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Section 1

INTRODUCTION

Several technical areas were encompassed in providing support for Booster

thermal environment test work. These areas included cavity flow heating, rare-

fled flow heating and impulse operated model research and testing. Cavity

flow heating problems were studied with respect to the proposed altitude

control motors for the Space Shuttle. Available literature on this subject

was reviewed and analytical predictive methods were summarized for use in

planning testing work. Rarefied flow heating data was reviewed and correlated.

The study showed the importance of considering rarefied flow conditions in

launch thermal environment prediction. Impulse operated model research

and testing was conducted to provide a basis for understanding and designing

such models for booster thermal environment testing. During the course of

this work technical reports were completed which document the various tech-

nical facits encompassed. This set of reports, Refs. I to 13, provides

comprehensive documentation and thus a Synoptic presentation method is used

herein. The most salient features of the work are given in the following

sections.

1
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Section 2

CAVITY HEATING

Propulsive attitude control systems which are intermittently used

during hypersonic atmospheric flight are discussed and analyzed as an open

cavity flow heat transfer problem in Ref. 1. The literature which presents

open cavity flow characteristics is reviewed and discussed in terms of ACS

nozzle-cavity heating. A description of existing analytical models for

prediction of heat transfer within cavities is given in Ref. 1 and are

summarized here. All of the models presented were developed for two-dimen-

sional laminar flow (see Fig. 1). Thus, unless three-dimensional effects

within ACS nozzle cavities are found to be negligible these models will

require modification to be applicable to ACS nozzle flow. Furthermore,

other models for turbulent flow will ;be required for anticipated flight

conditions.

2.1 BURGGRAF'S MODEL

Burggraf (Ref. 14) modeled the steady separated flow in two-dimensional

rectangular cavities at high Reynolds numbers. The cavity flow was considered

to consist of a single constant enthalpy, rotating inviscid eddy which produces

a thin boundary layer along the cavity walls. The laminar momentum and energy

equations were linearized and the Prandtl number assumed to be one to obtain

a tractable solution. The heat transfer distribution was normalized to using

Chapman's average value transferred across the dividing streamline. The

expression relating the preseparation heating to the distribution within

the cavity is given in Table 1.

2
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Burggraf also examined the limitations of his analysis with respect to

the assumption of an inviscid central core. The model is no longer valid

when the boundary layer thickness becomes equal to one half of the cavity

width, W, for cavities with H>W, This condition is related to a critical

Reynolds number given by Eq. (2) of Table 1. Thus for the theory to be

applicable the local edge Reynolds number, Eq. fl) of Table I must be

greater than the critical Reynolds number given by Eq. (2) of Table 1.

As part of the present investigation, Burggraf's model was programmed

to provide a predictive method. Due to the sfmplicity of the heat transfer

correlation, the program was used to parametrically evaluate the heat trans-

fer distribution. The results of this parametric analysis are given in Fig.

2 for W/H values spanning the range of expected ACS nozzle cavities geome-

tries.

2.2 HODGSON'S MODEL

Hodgson (Ref. 15) visualized cavity flow as determined by an oncoming

boundary which separates and forms a shear layer which in turn produces an

equivalent wedge flow down the reattachment wall. The equations corres-

ponding to this conceptual model are given in Table 2 and are discussed

below.

The effect of finite upstream boundary layer was introduced through

its influence on the dividing streamline velocity, Ud, as determined from

results of Denison and Baum(Ref, 16). In the present work, the theoretical

curve was least squares fit for numerical computation purposes.

Cavity fluid properties are computed using an average cavity tempera-

ture, Eq, (4), and the boundary layer edge pressure. The dividing streamline

3
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temperature, Td is computed using a modified Crocco's relationship, [Eq. (3)].

One of the significant contributions of this model is the compressibility

correction given for the reattachment zone length, L, expressed in Eqs. (6)

and (7). This leligth is used in an expression for the local velcoity along

the reattachemnt wall which was develeped for incompressible flow, [Eq. (8)].

Reattachment wall heat transfer is then computed using heat transfer relations

[Eqs. (9) to (13)] for a flat plate having a varying freestream velocity.

The theories of Burggraf and Hodgson provides the most easily used methods

for the engineer to obtain an estimate of the heating distribution within a

cavity. Several additional methods and aspects of this problem are presented

and discussed in Ref. 1.

