(Final Report)
SATELLITE TO AIRCRAFT MULTIPATH SIGNALS OVER THE OCEAN
W. H. Peake

The Ohio State University
 ElectroScience Laboratory

Department of Electrical Engineering Columbus, Ohio 43212

FINAL REPORT 3266-2
May 1974
Grant No. NGR-36-008-169

National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23365

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.
N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELeased in The interest of making available AS MUCH INFORMATION AS POSSIBLE.
(Fina1 Report)

SATELLITE TO AIRCRAFT MULTIPATH SIGNALS OVER THE OCEAN
W. H. Peake

FINAL REPORT 3266-2
May 1974
Grant No. NGR-36-008-169

National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23365

ABSTRACT

Abstract

A satellite-to-aircraft communication link over the ocean may include a specularly reflected signal and a diffusely scattered signal, as well as the direct path transmission. This report provides a computer program for estimating two statistical properties of the diffuse signal, namely the Doppler spectrum and the delay spectrum. A convenient representation of the total signal is also provided. Examples of the Doppler and delay spectra for a number of representative link geometries are given to illustrate the features of the diffuse signal.

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
II. THE MULTIPATH MODEL 1
III. THE SYSTEM GEOMETRY 6
IV. ANTENNA PATTERNS AND POLARIZATIONS 8
V. THE SCATTERING PROBLEM 11
VI. THE RECEIVED POWERS 15
A. The Direct Power 15
B. The Coherent (Specular) Reflected Power 16
C. The Diffuse Power 17
VII. THE PROGRAM PARAMETERS 19
A. Ocean Temperature and Salinity 19
B. Ocean Slope and Roughness 20
C. Aircraft Velocity 21
D. Geometry of Path 21
E. Antenna Polarization and Patterns 21
F. Integration Parameter 22
G. Program Output 22
VIII. RESULTS AND CONCLUSIONS 23
Appendix
I. Computer Program 29
II. Sample Output 37
REFERENCES 42

I. INTRODUCTION

One of the design limitations[1] in the development of communication links between satellites and aircraft is the presence of a secondary signal reflected from the surface of the earth. It is the purpose of this report to provide a convenient method for estimating the statistical properties of this multipath signal[2,3], particularly the power spectrum and delay spectrum, for ocean surfaces. Because the scattering properties of the sea are rather complex, it is not possible to obtain closed form expressions for these statistics. Instead a computer program, and its output for a number of representative link geometries, have been provided. These results should provide an insight into the characteristics of the multipath signal. In addition, they may be used to construct a representation of the total signal which should be adequate for most detector design studies.

The heart of the report is the computer program in Appendix 1. Although conventional designations for range, angle, frequency etc. are used in the body of the report, a number of the more important identifications between report variables and the corresponding program names are provided. The latter are given in capital letters enclosed in parentheses; for example the distance $\mathrm{R}_{\text {dir }}$ from aircraft to satellite is called (REF) in the program.
II. THE MULTIPATH MODEL

Before giving the details for estimating the statistical properties of the multipath signal, it will be useful to describe the overall geometry of the link. This will permit an understanding of the mechanisms which produce the total receiver signal, without having to consider such extraneous factors as antenna patterns and polarizations. The basic problem in modelling the link is to estimate the relative amplitudes,
statistics, and signal distortions in the three components of the total signal transmitted from the satellite to a moving receiver.

The first component (see Fig. 1) is the direct transmission from transmitter to receiver. If a voltage reference level V_{0} is chosen such that the far field radiated by the transmitter has an electric field strength V_{0} / R at distance R from the transmitter (i.e., the transmitter power, gain etc. are subsumed in V_{0}) then the receiver voltage due to the direct component will be, at time t

$$
\begin{equation*}
V_{d i r}(t)=V_{0}\left(t-R_{d i r} / c\right) h_{d} / R_{d i r}(t) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& c \quad=\text { velocity of electromagnetic waves } \\
& R_{d i r}=T P=\text { distance from transmitter to receiver }
\end{aligned}
$$

and where h_{d} (the effective height of the receiving antenna) accounts for the receiver properties, including pattern and polarization, in the direction of the transmitter. The distortion of the signal (the Doppler shift for a cw signal) is accounted for by the change of $\mathrm{R}_{\text {dir }}$ with time

$$
\begin{equation*}
R_{\operatorname{dir}}(t)=R_{\operatorname{dir}}(0)+\left(\vec{v} \cdot \vec{n}_{d}\right) t \tag{2}
\end{equation*}
$$

where \vec{v} is the constant aircraft velocity and \vec{n}_{d} is a unit vector along TP.

The second component is that reflected from the surface (as if the sea were a smooth sphere) at the specular point 0 . This component is given by

$$
\begin{equation*}
V_{\text {spec }}(t)=V_{o}\left(t-R_{s p e c} / c\right) \rho e^{-\left(k h \cos \theta_{i}\right)^{2}} h_{s p} / R_{\text {spec }}(t) \tag{3}
\end{equation*}
$$

where

Fig. 1. Multipath links over the ocean.

$$
\begin{aligned}
R_{\text {spec }} & =T 0+O P \\
& =R_{1 s}+R_{2 s} \\
& =\text { distance along specular path } \\
& =\text { voltage reflection coefficient at surface } \\
k & =2 \pi / \lambda \text { where } \lambda \text { is electromagnetic wavelength } \\
h & =\text { root mean square height of ocean surface } \\
\theta_{i} & =\text { angle of incidence at the specular point } \\
h_{s p} & =\text { antenna effective height. }
\end{aligned}
$$

The exponential factor (the "Rayleigh roughness factor") accounts for the fact that since the sea surface is not smooth, some of the energy is scattered out of the specular signal. The distortion of the specular signal is also produced by the change in $R_{\text {spec }}$ with time. If the satellite is much further from the surface than the aircraft,

$$
\begin{align*}
R_{s p e c}(t) & \simeq R_{\text {spec }}(0)+\left({\left.\vec{v} \cdot \vec{n}_{s p}\right) t}_{\vec{n}_{s p}}=\text { unit vector from } 0 \text { to } P .\right. \tag{4}
\end{align*}
$$

Clearly the direct and specular terms are coherent, albeit with differing delays or doppler shifts, so their sum $V_{\text {dir }}(t)+V_{\text {spec }}(t)$ will fluctuate (exhibit "interference", or "height gain effect") with time[3].

Finally, the diffuse or "multipath" component is a superposition of reflected fields from suitably oriented "glint points" on facets on the surface. If the location (which determines the delay) and the curvature (which determines the amplitude) of each properly oriented facet were known, one could construct the diffuse signal by superposition of the reflections from each facet. The actual sea surface is random, however, so that one must in practice be content with a representation of the diffuse signal based on certain statistical properties of the ocean surface. The simplest such surface is found by dividing up the mean surface into convenient areas A_{j} (see Fig. 1) and associating with each area a reflected signal whose time delay is determined by the center point, and whose
amplitude is determined by the average scattering cross-section of the area. Thus the diffuse component can be represented by

$$
\begin{equation*}
V_{d i f f}(t)=\sum_{j} \frac{V_{0}\left(t-\left(R_{1 j}+R_{2 j}\right) / c\right)}{R_{1 j}} \sqrt{R_{2 j}} \sqrt{\frac{\sigma_{0 j} A_{j}}{4 \pi}} h_{j} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{1 j}=T S \text { distance from } T \text { to scatterer } \\
& R_{2 j}=S P \text { distance from } P \text { to scatterer } \\
& h_{j}=\text { receiver effective height for } j \text {-th direction } \\
& \begin{aligned}
\sigma_{0 j}= & \text { average cross-section per unit area[4] of } j \text {-th } \\
& \text { sub-area. }
\end{aligned}
\end{aligned}
$$

For any given choice of sub-areas, each individual term in Eq. (5) will be in a coherent relationship with the direct and specular contributions. Because the range terms $R_{1 j}$ and $R_{2 j}$ are continuously changing, the total diffuse signal will have a random character with well defined statistical properties (power density vs frequency, correlation coefficient, power density vs delay etc.).

The sum of the three terms given by Eqs. (1), (3) and (5) now provide a direct representation of the total receiver signal. Insofar as the cross-sections $\sigma_{o j}$ are known, and the areas A_{j} are appropriately chosen, the representation will possess the same statistical properties as the actual multipath signal. It is difficult to estimate the minimum number of terms in Eq. (5) needed for a statistically valid representation, and this problem is not considered here. In practice, the sizes for A_{j} are probably most conveniently determined empirically, by reducing their size and increasing their number until the statistics of interest show no significant change. In this report, we will not make use of this direct representation of the total signal, since we calculate only two simple statistics of the multipath signal.

