.+DYOX(1)**2)**1.5
CLRVTO= DY[X2(MN)/(1.+DYOX(NM)**2)**1.5

```
```

C
C--CALCILIATE LEARINT EDGE ARRAY, ILE,RLE,FROM $7 B L$ AND RBL ARRAY'S
C--CALCULATE INTERSECTICN OF LEADING ECCE WITH HIIR AND SHROUD PROFILES
C
CO $110 \mathrm{JN}=1$, NALPL
TLE (JN) $=7$ RL(I,JN)
110 RLE(JN $)=$ RRL(1, JN)
CALL INRSCT ( 7 MIM, RHUB, NHUB, ZLE, RLE, NBLPL, ZLEH, RLEH)
CALL INRSCTITTIP,RTIP,NTIP,ILE,RLE,NPLPL, TLET,RLET)
c
$C=-$ CAL CULATE TRAIL. ING EDGE ARRAY, $2 T E, R T E$ FROM $2 B L$ AND.RBL ARRAYS: $:$
C--CALCULATE INTERSECTICNS OF TRAILINE EDGE HITH HIJB AND SHRDUD PRDFILES
$C$
$00120 \mathrm{JN}=1$, NRLPL
TTE(JN) $=$ PRI(NPPF,JN)
120 RTE(JN) $=$ PBL(NPPP.JN)
CAEL INRSCT (ZHUR,RHUR,NHUR, ZTE,RTE,NBLPL,ZTEH,RTEH)
CALL INRSCT:TTIP,RTIP,NTIP,ZTE*RTE,NELPL, ZTET;RTET)
C
C-- CAL CULATE ORTHOGONAL mESH ARRAYS AT THE LEADING EDGE
C- TLEON, RLEOM, SLEON, THLECM
c--Calculate ile array ef mesh point lccaticns insice elade
C-LEACING EDGE
C
TLEOM(1) $=7 \mathrm{LEH}$
RLEOM\{I) $=$ RLEH
ZLECM(MHTPI) $=$ ZLET
RLEOM( MHTPI) $=$ RLET
CC $130 \quad J=2$, MHT
130 CALL INRSCT\{TOM(1,J), RCM(1,J),NM, ZLE,RLE,NRLPL, ZLEOM(J),RLEOM(J):
DO $160 \mathrm{~J}=1$. MHTP :
DC $140 \quad \mathrm{I}=1, \mathrm{NM}$
IF (TLEGM: J).LE. ZOM(I.J) GO TC 150
140 CONT INISE
150 ILE(J) $=1$
ILFJ = $1-1$
$160 \operatorname{SLEOM}(J)=\operatorname{SOM}(I L E J * J)+S Q R T((Z L E O M(J)-7 O M(I L E J, J)) * * 2+(R L E C N(J)-$
1RCM([LEJ,J))**2)
DO $170 \quad J N=1$, $N R L P L$
170 TTEM(JN) $=$ THPL (1,JN)
CALL SPLINT (RLE,TTEM,NBLPL, RLECM,MHTPI,THLEON, CYCXI
C
C--CALCILLATE ORTHOGONAL MESH ARRAYS AT'THE TRAILING EDGE
C--7TEON, RTEOM, STECN, THTECM
C--CALCLLATE ITE ARRAY OF NESH POINT LOCATIONS INSIDE PLADE
C-TRAILING EDGE
C
7 TEOM(1) $=7$ TEH
RTFPM(1) = RTEH
7 TECN(MHTPI) $=7 \mathrm{TET}$
RTEON(MHTPI) $=$ RTFT
Dr $180 \quad J=2$. MHT
180 CALL INRSCT(TCM(1,J),RCN(1,J),MM, TTE,RTE,NRLPL, ZTEOM(JI,RTEOM(J))
DC $210 \mathrm{~J}=1$, MHTD 1
$\lfloor L E J=I L E(J)-1$
DR $190 I=I L E J . M M$
IF (TTEGM(J).LT.7DM\{I,J!) GO TC. 200
1 CO CCRT INUE
$2 \mathrm{COITE}(\mathrm{s})=1-1$

```

1TE. \(=\mathbf{I - 1}\)
 1R DM(ITEJ,J))**2)
\(00220 \mathrm{JN}=1\), NBLDL
220 TTEM(JN) \(=\) THBL(NPPP,JN)

C
c--calculate theta eracients cn the crthogenal mest
C
CALL THETOM
\(\stackrel{C}{C-C C R R E C T}\) bTh for blade thickness cn the orthocenal mesh
C
CALL THIKOM
c
c--CALCllate actual-to~ideal relative total pressure ratic
C--cCwnstream of blade, and calculate loss on orthogonal mesh
c--CORRECT BTH FOR TOTAL PRESSURE LOSS
C
CALL LOSSOM
c
C--REDUCE MASSFLOW, WHEEL SPEED, AND WHIRL FOR RECUCED FLCW SOLUTICN C

If (REDFAC.EQ.1.0) RETURN
OMEGA = OMEGA*RECFAC
MSFL \(=\) MSFL*REDFAC
DO \(230 \mathrm{~J}=1\), NIN
LAMIN(J) \(=\) LAMIN(J)*REDFAC
230 VTHIN(J) \(=\) VTHIN(J)*REOFAC
DO \(240 \mathrm{~s}=1\), NOUT
LAMOUT(J)= LAMOUT(J)*REDFAC
240 VTHOUT \((\mathrm{J})=\) VTHOUT(J) \&REDFAC
c
C--RE-INITIALILE LAMDAF AND RVTHTA fOR REDUCED FLCW
C
CALL lamnit CALL RVTNIT RETURN END

\section*{SUBROUTINE THETOM}

C
C--Thetcm calculates the derivatives cf theta with respect to s and t C-ODIRECTIONS DN THE ORTHOGONAL MESH
c

2. TLE(50), RLE(50), TTE(50), RTE(50), ZLEOM(1C1), RLECM(1C1).

3 SLECM(101), THLEOM(101), TTECN (101),RTEOM(101), STECMP101);
4 THTEOM (101),ILE(101).ITE(101), ZOM(100,101),RCF(100,101)

6 OTHOT(100,101), PLOSS(100.101), CPHI(100,101),S PHI(100,101)
COMMON/INDCOM/7PC(11,50),RPC(11,50),OTHOZ(11,5C), CTHOR(11,50)
OIMENSICN THPC(11,50), ANGZ (11,50), ANGR (11,50), CTHDSP (11,50),
1 DTHDTP 11,50\()\), SZRBL(50), SZRPC (50), ZTEN(501, RTEN(50), TYEM (50).
2 DYCXI501, DYDX2(50)
C
C--CALCULATE GRADIENTS OF THETA WITH RESPECT TO DISTANCE ALCNG INPUT
C--7EL,RRL LINFS
C
C--LCCATE INTERSECTIONS OF INPUT ZRL,RBL LINES WITH LIAES FROM
C--HUB TO TIP AT TEN PERCENT CHORD INTERVAIS
DC \(50 \mathrm{JN}=1\), NELPL
DEL7 \(=0.1 *(78 L(N P P P, J N)-Z B L(1, J N))\)
\(7 \mathrm{PC}(1,3 \mathrm{~N})=2 \mathrm{RL}(1,3 \mathrm{~N})\)
OC \(10 \mathrm{KN}=2,11\)
\(107 P C(K N, J N)=2 P C(K N-1,3 N)+D E L Z\)
C--CALCULATE R COOROINATES AND ANCLES HITH RESPECT TO \(Z\) AXIS AT
C--INTERSECTION PCINTS
CALL SPLINTIZBL (I, JN), RBL(1,JN), NPPP, ZPC(I, JN), \(11, R P C(1, J N)\),
1ANG7(1, JNI)
DC \(20 \mathrm{KN}=1+11\)
20 ANGZ(KN,JN) = ATAN(ANGZ(KN,JN))
C--CALCULATE ARC LENGTH ALONG INPUT LINES USING INPUT POINTS STRBL(I) \(=0\).
\(0 \cap 30 \quad 1 N=2\), NPPP
30 S \(2 R B L(I N)=S Z R B L\{I N-1\}+S Q R T(\{Z R L(I N, J N)-2 R L(I N-1, J N)\} * * 2\) \(\left.1+\left(R 8 L\left(I N_{1} J N\right)-R B L(I N-1, J N)\right) * * 2\right)\)
C--CALCULATE ARC LENGTH ALONG INPUT LINES USING POINTS AT TEN
C--PERCENT OF CHORD
\(S T R P C(1)=0\).
DC \(40 \mathrm{KN}=2,11\)
\(40 S 7 R P C(K N)=S 7 R P C(K N-1)+S Q R T(Z P C(K N, J N)-Z P C(K N-1, J N)) \neq 2\)

C--CALCULATE THETA ANC CHANGE OF THETA WITH ARC LENGTH ALONG INPUT LINES 50 CALL SPLINT(SZRBL, THRL(1, JN), AFPF,S ZFPC, \(11, T H P C(1,3 N)\), DTMDSP(I, JN) 1)

C
C--CALCULATE GRACIENT OF THETA WITH RESPECT TO DISTANCE UP TEN PERCENT C-CHORO \(7 P C, R P C\) LINES
\(c\)
DC \(80 \mathrm{KN}=1,11\)
C--CALCULATE SLOPES AND ANGLES WITH RESPECT TC R AXIS ALONG THE
C-TEN PERCENT CHORD, HUB-TIP LINES
DC \(60 \quad J N=1, N B L P L\)
1TEM(JN) = 7 PC(KN,JN)
RTEM(JN) \(=\) RPC(KN,JN)
60 TTFM (JN) \(=\) THPC(KN, JN)
CALL SPLINEIRTEM, ZTEM,NBLPL,OYOX;OYEX2)
S JRPC(1)=0.
AACR(KN』1) = ATAN(CYCX(1)1)
DO 70 JN \(=2\), NRIPL.
\(S 7 R P C(J N)=S Z R P C(J N-1\}+S O R T(\{R P C(K N, J N)-R P C(K N, J N-1)\} \neq 2\)
1+17PC(KN, JA)-TPC(KA,JN-1) \(1 * * 21\)
70 ANGR(KN,JN) = ATAN(DYDX(JN))
C--CALCULATf CHANGE OF THETA WITH ARC LENGTH ALONG HUR-TIP LINES
 CALL SPLINE (STRPC,TTEM, NRLPL,CYOX, DYEXZ)
 DO \(80, ~ N N=I, N B L P L\)
 80 DTHDTP (KN,JN) = EYEX(JN)
C
\(C-C A L C I L A T E\) DTHDZ ANO DTHOR FROM DTHOSP AND DTHOTP AT PCINTS CF
C- INTERSFCTION OF INPOT LINES AND HUB-TIP LINES
C.
 DO \(90 \quad 3 N=1\), NBLPL
 חr \(90 \mathrm{KN}=1,11\)
 CrSAB \(=\) COS (ANGZ\{KA, JN) + ANGR\{KN+IN)?
 DTHDZ\{KN, IN) = (DTHDSP\{KN,JN)*CCS(ANGR(KN,JN))-CTHCTP(KN,JN)*SIN(
 (ANR7(KNFJN)I/COSAC
 GO DTHDR \((K N, J N)=\{-C T H C S P(K N, J N) * S I N(A N G R\{K N, J N))+O T H D T P(K N, J N) \neq C O S T\)
 LANGR(KN.JN))/COSAB
\(C\)
C-IINTERPOLATE TO OBTAIN DTHDT AND CTHER AT THE POINTS CF THE CRTHOGONAL
\(C-H E S H\)

\(C-T H E\) GRADIENTS OF THETA IN THE S AND T DIRECTIONS
C
 \(I I=1\)
 \(v i=1\)
 DC \(100 \mathrm{~J}=1\), MHTP1
 ILEJ = ILE(3)
 ITES = TTEPS
 OC 100 I=ILEJ,ITEJ

 10TEZOM, II,JJ)
 CALL LININT (7PC,RPC, OTFCR, 11, NRLPL, 11,50, ZOM(I, J),ROM(I; J) ,
 10 TOROM, II , JJI
 DTHDS \((I, J)=\) DTOLOM* J (PHI(I, J) + DTORC**SPHI (I, J)
 100 DTHDT(I,J) \(=\) CTORCN*CPHI(I,J)-ITCZOM*SPHI(I,J)
 RETURN
 ENC
 SURROUTINE THIKCN
\(t\)
C--THIKGM CALCULATES THE BLADE THICKNESS IN THE THETA DIRECTION AT
C-OTHE PCINTS OF THE ORTHOGONAL MESH
C
 COMMON/INPUTT/GAM,AR,MSFL, OMEGA,REOFAC, VELTOL,FNEW,ONEW,MBI, BBC,
 1 MM, MHT, NPL, NHUR, NTIP, NIN, NOLIT,NRLPL,NPPP, NOSTAT,NSL,LSFR,
 2 LTPL, LAMVT,IMESH,ISLINE,ISTATL, I FLET, ISUPER,ITSCN,IDEBUG,
 3 IOMIN, ZOMBI, ZOMBO, ZOMOUT, ZHIN, ZTIN,ZHOUT,ZTCUT, ZHU日 (50),
 4 RHUR(50), TTIP\{50), RTIP(50), SFIN(50), RAOIN(50),TIP(50),PRIP(50).
 5 LAMIN(50), VTHIN(50), SFDUT (50), RADOUT (50), PRCP (50), LOSCUT (50),
 6 LAMOUT (50), VTHOUT (50), ZHST(50), ZTST(50), FLFR(50),
 \(7 \quad 7 \mathrm{BL}(50,50)\), RRL \((50,50)\), THEL \((50,50)\), TNRL \((50,50)\)
 COMMON/CALCON/MMM 1,MHTP 1,CP, EXPON, TGROG, PITCH,CURVHI,CURVTI,
 1 CIJRVHO, CURVTO, RHIN, RTIN, RHCUT, RT TUT, RLEH, RLET, RTEH,RTET,
 2 2LE\{50), RLE (50), 2TE(50), RTE (50), ZLEOM(101), RLECM(101),
 3 SLEOM(101), THLEOM(101), ZTECM(101), RTEOM(101), STEOM(101),
 4 THTEOM(101), ILE(101),ITE\{101), ZOM(100,101),ROM\{100.101),
 5 SOM (100, 101), TCM(100,101), BTH(100,101), DTHCS (100,101),
 6 ITHDT \((100,101)\), PLOSS \((100,101), C P H 1(100,1011,5 P H I(100,101)\)

DIMENSION CIST(50), OTDS (50), ANC(50), CRTHRL (50,50)
C
C--CALCUI ATE PA ADE THICKNESS IN THE THETA DIRECTION FRCN INPUT \(C--T H I C K N E S S E S\) NCRMAL TC NEAN CAMBER LINE
C
\(0020 \mathrm{JN}=1\), NBLPL
DISTII) \(=0\).
DO 10 I \(N=2\), NPPP
10 DIST(IN) = DIST(IN-1)+SQRT(\{ZRL(IN,JN)-ZBL(IN-1,JN))**2+
\(1(R B L(I N, J N)-R B L(I N-1, J N) \| * * 2\}\)
CALL SPLINEIDIST, THBL(I,JN), NPPP,DTDS,ANG)
DC 20. IN=1,NPPP
ANG(IN). = ATAN(RBL(IN*JN)*DTDS(INI)
\(20^{\circ}\) DRTHRL(IN,JN) \(=\) TNBL(IN,JN)/COS(ANG\{IN))
\(C\)
C-IINTERPOLATE TO OBTAIN BLADE THICKNESS IN THETA DIRECTICA. AT THE
C--PCINTS CF THE CRTHOGONAL MESH
c
\(1 \mathrm{I}=1\)
\(J J=1\)
DC \(30 \mathrm{j}=1\), NHTP1
ILEJ = TLE(J)
ITEJ = ITE(J)
DC 30 I=ILEJ,ITEJ
CALL LININT(7BL, RBL, DRTHBL,NPPP,NBLPL, 50,50, 2CN(I, J);ROMII, J),
IDRPTH,II, JJI
BTH(I,J) \(=\) RTH(I, J)-DRRTH/ROM(I, J)
30 CDNTINUE
RETURN
END

SURROUTINE LOSSOM
C
C--LOSSCM COMPUTES THE RATIO CF ACTUAL TO ICEAL RELATIVE TOTAL PRESSURE
C--DOWNSTREAM OF THE BLADE, AND THEN DISTRIBUTES THIS LOSS LINEARLY
C--THRDUGH THE RLACE ROW FROM TRAILING TO LEADING EDGE BY ADDING
C--CNTO THE RLADE THICKAESS AT THE CRTHOGCNAL MESH PCIATS
C
CCNMCN SRW, SRE, ITER, IENC,NREAC, NWR IT
COMMON/INPUTT/GAM,AR,MSFL, OMEGA, RECFAC,VELTOL,FNEW, ONEW,MBI,MBO,
1 MM, MHT,NPL, NHUB,NTIP,NIN,NOUT,NBLPL,NPPP,NOSTAT,NSL, \(L S F R\),
2 LTPL,LANVT, INESH,ISLINE,ISTATL,IPLOT, ISUPER, ITSON, IOEBUG,
3 ZOMIN, 7 INBI, ZOMBO, ZOMOUT, ZHIN, ZTIN, ZHOUT, ZTCUT, ZHUE (50),
4 RHUR(50), ZTIP\{50), RTIP(50), SFIN(50), RADIN(50), TIP(50), PRIP(50),
5 LAMIN(50), VTHIN(50), SFOIT (50), RADOUT (50), PROP(50), LOSOITT (50),
6 LAMDUT (50), VTHCUT (50), 7HST(50), 7TST(50), FLFR(50),
\(7 \quad 7 \mathrm{ZL}(50,50)\), RPL \(\{50,50\}\), THPL \(\{50,50\}\), TNBL\{ 50,50\(\}\)
C EMMEN/CALCON/NNNI, MHTPI, CP, EXPON, T GROG, PIT CF, CURVHI, CURVTI,
1 CIIRVHO, CURVTO,RHIN, RTIN, RHCUT, RTOUT, RLEH, RIET, RTEH, RTET,
2 ILE(50), RLE(50), TTE(50), RTE\{50), ZLEOM(101), RLEOM(101).
3 SLFOM(101), THLEOM(101), ZTECM(1011, RTEOM\{101), STEOM(101).
4 THTEOM (101), ILE (101), ITE\{101), 20N\{100,101), RCN(100,101),
5 SCM(100,101), TCM (100,101), ETH(100,101), DTHDS(1CC,101),
6 DTHOT 100,101\()\), PLOSS \((100,101), C P H I(100,101), S P H I(100,101)\)
DIMENSION RELTOP 501 , SF 1011 , GRAD (101),PRATIOI 101)
REAI LAMDAF, LAMIN, LAMOIJT, LAMCAI, LOSOUT
```

C
C--CALCULATE ACTUAL-TO-IDEAL RELATIVF TOTAL PRESSURE RATIO
C--IN DCWNSTREAM INPIUT RCUNDARY
C
DC 20 J=1, NCUT
TINP = TIPF{SFOUT(J):
LAMDAT= LAMCAF(SFOUTIJ!,l,l)
TPPP = TOPF(SFCUT (J))
PRINP = RHOIPF(SFCUT(J)**AR*TIAP
IF ILTPL.EDOI: GO TO 10
RFLTCP(J) = PROP(J)/PRINP*(TINF/TOP)**(GAM*EXPON)
GO TO 20
10 RELTOP{J)=1.-LOSOUT(.J)
20 CONTINUE
C
C--CISTRIBUTE LOSS ON ORTHOGONAL MESH WITHIN BLADES, ONE QRTHOGONAL
C--NESH LINE AT A TIME
C
DO 30 s=1,MHTP1
30 SF(J)={ROM{MM,J)**2-RCN(MM,1)**2\/(ROM(MM,MHTP1)**2-ROM(MM,1)**2)
CALL SPLINTISFOUT,RELTOP,NOUT,SF,MHTP1,PRATIC,ERAC)
CO 40 J=1, MHTP1
ILEJ=ILE{J\
SLENTH=STECM(J)-SLECM(J)
DC 40 [=ILEJ.MM
DELS = AMINI(SLENTH,SOM{ITJ)-SLEON(J)]
PLOSS(I,.I) = (1.-PRATIO(J))*DELS/SLENTH
40 RTH(I,N)= RTH(I,J)*{1.--PLOSS(I,SI)
IF (IDEBUG.LE.O) RETURN
WRITE{NWRTY.1010)
WRITE{NWRIT,1000) ({I,J,SOM(I,J),TOM(I,J), BTH(I,J),DTHOT(I,J).
IPLOSS(I,S\,CPHI {I,J\,SPHI (I,J),I=I,NM),J=I,MHTFI)
RETURN
1000 FCRMAT (216,7G16,6)
IC10 FORMATILHI////35X,47HCONSTANT OUANTITIES CN THE ORTHOGONAL ME
1SH/5X, 1HI,5X,1HJ, 7X,3HSOM, 13X, 2HTOM, 13X,3HBTH, 12X,5HDTHCT,IIX,
25HPLOSS,11X,4HCPHI,12X,4HSPH1)
END
SUPROMTINE MEPLOT
C
C--mEPLOT PLOTS tME RLADE GEOMETRY ANO THE GENERATED CRTHCGCNAL mESH
C
CCNMON/INPUTT/GAM, AR,MSFL, ONEGA,RECFAC,VELTOL, FNEW,ONEW,MBI,MBO,
1 NM,MHT,NBL,NHUR,NTIP,NIN,NCUT,NBLPL,NPPP,NCSTAT,NSL,LSFR,
2.LTPL,LAMVT, IMESH,ISLINE;ISTATL,IPLOT, ISUPER,ITSON,IDEBUG,
3 2OMIN,7ONBI, TCNBC, 7OMOUT, ZHIN, ZTIN, THOHIT, ITOUT, ZHUR(50),
4 RHIJR(50), ITIP(50), RTIP(50),SFIN(50),RADIN(50),TIP(50),PRIP(50).
LLAMIN(50), VTHIN(50), SFO1HT(SO), RADOUT(50), PRCP(50), LOSOUT(50),
6 LAMOUT (50), VTHCUT(50), ZHST(50), ITST(50), FLFR(50).
7 ZPL (50,5C), RBL (50,50), THBL(50,50),TNBL(50,50)
CCMMON/CALCON/MMM 1, MHTP1, CP, EXPON, TGROF, PITCH,CURVHI,CURVTI *
CURVHO, CURVTO,RHIN,RTIN,RHCUT,RTCUT,RLEH, RLET, RTEF,RTET,
2. TLE(50), RLE(50), TTE(50),RTE(50),ZLEOM(101),RLECN(101),
3 SLECM(101), THLEOM(101), TTECN(101),RTEOM(101),STEOM(101).

```
```

4 THTEOM(101), ILE(101),ITE(101), 2OM(100,101),RCN(100.101).
5 SOM(100,101), TOM(100,101), RTH(100,101), TTHDS(100,101),
6 OTHNT(100,101),PLOSS(100,101),CPH1(100.101),SFHI(100,101)
COMMINN/PLTCOM/ZLRNG,ZRRNG,RBRNG,RTRNG,7HPLT(100),RHPLT(100).
1 7SPLT(100),RSPLT(100),7LPLT(100), RLPLT(100), 7TPLT(100),
2 RTPLT(100)
DIMENSION TITL1(15), TITL2(10),TITL 3(3),TITL4(3), ZTEM(101),
1RTEM(101)
DATA TITLI/'HUB,',* SHR***OUD,***ANC*,! BLA','CE E', "OUND***ARIE*
1.'S$C1',*$R8I','NNME', 'RIDI', 'ONAL',' PLA'.*NE */
DATA TITLZ/'ORTH', OGON',"AL M',"ESH\$", 'CLSL','2IN *, "MERI', 'DION'
1, 'AL P','tLANE"/
DATA TITL3/'7. [**'IREC**'TION*/
DATA TITL4/ER D','IREC*,'TION'/
DATA SYM/*X*/
DATA SYN/'O'/
IF IIPLCT.LE.O) RETURN
C
C--CETAIN PLOT ROUNEARIES, AND SCALE THE PLOT
CAIL PTRDRY
C
C--PLCT PLADE GECMETRY ANC PLOT ORTHCGONAL MESH
CALL LRMRGN(1.0.1.0,2.0,1.0)
CALL LRANGE{ILRNG, ZRRNG,RBRNG,RTRNG)
CALL LRGRIC(-1,-1,1.0,1,0)
IPLT= 1
CALL LRLEGN(TITL1,60,0,1.3,0.7,0.0)
10 IF (IPLT.EG.2) CALL LRLEGN(TITL2,40,0.3.4,0.7,0.0)
CALL LRCHSZ(2)
CALL. LRLEGN{TITL 3,12,0,4.5,1.5,0.0)
CALL LRLEGN(TITL4,12,1,0.4,4.5,0.01
CALL LRCHST(4)
CALL LRCURV{IHPLT,RHPLT,100,2,SYM,0.01
CALL LRCURVP7SPLT,RSPLT,100,2,SYM,0.0)
CALL LRCURVIZLPLT,RLPLT,100,2,SYM,0.0)
CALL LRCISV (1TPLT, RTPLT, 100,2,SYM,0.01
IF IIPLT.ES.21 GO TO 20
CALL LRCURV(THUB,RHUB,NHUB,4,SYM,0.0)
CALL LRCIJRV(ITIP,RTIP,NTIP,4,SYM,0.0)
DO 15 JN=1,NBLPL
15 CALL LRCURV(ZBL(1,UN),RBL(1,JN),NPPP, 2,SYM,0.0)
CALL LRCURVITLE,RLE,NRLPL,3,SYN;O.0I
CALL LRCURV(ITE,RTE,NBLPL,3.SYN,1.0)
TPLT= 2
GO TO 10
C--PLOT VERTICAL MESH LINES
20 OE 40 I=1,MM
7TEM(1)= TOM(I,1)
RTEM(1)= ROM(I,1)
DR 30 J=2,MHTPL
ZTEM(J)= ICM(I,J)
30 RTEM(J)= ROM(1,J)
4C CALL LRCURVITTEM,RTEM,MHTP1,2,SYM,0.OS
C--PLOT HORI7ONTAL MESH LINES
ECP=0.0
Oत 50 J=2,MHT
IF (J.EQ.MHT) EOP =1.0
50 CALL LRCURV{TCM(1,J),ROM(1,J),MM, 2,SYM, EOP)
CALL LRCURV(1TEM,RTEM,0.1,SYM,1.0)
RETIJRN
END

```

\section*{C}

C--ptadry ortains the hub and shroul anc blade leaciag anc trail ing edee C--ROUNDARIES FOR PLOTTING. AND SCALES THE PLOT
\[
\mathrm{C}
\]

C

DIMENSION AAA (100)
C
C--CBTAIN PLOT POINTS ON HUB
C
CELZ \(=(\) ZHUB(NHUR)-2HUB(1))/99.
ZHPLT(1) \(=\) ZHUB(1)
DO \(10 \quad \mathrm{I}=2,100\)
10 2HPLT(I) = 2HPLT(T-I)+DELZ
CALL SPLINT(ZHUB, RHUB, NHIJR,ZHFLT,100, RHPLT,AAA)
\(C\)
C--CETAIA PLET PCINTS ON SHRCUE
C
DELT = (ZTIP(NTIP)-7TIP(1.)//GG.
ZSPLT(1) \(=\) TTIP(1)
On \(20 \quad \mathrm{I}=2.100\)
20 2SPLT(I) \(=\) ZSPLT(I-1)+DELZ
CALL SPLINT (ZTIP\&RTIP\&NTIP,7SPLT, 100,RSPLT,AAA)
C
COODRTAIN PLOT POINTS UP BLADE LEADING EOGE
C
DELR \(=\) (RLET-RLEH)/S9。
RLPLT(I) = RLEH
RLPLT(100) \(=\) RLET
On 30 J \(=2,99\)
30 RLPLT(J) \(=\) RLPLT(J-1)+DELR
CALL SPLINTIRLE, ZLE,NPLPL,RLPLT,100, ZLPLT, AAAI
C
c--CPTATA PLCT PCINTS UP ELACE TRAILING EDGE
C
DEIR = (RTET-RTEH)/99.
RTPLT(1) = RTEH
RTPLT(100) = RTET
DO \(40 \mathrm{~J}=2,9 \mathrm{G}\)
40 RTPLT(J) \(=\) RTPLT(J-1) + OELR
CALL SPLIAT(RTE, TTE,NRLPL,RTPLT, 100 , ITPLT, AAA)
C
C--CALCULATE The range of the plot
\(c\)
```

        ZLRNG = AMIN1(7HUR(1),7TIP(1))
        7RRNG = AMAXIITHUS(NHUR), ZTIP(NTIP))
        DO 48 J=1,MHTP1
        ZLRNG = AMIN1(ZLRNG,ZOM(1,J))
    48 ZRRNG = AMAXI(ZRRNG,ZOM(MM,J))
        DELT = ZRRNG-7LRNO
        ZLRNG = 7LRNG-0.0S*DELZ
        7RRNG = 7RRNG*0.05*DEL 7
        RARNG = RHUP(1)
        DO 50 I=2,NHUB
    50 RRRNG = AMINI(RRRNG,RHUP(I))
        RTRNG = RTIP(II
        D# 60 I=2,NTIP
    60 RTRNG = AMAXI(RTRNG,RTIP(I))
        DELR = RTRNG-RARNG
        RRRNG = RERNG-0.05*DELR
        RTRNG = RTRNG*0.05*CELR
    C
C--CHOOSE MAXIMUM RANGE, AND EXPAND RANGE IN THE OTHER DIRECTION
DNO2 = 1.1*ABS(DELZ-DELR)/2.
IF (DELR.GT.DELZ) GO TO }7
RTRNG = RTRNG\&DMD2
RPRNG = RRRNG-DNC2
RETURN
70 7RPNG = 2RRNG+IMD2
7LRNG = ZLRNG-CMC2
RETIJRN
ENT

```

\section*{SURROUTINE VRDRY(ICC,TIPF,RHOIPF,LAMCAF)}

\section*{C}
```

C--VEDRY CALCULATES THE DISTRIRUTION OF STREAM FUNCTIOA ALONG THE C--UPSTREAM AND DCWNSTREAM BOUNDARIES DF THE ORTHOGONAL MESH C
CCMMCN SRW, SRE, ITER, IENC, NREAC, NHRIT
COMMON/INPLTT/GAM, AR, MSFL, OMEGA, REDFAC, VELTCL, FNEW, CNEW, MBI, MBO, MM, MHT,NBL, NHUB, NTIP, NIN, NOUT, NBLPL, NDPP, NOSTAT,NSL, LSFR, L.TPL,LAMVT, IMESH, ISLINE, ISTATL, IPLOT, ISUPER, ITSON,IDEBUG, 7 OMIN, 7 OMBI, ZOMBO, 70 MOUT, ZHIN, ZTIN, ZHCUT, 7 TCUT, ZHUE(50), RHIP(50), ITIP(50), RTIP(50), SFIN(5C), RADIN(5C), TIP(50), PRIP(50), LAMIN(50), VTHIN(50), SFOUT (50), RACOUT (50), PROP (50), LOSOUT (50). LAMOUT (50), VTHCUT (50), 7HST(50), 7 TST(50), FLFR(50), $7 \mathrm{PL}(50,50), \operatorname{RRL}(50,50), \operatorname{THBL}(50,50), \operatorname{TNBL}(50,5 \mathrm{C})$
CCMMCN/CALCCN/MNMI, MHTPI, CP, EXFON,TGROF, PITCH, CURVHI, CURVTI CURVHO, CURVTO, RHIN, RTIN,RHOUT, RTOUT,RLEH,RLET, RTEH,RTET, 7LE(50), RLE(50), ZTE(50), RTE(50), ZLEOM(101), RLEOM(101), SLEOM(101), THLEOM(101), 2TECN(101), RTEOM(101), STEOM(101), THTENM(101), ILE (101), ITE(101), ZOM(100,101), RCN(100,101), $\operatorname{SCM}(100,101), \operatorname{TCM}(100,101), \operatorname{RTH}(100,101)$, DTHCS 100,101$)$, 6 OTHDT(100,101), PLOSS(100,101), CPHI(100.101),SFHI(100, 101) COMMON/VARCOM/A(4,100,101), UOM(100,101),K(100,101),RHC(100,101). 1 WSURS 100,101 , WSURT (100, 101),WSURZ (100, $1011, H S U R R(100.101)$, 2 WSURM\{100,101\},WTM\{1C0,101\},VTH\{100,101),W1100,101),

```