The cavity heating information given in Ref. 1 was applied to a specific

problem in Ref. 2. This reference documents a study of the thermal environ-

ments for two proposed cavity regions of the External Tank. Thermal environ-

ments for the exit region of the LOX Tank Vent Line and exit region of the

Intertank Deorbit Retro were computed for two trajectory points corresponding

to peak heating trajectory points. Heating rates for specific points within

the cavities and near the cavities on the external surface are given in tabular

form in Ref. 2.

4
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Table 1

Burggraf: Laminar 2-D Cavity Heating Equations

Nomenclature

Ue - Boundary layer (BL) edge velocity

1. ReX  PeUeXo pe - BL edge density

o P1e Ie - BL edge viscosity

( 4/3 Xo - BL running length to cavity

2. R e = 240 o 1 + y. - Distance along cavity reattachment
WW wall from external surface

qps- Preseparation convective heating rate

q(y)-Local" heating rate
3. If Rex > Recr then WH- See Fig. I

2) .21 F+W
p l 2 (W+H)• 2, +H

4. Rieman zeta function (a rational approximation)

5

( EL a- (x+1)n

n=O

a = + 0.803323
0

a = - 3.89728

a2 = + 2.55002

a = - 1.19121

a = + 0.308284

a - - 0.0335024

55
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Table 2

Hodgson: Laminar 2-D Cavity Heating Equations

1. S* = W/X (Flat Plate)

Ud
2. F f(S*) from Fig. 5 of Denison and Baum (Ref. 16)

e

Least Squares Fit

d
u - a + a4 +a +a +a s
e o

where = logl(S*)

a = + .51706

a = + .088707

a = - .049822.

a = - .0020116

a = + .0047757

a = + .0006549

3. Td= TW + (Taw TW

4. Tc = .5(Td+ T)

5. ReW = eUeW

e

6. Li = 11.8W

ReW 1/

6
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Table 2 (Continued)

7.* L Li 1 + 0.447 y-l)/2] M' 5.22 + 4.41 (TW -

8. For y/L <1

.- 189 exp 5.3 y -10.6 exp [-y/L(.87n2 + 28.1) /2]
Ud n=l 9.87n2 + 28.1

9. For y/L <

C/ y/L C1/2
StReL C v ' v

0 "

where for Pr = .7 Nomenclature

Xo - B.L. running length to cavity

C1 = 0.418 W,H- See Fig. 1

C2 = 0,435 Ue - Boundary layer (BL) edge velocity

C, 1.87 Ud - Dividing streamline velocity

T- Wall temperature

10. For y/L >1 Pr - Prandtl number

Taw- Adiabatic wal; temperature

v = Ud Cp B.L. edge heat capacity

p B.L. edge density

11. For y/L > 1 Ve - B.L. edge viscosity

StReLI/ 2  -C Te - B.L. edge temperature
L 1 Me - B.L. edge Mach number

c - Viscosity evaluated at Tc
where for Pr = 0.7 y - Distance along cavity reattachment

wall from the external surface
A - 0.178

y - Ratio of specific heats

12. Re = q - Local heating rate
L '13c

13. q = StpcvC(T d -TW)

*The misprint which occurred in this equation in Ref. 15 was corrected by
personal communications with the author.

7



REMTECH INCORPORATED RTR 008-4

Separation Reattachment
Shock Shock

Expansion
Fan

Mixing,-
Zone
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, /7 . Dividing Streamline
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Fig. I - Schematic of Open Cavity Flow Structure
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qps = Preseparation Heating Rate

.100
0" 0

o.-- *

1.0 0.1 0.01 0.001

y/HW

Fig. 2 Reattachment Wall Heating Based on Burggraf's Model
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Section 3

RAREFIED FLOW HEATING

Aeroheating during hypersonic flight at rarefied conditions has become

a problem of concern for Space Shuttle launch and entry. Mission require-

ments dictate that during ascent and entry the External Tank (ET) will spend

a significant amount of time in rarefied hypersonic flight. Consequently,

several reports have been prepared, Refs. 3 to 7, which detail expected flow

conditions, rarefied flight predictive methods, analysis of available data

and computer program documentation for methods of computing rarefied flow

thermal environments. The more salient features of this work are given here.