In order to introduce the program for estimating multipath signals, it is necessary first to establish a precise system geometry. This geometry is fixed by the positions of the transmitter T, the moving aircraft P, and the spherical earth, but is a good deal easier to visualize than to specify algebraically. The basic coordinate systems are most conveniently defined (see Fig. 2) by the specular point 0, the center of the earth C, and the positions P and T. The specular point is that point on the mean surface of the earth in the plane TPC for which the angle θ_{i} (THI) between the local vertical $C 0$ and the line of sight $O P$ is equal to the angle between $C O$ and $O T$. An $x y z$ coordinate system with origin 0 , with z-axis along the local vertical, and with x-axis in the POT plane may now be constructed. The tangent plane at the specular point is then the $x y$ plane. The aircraft is at altitude H above the tangent plane with coordinates

$$
\begin{aligned}
& x_{p}=H \tan \theta_{i} \\
& y_{p}=0 \\
& z_{p}=H .
\end{aligned}
$$

The satellite has range $R_{1 s}$ (RSAT) from 0 , with coordinates

$$
\begin{aligned}
& x_{s}=-R_{1 s} \sin \theta_{i} \\
& y_{s}=0 \\
& z_{s}=R_{1 s} \cos \theta_{i} .
\end{aligned}
$$

The scatter point S on the surface of the earth has coordinates x, y, z, or may be defined by the polar coordinates $\operatorname{Re}, \theta, \phi$ (where Re (RE) is the radius of the earth) in the coordinate system $x^{\prime} y^{\prime} z^{\prime}$ with origin at C. In the computer program, variables X, Y define the scatter area center point at S, and the polar coordinates $(S T H R) \equiv \sin \theta=\left(x^{2}+y^{2}\right)^{1 / 2} / \operatorname{Re}$ and $(S P H)=\phi=\tan ^{-1} y / x$ are computed. The distance (ZP) $=(-z)=\operatorname{Re}(1-\cos \theta)$ of the J-th scattering point below the tangent plane, and the ranges

Fig. 2. Multipath geometry.

$$
\begin{align*}
& R_{1 j}=(\operatorname{RS}(J))=S T \\
& R_{2 j}=(R(J))=S P \\
& R_{\text {dir }}=(R E F)=T P \tag{6}\\
& R_{\text {spec }}=(R E L S P)=T O+O P
\end{align*}
$$

are now easily found. Unit vectors \vec{n}_{P} (along S to P), \vec{n}_{T} (along S to T) and \vec{n} (the local vertical at S) have components ($\operatorname{CNI}(I, J)$), (CNS ($I, \mathrm{~J})$) and ($\mathrm{CN}(\mathrm{I}, \mathrm{J})$) along the $\mathrm{x}(\mathrm{I}=1), \mathrm{y}(\mathrm{I}=2)$ and $\mathrm{z}(\mathrm{I}=3)$ axes respectively.

The aircraft, with position P is at the origin of a second coordinate system $x ", y ", z^{\prime \prime}$ parallel to $x y z$, and is assumed to be moving with velocity \vec{v} in the $x^{\prime \prime} y^{\prime \prime}$ plane, with the velocity vector making an angle ϕ_{v} (PHV) with the $x^{\prime \prime}$ axis.

The antenna patterns are specified as functions of polar angles θ_{a}, ϕ_{a} (see Fig. 3) in a polar coordinate system attached to the metal of the aircraft, with polar angle θ_{a} measured from the $z "$ axis and azimuth angle ϕ_{a} measured from the velocity vector.

IV. ANTENNA PATTERNS AND POLARIZATIONS

One must next specify the antenna patterns and polarization states of the transmitter and receiver. For this purpose, it will be assumed that T is sufficiently far from 0 and P so that the satellite antenna gain and polarization state is uniform over the entire scattering area, including the specular point and the direct path. (Otherwise it would be necessary to introduce still another set of coordinates centered on the transmitter.) Two unit vectors $\vec{i}_{T 1}=-\vec{\dagger}_{x} \cos \theta_{1}-\vec{i}_{z} \sin \theta_{1}$ and $\vec{j}_{p 1}=$ $-\mathrm{T}_{\mathrm{y}}$ transverse to the line of sight may be used to specify the transmitter polarization via the two complex numbers $A=(A T H)$ and $B=(B P H)$. More precisely, the transmitted electric field in the vicinity of the earth may be written, at range R_{1},

Fig. 3. Polarization unit vectors and antenna pattern coordinates.

$$
\begin{equation*}
\vec{E}(x, y, z, t)=\frac{V_{0}\left(t-R_{1} / c\right)}{R_{1}}\left[\overrightarrow{A T}_{T 1}+\overrightarrow{B r}_{\mathrm{P} 1}\right] \tag{7}
\end{equation*}
$$

where the complex unit vector \vec{P}_{T}

$$
\begin{equation*}
\vec{P}_{T}=\left(\vec{i}_{T 1}+B \vec{i}_{P 1}\right) \tag{8}
\end{equation*}
$$

is the transmitter polarization. Since $\vec{P}_{T} \cdot \vec{P}_{T}{ }^{*}=1$, one must have $A A^{*}+$ $B B^{*}=1$. For example

$$
\begin{array}{lll}
A=(0,0) & B=(1,0) & \text { "horizontal" polarization } \\
A=(1,0) & B=(0,0) & \text { "vertical" polarization } \\
A=(1 / \sqrt{2}, 0) & B=(0,+j / \sqrt{2}) & \text { "right circular". }
\end{array}
$$

If the transmitter is radiating a cw signal, of angular frequency ω_{0}, or frequency $f_{0}(F)$, then the reference level voltage is

$$
\begin{equation*}
V_{0}(t)=\left(\frac{\mathrm{P}_{\mathrm{T}} \mathrm{G}_{\mathrm{T}} \mathrm{Z}_{0} / 4 \pi}{\mathrm{R}_{1}}\right)^{1 / 2} \quad \exp \left[j \omega_{0}\left(\mathrm{t}-\frac{\mathrm{R}_{1}}{\mathrm{c}}\right)\right] \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{T}}=\text { transmitted power } \\
& \mathrm{G}_{\mathrm{T}}=\text { transmitter antenna gain } \\
& \mathrm{Z}_{\mathrm{o}}=120 \pi \text { ohms. }
\end{aligned}
$$

The receiver antenna is specified by its maximum receiving aperture A_{m}, its pattern function $f\left(\theta_{a}, \phi_{a}\right)$ and its polarization state

$$
\begin{equation*}
\overrightarrow{\mathrm{p}}_{\mathrm{R}}\left(\theta_{a}, \phi_{a}\right)=\mathrm{C}\left(\theta_{a}, \phi_{a}\right) \vec{i}_{\mathrm{TA}}+\mathrm{D}\left(\theta_{a}, \phi_{a}\right) \vec{j}_{\mathrm{PA}} \tag{10}
\end{equation*}
$$

where again $C C^{*}+D D^{*}=1$, and the unit vectors ${ }^{+}{ }^{T} T A$ (unit θ_{a} vector) and $\grave{I}_{P A}$ (unit ϕ_{a} vector) are shown in Fig. 3. In the $x " y " z "$ system, the polar coordinates defining the line of sight, P to S, are θ_{p}, ϕ_{p} with unit vectors ${ }^{\mathbf{1}_{\mathrm{T}}}, \stackrel{\rightharpoonup}{1}_{\mathrm{PP}}$. These two sets are related by

$$
\begin{array}{ll}
\theta_{a}=\theta_{p} & \vec{i}_{T A}=\vec{I}_{T P} \\
\phi_{a}=\phi_{P}-\phi_{V} & \mathbf{T}_{P A}=\vec{I}_{P P} .
\end{array}
$$

The receiver complex polarization states $C=(C T H)$ and $D=(D P H)$ are specified in terms of the polarization that the antenna would produce if it were operated as a transmitter. That is, the receiver antenna, if excited by a cw signal, would produce an electric field $E_{r e f}\left[\vec{P}_{R}\right] \exp \left[j \omega_{0}(t-R / c)\right]$ in the vicinity of S where $E_{\text {ref }}$ is a reference level.

Thus, for example, in direct transmission from satellite to receiver, the receiver voltage would be proportional to

$$
V_{r e c}(t)=\frac{V_{0}\left(t-R_{\operatorname{dir}} / c\right)}{R_{\operatorname{dir}}}\left(\vec{P}_{T} \cdot \vec{P}_{R}\right) \sqrt{f\left(\theta_{a}^{\prime}, \phi_{a}^{i}\right)} K
$$

where $\theta_{a}^{\prime}, \phi_{a}^{\prime}=\pi-\phi_{v}$ are the values of θ_{a}, ϕ_{a} in the direction P to T of the transmitter, and K is a proportionality constant related to the receiver gain.