``` 4 WLSIJRF 1100,101\(\}\), WTSURF \((100,101)\), CAMP \(\{100,101), S A M P(100,101)\),
```

```
        5 RHOAV(100,101), DELRHO(100,1C1),FR(100,101), CFCN(100,101),
        6 XIOM(100,101), ZETOM(100,101), DLDU(100,101)
            DIMENSIDN TIPBDY{101), RHOIP(101),LANRCA(101),AA(101), PB(101).
            1 CCA(101), CCRP1C1),WRDRY(1C1), RDY(4)
            REAL LAMBDA,LAMCAF,MSFL
            LCGICAL REPEAT
            EXYERNAL TIPF,RHOIPF,LAMDAF
            DATA RDY/4HINLE,4HT ,4HDUTL,4HET
C
C--SET INITIAL WHUB AND DELMAX
C
    IL=1
    IF {LOC.GT. II IL=3
    CURVH = CURVHI
    CLRVT = CURVTI
    IF(LDC.EO.1) GO TO 10
    CURVH = CURVHO
    CLRVT = CURVTC
        10 J7 = 1
            RNEAN = (RCM(LOC,1)+RGM(LOC,MHTPI))/2.
            RHOIP(1)= RHOIPF(.5)
            WSM= MSFL/RHOIP(1)/RMEAN/PITCH/TOM(LCC,*MTPI)
            WTHETA= LAMCAFI.5 LOC,I I/RMEAN-OMEGAFRMEAN
            WHUR = SORT(WSM**2+WTHETA**2)
            DELMAX = WHUR/20.
            RTCLER = 1.E-4
C
C--CALCULATE INITIAL ESTIMATE OF TIP,RHOIP,AND LAMBDA
C
            RH2 = ROM(LOC,1)**2
            DELR2 = ROM{LOC,MHTP1}##2-RH2
            DC 20 J=1:MHTP1
            WFLF = (ROM{LOC,J)**2-RH2)/DELR2
            U[N(LCC,J) = WFLF
            TIPBDY(J)= TIPF(WFLF)
            RHOIP(J)= RHOIPF(WFLF)
        20 LAMRDA(J)= LAMCAF(WFLF,LDC,J)
            NCOUNT = O
C
C--CAlCILATE COEFFICIENTS A, B, AND C FOR THE VElOCITY GRADIENT EQUATION
C
            30 DO 40 J=1, MHTP1
            AA($) = CURVH+TOM{LOC,S )/TOM(LOC,MHTP I)*(CURVT-CURVH)
            ONR2 = OMEGA*RCN(LCC,J)**2
            BB(J)=-(LAMRDA(J)-OMR2)/ROM(LCC,J)**2*(AA(J)*(LAMBDA(J)-ONR2) *
            1 {LAMBDA{.})+OMR2)/ROM{LOC,J)*CPHI{LOC,J)]
        40 CEATINUE
            DO 50 J=1,MHT
            CCA(J)=CP*{TIPBCY(J+1)-TIPBDY(J)}-QMEGA*(LAMBDA(J+1)-LAMBDAIJ)}
        50CCR(J) = (CP-AR)*{TIPBDY(J+1)-TIPRDY(J))-AR/(RHCIP(J)+RHOIP(J +1))*
        I{TIPRCY(J)+T YPRDY(J+1))*{RHOIP(J+1)-RHOIP(.I))
C
C--SCLVE THE VELCCITY GRACIENT EOUATICN ALONG THE BCUNCARY
C
    REPEAT = FALSE.
    JOM(LOC,1)=0.
    60 INF= 1
    7C WPCRY{11 = WHUR
        NCOUNT = NCOUNT+1
```

```
            WSO= WADRY(1)**2
            TH!MR= 2.*CMEGA*LAMROA(1)-{OMEGA*ROM(LOC,1))**2
            TTIP= 1.-{WSO+THLNRI/CP/TIPBOY{I)/2.
            IF (TTIP.LT.O.I COO TO 100
            RHOW = RHOIO{1|*TTIP**EXPON*WRCRY(1)
            SINRTA = (LAMBDA(I)/RGN(LOC,1)-CMEGA*RON(LCC,1))/WBCRY(1)
            [F (ARSISINATA).GT.1.) OD TO SC
            CRSATA = SCRT(1.-SINRTA**2)
            RVA = RHOW*COSRTA*ROM(LOC,1)*PITTCH
            DC 8O J=1,NHT
            DELTA= TOM{EOC,J+1)-TCN(LOC,J)
            CC = CCA(J)-CCB(J)*TTIP
            WAS = WRDRY(J)*{1.+AA(J)*DELTA)*BB(J)/WRDRY(J)*DELTA+CC/WBDRY{J}
            WSO = WAS**2
            TWLMR = ?.*OMEGA*LAMBDA(J+1)-(CMEGA*ROM(LOC, J+1)|**2
            TTIP = 1.-(WSG+TWLMRI/CP/TIPROYPJ+1)/2.
            CC = CCA(J)-CCB(J)*TTIP
            HASS = WRDRY(J) &AAI J + I)*WAS*DELTA+BB(J+1)/WAS*CELTA+CC/WAS
            WPCRY{J+1) = (WAS+WASS)/2.
            WSO = WBDRY(J+1)**2
            TTIP= 1.-(WSO+TWLMR)/CP/TIPBDY(J+1)/2.
            IF (TTIP.LT.0.) GO TO 100
            RHOW = RHOIP(J+ 1)*TTIP**EXPON*WBORY(J+1)
            SINPTA = {LAMBCA{J+1)/ROM(LOC,J+1)-OMEFA*ROM(LCC, J+11)/HBORY{J+1)
            IF (ABSISINBTA).GT.1.) GO TO 90
            COSATA = SORT(1.-SINBTA**2)
            RVAS = RHOW*COSRTA*ROM(LOC,J*1)*P ITCH
            UOM(LDC,J+1) = (RVA+RVAS)*DELTA/Z.+UCN{LOC,J)
            8O RVA= RVAS
C
C--CHECK CONTINUITY AND ESTIMATE NEH VALUE FOR W AT HUR
C
                            IF(IND.GE.6.AND.ABS(MSFL-UOM(LOC,MHTP1)).LE.MSFL`RTOLER) GO TO 120
                            CALL CONTIN(WHUB,UCM(LOC,MHTPI),IND,JZ,NSFL,CELNAX)
                            IF (INC.LT . 10) GO TO }7
                            IF (IND.EQ.10) GO TO 120
                    GO TO 110
    90 WHHR=WHIB*.5*DELMAX
            IF (NCOUNT.LT.100C) GO TO 60
            GO TO 110
    100 WHUP = WHIIP-. 5*CELMAX
                            IF (NCOUNT.LT.1000) GO TC }6
    110 WRITEINWRIT, 1010) BDY(III, RDY(IL+1)
            STCO
C
C-- SOLUTION ORTAINED. UPDATE TIP,RHOIP,ANC LANBCA
C
    120 CENTINUE
    DO 130 J=2,MHTPI
    FRAC = UחM{LOC,J)/MSFL
    UCN(IOC,J)= FRAC
    TVAR = TIPF{FRACI
    IF (ARS{TVAR-TIPROY(J)).GT.TIPBDY{J)*RTOLER) REPEAT=.TRUE.
    TIPRCY(JI= TVAR
    TVAR = RHOIPF(FRAC)
    IF (ABSITVAR-RHOIP(J)I.GT.RHOIP(J)*RTOLER) REPEAT=.TRUE:
    RHRIP(S) = TVAR
    TVAR = LAMDAF{FRAC,LOC,J)
    IF (ARS{TVAP-I AMROA(J)}.GT.ABS(LAMROA(J))*RTOLER) REPFAT=.TRUE.
```

```
    130 LANRCA(J) = TVAR
        WHUR= WRDRYPII
        IF (REPEAT.AND.NCOUNT.GE. 1000) GO TO 110
        IF (REPEAT) GO TC 30
    IF (IND.NE. 10) RETURN
    WRTTE(NWRIT,IOOO) BCY(IL), BDY(IL+1),UOM(LOC;MMTPI)
    STOP
1COO FORMAT I 26HL PASSAGE IS CHOKEC AT THE,2A4,21H WITH A NASS FLOW OF
    1,814.6:
1010 FORMAT (2HL , 2A4,39H BCUNDARY CONDITIONS CANNOT RE OGTAINED,
    END
```


SURRCUTINE INIT

```
C
C--INIT ASSIGNS INITIAL VALUES TO THE ARRAY VARIABLES
C
CCMMON/INPUTT/GAM,AR,MSFL, OMEG&,RECFAC,VELTOL, FNEW,DNEN,MBI,MBO,
1 MM, MHT,NBL,NHUB, NTIP,NIN,NCUT,NPLPL,NPPP,NOSTAT, NSL, LSFR,
LTPL,LANVT,IMESH,ISLINE, ISTATLL,IPLOT, I SUPER, I TSON,IDEBUG,
3 7OMIN,7OMBI, 7OMBO, 2OMCUT, 2HIN, ITIN, 7HDUT, TT CUT, 7HUB(50),
4 RHUB(50), ZTIP(50),RTIP(50),SFIN(50), RADIN(50),TTP(50),PRIP(50),
5 LAMIN(50), VTHIN(50), SFOUT (50), RACOUT(50), PROP(50),LOSOUT{50),
6 LAMOUT(50), VTHOUT(50), 7HST(50), T\ST(50), FLFR(50),
7 7BL (50,50%,RBL (50,50), THBL (50,50),TNRL&5C,5C)
COMMON/CALCCN/MMMI,MHT PI,CP, EXFON,TGROG,PITCH,CURVHI,CURVTI,
1 CURVHO,CURVTO,RHIN,RTIN,RHOUT,RTOUT,RLEH,RLET,RTEH,RTET,
2 ZLE(50), RLE{50), ZTE(501,RTE{50), ZLEOM(101),RLECM(101).
3 SLEOM(101), THLEOM(101), ZTECN(101),RTEOM(101),STEOM(101),
4 THTEOM(101), ILEE101), ITE(1C1), IOM(100,101),RCN(100,101),
5 SCM{100,101), TOM(100,101), BTH{100,101), OTHDS(100,101).
6 DTHDT(100,101),PLOSS(100,101),CPHI(100,101),SFHI(100,101)
COMMON/VARCOM/A(4,100,1011,UOM(100,101),K(100,101),RHO(100,101),
                WSURS(100,101),WSUBT (100,101),WSUEZ(100,101),WSURR(100,101),
                WSURM(100,101),WTH(1C0,101),VTH(100,101) %h(100,101),
                ALPHA{100,1011,BETA(100,101),WWCR(100,101),CURV(100,101),
                WLSURF(100,101),WTSURF(100,101%OCAMP(100,101%,SAMP(100,101%,
                RHOAV{100,101), DELRHC(100,101),FR{100,101), DFCN(100,101),
                XIOM(100,101), ZETOM(100,101), DLDU(100,101)
                    REAL K
            RHOIP = RHOIPF(O.)
            OD 10 J=1, NHTP1
            OR 1O I=1,NN
            WSURS(I,J)=CPHI(IT,J)
            WSURT{I,J)= -SPMI(I,J)
            WSURT(I,J)=1.
            W(I;J)=0.
            WTH{I,S)=0.
            VTH{I;J) = 0.
            RHO(I,J) = RHOIP
            RHOAV(I,J)=RHOIP
            DELRHO(I,J)=0.
            XICM(I;J)=0.
            7ETOM(I,N)=0.
            FR(I,J)=0.
            DFDM(I;J) = 0.
```

DLDUflts) $=0$.
$10 \mathrm{~K}(\mathrm{I}, \mathrm{J})=0$. RETURN
END

SUBRDUTINE COEF

C

C--COEF CALCULATES COEFFICIENTS, A AND K,
$C--F C R$ THE SYSTEM OF MATRIX ECUATIONS, $\Delta * U=K$
C
COMA ON SRW, SRE, ITER I IEND, NREAD,NWRIT
CCNMON/INPUTT/GAM, AR, MSFL, OMEGA, RECFAC, VELTOL, FNEW, DNEW, MBI \&MBO,
1 MM, MHT, NBL, NHUB, NTIP,NIN, NCUT, NBLPL, NPPP, NCST IT, NSL, LSFR,
2 LTPL,LAMVT, IMESH,ISLINE, ISTATL, IPLOT, ISUPER, ITSON,IDERUG *
3 ZOMIN, ZCMBI, 7 OMBO, ZONOUT; ZHIN, 7TIN, ZHOUT, ZTCUT, ZHUP(50); 4 RHUB(50); ZTIP(50),RTIP(50), SFIN(50), RADIN(50), TIP(50), PRIP(50). 5 LAMIN(50), VTHIN(50), SFOUT (50), RACOUT (50), PROP (50), LOSOUT (50).
6 LAMOUT (50), VTHOUT (50), ZHST(50), 7TST(50), FLFR(50),
7) 7 RL $(50,50)$, RBL $(50,50)$, THBL $(50,50)$, TNBL $(50,5 \mathrm{C})$
C CMMON/CALCCN/MMMI, MHTPI, CP, EXPON,TGROG, PITCH, CURVHI,CURVTI, CIJR VHO, CURVTO, RHIN,RTIN,RHOUT, RTOUT, RLEH,RLET, RTEH,RTET,
2 7LE(50), RLE(50), ZTE(50),RTE(50), ZLEDM(101), RLEOM(101),
3 SLECM(101), THLEOM(101), ZTECM(101), RTEOM(101); STEOM(101),
4 THTEOM (101), ILE(101), ITE (1C1), 70M(100,101), RCM(100,101).
5 SCM(100,101), TOM (100, 101), BTH(100, 101), DTHOS (100, 101) ,
6 OTHDT(100,101$),$ PLOSS $(100,101), \mathrm{CPHI}(100,101), S \mathrm{PHI}(100,101)$ COMMON/VARCOM/A(4,100,101), UOM(100,101), K (100,101),RHO(100,101).
1 WSUBS (100,101),WSUBT (100,101),WSURZ(100,101),WSUBR(100,101). WSUBM(100,101), W TH (100,101$), V T H(100,101), W(100,101)$, ALPHA 100,1011, BETA (100,1011 , WWCR(100,101$),$ CURV(100,1011), WL SURF $(100,101)$, WT SURF $\{100,101\}, \operatorname{CAMP}\{100,1011, \operatorname{SAMP}\{100,101\}$, RHOAV 100,101$)$, DELRHC(100,101), FR(100,1011, DFCN(100,10.1), XInM (100,101), 2ETOM(100, 101), DLDU(100,101)
DIMENSION DVTHDR $(100,101)$
REAL MSFL,K,KNEW
C--CALCULATE COEFFICIENTS AND CONSTANTS FOR FINITE DIFFERENCE EQUATIONS WRITE(NWRIT.1030) ITER
DCHANG $=0$.
DMAX $=-1 . E 20$
DMIN $=1: E 20$
$\operatorname{CO} 30 \mathrm{~J}=2, \mathrm{M} \mathrm{\mu T}$
$H 4=\operatorname{SOM}(2, J)-\operatorname{SCM}(1 ; 3)$
DO $30 \mathrm{I}=2, \mathrm{MMM1}$
$H 1=\operatorname{TOM}(I, J)-\operatorname{TOM}(1, J-1)$
$H 2=T O M\{I, J+1\}-T C N(1, J)$
$\mathrm{H}_{3}=\mathrm{H}_{4}$
$H 4=\operatorname{SCM}(I+1, J)-\operatorname{SOM}(I, J)$
$A O=2 \cdot / \mathrm{H}_{1} / \mathrm{H}_{2}+2 . / \mathrm{H}_{3} / \mathrm{H}_{4}$
$\mathrm{C} 1=\mathrm{H} 1+\mathrm{H}_{2}$
$\mathrm{C}_{2}=\mathrm{H} 3+\mathrm{H}_{4}$

IRHOI I, J)

1 CPHI (I, J)
$D 2=(B T H\{I+1, J)-R T H(I-1, j)) / E T H\{I, J)+(R H O(I+1, J)-R H C(I-1, j)\}$

```
            1RHOQIO.d)
            D2 = D2/C2+SFHI(I,J)/RCN{I,J)-(SPHI(I,J+I)-SPFI(I,J-1)//C1/
            1CPHI{I*J)
            KAEW = XIOM(ITS)*W(I,J)**2+ZETOM(I,J)
            IFII.GE.ILE(J).AND.I.LE.ITE(J)) GC TC 10
            KNEW = KNEW+WTH(I,J)/MSFL*&TH(IoJ)*RHC(IoJ)*&SUB2(IOJ#*DLDU(Iq,j)
            Gr TC 20
        10 DVDRT = (ROM(I+1,J|*VTH(I&I,J)-RCM(I-I;J)*VTHPI=1,J))/C2*SPHI(I,J#
            1+(ROM(I;J+1)*VTH(I,J+1)-ROM(I,J-1)*VTH(I,J-1))/CI*CPHI(I,J)
            DCHANG = AMAX1(DCFANG,ABS(DVORT-EVTHCR(I,J)))
            DMAX = AMAXI\DMAX,DVDRT)
            DMIN = AMINI\OM IN,DVDRT)
```



```
    K&I, g% = KNEW
    A(1, Ig\)={2./H1+01%/AO/C1
            A(2.IqJ8 = (2./H2-01//AO/C1
            A(3.I,|)=(2./H3+D2)/AO/C2
            A(4.I.J) = (2.fH4-D2)/AO/C 2
30 CENTINUE
            HRITEINWRIT,IO20) DMAX,DNIN,DCHANG
            IF IICEBUG.LE.0I RETURN
            IF IIITER/IDEBUGI*ICEBUG.NE.ITER.ANC.ITER.NE.II RETURN
            WRITEPNWRIT,1010%
            CC 40 J=2,MHT
            DC 40 I =2,MMM1
```



```
            RETURN
H000 FORMAT (216.5G16.6)
1010 FORMAT (1H1////24X,57HCOEFFICIENTS OF MATRIX EQUATION FOR STR
    IEAM FUNCTION/5X,1HI,5X,1HJ,6X,4HA(1),12X,4HA(2), 12X,4HAT 3), 12X,
    24HA(4).13X.EHK)
1020 FORMAT I///5X, 37HMAXIMUM CALCULATED VALUE OF DVTHCR E,GI3.5/5X,
    137HMINIMUM CALCULATED VALUE OF DVTHDR =,G13.5/5X,37HMAXIMUM CALCU
    2LATED CHANGE IN DVTHDR =9G13.5)
1030 FORMAT (//////14H [TERATION NO.,I3,2H:)
    ENO
```

SURROUTINE SOR
C
C--SCR SOLVES THE SET CF MATRIX EQUATIONS, A*J=K
C--PY THE SUCCESSTVE OVERRELAXATION TECHNI OUE
C
COMMCN SRW, SRE,ITER,IENC, NREAC, AHRIT
COMMON/INPUTT/GAM, AR, MSFL, OMEGA, REDFAC, VELTCL, FNEW, DNEW, MBI, MBC,
1 MM, MHT, NAL, NHUE, NT IP, NIN, NOUT, NBLPL, NPPP, NOSTAT,NSL, LSFR,
2 LTPL,LANVT, IMESH, ISLINE, ISTATL, IFLCT, ISUPER, ITSON, ICEBUG,
3 7OMIN, $70 \mathrm{MBI,ZOMBO,ZOMOUT,ZHIN,ZTIN,ZHOUT,ZTCUT} ,\mathrm{ZHUE} \mathrm{\{50)}$,
4 RHUP(50), 2TIP(50), RTIP\{50), SFIN(50), RADIN(50), TIP(50), PRIP(50).
5 LAMIN(50), VTHIN(50), SFCUT (50), RADCUT (50), PREP(50), LOSOUT (50),
6 LAMOUT (50), VTHOUT (50), ZHST(50), ZTST(50),FLFR(5C),
7 7. AL $\{50,50)$, RBL $(50,50)$, THBL $(50,50)$, TNBL $(50,50)$
COMMON/CALCON/MMM1, MHTP1, CP, EXPON, TGROG, PITCH, CURVHI,CURVTI,
1 CIIRVHO, CURVTO, RHIN, RTIN, RHOUT,RTMUT,RLEH,RLET,RTEH,RTET,

```
        71E(50), RLE(50), TT E{50), RTE(50), TLENM(101), RLEOM(101),
        SLFOM(101),THLEOM(101),2TERN(101), RTEOM(101),STF(N(101),
        THTERM(101}, ILE(101), ITE(101),TOM(100,101), RCNP100,101),
        SCM(100,101), TCM(100,101), RTH(100,101), CTHCS{100,101),
        OTHDTI1CC,101),PLOSS(100,101),CPHI(100.101),SFHI(100,101)
    CCNMCN/VARCOM/A(4,100,101),UOM(100,101),K(100,101),RHO(1CO,1C1),
        WSIJR S(100,101), WSURT(100,101),WSUB7(100,101),WSUER(100,101),
        WSUAM(100,101), WTH(100,101),VTHY100,101), WP1CC,101),
        ALPHA(100,101), PETA(100,101),WWCR(100,101), CIJRV(100,101),
        WLSURF(1C0,101),WTSURF{100,101),CAMP(100,101),SAMP(1CO,101),
        RHOAV(100,101), CELRHC(100,101),FR(100,101), DFEMP100,101),
        XIOM(100,101), TETOM(100,101), DLOU(100,101)
    CIMENS ION UVERT(101,2)
    REAL K,LMAX,LMIN
    IF (ITER.GT.l) GO TO 70
C
C--STORF U BOUNCARY VALUES AND SET BCUNDARY VALUE TO ZERO
C-TO CALCULATE OPTIMUM ORF
    DO 10 I=2,MMM1
    UCM(I,I)=0.
    10 UOMIJ,MHTP1I = 0.
    DO 20 J=2, MHT
    UVERT(J,1)=UCM{1,J)
    UOM{ 1:J) = 0.
    UVERT(J,2) = UOM(MM,J)
    UCM(MM,J) = 0.
    D\cap 20 I=2,MMM1
    20 UCN(I*J) = 1.
C
C--CALCULATE BPTIMUM DRF
    30 LNAX = 0.
            LN!N = 1.
            DO }40\textrm{J}=2,MH
            OR 40 I=2,MMM1
            UNEW = A{1,I,J}*UCN(I;J-1!+A{2,I;J)*UCM(I;J+I)+A{3,I;J)*UOM(I-1;J)
            1 +A(4;I;J)*UOM(I+1;J)
            RATIC = UNEW/UOM(I,J)
            LMAX = AMAXI(LMAX,RATIO)
            LMIN = AMINI(LMIN,RATIO)
        40 UCM(I,J) = UNEW
            IF {LMAX,GT.I.\ LNAX=1.
            ORFMAX = 2./(1.+SORT(1.-LMAX))
            ORFMIN = 2./(1.*SORT(1.-LMIN))
            IF (IORFMAX-ORFMIN).GT.0.2*(2.-CRFNAX)) GOTC 30
            ORF = ORFMAX
            WRITE (NWRIT,1000) ORF
C
C--RESTITRE U ROUNDARY VALUES
            DC 50 I=2,MMMI
        SO UCNSI,MHTP1I= = .
            DO 60, 1=2,MHT
            UCM(1,J)= UVERT(J,1)
        60 UOM(MM,N)=UVERT(J,2)
C
C--SCLVE MATRIX EGUATICN BY SOR
    70 ERROR = 0.
            OD 8O , =2,MHT
            DR BO I=2,NNNI
            C.HANGF = ORF*(A(1,I,J)*UCM(I,J-1)+A(2,I,NJ*UCM(I;J+1)+A(3,I,J)
```


ERROR = AMAXI (ERRCR, APS (CHANGEI)
QO UIOM $\{I, J)=$ JOM $\{I, J\}$ CHANGF
IFAERROR.GT. 1 . E-5) GO TO 70
RETURN
1000 FTRMAT $/ / / / 5 X, 4$ OHCALCULATED QVERRELAXATION FACTOR (ORF) $=, F 7-3$:
EAD

SURROUTINE NE WRHO
C

C
CCMMCN SRW, SRE, ITER, IEND, NREAC, NWR IT
COMMON/INPUTT/GAM,AR,MSFL, OMEGA, REDFAC, VELTCL, FNEW, DNEW, MBI,MBO
1 MM, MHT,NRL, NHUB, NTIP, NIN, NOUT, NBLPL, NPPP, NOSTAT,NSL,LSFR,
2 LTOL,LANVT,IMESH,ISLINE,ISTATL, IPLOT, ISUPER, ITSON, IDERUGQ
3 ZOMIN, ZOMRI, 7 CMBO, ZONOUT, ZHIN, TTIN, ZHOUT, 7 TTUT, ZHURI5O),
4 RHIJP(50), ZTIP(50), RTIP(50), SFIN(50), RADIN(5C), TIP(50), PRIP(50),
5 LAMIN(50), VTHIN(50), SFOUT (50), RACOUT (50), PROP (50), LOSOUT (50).
6 LAMOUT (50), VTHOUT (50), 2HST(50), 7.TST(50), FLFR(50),
7 TRL $(50,50), \operatorname{RBL}(50,50)$, THBL $(50,50)$, TNBL $(50,50)$
COMMON/CALCON/MMM1, MHTPI, CP, EXPON, TGROG, PITCH, CURVHI, CURVTI,
1 CURVHO, CURVTO,RHIN,RTIN,RHOUT,RTOUT,RLEH,RLET, RTEH,RTET,
2 7LE(50), RLE(50), ZTE(50), RTE(50), ZLEOM(101), RLEOM (101),
3 SLEOM(101), THLEOM(101), ZTECH(101), RTEOM (101), STEOM (101),

5 SCM(100,101), TOM(100,1011, RTH\{100, 101), DTHCS 100,101$),$
6 DTHDT(100,101), PLOSS (100,101),CPHI(100,101),SFFI(100,101)
COMMON/VARCOM/A(4,100,101), UOM(100,101), K(100,101), RHO(100,101),
1 WSUBS (100,101),WSUBT (100,101),WSUET(100,101), WSURR(100,101).
2 WSURM 100,101$)$,WTH $100,1011, V T H(100,101), W(100,101)$,
3 ALPHA(100,101), BETA(100, 101), WWCR(100,101), CURVE 100,101$)$,

5 RHOAV 100,101$)$, DELRHO (100,101$\}, F R(100,101)$, DFEN\{100,101).

DIMENSION DUDS(IOO), TVERT (101), UVERT (101), DUCT (101), TPPTIP(1010.
1 PREL (101), ROTI(101),DIDTYICI\},DPDT\{1011, AAA\{1C1\},
2 DIDS $(100,101), \operatorname{CPCS}(100,101)$
REAL MSFL, LAMDAF
INTEGER SRW, SRE

1. RELER $=0$.

XNEW $=1.0$
7 NEW $=1.0$
C
C--REINITIALITE LAMDAF, RVTHTA,TIPF, RHCIPF,RHOCPF
C
IFILANVT.ER.OI GO TO 10
CALL LAMNIT
CALL RVTNIT
CAIL TIPNIT
CALL RHINIT
CALL RHONTT
C
C--CALCULATE PARTIAL DERIVATIVES DF RCTHALPY IROTII, ANC RELATIVE TOTAL
10 Dr $30 \quad 1=1$, NHTPI
OO $20 \quad \uparrow=1, \mathrm{MM}$

1/2./CO/TTPF(IUNM(I, J))
If (TPDTYP(I).LT.C.I GO TO 8C
PRELII) = RHOIPF\{UOM(I,J))*AR*TIPF\{UOM(I,J))*TPPTIP(I\}**(GAM*EXPON
1) $=(1 .-\operatorname{PLOSS}(I, J))$
20 RחTI(I) = CP*TIPF(UOM(I,J))-CNEGA*LAMDAF(UOM(I,J),I,J)
CALL SLOPES (SCMP1, J), RCTI,MM, CICS (I, J)

C
C--CALCULATE WSURT FRCM THE PARTIAL CF UOM WITH RESDECT TO S USING THE
C.- AVERAGE BLADE-TO-RLADE DENSITY FCR CONTINUITY
C
Or $40 \mathrm{j}=1$, NHTDI
CALL SPLINE (SOM(1, H), UCM(1,3), M, DUDS, AAA)
กn $40 \quad I=1 . \mathrm{mm}$
WSURT: I, J) $=(-\operatorname{CUCS}(I) / \operatorname{ROM}(I, J) /$ PTH $(I, J) * M S F L-C F C M(I, J) *$
1 DELRHO\{I, 1$) / 12 . * \operatorname{COS}(R E T A(I, J)) * S A M P(I, J) / / R H C A V(I, J)$
40 CONT INIE
C
C--CALCULATE DERIVATIVES IN THE T DIRECTICN DF THE SAME VARIABLES, AND
C-- (ALCILATE NEW VELDCITIES AND NEW DENSITY
C

```
    OC 60 I=1.NM
    OC 50, j=1,MHTP1
    TVERT (J) = TOM{[{J)
    UVFRT(J)= UOM(I,J)
    TPPTIP(J)=1.-{2.*OMEGA*LAMDAF(UOM(I,J),I,J)-(ONEGA*ROM(I;J))**2)
    1/2./CP/TIPPF{UCM{I,J})
    IF (TPPTIP(J).L.T.C.) GO TO 80
    PREL,\J)= RHOIPF(UCM(I,J)|*AR*IIPF(UOM{I;J))*TPPTIP(J)**(GAN*EXPCN
    1)*(1.-PLOSS(I,N1)
    50 ROTI(J) = CP*TIPF(UOM(I,J))-ONEGA*LAMCAF(UOM(I,J),I,J)
    CALL SPLINE{TVERT,UNERT,MHTP I, DUDT,AAA)
    CALL SLCPESITVERT,ROTI,NHTPI,CIOTI
    CALL SLIPESITVERT,PREL,MHTPI,DPDTI
    DC 60 J=1, MHTP1
    WSURS(I,J) = (DUDT(J)/RCM(I, J)/ETH(I,J)*NSFL-CFCN(I,J)**
    1 DELRHO(I;J)/12.*COS(BETA(I;J))*CAMP(I;N)!YRHCAV(I,j)
    WTH(I,J)= ROM(I,J)*(WSUBS(I,J)*DTHCS(I,J)+WSURT(I,J)*DTHDT(I,J))
    IF (I-LT.ILE(J)) WTH(I,J)=LANCAF(UON(I,J),I,J)/RCN(I,J)-DMEGA*
IROM(I,.j)
    JF (I.GT.ITEIJI) WTH({,J)=RVTHTA(UOM(I,J),I,J)/ROM(I,J)-OMEGA*
    IRT\M(I,N)
    VTH{I,J)=WTH{I,J)+OMEGA*RПM(I,J}
    WSN = WTH(I,J)**2*WSURS(I, J)**2*WSUPT(I,J)**2
    WTEMP = SORT(WSO)
    IF(W{I,I).NE*O.) RELER = AMAXI(RELER,ARS({WTEMP\divW(I,J)\/W(I,J)})
    W{I,J} = WTEMP
    TWLMR = 2.*TMERA*LAMDAF(UOM(I,J),I,J)-(CMEGA*R[N{I,J) )**2
    TTIP=1.-(WSQ4TWLMR)/CP/TIPF(IOCM(I,J))/Z.
    IFITTIP.LT.C.I RC TO }7
    RHO(I,N)= RHOIPF(IIOM(I,J))*TTIP**EXPON
    TPP = TPPPTIP(J)*TIPF(UCM(T,J))
    DPDR = DPDS(I,J)*SPHI (I,J)+OPCT(J)*CPHI(I,J)
    DICR= DIDS(T,J|*SPHI(I,J)+OICT(J)*CPHI(I,.J)
```