The most significant contribution of Ref. 3 is the correlation of rare-

fied flow heating data in a manner which provides a rapid calculation proce-

dure of rarefied flow heating for the design engineer. Flow regime switching

criteria are given in Table 3. Relations for free molecular heating are

given in Table 4. Rarefied flow heating relations and deata are presented

for spheres, cones, cylinders, flat plates and wedges in Tables 5 to 9 and

Figs. 3 to 7. Wedge flow relations were developed subsequent to the work

given in Ref. 3. In addition to the heating methods stated above, Ref. 3

provides an alternate method of scaling wind tunnel rarefied stagnation point

heating to flight conditions.

The rarefied and free molecular flow heating prediction methods were

programmed and incorporated into the MINIVER computer program. Ref. 6 pro-

vides documentation of the changes made and Ref. 7 provides a program list-

ing of the entire modified computer code.

During the course of checking-out rarefied flow heating methods, it was

found that a simple method was needed to compute the local recovery enthalpy.

10
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Ref. 7 was completed in response to this need. A Newtonian and a concentric

shock approach were shown to yield the same relationship for the recovery

enthalpy. This relationship is given in Table 10.

In order to attempt to broaden the rarefied flow heating data base, a

review of Saturn V launch data was undertaken. The basic conclusions drawn

from this study (Ref. 4) are: (1) The Saturn 501 heating rate gauge output

in -the rarefied flow regime is of the same magnitude as the zero bias error

of the respective gauges, (2) Since some of the gauge output exceeds the

maximum convective heating potential, gauge output cannot be attributed to

convective heating and must be due to gauge inaccuracy and/or solar radia-

tion input and (3) The uncertainties and inconsistencies in the data pre-

cludes their use in establishing a basis for rarefied flow convective heat-

ing.

11
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TABLE 3

FLOW REGIME CRITERIA

M < 0.05 Boundary layer flow

M
0.05 < < 3.0 Rarefied flow

Mm
> 3.0 Free molecular flow

12
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TABLE 4

FREE MOLECULAR FLOW HEATING EQUATIONS*

(1) N k (particles/unit volume)kT U

(2) S =J M, (molecular speed ratio) e

(3) 
NU.

(4) r S sin 6

(5) n [e- + V(ln + erf n)

= number of molecules striking a unit area per unit time

where

2 -x2erf n e x dx (error function)

Rational approximation (o < n.< .) from Ref. 5

ef n =. -(a.t + at' + a t3)e + c(n)
1 2 8

1
l+aon

ao = 0.47047

a = 0.3480242
1

a -= 0.0958798
2

a 0.7478556

13
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TABLE 4 (cont.)

FREE MOLECULAR FLOW HEATING EQUATIONS

(6) = -e '
2

(7) q a Y+1 nkT - 2 + n - kT
2(Y-1)

= heating rate

Nomenclature

U - Freestream velocity

P - Freestream pressure

T - Freestream temperature

•k - Boltzman's constant

y - Freestream specific heat ratio

*From Oppenheim (Ref. 17)

- 14
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TABLE 5

RAREFIED FLOW STAGNATION POINT HEAT TRANSFER EQUATIONS

(1) Tr (T6 +TW)/2 Nomenclature

T- Post normal shock temperature

(2) T =T E + 1M2 TW -Wall temperature

M. - Freestream Mach number

(3) K2 ~pU9 ) (Tr) y - Freestream specific heat ratio

STor ) 1jr - Viscosity evaluated at Tr and P6

H - Total enthalpy

where c = -1
2Yw - Wall enthalpy

p. - Freestream density
(4) Heat transfer coefficient

2

log o(CH) a(log oK2)
=0

a = -0.235256
0

a --0.303095 Shock

a -0.0779538

(5) Heat transfer

q= pfUC H(H - HW) T6

15
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TABLE 6

RAREFIED FLOW SHARP CONE
HEAT TRANSFER EQUATIONS

(1) Tr = T + (T6 + Tw)/2 - T6 cos2ec/3

(2) Re0 . P-U.X

Ur T.
(3) C* l= Tr

(4 (1 - ) c
sine,

Re,,
(5) c= MYC*cos6

(6) Correlation Equation

2

log', () = X a (logi

a. = -0.392510

a, = -0.266308

a2 =-0.0598724

(7) Heat Transfer

q * Pw U, CH (H- ) Nomenclature

See Table 5

16
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TABLE 7

RAREFIED FLOW SHARP FLAT PLATE
HEAT TRANSFER EQUATIONS*

(1) To =T. (1 + M2) U
2w T

(2) Re,.'= A' Uwox

(3) C, 1 T
1. Tw

(4) = (Tw/T 0o)1/2 M, C*/Re.

