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ABSTRACT

Current research at Bensselaer 1s generating fun-
danental engineering'design techniques and.concepts for the
chromatographic separator of a chemical analysis system for
- an unmanned, martién roving vechicle, Previously developed
mathematical models of the gas chromatograph weré 1nadéquate
> for predicting peak height and spreading for some experimen-
tal conditions and chemical systems. Consequently, a nevw
chromatograph model is developed which incorporates previously
neglected transport mechanisms. A closed-form analytical
éolution to the model 1is not available so the numerical tech-
nique of Orthogonal Collocation 1s studied. To éstablish the
utility of the method, three models of increasing complexity
are considered, the latter two being limiting cases of the
derived model: 1) a simple, diffusion-convection model; 2)

a rate of adsorption limited. inter-intrapaiticle model; and
3) an 1nter-1ntrapaf%1cle model with negligible mass transfer
resistance. The first model involves one dependent variable
and one spatial dimensioﬁ; the sebond, two dependent variables
and one spatlal diﬁension; and the third, three dependent var-
1#b1es and two spatial dimensions. Thz orthogonal collocation
treatment reduces the models to sets of ordinary differential
- equations which are 1ntegrated'using'the Bulirsch-Stoer ex-

trapolation technlgue.

-Simulationsrwith the first model using actual chro-

OT FILMED 414



matographic input pulse data show the collocation procedure

to accurately represent system behavior. Large Peclet numbers
usually observed in practical chromatographic columns require
a higher degree of approximation than low values. In generai.
15 collocation points suffice. Similar results are obtalned
from a study of the second model which lnvolves two coupled
partial differential equations, The model 1s successfully
solved numerically, although computation time becomes exces-
sive. The investigation 1g concluded with a preliminary

study of the fhird moﬁel which involves three coupled partlal
differential equatiohs. Estimated computational times based |
upon partial simulatlions of this model show complete numerical
solution within available computer capabilities and financial
constraints to be unfeasible. It is therefore concluded that
i1f orthogonal collocation 1is to_be apﬁlied successfully.to
pulséd, distgibuted systems of the chromatograph within COoM=
puter constraints, further research on the different charac-
teristics of the orthogonal functions and the formulation of

the trial function must be undertaken.
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PART 1
INTRODUCTION AND SUMMARY

The synthesis and analysis of mathematical models
of the gas chromatograph 1s one gubtask of a group effort de-
glgned to define fundamental design criteria‘fof an optimal
design of a combination gas chromatograph - mass spectrometer
syséem which 18 to be part of an unmanned mlission to Mars.
The task which must be performed by this part of a lartlan
Boving Vechicle 1s the analysis of samples to determine the
existence of orgahic matter and living organisms on the
Martian surface. The analysis will involve the subjection of
ggseous..llquld'and solid samples to biologlcal and chemical
reactions, with subsequent product separation and identifica-
tion using thé gas chromatograph - mass spectrometer system.

The chromatograph may'be looked upon as a separating
device wﬁ;rgjthe phenomenon of adsorption-desorption is util- |
1zed, Owing ﬁo the different characteristics of various chnm-
icals, each specles will adsorb and desorb at different ratas
when exposed to a packed bed of granular particles with or with-
out a liguid substrate. Because of the unlque behavior of
each chemical, a multicomponent éample may be injected into a
chronatograph and elute as Separate waves of specific chenical
specles. |

Prior to this investigation, chromatograph models

have been formulated based on interparticle transport mechan-

1



isms with simple adsorbed phase behavior assu@ed. These pre; |
| vious model formulations, which have all had élosed-form.
aﬁalyticg'tlme-domain solutions, have proven tncapablé‘of ade-
quately predicting component behavior in all qases.-\CQnse-A
quently, a new model has been derived which 1éciudes_both
;gﬁggparticle and intrapartlcle transport mechanlsms. The
complexity of this new model precludes direct analytiéal 501~
ﬁtion, and hence application of an appropriate numerical tech-
nique is necessary to effect time-domain solution. Prior to.
any tlme-domain analysls, the model is analysed in the Laplace
transform domain'using the method of moments. The first three
moments of the'impulse response of the model are derived.
-~ Using actual input data, predictions for the first three moments
of the output data are made and are compared withracfuéi"' 
chrométographic data and predictions of a simpler, iggégparticle
model. The ;eéults indicate that the new model 1s more ca-
pable'of pfedicting the moments of the actual data.