The factor $\vec{P}_{T} \cdot \vec{P}_{R}=A C+B D$ is the polarization mismatch factor. For example, for the receiver,

$$
\begin{array}{ll}
C=(0,0) & D=(1,0) \quad \text { "horizontal" } \\
C=(1,0) & D=(0,0) \quad \text { "vertical" } \\
C=(0, j / \sqrt{2}) & D=(1 / \sqrt{2}, 0) \text { "right circular" }
\end{array}
$$

Thus the polarization mismatch factor between a right circular transmitter $(A=1 / \sqrt{2}, B=j / \sqrt{2})$ and a right circular receiver ($C=j / \sqrt{2}, D=1 / \sqrt{2}$) is $A C+B D=j$; that is, the "right circular" receiver completely absorbs "right circular" incident radiation.

v. THE SCATTERING PROBLEM

Since the intensity of the multipath signal depends on σ_{0}, the scattering cross-section per unit area, we next consider scattering model which will provide this parameter. The predominant contribution to the
diffuse energy comes from a series of specular (forward) scatter points; the cross-section for scattering of this type at microwave frequencies is derived from the "optical" or "physical optics" model[4]. In this model, the total cross-section is the product of two factors, the first a polarization transforming reflection coefficient, and the second a probability density function for surface slope. If we consider an element of the mean surface of area $d S=d x d y \sec \theta$, at a point where the local vertical is \vec{n}, then the geometry for specular reflection will be as illustrated in Fig. 4. Those facets in dS which are suitably oriented for specular reflection will have a local normal \vec{n}_{0} which is the coplanar bisector of \vec{n}_{T} and \vec{n}_{p}. The angle $\theta_{n}=(T H)=\cos ^{-1}\left(\vec{n}_{n} \cdot \vec{n}_{0}\right)$ between the local vertical and the normal to the tilted specular facet then determines, from the known slope distribution of the surface, the probability that the facet normals are properly oriented. The angle between the incident polarization vector \vec{p}_{T} and the vector perpendicular to the plane of incidence $\vec{q}=\vec{n}_{P} \times \vec{n}_{T} /\left|\vec{n}_{P} \times \vec{n}_{T}\right|$ determines the reflection coefficients and polarization transformation.

Thus the computational problem is to determine for each point $d S$, the voltage response of a polarized receiver due to a plane wave of known polarization and direction which has been reflected by a plane surface of complex dielectric constant ε. The subroutine (COEF) determines this in the following manner. Consider (see Fig. 4) a coordinate system ξ, n, ζ with ζ the local vertical and ξ, n, the plane of the mean surface dS. A plane wave is incident from a direction $\theta_{\text {inc }}$ in the ξ, ζ plane. A scattering direction is defined by polar angles $\theta_{\text {scat }}$ and $\phi_{\text {scat. }}$. The problem is to find the polar angles $\theta_{n} \phi_{n}$ which define \vec{n}_{0} the tilted surface normal required to produce specular reflection from the given incident wave into the chosen scattering direction. The normal clearly lies in the plane of, and bisects the angle TSP. The scattering angle (the angle of incidence in the "plane of incidence" system) is α with $2 \alpha=L T S P$. The subroutine finds θ_{n}, ϕ_{n} and α, given $\theta_{i n c}, \theta_{\text {scat }}, \phi_{\text {scat }}$ by standard trigonometric manipulation. If the incident plane wave has polarization $\overrightarrow{\mathrm{F}}_{\mathrm{T}}=\overrightarrow{\mathrm{A}}_{\mathrm{T} \mid}+\overrightarrow{\mathrm{B}}_{\mathrm{P} \mid}$ and the receiver has polarization state

Fig. 4. The scattering coordinate system.

$$
\begin{equation*}
\vec{P}_{R}=C_{1}^{\dagger} T S+D_{1}^{\dagger} T S \tag{11}
\end{equation*}
$$

where the unit vectors are as indicated in Fig. 4, then it is simple to show, by resolving \vec{p}_{R} into components parallel and perpendicular to the plane of incidence, that the effective reflection coefficient and polarization mismatch factor R_{cf} (RCOEF) is

$$
\begin{align*}
R_{c f}= & R_{\|}(\alpha)\left[A \cos \delta_{i}+B \sin \delta_{j}\right]\left[C_{1} \cos \delta_{s}-D_{1} \sin \delta_{s}\right] \tag{12}\\
& -R_{\perp}\left[B \cos \delta_{i}-A \sin \delta_{j}\right]\left[D_{1} \cos \delta_{s}+C_{1} \sin \delta_{s}\right]
\end{align*}
$$

where

$$
\begin{align*}
R_{\| f}(\alpha) & =(\varepsilon \cos \alpha-E) /(\varepsilon \cos \alpha+E) \tag{13}\\
R_{\perp}(\alpha) & =(\cos \alpha-E) /(\cos \alpha+E) \tag{RPER}\\
E & =\left(\varepsilon-\sin ^{2} \alpha\right)^{1 / 2}
\end{align*}
$$

where $\delta_{\mathfrak{i}}$ (see Fig. 4) is the angle between $\mathfrak{i}_{\mathrm{T} 1}$ and the incident "parallel" unit vector, and δ_{s} is the angle between $\vec{i}_{\text {TS }}$ and the reflected "parallel" unit vector. (A complete discussion of this simple but tedious problem is given in Ref. 4). Thus the complete subroutine

$$
\operatorname{COEF}\left(\theta_{\text {inc }}, \theta_{\text {scat }}, \phi_{\text {scat }}, \varepsilon, A, B, C_{1}, D_{1}\right)
$$

accepts calculated values of the calling parameters, and returns $\alpha, \delta_{i}, \delta_{s}, \theta_{n}, \phi_{n}$ and $R_{c f}$. The only problem remaining in the use of the subroutine is the connection between the scatter geometry of Fig. 4, and the system geometry of Fig. 3. By comparing these figures it is clear that ${ }^{\dagger_{T S}}=\vec{i}_{T P}$ and $\vec{i}_{P S}=-\vec{t}_{\text {PP }}$. In the program, this is accounted for by changing the sign of D, i.e., $C_{1}=C$ and $D_{1}=-D$ (DPHI $=-D P H$). Notice also that a slight error (entirely negligible for satellites in stationary orbits) is incurred in the program by assuming that the incoming wave polarization vectors do not depend on the scatter point position.
VI. THE RECEIVED POWERS

With the coordinates and scattering parameters defined, we are now in a position to compute the relative power level, the doppler shift, and the time delay in each of the three transmission paths.

A. The Direct Power

The direct power received by the aircraft from a distant satellite is simply

$$
\begin{align*}
P_{d i r} & =\frac{P_{T} G_{T} A_{m}}{4 \pi R_{\text {dir }}^{2}} f\left(\theta_{i}, \pi-\phi_{v}\right)|A C+B D|^{2} \tag{14}\\
C & =C\left(\theta_{i}, \pi-\phi_{v}\right) \\
D & =D\left(\theta_{i}, \pi-\phi_{v}\right)
\end{align*}
$$

except for a small error in the mismatch factor due to the finite range of the satellite. The direct signal is received at a frequency $f_{o}+f_{d i r}$, where $f_{\text {dir }}$ is the doppler shift,
(15) $\quad f_{d i r}=-\frac{\vec{v} \cdot \vec{n}_{d}}{c} f_{0}$
and f_{0} is the carrier frequency. The direct path doppler is printed out in H_{z}, a positive doppler indicating the received frequency is higher than the transmitter carrier frequency. In the program, the direct power is computed relative to a reference power level, namely that received by a polarization matched receiver at the specular point. That is, the direct power is calculated and printed as

$$
\begin{equation*}
\text { PDIR }=\left(R_{1 s} / R_{d i r}\right)^{2}|A C+B D|^{2} f \tag{16}
\end{equation*}
$$

so that the actual direct power in watts is

$$
\begin{equation*}
P_{d i r}=\left(P_{T} G_{T} A_{m} / 4 \pi R_{1 S}^{2}\right) \cdot(P D I R) . \tag{17}
\end{equation*}
$$

The time delay on the direct path is taken to be zero, so that all other delays are relative to the direct path delay.

B. The Coherent (Specular) Reflected Power

The magnitude of the specular path power is less than the direct path mainly because of the surface roughness (Rayleigh Factor) but also because of the reflection coefficient and the slightly longer path length. In the program the specular power is computed as

$$
\begin{equation*}
\text { PSPEC }=\left(R_{1 s} / R_{\text {spec }}\right)^{2} f\left(\pi-\theta_{i}, \pi-\phi_{v}\right)\left|R_{c f}\right|^{2} \exp \left(-2\left(k h \cos \theta_{i}\right)^{2}\right) \tag{18}
\end{equation*}
$$

where

$$
\begin{aligned}
R_{c f} & =\operatorname{RCOEF}\left(\theta_{i}, \theta_{i}, 0, E, A, B, C, D_{1}\right) \\
C & =C\left(\pi-\theta_{i}, \pi-\phi_{V}\right) \\
D_{1} & =-D\left(\pi-\theta_{i}, \pi-\phi_{V}\right)
\end{aligned}
$$

so that again the actual specular power in watts is

$$
\begin{equation*}
P_{\text {spec }}=\left(P_{T} G_{T} A_{m} / 4 \pi R_{1 s}^{2}\right) \cdot(P S P E C) \tag{19}
\end{equation*}
$$

However, the value of PSPEC printed out is the ratio $10 \log$ ($\mathrm{P}_{\mathrm{spec}} / P_{\text {dir }}$) i.e., it is the ratio of specular to direct (not reference) power in decibels. This is a more significant ratio than the actual specular power for system studies. At L-band, $\mathrm{P}_{\text {spec }}$ is negligible except for very smooth seas, or near grazing incidence.