(5) CHsi = (0.3 68Tw/To + 0.0684) [k(C*/Re.) /

(6) c 1= 1 - tanh (0.91 log.io + 1.10)

for B< 0.1

(7) Heat Transfer

q = P.Lo CH (H. - H) I Nomerclature
See Table 5

*From Shorenstein and Probstein (Ref. 18)

17
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TABLE 8

RAREFIED FLOW YAWED CYLINDER
STAGNATIO; LINE Hf ^ TRANSFER EQUATIONS

(1) T Nomenclature
(l) Tr  ;i CTw + 1*coszA)

Sc:e Table 5

(2) Re, -.

(3) C. llr To
.Tr

(4) -2_e
A Y.~,2C'CO SA

(5) E = CH/cosA

(6) Heat Transfer Correlation

2
logle = Eo ai (log, . )1

ao = - 0.377656

a= - 0.368580

a2  - 0.0461064 U /
(7) Heat Transfer 90-A R

q = P, U CH (H,- Hw)

18
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TABLE 9

RAREFIED WEDGE FLOW HEAT TRANSFER
.EQUATIONS

(1) Tr T6/6 + Tw/2 Nomenclature

T6 - Post Normal Shock Temperature

(2) C* = JrT Tw - Wall temperature

1.Tr T. - Freestream temperature

X - Surface length

(3) Re, = PPUJX U - Freestream velocity

P; - Freestream viscosity

Rex P. - Freestream density
(4 y. C*coseO y - Freestream specific heat ratio

M. - Freestream Mach no.

(5) 6 = CH/cose H. -. Freestream total enthalpy
H - Wall enthalpy

(6) Heat Transfer correlation!( > 100)

log 1  = ai(log, 1V)
1=0

a0 =-0.370778

a =-0.388606

a2 = -0,108383

(7) Heat transfer U.

q p CH(H. - Hw )

19
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TABLE 10

A SIMPLE RECOVERY ENTHALPY RELATION
FOR HYPERSONIC FLIGHT

Hr = h + (sln 2 a+ rcos2 e) U./2gJ

UM0

Nomenclature .

Hr - Recovery enthalpy

hw - Freestream static enthalpy

r - Recovery Factor = Pr2 (Laminar)

= Pr (Turbulent)

Pr Prandtl number

U. - Freestream velocity

g - Gravitational constant

i - Mechanical equivalent of work

20
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Section 4

IMPULSE MODEL RESEARCH

The objective of this work was to develop a sound understanding of

Impulse Base Flow Facility (IBFF) model and tan4 wave dynamics from which

future designs could be derived. To accomplish this objective, several

work items were completed. The performance of five IBFF model configura-

tions were monitored and analyzed as they were used for other test programs

(Ref. 8). Theoretical steady state H2 -0 2 combustor properties were calcu-

lated and presented in graphical form for design and/or analysis work by

Ref. 11. A pretest plan (Refs. 9 and 10) was developed to obtain para-

metric experimental data for design of impulse operated models and blast

wave tank dynamics. The test was conducted and the data analyzed and pre-

sented in Refs. 12 and 13.

4.1 IBFF DATA MONITORING

Facility model data was taken during routine testing operation of the

IBFF. One hundred and twenty two (122) runs were made in which the combustor

pressure, initial combustor pressure rise rate, and type of combustion were

recorded. This data was taken using two injectors and two nozzle configura-

tions with which nozzle diaphragms of various thicknesses were used.

From the data analyzed in Ref. 8 the following conclusions were drawn:

Ignition Characteristics:

* Ignition resulting in hot flows were experienced in all runs
using the equivalent engine with a diaphragm and a pin hole.

* It follows from the above conclusion that a glow plug is not
necessary to obtain repeatable ignition of Hz - 02 in some
configurations,

26
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* No correlation of pin hole size or diaphragm thickness with
ignition behavior was found.

s. Not using a nozzle diaphragm reduces ignition reliability

* Insufficient data was available to quantitatively establish
the difference between ignition characteristics of the large
and small volume injectors in the equivalent engine.

* The two engine geometry exhibited poor ignition reliability.
This configuration has a larger combustor volume due to the
two nozzle entrance ports.

a iThe two engine configuration is the only configuration studied
which has produced an overpressure combustor pressure response.