```
    ZETOMT = OMEGA** 2*RCM(I;J)-AR/PREL(J)*TPP*DPDR
```



```
    7ETOM(I,J) = 7NEW* ZETOMT+(1--ZNEW)*ZETOM(1,J)
    60 CONTINUE
    WRITE{NWRIT,102O\ ITER,RELER
C
C--ADJUST PRINTING CONTRCL VARIARLES
C
    IF PRELER.GE.VELTCLI RETURN
    IF (RELER.EQ.O.) RETURN
    IENO = IEND+1
    IF (IMESH.GT.I) INESH=1
    IF &ISLINE.GT, I\ ISLINE=1
    IF {ISTATL.GT.I\ ISTATL=1
    IF {IPLOT.GT.1\ IPLOT=1
    IF IITSON.ET. 1) ITSON=1
    IF (ICEBUG.CT.1\IDEBUG=1
    RETURN
    70 WRITE(NWRIT, 1000)
        STOP
    80 WRITE(NWRIT 1 010)
        STOP
    1000 FORMAT (68HI PROGRAM STOPPED IN NEWRHO DUE TO EXCESSIVE STREAM FUNCT
        1I CN GRADIENT)
    1010 FORMAT(62HL THE UPSTREAM INPUT WHIRL OR TANGENTIAL VELOCITY IS ICC
    l LARGEI
1020 FRRMATR///5X,9HITERATION,I3.4IH, MAXIMMM RELATIVE CHANGE IN VELO
        ICITY =, G11.4%
            END
SURRDUTINE DUTPUT
C
CO-CUTPUT CALCULATES ANC PRINTS THE MAJOR OUTPUT DATA
C--AT THE ORTHOGONAL MESH PGINTS, ALCNG THE STREAMLIAES, C-OAND ALONG STATTON LINES FROM HUB PO SHRCUO C
C CMMCN SRH, SRE, ITER, IENC, NREAC, NWRIT
COMMON/INPUTT/GAM,AR,MSFL, OMEGA,REDFAC, VELTOL,FNEW,ONEW,MBI,MBO,
1 MN, MHT, NBL, NHUR, NT IP, NIN, NCUT, NBLPL, NPPP, NOSTAT,NSL, LSFR,
2 LTPL,LAMVT,IMESH,ISLINE, ISTATL, IPLCT, ISUPER, ITSCN, IOEBUG,
\(37 O M I N, 7 O M B I, 7 O M B O, 7 O M O U T, Z H I N, 7 T I N, Z H O U T, 7\) TCUT,7HUB\{501, 4 RHUR(50), 7 TIP(50), RTIP(50), SFIN\{50), RADIN(50), TIP(50), PRIP(50). 5 LAMIN(50), VTHIN 50), SFDUT (50), RADOUT (50), PRCP(50), LOSOUT(50), 6 LAMCUT \{50), VTHDUT \{50), ZHST (50), 7TST\{50),FLFR(50).
7 IRL(50,50),RRL(50,50), THBL (50,50), TNBL(50,50) COMMON/ CAL CON/MMM 1, MHTP 1,CP, E XPON, TGROG,PITCH,CURUHI, CURYTI, 1 CURVHO, CURVTO, RHIN, RTIN, RHCUT, RTOUT, RLEH,RLET, RTEH,RTET, 2 7LE(50), RLE (50), ZTE(50), RTE(50), ZLEOM(101),RLECN(101), 3 SLECM(101), THLEOM(101), ZTEQM(101),RTEOM(1C1), STECM(101). 4 THTEOM(101),ILE(101), ITE(101),20M(100, 101), RCN(100,101), 5 SOM(100,101), TOM(100,101), BTH(100,101), OTHDS(100,101), 6 DTHDT (100, 101), PLOSS (100, 101), CPHI(100, 101), SPHI(100, 101) CCNMNN/VARCOM/A \(4,100,101\), UOM \(\{100,101\}, K(100,101)\), RHD \(\{100,101\}\), 1 WSUBS 100,101\(), W S U B T(100,101)\), WUB7(100,101),WSUBR(100,101),
```

```
            2 WSUAM(100,101),WTH(100,101),VTH(100,101),W(10C,101),
            3 ALPHA(100,101), BETA(100,101),WWCR(100,101), CURV(100,101),
            4 WLSURF(100,101),WTSURF(100,101), CAMP(100,101),SAMP(100,101)
            5 RHOAV(100,101), DELRMC(100,101),FR(100,101), DFCM(100,101).
            6 XIOM(100,101), ZETOM(1C0,101),DLDU(100.101)
                    COMMON/SLCOM/ ILS(50),ITS(50), 2SL(100,50),RSL(1C0,50),MSL(100,50),
                    iWTSL(100,50},WRSL(100,50),WNSL{100,50),WTHSL{100,50),
                            2 ALPSL(100,50), BETSL(1C0,50), WSL(100,50), WWCRSL(100,50),
                    3 CURVSL (100,50),WLSSL (100,50),WTSSL(100,50)
            CC*MON/STACCH/2ST(50,50),RST(50,50),MST(50,50),W2ST(50,50),
                WRST(50,50),WM ST(50,50), WTHST(50,50), ALPST(50,50), BETST(50,50),
                    2 WST (50,50),WWCRST (50,501, CURVST(50,50), WLSST(50,50),
                    3 WTSST(50.50)
    DIMENSION DALDS(1001,TVERT(101),ALVERT(101), DALVER(101),
                7TEM(101),RTEM(101),UTEM(101), TSLTEM{50),RSLTEM(50).
                    2 2BLTEM(50), RBLTEM(50), MTEM(50),MARK{50), AAA(101),
                            3 DAL DT (100,101)
                            REAL LAMDAF,LAMIN,LAMOUT,MSL,NST,MTEM
C
    C--CALCULATE VELOCITY COMPONENTS AND FLOW ANGLES
    C
    DEGRAD = 180.13.1415927
    DO 10 J=1,MHTP1
    DC 10 I=1,mm
    NSUBM(IFJ)=SQRT(WSUBS(I,J)**2*WSUET(I;J)**2)
    SAMP (1;J) = WSUBT(I,J)/WSUBM(I,J)
    CAMP{I,J)=WSURS{I,J)/WSUBM{I*J)
    WSUBZ(I;J)=WSUBS{I,J)*CPHI (I;J)-WSUBT(I,J)*SPHI(1,J)
    HSURR{I,J)=WSUBT(I,J!*CPHI(I;J)*WSUBS(I,J)*SPHI(I;J)
    ALPHA{I,J) = ATAN(NSUBR{I,J)/WSUBZ(I,J})
        10 BETA{I,J) = ATAN(WTH{I,J)/WSUBM{I;J)}
            GC TO 30
C
    ENTRY TOUTPT
    C
    C--CALCULATE VELOCITY COMPONENTS AFTER TRANSONIC SOLUTION
C
        DO 20 J=1.MHTP1
            DO 20 I=1,NM
            WSURM(I,J)=W(I,J)*COS(BETA(I %J))
            WTH(I,J)=W(I,J)#SIN(BEYA(I,J)!
            WSUB7{I,J} = WSUBM{I,J)*CCS(ALPHA{I,J)}
            WURRR{I,J)=WSUBM{I;J}*SIN{ALPHA{I;JI}
        20 VTH(I;J) = WTH(I,J)&GMEGA*ROM(I,J)
    C
    C--CALCULATE STREAMLINE CURVATURE AND CRITICAL VELOCITY RATIO
    C
        30 DC 50 I=1, NM
            DO }40\textrm{J}=1,\mathrm{ MHTP 1
            TVERT(J) = TOM(I,J)
    40 ALVERT(J) = ALPHA(I,J)
            C ALL SLOPESITVERT,ALVERT,MHTPI,DALVER!
            DC 50 J=1, MHT PI
    50 DALDT(I,J) = DALVER(d)
            DO 60 J=1,MHTPI
            CALL SLOPES(SOM(1,J), ALPHA(1,J),MM, CALDS)
            nत 60 I=1.MM
            CURV{I;J!= DALDS(I)*CAMP(I,J)+DALDT(I,j)*SAMP(I;J)
            TPP= TIPF(UOM{I;J))-(2.*GMEGA*LAMDAF(UOM (I,J),I;J)-(OMEGA *
            IROM{(*,N)|**21/2./CP
```

```
            IF PTPP.LE&O. TPP=1.
    60 HWCR(I,J) = HPI,J)/SQRT (TGRGG#TPP)
C
C--CCMPUTE PLACE SURFACE VELOCITIES BY STANITZ METHOD
C
    CALL RLDVEL
C
C--CHECK IF UPPER OR LOWER SURFACE IS SUCTION SURFACE
C
    MCT = 2
    IF (ILAMDAF{.5,ILE{1),1)-RVTHTA(.5,ILE{1),1)|#CMEGA.LT.0.) MCT=1
    IF ((LAMDAF(.5,ILE(1),1)-RVTHTA(.5,ILE(1),I)).GT.0.) GO TO }8
    00 70 J=I,MHTP I
    OC 70 I=1,MM
    NDUM = WL SURF(I;J)
    WLSURF(I,J) = WTSURF(I,J}
    70 WTSIJRF{I*J} = WDUM
C
C--PRINT OUTPUT RON BY ROW FROM HUB TO TIP
C
        8O IF IIMESH.LE.OI GC TO 100
        IF (IITER/IMESH)*IMESH.NE.ITER.AND.ITER.NE.II GC TC 100
        WRITE(NWRIT,1000)
        IF (REDFAC.LT.1.0) WRITEINHRIT,1150) ITER
        IF IREDFAC.EQ.1.O.AND.IEND.LE.O\ WRITE{NWRIT.IIGC\ ITER
        IF {REOFAC.EQ.1 .O.AND.IEND.EQ.I\ WRITE(NWRIT,117C)
        IF (REDFAC.EO.1:0.AND.IEND.EO.2) WRITE{NWRIT,1180)
        DO 90 J=1, 员NTP1
        WRITE(NWRIT.,1010) J
        WRITE(NWRIT 1020)
        OO 90 T=1,MM
        PHI = ARSIN(SPHI(I;J))*OEGRAD
        ALPHA(I, \) = ALPHA(I, ||FDEGRAC
        BETA(I,J)= BETA(I,N|*DEGRAD
        WRITE(NWRIT,IO30)I,J, 7CM(I,J), ROM(I,J),UOM(I,J),WSUBM(I,J),
        IWTH(I,JY,WII,J\,WWCR(I,J),ALPHA{I,JI,BETAPI,JI,PHI
        ALPHA(I,J) = ALPHA(I,J)/DEGRAC
        CO BETA(Iq,J) = BETA(I,J) /DEGRAD
C
C--IATERPCLATE TO OPTAIN OUTPUT DATA ON STREAMLINES
C
    100 IF (ISLINE.LE.O) 60 T0 110
        IF (IITER/ISLINEI*ISLINE.EQ.ITER.OR.ITER.EO.I\ GO TO 130
    110 IF (IPLOT.LE.O) GO TO 120
        IF (IITER/IPLOTI*IPLOT.EQ.ITER.OR.ITER.EQ.1) GO TO 130
    120 IF IITSON.LE.OS GO TO 220
        IF ((ITER/ITSON)*ITSON.NE.ITER) GO TO 220
C--CALCULATE STREAMLINE ZSL,RSL CODRDINATES FOR PRINT DUT
    130 DC 150 I=1,MM
        D\cap 140 J=I,MHTPI
        TTEM(J)=2OM(I,J)
        RTEM(J) = RCM(I;J)
    140 UTEM(J) = UOM(I ,J)
        CALL SPLINT (UTEM, RTEM,MHTPI,FLFR,NSL,RSLTEM,AAA)
        CALL SPLINT (RTEM,ZTEM,MHTPI,RSLTEM,NSL,ZSLTEM,AAA)
        DO 150 JS=1,NSL
        ZSLII,JS) = ISLTEM(JS)
    150 RSL(I.JS) = RSLTEN(JS)
C--CALCULATE STREAMLINE MSL COOROINATES FOR PRINT CUT AND PLOTTING
```

```
            OC 170 JS=1,NSL
            mSL(l.JS)=0.
            DO 160 iS=2,MM
        160 WSL(IS,JS)=MSL(IS-1;JSJ+SQRT((ZSL(IS,JS)-2SL(IS-1;JS)|**2
            1 +(RSL(IS,JS)-RSL(IS-1,3S))**2)
            CALL SPLINT(7SLI1,JS),MSL(1,JS),MM,0.,1, ZERCM,SLREF)
            DC 170 IS=1,mm
    170 MSL(IS,JS) = MSL{IS,JS)-ZERCN
C--INTERPOLATE TO OBTAIN OUTPUT DATA
            I = 1
            JJ=I
            DO 180 JS=1,NSL
            DC 180 IS =1.MM
            CALL LININT(ZOM,ROM,WSUBZ,MM,NHTP1,100,101,ISL(IS,SS),RSL(IS,JS)*
            IWZSL(IS,JS),II,J.S)
            CALL LININT(ZOM,ROM,WSUAR,MM,MFTP1, 100,10I,ZSLIIS,JS),RSL(IS,JS),
            IWRSL(IS,JS),II,JJ)
            CALL LININT(7OM,ROM,WTH,MM,MHTP1,100,101, ZSL(IS,JS),RSL(IS,JS),
            1NTHSL(IS,JS),II,JJ)
            CALL LININT(IOM,ROM,WWCR,MM,NHTP1,100,101, TSL(IS,JSI,RSL(IS,JSI*
            IWWCRSL(IS,3S),1I,JJ)
                CALL LINI NT (ZOM,ROM,CURV,MM,MHTPI,100,101;TSL(IS,JSI,RSL(IS,JS).
            ICURVSL(IS,JSI,II,JJ)
            WNSL(IS,JS) = SORT(WZSLIIS,JS)**2+WRSL(IS;SS)**2i
            ALPSL(IS;JS)=ATAN(WRSL(IS,JS)/WZSL(IS,JSI)*DEGRAD
            BETSLIIS,JS)=ATAN{WTHSL(IS,JS)/WMSLIIS;JSI)*CEGRAD
    180 WSL(IS,JS) = SORT (WMSL(IS*JS)**2*WTHSL(ISS,JS)**2)
C
C--CALCULATE ILS AND ITS ARRAYS OF STREAMLINE LGCATICNS INSIDE BLACE
C--LEADING AND TRAILING EDGES
C
    CALL ILETE
C--CALCULATE BLADE SURFACE VELCCITIES CN STREAMLINES BY INTERPOLATION
C
    OC 190 JS=1,NSL
    DO 190 IS=1.mM
    NLSSL(IS,JS) = 0.
    190 WTSSL(1S,JS) = 0.
            II=1
            JJ = 1
            DC 200 JS=1,NSL
            [LSJ = ILS(JS)
            ITSJ= ITS(JS)
            DE 200 IS=ILSJ. ITSJ
            CALL LININT (TOM,ROM,WLSURF,MM,MHTP1,100,101, ZSLIIS.JSI,RSLIIS,JSJ%
            IWLSSL{IS,SS\,II,JJ}
    200 CALL LININT (IOM,ROM,WTSURF,MM,MHTP1, 100,101,ZSLIIS,JSI, RSLIIS_JS),
            IWTSSLIIS,SSI,II,JJ!
C
C--FRINT CUTPUT ON STREAMLINES
    IF (ISLINE.LE.O) gO TO 220
    IF ({ITER/ISLINE)*ISLINE.NE.ITER.AND.ITER.NE.I\ GO TO 220
    WRITE'(NWRIT.1040%
    IF (REDFAC.LT.1.0) URITEPNHRIT,1150) ITER
    IF (REDFAC.EO.1.0.AND.IEND.LE.0) WRITE(NHRIT,I16C) ITER
    IF (REDFAC.EO.1.0.AND.IEND.EG.1) WRITE{NWRIT.1170)
    IF (REDFAC.ED.I-O.AND.IEND.EQ.2) WRITE(NWRIT,I18C)
    OC 210 JS=1,NSL
```

```
            WRITE\NWRIT.1050) JS,FLFR(JS)
            WRITEINWR IT,1060)
            DC 210 IS=1,MM
            WRITE{NWRIT,1070) 2SL(IS.JS),RSL(IS,JS},MSL(IS,JS),WMSL(IS,JSI*
            IWTHSL(IS,JS),WSLIIS,JS),WWCRSL(IS,JSI,ALPSL(IS,JS),BETSL(IS,JS),
            2CURVSL{IS,JS),WLSSLIIS,JS),WTSSL{IS,JS%
            ALPSL(IS,JS)=ALPSL(IS,JSI/DEGRAD
    210 RETSL(IS,JS) = BETSL(IS,JS)/DEGRAD
C
C--INTERPOLATE TO OBTAIN OUTPUT OATA ON HUP-SHROUD STATION LINES
C
    220 IF ITSTATL.LE.O.CR.NOSTAT.EQ.OI GO TO 410
            IF (PITER/ISTATLI#ISTATL.NE.ITER.ANC.ITER.NE.II EC TC 410
C=-CALCULATE TST AND RST ARRAYS
C--STORE HUB AND SHROUD POINTS INTC ZST ANC RST ARRAYS
    CALL SPLINT(ZHUB,RHUB,NHUB, ZHST,NOSTAT,RTEN,AAA)
    OC 230 IL=1,NOSTAT
    ZST(1,ILS = IHST(ILI
    230 RST{1,IL) = RTEM(IL)
    CALL SPLINT(ITIP,RTIP,NTIP,ZTST,NOSTAT,RTEM*AAA)
    DE 240 IL=1,NOSTAT
    ZSTPNSL,IL = ZTSTPIL\
    240 RST(NSL,IL) = RTEM(IL)
C--CALCULATE INTERIOR POINTS IN ZST AND RST ARRAYS
    DC 350 IL=1,NOSTAT
    MARK{IL} = 1
    RTEM(1)= RST(1,IL)
    RTEM(20) = RST(NSL.IL,
    DELR = {RTEM(201-RTEM(1)|/19.0
    ZTEM&1: = 2ST\1,ILJ
    ZTEM{20) = 2ST(NSL,1L)
    DELZ = (ZTEM(20)-ZTEM(1))/19.0
    DO 250 J=2,19
    250 RTEM(J) = RTEM(J-1)+DELR
C--CHECK FOR LEADING OR TRAILING EDGE STATICN
    DELCH={ITE{1)-7LE{1)+7TE(NBLPL)-ZLE{NBLPL))*C.COS
    IF ({ZSTII,IL).GT.(ZLE(I)-DELCH)-AND.ZST(1,IL).LT.(ZLE(I)*DELCH))
    1.AND.ITST(NSL,IL).GT.(ZLE(NBLPL)-DELCH).AND.ZST(ASLOIL).LTO
    2(ILE{NBLPL}+DELCH)]1 MARK(ILI=2
```



```
    &-AND.(ZSTINSL,ILI.GT, (ZTE{NBLPL)-DELCH).AND. ZST(ASL,ILS.LT.
    2(TTE(NRLPL)+DELCH))| MARK(IL)=3
    IF (2STfI,IL).GT.IZLE{1)+DELCH).AND.ZST(1,IL).LT.(2YE(1)-DELCM)
    IM ARK I IL I=4
        IF (MARK(IL).EQ.2) GO TO 270
    IF (HARK(IL).EG.3) GO TO 290
C-OREGULAR STATION
    DC 260 J=2.19
    260 ZTEM(J) = 2TEM(J-1)+DELZ
    GO TO }31
C--LEADING ECGE STATIUN
    270 DO 280 JN=1,NBLPL
        ZELTEM(JN) = ZLE(JN)
    280 RPLTEMPIN) = RLE(JN)
        CALL SPLINT(RRLTEM,ZBLTEN,NBLPL,RTEN,20,ITEM,AAA)
        GO TO 310
C-*TRAILING ECGE STATION
    290 DO 300 JN=1, NBLPL
        7ELTEM(JN) = ZTE(JN)
    3CO RP{TEM(JN) = RTE{JN}
```

CALL SPLINT(RBLTEM,7BLTEM,NBLPL,RTEM,20,7TEN,AAA)
C--INTERPOLATE FOR STREAM FIJNCTION
310 UTEM(1) $=0$.
UTFM(20) $=1$.
$I I=1$
$J J=1$
$00320 \mathrm{~J}=2,19$
320 CALL LININT(IOM,ROM,UOM,MM, MHTP1, 100, 101,2TEM(J), RTEM(J), UTEN\{J) , 1II, JJ)
C-CALCULATE STATION LINE RST CCORDIAATES FCR PRINT CUT
CALL SPLINT (UTEM,RTEM, 20,FLFR,NSL,RST(I,IL), AAA)
DELR $=$ RST(NSL,IL)-RST(I,IL)
DELT $=$ ZSTINSL.ILI-2ST(1,IL)
NSLMI $=$ NSL-1
C--CALCULATE STATION LIAE IST COORCINATES FOR PRINT DUT
I'F (MARK(IL).EO. 2.OR.MARKIIL).EQ.31 GO TO 340
DC $330 \mathrm{JL}=2, \mathrm{NSLM1}$
3307 ¢T(JL,IL) $=$ ZST(1,IL)+(RST(JL.ILI-RST(1,IL))/CELR*DELZ
GOTO 350
340 CALL SPLINT(RBLTEM, RBLTEM,NBLPL, RST (I, ILI, NSL, ZST(1,ILI,AAA)
350 CONTINUE
C--CALCULATE STATION LINE MST COORDINATES FOR PRINT OUT
DC $380 \mathrm{JL}=1, \mathrm{NSL}$
DO $360 \mathrm{IL}=1$, NOSTAT
TTEM(IL) $=$ ZST(SL,IL)
3EO RTEM(IL) = RST(JL.IL)
$\operatorname{MTFM}\{1\}=0$.
OC $370 \mathrm{IL}=2$ NOSTAT
370 MTEM(IL) $=$ MTEM(IL-I) +SORT(IZTEM(IL)-2TEM(IL-I) \#\#\#2H(RTEM(IL)-1RTEM(IL-1))**21
CALL SPLINT (7TEM,MTEM,NOSTAT, O 1 , 1, ZEROM, SLREF)
DO 380 IL $=1$, NDSTAT
380 MSTPIL.ILI = MTEMIILI-ZEROM
C
C-IINTERPOLATE TO OETAIN OUTPUT DATA ON STATION LINES
II $=1$
$J J=1$
DC 390 IL $=1$, NOSTAT
DO $390 \mathrm{JL}=1 ; \mathrm{NSL}$
CALL LININT (20M, ROM,WSU8Z, MM, MHTP1,100, 101, ZST(JL,IL), RSTIJL,ILI, 1H7ST(JL, ILI,II,JJ)
CALL LININTIZOM,RON,WSUBR,MM,MHTPI, 100,101,ZST(JL,ILI,RST(JL,ILI. 1WRST (JL, ILI,II,JJ)
CALL LININT (2OM, ROM, WTH,MM, MHTPL,100,101, ZST(JL, ILI,RST(JL,IL); IWTHST(SL,ILI,II,JJI
CALL LININT (ZOM,ROM,WHCR,MM,MHTP1,100,101, 7 .STIJL,ILI,RST(JL,ILJ, IWWCRST(JL,ILI,II,JJ!
CALL LININT(ZOM, ROM,CURV,MM,MHTPL,100,101, ZST(JL,ILI,RST(JL,IL), ICISRVST(JL, ILI, II,JJ)
WMST(JLFIL) = SQRT(WZST(JL,IL)**2+WRST(JL, IL)**2)
ALPST(JL, IL) $=$ ATAN(WRST(JL,ILI/NZST(JL,IL)|*DEGRAD
BETST(JL,IL) = AT AN(WTHST\{JL, ILI/WMST(3L, IL))*CEERAD
WSTf JL,IL) $=$ SQRT(HMST(JL,IL)**2*WTHST(JL,ILI**2)
WLSST(JL, IL) $=0$.
WTSSTIJL,ILJ $=0$.
IF (MARK(ILI.EQ.1) GO TO 390
CALL LININT (ZOM,ROM,WLSURF,MM,MHTP1,100,101,ZST(JL,IL),RST(JL,IL), IWLSST(JL,IL);II,JJ)
CALL LININTIZOM,RCM,WTSURF,NM,NHTPI,100,101, ZSTIJL,ILI,RSTIJL,ILI. IMTSST(JL,ILI,II,JJ)
C--FRINT OIJTPUT ALONG HUB-SHROUD STATION LINES
C
WRITE(NWRIT,1080)
IF (REDFAC.LT•I.O) WRITE(NWRIT, IIS0) ITER
IF (REDFAC.ED.1.0.AND.IEND.LE.O) WRITE(NWRIT, 116C) ITER
IF (REDFAC.EO.I. O.AND. TEAD.EG\&I) WRITE(NWRIT, 1170)
IF (REDFAC.EO.1.O.AND.IEND.EQ. 21 WRITE\{NWRIT,118C)
DC 400 IL = , NOSTAT
IF (MARK(IL).ER.I) WRITE(NWRIT,1090) IL
IF (MARK(IL).FG.2) WRITE(NWRIT,1100) IL
JF (MARK(ItJ.EC.3) WRITEINWRIT,1110) IL
IF (MARK (IL.).FO.4) WRITE(NWRIT,11201 IL
HRITE(NWRIT,1130)
DO $400 \mathrm{HL}=1, \mathrm{NSL}$
WRITEPNWRIT, 1140) RST(JL,IL), ZST(SL.IL), MST(JL, IL) FFLFR(JL) •
IWNSTYJL,IL), HTHST (JL,ILI,WST(JL,ILI,WWCRST(JL, IL I, ALPST(JL,IL)*
2RETSTEJL,IA, CURVST(JL,ILI, HLSSTIJL,IL), WTSST(JL,ILI
ALPST(JL,IL) = ALPST(JL,IL)/DEGRAD
4CO RETST(JL,IL) = BETST(JL,ILJ/DEERAC
C
C--CALCULATE DATA FOR INPUT TO THE ISONIC PROGRAM
C
410 IF (ITSON.LE. O) RETURN
IF ((ITER/ITSON)*ITSON.NE.ITERI RETURN
CALL TSONIN
RETURN
C
C--FCRMAT STATEMENTS
C
1000 FORMAT $/ 1 H 1 / / / / 2 E X, 79 H * * *$ STREAM FUNCTION, INTERICR VELOCITIES, V
IELOCITY COMPONENTS AND ANGLES $* * * / 44 X, 41 H A T$ ALL MESH POINTS OF T
2HE ORTHOGONAL MESH/44X,41(1H*))
1010 FORMAT $/ / / / 42 X, 3 G H * *$ HORIZONTAL ORTHOGONAL MESH LINE NO. .
112,3H **//)
1020 FORMAT $11 X, 1$ OHMESH-POINT, $3 X, 5 H A X I A L, 8 X, 6 H R A D I A L, 6 X, 6 H S T R E A M, 4 X$,

2BHREL.FLOH, $3 X, 4 H M E S H / 1 X, 9 H C O L M$ ROH, $4 X, 6 H C O O R D .7 X, 6 H C O O R O ., 7 X$,

$42 X, B H(1)(J), 5 X, 3 H(Z), 10 X, 3 H(R), 10 X, 3 H(U), 6 X, 4 H(W M), 5 X, 5 H\{W T H)$,
$57 X, 3 H(W), 5 X, 7 H\{W / W C R), 3 X, 7 H(A L P H A), 3 X, 6 H(B E T A), 5 X, 5 H(P H I \|)$
1030 FORMAT $\{1 \mathrm{X}, \mathrm{I} 3,2 \mathrm{X}, \mathrm{I} 3,2 \mathrm{X}, 2(\mathrm{G} 12.5,1 \mathrm{X}), \mathrm{F} 8.4,3(1 \mathrm{X}, \mathrm{F9} .2), 1 \mathrm{X}, \mathrm{F9}, 3$,
$13(3 X, F 7.2)$)
1040 FCRMAT ($1 \mathrm{HI} / / / / / 15 \mathrm{X}$, $99 \mathrm{H} * * *$ STREAM FUNCTION INTERIOR VELOCITIES, V
IELOCITY COMPONENTS, ANGLES, AND SURFACE VELCCITIES ***/56X,I7HALO
2NG STREAMLINES/56X,17(1H*)
1050 FDRMAT $/ / / / 36 X, 20 H * * S T R E A M L I N E$ NUMBER,I $3,23 H \quad-\quad$ STREAM FUNCTION
$1=, F 8.4,3 H * * / 1$
1060 FCRMAT ($4 \mathrm{X}, 5$ HAXIAL, $8 \mathrm{X}, 6$ FRADIAL, $7 \mathrm{X}, 6$ GMERID., 6 X, GHMER ID. 2 X,
19HREL. TANG., $2 X, 4 H R E L ., 2 X, 9 H C R I T . V E L ., 2 X, 6 H M E R I C \ldots 2 X, 8 H R E L$. FLOW,

$42(4 \mathrm{X}, 5 \mathrm{HANGLE}, 5 \mathrm{X}, 5 \mathrm{HCURV} ., 6 \mathrm{X}, 4 \mathrm{HVEL}, ~ 6 \mathrm{X}, 4 \mathrm{HVEL}, / 5 \mathrm{X}, 3 \mathrm{H}(7), 10 \mathrm{X}, 3 \mathrm{H}(\mathrm{R})$,
$510 \mathrm{X}, 3 \mathrm{H}(\mathrm{M}), 9 \mathrm{X}, 4 \mathrm{H}(\mathrm{WM}), 4 \mathrm{X}, 5 \mathrm{H}(\mathrm{WTH}), 5 \mathrm{X}, 3 \mathrm{H}(\mathrm{W}), 4 \mathrm{X}, 7 \mathrm{H}(\mathrm{H} / \mathrm{HCR}), 2 \mathrm{X}$,
67H(ALPHA), $2 X, 6 H(B E T A), 3 X, 9 H(1, / D I S T), 4 X, 4 H(W S), 6 X, 4 H(W P))$
1070 FORMAT (3(1X,G12.5).3(1X,F8.2),1X,F7.3,2(2X,F7.2),2X,G11.4,
1F8.2,2X,F8.21
1080 FCRMAT $1141 / / / / 15 X, 99 H * * *$ STREAM FUNCTION. INTERIOR VELOCITIES, V

IFINCITY COMPONENTS, ANGLES, AND SURFACE VELOCITIES *** $/ 28 \mathrm{X}, 72 \mathrm{HALO}$ 2NG LINES FREM HUE TO SHROUD AT VARIOUS STATIONS THROUGH THE BLADE 3ROW/28X,72(1H*))
1090 FORMAT (///49X,26H** HUB-SHROUD STATICN NO. , I 2; 3H **//1
 $118 H^{*} *$ LEADING EDGE **//1
1110 FORMAT (///49X,26H** HUB-SHROUD STATION NO. $1 / 2.3 H * *, 15 \times$. $119 \mathrm{H} *$ TRAILING EDGE **//1
 118 H** WITHIN RLACE **//1
1130 FORMAT $14 X, 6 H R A D I A L, 7 X, 5 H A X I A L, B X, 6 H M E R I O, 4 X, 6 H S T R E A M, 3 X$, 16 HMER TD. $2 X, 9 H R E L$. TANG. $2 X$, 4HREL. $2 X$, GHCRIT: VEL. $2 X, 6 H M E R I D ., 2 X$.

 $45 \mathrm{X}, 4 \mathrm{HVEL}, 4 \mathrm{X}, 5 \mathrm{HRAT}$ IO, $2(4 \mathrm{X}, 5 \mathrm{HANGLE}), 5 \mathrm{X}, 5 \mathrm{HC}$ UR V. $, 6 \mathrm{X}, 4 \mathrm{HVEL}, 9 \mathrm{X}, 4 \mathrm{HVEL} . /$ $55 \mathrm{X}, 3 \mathrm{H}(\mathrm{R}), 10 \mathrm{X}, 3 \mathrm{H}(2), 10 \mathrm{X}, 3 \mathrm{H}(\mathrm{M}), 8 \mathrm{X}, 3 \mathrm{H}(\mathrm{U}), 5 \mathrm{X}, 4 \mathrm{H}(\mathrm{WM}), 4 \mathrm{X}, 5 \mathrm{H}(\mathrm{WTH}, 5 \mathrm{X}$, $63 H(W), 4 X, 7 H(W / W C R), 2 X, 7 H(A L P H A), 2 X, 6 H(B E T A), 3 X, 9 H(1, / D I S T), 4 X$, 74H(WS), 6X,4H(WP)\}
 1G11.4,F8.2,2X,FB.2)
1150 FCRMAT (/53X,23(1H*)/53X,23H* REDUCEC MASSFLOW */53X,23(1H*)/ 153X,18H* ITERATION NO. II2.3H */53X,23(1H*))
1160 FORMAT $/ / 52 \mathrm{X}, 25(1 \mathrm{H} * / / 52 \mathrm{X}, 25 \mathrm{H}$ (FULT MASSFLOW */52X,25(1H*)/ $152 \mathrm{X}, 19 \mathrm{H} *$ ITERATION NC. I I2.4H */52X,25(1H*1)
1170 FORMAT $/ / 52 \mathrm{X}, 25(1 H * 1 / 52 \mathrm{X}, 25 \mathrm{H} *$ FULL MASSFLCW $* / 42 \mathrm{X}, 45(1 \mathrm{H} * 1 /$ $142 \mathrm{X}, 1 \mathrm{H} *, 12 \mathrm{X}, 1$ ISHTRANSONIC SOLUTION, $12 \mathrm{X}, 1 \mathrm{H} * / 42 \mathrm{X}, 45 \mathrm{H} *$ BY VELCCITY G 2RADIENT APPROXIMATE METHOD $* / 35 \mathrm{X}, 59$ (1 $1 \mathrm{H} * / / 35 \mathrm{X}, 59 \mathrm{H}$ * ALL VELOCITIES 3 SMALLER THAN CHOKING MASSFLOW SOLUTIUN $* / 35 \mathrm{X}, 5911 \mathrm{H}=1 \mathrm{I}$
1180 FCRMAT $/ / 52 X, 25(1 H *) / 52 X, 25 H *$ FULL MASSFLOW $* / 42 X, 45(1 H *) /$ $142 \mathrm{X}, 1 \mathrm{H} *, 12 \mathrm{X}, 19 \mathrm{HTRANSONIC}$ SOLUTION, $12 \mathrm{X}, 1 \mathrm{H} / 42 \mathrm{X}, 45 \mathrm{H}$ * EV VELOCITY G 2RACIENT APPROXIMATE METHOD $* / 35 x, 5 \mathrm{C}(\mathrm{IH} * / 35 \mathrm{X}, 5 \mathrm{gH}$ ALL VELOCITIES 3 LARGER THAN CHOK ING MASSFLOW SOLUTION */35X,5C(IH*)\} END

SUBROUT INE BLDVEL
C
C-bbldvel calculates blade surface velocities and fr
C
CCMMCN SRW,SRE, ITER,IENC, NREAC, NWRIT
COMMON/INPUTT/GAM, AR, MSFL, OMEGA, REDFAC, VELTOL, FNEW, DNEW, MEI, MBO, 1 MM, MHT, NBL, NHITR, NTIP,NIN,NOUT,NBLPL,NPPP,NOSTAT,NSL,LSFR,
2 LTPL,LANVT,IMESH,ISLINE,ISTATL,IPLOT, ISUPER; ITSON, IDEBUG* 3 ZOMIN,ZOMBI, ZOMBO, ZOMOUT, ZHIN, ZTIN,THOUT, ZTCUT, ZHUB (50), 4 RHIB(50), TTIP(50), RTIP(50:, SFIN(50), RADIN(50), TIP(50), PRIP(50), 5 LAMIN(50), VTHIN(50). SFCUT (50), RACOUT (50), PRCP(50), LOSOUT (50), 6 LAMOIJT (50), VTHOUT (50), 7HST(50), Z.TST(50), FLFR(50),
7) 7 BL $(50,50)$, RRL $(50,50)$, THBL $(50,50)$, TNRL $(50,50)$
COMMON/CALCON/MMM1, MHTPI, CP, EXPCN,TGRCG, PITCH, CURVHI, CURVTI; 1 CURVH, CURVTO, RHIN,RTIN, RHOUT,RTOUT,RLEH,RLET,RTEH,RTET, ZLE(50), RLE\{50), ZTE(50), RTE(50), ZLEOM (101), RLEOM(101), SLEOM(101), THLECM(101), ZTECM(101), RTEOM(101), STECM (101), THTEOM (101), ILE(101), ITE(101), ZOM(100,101), ROM(100.101). $\operatorname{SOM}(100,101)$, TCM (100, 101), ETH(100,101), DTHDS(100, 101),
6 DTHDT(100, 101), PLOSS(100,1C1), CPHI(100,101),SPHI(100,101) CCMMCN/VARCOM/A(4,100,101), UOM(100,101),K(100,101),RHO\{100,101).