The specular doppler shift is given by

$$
\begin{equation*}
f_{\text {spec }}=-\frac{\vec{v} \cdot \vec{n}_{s p}}{c} f_{0} \tag{20}
\end{equation*}
$$

and is printed out in Hz . It is almost identical to the direct doppler. The time delay of the specular path power is calculated from

$$
\begin{equation*}
\tau_{s p}=D E L S P=\left(R_{i s}+R_{i s}-R_{d i r}\right) / c \tag{21}
\end{equation*}
$$

and is printed out in microseconds.

C. The Diffuse Power

The program computes the diffuse power by dividing the $x y$ plane into squares of side $d x(D X)$ and $d y(D Y)$ centered at $x=(J+1 / 2) d x$, $y=(K+1 / 2) d x$ (J, K integers). Each square is then projected onto the spherical earth surface, for which the actual area becomes $d x d y / \cos \theta$. The width of the square is taken as

$$
d x=\left(\frac{\eta}{J J J}\right) \frac{2 H}{\cos ^{2} \theta_{i}}
$$

where $J J J$ is an integer of order 20 to 35 . This choice of square size ensures a smaller integration area for surfaces of small root mean square slope n. The incremental power scattered by this area and absorbed by the receiver is then given by

$$
\begin{equation*}
d P(J, K)=\frac{P_{T} G_{T} A_{m}}{4 \pi R_{1 j}^{2}} \cdot f\left(\theta_{a}, \phi_{a}\right) \sigma_{00} \frac{\left|R_{c f}\right|^{2} d x d y}{4 \pi R_{2 j}^{2} \cos \theta} \tag{22}
\end{equation*}
$$

where σ_{00} is the scattering cross-section per unit area of a perfectly conducting rough surface, and R_{cf} accounts for the reflection coefficient of the actual surface, and receiver polarization mismatch. The scattering cross-section for the sea surface, based on the physical optics model, is given by[4]

$$
\begin{equation*}
\sigma_{o 0}=\pi \sec \theta_{n} P\left(\theta_{n} \phi_{n}\right) \tag{23}
\end{equation*}
$$

where θ_{n}, ϕ_{n} are polar angles of the normal \vec{n}_{0} required for reflection (see Fig. 4). Here $p_{n}\left(\theta_{n} \phi_{n}\right)$ is the probability density function for the surface normal \vec{n}_{0}, i.e., $p\left(\theta_{n}, \phi_{n}\right) d \Omega_{n}$ is the probability that the normal lies in the cone of solid angle $d \Omega_{n}=\sin \theta_{n} d \theta_{n} d \phi_{n}$. For the sea surface the actual slope distribution is a rather complicated function of the wind velocity and its history[5]. For the purposes of this report it is sufficient to assume the rather simple isotropic form

$$
\begin{equation*}
p\left(\theta_{n}, \phi_{n}\right)=\frac{\cos \theta_{n}}{\pi n^{2}} e^{-\frac{\tan ^{2} \theta}{n^{2}\left(1+2 n^{2}\right)}} \tag{24}
\end{equation*}
$$

where $\quad \eta^{2}=$ mean square surface slope

$$
=\left\langle\tan ^{2} \theta_{n}\right\rangle \text { (average value of } \tan ^{2} \theta_{n} \text { over surface). }
$$

This form is quite similar to a cross-wind section of the standard (Cox-Munk) distribution[5] and, for surfaces of moderate slope, very nearly satisfies the normalization conditions

$$
\begin{align*}
& \int P\left(\theta_{n} \phi_{n}\right) d \Omega_{n}=1 \\
& \int P\left(\theta_{n} \phi_{n}\right) \tan ^{2} \theta_{n} d \Omega_{n}=n^{2} . \tag{25}
\end{align*}
$$

Consistent with the power normalization used for the direct power, the normalized power increment (DP) is computed as

$$
\begin{equation*}
D P=f\left(\theta_{a}, \phi_{a}\right)\left|R_{c f}\right|^{2} \frac{e^{-\tan ^{2} \theta_{n} / \eta^{2}\left(1+2 \eta^{2}\right)}}{\pi \eta^{2}} \frac{d x d y}{R_{2 j}^{2} \cos \theta}\left(\frac{1}{4}\right) \tag{26}
\end{equation*}
$$

so that the actual incremental power in watts is

$$
\begin{equation*}
d P=D P\left[P_{t} G_{t} A_{m} / 4 \pi R_{l s}^{2}\right] . \tag{27}
\end{equation*}
$$

(It will be noted that a small error is incurred in Eq. (26) because the transmitter to surface distance is assumed to be $R_{1 s}$ at all times, instead of the variable $\mathrm{R}_{1 \mathrm{j}}$. For satellites in stationary orbit the difference between Eq. (26) and the correct power level is insignificant.) The doppler and delay for this element, as before, are given by

$$
\left\{\begin{array}{l}
f_{d i f f}=-\frac{\vec{n}_{p} \cdot v}{c} f_{0} \tag{28}\\
\tau_{d i f f}=\left(R_{1 j}: n_{2 j}-n_{d i r}\right) / c
\end{array}\right.
$$

In the actual program, the incremental powers are calculated for four cells (at $\pm x, \pm y$) at a time, beginning with the four cells nearest the specular point. These four cells determine a reference power level (DPI). The subsequent sets are obtained by increasing $|x|$ with $|y|$ constant until the power from a set is less than some predetermined fraction of the power found in the first set. (1/1000 in the program of Appendix I.) At this point y is incremented, x returned to zero and the process repeated until further increase in y fails to produce sufficient power to satisfy the above condition. At this point the iteration stops, and the maximum values of $x(X M A X)$ and y (YMAX) are printed. The values XMAX and YMAX then define an ellipse within which all significant scattering occurs.

As the power from each set is computed, the doppler shift and the time delay for the path is also found, and the incremental power assigned to a doppler or delay bin. In this program 128 doppler bins cover the range of $2 v / c f_{o}$, the maximum possible range of doppler frequencies. The delay bins are 2 nanoseconds wide. Thus one can determine the doppler spectrum, (the power per Hz vs frequency) and the delay spectrum. In addition, the total diffuse power (PT), the sum of the power in all bins, is calculated in $d B$ below the direct power.

$$
\begin{equation*}
\text { PT }=10 \log \left(\text { Total Diffuse Power } / P_{\text {dir }}\right) . \tag{29}
\end{equation*}
$$

VII. THE PROGRAM PARAMETERS

To utilize the program, listed in Appendix I; a number of parameters must be specified. These are:
A. Ocean Temperature and Salinity

TEM The temperature of the ocean in ${ }^{\circ} \mathrm{C}$.
SAL The salinity of the ocean in parts per thousand. (Typically SAL = 35 ppt.)
F The carrier frequency in GHz .

These three parameters determine the complex dielectric constant of the ocean via the complex function (EPS). This subroutine calculates ε according to the formula given by Stogryn in Reference [6]. The frequency F should probably be limited to the range $0.4 \mathrm{GHz}<f<5 \mathrm{GHz}$ in order for the ocean scatter mechanism to be valid.

B. Ocean Slope and Roughness

ANG is the root mean square slope of the ocean in degrees.
RUF is the root mean square height of the ocean in meters.

In terms of the report variables, $A N G=(180 / \pi) \tan ^{-1} \eta$ and RUF $=h$. These two oceanographic parameters may be chosen in a number of obvious ways. For many types of calculation however, it is convenient to relate them to a single variable, the wind speed W over the ocean. Thus, for example one may modify a standard[5] expression for the mean square slope of the ocean surface to obtain

$$
\begin{align*}
\eta^{2} & \simeq 0.006 \ln \left(K_{m} / K_{o c}\right) . \tag{30}\\
K_{o c} & =g / W^{2} \\
g & =\text { Acceleration of Gravity }=9.81 \mathrm{~m} / \mathrm{sec}^{2} \\
K_{m} & =\gamma k=\gamma 2 \pi / \lambda \\
\lambda & =\text { electromagnetic wavelength } \\
\gamma & =\text { empirical constant } \simeq 4
\end{align*}
$$

where $K_{o c}$ is the wave number for the largest ocean waves developed at a wind velocity W and K_{m} is the wave number for the smallest ocean waves that are effective in the electromagnetic scattering process. That is, expressions for the mean square slope in the oceanographic literature are based on the actual ocean surface, including many small waves (ripples) superimposed on the large scale wave structure. These small scale waves do not participate in the forward scattering process and thus the effective mean square slope is smaller than the oceanographic value. The estimate
$K_{m}=4 k$ is an empirical result which should be valid for frequencies up to 5 GHz and moderate to large wind velocities. Similarly, the roughness may be estimated from

$$
\begin{aligned}
& h^{2}=.003 / K_{o C}^{2}=.003 W^{4} / g^{2} \\
& h=.055 W^{2} / g \text { meters }
\end{aligned}
$$

for wind velocities greater than a few meters/second.

C. Aircraft Velocity

> VEE $=$ aircraft speed in meters $/$ sec
> PHV $=$ angle of velocity vector from x-axis in degrees.

Thus when PHV $=0$ the aircraft is flying directly away from the satellite.
D. Geometry of Path

THI = angle of incidence at the specular point in degrees
$H=$ aircraft altitude above x, y plane in meters.