* The timing between H2 and 02 arriving at the combustor may
effect the percent hot flows obtained.

Performance Characteristics

* The chamber pressure for hot flows is repeatable to within
at most t 12% of the average chamber pressure for a given
geometry.

* Injector geometry and/or volume can significantly change
the measured steady state chamber pressure.

* The average chamber pressure for initial overpressure runs
is statistically indistinguishable from the average chamber
pressure for nominal hot flow runs.

* The initial cold flow chamber pressure rise rate can be
statistically distinguished from hot flow chamber pressure
rise rates.

* The hot flow initial chamber pressure rise rate is statis-
tically the same for a 0.005 in. thick nozzle diaphragm as
those runs without a diaphragm.

* Runs which exhibit initial overpressure characteristic also
exhibit the largest scatter in the measured steady state
chamber pressure (i.e. t 28.5% from the mean).

4.2 CHAMBER PROPERTIES OF GASEOUS H2-02 COMBUSTION

The purpose of this study (Ref. 11) was to produce curves showing the

effects of Oxidizer -Fuel Ratio (O/F) and chamber pressure (Pc) on the
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steady-state parameters of temperature, specific heat ratio (Y), molecular

weight and charactersitic velocity (C*)- in the combustion chamber of an

Impulse Base Flow Facility (IBFF) model. The curves presented in Ref. 11

are intended to provide the engineer with a rapid method for predicting

combustion chamber conditions for gaseous fueled hydrogen-oxygen engines.

4.3 IMPULSE MODEL TEST PROGRAM

References 9 and 10 present the test plan developed to obtain parametric

experimental design data for impulse operated models and tank wave data.

Specific test objectives which were accomplished are:

1. Evaluation of model performance with different:

* Combustor volumes (L* = 10,15,25,40 in)
* Injector configurations (Triplet, doublet, concentric)
* Charge tube pressures
* Diaphragm effects (with or without)
* Glow plug effects with or without).

2. Determine the behavior of the blast wave and plume interference
effects in the vacuum tank for variations in:

* Tank pressure
e Location in the tank

Figure 8 presents a schematic of an impulse model installed in the tank

bulkhead of the IBFF. The facility basically consists of two charge tubes

(oxidizer and fuel) each containing a flow metering venturi, a diaphragm and

cutter assembly, an injector, a combustion chamber, a nozzle or nozzles and

an altitude simulation chamber. Figure 9 presents an assembly drawing of one

of the configurations tested. The triplet element injector used in these

tests is shown as part of the assembly drawing. The other injectors used

are shown in Figs. 10 and 11. By replacing anular sections of the combustion

chamber (see Fig. 9) the combustor L* was changed allowing four combustor
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volumes to be tested. The actual volumes and areas for the configurations

tested are listed in Table 11.

A detailed description of the test conducted and results obtained is

given in Refs. 12 and 13. Reference 13 documents the test program with

respect to the impulse model characteristics and Reference 12 documents the

tank wave data. Reference 13 also gives a detailed discussion of model de-

sign methods. Each major component of an idpulse operated model is dis-

cussed in terms of previous designs and recommended design methods. The

components considered are charge tube,venturt, diaphragm cutters, diaphragms,

injectors and. combustors.

In order to explain the data obtained through this test program and to

provide a design tool for future work, an analytical time dependent combustor

.model was developed. Several simplifying assumptions were made to obtain a

tractable model. The basic assumptions consisted of:

1.- One dimensional flow
2. Constant combustor specific heat ratio
3. Instantaneous heat release in the combustion chamber by the

products present
4. Temperature independent heat release
5. Instantaneous perfect mixing within the combustion chamber
6. Constant temperature throughout the manifolds
7. Combustion chamber species were limited to H., 02 and H20
8. The nozzle throat diaphragm opens instantaneously at a specified

pressure.

Based on these assumptions, a time dependent math model for the transient

behavior of the combustor was derived by writing mass, pressure, and energy

balances.

Balance equations were written for:

1. H, mass balance in the volume preceding the injector face (H2 mani-
fold volume)

2. O0 mass balance in-the volume preceding the injector face (0, mani-
fold volume)

29



REMTECH INCORPORATED RTR 008-4

3. Pressure balance across H2 and 02 injector ports
4. Combustion chamber mass balance
5. Combustion chamber energy balance
6. Combustion chamber species balance for H2, 02 and H20.