| Becauserthe mathematical complexity of the ngw model
prohibits a direct..cldsed-form enalytlic expression for a res-
ponse; aﬁpropriate numéricai technlgques apovlicable to the equa-
tions of the.new model (and future models which may involve
nonliﬁear terms) must be used to allow direct comparisions
between prediction and experiment, For the'systems of equations
~ encountered in chromatograph modeling, numerical technlques
requlrg a finite terminal boundary condition as opposed to an

1nfiﬁite column boundary conditlon usually used in deriving



analytical solutions to simpler chromatograoh models. As a
prelude to numerical technique considerations, a simple, tran-
gient, diffusion-convection, mass transfer-equation is analysed
and criteria are developed wherein a finite terminal boundary
condition can be applied to yleld infinite column behavior at
the bed outlet. ' | |

- Subsequent to the development of a complex chromat-
6graph model and the reallzation that model simulatlion and ver-
1fication réquife a numerical technique, attention is directed
to the study bf-Orthogonal Cbllocation as a technique suit
able for routine analysis of complex chromatograph models.__The
motivation for conducting this investigation is several-fold:
- computational limitations of the widely used Finite Difference
methéd.successful use of orthqgonai ¢ollocation to éolve cer-
tain chemical reaction engineering problems, énd‘the lack of
documentatiog for the appiicatlon of orthogonél collocation to
pulsed, distributed systems such as the chromatograph cystem.
The general theory and computationesl aépects of 6rthogqnal
collocation are reviewed and discussed., One of‘the sﬁeps in
the applicatlion of orthogonalhcollocation involves the inversion
of & matrix, Previously documented developments have given
. formulations where the matrix to be inverted becomes increas-
ing 1ll-conditioned wlth increasing size and may, due to com-
puter precision limitations, prove'non—invartable; Hereto~
fore, this has not been documented. An alternative déveloﬁ-

ment, theoretlcally equivalent, 1s presented which is shown -

- ..



to successfully eliminate this problem to a high degreea.

| In order to establish whether 6rthogonal collocation
1s a technigue worthy of exploitation in the analysis of chro-
nmatographic systéma. three models of 1nérea31ng complexlty

are solyed using the method: |

1. A simple, transient,-diffusion—cohvection'mass
transfer problem. '

2, A rate-of-adsorption-limited, inter-intraparticle
prbblem - a limiting case of.the defived model.

3. An inter-intraparticle ads&rption problem with.
negligible mass transfer resistance beﬁween the
interparticle and intraparticle regions - another
limiting case of the dérived modei;

FPor each model; the ortﬁogpnal collbcation treatment reduces
"tpe pﬁrtial‘differential equation{s) to a.set of ordinarj
dlfferentiél_qquations. |

sponse characteristics found in more complex models, possess s
an analytic solution for direct comparisions with numerical
'resulfs, and establishes guidelines for more complex models

to be considered. Prilor to solution of the resultant set of
ordinary different;al.equations.'dn eigenanalysis is made-of
the differential equation set. This set-or thé resultant dis-
'.cretlzatlon of the distributed system ig stable for axial Peclet
numberé from 1 to 10000 and approximation orders of 3 ﬁo 21.

This model 1is solved for cases 6f rectangular and actual system



input'data pulses. The effeéts of high (1000?) and low (32)
valueélof ax;al Peclet number are studied to éetermine the dew
gree of approximation requlred for éood rebreéentatlon_of the
exact system responsé.- Ehe high Peclet numbeé (10000); char-
acterlétic of the magnitudes enébuntered in éétual chromato-
graphic system data, requires a higher degree of approximation
\ than the low ﬁalue. The sharpness of the forclng function also
affects the nuﬁerical results; i.g., & higher order of approx-
' 1mation is required'for very sharp input pulses, For the smoother
actualrinput data and the high Peclet number, a fifteenth or-
der approximation is adequate. The set'of ordinary differential
equations 1s integrated using the Bulirasch and Stoer extrap-
blaéion technique. For this tyﬁe'of'problem. this method 1=
ﬁore efficient (for eqﬁlvélent érrcr folerance) than the ﬁo:e
well-knowq Euler, fourth orde; Runge;Kutta and Hemwming Predictor-
Correctorx technlques.A Consequently, the extiabolation treat-
ment is uscd exclusifely'for integration of the sets of ordin-
"ary differ ntial equations that fesult‘from the application
of orthogonal collocation to the problems conslidered in this
investigation. . .