E. Antenna Polarization and Patterns

ATH, BPH Two complex numbers defining the polarization state of the transmitting antenna. (A, B in report)
$\operatorname{CTH}\left(\theta_{a}, \phi_{a}\right)$ Two complex functions defining the polarization $\operatorname{DPH}\left(\theta_{a}^{a}, \phi_{a}^{a}\right)$ state of the receiving antenna (C, D in report)
$\operatorname{ANTP}\left(\theta_{a}, \phi_{a}\right)$ Antenna power pattern function $f\left(\theta_{a}, \phi_{a}\right)$ in report.
In the program in Appendix I, the antenna power pattern $f\left(\theta_{a}, \phi_{a}\right)$ is taken as isotropic, i.e., $f=1$. The two functions C and D are also taken as constants, i.e., the polarization of the receiver is independent of look direction.

F. Integration Parameter

$\mathrm{JJJ}=\mathrm{an}$ integer defining increment in x.

If JJJ is taken too small, (say less than 10), the density and delay spectra appear erratic because the elementary areas are too large. If JJJ is too large, (say greater than 40) the running time becomes prohibitive. Reasonable values appear to lie in the range $20<\mathrm{JJJ}<30$.

G. Program Output

The output of the program, an example of which is given in Appendix II, are the direct power, the specular power in $d B$ and the total diffuse power in dB ; the specular and direct doppler shifts; the specular delay; and the bin widths of the doppler and delay spectra. Note that the unshifted carrier frequency is always in bin 65, and that the bin which would contain the direct and specular returns is also indicated. The complex dielectric constant is printed out as EPS.

The graphical output consists of two graphs, one of power per doppler bin vs doppler bin number, and the other of power per delay bin vs delay bin number. The widths of the doppler and the delay bins are indicated. The total power in the doppler spectrum should sum to the output diffuse power level when converted to dB .

Note that the diffuse and specular power are stated in $d B$ "below" the direct power. However a negative number indicates that the specular or diffuse power is smaller than the direct power. Note also that when the receiver is blind to the direct power (right circular transmitter to left circular receiver, for example) the direct power is zero, so that the program must be modified if the specular or diffuse power is desired for this case.

Although the purpose of this report is to document the program of Appendix I, and to provide, through Eqs. (1), (3) and (5) convenient realizations of the multipath signal, a number of cases have been run to illustrate the principal features of the diffuse multipath spectra.

In Fig. 5, the doppler spectrum is plotted vs doppler bin for several values of ϕ_{V}, the aircraft flight direction. In each graph the location of the specular power is shown. Evidently, the spectra tend to be centered on the specular signal, indicating that the major part of the diffuse power is emanating from a scattering region near the specular point. Figure 6 indicates the effect of increasing the surface roughness (mean square slope) on the shape and intensity of the scattered signal. Notice that for aircraft velocities nearly along the line of sight, the spectra are skewed towards the extreme doppler bins, especially for the rough surfaces. Note also a tendency for the diffuse power to saturate as the mean square slope increases. Figure 7 illustrates the variation of doppler spectrum as the angle of incidence is varied, and Fig. 8 shows the effect of polarization on the spectrum, and on the direct and diffuse total power. Clearly an appropriate choice of transmitter and receiver polarization can significantly influence the character of the total signal. Figure 9 shows several typical delay spectra and illustrates the fairly rapid initial decay and the extended tail echo for certain geometries. Note that in the program, the power in delay bins beyond the hundredth has been accumulated in the last bin.

It may be concluded that the program of Appendix I provides a convenient means for estimating a number of features of the multipath signals which occur when a satellite to aircraft link is maintained over the ocean. It should be possible to undertake the study of a variety of detectors using either the statistical signal properties given by the program, or the signal realization given in Section II. In situations where standard detection schemes must be used, the program may be easily modified to investigate the feasibility of multipath rejection by antenna pattern or polarization control.

Fig. 5. Doppler spectrum with aircraft direction as parameter.

Fig. 6. Doppler spectrum with surface slope as parameter.

Fig. 7. Doppler spectrum with angle of incidence as parameter. The oscillation in curve C between bins 58 and 70 is an artifact of the program, and illustrates the effect of choosing JJJ too small.

Fig. 8. Doppler spectrum with polarization as parameter. Note that the diffuse power in curve B is -1.90 dB below the direct power of 0.5 , or -4.90 dB below a polarization matched receiver.

Fig. 9. Delay spectrum for various geometries. The delay bin width is 2 nanoseconds. A time delay of 0 (bin 1) is coincident with the specular signal, i.e., 14.1413 microseconds later than the direct signal for this geometry.

APPENDIX I

THJS WFOGFAF, GYVES THE POWER SPECTKAL DFNSITY ANI, TOTAL *POWER IN THE DTFFUSF MLLTIPATH SIGNAL FOOM SATELLTTE

* TU AIKCRAFT OVFP THE OCEAN. ANU I:ISTR」EUTIONi OF FCWER
*VERSUS TINE DEIAY

DIMENSTON CTHJ (4) © CTHS(4), CTMR(4), STHS (4), CPHS(4), SPHS (4)

S. FURMAT (//.ZCX. OGRAPH OF POWER SPFCTRUM BIN WIOTH IS*,FE.4.*HZ*)

55 FORPAT (//.10X, 'OIFFUSE POWFR IS'.FB. 4 * 'DK; COHFRENT POHER IS'
*.f:0.4. LK PFLOK ULRFCT POWFK OF *,FG.5.)

58 FORMAT(//, 10X, FIMITE RANGE CASE, SX, IJJJIS *,I3)
61 FORMATI//,3UX, POWER VS EELAYFSPFCULAR TELAY IS',FB.4, MICROSEC'J

64 FOPMATE/FIOX. OIFECT DOPPLER IS •F10.3.' HZ:
*SPECULAR DOPPLFR IS *FIO.3." HZ IN EIN (, I3)

```
    TNPUT UAIA: TEM IS SEA TEMPERATURE IN UEG CENTIGRADE
    SAL IS SNLINITY IA P.P.THOL, 35 IS TYPICAL
    AN: IS RIIS SLODF OF SURFALF IN OEGRFES 1S IS TYPICAL
    RUF IS RPS HOUOHNESS HFIGHT OF OCEAN IN METRFS
    F IS CNRKIER FPEGUENCY IN GIFAHERZ
    H IS HFIGWT OF AIRCRAFT AKOVF SURFACE IN METRES
    VEE IS ADRCHAFT VELOCITY IN METKES/SEC
    FHV IS ANGLE OF VELOCITY FKOM X AXIS;PLANE RECEOIMG IF PHV=0
    THT IS APGLF CF INCIUEMCE IH IIEGREES ; OO DEG IS GRAZING
    JJJ GIVES FINFMFSS UF INTEGRATION JJJ=xO IS TYPICAL
    RE IS IIAOIUS OF FARTH IN NIETRFO
    RSAT IS UISTANCE FROM SATELLTTE TO SPECULAR POINT IN METRES
    ATHOBPH,CIH:DOH ARE COMPLEX POLARIZATION STATES:SEE LATER COMMENT
    READ(S,-)TEF,SAL,F,ANG,VEE,RUF
    PEAD(B,-)THI,PHV,H,JJJ
    REAG(8,*) ATH,PPH.CTH.CPH
    P1=3.142.99265
    Rt = (20./F1)*).EG
    RSAT = 3.SE.7
    WRITE(S.SO) TEM,SAL.F,ANG, RUF
    WRITE(G,51) THI*PHV.H.VEF.
```

```
56
8
C
ETA2=TAN(ANG*PI/1GO.)**2
C TNITIALIZE STORAGE GINS
    nu 42 IK=1.250
    Pち(IK)=0.0
    PLEL(IK) = 0.0
    4 2 ~ C U N T I N U N E ,
    py=0.0
    xH=H*TMNSTHI*PT/18(!.)
    ZS = COSGTHI*PT/גCO.)*RSAT
    XS = - SIN(THI*OI/180.)*RSAT
    PEF=S*KT((XP-XS)**2 + (2S*H)**2)
    ILX=?
    RELSP = RSAY + SQRT(XP**2 + H**2)
    NELSP = (HELSP - REF)/B00.
    HC=H*H
    miNCIOE:'T folagizatIOM dATA
    ATH IS THETA cOmPGNENT OF SATELLJTE POLARIZATION THE thETA UNIT
    VERTOH IS -IX*COS(THI) -I Z*STN(THI); EPH IS PHI COMPONENT WITH
    PHI UNIT VECYOP, ALONG -IY: ATH*ATHCONS +BPH*BPHCONJ = 1.O
    VERT POL }\capTH=(1,0) GPH=(0,0):HURIZ POL ATH=(0.0) GPH =(1,0)
    FIGHT PIHC POL HAS ATH = (.707.0) HPH = (0. .707).
    calCULATE COMPLEX OIELECTHIC CONSTANT OF SEA WATER
    FP=EPS(F:TEN:SAL)
    WRIITE(ん, b己) EP
    calCulnte. INCRFMEIUTAL AREA
    1)TY二S&FT(ETAR)/JJU
    nx=2.*H*UTH/COS(THI*PI/180.)**2
    DY=0X
    XXMAX=0.U
    YYMAX=O, i
    HNTEGRITION STARTS
    Y=-0Y/?.
    IA=1
    3n runipinele
    Y=Y+UY
    IF(Y.GT.YYMAEX) YYMAX=Y
    Y<=Y*Y
    x=[x/a.
3q rutitiNuE
    IF(X.GT, XXMAX) XXMAX=X
    TRUE POLAK CONROTNATES OF SCATT POINT ON SPHERICAL EARTH
    STHR = SWRT(X*X+Y*Y)/RF
    CTHR = SURT(1. - STHR**21
    THR = ATAN(STHR/CTHR)
    ZH IS gISTANCE OF SCATTER POINT BELOW TANGENT PLANE
    ZP = RE*Z.*SIN(IHR/Z.)**?
    nu 99 J = 1.4
    xJ = x
```

```
111
112
113
114
115
116
11.7
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
13%
1,7
1.38
139
140
141
142 7
143 9
144 6
145
146
147
148
149 C
150:
151.C
152 C
153 %
154 饣
155 C
156 0
15% C
158 C
159 C
160
16.1 r
162
163 c
164
265
```

```
    IF(J.GE. () X XJ=-X
```