```
            WSURS (100,1011, HSURT (100,101),WSUE 7 100,101),WSURRR100,101).
                WSIIRM{1C0,101),WTH(100,101%,VTH(100,101),W(100,101),
                ALPHA(100,101), RET A (100,101),WHCR(100,1011,CURV(100,101),
                WLSURF(100,101),WT SURF(100,101), CAMP(100,101),SANP(100,101).
                RHCAV (100, 101), CELRHO(100,101),FR(100,101),DFDN(100,101).
                KICM&100,101%,7EPOM{100,101%,DLDU{100,1011)
            OIMFNSION TVERT(1C1),FVERT(101),DFVERT(101),DFOS(100),
            1 FSY(100,101), DFCT (100,101)
            REAL MSFL, LAMDAF
            INTEGER SRW,SRE
    10 FCMANG = O.
            FMAX = -1.E20
            FMIN = 1.E20
Co=-CAL CULATE DFCT
            D0 30 I=1,MM
            DO 20 J=1,MHTP1
            TVERT(J) = TOM(I,J)
            FSTPI,j)= VTH(I,j)*ROM(I,J)
            FVERTIJ) = FST(I,J)
            20 CONTINUE
            CALL SLGPESYTVERT,FVERY,MHTPI,DFVERT)
            DC 30 J=1, MHTP1
            DFDT(I, {) = DFVERT(J)
            30 CONTINUE
C---CALCULATE DFDS, THEN OFDM AND BLADE SURFACE VELOCITIES
            D# 40 J=1, wHT P1
            CALL SLOPES{SOM(1,J),FST(1,J),MM,DFOS}
            Dr 40 I=1,MM
            DFDM(I,J} =-{CFDS(I)*CAMP(I,J}+DFDT(I,J)*SAMP(I|J)}*BTH{I,J)*
            ICOS(RETA{I,J))
            WLSURF{I,J} = W(I,J)&OFDM(I,J)/2.
            WTSURF{I;,j)=W(I;J)-DFDN{I;J)/2.
C-\infty-CAL CULATE BLAOE=TO-BLADE AVERAGE DENSITY
            THLMR = 2.*CMEGA*LAMDAF(UOM(I;J),I;J)-(OMEGA*RD*N(I;J)}**2
            WSO = NLSURF(I;J)**2
            TTIP = 1.-{HSO+TWLMR\/CP/TIPF{UOM{I,J\)/2.
            IFITTEP.LT.O.\ TTIP=0.
            RHOL = RHOIPF(UOMPI, IH:*TYIP**EXPCN
            WSO = WTSURFII,S #**2
            TTIP = 1.-THSO&FWLMRU/CP/TIPFFUOM{I,J|I/Z.
            IFPTTIP.LT.O.I TTIP=0.
            RHOT = RHOIPF{UOM{I, \:)*TTIP**EXPON
            DELRHO(I,J) = RHCL-RHOT
            RHOAV(I ,J)=(RHOL&4.*RHO(I , J) *RHOT)/6.
C---CALCIILATE F-SUB-R FOR SUBROUTINE COEF
            FRT = W(I,J)/BTH{I;J)*{OTHDS(I,J)*SPHI(I,J)*OT&CT(I;J)*CPHI{I,J)|*
            IDFOM{I,J}
            FCHANG = AMAXI\FCHANG*ABS(FRT-FR\I,J|ll
            FMAX = AMAXIIFMAX,FRT)
            FMIN = AMINI(FMIN,FRT)
            FR(IDJ)= FNEW*FRT+(I_-FNEW)*FR(I,J)
    4O CONTINUE
                            IF IIEND.LT.II HR ITECNWRIT, I03C} FMAX,FMIN,FCHANG
C---PRINT DEBUG CUTPUT IF REQUESTEC
            IF {IDEBUG.LE.O\ RETURN
            IF (fITER/IDEBUGI*ICEBIJG.NE.ITER.AND.ITER.NE.II RETURN
            WRITE(NWRIT,1010)
            WRITE(NWRIT,1000) ({I,J,WSUBS(I,J),WSUBT(I,J), VTH(I,J),RHD(I ;J).
    IRHOAV{I,J}, DELRHC{I,J},DLDU{I,J),I=1,MM}, J=1,MFTPI)
```

WRITE(NWRIT, 1020)
WRITE(NWRIT,i000) (IIqJ, OTHDS\{I, JI,FR(I,J),OFDN(I,J), XICM(I,J), 17ETOM(I, J), CAMP $\{1, J\}, S A M P(I, J\}, I=1, M M\}, J=1, M H T P I\}$
RETIIRN
1000 FORMAT(216.7G16.61
1010 FORMAT $11 H 1 / / / / 35 X, 47 H C H A N G I N G$ OUANTITIES ON FHE ORTHOGONAL ME $15 H / 5 X, 1 H I, 5 X, I H J, 6 X, 5 H W S U B S, 12 X, 5 H W S U B T, 12 X, 3 H V T+, 12 X, 3 H R H O, 12 X$, 25 HRHOAV, $10 X, 6 H D E L$ RHO, $11 X, 4$ HDL OU)
1020 FCRMATC////5X, 1 HI, $5 X, 1 H S, 6 X, 5 H C T H O S, 12 X, 2 H F R, 13 X, 4 H D F D M, 12 X$, 14HXIOM, $12 \mathrm{X}, 5 \mathrm{H} 7 \mathrm{ETOM}, 11 \mathrm{X}, 4$ HCAMP, $12 X, 4$ SSAMP)
1030 FCRMAT $/ / / / 5 \mathrm{X}, 33 \mathrm{HMAXIMUM}$ CALCULATED VALUE OF FR $=, 613.5 / 5 \mathrm{X}, 33 \mathrm{HMINI}$ 1MUM CALCULATED VALUE OF FR $=, G 13.5 / 5 \mathrm{X}, 33 \mathrm{HMAXIMUM}$ CAL.CULATED CHANG $2 E I N F R=, G 13.51$
END

SUBROUTINE ILETE
C
C--ILETE CALCULATES THE INTEGER ARRAYS OF MESH POINT LOCATIONS WHICH ARE C--JUST INSIDE THE LEADING AND TRAILING ECGES DF THE RLADE C

CCMMON/INPUTT/GAM, AR,MS FL, DMEGA,REDFAC, VELTOL, FNEW, DNEH, MBI, MBD,
1 MM, MHT, NBL, NHUR, NTIP,NIN, NCUT, NBLPL, NPPP,NOST AT, NSL, LSFR *
2 LTPL,LAMVT, IMESH, I SLINE, ISTATL,I PLOT, I SUPER, I TSON, IDEBUG,
$370 \mathrm{ZIN}, Z O M B I, 2 C M B O, Z O M O U T, 2 H I N, Z T I N, Z H O U T, Z T O U T, Z H U B(501$,
4 RHUR (50), 2 TIP\{50), RTIP\{50), SFIN(50), RADIN(50), TIP\{50), PRIP(50),
5 LAMIN(50), VTHIN (50), SFOUT (50), RADOUT (50), PRCP (50), LOSOUT(50),
6 LAMQUT (50), VTHCUT (50), ZHST (50), ZTST (50), FLFR(50),
7 ZBL 50,50$)$, RBL $(50,50)$, THBL $(50,50)$, TNBL $(50,50)$
COMMON/CALCON/MMMI,MHTP1,CP, EXPON, TGROG, PITCH,CURVHI,CURVTI:
1 CURVHO, CURVTO, RHIN,RTIN, RHOUT, RTCUT, RLEH, RLET, RTEH,RTET, 7LE(50), RLE(5C),7TE(50), RTE(50), ZLEOM (101); RLECN(101) , SLEOM(101), THLEOM(101), ZTEOM(101),RTEOM(101), STEOM(101), THTEOM(101), ILE(101), ITE\{101), TCN(100,101), ROM(100,101), SOM (100, 101), TOM(100,101), BTH(100,101), DTHDS(1CC,101),
6 DTHDT $(100,101\}, \operatorname{PLOSS}(100,101)$, CPHI(100, 101), SPHI(100, 101)
COMMON/SLCOM/ILS(50), ITS(50), 2SL(100,50), RSL(100,50), MSL(100,50) 。 W YSL (100,50), WR SL(100,50$)$, WMSL $(100,50)$, WTHSL 100,50$)$,
2 ALPSL(100,50), BETSL(100,50),WSL(100,50),WWCRSL(100,50),
3 CURVSL 100,50$)$,WLSSL (100.50),WTSSL(L 00,50)
C-LEADINE EDGE
CALL SPLINT (RLE,ZLE,NBLPL,RLE(I),1, ISPL, CZCR)
DO $20 \mathrm{~J}=1, \mathrm{NSL}$
$I=0$
$10 I=I+1$
CALL SPLENT(RLE,7LE,NBLPL,RSL\{I, J),1,7SPL,D7DR)
IF (TSPL.GT.TSL (I,J)) GO TO 10
20 ILS(J) $=$ I
C--TRAILING EOGE
CALL SPLINT(RTE, ZTE,NBLPL,RTE(1),I;ZSPL, DZDR)
DO $40 \mathrm{~J}=1, \mathrm{NSL}$
$1=$ ILS(J)-1
$301=1+1$
CALL SPLENT(RTE,ZTE,NBLPL,RSL(I,J),I,ZSPL,D7DR)
If (7SPL.GE.7SL\{I,J)) GO TO 30

SURROUTINE TSGNIN

```
C
C--TSENIN CALCULATES ANC PRINTS DUT DATA AS INPUT TO THE
C--TSONIC RLADE-TO-BLADE ANALYSIS PRCGRAM
C
    CEMMEN SRW,SRE, ITER, IEND,NREAC,NWRIT
COMMON/INPUTT/GAM,AR,MSFL,OMEGA,RECFAC,VELTOL,FNEW, CNEW,MBI,MBO,
MM,MHT,NBL,NHUB,NTIP,NIN,NOUT,NBLPL,NPPP,NOSTAT,NSL,LSFR,
    LTPL,LANVT, IMESH,ISLINE,ISTATL,IPLOT, ISUPER,ITSON,IDEBUG*
        ZOMIN,ZOMBI, TOMBO,ZOMOUT,ZHIN, ZTIN,ZHOUT, TTCUT, ZHUB(5O),
        RHUP(50), 1TIP(50), RTIP(50), SFIN(50), RADIN(50),TIP{50), PRIP(50),
        LAMIN(50), VTHIN(50), SFOUT (50), RADOUT(50), PROP(50),LOSOUT(50).
        LAMOUT(50), VTHOUT(50), ZHST(50), ZTST(50),FLFR(50),
        7BL`50,50), RBL (50,50), THBL(50,50),TNBL(50,50)
    COMMON/CALCON/MMMI,MHTPI,CP;EXPON,TGROG,PITCH, CURVHI,CURVTI,
        CURVHO, CURVTO,RHIN,RTIN,RHOUT & TOUT,RLEH,RLET,RTEH,RTET.
        7LE{50), RLE(50), \TE(50),RTE(50), ZLEOM(101), RLEOM(101),
        SLEOM(1011, THLEOM(101), ZTECN{101), RTEOM(101),STEOM{101),
        THTEOM(101), ILE{101),ITE(101),Z0M(100,101),RCN(100.101).
        SCM(100,101),TOM(100,101), BTH(100,101), ETHDS(10C,101).
        OTHDT(100.1011,PLOSS{100.101),CPHI(100.101),SFH1(100,101:
    COMMON/VARCOM/A(4,100,101), UOM(100,101),K(100,101),RHO\100,1011,
        WSUBS(100,101),WSURT {100,101),WSUR1(100,101),WSUBR (100,101),
        WSUBM(100,101),WTH(100,101),VTH(100,101),W(100,101),
        ALPHA(100,101), EETAP100,1011,WWCR(100,101), CURV(100,1011,
        HLSURF{100,101},WTSURF{100,101}, CAMP{100,101%,SAMP{100,101),
        RHOAV(100,101), DELRHO(100,101),FR{100,101), OFCN(100,101),
        XIOM(100,101%, ZETOM (100,101%,DLDU(100,101)
    COMNON/SLCOM/ILS(50),ITS(50), 2SL(100,50), RSL(100,50), MSL(100,50).
        HTSL & 100,50%,WRSL(100,50),WMSL(100,50),WTHSL(100,50).
        ALPSL(100,50), EETSL(100,50),WSL(100,50),WWCRSL(100,50),
        CURVSL{100,501,WLSSLP100,501,NTSSE{100,50}
            DIMENSION MSP(100),THSP1(100),THSP2(100),MR(100), RMSP(100),
            BESP{100), DIST(50), DTDS{50), ANG(50), DRTHBL(50,50),
            2 MLESP(5), MTESP{5),RTLEP1(5),RTLEF2(5), RTTEP1(5),RTTEP2(5)
            REAL MSFL,MSP,MR,MSL,MLESP,MTESP
            INTEGER BLDAT,AANDK,ERSOR,STRFN,SLCRD,SURVL
c
C--PRELIMINARY CALCUZATIONS
    WRITE\NWRIT -1 000)
    WTFL = MSFL/100.
    ORF=0.
    DENTOL = 0.001
    NRSP = MM
    BLDAT = 1
    AANDK = 0
    ERSDR = 0
    STRFN = 2
    SLCRD = 2
    INTVL = 2
    SURVL = 3
    DC 20 JN=1,NRLPL
```

```
                OIST(1)=0.
            DC 10 IN=2,NPPP
    10DIST(IN) = DIST{IN-1) +SQRT((ZEL(IN,JNI-2BL(IN-1,JN))**2*
    1(RRL(IN,JN)-RBL(IN-1,JN)\**2)
        CALL SPLINE(DIST,THBL(1,JN),NPPF,OTCS,ANG)
    DO 20 IN=1,NPPP
        ANG(IN) = ATAN{RBL{IN,JN)*DTDS(IN)\
    20 DRTHBL(IN,JN)= TNEL(IN,JN)/COS(ANG(IN))
C
C--CALCULATE AND PR INT OUT TSONIC DATA ALQNG EACH OF THE STREAMLINES
C
    DO 70 JS=1,NSL
    II = 1
    JJ=1
    TIPTEM = TIPF(FLFR(JS))
    RHOIP = RHOIPF(FLFR(JS)]
C--INTERSECTION OF STREAMLINE WITH BLADE LEADING AND TRAILING EDGES
    CALL INRSCT(ZSL{1,JS),RSL{1,JS),MM,ZLE,RLE,NRLPL, ZLESL,RLESLI
    CALL INRSCT(ZSL{1,JSI,RSL{1,JS),MM, ZTE,RTE,NBLPL,7TESL,RTESL)
C--INLET ANO OITLET FLQW ANGLES
    CALL LININT(IOM,ROM,BETA,MM, MHTPI,1CO,1 OL, ZLESL,RLESL,BETAI,II,JJI
    CALL LININT (ZOM,ROM,BETA,MM,MHTPI,100,10L,ZTESL,RTESL,BETAO,II,JJ)
    AETAI = BETAI$57.0295780
    BETAO = BETAO*57.295780
C
C--CALCULATE STREAMSHEET LOCATION ANC THICKNESS
    DO 30 I S=1,MM
    MR\IS) = MSL(IS,JS)-MSL(1,JSI
    RNSP(IS) = RSLIIS,JS)
    CALL LININTIZOM,ROM,RHO,MM,MHTFI,100,101,ZSL(IS,JSI,RSL(IS,JS),
    IRHCSL,II,JJ)
    CALL LININT(ZOM,ROM, BTH,MM, MHTP1,100,10L, ZSL(IS,JS),RSL{IS,JSI,
    IRTHSL,II,JJ)
            CALL LININT (ZOM,ROM, PLOSS,MM,MHTPI,100,101,TSL(IS,JS),RSL(IS,JSI,
        IPLOSSL,II,JJI
    30 BESP(IS) = WTFL/(RHOSL*WMSL(IS&JS)*RSL(IS;JS)*ETHSL)*(I;-PLCSSL)
C
c--CALCULATE bladE SURFACE COCRDINATES
    II = I
    J\=1
    NBIPTS = ITS(JS)-ILS(JS)+3
    SPLNOL = NBLPTS
    SPLNC2 = NBLPTS
    [LSJ = ILS(JS)
    ITSJ = ITS(SS)
    MSP(1)=0.
    DELM = SORT({ZSL(ILSJ,JS)-7LESL\**2+(RSL(ILSJ,JS)-RLESLI**2)
    CALL LININT (ZBL, REL,THBL,NPPP,NBLPL, 50,50,7LESL,RLESL.
    ITHLESL,II,JJ)
    CALL LININTITBL,RBL,DRTHBL,NPPP,NBLPL,50,50,ZLESL,RLESL,
    1DRBL,II;JJ)
    DRL = DRBL/RLESL/2.
    THSP1P11 = DBL
    THSP2(1)=-DEL
    ISP = 2
    DO 40 IS=ILSJ,ITSJ
    MSP(ISB) = MR(ISI-MR(ILSJ)+DELM
    CALL LININT(ZBL,RAL,THBL,NPPP,NRLPL,50,50,ZSLIIS,JSI,RSL(IS,JSI,
    ITHSL,II,J\)
    CALL LININT{ZPL,REL,DRTHRL,NPPP,NBLPL,50,5C,7SL(IS,JS),RSL(IS,JS},
```

```
    IDRRL,I【,\J]
    DEL = ORBL/RSLIIS.JSI/2.
    THSPI(ISA) = THSL-THLESL+DBL
    THSP2(ISR) = THSL-THLESL-DRL
    4 0
        DELM = SQRTP{ZTESL-ZSL(ITSJ*JSI|**2+{RTESL-RSE(ITSA;SS|;**2)
        MSP{NBLPTS) = MSP{NBLPTS-1) +DELM
        CHORDF = MSP(NBLPTS)
        CALL LININTIZBL,RBL,THBL,NPPP,NBLPL,50,50, ZTESL,RTESL,
        ITHTESL,II JJ%
    CALL LININTIZRL,RBL,ORTHBL,NPPP,NBLPL,50,5C,7TESL,RTESL,
    1DRRL.II|JJ)
    DRL = DRAL/RTESL/2.
    THSPL(NALPYS) = THTESL-THLESL. *CBL
    THSP2{NALPTS} = THTESL-THLESL-CEL
C
C--SHIFT STREAMSHEET MERIDIONAL COOROINATES TO ORIGIN AT BLADE
C--LEADING EDGE
    DELM = MR(ILSJ)-MSP(2)
            DE 50 IS=1%MM
        50 MR(IS) = MR(IS)-DELM
C
C--CALCULATE SPECIAL ARRAYS OF lOCAL bladE SURFACE R*THETA COOROINATES
C--AT LEADING AND TRAILING EDGES OF ELACE SECTIDN
    NSPTS = 5
    IF (NBLPTS.LT .5) NSPTS=NBLPTS
    TLEREF = (THSP1(1)+THSP2(1))/2.
    TTEREF = (THSPI(NBLPTS)+THSP2{NBLPTS)|/2.
    DC 60 I\pm1,NSPTS
    J = NBLPTS-NSPTS+I
    MLESP(I) = MSP{I}
    CALL SPLINT(MR,RMSP,MM,MLESP(I),IVRLEP,DRDM)
    RTLEPI(I) = RLEP*{\HSPI(I)-TLEREF)
    RTLEP 2(I) = RLEP*{THSP 2(I)-TLEREF)
    MTESP(I) % MSP(J)
    CALL SPLINTIMR,RMSP,MM,MTESP{II,I,RTEP,OROMY
    RTTEPI(I) = RTEP*(THSPI(N)-TTEREF)
    C0 RTTEP2{I| = RTEP*{THSP2{J}-TTEREF)
c
C--PRINT TSONIC CATA
    WRITE{NWRIT,1010)
    WRITEINWRIT, 1020)
    WRITE(NHRIT,11601
    WRI TE{NMRIT.1030)
    WRITE(NWRIT,1170)
    WRITE{NHRIT,1040)
    WRITE(NLRIT.1170)
    WRITE(NWRIT,1050)
    WRITE{NWRIT,1180)
    WRITE(NWRIT.1060)
    WRITE{NWR IT.1190)
    WRITEONWRIT,1070)
    WRITE(NWRIT,1170)
    WRITE(NWR IT, 1080)
    WRITE(NWRIT.1170)
    WRITE{NWRIT, 1090)
    WRIT E(NWRIT,1190)
    WRITE(NHRIT.1100)
    WRITE{NWRIT,1170)
    WRITE(NWRIT,1110)
GAM, AR, TIPTEM,RHOIP,WTFL,OMEGA,ORF
BETAI ,BETAO,CHOROF
REDFAC,DENTCL
NAL, NRSP
SPLNO1
(MSP(I),I=1,NBLPTS)
(THSPI{I|,I=1, NRLPTS)
SPLNOZ
(MSP(I),I=1,NBLPTS)
```

```
JS,FLFR(JS:
```

```
JS,FLFR(JS:
```

WRITE (NHRIT. 1170) WRYTE (NWRIT. 1120) WRITE(NWRIT.1170) WRITE ENWRIT,11307 WRITE(NWRIT, 1170) WRITE(NWRIT, 1140) WRITE(NWRIT,1170) WRITEINWRIT, 1150) WRTTE\{NWRIT,1200\}
(THSP2 (I), I=1, NBLFTS)
(MR(I) $I=1, M M$)
(RMSP(I),I $=1, M M)$
(BESP(I) I I=I,NM)
BLDAT, AANDK, ERSOR, STRFN, SLCRC, INTVL, SURVL

WRITE(NWRIT, 1210)
WRT TE I NWRIT, 1170)
WRITE(NWR IT, 1220) WRI TE (NWRIT,1170) WRITE (NWRIT, 1230) WRITE(NWRIT + 1170) WRI TE (NWRIT.1240)
WRITE (NWRIT, 1170)
WRITE(NMRIT, 1250)
WRITE (NWRIT.1170)
WRITE(NWRIT, 1260) WRITEINWRIT,1170) WRI TE (NWRIT.1270)
70 CONTINUE RETURN

C
C--FORMAT STATEMENTS
C
1000 FCRMAT $(1 H 1 / / / 41 X, 3911 H * / / 41 X, 39 H * * *$ INPUT CATA FOR TSONIC PROGRA 1M ***/41X, 39(1H*)////)
1010 FCRMAT I $4 X, 17 H S T R E A M L I N E$ NUMBER, $13,23 H-$ STREAM FUNCTION $=$,
1F8.4/11
1020 FORMAT $(7 X, 3 H E A M, 14 X, 2 H A R, 13 X, 3 H T I P, 12 X, 5 H R H O I P, 12 X, 4 H W T F L, 27 X$,
15 HCMEGA, $12 \times, 3$ HORF ?
1030 FORMAT ($6 \mathrm{X}, 5 \mathrm{HBETAI}, 10 \mathrm{X}, 5 \mathrm{HBETAC,11X,6HCHORDF,11X,5HSTCRF)}$
1040 FCRMAT ($6 X, 6 H R E C F A C, 10 X$, GHOENTOL)
1 CSC FCRMAT $16 X, 8 H M B I$ MBO.9X,18HMM NBEI NBL NRSP)
1060 FORMAT $17 \mathrm{X}, 3 \mathrm{HRI} 1,12 \mathrm{X}, 3 \mathrm{HROL}, 12 \mathrm{X}, 5 \mathrm{HBETII}, 11 \mathrm{X}, 5 \mathrm{HBETC1,11X,6HSPLNCI)}$
1070 FCRMAT $(7 X, 4$ HMSP1, $2 X$, SHARRAY)
1080 FCRMAT $\{7 \mathrm{X}, 5 \mathrm{HTHSP} 1,2 \mathrm{X}, 5$ HARRAY)
1090 FORMAT $(7 X, 3 H R I 2,12 X, 3 H R O 2,12 X, 5 H B E T 12,11 X, 5 H B E T C 2,11 X, 6 H S P L N O 2)$
1100 FCRMAT ($7 \mathrm{X}, 4$ HMSPZ, $2 \mathrm{X}, 5$ HARRAY)
1110 FORMAT ($7 X, 5 H T H S P 2,2 X, 5 H A R R A Y$)
1120 FORMAT $17 X$, GHMR ARRAY)
1130 FCRMAT (7X, 11 HRMSP ARRAY)
1140 FORMAT $(7 X, 11$ HBESP ARRAY)
1150 FORMAT $\{5 \times, 47 H B L D A T$ AANDK ERSOR STRFN SLCRC INTVL SURVL)
1160 FCRMAT $\{1 \mathrm{X}, 5 \mathrm{G16.7}, 16 \mathrm{X}, 2616.7$)
1170 FORMAT (1X.BG16.7)
1190 FORMAT $(30 X, 215)$
1190 FERMAT (65x,G16.7)
1200 FORMAT $(1 x, 717)$
1210 FORMAT $17 X, 5 H M L E S P, 2 X, 5 H A R R A Y)$
1220 FCRMAT (7X,6HRTLEPI, $2 X, 5$ HARRAY)
1230 FDRMAT $(7 X, 6 H R T L E P 2,2 X, 5 H A R R A Y)$
1240 FORMAT $\{7 X, 5 H M T E S P, 2 X, 5 H A R R A Y I$
1250 FCRMAT ($7 X, 6$ HRTTEF1, $2 X, 5$ HARRAY)
1260 FORMAT $(7 X, 6 H R T T E P 2,2 X, 5 H A R R A Y)$