" Pollowing a study of the simple model, orthogonal
collocation is applied to solve the second model gliven above,
- This problen possesses an analytical solution which is used
for comparision with the different degrees of approximation
consi_dered. The ‘.syst'em parameters Wh‘lch appear in this model

correspond to parameters encountered in actual chromatographic



system experimental work. This is important because ﬁhe
parameter cholce; e.g., Peclet number, 1s dictated by actual
experiment rather then convenlence. Thie problem is more
complex than the simple probiem in ohat two coupled partial
differential equetlons are treated using the orthogonal collo~
cation method. As a consequence, a higher degree of approxi-
mation 1s necessary and the constraints of excessive computer
time and suitable computer hardware availability come to the |
forefront of the 1nvestigation.

The investigatlion is terminated wlth the appllcation
of orthogonal collocation to the third model listed above,
This model has no direct, analytlc sclutlon available., Hence,
ﬁhe strategy 1s to successively apply orthogonal ceollocation
with increasihg orders of epproximation untlil a convergent
response is realized. Unlike the previous two problems where
only one spatial domain is’ discretized the 1nterpaﬁuole,
this problem requires orthogonal collocation diseretiza*“ions
for both the interparticle end intraparticle reglons. The
problem invelves the solufion of three coupled partial differ-
| ential egquations. Again, actual chromatographio.systeﬁ PAYaMm-
eter: values are used;_ To effect the above strategy of succes-
give simuiations with increasing order of approximation, severw
al cases are studlied for short computer run times, These"

" times are extrapolated to give estimates of computer require
ments necessary to complete the analysls. These extrapolations

indicate that within available computer hardware capabilitiles



and finandial conétraints. thorough analysis of this problem
48 not feasible using orthogonal collocation. This does not
rule out the utility of the theory of orthogonal collocation
as a technique but points out a problem where innovation and”
further study may be necessary for the realization of a pfac-

tical solution.



PART 2

CHROMATOGRAPH SYSTEM MODELING

A, Chromatograph Modeling Béckground

One area of the overall gas chromatograph'systems
study has been the mathematical modeling of the chromatograph
system. VWork 1n'the area has been carried out by several
“‘investigators (81iva, 1968; Voytus, 1969; Taylor,71970; Keba
and Woodrow, 1972). A course has-been pursued wherein succes-
gively more complex models have been considered, These
models have all yielded analytical expressions from which a
simulated chromatogram could be”computed directly. Cdmpar-
tsion of predicted system behavior with actual system data
has directed modeling efforts to consider more adequate and
hence more complicated models,

~ “Prior to this investigation, the most complex model
propésed for the chromatograph system was based on an inter-
particle phase massvbalance and an adsorbed phase mass balance.
Several transport mechanisms were iﬁcluded: axizal diffusion,
convection, snd mass transfer between the interpaticle and
adsorbed phases. A linear lsotherm was used to describe the
edsorption kinetics. This model has been studled and compared
(Keba and Woodrow, 1972} for the cases of finite rates of
" mass transfer to the adsorbed phase (nonequilibrium adsorption)
and infinitely high rates of mass transfer to the adsorbed
phase {equilibrium adsorption). In both cases, simulations

using the models failed to predict the‘degree of dispersion

8



e;hlbited by many of the experimental data. it'was concluded
that additional trahsport mechanisms, e.g., 1%traparticle

diffusion, mey be contributing appreciably'toéthe overall ad-
sorption-desorption process. Hence, further godel develop- |

ment and analysis was indicated,

B. Development of the Inter-Intraparticle Adsorption
Model |
Previously. the intraparticle region of the chromat-

o ograﬁh packiné material has been modeled as being nonexistent
or as a reglon where the transport processes oceur at such e
rapld so as not to significantly affect the dynemic behavior
of the system. It 1s the purpose of this section to refor-
nulate the'bhroﬁatograph system model by including the trans-
port process which are presumed mostv likely to affect the
dynaﬁics of the‘adsorption-desorption process within the
chromatogfaphkﬁacking)material. |
R "Flgure 1 presents graphically the transport pro--
cesees to Ye modeled. The sample to be separated 1s‘injected
~into a relatively inert carrier gas, e.g., hellum. As this
slug of sample 15 transporﬁed down the chromatograph by the-
carrier gas, the various specles diffuse, adserb, and desorb.
Diffusion of the chemlcals in the direction of the carrier

£as flow-ln the interparticle region is represented by the
dimensionless parameter, PeE, which is determined by the
system fluid mechanics. Mass transport from the interparticle

region to the intraparticle region 1s represented by a
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‘dimensionless pérameter. Ntog, which 13‘essen%1ally deter-