The mathematical form of these balances are given in Table 12 along with

other equations required for complete definition of the combustor processes.

A few comments are relevant to the equations given in Table 12. The

injector pressure loss equations specify the velocity through the injector

ports leading to the combustion chamber. Choked flow through the ports was

assumed until the chamber pressure rose to 52.8 percent of the respective

manifold pressures. The energy balance equation was derived by specifying

.all input, output, and accumulation terms. The relation given by Eq. 8 was

then obtained by subtracting p (T - 1080) times Eq. 7 from the original equa-

tion. The effects of variable 0O/F on Cp have been included by including a

multiple segment interpolation calculation of T as a function of O/F.
p

In order to compare the results from the transient equation to steady

state conditions, the steady state equations for the combustor were derived.

The equations are given in Table 13 and consist of basically the same type

as given in Table 12.

The set of coupled time dependent equations given in Table 12 were

solved numerically using a simple Euler's numerical integration method.

This method was found to be satisfactory if sufficiently small step size

was used. In all cases considered the transient solution obtained the steady

state value if the integration was extended over a sufficient time interval.

A complete documentation of the computer code for the solution of the

steadyand transient equations is given in Ref. 13.

The transient math model has been used to analyze the data obtained
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during the test program. Fig. 12 presents a comparison of the theoretical

transient response of the three main configurations studied experimentally.

It can be noted that the doublet injector configuration obtained steady

state more quickly than the other configurations. This was verified

experimentally. Figure 13 shows a comparison of the theoretical method

with data. The comparison is quite satisfactory for design work and is

typical of the many cases studied in Ref. 13.

Reference 12 presents the measurements made in the altitude simulation

chamber or vacuum tank to determine the effects of the reflected blast wave

on the nozzle exhaust plume for variations in tank pressure and tank loca-

tion. The prime objective of the vacuum tank measurements was to determine

the time interval for which steady state conditions existed in the exhaust

flow before the reflected wave disturbed the flow. A secondary objective

was to attempt photographic coverage of the plume during steady state condi-

tions. To accomplish this objective color and infrared film were.used and the

f-stop setting and development procedure were varied. Only marginal success

was achieved.

The reduced data presented in Ref. 12 for the primary test objective

consists of different tables and plots of the time at which the initial and

reflected waves passed different probe positions. These plots were then used

to construct a graphic representaiton of the wave patterns which existed at

different time intervals after firing the model. The data was compiled for

the three test altitudes, I.e. 240 Kft., 280 Kft., and 320 Kft. All the

wave data at a given altitude was averaged together and no distinction was

made for different L*,injector arrangements or diaphragm burst pressures.
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The wave patterns given in Figs. 14, to 19 show the initial and reflected

wave at different times for each of the three test altitudes, 240, 280, and

320 Kft. For each altitude the initial wave is shown at times 0.5, 1.0, 1.5,

and 2.0 millisec. and the reflected wave is shown at times of 5.0, 7.5, 10.0.

and 15.0 millisec. For the initial wave patterns constructed, the following

items were noted.

1. As the test altitude was increased the initial wave exhibited an

expected broadening due to the expansion into a lower pressure.

2. Likewise as the altitude increased the wave speed increased. At

240 Kft. the wave was just reaching the tank end and side wall

at 2.5 millisec. while at the 320 Kft the wave had almost reached

the side wall at 1.5 millisec.

3. The shape of the wave also changed with increasing altitude. At

the lower altitudes the wave front had a parabolic shape that

changed to a wave front which was almost perpendicular to the tank

centerline at 320 Kft. At each altitude the wave was found to be

relatively flat and parallel with the nozzle exit for some distance

from the exit. It appeared that this flatness was maintained for

a longer time at the higher altitudes.

4. The waves in the region which is shown in the figures as extending

from the lip of the nozzle toward the tank wall were found to move

slowly in comparison to that movement in the frontal wave regions.

In fact, there was strong evidence to support an argument that the

phenomena observed was not that of a wave but simply the gas front

expansion. This argument was supported by the fact that the phe-
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nomena in most of this region was moving at a speed that was less

than Mach 1 and that the thin film gauge responses did not exhibit

the rather abrupt change associated with a strong blast wave. The

movement in the region was so slow that the reflected wave from the

tank side wall appeared to overtake the initial gas expansion.