```
    SURROUTINE INDEV
C
c--indey calculates a correcticn to ctmos to allow fcr inctidence anc
C--DEVIATION {AFTER BLOCKAGE CORRECTION\
C
    COMMCN SRW,SRE,ITER,IENC,NREAC,RWRIT
    COMMIN/INPUTT/GAM,AR,MSFL,OMEGA,REDFAC,VELTOL,FNEH,ONEH,MBI,MAO,
        1 MM, MHT, NBL, NHUE, NTIP,NIN, NOUT, NBLPL, NPPP, NOSTAT,NSL,LSFR,
        2 LTPL,LAMVT,IMESH,ISLINE,ISTATL,IFLCT,ISUPER,ITSCN, IDERUG*
        3 TOMIN, TOMBI,ZOMBO,ZOMOUT,ZHIN,ZTIN,THOUT, TTCUT,THUB(5O),
        4 RHUE(50),ZTIP(50),RTIP(50),SFIN(50),RADIN(50),TIP(50),PRIP(50)*
        5 LAMIN(50), VTHIN(50), SFOUT(50), RADOUT (50), PRCP(50), LOSOUT &50),
        6 LAMDUT (50),VTHOUT(50),ZHST(50), 2TST( 50), FLFR(50),
        7 IBL(50,50),RBL (50,50),THBL (50,50),TNBL (50,50)
            COMMON/CALC ON/MMM1,MHTP1,CP,EXFON,TGROG,PITCH,CURVHI,CURVTI,
        I CURVHD, CURVTO, RHIN,RTIN,RHOUT,RTOUT,RLEH,RLET,RTEH,RTET,
        2LE(50),RLE(50), ZTE(50),RTE(50), ZLEOM(101), RLECM(101),
        3 SLEGM(101),THLEOM(101), 2TEOM(101),RTEOM(101), STEOM(101%.
        4 THTEOM(101),ILE(101), ITE{1011, 2OM(100,101), ROM(100,101).
        5 SOM(100,101),TCM(100,101), ETH(100,101),OTHDS(100,101%O
        6 DTHDT (100,101%, PLOSS (100,101), CPHI(100,101),SPHI(100,101)
            CCMMON/VARCOM/A(4,100,101), VOM(100,101), K(100,101), RHO(100,1011,
        WSUES(100,101), WSUBT(100,101),WSUBZ(100,1011,WSURR(100, 101%
        WSUBM(100,101),WTH(100,101),VTH(100, 101),H(10C,1018,
        ALPHA(100,101),BETA(100,101),WWCR(100,1011, CURV(100,101%.
        WL SURF(100,101),WTSURF(100,101), CAMP(100,101%,SAMPP100,101%.
        RHOAV(100,101), CELRMC(100,101), FR(100,1011,DFOMP100,101%,
        XIOM(100,101), ZETOM(100,101),DLDU(100,1011)
            COMMDN/INDCOM/2PC(11,50),RPC(11,50),DTHDT\111,5C1,DTHDR(11,50%
            DIMENSION OTOSLE(101), DTOSTE{101)
            DEGRAD = 180.13.1415927
            II = 1
            JJ=1
            IID = 1
            JJE=1
            IF (IMESH.LE.O) GC TO 10
            IF ((ITER/IMESH)*IMESH.EQ.ITER.OR.ITER.EQ.I| GC YC 30
        10 IF (ISLINE.LE.O) GO TO 20
            IF IIITER/ISLINEI*ISLINE.EQ.ITER.OR.ITER.EO.I| GO TO 30
        20 IF IISTATL.LE.O) GO TO 40
            IF ({ITER/ISTATLI*ISTATL.NE.ITER.AND.ITER.NE.1) GC TO 40
        30 WRITE(NWRIT.1010)
            IF (REDFAC.LT.1.0) WRITE{NWRIT,1100) ITER
            IF (REDFAC.EQ.1.0.AND.IEND.LE.0) WRITEINHRIT, 111C) ITER
            IF (REDFAC.ED.1.0.AND.IEND.EQ.1) WRITE{NWRIT,1120I
            IF (REDFAC.EQ.1.O.AND.IEND.EQ.2) WRITE(NWRIT,113C)
            WRITE(NWRIT,1020)
        40 DN 120 J=1,MHTPI
c
c--CCRRECt dthos for incidence at blade leading edge
C
    I = ILE(J)-1
```

EXTRAD $=\operatorname{SLEOM}(3)-\operatorname{SOM}\{1,3\}$
RTFSLE = RETA(I,J) +EXTRAP*\{BETA\{I,Ji-RETA\{I-1,J\}I/(SOM(I,J)-150M(I-1, J))
CALL LININT (7CM,ROM, RTH,MM ; MHTP1, 100, 101, ZLEOM (J), RLEOM(J), BTHLE.
1II.JJI
TANRFL $=$ TAN(ATFSLEJ\#BTHLE/PITCH
SPHILE $=$ SPHI(I, $)+$ EXTRAP* (SPHI(I+1,J)-SPHI(I,J))/(SOM(I+1,J)1SOM(I,J)
CPHILE $=$ CPHI(I,J) +EXTRAP*(CPHI $\{I+1, J)-C P H I(I, J)) /(S O M(I+1, J)-$ 1SCN(I, J))
$A L P H L E=A L P H A P I, J)+E X T R A P *(A L F H A(I+1, J)-A L P H A(I, J) / /(S O M(I+1, J)-$ 1SOM(I,J))

1IID.JJDI
 LIID.JJO:
DTDTLE. = DTDRLE*CPHILE-DTOZLE*SPHILE
IF\{ITER.EO.I) OTESLE(J) = DTDRLE*SPHILE+DTDILE*C PHILE
TANBRL $=$ RLEOM(J)*(OTORLE*SIN(ALPHLE) \& OTC7LE*COS (ALPHLE))
ETABLD $=A T A N\{T A N B B L$:
RLINC $=$ (ATAN(TANBFL)-RTABLC $) * C E G R A C$
UBTNC = (BTFSLE-RTABLO)*DEGRAC
EXTRAP $=$ SOM(I+1, J)-SLEOM (J)
SAMPLE $=\operatorname{SAMP}(1+1, j)+E X T R A P *(S A M P(I+1 ; J)-S A N P(I+2, j)) /(S O M(I+2, J)-$ 1SOM($1+1, \mathrm{~J}$)
CAMPLE $=\operatorname{CAMP}(I+1, J)+E X T R A P *(\operatorname{CAMP}(I+1, J 1-C A M P(1+2, j)) /(S O M(1+2, J)-$ 1SCM(I+1, J)
OTOSFL = (TANBFL/RLEOM(J)-DTDTLE*SAMPLE)/CANPLE
BLDCRD $=$ (RLEOM(J) +RTEOM\{J) $/ 2$.*(THLEOM (J)-THTEQM(J))
RLOCRD $=$ SORT(BLDCRO**2+(STEOM(J)-SLECM(J))**2)
SLIDLE $=$ BLDCRO/PITCH/RLEOM(J)
DISTLE = AMINL(.5.ANAXI(1./6.)(11.-4.*SLIDLEI/1日.))*(STEOM(J)-
1SLEOM(J)
$I=I L E(J)$
50 SCIST $=\operatorname{SLECM}(J)+C I S T L E-S O M\{I, J)$
IFiSDIST.LE.O.I GC TO 60
DTHDS $\{I, J)=\operatorname{DTHDS}(I, J)+(0 T O S F(-D T D S L E(J)) * S O I S T / D I S T L E$ $I=I+1$
GO TO 50
60 DTCSLE(J) $=$ DTDSFL
C
C-CCRRECT DTHDS FOR DEVIATION AT BLADE TRAILING ECGE

```
    I= ITE(J)+1
    EXTRAP = SOM(I,J)-STEOM(J)
    BTFSTE = BETATI,N)+EXTRAP*{BETA(I,J)-BETA(I+1,J) )/(SEM{I+I, J)-
1SCM(I,N1)
    CALL. IININTIZOM,ROM,BTH,MM,NHTFL,100,101, ZTEON(JI,RTEOM(J), ETHTE,
1II,\J)
    CALL LININT (ICM,ROM,PLOSS,MM,MFTP1,100,101,7TEOM(J), RTEOM(J),
1PLOSTE,II,JJ)
    TANBFL = TAN(BTFSTE)*BTHTE/PITCH/(1.-PLOSTE)
    SPHITE = SPHI(I,J)+EXTRAP*(SPHI(I-I;J)-SPHI(I,J))/(SOM(I,J)-
1SOM([-1,J)]
    CPHITE = CPHI(I,J)+EXTRAP*(CPHI(I-I,J)-CPHI(I;N))/(SOMII, J)-
1SCM(I-1,\)}
    ALPHTE = ALPHA(I,J) +EXTRAP* (ALFHA(I-1,J)-ALPHA(I,J))/(SCM(I,J)-
IS[N(I-1,N)]
    CALL IININTTZPC,RPC,OTHCZ,11, ARLPL,11,50, 7T ECMIJI, RTEOMIJ, DTCZTE.
```

```
            1I10,J.JD)
            CALL LININT(ZPC,RPC,DTHCR,11,NBLPL,11,50,ZTEOM(S),RTECM(J),DTDRTE,
            11ID,3.j01
            DTDTTE = DTDRTE*CPHITE-DTDZTE*SPHPTE
            [F(ITER.EQ.1) DTDSTE{S] = DTDRTE#SPHITE+DTDITE*CPHITE
            TANAAL = RTEOM(J)*{DTORTE*SIN{ALPHTE:&DTCITE*CCS{ALPHTE\&
            PTABLD = ATANPTANBRL:
            BLDEV = (AT ANTTANBFL)-8TABLCI*CEGRAD
            URDEV = {BTFSTE-BTABLDI*DEGRAC
            IF (IMESHoLEOO)GO TO 70
            IF {\ITER/IMESH|###ESH,EQ.ITER.OR.ITER.ED.I\ GO TO 90
            70 IF (ISLINE.LE.O) GO TO 80
            IF ((ITER/ISLINE)*ISLINE.EQ.ITER.OR.ITER.EQ.1) GO TO go
            80 IF (ISTATL.LE.O) GC YO 100
            IF (IITER/ISTATLI*ISTATL.NE.ITER.AND.ITER.NE.I) CO TO 100
    9O WRITE(NWRIT,1000) J,BLINC,UBINC, RLCEV,URDEV
    1CC EXTRAP = SLEOM(J)-SDM(I-1,J)
            SAMPTE = SAMP(I-1,J)+EXIRAP*(SAMP(I-1,J)-SAMP(I-2,J))/{SOM(I-1, J)-
            1SCM({-2,.1))
                            CAMPTE = CAMP{I-1,J!+EXTRAP* (CANP{I-1,J\-CAMP(I-2,J!\/{SOM(I-1,J)O
                            1SOM(1-2.J!)
                            DTDSFL = {TANBFL/RTEOM{J\-DTDTTE*SAMPTE\/CAMPTE
                            SLIDTE = BLDCRD/PITCH/RTEOM(JI
                            DISTYE = AMIN1(.5;AMAXI(1./6.,(11.-4**SLIDTE)/18*)|(STEOM(3)-
                    LSLEOM\SI!
            I = ITE(J)
    110 SEIST = SOM(I,J)-STEOM(J)+DISTTE
            IFISDIST.LE.O.& GO TO 120
            DTHOS(I,J)= DTHDS(IqJ)+(DTDSFL-DTDSTE(J))*SOIST/DISTTE
            I = I-1
            GC TO 110
120 ETCSTESS) = DTDSFL
            WRITE\NWRIT.1140)
            RETURN
C
C--FCRMAT STATEMENTS
C
```



```
    1010 FORMAT \1H1,44X,40H*** INCIDENCE AND DEVIATION ANGLES ***/
        150x,30(1H*)!
    1020 FORMAT ///35X,1OH* MESH *, 8x,9HINCIDENCE,7X,1H*,8X,9HDEVIATION,
        17x,1H*/35x,10H* LINE *, 3x,7HBLOCKED, 3X,9HUNBLOCKEO, 2X, 1H*, 3x,
        27HBLOCKED, 3x,9HUNBLOCKED, 2X,1H*)
    1100 FORMAT (/53X,23(1H*)/53X, 23H* REDUCED MASSFLCW */53X,23(1H*)/
        153X,18H* ITERATION NO. &I2,3H */53X,23(1H*)]
    1110 FORMAT |/52X, 25(1H*)/52x,25H* FULL MASSFLCN */52x,25(1H*)/
        152X,19H* ITERATION NO., I2,4H */52X,25(1H*))
    1120 FCRMAT (/52x, 2511H*)/52x,25H* FULL MASSFLOW */42X,45(1H*1/
        142X, 1H*:12X,19HTRANSONIC SOLUTION,12X,1H*/42X,45H* EY VELCCITYYG
        2RAIIENT APPROXTMATE METHOD */35X,591 1H*)/35X,59H* ALL VELOCITIES
        3 SMALLER THAN CHOKING MASSFLON SOLIITICN */35x,59(1H*))
    1130 FORMAT 1/52X,25(1H*)/52X,25H**FULL MASSFLCN */42X,4511H*)/
        142X,1H*,12X,19HTRANSONIC SOLUTION,12X,1H*/42X,45H* OY VELOCITYG
        2RADIENT APPROXIMATE METHOD */35X,59{1H*)/35X,59H* ALL VELOCITIES
        3 LAREER THAN CHOKING MASSFLOW SOLUTICN */35X.5S(1H*)I
    1140 FERMAT (1H1)
        END
```

C--SLPLOT plots the streamlines in the hue-shroud flew plane
C
CCMMON SRW,SRE, ITER,IEND
COMMDN/INPUTT/GAM, AR,MSFL, OMEGA, REDFAC, VELTCL, FNEW, CNEW, MBI, MBO,
1 MN, MHT , NBL, NHUE,NTIP,NIN, NCUT, NRLPL, NPPP, NOSTAT,NSL, LSFR,
2 LTPL,LAMVT, IMESH,ISLINE, ISTATL,IPLCT,ISIPER, ITSCN, IDEBUG.

4 RHUR(50), ITIP(50), RTIP(50), SFIN(50), RAOIN(50),TIP(50), PRIP\{50).
5 LAMIN(50), VTHIN(50), SFOUT (50), RADCUT (50), PRCP(50), LOSCUT (50),
6 LAMOUT (50), VTHOUT (50), ZHST (50), ZTST(50), FEFR(5C),
$7 \quad 7 \mathrm{BL}(50,50\}$, RBL $\{50,50)$, THPL $(50,50)$, TNBL $\{50,501$

1 WZSL (100,50),WRSL (100.50), WMSL(100.501, WTHSL(100.501,
2 ALPSL(1C0,50), EETSL(100,50), WSL(100,.50), WWCRSL(100,50).
3 CURVSL $(100,50)$, WLSSL 1100,50$)$, WTSSL $(100,50)$
C CMMON/ PLTCCM/ ZL RNG, ZRRNG,RBRNG,RTRNG, ZHPLT(100), RHPLT(100), 1SPLT(100), RSPLT(100), ZLPLT(100), RLPLT (100), ZTPLT(100). RTPLT(100)
DIMENSION TITLI(10),TITL2(3), TITL3(3), TIYL4(11), TITL5(5)
REAL MSL
DATA TITLI/'STRE*, "AMLI*, "NE P*, 'LOT\$**'C1\$L", 2 IN ", MERI', $O I O N *$
1,"al pi,*LANE;
DATA TITLZ/'Z D'.'IREC*'TICN'/
DATATITL3/'R D*,'IREC', 'TION*/

 DATA SYM/EX'/
IF (IPLOT.LE.O) RETURN
IF(ITTER/IPLOT)*IPLOT.NE.ITER.AND.ITER.NE. II RETURN
C
C--PLOT THE ITERATION NUMBER
CALL LRGRIC(1, 1,0.0.0.0)
CALL LRCNVT \{ITER,1,TITL4\{111,1,4,0)
IF (IEND.LE.O) CALL LRLEGNTTITL4, 44,0,4.2,6.0.1.0)
IF (IEND.GT.0) CALL LRLEGN\{TITL5,20,0,4,2,5.5,1.0)
C
C--plot blade gecmetry ano streamlines
C
CALL LRMRGNT1.0.1.0.2.0.1.01)
C ALL LR ANGE(ZLRNG, ZRRNG, RBRNG,RTRNG)
CALL LRGRIC(-1,-1,1.0.1.0)
CALL LRIEGN:TITL1,40,0,3.5,0.7,0.0)
CALL LRCHST(2)
CALL LRLEGN(TITL2, 12,0,4.5, 1.5,0.01
CALL LRLEGN(TITL3,12,1,0.4,4.5,0.0)
CALL LRCHST(4)
CALL LRCURV (2HPLT, RHPLT, $100,2, S Y M, 0.0)$
CALL LRCURVPZSPLT,RSPLT, 100,2,5YM,0.0)
CALL LRCURV (ZLPLT,RLPLT, 100, 2,SYM,0.0)
CALL LRCURV(7TPLT, RTPLT, $100,2, S Y M, 0.0)$
C--PLOT STREAMLINES
$E C P=0.0$
NSLI $=$ NSL-1
DO $10 \mathrm{JS}=2$, NSL. 1
IF (JS.ED.NSLI) EOP=1.0

10 CALL LRCURV\&7SL(I + SS),RSL(I.JS),MM,2,SYM,ECP)
CALL LRCURVOTSLORSL•O. $1, S Y M, 1 \circ C$ I
RETURN
END

SURROUT INE SVPLOT
C
C--SYPLOT plots the mean strean surface ane blade surface out put C- VELOCITIES ALONG ALL STREAMLINES
C

CCMMON/ INPUTT/GAM, AR,MSFL, OMEGA,REDFAC, VELTOL, FNEW,ONEW,MBI ,MBO.
1 MN MHT,NAL, NHUE, NT IP, NIN, NCUT, NBLPL, NPPP, NCSTAT,NSL,LSFR,
2 LTPL, LAMVT,IMESH,ISLINE,ISTATL,IPLCT,ISUPER,ITSCN, IDEBUG;
3 ZOMIN, 7OMBI, ZOMBO, ZOMOUT, ZHIN, ZTIN,ZHOUT, 7 TCUT, ZHUB (50),
4 RHUR(50), ZTIP(50), RTIP(50), SFIN(50), RADIN(50), TIP(50), PRIP(50),
5 LAMINP50\%, VTHIN(50), SFOUT (E0), RADOUT (50), PRCF(50), LOSOUT (50).
6 LAMOUT (50), VTHOUT (50), ZHST (50), ZTST (50), FLFR\{s0),
7 ZBL $(50,50)$, RBL $(50,50)$, THBL $(50,50)$, TNBL $(50,50)$
COMMON/SLCOM/ILS(50), ITS\{50), 2SL(100,50), RSL(1C0,50), MSL(100,50).
1 WTSL $\{100,50)$,WRSL $\{100,50 \%$ HSL $(100,50), W T H S L(100,50)$,
2 ALPSL 100,501 , RETSL 100,50$\}$,WSL\{100,501, WWCRSL\{100,50).
3 CURVSL (100,50), WLSSL (100,50), WTSSL 100,501
DIMENSION TITLI(12),TITL2(9), TITL3(14), TITLG(15).
1 TITL5P 16), IITLE(6), TITLT(2)
REAL MSL.LRNG
 I_{0} TIVE: VEL ${ }^{\circ}$ OCTT* $I E S$,

$1, \mathrm{BXXXO}^{\prime}$
 1, 'I \$R 6°, "FOR *, "ALL', 'STRE', 'AMLI', *NES "/

DATA TITLT/OVELO* "CITY'/ DATA SYM/ ${ }^{\circ} \mathrm{Xe}$
IF (IPLOT OLE.O) RETURN
IF (IITER/IDLOT\|BPPLOT.NE.ITER.ANE.ITER.NE.II RETURN
C
C--CCUPUTE RANGE OF PLOTS. ANE SET UP FOR PLOTTING
C

```
LRNG = MSL{1,1)
    RRNG = MSL(1,1)
    RRNG = 1000.
    TRNG = O.
    Dr 30 JS=1,NSL
    {RNG = AMINI({RNG,NSL(I,JS))
    RRNG = AMAXI(RRNG,MSL(MMOJS):
    ILSJ = [LS(JS)
    |TS.)= ITS(JS)
    EC 10 IS=IISJ,ITSJ
    RRNG = AMINI(RRNG,WLSSL(IS,IS))
    RRNG = AMINIIRRNG,WTSSL{IS,JS\)
```

```
        TRNG = AMAXI(TRNG,WLSSL(IS,JSI)
        10 TRNG = AMAXI(TRNG,WTSSL(IS,3S))
            DO 20 IS=1,MM
            RRNG = \triangleMINI(RRNG,HSL(IS,JS))
    20 TRNG = AMAXI(TRNG,WSLYIS,JS)\
30 CONTINUE
    CALL LRMRGN{1.0,1,0,2.0,1.0)
    CALL LRANGE (LRNG ,RRNG , BRNG,TRAC:
    CALI LRERID(1,1,11.0,11.0)
C
C--flot VELOCITIES ON EACH STREAMLINE
C
    DC 40 JS=1,NSL
    ILSJ=ILS(JS)
    MPLD = ITS(JS)-ILS(JS)+1
    IF (JS.EO.1) CALL LRLEGN(TITLI,48,0,2.5,0.7,0.0)
    CALL LRCHSZ(3)
    CALL LRCNVT\JS;1,TITL2\51,1,4,0)
    CALL LRCNVT(FLFR(JS),3,TITL2(8),3,8,4)
    CALL LRLEGNITITLZ,36.0.2.2.9.5,0.01
    CALL LRCHST(2)
    CALL LRLEGN{TITL6,24,0,3.4,1,3,0,0)
    CALL LRLESN(TITL7,8.1,0.2.4.9.0.01
    CALL LRCHS 7(4)
    CALL LRCURV(MSL(1,JS),WSL{1,JS),WM,2,SYM,0.0)
    CALL LRCURV(MSL(1,JS),WSL{1,JS),MM,4,SYM,0,0)
    CALL LRCURV(MSL(ILSJ,ISI,WLSSL(ILSJ,JS),MBLD, 2,SYM,O.0)
    CALL LRCURV(MSLIILSJ,SS),HLSSL(ILSJ,JS),NBLD,4,SYM,0.0)
    CALL LRCURV(MSL(ILSJ,JS),WTSSL(ILSJ,JS),MBLD,2,SYN,0.0)
        40 CALL LRCURV(MSL(ILSJ,JS),WTSSL(ILSJ,JS),MALD,4,SYM,1.0)
C
C--FLOT MERIOIONAL VELOCITIES FOR ALL STREAMLINES
C
    CALL ERGRID(3,3,11.0,11.0)
    CALL LRLESN{TITL 3,56,0.1.7,0.7,0.0)
    CALL LRCHST(2)
    CALL LRLEGN(TITLL6,24,0,3.4,1.3,0.01
            CALL LRLEGN{TITL7,8,1,0.2,4.9,0.0)
            CALL LRCHSZ(4)
            EOP = 0.0
            NC }50\mathrm{ JS=1,NSL
            IF (JS.EQ.NSL) ECP=1.0
        50 CALL LRCURV(MSL (1,JS),WSL(1,JS),MM,2,SYM,EOP)
C
C--PLOT SUCTION SURFACE VELOCITIES FCR ALL STREAMLINES
C
    CALL LRLEGN(T ITL4,60,0,1.2,0.7,0.0)
            C. ALL LRCHSZ(2)
            CALL LRLEGNITITL6,24,0,3.4,1.3,0.0)
            CALL LRLEGNITITL7,8,1,0.2,4.9,0.0)
            CALL LRCHSZ(4)
            EOP = 0.0
            DO 60 JS=1,NSL
            IF (JS.EQ.NSL: EOP=1.0
            ILSJ = ILS(JS)
            MPLO = ITS(JS)-ILS(JS)+1
        60 CALL LRCURV(MSL\ILSJ;JS),WLSSL(ILSJ,JSI,MBLD,2,SYM,ECP)
C
```

c--flot pressure surface velocities for all streamlines
c
C AIL LRLEGNTTITL5,64,0,1.2,0.7,0.0)
CALL LRCHST(2)
CALL LRLEGNITITL.6,24,0,3.4,1.3,0.01
CALL LRLEGN IT ITLT,8,1,0.2,4.9, C.0
CALL LRCHST4 4
$E D P=0.0$
BC $70 \mathrm{JS}=1$, NSL
IF JS.EQ.NSL ECP=1.0
ILSJ $=$ ILS(JS)
$\mathrm{MPLD}=\operatorname{ITS}(J S)-I L S(J S)+1$
70 CALL LRCURV(MSL(ILSS, JS), WTSSL(ILSJ, JS), NBLC,2,SYM, EOP)
CALL LRCURVITSL•RSL,0,1,Sym,1.0i
RETURN
end

SURROUTINE TVELCY

c
c--TVElCy calculates the full massflcw, transonic sclution C--USING VELOCITY GRADIENT EQUATIONS
C
CCMMCN SRW, SRE,ITER,IENC, NREAC, NWRIT
C CMm ON/INP UYT/GAM,AR,MSFL, OMEGA, REDFAC, VELTCL,FNEW, ONEW,MRI,MBE,

1
 LTPL. LAMVT, IMESH, ISLINE, ISTATL, IFLCT, ISIIPER, ITSON, IDEBUG, ZOMIN, $70 \mathrm{MBI}, 7$ OMBO,ZOMOUT, ZHIN, ZTIN,ZHOUT, ITTUT, ZHUR(5O), RHUE (50), ZTIP(50), RTIP(50), SFIN(50), RADIN(50), TIP (50), PRIP(50), LAMINP 50), VTHIN(50), SFOUT (50), RADOUT (50), PRCP(50), LOSDUT (50), LAMOUT (50), VTHOUT(50), THST(50), 7 TST(50), FLFR(50), 2 $8 \mathrm{LL}(50,50)$, $\operatorname{RBL}(50,50)$, THEL $(50,50)$, TNBL $(50,50)$
COMMON/CALCON/MMM1, MHTP1, CP, EXPCN, TGROF, PITCH, CURVHI, CURVTI,
1 CURVHO, CURVTO, RFIN, RTIN, RHOUT, RTOUT,RLEH,RLET,RTEH,RTET,
2 TLE(50), RLE (50), TTE (50), RTE (50), 2LEOM (101), RLEOM(101),
3 SLEOM(1011, THLEOM(1011,ZTECN(1011, RTEOM\{101), STECM(1O1),
4 THTEOM(101) TLE\&1011. ITE\{1011,20M(100,101), RON(100,101),
5 SCM(100,101), TOM(100,101), RTH(100,101), OTHCS(100,101),
6 DTMDT 100,101$),$ PLOSS $100,1011, C$ PHI (100,101), SFHI(100,101)
CCMMON/VARCOM/A14,100,101), UOM(100,101),K(100,1011, RHD (100, 101), WSUB S(100,1011, WSUBT(100,101), WSURZ(100,101), WSURR(100,101), WSUPM (100, 101), WTH(100,101$)$, VTHP 100,101$)$, W(10C,101), ALPHA1100,101), PETA(100,101), WWCR(100,101), CURV(100,101), WL SURFI 100,1011 , WTSURF 100,101$),$ CAMP $(100,101)$, SANP $(100,101)$, RHOAV(100,101), OELRHC(100,101), FR(100, 101), DFEM(100, 1011 , XIOM(100,101), ZETOM(100,101), DLDU 100,101$\}$
OIMENS ION DWMDS (100), DWTOS (100), TVERT(101), WMVERT(101), WTVERT(101), TWLNR(101), CPTIP\{101),RCARE(101), DWMVER (1C1), DWTVER(1C1), ATVEL(101), STVEL(101),CTVEL(101), CTVEL\{101), ETVEL(101), FTVEL(101), LAMBDA(101), LAMBDD(101), TIPT(101), TOP(101), RHOIP(101), RHOOP(101), OWMOMI 100,101$\},$ DHTDM (100,101), DHMDT(100,101), CWTOT (100,101)
PEAL. MSFL,LAMBCA, LAMBDO, LAMDUT,LAM IN ,LAMDAF
IMTEGER SRW.SRE
LOAICAL REPEAT

```
C--RESTCRE FULL MASS FLCW VALUES, ANC REINITIALIIE LAM[AF AND RVTHTA
C
    IEND = IEND+1
    J7 = 1
    IF (REDFAC.EQ.1.0) JZ=2
    IF (RECFAC.EO.1.0) GO TO }6
    WRITE(NWRIT,1040)
    OMEGA = OMEGA/REDFAC
    MSFL = MSFL/REDFAC
    DC 10 J = , NIN
    LAMIN(J) = LAMIN(J)/REDFAC
        10 VTHIN(J) = VTHIN(JI/REDFAC
    DC 20 J =1,NCUT
    LAMOUT(J) = LAMOUT(J)/REDFAC
    20 VTHOUT (J) = VTHOUT(J)/RECFAC
    CALL LAMNIT
    CALL RVTNIT
C
C--CALCULATE PARTIALS WITH RESPECT TC T CF WSUBM ANC WSUBT
C
    \GammaC 40 I=1,MM
    OC 30 J=1, FHTPI
    TVERT(J) = TOM(I;J)
    WNVERT(J) = WSIJBM(I,J)
        30 WTVERT\J) = HTHPI,JI
            CALL SLOPES{TVERT,WMVERT,MHTP1,DWMVER)
            CALL SLOPES {TVERT,WTVERT,MHTP 1, DWTVER\
            DC 40 J=1 %MHTPI
            DWMDT(I.J) = OWMVER(J)
        40 DWTOT(I,S) = CWTVER{J)
C
C--CALCULATE PARTIALS WITH RESPECT TO S OF WSUBM AND WSUBT, ANO THEN
C--CALCULATE PARTIALS WITH RESPECT TO M OF WSIJBM AND WSURT
C
    ON 50 J=1,MHTPI
    CALL SLOPES(SOM(1,J),WSUBM(1,j),MM,DWMDS)
    CALL SLCPES(SOM(I,J),WTH{1,J),MM, DWTCS)
    DO 50 I=1.MM
    DWMDM{I;J)=(DWMCS(I)*CAMP{I,J}*DWMDT(I;J)*SAMP{I,J})/REDFAC
        SO DWTDN(I,J)= (DWTOS(I)*CAMP{I,J)+DWTCT(I,J)*SAMP(I,J))/REDFAC
            RTOLER = 1.E-4
            CHLIN = MSFL
            MEAN = MHT/2+1
C
C--SCLVE VELOCITY GRADIENT EOUATION CN EACH VERTICAL MESH LINE
C
    60 DO 280 I= 1.Mm
    WHUB = W{I,I\/REOFAC
    DELMAX = W\I,MEANY/20./REDFAC
    NCDIJNT = O
C
C--CALCULATE COEFFICIENTS A, B, AND D FOR THE VELOCITY GRADIENT EGUATION
C--INITIALITE COEFFICIENT C TO ZERO
    DC }80\textrm{J}=1,\mathrm{ NHTP1
    LAMRDA(J) = LAMDAF(UOM(I,J),I,J)
    LANBDO\J) = RVTHTA{UOM{I,JI,I,J)
    TIPT(J) = TIPF(UQM(I,J))
    TOP(J)= TOPF(UOM(I,S))
    RHOIP(J)= RHOIPF(UOM(I,J))
    RHOOP{J} = RHCCPF{UOM{1,J})
```