- mined by the system fluid mechanics. Diffusién in the intra-
particle region 1s represented by a dimensionless parameter,
Pep, which 1s in part determined by the properties of the
particle packing. Thé rate of adsorption wiﬁhin the particle-
is characterized by the dimensionless parameter.rNRU.» Adsorp-
. tion-desorption within the particle is representéd by ﬁRI, a
thermodynanmic parameter peculiarlto each speclies. Thils param-
eter contaiﬁs_an equilibrium constant, m, and the gquantity .
Ry. Ri is the ratio of moles of fIuid within the particle to
‘the moles of adsorptive sites within the particle. The quan-
tity By is directly related to the quantity Rp where Rg is

the ratio sf moles of fluid within the total bed to the moles
of adsorptive sites within the bed. The relationship between

these quantities is:

T Rp = (e/(1-€)B) o ()
The reason for noting this rélationship is that -the parameter,
mRq haslbeen noted in previous models and thé above relation-
ship serves as a uhifylng conceptrfor the new model-formul-
ation which follows. | |

w1th the above concepts in mind, the folléwing set
. of dimensionless equations has been derived#* based on the

assumptions which follow:

# See Part 12, Nomenclature, for definition of terms,
## See Appendix A for derivation.

e
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1

An interparticle phase mass balance:

e
: |
1)y . 2y . S |

An intraparticle phaéé mass balance:i

TA/LP oYy, 2 dy ¥y
) 522 - - 2 o

An adsorbed phase mass balance:

17 9% _ - ‘ -

| A thermodynamic relationship between the intraparticle
and sdsorbed phases:

¥¥ = m Xy | R (5)

Thé above equations are vzlid under the following assumpﬁions:
1. The colunn is isothermal.

.2./_The carrier gas veloclty profile 1s fiat.

3. The axial diffusion coefficient is a composite
faector which may or may'not have a turbulgnt
ébmponent._ |

4. The gas compésition is approximetely constant
in the radial direction at a given axial posi-

.. tion., The concentration gradieﬁt oceurs in a
thin boundary layer at the inter-intraparticle
‘Anterface.

5. The gas composiﬁlon within the particle is ap=-

proximately constant in the angular direction
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at a given radiasl position; the concentrationr.
gradient occurs only in a{thin boundar& layer
near the adsorbent surface. ' .

6. The adsorbent layer is so thin that there is
no diffusional resistance within the 1ayér in
the direction normal to the surféée.

' 7. The diffusivity in the adsorbent 1ayef 1= so0
small that there 1s no diffusion in the direction
parallel to the surface in the intraparticle
radial direction. |

'8, The‘net rate of adsorption for the carrier gag
is negligible. _

9; Only one component 1s adsorbed and its gas phase
| composition as a mole fracfidﬁ is small compared
to unity. |

10. - The carrier gas behaves as an ideal gas.

An applicable set'of boundary and initial conditions

are as follows:

Initial Conditlons:

¥y (z, 0) =0 | - (6)
¥i (z,4, 0) =0 | (?)
Xg (Zz,,L, 0) =0 (8)
Boundary Conditions:

y(0, 8) = Ag . | - (9)

[(p/e)a LiL/R) /Pe,) 0y, n = Nygo(y-y;)s when a=l (10)
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3¥4/dn =0 ; n=0 (11)

1im y(z, €) = finite o (12)
Z‘M_ ' .

- Phese conditions reflect a sample-free column at zero time,
a sample‘injected as an impulse, mass transféf between the
interparticle and'intrﬁparticle regions, ho concentration
gradient at the center of the column packing,-and noe end
éffects at the column exit.

For the systems under consideration it has beén
shown by Keba and Woodrow (1972) that inclusion of the par-
ameter Ntog 1s of minor importance. If one were to consider
the case of infinite rates of mass transfer, l.e., Nypg—~=
the coupling condition glven by equation (10) would be re-

ﬁlaced by
- Yj_ (29 '1v 9‘) = ¥ (Z' e) ' : (13) '

Tﬁﬁ#, a model in the form of a set of coupled,
partial differential equations is proposed. Prior to con-
sideration of the time domain solution of the equatlions, a
moment enalysis can be made to asoértain the predictive ca-
pabilities of the proposed model. This analysis is the subject

of the'next part of this investigation.