The reflected wave patterns are of even greater significance to short

duration rocket motor tests at simulated altitudes because the arrival of the

reflected wave within the plume or model base region destroys the altitude

simulation and signifies the end of the test time. It was unfortunate then

that the reflected wave patterns were more difficult to establish and identify

than the initial wave. This was because at the time of the passage of the

reflected wave, the thin film gauge was still responding to the passage of

the initial wave and the gas following it. Although this in itself made

the identification of the passage of the second wave difficult, in addition,

the reflected wave was weaker than the initial wave and therefore did not

produce a pronounced change in the gauge response. For these reasons the

reflected wave data was found to be more scattered than the initial wave

data. For the reflected wave patterns constructed, the following items were

noted.

1. The reflected wave and/or gas movement region which was likely to

first cause steady flow breakdown was found to occur from the tank

side walls and to form a "U" shaped pattern which generally moved

along the plume boundary.

2. Although the reflected wave movement pattern differed somewhat

with altitude, it was found to arrive within the nozzle base region

at approximately the same time. Average arrival times at the tank
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bucket corner were 11.8, 11.0, and 9.8 msec for 240, 280, and

320 Kft. altitudes respectively.

3. As noted earlier in the discussion of the initial wave, the region

from the nozzle lip to the tank side wall has a very weak initial

wave and is probably only the gas expansion in that region. For

this reason it is likely that no well defined reflected wave comes

directly off the side wall. The sketched reflected wave patterns

are most likely a combination of wave phenomena and gas front ex-

pansion. The "U" shaped wave, even though it is produced within

a region where the reflected wave is very weak, moves rapidly back

to the nozzle region because it has very little or no gas velocity

head to move against, thereby achieving a rather quick relative

movement.

4. There was some evidence of the existence of a third wave phenomena.

However, the data obtained were inconclusive, so no definition of

its wave pattern was made. This wave was suspected to come from the

region where the tank far end wall joins the tank side wall. The

wave.movement would be along the tank side wall and behind the wave

reflected from the tank side wall.
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12 Element 6 Element
Triplet Triplet Concentric Doublet

02 H2  02 H2 2 2  2 H2

Venturi Diffuser + Diaphragm 0.951 0.914 0.951 0.914 0.951 _0.914 0.951 0.914 I
-Bulge Volume (in. 3s)
Injector Housing - Diaphragm o
Bulge Volume (in. 3 )  0.474 1.150 0.474 1.150 0.474 1.150 0.474 1.150 0

Injector Volume (in..) 1.958 4.493 1.542 4.493 2.603 8.253 0.621 3.054 0
Total sin. 3) 2.432 5.643 2.016 5.643 3.077 9.403 1.095 4.204
Injector Face Element
Area (in.2) 0.782 0.372 0.391 0.186 0.964 1.374 0.230 0.230 o

Combustion Volume
in Injector (in.3 ) 2.946 2.946 2.936 6.193

Vol. to Vol. to Vol. to Vol. to
Diaph. Throat Diaph. Throat Diaph. Throat Diaph. Throat

Nozzle and Adapter 3.54 6.12 3.54 6.12 3.54 6.12 3.54 6.12
Nominal L* = 10 Comb. Section 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47
Total for L* = 10 10.96 13.54 10.96 13.54 10.95 13.53 14.20 16.78
Actual L* (in.) for L* = 10# 12.4 12.4 12.4 15.4
Nominal L* = 15 Comb. Section 9.84 9.84 9.84 9.84 9.84 9.84 9.84 9.84
Total for L* = 15 16.33 18.91 16.33 18.91 16.32 18.90 19.57 22.15
Actual L* (in.) for L* = 15 17.3 17.3 17.3 20.3
Nominal L* = 25.Comb. Section 20.83 "20.83 20.83 20.83 20.83 20.83 20.83 20.83
Total for L* = 25 27.32 29.90 27.32 29.90 27.31 29.89 30.56 33.14
Actual L* (in.) for L* = 25 27.4 27.4 27.4 30.4

Nominal L* = 40 Comb. Section 37.20 .37.20 37.20 37.20 37.20 37.20 37.20 37.20
Total for L* = 40 43.69 46.27 43.69 46.27 43.68 46.26 46.93 49.51 0

[ Actual L* (in.) for L* = 40 42.5 42.5 42.4 45.4 o

# A* = 1.091 in. 2 O
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TABLE 12

TRANSIENT EQUATIONS FOR GASEOUS PROPELLANT
IMPULSE OPERATED COMBUSTORS

02 - Manifold Mass Balance

Vo m - poUoA (1)