```
            RTVEL(J) = 0.
            CTVEL{J)=0.
            DTVEL(J) = 0.
            IFIT.LT.ILE(J).OR.I.GT.ITE(J)I GO TO 70
            SAL = SIN(ALPHA(I,JJ)
            SRETA = SIN(BETA(I,J))
            CBETA = COS(BETA(P,J))
            ATVEL{J)=CBETA**2*CAMP{I,J)*CURV{I,J)-SBETA**2*CPHI(I,J)/
            1ROM(I,J)* DTHDTIT,J%*SAL*CBETA*SEETA
                    RTVEL(J)= CRETA*SAMP{I&JJ*DWMDH{I J\-2.* OMEGA*SPETA*CPHIII,J)
            1+ROM(I;J)*CTHOT(I&J)*CBETA*(DWTDM(I,J) + 2.*OMEGA*SALI
                    GO TO 8O
        70 ATVEL(J) = CAMP{I,J}*CURV{I,J)
            DTVEL(3) = CWMOM(1,3)*S AMP(1,:\!
        EO CONTINUE
    C
    C--CALCULATE C COEFFICIENT FOR THE VELOCITY GRADIENT EOUATION AND OTMER
    C--CONSTANTS FOR CHECKING CONTINUITY
        GO CO 120 J=1,MHTP1
            CMR2 = OMEGA*ROM(I,J)**2
            THLMR(J) = 2.*OMEGA*LANBDA(J)-CNEGA*OMR2
            CPTIP(J) = 2.*CP*TIPT(J)
            IF(I-GE.ILE(J)) GC TO }10
            WHIRL = LAMBDAPJ)
            TEMPER = TIPT(J)
            DENS = RHOIP{J\
            GO TO 110
    100 1F\I&E.ITE&JI) GO TO 120
            WHIRL: = LAMBDC(J)
            TEMPER = TOP(J)
            DENS = RHODP {J)
    110 CTVEL(J)=-(WHIRL-OMR2)/ROM(I;J)**2*(CURV(I,J)*(WHIRI-OMR 2)*
            ICAMP{I,J) +{WHIRL+CHR2}/RCM(I,J)*CPHI(I,J)|
    120 RCARB(J) = RHOIP(J)*CAMP(I,J)*ROM{I;J)*ETH(I;J)
    C
    C--CALCULATE COEFFICIENTS E AND F FOR THE VELOCITY GRADIEAT EOUATION
            TPP = TIPT(1)-THLMR|1)/2./CP
            IF{TPP.LT. O.) GO TO 290
            PREL = RHOIP(1)*AR*TIPT(I)*(TPP/TIPT(1)|**{GA**EXFCN)*(1.-
            1PLCSS(I,1))
            DC 130 J=2,MHTP1
            DTIP=TIPT(J)-TIPT(J-1)
            DLAM = LAMPDA(J)-LAMBOA(J-1)
            TPPN = TIPT(J)-TWLMR(J)/2./CP
            IF (TPPN.LT.O.) GO T0 290
            PRELN = RHCIP(J)*AR*TIPT(J)*{TPPN/TTIPT{J\)**(GAM*EXPON)*{1.-
            1PLOSS(I, 1))
            DTPP = TPPN-TPP
            DFREL = PRELN-PREL
            ETVEL(J-I) = CP*DTIP-OMEGA*DLAN-CP*DTPP+AR/(PRELA+PREL}*{TPPN+TPP)
            1*CPREL
            FTVEL(J-1)= DTPF/(TPPN*TPP)-AR/CP*CPREL/(PRELN+PREL)
            TPP = TPPN
        130} PRFL = PRELN 
    C
    C--OBTAIN NUMERTCAL SQLUTION TC THE VELOCITY G.ADIENT EGUATION
    C--FCR AN ESTIMATED VALUE OF W AT THE HUB
    C
```

 REPEAT = FALSE.
    ```
    140 Int = 1
    150 W(I,1) = WHUB
    NCOUNT = NCOUNT+1
    IF (I.GE.ILE{IH.ANO.I.LE.ITEP1I)GO TO:160
    WHIRL = LAMBOAPI)
    IF {I.GT.ITE(1]) HHIRL = LAMBCC(1)
    SPETA = (WHIRL/ROM(I, 1)-OMEGA*ROM(I,1)/HHUB
    IF(ABS(SBETA).GT.1.) GO TC 210
    RETAII,1) = ARSIN(SBETA )
    160 CRETA = COS{RETA(1,1);
    170 WSO = WHUB**2
    TTIP = 1.-(WSQ+TWLMR(1))/CPTIP(1)
    IFITTIP.LT.O.1 GO TO 220
    RVA = TTIP**EXPON*WHUB*CBETA*RCARB(1)
    DO 200 J=1,MHT
    DELTA = TOM(I,J+1)-TOM(I,JI
    WAS = W(I,J)+(ATVEL(J)*W(I,J) +RTVEL(J)+CTVEL(J)/W(I;J)+CBETA*
    ICTVEL(J))*DELTA+ETVEL(J)/WII,J)*FTVEL(J)*W(I,J)
    IF (I.GE.ILE(J+1).AND.I.LE.ITEIJ+1)I GO TO 180
    WHIRL = (AMBDA(J+1)
    IF (I.GT.ITE(J+1) WHIRL = LAMBDO(J+1)
    WTHETA = (WHIRL/RCM(I,J+1)-CMECA*ROMII,J+1))
    SBETA = WTHETA/WAS
    IF(ABS (SBETA).GT.1.) GO TO 210
    BETA(I,J+1) = ARSIN(SBETA)
    180 CRETA = COS(BETA(1,J+11)
    WASS = W(I,J)+(ATVEL{J+1)*WAS + BTVEL(J+1)+CTVEL(J+1)/WAS+CBETA*
    1DTVEL(J+1)|*OELTA+ETVEL(J)/WAS+FTVEL(J)*WAS
    W(I,J+1) = (WAS+WASS)/2.
    WSO =W(I,J+1)**2
    TTIP=1.-(WSQ+TMLMR(J+1))/CPTIP(J+1)
    IFITTIP.LT.0.1 GO TO 220
    IF(I.GE.ILE(J+1).AND.I.LE.ITE(J+1)) GC TO'190
    SEETA = WTMETA/W(I;J+1)
    IF(AES(SBETA).GT.1.) G0 TO 210
    BETAII,N+1) = ARSIN(SBETAI
    190 CPETA = COS(BETAII,J+11)
    RVAS = TTIP**EXPDN*W(I,J+1)*CEETA*RCARB(J+1)
    UOM(I,J+1)=(RVA+RVAS)*DELTA/2.+UCM(I,J)
    200 RVA = RVAS
C
c--Check continuity and estimate nek value for w at the hug
    IFIINC.GE.6.AND.ARS(MSFL-UOM(1,MHTP1)).LE.MSFL*RTOLERI GO TO 250
    CALL CONTINIWHUR,VOM(I,MHTPII,IND,JZ,NSFL,DELMAX)
    IFIINC.LT.10) GO TO 150
    IFIINO.EQ.10) GO TO 250
    GO TN 230
210 WHHE = WHUP+0.5*DELMAX
    IF(NCOUNT.LT.1000) GO TC 140
    GO TO 230
220 WHIR = WHUP~0.5 * CELMAX
    IFINCOUNT.LT.1000) GO TC 140
    230 WRITF (NWRIT,1010) I
    INESH = l
    ISIINE = 0
    ISTATL = 0
    DC 240 J=1,MHTP1
24C UOM(I.J) = UDMPI,JJ/MSFL
    GO TM 280
```

```
C
C---SOLUTION OBTAINED, CHECK ACCURACY OF TIP, LAMBCA, ANC RHOIP
C
    250 CCNT INUE
    DC 260 J=2,NHTP1
    UOM(I,J)=UOM{I,J)/MSFL
    TVAR = TIPF{UCM(I,J))
    IF(ABS{TVAR-TIPT(J)).GT.TVAR*RTOLERI REPEAT = .TRUE.
    TIPT{J) = TVAR
    TVAR = TMPF{UOH(I,J))
    IF{ABS(TVAR-TOP(J):.GT.TVAR*RTCLER) REPEAT = .TRUE.
    TOP(J) = TVAR
    TVAR = RHOIPF{UOM(I;N))
    IF {ARS!TVAR-RHOIP(J\)=GTETVAR&RTOLER\ REPEAT = .TRUC.
    RHOIP{J) = TVAR
    TVAR = RHOOPF{UOM(I;J))
    IF IABS|TVAR-RHOOP{J)\.GT.TVAR*RTOLER\ REPEAT = .TRUE.
    RHOOP{J] = TVAR
    TVAR = LAMCAF(UOM(I,J), l,J)
    IF(ABS(TVAR-LAMBDA(J)).GT.AES(TVAR)*RTOLER) REPFAT = .TRUE.
    LAMBDAIJ) = TVAR
    TVAR = RVTHTA(IUOM(I,J),I,J)
    IF{ABS(TVAR-LAMBDO{J\%.GT.ABS{TVARI*RTOLER) REFEAT = -TRUE.
    260 LAMBDO(J) = TVAR
    WHUB = W{1,1)
    IFIREPEAT.AND.NCOUNT.LT. 10001 GO TO 90
    IF(IND.NE.10) GO TO 270
    CHFL = UDM(I,MHTPI|*MSFL*FLCAT(NBL:
    CHLIM = AMINI(CHLIM,CHFL)
    WRITE(NHRIT,1000) I,CHFL
    270 IFPREPEAT) WRITEPNWRIT,10101 I
    280 CONT INUE
C
C--FINISHED VELOCITY GRADIENT SOLUTICN ON EACH VERTICAL MESH LINE
C--CHECK CHOKE LIMIT
    IF (CHLIM.GT (0.9999*MSFL)) RETURN
    I SUPER = 2
    WRITE\NWRIT,I030) MSFL,CHLIM
    RETURN
    2CO URITEINNRIT.102O:
        STOP
C
C--FORMAT STATEMENTS
C
    1000 FERMAT 1G9HLMSFL EXCEEDS CHOK ING MASS FLOW FOR VERTICAL ORTHOGONAL
        I WESH LINE I =,I3/22H CHOKING MASS FLOW =, C15.6)
    1010 FORMAT (B&HL A VELOCITY GRADIENT SOLUTICN CANNDT BE DBTAINEC FOR
        IVERT ICAL ORTHOGONAL MESH LINE I =, 13/4X,56HANY SUBSEOUENT OUTPUT F
        2OR THAT MESH LINE MAY BE IN ERRCRI
    1020 FORMAT 162HL THE UPSTREAM INPUT MHIRL OR TANGENTIAL VELOCITY IS TO
        10 LARGE)
    1030 FRRMAT {51HL CHOKING NASSFLOW IS LESS THAN THE INPUT MASSFLOW/6X,
        116HINPITT MASSFLOM =,G13.5/6X,2EHMINIMUM CHOKINF NASSFLON =,GL3.5/
        26X,92HA STLUTICA CAN ONLY BE CPTAINEE IF INPUT MASSFLOW IS LESS TH
        3AN THIS MINIMUM CHOKING MASSFLCWI
    1C40 FORMAT (//52X,25(1H*)/52X,25H* FULL MASSFLOW */42X,45(1H*)
        1/42X,1H*,12X,19HTRANSDNIC SCLUTION,12X,1H*/42X,45H* BY VELOCITY
        2GRADIENT APPROXIMATE METHOD */42X,45(1H*)//////)
            END
```

FUNCTION TOPF $\{\mathrm{SF}$)

```
C
C--TCPF CALCULATES COWNSTREAM ABSOLUTE TOTAL TEMPERATURE
C--AS A FUNCTION OF STREAM FUNCTICN
C
    CCMMCN/INPUTT/GAM, AR,MSFL,OMEEA,REDFAC, VELTOL,FNEW,ONEW,MBI,MBO,
l MM,MHT,NBL,NHUB,NTIP,NIN,NCUT,NRLPL,NPPP,NOST AT,NSL,LSFR,
2 LTPL,LAMVT,IMESH,ISLINE,ISTATL,IPLCT,ISUPER,ITSON,IDEBUR,
3 TONIN, ZOMBI, ZCNBO, 7OMOUT, ZHIN, ZTIN, IHOUT,7TOUT,ZHUB(50),
4 RHUB(50),7TIP(50),RTIP(50),SFIN(50), RADIN(50),TIP(50), PRIP{50),
LLAMIN(50), VTHIN(50), SFOUT(50),RADOUT(50), PROP(50),LOSCUT(50),
6 LAMOUT(50), VTHCUT (50), 7HST (50), 2TST(50), FLFR(50);
7 ZBL(50,50), RBL(50.50), THBL(50.50),TNBL(50.50)
CCMMON/CALCON/MMM1,MHTP1,CP, EXPON,TGROG,PITTH,CURVHI,CURVTI,
        CURVHO,CURVTO, RHIN,RTIN,RHCUT,RTCUT,RLEH,RLET,RTEH,RTET,
        ZLE{50), RLE(50), ZTE(50), RTE(50), ZLEOM(101),RIEGM(101),
        SLEOM(101), THLEOM(101), ZTECM(101), RTEOM(101),STEOM{101),
        THTEGM(101), ILE(101), ITE(1C1),70N(100,101), RCN(100,101),
        SOM{100,101), TOM(100,101), &TH(100,101), DTHDS(100,101),
        DTHOT(100,101),PLOSS(100,101),CPHI(100,101),SPHI(100,101)
            REAL LAMDAF
            TCPF = TIPF{SF)-OMEGA/CP*(LAMCAF(SF,ILE(1),1)-RVTHTA(SF;ILE(1),1])
            RETURN
            ENO
```

FUNCTION TIPF(SF)

```
C
C--TIPF CALCULATES UPSTREAM ABSOLUTE TOTAL TEMPERATURE
C--AS A FUNCTION OF STREAM FUNCTION
C
    COMMON/INPUTT/GAM,AR,MSFL,OMEGA,REDFAC,VELTOL,FNEN,ONEW,MBI ,MBO,
        MM, MHT, NBL, NHUR,NTIP,NIN, NCST, NRLPL,NPPP,NOSTAT,NSL,LSFR,
        LTPL,LANVT,IMESH,I SLINE,ISTATL, IPLOT,ISUPER, ITSCN,IDEBUG,
        ZOMIN, ZCMBI, ZCMBO, POMOUT, ZHIN, ZTIN,ZHOUT, ZTOUT,ZHUB(50),
        RHUB(50), ITIP(50), RTIP(50), SFIN(50), RADIN(50),TIP(50),PRIP(50),
        LAMIN(50), VTHIN(50), SFOUT(50), RADOUT (50), PRCP(50), LOSCUT (50);
        LAMOUT (50), VTHOUT(50), IHST(501, TTST(50), FLFR(SO).
        7 AL (50,50), RRL (50,50),THBL(50,50), TNEL(50,50)
    COMMON/CAL CON/MMMM1,MHTP 1,CP,E XPON,TGROG,PITCH,CURVHI,CURVTI ,
        CURVHO, CURVTD, RHIN, RTIN, RHOUT, RTOUT, RLEH,RLET,RTEH,RTET,
        7LE(50), RLE(50),7TE(50), RTE(50), 2LEOM(101), RLEOM(101),
        SLEOM(101), THLEOM(101), ZTECM(101), RTEOM(101), STEOM(101),
        THTEOM(101),ILE(101),ITE(101), ZOM(100,101),ROM(100,101),
        SOM{100,101), TOM(100,101), BTH(100,101),DTHCS{100,101),
        DTHDT(100,1011,PLOSS(100,101),CPHI(100,101),SPHI(100,101)
    DIMENSICN SLOPE(50), EM(50)
    K = 2
    IF(ABS(SF-SFIN(1)).GT.TOLER) CO TO 10
    TIPF = TIP{1)
    RETURN
    10 IF{SF-SFIN{1)\ 20,20,30
    20 TIPF=TIP(1)+{SF-SFIN(1)|*SLOPE{1)
    RETURN
    30 IF{ABS(SF-SFIN(K)\.GT.TOLER) GO TO 40
    TIPF = TIP(K)
```

```
            RETURN
    40 IF(SF-SF[N(K)) 70,70,50
    50 K=K+1
    IF(K-NIN: 30,30,EC
60TTPF=TIP(NIN)+(SF-SFIN(NIN))*SLOPE\NIN\
    RETURN
70 SK=SFIN(K)-SFIN{K-1)
    TIPF = EN(K-1)*(SFIN(K)-SF)**3/6./SK+EM(K)*(SF-SFIN(K-1))**3)
        1 6./SK+(TIP (K)/SK-EM(K)*SK/6.)*{SF-SFIN(K-1)!)+{TIP(K-11/
        2 SK-EM{K-1|%SK/6.|FPSFTN(KI-SFI
            RETIURN
            FNTRY TIPNIT(NNN)
            CALL SPLINE{SFIN,TIP,NIN,SLOPE,EM}
            TOLEP = ABS(SFIN(NIN)=SFIN{I):/FLCAT(NIN)=1.E-6
            RETURN
            EAD
FUNC TION RHOI PF (SF)
C
C--RHOIPF CALCULATES UPSTREAM ABSOLUTE TOTAL DENSITY
C--AS A FUNCTION OF STREAM FUNCTION
C
CCMMON/INPUTT/GAM, AR,MSFL,OMEGA,REDFAC, VELTOL, FNEW, DNEW,MBI,MBO,
1 Mm, MHT,NBL, NHUB, NTIP,NIN, NCUT, NRLPL, NPPP, NOSTAT,NSL, LSFR,
2 LTPL,LAMVT,IMESH,ISLINE,ISTATL,IPLOT,ISUPER, ITSON,IDEBUG,
3 TOMIN, ZOMBI, ZCMBC, ZOMOUT, ZHIN, ZTIN, ZHOUT, ZTOUT, ZHUR(50),
4 RHUR(50), ITIP(50), RTIP(50), SFIN(50), RADIN(50), TIP(50), PRIP(50),
5 LAMIN(50), VTMIN(50), SFOUT (50), RADOUT(50), PROP (50), LOSOUT(50).
```



```
7 2BL (50.50), RBL (50,50), THBL (50.50), TNBL(50,50)
C CMMON/ CAL CEN/MMM 1, MHTP 1, CP, EXPON, TGROT, P I TCH,CURVHI, CURVTI , CURVHO, CURVTG, RHIN, RTIN, RHCUT, RTOUT, RLEH, RLET, RTEH,RTET, 7LE(50), RLEP 5C1, ZTE(50), RTE (50), ZLEOM (101), RLECM(101), SLECM(101). THL EOM (101), 7TEOM(101),RTEOM(101), STEOM\{101),
```



``` 6 OTHDT(100,101), PLOSS (100,101), CPHI(100,101), SPHI(100,101)
DIMENSION SLOPE (50).EN(50), RHCIP(50)
\(K=2\)
IFIARS(SF-SFIN(1)).GT .TCLER) GC TO 10
RHOIPF = RHOIP(1)
RETURN
10 IFISF-SFIN(II) \(20,20,30\)
2C RHOIPF = RHOIP(1)+(SF-SFIN(I))*SLOPE(1)
RFTURN
30 IF (ARSYSF-SFIN(K)I.GT.TCLER GC TO 40
RHOIPF = RHOIP\{K)
RETURN
40 IF(SF-SFIN(K)) \(70,70,50\)
\(50 K=K+1\)
IF(K-NIN) \(30,30,60\)
EO RHחIPF = RHCIP(NIN) + (SF-SFIN(NIN))*SLCPE(NIN)
RETIURN
\(70 \mathrm{SK}=\mathrm{SFIN}(K)-\mathrm{SFIN}(K-1)\)
RHOI PF \(=\) EM \((K-1) \neq(S F I N(K)-S F) * * 3 / 6 . / S K+E M(K) *(S F-S F I N(K-1)) * * 3 /\)
```

```
        1 6./SK+(RHOIP (K)/SK-EM(K)*SK/6.)*(SF-SFIN\K-1))+(RHOIP{K-1)/
        2. SK-EM(K-1)*SK/6.)*(SFIN(K)-SF)
        RETIJRN
            ENTRY RHINIT(NNN)
            DC 8O J=1,NIN
        RO RHOIP{J)= PRIP(J)/AR/TIP{J)
            CALL. SPLINEISFIN, RHOIP,NIN, SLOPE,EMI
            TCLER = ABS(SFIN(NIN)-SFIN(III/FLOAT\NIN)*l-E-6
            RETURN
            END
```


C

C- LamDAF CALCULATES PRENHIRL, LAMBCA, AS A FUNCTION OF STREAM C--FUNCTION UPSTREAM OF THE BLADE

COMMON SRW, SRE, 1 TER, IEND, NREAD, NWRIT
CEMMON/INPUTT/GAM, AR,MS FL, OMEGA,REDFAC, VELTOL, FNEW, ONEW, MBI ,MBO, MM, MHT, NBL, NHUB, NTIP, NIN, NCUT, NRLPL, NPPP, NOST AT, NSL, LSFR. LTPL, LAMVT, IMESH, ISLINE, ISTATL, I PLOT,I SUPER, ITSON, IDERUG, ZOMIN, ZOMBI, ZOMBO, ZOWOUT, ZHIN, IT IN, ZHOUT, ZTOUT, ZHUB SO?, RHUB (50), ZTIP(50), RTIP(50), SFIN(50), RADIN(50), TIP(50), PRIP(50), LAMIN(50), VTHIN(50), SFOUT (S0), RADOUT(50), PROP (50), LOSOUT (50). LAMOUT (50), VTHCUT (50), 2HST (50), 7TST(50), FLFR(50); ZRL $(50,50)$, RBL $(50,50)$, THBL $(50,50)$, TNBL $(50,50)$
CCMMON/ CALCCN/MMM 1; MHTP 1, CP, EXPON, TGROG,PITCH, CURVHI,CURVTI , CURVHO, CURVTO, RHIN, RTIN, RHCUT, RTOUT, RLEH, RLET, RTEH, RTET, 7LE(50), RLE(5C), ? TE (50), RTE (50), ZLEOM (101), RLECM (1 01), SLEOM(101), THLEQM(101), ITEOM (101), RTEOM(101), STEOM(101). THTEQM(101), ILE(101), ITE(101), ZOM (100, 101), ROM(100,101). $\operatorname{SOM}(100,1011, \operatorname{TOM}(100,101\}, \operatorname{BTH}(100,101)$, DTHDS(100,101), DTHDT (100,101), PLOSS (100,101), CPHI(100, 101), SPHI(100,101)
COMMON/VARCOM/A(4,100,101), UON (100, 101), K(100, 101), RHO(100, 101), WSIJRS (100,101), WSUBT (100, 101$\}, W \operatorname{SUBZ}(100,101)$, WSUBR (100,101) , WSURM\{100, 101), WTH\{100,101),VTH(100,101), W\{100, 101), ALPHA(100,101$),$ BETA(100,101), WHCR(100,101), CURV(100,101). WLSIJRF $(100,101\}$, WT SURF $100,1011, \operatorname{CAMP}(100,101), \operatorname{SAMP}(100,101)$, RHOAV 100,101$)$, DELRHC 100,101$), F R(100,101\}$, DFDM $(100,101)$, XIOM(100,101),7ETOM(100,101),DLDU(100,101)
DIMENS ION SLOPE(50), EM (50), AAA 50$\}$, RILOM (101), UILOM(101)
REAL LAMDAF, LAMIN, LAMOUT
$K K=2$
IF\{ABS(SF-SFIN(1):.GT.TOLER) CO TO 10
LAMDAF = LAMIN(I)

RETURN
10 IF(SF-SFIN(1)) $20,20,30$
20 LAMDAF $=$ LAMIN(1)+(SF-SFIN(1))*SLOPE(1)
IF (I-LT.ILE(J)) CLDU\{IqJi=SLOPE(I)
RETURN
30 IF(ARS (SF-SFIN(KK))-GT. TOLER) GO TO 40
LAMDAF = LAMIN(KK)
IF \{I.LT.ILETJ) $\mathrm{ILCU}(\mathrm{I}, \mathrm{J})=\mathrm{SLCPE}(K K)$
RETURN,
40 IFISF-SFIN(KK)1 $70,70,50$
$50 K K=K K+1$

```
            EFIKK-NIN 30,30%60
    GO LAMDAF = LAMINONINIOPSF-SFIN(RINID#SLOPE(NIN:
            IF I|LTOILEPSI| DLDUPI,JI=SLCPE(NIN)
            RETURN
70 SK = SFIN(KK)-SFIN(KK-1)
```



```
            2 /SK-EMPKK-IJ*SK/60%&SFINIKKB-SF%
            IF (I.LT.ILE(J)) DLDUPI,J)= -EM(KK-1)*(SFIN(KK)-SF}**2/2./SK*
```



```
            2 {EM(KK)-EM(KK-1))*SK/6.
            RETURN
            ENTRY LAMNTY\NNNI
            &F \̈TER.EO.O゙\ GO TO DOO
            I = 时日I
            JJ=1
            OC 80 KK=1, MHTPI
            DIST = FLOAT(KK-I)/FLOATI RAHT)
            RICNA(KK) = RHIN4CIST*(RTIN-RHIN)
            7.ILOM = ZHIN+DIST*(ZTIN-ZHIN)
```



```
            IUILOM(KK), II,JJ)
                IF PLSFR.EQ.OS CALL SPLINTIUILEM,RILC&,NHTPI,SFIA,NIN,RADIN,AAA:
            IF PLSFROEOOIB CALL SPLINTIRILOMOURLOM,MHTPI,RADINONIN&SFIN,AAAS
            IF IRSFR.EQ.I\ GC TO 100
            DO 90 KK=1,NIN
            90 RAMIN(KKI= RACIN(KK)*VTHIN(KK)
1COCALL SPLINE(SFIN,LAMIN,AIN,SLCFE,EM)
            TOLER = ABS(SFIN(NIN)-SFINTI:I/FLOAT(NIN)*1.E-6
            gETURN
            END
```

FUNCTION RHOOPF（SF）

```
C
C\triangle\triangleRHOOPF CALCULATES DOWNSTREAM AESCLUTE TCTAL DENSITY
C--AS & FUNCTION OF STREAM FUNCTION
C
    CCNMON/INPUTT/GAM,AR,MSFL,OMEGA,RECFAC,VELTCL,FNEW,DNEW&PBIOMBOD
    1 MM,MHT,NRL,NHUB,NTIP,NIN,NOUT,NBLPL,NPPO,NOSTAT,NSL,LSFR,
    2 LTPL,LAMVT, IMESH,ISLINE,ISTATL,IPLOT,ISUPER,ITSON,IDEBUG,
    3 20MIN,ZOMBI,ZOMBO, 2OMOUT, ZHIN,ZTIN, ZHCUT, ZTCUT, ZHUB{501,
    4 RHUR(50), ZTIP(50),RTIP{50),SFIN(50), RADIN(50),TIP(50),PRIP{50),
    LLAMIN(50),VTHTN(50),SFCUT (50), RACOUT (50), PROP(50),LOSOUT(50),
    6 LAMOUTP 50). VTHCUT(50), ZHST (50), ITST(50), FLFR(50).
    7 Z &L (50,50),RBL (50,50), THBL(50,50), TNBL(50,5C)
    CCMMON/CALCCN/MMM1,MHTP1,CP, EXPON%TGROG,PITCH,CURVHI,CURVTI ,
    I CURVHD,CURVTC,RHIN,RTIN,RHOUT,RTOUT,RLEH,RIET,RTEH,RTET.
    2 ZLE(50), RLE{50),TTE{50),RTE{50),ZLEOM(101),RLECM(101),
    3 SLEGM(1O1),THLEOM(101H,ZTECN(1011,RTEOM(1011, STEOM(IOI),
    4 THTEOM(101), ILE(101),ITE(101),20M(100,101),ROM(100,101),
    5 SOM(100,101), TCM(100,101), ETH(100,101), DTHDS(100,1011,
    6 DTHDT(100,101), PLOSS(100,101),CPH1(100,101),SFHI(100,101)
    DINENSION SLOPE{50), EM{501,RHOOP{50}
    K = 2
    IFIARS{SF-SFOUT(I)).GT.TOLERI GO TO 10
```

```
            RHCOPF = RHOOP{I}
            RETURN
10 \F(SF-SFOUT(1)) 20,20,3C
20 RHPOPF = RHCOP(1)+(SF-SFOUT(1))*SLOPE(1)
    RETURN
30 IF(AAS(SF-SFOUT(K))-GT.TOLER) GO TO 40
RHCOPF = RHCOP{K)
RETURN
40 [F(SF-SFDUT(K)) 70.70,50
50 K=K+1
IF(K-NOUT) 30,30,60
60 RHOOPF = RHONP{NOUT ) + (SF-SFOUT(NOUT) )*SLOPE (NOUT)
RETURN
70 SK = SFOUT(K)-SFOUT(K-1)
RHOOPF=EM(K-1)*(SFOUT(K)-SF)**3/6./SK+EM(K)*(SF-SFOUT(K-1))**3
1 16./SK+(RHOOP{K)/SK-EM(K)*SK/6.)*{SF-SFOUT(K-1)|&(RHOOP(K-1)/
2 SK-EM(K-1)*SK/6.)*(SFOUT(K)-SFi
RETURN
ENTRY RHDNITINNNI
DO 80 J=1, NOUT
80 RHCOP(J) = PROP(J)/AR/TOPF(SFOUT(J))
CALL SPLINETSFOUT,RHOCP,NOUT,SLCPE,EM)
TOLER = ABS\SFOUT(NOUTI-SFOUT(III/FLOAT(NOUT)*1.E-6
RETURN
END
```