PART 3

|
|
MOMENT ANALYSIS OF THE INTER-INTRAPARTICLE

| ADSORPTION MODEL [

A, Theory and Background

i
]

An analysis of a proposed model can be made prior

to determination of the model's time-domain solution to

s ¥yield the gross characteristics of the impulse response of

the model, 1In addition, because of the poor predictions of

- previous models (Keba and Woodrow, 1972) with respect to

‘chromatogrem spreading, it ls deslirable to know the nature of

the response of the proposed model-for the-pulse—typé functions
which are the sample injections seenlin experimental work.

The nature of the respense can be characterized by statis-
tical quantities known as moments which may be obtained with-
out knowledge of the time-domain model solution. The moments
nay be defivgd'directly from the Laplace domaiﬁ solution of

the model. The following development will indicate how the

- moments of a model are obtained and how the analysis can be

-extended to give the moments of systems forced by general

pulse~type inputs.

The impulse response of the chromatogram may be
viewed as the residence time frequency distribution (Douglas.
1972). This quantity resembles the probability distribution
function which appears in statistioal enalysis. The moments

of the distribution function about ﬁhe time origin are defined

by tﬁe following:

15
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My = fe"r(e)de ff(e)de (14)
o o .
where ‘
- r(e) = the distribution function being analysed.

The denominator of equation (14} 1s the area under the function.
The relationship of the moments about the origin to the

Laplace transform is developed in Appendix B. The result is:

';jh = («1)7 11 Jif .[?(sﬂ lim T(s) “ (15)
- . S-b.o asn -0 )
where
: o | . 7
f(s) =X[r(e] £ j’e-se f(o)de (16)
4

Interest also centers on the moments about the
first absolute moment or mean, A,;. HMathematlically these are

defined byﬁ

O
f (e~ 4) f(e)de/ff(e)de s nt2 (17)

These moments about the mean A, are directly related to the
moments about the orlgin.— The relatlionships are obtained by
formal expansion of equation (17). Appendix B gives the rel-
étionship for n=2 and n=3. For néz, the moment ébout the
mean is exactly the variance of the response. For n=3, the
moment about the mean is related to the skew of the response,
One can use thé preéeding.to develop equations rela-
ting the moments of system responses for arbitrary pulse-type
forcing functions (sée Appendis B for details). That 1is,

given the system input data (the moments of which can Be-
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computed from equations (14)Aénd {(17)) and the syétem trans-
fer function (the Laplace transform of_the:imﬁulse response ),
the moments of the system response may be determined ang
compared with the moments of the actual output data. Referring

‘to the block diagram in Pigure 2, the results are:

Ay = Ax- Ag . - (18)
My =Mix + Mg | o - (19
May = lgy + figg | 1 (20)
My =Max +Fe | e

Equation (18) states that the area uﬁder.the output curve is
the product of the area under the input curve and the impulse
response curve, Equation (19) states that the mean of the
.output occurs at the sum of the mean of the input function
and iﬁpulse response. Equatidh (20) states that the variance
- of the outﬁut i1g the sum of the variance of the input function
and the vériénce of the lmpulse response. Equatlon (21) states
that the third momenﬁ about the mean of the output is the sum
of the third moments aboﬁt the means of the input funcgion
and impulse respons; respectively.

| This technique can also be used for estimating sys-
tem parameters. Douglas (1972) uses an equation similar to
equation (20) to estimate an axial Peclet number for a packed
" bed. Schneider and Smith (1968) apply moment analysis to es-
timate adsorption equilibrium constants, rate constants, and

intraparticle diffusivities for a chromatographic system mod-
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x(s)= X [x(8)] ; X(8) 1S THE FORCING FUNCTION

visi= Zlvwe] ; vie

6S)= SYSTEM TRANSFER FUNCTION

IS THE SYSTEM RESPONSE

FIGURE 2 TYPICAL SYS;TEM. BLOCK DIAGRAM
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eled similarly to that of Part 2. However, aqcurate paramn-
. !

eter estimation using this method is limited ﬁy the accuracy
of the data used for analysls.

: i
B. Application of Moment Analysis to the

inter-Intraparticle Adsorption Model

~ The previous section outlined =a method_which can be
uséd to analyse pulsed systems to determine the gross charac- _
terlistics of the systém response, This section will document
-an abplication of the concepts of moment analysis to the pro-
ﬁosed model of Part 2, |

Consider the set of ﬁartial differential equations,
boundary conditiohs, and initisl conditions, equations (2)
through_(lé). A-Laplace transform domain solution for the
impulse response or transfer function was derived and appears
in Figufé 3; details'appearrih Appendix C.