 IF(J.GE. () X XJ=-X
 YJ = Y
 YJ = Y
 IFI J.F(N. 1 MR. J.FQ. 3) YJ = - Y
 IFI J.F(N. 1 MR. J.FQ. 3) YJ = - Y
 SPH(U) = ATANP(YJ,XJ)
 SPH(U) = ATANP(YJ,XJ)
 R(J)=SekT((H+ZP)**己 + YJ**2 + (XJ-XP)**2)
 R(J)=SekT((H+ZP)**己 + YJ**2 + (XJ-XP)**2)
 RS(J) = SGRT((XJ-XS)**2 + YJ**2 + (ZS+ZP)**2)
 RS(J) = SGRT((XJ-XS)**2 + YJ**2 + (ZS+ZP)**2)
 CN(1.J) = SIMR*CUS(SPH(J))
 CN(1.J) = SIMR*CUS(SPH(J))
 CN(2,N) = STHR*SIM(SPH(J))
 CN(2,N) = STHR*SIM(SPH(J))
 CH(S.J) = CTMR
 CH(S.J) = CTMR
 rNI(I,J) = (XP-XJ)/P(J)
 rNI(I,J) = (XP-XJ)/P(J)
 CN{(2.J) = -YJ/E(J)
 CN{(2.J) = -YJ/E(J)
 CivI(3..1) = (+i+7P)/R(U)
 CivI(3..1) = (+i+7P)/R(U)
 CNS(1,.1) = (XS-XJ)/RS(J)
 CNS(1,.1) = (XS-XJ)/RS(J)
 CNS(2,N) =-YJ/FS(J)
 CNS(2,N) =-YJ/FS(J)
 (NS(3.j)=(2S+2P)/RS(J)
 (NS(3.j)=(2S+2P)/RS(J)
 CTHI(J)=0.
 CTHI(J)=0.
 CTHS(J) = 0.
 CTHS(J) = 0.
 crHS(u)=0.
 crHS(u)=0.
 Sith(J)=0.
 Sith(J)=0.
 nu 77 k=1.3
 nu 77 k=1.3
 CIHI(J)=CN(K.J)*CNI(K.J) + C(HY(J)
 CIHI(J)=CN(K.J)*CNI(K.J) + C(HY(J)
 CTHS(J) = CH(K,J)*CNS(K.J) + CTHS(J)
 CTHS(J) = CH(K,J)*CNS(K.J) + CTHS(J)
 CYHB(J) = CNI(K,J)*CNS(K.J) + CTHB(J)
 CYHB(J) = CNI(K,J)*CNS(K.J) + CTHB(J)
 CUNTIGLIE.
 CUNTIGLIE.
 STHS(J) = SNAT(1. - CTHS(v)**2)
 STHS(J) = SNAT(1. - CTHS(v)**2)
 STHI(J)=S&RT(1. - CTHI(u)**2)
 STHI(J)=S&RT(1. - CTHI(u)**2)
 IF {AG`(STHE\J)\ &E. ODI ONR. ABS(STHI(JI) .LE. .001) GO TO 78
 IF {AG`(STHE\J)\ &E. ODI ONR. ABS(STHI(JI) .LE. .001) GO TO 78
 rHHS(J)=(CTHT(J)*CTHS(J)-CTH&(J))/(STHS(J)*STHI(J))
 rHHS(J)=(CTHT(J)*CTHS(J)-CTH&(J))/(STHS(J)*STHI(J))
 SN4S(J)= -(YJ/ACS(YJ))*SGRT(1. - CPHS(J)**2)
 SN4S(J)= -(YJ/ACS(YJ))*SGRT(1. - CPHS(J)**2)
 FHS(J)= ATAN2(SPHS(J).CPHS(J))
 FHS(J)= ATAN2(SPHS(J).CPHS(J))
 60 10 a%
 60 10 a%
 78 EHS(J)=0.
 99 CONTINHE
 CAICULSTION OF IMCEEMENTAL POWGRS STARTS
 CAICULSTION OF IMCEEMENTAL POWGRS STARTS
 Ou 40 TI=2.4
 Ou 40 TI=2.4
 PHSCAT =P'HS(II)*1RO./PI
 PHSCAT =P'HS(II)*1RO./PI
 TMINC = ATAM(CRRT(1.-CTHS(JT)**2)/CTHSITI\)*280./PI
 TMINC = ATAM(CRRT(1.-CTHS(JT)**2)/CTHSITI\)*280./PI
 THSCAT = ATAN(SGRT(I.-CTHII(II)**2)/CTHII(II))*IE0./PI
 THSCAT = ATAN(SGRT(I.-CTHII(II)**2)/CTHII(II))*IE0./PI
 THF AINTERNNA PATTERIN ANTP(THA, PMA)IS A FINCTION OF THF POLAR COOROINATES
 THF AINTERNNA PATTERIN ANTP(THA, PMA)IS A FINCTION OF THF POLAR COOROINATES
 THA ANHS PHA FIYEO IN THE AIRCRAFT. THE POLAR AXIS IS Z&VERTICALJ
 THA ANHS PHA FIYEO IN THE AIRCRAFT. THE POLAR AXIS IS Z&VERTICALJ
 MMO THE X* AXTS IS ALONG THF VELOCITY VFCTOR.FRGM WHICH
 MMO THE X* AXTS IS ALONG THF VELOCITY VFCTOR.FRGM WHICH
 THE AHGLEF FYN TS MFASUPEO. THE AMTFNNA POLAFIZATION ISG GIVEN AS TWO
 THE AHGLEF FYN TS MFASUPEO. THE AMTFNNA POLAFIZATION ISG GIVEN AS TWO
 CUMPLEX FUNCTIONSS UF THA,PHA. FUNCTION CTHITHA,PHAS IS THE THETA
 CUMPLEX FUNCTIONSS UF THA,PHA. FUNCTION CTHITHA,PHAS IS THE THETA
 COMPONFNT ANO OHH IS THF PHI COMPONENT CTH*CTHCONJ+DPH*OPHCONJEI
 COMPONFNT ANO OHH IS THF PHI COMPONENT CTH*CTHCONJ+DPH*OPHCONJEI
 VERT PILL RECVR HAS C={1,O) O=(U,O); HORIT POL RECVR HAS C =(O,O)
 VERT PILL RECVR HAS C={1,O) O=(U,O); HORIT POL RECVR HAS C =(O,O)
 F={1,0): RIGHT CIRC POL RECVR HAS C=(0.,707) O=(+.707.0)
 F={1,0): RIGHT CIRC POL RECVR HAS C=(0.,707) O=(+.707.0)
 THA =180. - THIHC
 THA =180. - THIHC
 PHA = PHSCAT - 100. -PHV
 PHA = PHSCAT - 100. -PHV
 ANTP = 1.0
 ANTP = 1.0
 THE NEXY LINE CORVERTS UAITT VECTOFS FRON AIRCRAFT TO SCATTER COOROS
 THE NEXY LINE CORVERTS UAITT VECTOFS FRON AIRCRAFT TO SCATTER COOROS
 OPH1=-1)PH
 OPH1=-1)PH
 CALL CREFITHINC,THSCAT,PHSCAT,EP,ATH,EPH,CTH,DPHI.
 CALL CREFITHINC,THSCAT,PHSCAT,EP,ATH,EPH,CTH,DPHI.
 *AL.TH,PH,CELI, NELS,RCOEF)
    ```
    *AL.TH,PH,CELI, NELS,RCOEF)
```