C FUNCTION RVTHTA(SF,I,J)
C-RVTHTA CALCULATES R \quad V-THETA AS A FUNCTION OF STREAM FUNCTION C- - C.CWNSTREAM OF THE BLADE
C
COMMON SRW, SRE, ITER, IEND, NREAD, NWRIT
COMMON/INPUTT/GAM,AR,MSFL, OMEGA, REOFAC, VELTOL, FNEW, DNEW, MBI ,MBO, MM, MHT, NBL, NHUB, NT IP, NIN, NOUT, NBLPL, NPPP, NOSTAT,NSL, LSFR,
2 LTPL,LANVT, INESH, ISLINE, ISTATL,IPLOT, ISUPER, ITSON, IDEBUG,
3 ZOMIN, ZOMBI, ZOMBO, ZOMOUT, ZHIN, ZTIN, THOUT, ZTCUT, ZHUB(50), 4 RHIP(50), ITIP(50), RTIP(50),SFIN(50), RADIN\{50), TIP(50), PRIP\{50) * 5 LAMIN (50), VTHIN(50), SFCUT (50), RACOUT (50), PRCP(50), LOSOUT (50),
6 LAMOUT(50), VTHOUT(50), ?HST(50), ZTST(50), FLFR(50) ,
7 Z BL $(50,50), \operatorname{RBL}(50,50)$, THBL $(50,50), \operatorname{TNBL}(50,50)$
COMMON/CALC ON/MMMI, MHTPI,CP,EXPCN,TGREG,PITCH, CURVHI, CURVTI, CURVHO, CURVTO,RHIN,RTIN,RHOUT,RTOUT,RLEH,RLET,RTEH,RTET, 7LE(50), RLE(50), 2TE(50), RTE(50), ZLEOM (101), RLEOM (101), SLEOM(101), THLEOM(101), ZTECN\{101), RTEOM(101), STEOM(101), THTEOM(101), ILE(101), ITE\{101), ZOM(100, 101), ROM(100,101), SOM(100,101), TOM(100,101), RTH(100,101), DTHCS(100,101), DTHRT (100, 101), PLOSS 100,101$),$ CPHI (100,101), SPHI (100, 1018 CEMMDN/VARCCM/A $(4,100,101), \operatorname{UOM}(100,101\}, K(100,101)$, RHO 100,101$),$ WSURS $(100,101)$,WSUBT(100,101), WSUEZ (100,101),WSUBR(100, 101). WSUBM (100, 101), WTH(100,101$),$ VTH (100,101$)$, W($10 \mathrm{C}, 101)$, ALPHA (100,101), RETA (100,101), WWCR(100, 101), CURV(100,101). WLSURF $(100,101)$, WT SURF $(100,101)$, CAMP (100,101), SAMP(100,101). RHCAV (100, 101), EELR HO (100, 101), FR(100, 101), DFDM (100, 101) , XIGM (100.101), TETOM(100,101), OLDU(100,101)
DIMENSION SLOPE(50), EM(50), AAA (50), ROLOM(101), UCLCM(101)
REAL LAMIN, LAMOUT

```
    KK=2
    IF{ABS(SF-SFOUT{1)\.GT.TOLER) GO TO 10
    RVTHTA = LAMBUT(1)
    IF (I.GT.ITE(J)) DLDU(I,J)=SLCFE(1|
    RETIJRN
    10 IFISF-SFOUT {1| 20, 20,30
    20 RVTHTA = LAMOUT(1)+(SF-SFOUT(1)1*SLCPE(1)
    IF {I.GT.ITE{SDV OLDUTI,S%=SLOPERIS
    RETURN
    30 IF(ABS(SF-SFOUT(KK)).GT.TOLER) GOTO 40
    RVTHTA = LAMOUT(KK)
    IF (I-GT.ITE{J): DLDU(I,J)=SLCPE{KK)
    RETURN
    40 IF(SF-SFDUT{KK)\ 70,70,50
    50 KK=KK+1
    IF{KK-NOUT\ 30,30,60
    60 RVTHTA = LAMOUT(NOUT) +{SF-SFOUT(NOUT))*SLOPE(NOUT)
    IF (I.GT.ITE(J)\ DLDU{I,J)=SLCFE(NOUT)
    RETURN
    70 SK = SFOUT(KK)-SFOUT(KK-1)
    RVTHTA = EM(KK-1)*(SFDUT(KK)-SF)**3/6./SK +EM (KK)*{SF-SFOUT(KK-是溥
    1 **3/6./SK+(LAMOUT(KK)/SK-EN(KK)*SK/6.)*(SF-SFEUT (KK-11) *
    2 (LAMOUT(KK-1)/SK-EM(KK-1)*SK/6.)*(SFOUT(KK)-SF)
    IF {I-GT.ITE{J\) DLDUPI,J)= -EM{KK-1}*{SFOUT(KK)-SF|*)2/2./SK+
    1 EM(KK)*{SFOUT(KK-1)-SF)**2/2./SK+(LAMOUT (KK)-LAMOUT (KK-1))
    2 /SK-(EM(KK)-EM(KK-1))*SK/6.
            RETURN
            ENTRY RVTNIT(INNN)
            IFIITER.EQ.O& GO TO 100
            II = MRO
            JJ=1
            DO 80 KK=1, MHTPI
            DIST = FLDAT (KK-1)/FLOAT (MHT)
            ROLOM(KK) = RHOUT+DIST* (RTOUT-RHOUT)
            ZOLOM = 7.HOUT + OIST*(ZTOUT-2HOUT)
    80 CALL LININT(ZOM,ROM,UOM,MM,MHTPI,100,101,ZOLOM,RCLOM(KK), UOLOM(KK)
            I,II,JJ)
            IF (LSFR.EQ.O) CALL SPLINT(UOLOM,ROLOM,MHTP1,SFOUT,NCUT, RADOUT,
            1AAA)
            IF ILSFR.EO.I\ CALL SPLINTIROLCM,UOLGM,MHTPI,RADCUT,NCUT,SFOUT,
            |AAA)
                IF |LSFR.EG.I| GC TC 100
            DO 90 KK=1.NOUT
            90 LAMOUT(KK) = RADOUT{KK)*VTHOUT {KK}
100 CALL SPLINE SSFOUT, LAMOUT,NOUT,SLOPE,EM)
    TCLER = ABS(SFOUT(NOUT)-SFOUT(1))/FLOAT(NOUT)*1.E-6
    RETURN
    END
SUBROUTINE CONTIN(XEST, YCALC, IND, IZ, YGIV, XDEL)
C
C--CONTIN CALCULATES AN ESTIMATE OF THE RELATIVE FLOW VELCCIYY C--FOR USE IN THE VELOCITY GRACIENT EQUATION
C
DIMENSION X(3),Y(3)
```

```
            NCALL = NCALL+1
            IF (INO.NE.I.AND.NCALL.CT.100) GO TO }16
            GO TO (10,30,40,50,60,11C,150), I ND
C--FIRST CALL
    10 NCALL = 1
            XORIG = XEST
            IF (YCALC.GT.YGIV.AND.JZ.EO.1) GO TO 20
            IND = 2
            Y(1) = YCALC
            X(1)=0.
            XEST = XEST+XDEL
            RETURN
    20 IND = 3
            Y(3) = YCALC
            X(3) = 0.
            XEST = XEST-XDEL
            RETURN
C--SECONC CALL
    30 1ND = 4
            Y(2) = YCALC
            X(2)= XEST-XORIG
            XEST = XEST+XDEL
            RETURN
    40 INC = 5
            Y(2) = YCALC
            X(2) = XEST-XORIG
            XEST = XEST-XDEL
            RETURN
C--THIRD DR LATER CALL - FIND SUBSONIC OR SUPERSONIC SCLUTICN
    50 Y(3) = YCALC
            X(3) = XEST-XCRIG
            GO TO 70
    60Y(1)= YCALC
            X(1) = XEST-XORIG
    70 IF (YGIV.LT.AMINI(Y(1),Y(2),Y(3))] GOTTO(120,130), JZ
    80 IND =6
            CALL PABC {X,Y,AFA,BFB,CPC)
            DISCR = RPB**2-4**APA*|CPC-YGIV)
            IF (DISCR.LT.O.) GOTO 140
            IF (ABS{400.*APA*(CPC-YGIV)).LE.BPB**2) GO TO 90
            XEST = -BPB-SICN(SORT(DISCR),APA)
            IF (SZ.EQ.1.AND.APA.GT.O..AND.Y(3).GT.Y(1)) XEST = -8P8+
            1SORTIDISCR)
            IF (JZ.ED.2.AND.APA.LT.O.1 XEST = -BPB-SORTIOISCRI
            XEST = XEST/2./APA
            CO TO 100
    90 IF (JZ.EQ.2.AND.BPE.GT.O.1 GO TO }13
            ACB2 = APA/RPB* (CPC-YGIV)/BPB
            IF (ABS(ACB2)-LE-1-E-8) ACB 2=0.
            XEST = - {CPC-YGIV //BPB*{1.+ACE2+2.*ACE2**2)
    1CO IF (XEST.GT.XI3:) GO TO 130
            IF (XEST.LT.X(I)) GO TO 120
            XEST = XEST+XORIG
            RETURN
C--FOURTH OR LATER CALL - NOT CHOKED
    110 IFPXEST-XORIG.GT.X(3)) GC TC 130
            IF(XEST-XORIG.LT.X(1)) rO TO 120
            Y(2)=YCALC
            X(2) = XEST-XCRIG
            GO TO 70
```

```
C--THIRE OR LATER CALL - SOLITIION EXISTS,
C--PUT RIGHT OR LEFT SHIFT REOUIRED
    12C IND = 5
C--LEFT SHIFT
    XEST = X\1I-XDELHXCRIG
    XOSHFT = XEST-XORIG
    XCRIG = XEST
    Y(3)=Y(Z)
    X(3)= X(2)-XOSHFT
    Y(2)=Y(1)
    X:2}}=\textrm{XP1}:-XOSHF
    RETURN
    130 1NO = 4
C--RIGHT SHIFT
    XEST = X{ 3) + XDEL & XORIG
    XCSHFY = XEST-XORIG
    XORIG = XEST
    Y(1)=Y(2)
    X(1) = X(2)-XOSHFT
    Y(2) = Y(3)
    X(2)=X(3)-XOSHFT
    RETURN
C--THIRD OR LATER CALL - APPEARS TO BE CHCKED
    140 XEST = -BPR/2./APA
        IND=7
        IF (XEST.LT.XPI)) GO TO }12
        IF(XEST GT -X(3): GO TO 130
        XEST = XEST+XORIG
        RETURN
    C--FCURTH OR LATER CALL - PROEABLY CHOKED
    150 IF (YCALC.GE.YGIV) GO TC. }11
        INO = 10
        RETURN
    C--NO SOLUTIGN FOUND IN 100 ITERATICAS
    160 INC = 11
        RETURN
        END
            SUPROUTINE PAEC(X,Y,A,B,C)
C--PABC CALCULATES COEFFICIENTS A,B,C OF THE PARABCLA
C--Y=A* X** 2 + E*X +C, PASSING THROUGH THE GIVEN }X,Y\mathrm{ POINTS
C
            DIMENSION X{3),Y{3)
            C1 = X(3)-X(1)
            C2 = (Y(2)-Y(1))/(X(2)-X(1))
            A = (C1*C2-Y(3)+Y(1))/C1/(XX(2)-X(3))
            B=C2-(X{1:+X{21)*A
            C=Y(1)-X(1)*R-X(1)**2*A
            RETURN
            ENC
```

SURROUTINE INRSCT(XCURV1,YCURV1,N1, XCURV2,YCURV2,N2,XCROSS, YCROSS

C

C-INRSCT CALCULATES THE COORCINATES (XCROSS, YCROSSI OF THE POINT
C-OF INTERSECTION DF TWO SPLINE CURVES, YCURVI=FIXCURVI) AND
C--XCURV2=gIYCURV2). LYING ON A PiANE
C
CCMMCN SRW, SRE, ITER,IENC, NREAD,NWRIT
DIMENSION XCURV1(N1), YCURV1(N1), XCURV2(N2), YCURV2(N2)
NCCUNT $=0$
TOLER = (ABS X XURV1 (N1)-XCURV1(1))+AES(YCURV2(N2)-YCURV2(1)\|)/1.E5
XTEMP $=$ XCURVIII
YTEMP $=$ YCURVI 111
XCROSS $=$ (XCURVIII) XCURVI(NI) $/ 2$.
C--COMPUTE INTERSECTION POINT AND SLOPE ON CURVE 1
$10 \times 1=X C R O S S$

C--COMPUTE INTERSECTION POINT ANO SLOPE ON CURVE 2
$Y 2=Y_{1}$
CALL SPLINTIYCURV2, XCURV2,N2,Y2,1, X2,S2)
C--COMPUTE COORDINATES DF POINT WHERE TWO SLOPES INTERSECT
S1 S2 $=51 *$ S2
$\mathrm{XCROSS}=\times 2+5152 *(\times 2-\times 1) /(1 .-5152)$
Y CROSS $=Y 1+51 \quad *(\times 2-\times 11 / 11--S 1 S 2)$
C-CCOMPUTE DISTANCE AWAY FROM PREVIOUS SLOPE INTERSECTION POINT

IF (DIST-LT.TOLER) RETURN
NCOUNT $=$ NCOUNT+1
IF (NCOUNT.ET.20) GO TO 20
XTEMP $=$ XCRCSS
YTEMP = YCROSS
GO TO 10
20 WRITE(NWRIT,1000) TELER,DIST
RETURN
1000 FORMAT ($6 X, 46 H I N R S C T$ HAS.FAILED TO CONVERGE IN $2 C$ ITERATIDNS/ $110 \mathrm{X}, 11$ HTOLERANCE $=, G 14=6 / 10 \mathrm{X}, 47 \mathrm{HDISTANCE}$ BETWEEN LAST TWO INTERSEC 2TION POINTS $=, G 14.6$)
END

SUBROUTINE ROCT (A,E,Y,FUNCT, TELERY, X, CFX)
C- ROOT FINOS A ROOT FOR (FUNCT MINUS Y) IN THE INTERVAL (A,B)
C
COMMON SRW, SRE,ITER,IEND, NREAC, NWRIT
INTEGER SRW, SRE
ISRW=0
10 IF (SRW.EO.21) WRITE(NWRIT. 1010) A, B,Y,TOLERY
$X 1=A$
CALL FUNCT(XI,FXI, OFX)
IFYSRW.EO. 21 WRI TE(NWRIT, 1020) XI,FXI, DFX
$X 2=B$
20 DO $40 \quad 1=1,20$
$x=\{\times 1+x 2\} / 2$.
CALL FUNCT $(X, F X$, DFX)
IFYSRW.EQ. 21) WRITE(NWRIT, $10201 \mathrm{X}, \mathrm{FX}, \mathrm{CFX}$
IFi(FXI-Y)*(FX-Y).GT. O.) GO TC 30

```
            x2 = x
            GC TO 40
30 K1 = x
    FX1 = FX
40 CENTINUE
                            IF(ABSYY-FXI-LT.TCLERYI RETURN
                            IF (ISRW.EO.1) GO TO }5
    WRITEPNWRIT,1000:
    I SRW=1
    JSRW= SRW
    SRW=21
    go T0 10
50 SRW= JSRW
    RETURN
10CO FORMATETZHIROOT HAS FAILED TO LCCATE A ROOT IN THE INTERVAL (A, B)
    IIN 20 ITERATIONSI
1C10 FERMAT(22H ROOT ARGUMENTS -- A =, G13.5,3X,3HR =, E13.5,3X, 3HY =,
    1G13.5,3X, BHTOLERV =,G13.5/16X,1HX,17X,2HFX,15X,3HDFX)
1020 FCRMAT (8X,G16.5,2G18.5)
    END
```

SUBROUT INE LININT (X,Y, $Z, N X, N Y, N O I M X, N D I M Y, X O, Y C, 2 O, I, J)$

C

$C-$ CCOREINATES STORED IN THE X AND Y ARRAYS. THEN THE VALUE OF $2 O$ AT $C--I X O$, YOI IS INTERPDLATED FREM THE 2 ARRAY VALUES CERRESPONDING C--TO THE X AND Y ARRAYS

DIMENSION X(NDIMX,NDIMYI, Y(NCIMX,NDIMY), Z(NDIMX, NCIMY)
OIMENSION EXTRAPI2)
IATEGER ABCVE, RIGHT
C-FIND I J SUCH THAT IXO,YOS IS IN COLUMN I FROM THE LEFT ANO IN ROW J C-FFROM THE BOTTOM

IFPNX.LT.2.OR.NY.LT.2\% STOP
IFIIoLE。O) I 1
IFPI-GEAXI I = NX-I
IF(J.LE.OI $J=1$
IF(J.GE_NYI $J=N Y-1$
10 AEOVE $=-1$
RIGHT $=-1$
IF(YO.GE. Y(I, $J\}+(X O-X\{I, J)) /(X(I+1, J)-X(I, J)\} \neq\{Y(I+1, J)-Y(I, J) I)$
$1 \quad \triangle B C V E=A B D V E+1$
IF F YO. GT. Y $(I, J+1)+(X 0-X(I, J+1))(\{X(I+1, J+1)-X(I, J+1)\}$
$1(Y(1+1, j+1)-Y(1, j+1) 1) \quad A B O V E=A B O V E+1$
$I F(X O . G E-X(I, J)+(Y O-Y(I, J)) /(Y(I, J+I)-Y(I, J) I *(X(I, J+I)-X(I, J)))$
1 RIGHT $=$ RIGHT+1
$I F(X 0 . G T . X(I+1, J)+(Y 0-Y(I+1, J)) /(Y(I+1, j+1)-Y(I+1, J)\} *$
$1(X(I+1, J+1)-X(I+1, J)\}$ RIGFT $=$ RIGHT+1
$I N=I+R I G H T$
$J N=J+A B Q V E$
IF(IN.LT.I.OR.IN.GE.NXI RIGHT $=0$
IFYJN.LT.I.OR.JN.GE.NYI ABOVE $=0$
IFPAROVE**2 +RIGHT**2.EQ.0) GO TO 20
$I=I+R I G H T$
$\mathbf{J}=\mathrm{J}+\mathrm{ABDVE}$

```
            G0 TO 10
    20 1 JEX = 1
C-- SET EXTRAP TO INDICATE EXTRAPCLATION
    EXTRAP(1) = 0.
    EXTRAP{2)=0.
    IF(IN.LT.1) EXTRAP(2) = -1.
    IF(IN.GE.NX) EXTRAP{2) = 1.
    IFIJN.LT.1) EXTRAP(1) = -1.
    IF(JN.GE.NY) EXTRAP{1] =1.
C--calCuLATE CONSTANTS TO CALCULATE fy
    Y13 = Y(I;J)-Y(I; J+1)
    X13 = X(1,J)-X(I,J+1)
    Y42 = Y(I+1,J+1)-Y(I+1,J)
    X42 = X(I+1;J+1)-X(I+1;J)
    Y01 = YO-Y(I,J)
    X01 = X0-X(I,J)
    YO2 = YO-Y(I+1,J)
    X02 = X0-X(I+1,J)
    Y21 = Y(I+1,J)-Y(I,J)
    X21= X(I+1,J)-X(I;J)
C--CALCULATE COEFFICIENTS OF QUADRATIC EQUATION FOR FRACTIONAL DISTANCE
C--IN QUADRILATERAL
    30 OA = Y13*X42-X13*Y42
        0日= X13*Y02-Y13*X02*Y01*X42-X01*Y42
        QC = Y01*X21-X01*Y21
        DISCR = OB**2-4.*日A*OC
        IFIOISCR.LT.O.) GC TO 110
C--CHECK TO SEE IF QUADRATIC EQUATION IS CLCSE TO LINEAR
    IF(ABS(4.*OA*QC).LE.QB**2*.01) GO TO 80
    FA = -QB/2.1GA
    FB = SORT(DISCR)/2./OA
    FI = FA+FB
    F2 = FA-FB
C--CHECK TO DETERMINE HHETHER FI OR F2 IS THE PROPER SCLUTION
    CASE=-1.
    IFIEXTRAP{IJEXI) 40,50,60
C--EXTRAPOLATION BELON OR TO LEFT (FF LESS THAN O.)
    40 IFIF1.LT..01) CASE = CASE+l.
        IF{F2.LT..01] CASE = CASE+2.
        IFICASEAL.1.5) GO to 70
        CASE = CASE-1.
        IF(F2.LT.F1) CASE = CASE-1.
        GO TO 70
C--NC EXTRAPOLATICN
    50 IF(ABS(F1-.5).LT..51) CASE = CASE+1.
        IF(ABS(F2-.5).LT..51) CASE = CASE+2.
        GO TO }7
C--EXTRAPOLATION ABOVE CR TO RIGHT (FF GREATER THAN i.i
    60 IF(FI.GT..99) CASE = CASE+1.
        IF(F2.GT..99) CASE = CASE+2.
        IFICASELT.A.5).G0 TO 70
        CASE = CASE-1.
        IFPF1.LT.F2I CASE = CASE-1.
    70 IF(ABS(CASE-. 5).GT..6) GO TO 110
        FF=(1.-CASE)*F1 +CASE*F2
        GO TO 90
C--IF QUADRATIC EQUATION IS NEAR LINEAR, USE BINCMIAL EXPANSION FCR FF
    8O ACR2 = OA/OB*OC/OB
        IF(ABS(ACR2).LT.1.E-8) ACAZ = 0.
```

```
    FF=-DC/OR*(1 & +ACB 2*2.*ACB 2**2)
    GC IF(IJEX.EQ.2) GO TO 100
    I JEX = IJEX+1
    FY = FF
C--INTERCHANGE CCRNER FCINTS TO GET FX
    V13=Y(I,J)-Y(IL+1,J)
    X13 = X{I;J \-X{I+I;J)
    Y42 = Y(I+1,J+1)-Y(I, J+1)
    X42 = X(I+1,J+1)-X(1,J+1)
    YO2 = YO=Y(I,N&1)
    X02 = X0-X(I;J+1)
    Y21=Y(I,J+1)-Y(I;J)
    X21 = X(I;J+1)-X(I;J)
    60 TO 30
c--calculate Interpolatec value
    1COFX=FF
        ZO=Z(I,J)*(1.-FX)*(1.-FY)+Z(I+1,J)*FX*(1,-FY)* Z(I,J+1)*(1, -FX)
        1 *FY + Z(I +1*J+1)*FX*FY
            RETURN
C-- PRINT ERROR MESSAGE IF THERE IS A PROBLEM IN DBTAINING A SOLUTION
    11070=0.
            WRITE{6,1000) 1,J
            RETURN
    1000 FORMATI38H1L.ININT CANNDT FIND INTERPOLATED VALUE/4H I =,I6,4H J=,
        1I6)
            END
```

SURRDUT INE SPLINE (X,Y,N,SLOPE,EM)

C

C- SPLINE CALCULATES FIRST AND SECOND DERIVATIVES AT SPLINE POINTS
C- EAD CONDITION - SECOND DER IVATIVES AT EITHER END POINT IS
C--ONE HALF THAT AT THE ACJACENT POINT
C
COMMON SRH, SRE, ITER, IEND, NREAD, NWRIT
DIMENSION X(N),Y(N), EW(N),SLCPE(N)
OIMENSION GIEOS SBPIO11
INTEGER SRH,SRE
SQ(1) $=-0.5$
$G\{1\}=0$.
$\mathrm{NC}=\mathrm{N}-1$
IF \{NO.LT.28 SB\{1)=0.
IFiNO-LT.21 GO TO 20
OC $10 \quad 1=2$, NC
$A=\{x(1)-x(I-1)\} / 6$.
$C=\{X\{I+1\}-X(I)\} / 6$.
$H=2 . *(A+C)-A * S E(I-1)$
SB(I) $=C / H$
$F=(Y(I+1)-Y(I)) /(X(I+1)-X(I))-(Y(I)-Y(I-1)) /(X(I)-X(I-1))$
$10 \mathrm{G}(\mathrm{I})=(F-A \neq G(1-1)\} / W$
$20 E M(N)=G(N-1) /(2 \cdot+S B(N-1))$
DO $30 \quad I=2, N$
$K=N+1-1$
30 EM(K) $=G(K)-S B(K) \neq E M(K+1)$
SLOPE(1) $=(X(1)-X(2) 1 / 6 . *(2 . \neq E M(1)+E M(2))+(Y(2)-Y(1) 1 /(X X(2)-X(1))$
DC $40 \quad I=2, N$
40

```
        1 {X{I]-X{I-1])
        IF(SRW.EQ.13) WRITE{NWRIT,1000) N, (XII),Y(II,SLOPE(I),EM(I),I=I,N)
        RETURN
    1000 FORMAT (2X,15HNO. OF POINTS =,I 3/10X,1HX,19X,1HY,19X,5HSLOPE,15X,
    12HEM/(4G20.8))
        ENC
    SUBRCUTINE SPLINT (X,Y,N,Z,MAX,YINT,CYOX)
C
C--SPLINT CALCULATES INTERPOLATED POINTS AND DERIVATIVES
C--FOR A SPLINE CURVE
C--END CONDITIDN - SECOND DERIVATIVE AT EITHER ENC PCIAT IS ONE-HALF
C--THAT AT THE ADJACENT POINT
C
    COMMDN SRW,SRE,ITER,IEND,NREAD,NWRIT
        DIMENSION X{N),Y(N), Z{MAX),YINT(MAX), DYDX(MAX)
        DIMENSION G{IOL), SE(IOIT,EM{101)
        INTEGER SRW*SRE
        IF{MAX.LE.O) RETURN
        TOLER= ABS(X{N)-X(1):/FLOAT(N)*1.E-5
        SP(1)= -. 5
        G(1)=0.
        NC=N-1
        IF(NO-LT.2) GO TO 20
        DC 10 I=2,NO
        A = {X(I)-X{I-1) )/6.
        C={X(I+1)-X(I)}/6.
        W=2**(A+C)-A*SB(I-1)
        SB|I| = C/H
```



```
    10G(I)= (F-A*G(I-1))/W
    2CEM(N)=G(N-1)/(2-+SB(N-1))
        OC 30 I=2,N
        K=N+1-I
    30 EM(K) =G(K)-SB(K)*EM(K+1)
C
    ENTRY SPLENT (X,Y,N,Z,MAX,YINT, CYOXI
    DO 120 I=1.MAX
    K=2
    IF (ABS(7(I)-X(1)).LT.TCLER) GC TO 40
    IF (Z|I].GT.XPII) GO TO 50
    G0 T0 80
    40 YINT(1) =Y(1)
        SK=X(K)-X(K-1)
        GC TO 110
    50 IF (ABS\Y(I)-XIX)I.LT.TCLER) GC TO }6
        IF ITIIH-GT.X(K)\ GO TO 70
        GC TO 100
    60 YINY{II=Y{K)
        SK = X(K)-X(K-1)
        GC TC 110
    70 K=K+1
        IF(K-N) 50,50,90
    B0 DYDX(I) = {X(1)-X(2))/6.*(2. #EM(1)+EM(2))+(Y(2)-Y(1))/(X(2)-X(1))
        YINY(I) = Y(I)+DYOX{I|*{I{I|-X(II}
```

GE TC 120
CC DYDX(I) $=(X(N)-X(N-1)) / 6 . *(E M(N-1) \not 2 . * E M(N))+(Y(N)-Y(N-1)) /(X(N)$ $1-\mathrm{X}(\mathrm{N}-1))$
YINT(I) $=\mathrm{Y}(\mathrm{N})+$ CYEX(I) $(Z(I)-X(N))$
GO TO 120
$100 \mathrm{Sk}=\mathrm{x}(\mathrm{K})-\mathrm{X}(\mathrm{K}-1)$
YINT(I) $=$ EM(K-1)*(X(K)-7(I))**3/6./SK $+E M(K) *(Z(I)-X(K-1)) * * 3 / 6 *$ 1 /SK+(Y(K)/SK -EN(K)*SK /6.)*(Z(I)-X(K-1))+(Y(K-1)/SK -EM(K-1) 2 *SK/6.)*(X(K)-Z(I))
 $1 \quad / S K+(Y(K)-Y(K-1)) / 5 K-(E M(K)-E M(K-1)) * S K / 6$.
120 CLATINUE
MXA $=$ MAXO $(\mathrm{N}, \mathrm{MAX})$
 LDYDX(II, $=1$, MXA)
RETURN
1000 FORMAT ($2 \mathrm{X}, 21 \mathrm{HNO}$. OF POINTS GIVEN $=13,30 \mathrm{H}$, NO. CF INTERPOLATED PO 1INTS $=, 13 / 10 \mathrm{X}, 14 \mathrm{X}, 19 \mathrm{X}, 1 \mathrm{HY}, 16 \mathrm{X}, 11 \mathrm{HX}$ - INTERPOL. $9 \mathrm{SX}, 11 \mathrm{HY}-1$ NTERPOL. . $28 \mathrm{X}, 14 \mathrm{HDYOX}$-INT ERPOL./(5E20.8) 11 END

SURRCUTINE SLOPES(X,Y,N,SLOPE)
C
COSLLOPES CALCULATES FIRST DERIVATIVES, SLOPE, OF THE FUNCTION, Y,
C--MITH RESPECT TO X, USING a PARABCLIC FIT THROUGH EACH SET OF c--three adjacent points cn the curve
c
DIMENSION X(N),Y(N),SLOPE(N)
$\mathrm{N} 1=\mathrm{N}-1$
$\mathrm{N} 2=\mathrm{N}-2$
IF (NL.LT.2) GOTC 20
C-MID PDINTS
$0010 \mathrm{I}=2, \mathrm{~N} 1$
$x 3 \times 2=x(1+1)-x(1)$
$\mathrm{x} 2 \mathrm{x} 1=\mathrm{x}(1)-\mathrm{x}(\mathrm{I}-1)$
$\times 3 \times 1=x(I+1)-x(I-1)$
$Y 3 Y 2=Y(I+1)-Y(I)$
$Y 2 Y 1=Y(1)-Y(1-1)$
10 SLDPEII $=(\times 2 \times 1 * * 2 * Y 3 Y 2+\times 3 \times 2 * * 2 * Y 2 Y 1) /(\times 3 \times 2 * \times 2 \times 3 * \times 3 \times 1)$
C-AFIRST POINT
$\times 3 \times 2=x(3)-x(2)$
$\times 2 \times 1=x(2)-x(1)$
$X 3 \times 1=X(3)-X(1)$
Y3Y1 $=Y(3)-Y(1)$
Y2Y1 $=Y(2)-Y(1)$
SLOPE 11) $=(\times 3 \times 1 * * 2 * Y 2 Y 1-\times 2 \times 1 * * 2 * Y 3 Y 1) /(X 3 \times 2 * \times 2 \times 1 * \times 3 \times 1)$
C-LLAST POINT
$\mathbf{X 3 \times 2}=\mathrm{X}(\mathrm{N})-\mathrm{X}(\mathrm{N} 1)$
X2XI $=X(N 1)-X(N 2)$
$\mathrm{X}_{3} \times 1=\mathrm{X}(\mathrm{N})-\mathrm{X}(\mathrm{N} 2)$
Y3YZ $=Y(N)-Y(N 1)$
Y3Y1 $=Y(N)-Y(N 2)$
SLOPE $(N)=(\times 3 \times 1 * * 2 * Y 3 Y 2-\times 3 \times 2 * * 2 * Y 3 Y 1) /(X 3 \times 2 * \times 2 \times 1 * \times 3 \times 1)$
RETURN

C--TWD PRINT FIINCTIDN
$20 \operatorname{SLCPE}(1)=(Y(2)-Y(1)) /(X(2)-X(1))$
SLOPE(2) $=$ SLOPE 1 1)
RETURN
END

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, August 20, 1973,
501-24.

APPENDIX A

FINITE-DIFFERENCE FORM OF STREAM-FUNCTION EQUATION

The stream-function equation was derived as equation (B18) of part I (ref. 6):

$$
\begin{align*}
& \frac{\partial^{2} u}{\partial s^{2}}+\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial u}{\partial s}\left[\frac{\sin \varphi}{r}+\frac{1}{B} \frac{\partial B}{\partial s}+\frac{1}{\rho} \frac{\partial \rho}{\partial s}-\frac{1}{\cos \varphi} \frac{\partial(\sin \varphi)}{\partial t}\right]-\frac{\partial u}{\partial t}\left[\frac{\cos \varphi}{r}+\frac{1}{B} \frac{\partial B}{\partial t}+\frac{1}{\rho} \frac{\partial \rho}{\partial t}+\frac{1}{\cos \varphi}\right. \\
& \left.\quad \times \frac{\partial(\sin \varphi)}{\partial s}\right]+\frac{r B_{\rho}}{w W_{z}}\left\{\frac{W_{\theta}}{r}\left[\sin \varphi \frac{\partial\left(r V_{\theta}\right)}{\partial s}+\cos \varphi \frac{\partial\left(r V_{\theta}\right)}{\partial t}\right]+\xi W^{2}+\zeta+F_{r}\right\}=0 \tag{A1}
\end{align*}
$$

where

$$
\begin{gather*}
\xi=\frac{1}{2 c_{p}}\left(\frac{\mathbf{R}}{\mathbf{p}^{\prime \prime}} \frac{\partial \mathbf{p}^{\prime \prime}}{\partial \mathbf{r}}-\frac{1}{\mathbf{T}^{\prime \prime}} \frac{\partial \mathbf{I}}{\partial \mathbf{r}}-\frac{\omega^{2} \mathbf{r}}{\mathrm{~T}^{\prime \prime}}\right) \tag{A2}\\
\zeta=\omega^{2} \mathbf{r}-\frac{\mathbf{R} T^{\prime \prime}}{\mathbf{p}^{\prime \prime}} \frac{\partial \mathbf{p}^{\prime \prime}}{\partial \mathbf{r}} \tag{A3}\\
\mathbf{F}_{\mathbf{r}}=-\frac{\partial \theta}{\partial \mathbf{r}} \mathbf{W} \frac{\partial W}{\partial \theta} \tag{A4}
\end{gather*}
$$

Equation (A4) was derived as equation (B23) of part I.
The s - and t-coordinates are the coordinates along the orthogonal mesh generated by the program. At each point of this mesh where the value of the stream function is unknown, a finite-difference approximation to equation (A1) can be written. Adjacent to the boundary the boundary conditions are included. If there are n unknown values, n nonlinear equations are obtained in n unknowns. The equations are nonlinear since the coefficients involve the density, which depends on the solution; and since the final term depends on the solution in a nonlinear manner. The equations may be solved by an iterative procedure, with two levels of iteration. The inner iteration solves a linearized equation, and the outer iteration makes corrections to the linearized equation so that the solution converges to the solution of the original nonlinear equation.