_Applying thé definition given by equation (15) and
using equation (17), the momeﬁts M4,y M, and M, are derived
for the impulse of the Inter-Intraparticle Adsorption Model.
The results are presentedrin Figure 4; details of the ﬁanipul-
ations appear in Appendix D. -

The parameters'PeE, Niog, and Pey can be estimated
& priori. The parameters mRp and Npy are not predictable a
' priori. Previous modeling analysis haé estimated mRy by a
curve fitting process (Benoit, 1971). The estimation of Ngpy
will most likely involve curve fitting also.

An analysis was made using existing single component
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PeE \/—EE + Y(S) PeE

]
m -

Y(1,s)

|
!
where: _ .
K(S) = NtOG(l - )\(S)) + 8
k(s) ‘= b sinh(J_')
) [(b-l)sinn(vri) + Vai cosh(J__ﬂ
2
-Ngy mRy 7 2
_ B
al(s_) - I:(S + Npy mRI) + Mgy + S] (.L)‘Peﬂ
'b' = rthOu
§§1 €)8 (
PGA
A . = Particle porosity
?fE ' = Bed foid fraction'

! Figure 3 Transfer Function for the ‘Inter~Intraparticle
: Adsorption Model '
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ML = 1+1/m80.+ (1-€)B/c |

Gp = 2(4)2/Peg + 2-[(1-)p/e ] | |
| .{(1 + 1/mRy)? [(R/L)? Pep/i5 + :(1—5)43/*5_1‘11:0(;]
T 1/NRUcmaI)?} : o

A3 = 6Mkly [Peg + 6 [(1-e)B/€] {2 [(1+41 /uR1)/Ngy(mRy)2]
- [(B/1)? Pep/15 + (1-€)BleNpog + (1+1/mR7)3
[((1-€)8/eNpog)2+ 2(1-€)R(R/L)ZPey/15 € Nyog
- 23 (R/L)“Peﬁ/slsj + 1/855 (mBI)B} |

Figure 4 Moments of the Impulse Response of the
Inter-Intraparticle Adsorption lModel
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data. The parameters Peg, Pey, and Nygg were estimated using
existing correlations. The values of mig which were estlimated
by Kebs end Woodrow (1972) using .simpler models wefe used and
the Npy was varied. Tables 1 and 2 give results of this anal-
ysis for acetone at 100 C énd ethylene at 50 C. . Both exper-F
iments used Chromasorb 102 column packing, a porous materlal,
In each case, the méments foruthe 1mpu1§e resﬁonse of the model
were computed using the equations given in Figure 4, Use of
system.inputldata'énd equations (19) through (21) give predic-
Itions as a function of Npy for the output moments. These pre-
dicted Valﬁés are compared with actuval moments of the output
data and with the predictions of the simpler, interparticle
equilibrium adsorption model. Expressions for the moments of
the simpler model were 1nitially developed by Voytus (1969).
‘Phe results indicate that the proposed model can
more cloéely predict the'characteristics of the output data
than the simpler, interparticle model. The results indicate
that a value of Npy on the order of several hundred will give
a predicted second moment very close to the second noment of
the output data, ‘This magnlitude of NHU is consistent with the
values of Npy which can be deduced from the independent research
of Schneider and Smith (1968). Tables 1 and 2 further indicate
.that matching of the thirdrmoments wouid give different values
- of Npy. However, the use of th;rd moments 18 not as reliable
because data inaccuracies are further magnified in the analysis,

- It should be noted that il one accepts the value of
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MOMENT ANALYSIS AND PARAMETRIC
STUDY - ACETONE 100°C. :

"(L/R)Z/PeA = 328;2

(1} Inter-Intraparticle Adsorption Model

— (1) (2)
mR0 M1, observed My .predicted My predicted
0,029 173.29 158,69 156,%9
" Mgy A3, observed ﬁz.predicted ’E‘-E, predicted ‘.
1060 815,67 977.55 B37.28
200 723,41 :
Loo 686,34
800 . 517.80
1600 483,53
3200 E66.40
6500 457.83
12800 453.55
25600 I L51.41 —Y
: NRU /ﬁ3, observed ﬁB,predicted Ej,predicted
100 25404,0 23162, 0 19499,0
200 - 20454,8
100" 19745.3
800 19555.4
1600 - 19501.7
3200 19485.1
6400 i6480.4
. 12800 19477.2
25600 1 19476.2 1
PeE = 8689.
Nyog = 88960. oo

(2) Interparticle Equilibrium Adsorptlon Model



MOMENT ANALYSIS AND PARAMETRIC

TABLE 2

STUDY - ETHYLENE 50 C.