```
16G
167
16ts C.
169
170
171
172
173
174
175 r
176 c
177
178
179
180
181
182
1&3
184
185
186
187
180
189 C
190
191
192 C
193
194 C
195
190
157
198
199
200
201
202
203
204 C
205 r
206r
207 C
200-
209 r
230 C
211
212 r
213
214r
215 r
216 r
217%
218 C
219 C
220
    กP(II)=ANTP*C^RS(HCNLF)**&*PNEN(TH*PH,ETN2)*[\X*UY/(4.*&(II)*CTHR**
    *R(II)*(OS(TH*PT/1&\cap.))
    ROPPLEF SHIFT IN H7 FROMM CARRIER IS FO*{F*I.E9)*(V/C)
    FU(II)=-SIN(THSCAT*P1/18年)*COS(&HHSCAT-PHV)*PI/180.)
    ntlay JN MIGRO StE REFERRED TO DIRECT PaTH
    #LL(II)=(R(IT)+RS(II)-RtLSP)/(300.*!IELSP)
4n TONTINGF.
    TF{IA.FQ.1) DP&=0@(1)
    IF(1A.FQ.1)IA=IA+1
    CALCULATE BIN STORAGE OF POWFR: 2**7 BIMS NUMBERED 1 TO 129
    FAVG=0.0
    10 41 IJ=1.4
    IuS=IFIX((1.*F准{J))*64.)+1
    PU(I[IS)=F((IES)+[)P(IJ)
    P`=PT+!P(IJ)
    PAVG=FAVG+ABS(\capP(IJ))/4.
    CALCULATE EIMS FOR DELAY
    IHT= TFIX(IO + 100U**DEL(IJ)/EDX) + 1
    IF (IBT -LE, 1) INT = 1
    IF (IHT - (FL. 10D) 1BT = 209
    PDEL(IHT) = PLPFL(IET) + OP(IJ)
44 CONTINOE
    x=x+0x
    IF(PAVF.LT.I.E-3*OFI.ANO.X.LT.S.*(XX) GO TO 3?
    AHOVE TEHWINATFS INTEGRATION
    IF(PAVt.LY.1.E-3*(UP1) GO TO 30
    AHOVF TERMINATFS X INTEGRATION ANO STEPS TO NEXT Y
    ro TO &1
32 runTIM!E
    Fun=-STN(THI*PT/190.)*COS(PHV*PI/180.)
    FUn = &OS{PFV*TI/I&U*)*{XS-XF}/REF
    DUPPLEP SHIFT IN HZ
    NUO = FOU*F*VEF*10./3.
    CUD = FUU*F*VEF*10.13.
    IES=IFIX((1.*F!O)*64*)+1
    MIRCRAFT ANTEMNA PRTTERN IN SATELLITE DIRECTION IS
    A&TP = AHTP(THFI,PP)
    PP = 1AO. - PHV
    RECEIVFR POLARTZATION IN SATFLLITE DIRERTION IS
    CTH = CTH(THI,PP)
    IfHH= OPHTTHI,PPP
    ANTP=1.0
    IIRECT POLER FDOM SATEL.LITE
    FUIR=A:ITP*CAES(ATH*CTH+RPH*DPH)**2*(RSAY/REF)**2
    THE RECEIVEU POWER IN WATTS IS PNIR*POWIR*GAIN*APERTURE/OIST
    WHERE PDIR HAS AEEN CALCULATFD, OLST=4*PI*RSAT**2 AND THE
    OTHER VARIASGFS ARE TRANSNITTERR POWER,TRANSMITTER ANTENNA GAIN,
    PECEIVFR COLLERTING APERTURE ANO RANGE FROM SATELLITE TO SPECULAR POINT
    CALCULATE THE TOHENENT POLER
    CALL COEF&THI,THI,O.,EP,AIH.RPH,CTH,OFH1
```



```
        IF {tXl - t.t.En.) EX1 =60.
```

 IF {tXl - t.t.En.) EX1 =60.
 FX? = FXP'(-EX1)
 FX? = FXP'(-EX1)
 RSPEC = EX<*ANTP*(FSAT*CABS(RCGEF)/RELSP)**2
 RSPEC = EX<*ANTP*(FSAT*CABS(RCGEF)/RELSP)**2
 PS = 1(t.*ALOG1OIFSPEC/POTH)
 PS = 1(t.*ALOG1OIFSPEC/POTH)
 PT=10.*AL(6I0(OT/F゙OIF)
 PT=10.*AL(6I0(OT/F゙OIF)
 WHOP=VEE*F/17.2
 WHOP=VEE*F/17.2
 WKITE(f,55) PT,PS,POIR
 WKITE(f,55) PT,PS,POIR
 WHITE (%,64)OOO,ODO,IHS
 WHITE (%,64)OOO,ODO,IHS
 w'RITE(h,旨) XXMAX,YYMIAX,OX
 w'RITE(h,旨) XXMAX,YYMIAX,OX
 WKITF(S.5s)WDOD
 WKITF(S.5s)WDOD
 NN=1
 NN=1
 Y:MX=.0
 Y:MX=.0
 YaIN=0.0
 YaIN=0.0
 \PiU 45 IL=2,128
 \PiU 45 IL=2,128
 xX=FLUt.T(IL.)
 xX=FLUt.T(IL.)
 YY(1)=「G(IL.)
 YY(1)=「G(IL.)
 IN|=IL-1
 IN|=IL-1
 CALL NLIY (XX,YY,NN,INO,YMAX,YMIN)
 CALL NLIY (XX,YY,NN,INO,YMAX,YMIN)
 45 CONTIN!F
45 CONTIN!F
WKITE(E.t.1) DELSF
WKITE(E.t.1) DELSF
WkITE(5,0%2)IUX
WkITE(5,0%2)IUX
r:| = 1
r:| = 1
YMAX = US
YMAX = US
YBIN =0.
YBIN =0.
MO 46 IM = 1.100
MO 46 IM = 1.100
xx = Flonil(JNi)
xx = Flonil(JNi)
YY(I) = FOEL(I!M)
YY(I) = FOEL(I!M)
TND = 1M-1
TND = 1M-1
CALL PLOT (XX,YY,NN, YND,YMAX,YMIN)
CALL PLOT (XX,YY,NN, YND,YMAX,YMIN)
CCNTINNE
CCNTINNE
C\&L.E EXIT
C\&L.E EXIT
FND
FND
***** SULSRGUTIMES {NO FUPICTION SUBQROGR\&MS *****
***** SULSRGUTIMES {NO FUPICTION SUBQROGR\&MS *****
SUQROUTYME COEFITHI,THS,PHS.FPS\&ATI,PPI,CTS,MPS,AL,TH,PH,DELI,OELS
SUQROUTYME COEFITHI,THS,PHS.FPS\&ATI,PPI,CTS,MPS,AL,TH,PH,DELI,OELS
* *irotiry