A typical mesh point with the numbering used to indicate neighboring mesh points is shown in figure 24. The value of the stream function or the other variables at 0 is de-

Figure 24. - Notation for adjacent mesh points and mesh spaces.
noted by using the subscript 0 , and similarly for the neighboring points. It can be shown that equation (A1) can be approximated by

$$
\begin{align*}
& {\left[\frac{2 u_{1}}{h_{1}\left(h_{1}+h_{2}\right)}+\frac{2 u_{2}}{h_{2}\left(h_{1}+h_{2}\right)}-\frac{2 u_{0}}{h_{1} h_{2}}\right]+\left[\frac{2 u_{3}}{h_{3}\left(h_{3}+h_{4}\right)}+\frac{2 u_{4}}{h_{4}\left(h_{3}+h_{4}\right)}-\frac{2 u_{0}}{h_{3} h_{4}}\right]} \\
& \quad-\frac{u_{4}-u_{3}}{h_{3}+h_{4}}\left[\frac{\sin \varphi_{0}}{r_{0}}+\frac{1}{B_{0}}\left(\frac{B_{4}-B_{3}}{h_{3}+h_{4}}\right)+\frac{1}{\rho_{0}}\left(\frac{\rho_{4}-\rho_{3}}{h_{3}+h_{4}}\right)-\frac{1}{\cos \varphi_{0}}\left(\frac{\sin \varphi_{2}-\sin \varphi_{1}}{h_{1}+h_{2}}\right)\right] \\
& \quad-\frac{u_{2}-u_{1}}{h_{1}+h_{2}}\left[\frac{\cos \varphi_{0}}{r_{0}}+\frac{1}{B_{0}}\left(\frac{B_{2}-B_{1}}{h_{1}+h_{2}}\right)+\frac{1}{\rho_{0}}\left(\frac{\rho_{2}-\rho_{1}}{h_{1}+h_{2}}\right)+\frac{1}{\cos \varphi_{0}}\left(\frac{\sin \varphi_{4}-\sin \varphi_{3}}{h_{3}+h_{4}}\right)\right] \\
& \quad+\frac{r_{0} B_{0} \rho_{0}}{w_{0}\left(w_{z}\right)_{0}}\left\{\frac{\left(\mathbf{w}_{\theta}\right)_{0}}{r_{0}}\left[\sin \varphi \frac{\partial\left(r v_{\theta}\right)}{\partial s}+\cos \varphi \frac{\partial\left(r v_{\theta}\right)}{\partial t}\right]_{0}+\xi_{0} w_{0}^{2}+\zeta_{0}+\left(F_{r}\right)_{0}\right\}=0 \tag{A5}
\end{align*}
$$

where the partials of rV_{θ} are calculated by different methods upstream, downstream, and within the blade. Upstream and downstream of the blade, equations (B19) and (B20)
of part I are used. Within the blade, a finite-difference approximation is used with values of V_{θ} from the previous iteration. The final result to be used in equation (A5) is
$\left[\sin \varphi \frac{\partial\left(r v_{\theta}\right)}{\partial s}+\cos \varphi \frac{\partial\left(r V_{\theta}\right)}{\partial t}\right]_{0}=\left\{\begin{array}{l}\frac{r_{0} B_{0} \rho_{0}\left(W_{z}\right)_{0}}{w}\left(\frac{d \lambda}{d u}\right)_{0} \text { upstream } \\ \sin \varphi_{0} \frac{\left[r_{4}\left(V_{\theta}\right)_{4}-r_{3}\left(V_{\theta}\right)_{3}\right]}{h_{3}+h_{4}}+\cos \varphi_{0} \frac{\left[r_{2}\left(V_{\theta}\right)_{2}-r_{1}\left(V_{\theta}\right)_{1}\right]}{h_{1}+h_{2}} \quad \text { within blade } \\ \frac{r_{0} B_{0} \rho_{0}\left(W_{z}\right)_{0}}{w}\left[\frac{d\left(r V_{\theta}\right)}{d u}\right]_{0} \quad \text { downstream }\end{array}\right.$

In setting up the equations for solution, the coefficients of the u_{i} in equation (A5) must be calculated. This was done by expressing equation (A5) as

$$
\begin{equation*}
u_{0}=\sum_{i=1}^{4} a_{i} u_{i}+k_{0} \tag{A7}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{0}=\frac{2}{h_{1} h_{2}}+\frac{2}{h_{3} h_{4}} \\
& c_{1}=h_{1}+h_{2} \\
& c_{2}=h_{3}+h_{4} \\
& \mathrm{~d}_{1}=\frac{\frac{\mathrm{B}_{2}-\mathrm{B}_{1}}{\mathrm{~B}_{0}}+\frac{\rho_{2}-\rho_{1}}{\rho_{0}}}{\mathrm{c}_{1}}+\frac{\cos \varphi_{0}}{\mathrm{r}_{0}}+\frac{\sin \varphi_{4}-\sin \varphi_{3}}{\mathrm{c}_{2} \cos \varphi_{0}} \\
& d_{2}=\frac{\frac{B_{4}-B_{3}}{B_{0}}-\frac{\rho_{4}-\rho_{3}}{\rho_{0}}}{c_{2}}+\frac{\sin \varphi_{0}}{r_{0}}-\frac{\sin \varphi_{2}-\sin \varphi_{1}}{c_{1} \cos \varphi_{0}} \\
& a_{1}=\frac{\left(\frac{2}{h_{1}}+d_{1}\right)}{a_{0} c_{1}} \tag{A8}\\
& a_{2}=\frac{\left(\frac{2}{h_{2}}-d_{1}\right)}{a_{0} c_{1}} \\
& a_{3}=\frac{\left(\frac{2}{h_{3}}+d_{2}\right)}{a_{0} c_{2}} \\
& a_{4}=\frac{\left(\frac{2}{h_{4}}-d_{2}\right)}{a_{0} c_{2}}
\end{align*}
$$

$$
k_{0}=\left\{\begin{array}{l}
\frac{r_{0} B_{0} \rho_{0}}{a_{0} w\left(W_{z}\right)_{0}}\left[\frac{\left(w_{\theta}\right)_{0} B_{0} \rho_{0}\left(W_{z}\right)_{0}}{w}\left(\frac{d \lambda}{d u}\right)_{0}+\xi_{0} w_{0}^{2}+\zeta_{0}\right] \quad \text { upstream } \\
\frac{r_{0} B_{0} \rho_{0}}{a_{0} w\left(W_{z}\right)_{0}}\left[\frac{\left(W_{\theta}\right)_{0}}{r_{0}}\left\{\left[r_{4}\left(v_{\theta}\right)_{4}-r_{3}\left(v_{\theta}\right)_{3}\right] \frac{\sin \varphi_{0}}{c_{2}}+\left[r_{2}\left(V_{\theta}\right)_{2}-r_{1}\left(V_{\theta}\right)_{1}\right] \frac{\cos \varphi_{0}}{c_{1}}\right\}+\xi_{0} w_{0}^{2}+r_{0}+\left(F_{r}\right)_{0}\right] \text { within blade } \tag{A9}\\
\frac{r_{0} B_{0} \rho_{0}}{a_{0} w\left(W_{z}\right)_{0}}\left\{\frac{\left(w_{\theta}\right)_{0} B_{0} \rho_{0}\left(w_{z}\right)_{0}}{w}\left[\frac{d\left(r V_{\theta}\right)}{d u}\right]_{0}+\xi_{0} w_{0}^{2}+\xi_{0}\right\} \text { downstream }
\end{array}\right.
$$

Equation (A8) is written in the form corresponding to the calculation of the coefficients in subroutine COEF. The constant k_{0} is calculated from equation (A9) in subroutine COEF. The quantities ξ and ζ are calculated in subroutine NEWRHO from equations (A2) and (A3). The quantity F_{r} is calculated in subroutine BLDVEL when the blade surface velocities are calculated. The quantities $d \lambda / d u$ and $d\left(r V_{\theta}\right) / d u$ are calculated by subroutines LAMDAF and RVTHTA when they are called by NEWRHO to cal culate λ or $\left(\mathbf{r} V_{\theta}\right)_{0}$.

APPENDIX B

MATCHING UPSTREAM AND DOWNSTREAM FLOW CONDITIONS

TO STREAM-FUNCTION SOLUTION

The work done by each blade row is determined by the change in whirl along streamlines. That is,

$$
\begin{equation*}
\mathrm{H}_{\mathrm{o}}-\mathrm{H}_{\mathrm{i}}=\omega\left[\left(\mathrm{rv}_{\theta}\right)_{0}-\lambda\right] \tag{B1}
\end{equation*}
$$

In this program, whirl can vary as desired from hub to tip, but for each streamline the work done is determined by equation (B1). Also, the equation relating velocity W to temperature and density requires knowledge of upstream total temperature and whirl for that particular streamline. For this reason, it is most desirable to express upstream and downstream conditions as a function of stream function rather than radius. However, if experimental data are being used, measurements are obtained as a function of position or radius. In this case the stream function is not known, but the distribution by radius can be used for input to the program. Then by estimation and iteration the correct distribution by stream function will be obtained.

If whirl is given as a function of stream function as input (i.e., $\operatorname{LSFR}=\mathrm{LAMVT}=0$), no changes need be made after the first initialization. If tangential velocity V_{θ} is given as input (LAMVT $=1$), certain subroutines must be reinitialized in every iteration. There are two possibilities: one that $\dot{\mathrm{V}}_{\theta}$ is given as a function of stream function ($\mathrm{LSFR}=0$), and the second that V_{θ} is given as a function of radius ($\mathrm{LSFR}=1$). In either case, what is needed is the relation between stream function and radius along the input lines. This relation is determined by the stream-function solution obtained by SOR. In each iteration, then, reinitialization calls are made by NEWRHO, if LAMVT $=1$. If $L S F R=0$, SFIN and SFOUT are given as input, and RADIN and RADOUT are corrected by the initilization calls to LAMNIT and RVTNTT. If LSFR $=1$, RADIN and RADOUT are given as input, and SFIN and SFOUT are corrected by the same calls. In either case, SPLINT calls are made to readjust the spline fit coefficients for all five subroutines, LAMDAF, RVTHTA, TIPF, RHOIPF, and RHOOPF.

APPENDIX C

CALCULATION OF PARTIAL DERIVATIVES OF THETA

ON ORTHOGONAL MESH

In the THETOM subroutine, $\partial \theta / \partial \mathrm{s}$ and $\partial \theta / \partial \mathrm{t}$ are calculated at the orthogonal mesh points which lie between the leading and trailing edges of the blade. This process is executed in a series of intermediate steps because input points on the different blade planes are not required to fall on a smooth curve running from hub to shroud. Also, the angle φ is known only at mesh points, so that $\partial \theta / \partial s$ and $\partial \theta / \partial t$ cannot be obtained directly. Therefore, $\partial \theta / \partial z$ and $\partial \theta / \partial \mathbf{r}$ are obtained as an intermediate step. It is more accurate to calculate partial derivatives first and then interpolate and transform the partials than it would be to interpolate θ itself and then calculate the partials along mesh lines.

The orthogonal mesh on a typical blade is illustrated in figure 25. Notice that

Figure 25. - Orthogonal finite-difference mesh on solution region.
some of the t mesh lines cross the leading and trailing edges of the blade. To alleviate the problem of finding θ-gradients on this mesh, they are first obtained on an alternative mesh, shown in figure 26 , of s^{\prime} - and t^{\prime}-coordinates which lie entirely within the blade. Then by interpolation they are obtained at the desired orthogonal mesh points. (Recall that z, r, and θ are given as input on a number of blade sections from hub to shroud.)

The step-by-step procedure to obtain $\partial \theta / \partial s$ and $\partial \theta / \partial t$ is as follows:
(1) Calculate z - and r-coordinates (ZPC and RPC) of the mesh points on the $s^{\prime}-t^{\prime}$ mesh. The s^{\prime} mesh lines lie along the input blade sections (ZBL, RBL points). The t^{\prime} mesh lines run from hub to shroud at 10 -percent meridional chord locations (fig. 26). Once z-coordinates are calculated along the input blade sections, SPLINT calls are

Figure 26. - Alternate mesh on which gradients of θ are obtained.
made in the s-direction to obtain the corresponding r-coordinates and angles of the s^{\prime}-coordinate line with respect to the z-axis $\alpha_{S^{\prime}}$ (See fig. 27.)

Figure 27. - Relation of $s^{\prime}-\mathrm{t}^{\prime}$ mesh to z - and r -directions.
(2) Calculate arc length SZRRBL along the input blade section (s'-coordinate line) by using the input ZBL, RBL coordinates.
(3) Calculate arc length SZRPC along the s'-coordinate line by using the calculated ZPC, RPC coordinates.
(4) By using SPLINT calls in the s^{\prime}-direction, calculate θ and $\partial \theta / \partial s^{\prime}$ at the ZPC, RPC points.
(5) By usirg SPLINE calls along the t^{\prime}-coordinate line, calculate angles between the t ' lines and the radial direction $\alpha_{t^{\prime}}$. (See fig. 27 for sign of α_{t}, .)
(6) Calculate arc length SZRPC along the t'-coordinate line by using the ZPC,RPC coordinates.
(7) By using SPLINE calls in the t^{\prime}-direction, calculate $\partial \theta / \partial t^{\prime}$ at the ZPC, RPC points.
(8) Calculate $\partial \theta / \partial z$ and $\partial \theta / \partial \mathrm{r}$ from $\partial \theta / \partial s^{\prime}$ and $\partial \theta / \partial \mathrm{t}^{\prime}$ at the s^{\prime} - and t^{\prime}-coordinate points, with the following equations:

$$
\begin{align*}
& \frac{\partial \theta}{\partial \mathbf{z}}=\frac{\partial \theta}{\partial \mathbf{s}^{\prime}} \frac{\cos \alpha_{\mathbf{t}^{\prime}}}{\cos \left(\alpha_{\mathbf{s}^{\prime}}+\alpha_{\mathbf{t}^{\prime}}\right)}-\frac{\partial \theta}{\partial \mathbf{t}^{\prime}} \frac{\sin \alpha_{\mathbf{s}^{\prime}}}{\cos \left(\alpha_{\mathbf{s}^{\prime}}+\alpha_{\mathbf{t}^{\prime}}\right)} \tag{C1}\\
& \frac{\partial \theta}{\partial \mathbf{r}}=-\frac{\partial \theta}{\partial \mathbf{s}^{\prime}} \frac{\sin \alpha_{\mathbf{t}^{\prime}}}{\cos \left(\alpha_{\mathbf{s}^{\prime}}+\alpha_{\mathbf{t}^{\prime}}\right)}+\frac{\partial \theta}{\partial \mathrm{t}^{\prime}} \frac{\cos \alpha_{\mathbf{s}^{\prime}}}{\cos \left(\alpha_{\mathbf{s}^{\prime}}+\alpha_{\mathbf{t}^{\prime}}\right)} \tag{C2}
\end{align*}
$$

(The $\partial \theta / \partial \mathrm{z}$ and $\partial \theta / \partial \mathbf{r}$ gradients are the ones which will be interpolated back to the orthogonal mesh and then transformed to get $\partial \theta / \partial s$ and $\partial \theta / \partial \mathrm{t}$.)
(9) Interpolate, by using LININT calls, from $\partial \theta / \partial z$ and $\partial \theta / \partial r$ on the $s^{\prime}-t$ mesh to obtain $\partial \theta / \partial z$ and $\partial \theta / \partial r$ at the s-t points of the orthogonal mesh which lie between the leading and trailing edges of the blade.
(10) Rotate the \mathbf{r} - and z -coordinate lines through the angle φ to obtain $\partial \theta / \partial \mathrm{s}$ and $\partial \theta / \partial \mathrm{t}$ at the orthogonal mesh points within the blade (see fig. 28). The following equations are used:

$$
\begin{align*}
& \frac{\partial \theta}{\partial s}=\frac{\partial \theta}{\partial z} \cos \varphi+\frac{\partial \theta}{\partial \mathbf{r}} \sin \varphi \tag{C3}\\
& \frac{\partial \theta}{\partial t}=\frac{\partial \theta}{\partial \mathbf{r}} \cos \varphi-\frac{\partial \theta}{\partial z} \sin \varphi \tag{C4}
\end{align*}
$$

Figure 28. - Relation of z - and r-directions to s - and $t-$ directions.

APPENDIX D

LINEAR INTERPOLATION IN A QUADRILATERAL

There are several instances where it is required for the program to interpolate from a two-dimensional array of values on a grid. If the grid were rectangular, this would be straightforward. However, usually this is not the case. In most cases the grid is a rectangular grid which is deformed like a net that has stretched out of shape. Thus, each region has four sides, but the corners are not necessarily right angles. The method of interpolation is the simplest possible. First, we find the particular quadrilateral containing the point, as shown in figure 29. All that is necessary is to

Figure 29. - Typical mesh region.
interpolate linearly within the quadrilateral. The interpolation is linear in the sense that it is linear along the boundary and between corresponding points along the boundary.

An illustration should clarify the manner of interpolation. Suppose it is desired to find the value at point P in figure 30. It is assumed that values of the function are known at the corner points A, B, C, and D. The function values at these points will be designated F_{A}, F_{B}, F_{C}, and F_{D}. Suppose that the point P lies on a line between points three-quarters of the way along $A B$ and $C D$, as shown. Also suppose that P lies on a line between points two-thirds of the way along $B D$ and $A C$, as shown. Then, we can interpolate linearly along $A B$ and $C D$, followed by linear interpolation along the vertical line through P. If F is the interpolated value of P, we obtain

$$
F=\frac{1}{12} F_{A}+\frac{1}{4} F_{B}+\frac{1}{6} F_{C}+\frac{1}{2} F_{D}
$$

Figure 30 - Example of linear interpolation in a quadrilateral.

The same result is obtained if we interpolate linearly along BD and AC, followed by linear interpolation along the horizontal line through \mathbf{P}.

Figure 31 shows a quadrilateral containing a point P_{0} where it is desired to inter-

Figure 31. - Typical quadrilateral.
polate. It is assumed that the values of the function to be interpolated are known at the four corners, and that the coordinates of the point \mathbf{P}_{0} are given. The function values are denoted by z, and the coordinates by x and y. Subscripts are used to indicate the point. There are 14 values required to perform the interpolation: the coordinates of the four corners (eight values), the coordinates of the interpolation point (two values),
and the function values at the four corners. If it is assumed that these 14 values are known, an equation for linear interpolation can be derived.

Figure 32 shows the same quadilateral as figure 31 but with the added lines $P_{5} P_{6}$ and $P_{7} P_{8}$. The line $P_{5} P_{6}$ passes through the point P_{0} and is chosen so that $P_{1} P_{5}: P_{1} P_{3}=P_{2} P_{6}: P_{2} P_{4}$. Similarly, $P_{7} P_{8}$ passes through P_{0} and $P_{1} P_{7}: P_{1} P_{2}=P_{3} P_{8}: P_{3} P_{4}$. Now, let

$$
\begin{align*}
& f_{x}=\frac{P_{1} P_{7}}{P_{1} P_{2}} \tag{D1}\\
& f_{y}=\frac{P_{1} P_{5}}{P_{1} P_{3}} \tag{D2}
\end{align*}
$$

Figure 32 - Typical quadriateral with interpolation lines.

The coordinates of any point $\stackrel{\mathbf{P}}{i}$ will be designated by (x_{i}, y_{i}). The difference of any two x or y values will be designated by $x_{i j}=x_{i}-x_{j}$ or $y_{i j}=y_{i}-y_{j}$. Thus,

$$
\begin{equation*}
f_{y}=\frac{x_{51}}{x_{31}}=\frac{y_{51}}{y_{31}}=\frac{x_{62}}{x_{42}}=\frac{y_{62}}{y_{42}} \tag{D3}
\end{equation*}
$$

The equation of line $P_{5} P_{6}$ is

$$
\begin{equation*}
\frac{y-y_{5}}{x-x_{5}}=\frac{y_{65}}{x_{65}} \tag{D4}
\end{equation*}
$$

By using equation (D3), y_{5}, y_{6}, x_{5}, and x_{6} can be expressed in terms of f_{y} and the known values. For example,

$$
\mathrm{y}_{5}=\mathrm{y}_{1}+\mathrm{y}_{51}=\mathrm{y}_{1}-\mathrm{f}_{\mathrm{y}} \mathrm{y} 13
$$

In a similar manner we obtain

$$
\left.\begin{array}{l}
y_{5}=y_{1}-f_{y} y 13 \tag{D5}\\
y_{6}=y_{2}+f_{y} y_{42} \\
x_{5}=x_{1}-f_{y} x_{13} \\
x_{6}=x_{2}+f_{y} x_{42}
\end{array}\right\}
$$

By substituting equations (D5) in (D4), we obtain

$$
\begin{equation*}
\frac{y-y_{1}+f_{y} y_{13}}{x-x_{1}+f_{y} x_{13}}=\frac{y_{2}+f_{y} y_{42}-y_{1}+f_{y} y_{13}}{x_{2}+f_{y} x_{42}-x_{1}+f_{y} x_{13}} \tag{D6}
\end{equation*}
$$

This line passes through P_{0}, so when $x=x_{0}, y=y_{0}$. When this substitution is made and we multiply through by the denominators, we obtain a quadratic in f_{y},

$$
\begin{equation*}
a f_{y}^{2}+b f_{y}+c=0 \tag{D7}
\end{equation*}
$$

where

$$
\left.\begin{array}{c}
a=y_{13} x_{42}-x_{13} y_{42} \tag{D8}\\
b=x_{13} y_{02}-y_{13} x_{02}+y_{01} x_{42}-x_{01} y_{42} \\
c=y_{01} x_{21}-x_{01} y_{21}
\end{array}\right\}
$$

In a similar manner, we can obtain a quadratic in f_{x} :

$$
\begin{equation*}
a f_{x}^{2}+b f_{x}+c=0 \tag{D9}
\end{equation*}
$$

where

$$
\left.\begin{array}{c}
a=y_{12} x_{43}-x_{12} y_{43} \tag{D10}\\
b=x_{12} y_{03}-y_{12} x_{03}+y_{01} x_{43}-x_{01} y_{43} \\
c=y_{01} x_{31}-x_{01} y_{31}
\end{array}\right\}
$$

If a $\neq 0$ in equation (D7) or (D9), there are two solutions for f_{x} or f_{y}. However, there will be only one value between zero and one. When two sides are parallel, a will be zero and only one solution exists. Caution is needed when a is not zero but is very small. In this case there is one and only one solution between zero and one; but if the usual quadratic formula is used, the answer will be inaccurate. The solution, however, can be accurately calculated by using a binomial expansion.

If we let f represent either f_{x} or f_{y}; the solution to either (D7) or (D9) can be written as

$$
\begin{equation*}
f=-\frac{b}{2 a}\left(1 \pm \sqrt{1-\frac{4 a c}{b^{2}}}\right) \tag{D11}
\end{equation*}
$$

When a is zero or small in magnitude, we want the root that is closest to zero. This is obtained by choosing the minus sign for the last term. Now we expand

$$
\left(1-\frac{4 a c}{b^{2}}\right)^{1 / 2}
$$

by the binomial series, to obtain

$$
\begin{equation*}
\sqrt{1-\frac{4 a c}{b^{2}}}=1-\frac{2 a c}{b^{2}}-\frac{2 a^{2} c^{2}}{b^{4}}-\frac{4 a^{3} c^{3}}{b^{6}}-\frac{10 a^{4} c^{4}}{b^{8}}-\ldots \tag{D12}
\end{equation*}
$$

for $|4 a c|<b^{2}$. Substituting equation (D12) in equation (D11) with the minus sign gives

$$
\begin{equation*}
f=-\frac{c}{b}\left(1+\frac{a c}{b^{2}}+\frac{2 a^{2} c^{2}}{b^{4}}+\frac{5 a^{3} c^{3}}{b^{6}}+\cdots\right) \tag{D13}
\end{equation*}
$$

Equation (D13) is used when $\mathrm{ac} / \mathrm{b}^{2}$ is small. Otherwise, the usual quadratic formula is used. In the program (i.e., in subroutine LININT, and also in subroutine CONTIN), equation (D13) is used whenever $|4 a c| \leq b^{2} / 100$. Only three terms of the series are used; the term $5 \mathrm{a}^{3} \mathrm{c}^{3} / \mathrm{b}^{6}$ is dropped. This leads to a maximum relative error of less than 10^{-7}. When $|4 \mathrm{ac}|>\mathrm{b}^{2} / 100$, the quadratic formula will lose no more than two or three decimal places in accuracy.

There is one further point that must be considered. Up to this point, it has been as sumed that the interpolation point is within the overall grid area, and thus we only need to interpolate within a quadrilateral. However, there are cases where extrapolation is necessary. In this case, the nearest quadrilateral is identified, and extrapolation is used. The procedure is similar, but one of the f ' s must be either negative or greater than 1. The problem, then, is to determine which f to use. Since the direction of the extrapolation is known, it is known whether f is negative or greater than 1 . For example, suppose it was necessary to extrapolate below the bottom of the grid area. Then f_{y} must be negative. If only one of the two possible values is negative, the question is settled. If both are negative, the larger value (closest to zero) is used.

After both f_{x} and f_{y} are obtained, the linear interpolation can be performed to obtain z_{0}. Linear interpolation along $P_{1} P_{2}$ and $P_{3} P_{4}$ is followed by linear interpolation along $P_{7} P_{8}$. These interpolations are calculated by

$$
\begin{aligned}
& z_{7}=z_{1}+f_{x}\left(z_{2}-z_{1}\right) \\
& z_{8}=z_{3}+f_{x}\left(z_{4}-z_{3}\right) \\
& z_{0}=z_{7}+f_{y}\left(z_{8}-z_{7}\right)
\end{aligned}
$$

Combining these equations, we get

$$
\begin{equation*}
z_{0}=z_{1}\left(1-f_{x}\right)\left(1-f_{y}\right)+z_{2} f_{x}\left(1-f_{y}\right)+z_{3}\left(1-f_{x}\right) f_{y}+z_{4} f_{x} f_{y} \tag{D14}
\end{equation*}
$$

APPENDIX E

SYMBOLS

tangential space between blades, corrected for loss of total pressure, rad specific heat at constant pressure, $J /(\mathrm{kg})(\mathrm{K})$
vector normal to mid-channel stream surface and proportional to tangential pressure gradient, N / kg
absolute total enthalpy, J / kg
rothalpy, $c_{p} T_{i}-\omega \lambda$, meters $^{2} / \sec ^{2}$
meridional streamline distance, meters
pressure, $\mathrm{N} /$ meter 2
gas constant, $\mathrm{J} /(\mathrm{kg})(\mathrm{K})$
radius from axis of rotation, meters
radius of curvature of meridional streamline, meters
distance along orthogonal mesh lines in throughflow direction (fig. 25), meters temperature, K
distance along orthogonal mesh lines in direction across flow (fig. 25), meters normalized stream function
absolute fluid velocity, meters/sec
fluid velocity relative to blade, meters/sec
W at next point, meters/sec
first estimate of $\mathrm{W}_{\mathrm{J}+1}$, meters/sec
second estimate of W_{j+1}, meters/sec
mass flow, kg /sec
axial coordinate, meters
angle between meridional streamline and axis of rotation (fig. 2, part 1), rad angle between relative velocity vector and meridional plane (fig. 2, part I), rad
specific-heat ratio
coefficient in stream-function equation, defined in eq. (A3), meters $/ \mathrm{sec}^{2}$ relative angular coordinate (fig. 2, part I), rad
$\lambda \quad$ prerotation, $\left(\mathrm{rV}_{\theta}\right)_{i}$, meters ${ }^{2} / \mathrm{sec}$
$\omega \quad$ rotational speed (fig. 2, part I), rad/sec
Subscripts:
av average blade-to-blade value
b blade
bf blade flow
cr critical
fs free stream
hub hub
i inlet
l blade surface facing direction of positive rotation
le leading edge
m component in direction of meridional streamline
net net
o outlet
\mathbf{r} component in radial direction
s component in s-direction
$t \quad$ component in t-direction
te trailing edge
tip tip
tr blade surface facing direction of negative rotation
z component in axial direction
θ component in tangential direction

Superscripts:

1 absolute stagnation condition
" relative stagnation condition

1. Wu, Chung, Hua: A General Theory: of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-, Radial-, and Mixed-Flow Types. NACA TN 2604, 1952.
2. Katsanis, Theodore: Use of Arbitrary Quasi-Orthogonals for Calculating Flow Distribution in the Meridional Plane of a Turbomachine. NASA TN D-2546, 1964.
3. Marsh, H.: A Digital Computer Program for the Through-Flow Fluid Mechanics in an Arbitrary Turbomachine Using a Matrix Method. R\&M-3509, Aeronautical. Research Council, Gt. Britain, 1968.
4. Davis, W. R.: A Matrix Method Applied to the Analysis of the Flow in Turbomachinary. Rep. ME/A-71-6, Carleton University, Ottawa, Canada, Sept. 1971.
5. Katsanis, Theodore: FORTRAN Program for Calculating Transonic Velocities on a Blade-to-Blade Stream Surface of a Turbomachine. NASA TN D-5427, 1969.
6. Katsanis, Theodore; and McNally, William D.: FORTRAN Program for Calculating Velocities and Streamlines on the Hub-Shroud Mid-Channel Flow Surface of an Axial- or Mixed-Flow Turbomachine. I - User's Manual. NASA TN D-7343, 1973.
7. McNally, William D.: FORTRAN Program for Generating a Two-Dimensional Orthogonal Mesh Between Two Arbitrary Boundaries. NASA TN:D-6766, 1972.
8. Kannenberg, Robert G. :CINEMATIC - FORTRAN Subprograms for Automatic Computer Microfilm Plotting. NASA TM-X-1866, 1969.
9. McCracken, Daniel D.; and Dorn, William S.: Numerical Methods and FORTRAN Programming. John Wiley \& Sons, Inc., 1964.
10. Varga, Richard S.: Matrix Iterative Analysis. Prentice-Hall, Inc., 1962.
11. Katsanis, Theodore: A Computer Program for Calculating Velocities and Streamlines for Two-Dimensional, Incompressible Flow in Axial Blade Rows. NASA TN D-3762, 1967.
12. Walsh, J. L.: Ahlberg, J. H.; and Nilson, E. N.: Best Approximation Properties of the Spline Fit. J. Math. Mech., vol. 11, no. 2, 1962, pp. 225-234.