24

i
|
|

- NtoG

(L/R)E/PeA = 436.2

(1) Inter-Intraparticle Adsorption Model
(2) Interparticle Equilibrium Adsorption Model

' - (1) (2)

Ry, A1, observed A1 ,predicted Aj, predicted _ 1
0.194 26,475 25,986 23,719 N
' NRU 4ﬁ2,ob9erved laé,predicted. ﬂé.predicted

100 7,024 13,283 0,388

200 6.973

%400 3.817

800 2.240

1600 1.451

3200 1,056
L6400 0.859
12800 0,760
25600 i 0,711 1

Yu  M3,0vserved  #3,predicted” M3,predicted

100 . 19,623 13.049 0.191

200 3.519 1

400 ~ 1,058

800 0.403

1600 - 0.21G

3200 0.163

6400 0,144
12800 0.137
25600 N 0.134 I
PGE = 9?41‘,’-

= 79750,
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Npy a&s being on the order of several hundred for each case,
all other parameters, excluding mRgy, are of the same magni-
tude., The key to the difference in the two'component behaviors

1s the parameter mRg.



PART &4
TERMINAL BOUNDARY CONDITION ANALYSIS

Mathematical modeling of chromatographic systems

commonly require solutions to equations of the form:
(1/pe)(§y/32%) - 3y/dz - Ry = dy/de | (22)

" Application of analytical techniques to the above equation,

when possible, commonly utilize the terminal boundary condition}
1im y(z,6) = finite; 6>0 ' (23)
Zvoo- . . o

Use of the above boundary condition in anélytical wofk yields
a gfeat desal of mathematicel simplification. In additlon, the
use of this bqundary condition is consistent with the theory
which has been developed for predictioh of the dispersion in
packed beds; see, for example, Gunn (1969). | '
_qugver, when numerical,tedhniquas nust be apblied
to solve equation (22) or any other model which defiles analyﬁa
leal sélution. the terminal boundéry_condition given by, eque.-
tion {23) must be replaced by a'tefﬁiﬁai boundary condition |
which is both computationally expedlent end physically mean-
ingful. A finite boundary condition which has found general
usage in chemical reaction englneering problems (Danckwerts,

i953).and (Wehner and Wilhelm, 1956) is:

dy(1,0)/6z = 0; €50 L (24)

26
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Bastian and Lapidus (1956) considered the case where R  in
equation (22) was an adsorption term. A 11ne%r relationship
was assumed to describe tﬁe adsorption kinetl%s. For a stepf
input and the conditions chosen, Bastian and %apidus showed
that finite column calculations, using equatién (24) as a ter-.

ninal boundary condition, closely approximated infinite column

'*_ calculations, using equation (23) as a terminal boundary condi-

tion,
/ The analysis of chromatograph systems for pulsthype
foreing functions has prompted consideration of the two terw
minal boundary conditions, The questlon arises as to how the
use of a finite terminal boundary condition affects output
prediction as compared to the infinite column case when the
system is forced by pulse-type functicns. It 1s desirable for
fhe two predictions of colurn outlet behavior (zzi) to be sim-
ilar so that the use of & priori estimates of Pe are valid in
conplicated ﬁodeis having the Jorm of equation (22).

Tn order éo answer the above question and to establish

the conditions under which a finite terminal boundary can be

used tb'jiélﬂViﬁfinite column behavior at the column-outlét%ww-hw:;:z

(z=1), two relatively simple problems can be considered:

(1/pe)($y/3F) - 3y/z - By = y/2e (25)
y(z,d) = 0; z>0 {26)
y(0,0) = §(e); ez0 (27)

,lim ¥(2,0) = finite; 6>0 o (28)
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and
| Case I1:
(1/pe)(Sy/02*) - 3y/3z - By = dy/0 | (30)
y(z,0) = 0; z>0. = | | - (31)
¥(0,6) = &(6); 620 2y
o0y(zy,0}02 = 0; ©>0, z 21 and arbitrary : (33)
Ry, =0 | | (34)

Case I conslders the impulse response of the simple,
one-dimensional, axial dispersion.convection model in an in-
finlte column., Case II conslilders the unit impulse response
of the.simple. one=dimensiocnal, axial dispersioh—convection
 modei with the finite boundary condlitlon. It is desirable to
determine fhe conditions under which the two responéeé are
equivalent., These conditions can be determined without resort-
‘ing to the compérisions of the analytical solutions for each
case, through use of_the method of moments. | _