```
    * *irotiry
```



```
    GIVEN THE INCINENCF. ABIN SCATTENING DIREETTONS,THF POLAKIZATION
```

 GIVEN THE INCINENCF. ABIN SCATTENING DIREETTONS,THF POLAKIZATION
 SIATE OF THE TRANSVITTER AUN RECFIVEP,AGMN THF COMPLEY DIELECTRIC
 SIATE OF THE TRANSVITTER AUN RECFIVEP,AGMN THF COMPLEY DIELECTRIC
 CONSTA!!T;THIS SU&ROUTINE L'F TFRMINFS T&E TIRECTION OF THE NORMAL
 CONSTA!!T;THIS SU&ROUTINE L'F TFRMINFS T&E TIRECTION OF THE NORMAL
 TU THE. SUFFASE RF DUIREU FOR SUCH REFLECTION,THE ANGLEE ALPHA
 TU THE. SUFFASE RF DUIREU FOR SUCH REFLECTION,THE ANGLEE ALPHA
 HETWEEG THA NODMAL ANG EITHED THF INCIOFNT OR REFLECTED
 HETWEEG THA NODMAL ANG EITHED THF INCIOFNT OR REFLECTED
 FILRECTIOHS,IAN THE CUMPLEX RFFLECTION COEFFICIENT.
 FILRECTIOHS,IAN THE CUMPLEX RFFLECTION COEFFICIENT.
 ALL ANIGLES PEO!ITREO IN IEGRFES.
 ALL ANIGLES PEO!ITREO IN IEGRFES.
 PI=3.14209265
 PI=3.14209265
 THI-THFTA ANGLF OF INCTOENCE
 THI-THFTA ANGLF OF INCTOENCE
 THS*THFTA ANGLF OF SCATTFR
 THS*THFTA ANGLF OF SCATTFR
 FHS~ FHI ANGLE OF SCATTEK
 FHS~ FHI ANGLE OF SCATTEK
 AII-THETA COMPOALENT OF THE INCGOENT FIELIN
 AII-THETA COMPOALENT OF THE INCGOENT FIELIN
 API-PHI COMFONENT OF THE INCIDENT FIELO
 API-PHI COMFONENT OF THE INCIDENT FIELO
 CTSOTHHTA COMPONENT OF THE SCATTEREO FIELU
 CTSOTHHTA COMPONENT OF THE SCATTEREO FIELU
 DPS- PHI COMPONENT OF THE SCATTEREO FIELD
    ```
    DPS- PHI COMPONENT OF THE SCATTEREO FIELD
```

```
27Et
277
276
279
280 r
281 C
282 C
283
284
285
286
287
28E
<89
290%
291 C
292.
293
294
295
296
297
294
29%
300
301
302
303
304
305
3:3
307
370
309
310
311 r
312 r
313 r
314
315
316
3.7
318
319
32w
321
322
323
324
325
326
327
326
329
330
    FHS-CONPLEX OICLECTRIC CONSTANT
    THI=THI*FI/18n.
    THS=TH**H1/180.
    PHS=PrN**1/160.
    AL-MiGGE ALPHA RE TWEEN INCIDENT UIRECTION AND NORMAL
    Th-FHI ANGGLE OF THE NORMAL
    thathita amrla of the mermal.
    C<AL=-(SNt!(14I)*SIN(THS)*COS(PmS)-COS(THE)*COS(THS\)
    ral=S心%T(1).+C?N)/<.)
    AL=ATA:C(SWPT(!.-(CAL)**Z),CAL)
    TH(AL,AE.X.E-S) GO TO 10年
    PH=ATANP(SIN(THS)*SIH(PHS),STH(THS)*COS(PHSI-SIN(THI))
    CTH=(COS(THSS)+COS(THI))/(L.*CAL)
    TH=ATAF2(SGRT(9.*-CTH**P),CTH)
    ntli-AMgle freta INCIDFNCE
    OclS-AGL& (ELTTA SCATTEPEL
    S\angleAL=S1M(#.*AL)
    rUFLI=(SIA(THS)*COS(FHS)*COS(THI)+SIN(THI)*COS(THS))/S2AL
    SJFLI=`IM(TAS)*SIM(PHSS)/S<AL.
    HELI=ATMUE(SOELT. GOELT)
    rUELS=(SIN(THI)*COS(THS)*COS(FHS)+COS(THI)*SIM(THSS)/S2AL
    SUELS=`IN(THI)*SIN(PHSS)/S<AL
    rELS=ATANC(SOELS.CDELS)
    Cu T0-0
100 runtlise
    AL=0.0
    TH=THI
    FH=HI
    rELI=0.0
    MELS=0.0
    CuFli=:
    SUELI=0.U
    CuELS=1.0
    SUELS=:1.U
90 runTpmbe
    FHAR-FIESMEL RFFIEECTION CUEFFICIFNT FOR PARAILEL POLARIZATION
```



```
    FCOEF-ROPHEX OFFLECTIUN CUFFFICIENT
    RPAR=(1NS*CUS(AL)-CSORT(EPS-CIM(AL)**Z))/(EPS*COS(AL)+CSORT(EPS-SI
```



```
    FPER=(rOS(nL)-TSGRT(EPS-SIN(AL)**2))/(COS(AL)+CSORT(EPS-SIN(AL)**2
    *)
    FICOEF=-RPEN*((RPI*CDELI-ATI*SOELI)*(DPS*CUELS+CTS*SOELS))+RPAR*((A
    *T&*COEII+!FI*SNELI)*(CTS*CDELS-DPS*SDELS))
    AL=AL*1n(./AI
    TH=T4*186./F1
    FH=PH*!SU./FI
    THI=THT*1EU./PT
    ThS=THSI*LEC,/PT
    PHS=PHS*1E0.1PT
    OELI=CELI*180./PI
    OELS=[FLS*1F0./PI
    getuRIV
    EMO
    FLNCTION FDEN(TH.PH,S2)
```

331	C	this funcitom calculates the value of the probability oensity
332	c	Function thiens for a supface wortal where th is the thetamafigle
333	c	IN DEGPESS NND PH IS THE PHI-ANGIE IN DEGREES OF THE SURFACE NDRMAL
334	c	and Se is the mean square slope. the pof is gaussian.
335		$\mathrm{Fl}_{1}=3.14150265$
3.36		TH=TH*P $/$ / 16.0
337		$A=-\mathrm{TAN(TH)*TAN(TH)/(S2*(1.+2.*S2))}$
338		IF (ABS(A).GT.6n.) $A=-60$.
339		PUEN=COS(TH)*EXP(A)/(PI*S2)
340		$\mathrm{TH}=\mathrm{TH} * 180 . / \mathrm{Al}$
341		returid
$34 /$		FN0
343		CUMPLEX FUNCTION EPS(F,T,S
244	r	COMPLRX CIflecthic of Sfa water eps istogrym mit)
345	\bigcirc	
346		HFAL M
347	C	WORMAL SEA WATER RANGFS FROM 20. TO 35. PPT
348		$N=S *\{01707+.00001205 * S+S * S * 4.0505-9)$
345		$\mathrm{C}=2^{5}$.
350		
351		
352		
353		$0 \mathrm{n}=.11105-.003 \mathrm{p} 24 * T+$.0nn06s.4*T*T
354		$w=(1 .+001463 * N * T-.140 * 14-02567 * N * P) * D 0$
355		
356		$E P S=4.9+(E \cap-4.0) / C M P L X(1 . ~ W * F)-(M P L X(0.017 .95 * S I G / F) ~$
357		KETUK:\%
356		Fin
359		
360		OLNENS IOMV (119), YLABEL (6), Y(10), MARKK (10)
361		
362		
363		
364		1F(IND)1,1.11
365		HKITE, 6,03)
366		FOPMA: $/ / 25 \mathrm{X}$. ORROEP IN WHICH PLOT SYMEOLS ARE USED *.IXONHIZ-',
367		*//30X.'THE SYMPOL (\#) YNDICATES OFF-SCALE DATA*'//)
36.5		n07J=9,119
369	7	
370		MCOUNT=1し
372		SCALE =10G.0/(YMAX-YMLN)
372		(LLE $=(-Y M 1 N * S C A I E)+11.5$
373		「ugJ=1.6
374		$p=J-1$
375	8	(YLABEL(J) $=$ + $20.0 / S C A L E+Y M I N$
376		WRITE(G, S) (YLASEL(I), I= 1,6)
377	9	FURMAT(6X.1PE9.2.5(1PE20.2) ()
378		cotol3)
379	11	MCOUNT $=$ NCOLNT +1
360		no99J=1,219
382	99	N(1) = 1! Lalijk
382		PF(LLL.GE.11.AN') LLL-LE.110)M(LLL) $=$ MARK(10)
383		TF(NCUINT-10)133,132,133
384	132	- $0089 \mathrm{l}=11.111 .20$
385	89	M(J)=IPLUS

```
13.4 r:020J=1.a
    L=(Y(U)-YAJ|i)*SCALF+U.S
        IF(L)!",17,17
    14 TF(L+1!115,1.f.10
    15 N:(1)=ツ!pl
        r.uTOC|
    IG L.L=L+1L
        M(LL)-M/GKK(J)
        r.uT0<0
    17 1F(L-108)10.19.19
    19 LL=L+j?
        M(LL)=:Marik(J)
        FisTOR\
    19 m(119)=?(1)T
    2r. rulithimit
        TF(NCOMN-10)21.2.2.21
    21 litITE(\therefore.e.4) (m(J), N=1.119)
    24 Fupiat(1x,i19a!)
        (:uT027
    25 WHITE(r.0+() (X,(M(J).J=9.119))
    26 FURMAT(1X.F8.3 ,111A1)
        NCOUNT=0
    27 CONTITNE
        getukN
        Fiv(l)
```


APPENDIX II

SAMPLE OUTPUT (Curve B Fig. 8)

$101.000 \stackrel{+}{+*}+*$
111.000
121.000

	$*$
111.000	$*$
	$*$
	$*$
	$*$
	$*$
	$*$
	$*$
	$*$
	$*$
	$*$
	$*$
	$*$
	$*$
	$*$
	$*$
	$*$
	$*$
	$*$

DOWER VS OELAY;SOECULAR DELAY IS 14.1413MICROSEC

SPEC POINT IN BII 2:BIN WIOTH IS 2 NANOSEC

OPDER IN WHICH PLUT SYMBOLS ARE USED *.IXONHIZ-
THE SYMEOL (\$) InDICATES OFF-SCALE DATA
0.00t 0
$1.00 \mathrm{E}-2$
$2.00 \mathrm{~F}-2$
$3.40 E=2$
4.00E - 2
5.00E -2

$\overline{-}$	$*$	
$\overline{-}$	$*$	
$\overline{-}$	$*$	
$\overline{-}$	$*$	
$\overline{-}$		$*$
-	$*$	

REFERENCES

1. Painter, J. H., Gupta, S. C., and Wilson, L. R., "On the Technology of Aerospace Communication in Multipath, IEEE Nat. Telecomm. Cont., Houston, Texas, December 1972.
2. Durrani, S. H. and Staras, H., "Multipath Problems in Communications Between Low Altitude Space Craft and Stationary Satellites," RCA Review 29, 1968, p. 77.
3. Gager, D. R., "Signal Fading Characteristics due to Reflection From the Sea, Marconi Rev., First Quarter, 1971, pp. 27-48.
4. Ruck, G. T., Barrick, D. E., Stuart, W. D., and Krichbaum, C. K., Radar Cross-Section Handbook, Plenum Press, New York, 1970.
5. Phillips, 0. M., The Dynamics of the Upper Ocean, Cambridge University Press, 1966.
6. Stogryn, A., "Equations for Calculating the Dielectric Constant of Saline Water," IEEE Trans. MTT, 1971, pp. 733-735.