H2 - Manifold Mass Balance

VH dt mH - PHUHAH

02 -Injector Pressure Loss

P = Po - 2FUO /g (3)

Uo = C if P /Po < 0.528

H2 - Injector Pressure Loss

P = -PH" PHUHZFH/gc
(4)

UH = CH if Pc/PH < 0.528

Equation of State

P =pRT/M (5)

Speed of Sound

C = (YRTgc/M)/ (6)
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TABLE 12 (Cont. 1)

Combustor Mass Balance

V dPc (pUA) o + (pUA)H - PcKCcA*D (7)
Vc dt

where
D = 0 Before the nozzle diaphragm burst

S= 1 After the nozzle diaphragm burst

(Y+l)/2(Y-1)
( K 2y= 1.135 assumed for O/F = 6.0

Combustor Energy Balance

cVcCp =( - [pUA)H + (pUA)] p(T-1080)

(8)
-126(pUA), - 1903(pUA)H + Vc-dP

where H = heat of reaction (5730 Btu/Ibm of H20)

Combustor Species Balance

0, - Balance

(pUA)o  - PcA*CcKD - ro  (9)

where

ro = (pUA) o if Wo/WH 8

8 dWw if Wo/WH> 8-- t

H2 - Balance

dWH = (pUA)H- WH
d H PcA*CcKD -rH (10)

37



REMTECH INCORPORATED RTR 008-4

TABLE 12 (Cont. 2)

where

rH = (pUA)H if Wo/W > 8

= dWw  if Wo/W H _ 8
9 dt

H20 - Balance

'dW / w(
W - pcAp*CcKD (11)dt W W

where
rw= 9 dWo  if Wo/WH < 8

dt

9 dWH if Wo/W H > 8

dt

Combustor Mass

WT =H + Wo + w, (12)

Combustor OF

(OF)c = (Wo +8Ww/9)/(WH + Ww/9) (13)

Combustor Molecular Weight

Mc = (WH + )/(WH/2 + Ww/18) if Wo/W H S 8 (14)

Mt (Wo + Ww)/(Wo/32 + Ww/18) if Wo/WH > 8 (15)
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TABLE 13

STEADY STATE EQUATIONS FOR GASEOUS PROPELLANT
IMPULSE OPERATED COMBUSTORS

Combustor OF

(OF)c = mo/mH 
(1)

Combustor Molecular Weight

Mc.= 2(OF)c + 2 if (0F)c 5 8 (2)

Mc = 32((OF)c + 1)/((0F) + 8) if (OF)c > 8 (3)

Combustor Species

Before combustion (mass ratios)

Wo/ T = (OF)c/((OF)c + 1) (5)

WH/WT 1 - Wo/WT (6)

Before combustion (mole to mass ratios)

1
NH/WT -. WH/WT  (7)

N /W - Wo/W T (8)

Post combustion (mole to mass ratio of H20)

Nw/WT = 
2 N/WT  if (OF)c : 8 (9)

= No/WT if (OF)c > 8 (10)
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TABLE 13 (Cont. 1)

Post combustion (mass ratio)

Ww/WT = 18 Nwr/WT (11)

Combustor Energy

T =H(WW/WT)/Cp (12)

, Speed of Sound

C = (Y RTgc/M ) (13)

Combustor Mass Balance

Pc (o + mH)/(KCcA*) (14)

where - (Y+1)/2(Y-l)
K =

Combustor Pressure

Pc = pcRT/Mc (15)

Injector Face Densities

P Moc PCM/RTo -  (16)

PHc cMH/RTH (17)

Injector Velocities

U0o = mo /(AoPo ) (18)

UH = mH/(AH (19)
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TABLE 13 (Cont. 2)

Injector Pressures

P = Pc + U  F (20)

PH P+ PHc UP FH H/ c  21)
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Section 5

CONCLUSIONS

The work conducted under this contract included several technical areas.

These areas have been summarized in the pre.eding section and fall within

the following groupings.

1. Cavity Heating (Ref. 1 and 2)

2. Rarefied Flow Heating (Ref. 3 to 7)

3. Impulse Model Research (8 to 13)

Specific documentation has been given in each of these groupings as indicated

by the noted references. In each of the three groupings either methodology

improvements were achieved or experimental data has been obtained which

provides a more complete understanding of the areas studied.
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