At a dimensionless length of unity, the coluﬁn-out;

let, the Laplace transforms of the two solutions are#;

Case I: _ .
y(1,8) = exp[(Pe/2)-(ars]] (35
Case II:

¥(1,s) = exp(Pe/2) {{(Pe/2)+(arg)] exp[-(1-z5)(arg))
- [(Pe/2)~(are) exp[ (1-z,)(ara)])

{[(Pe/2)+(ars)] exp(z,(arg))
- [(Pe/2)-(arg)) exp(-zo(are))y  (36)

# gee Appendix E for details.
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where > :
: arg = \/(Pe/Z) + Pe s . (37)
Each respective output curve can be characterized
.by its mqmehts. Two moments are considered here - the first
_qoment about the origin and the second momenﬁ about the mean.
The first moment about the origin glves the tiﬁe of appesarance
of the mean of the output cﬁrve. The second moment ‘about the
\ mean gives the variance of the output curve. These moments,
as has: been previously noted in Part 3, are d;rectly obtain-
able from the Laplace transform domain-soiution. The general
relationships were given 1n equations (14) through (17). Us-
ing these relationships, the Case I and Case II transfer

functions were analysed to yleld:

Mip =1 - (38)
“ﬁ_ﬂzI: 2/Pe ' - o (39)

and -
Kln:z 1 é[éxp(—Pe.zo) - exp(Pe - Pe zo)] /pe  {(40)

_ﬁznz 2/Pe + exp(l;e - Pe z,) [4/Pe - ugo/Pe :
- 4/pe ] + exp(-2 z, Pe}/Pe
- exp(2 Pe - 2 z, pe)/Pe® (41)

'If one considers the 1limit of the Case II moments as z, becomes

.very large, the two results are equivalent, or:

20333 Mig = Mg = 1

and

1t

1im My = My 2/pe

Z0
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Table 3 summarlzes the results of parametric stud-

ies of the two moments considered for each case. The errors
in Case 1I versus Case I moments for zo=1 are signiflcant for
low Peclet numbér. The error diminishes with increasing Peclet
number, This confirms the qualitative conclusions of Friedly
(19?2)‘f0r high values of Pe. Table 3 also gifes the value
'\_ of z, which, when used in Case II, will yield 6utput character-

‘1sﬁics the same as Case I output characteristics. This ﬁeans-
that for a given Peclet number, application of equation (33)
at the noted z,, will yleld output characteristics at z=1 that

are, for all intents and purposes, the samé as those pfedicted

by Case I.
Table 4 presents some typlcal values of the Peclet

parameter fér-several systems, For chromatographic systems,
the range of the Peclet number 1is on the order of 5,000 to
15,000. Thus in this research, 1t appears that use of the
zero-derivative conditlon (equation (33)) at the column exit
will noﬁ,cause seriouis problems.

In conclusion, the comparisionlof the mean and var-

fance for impulse responses at z=1 for the two different bound-

. . ary conditions has yielded guldelines which are useful when

approximating iﬁfinite column behavior using a finite terminal
boundary condition. The use of the driterla for general

. pulse-type forcing functioné would yleld results wherein the
ébsolute errors bepween the twc'cases would be the same but

the relative errors between cases would decrease. The guide-
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TABLE 3

Cagse I and Case II Comparision Results

- Errors at z. = 1.0

e} .
Absoluts Helative Absolute Helative
Error Error,% Exror _ Error,%
Pe Hrr =ty (g -Hig ) Mg ) %100 Aax - Aam ((thy -Mon) /12 ) ¥AOO
2 0.4323 T 43,23 - 1,245 124,85
L 0. 2454 24, 54 0.3125 62.9
8- 0.1250 12,50 0.07813 31.2
16 0.06250 6.250 0.01953 15,6
32 0.03125 3.125 0.004883 “7.91
64 0.01563 1,563 0.001221 3.91
128 0.00781 0.781 0.0003052 1.99
256 0.00391 0.391 0.0000763 0.976
512 0.00195 0.195 0.,0000191 0.489
1024 0.00098 0.068 0.,0000047 0,241
2048 0.00049 0.049 0.0000012 0.123
096 0.00024 0.024 0, 0000003 0.0615
8192 0.00012 0.012 0, 0000000 0.0
Case 1 characteristics ¥ Case II characteristics
: Safe Zs Safe Z4
Pa (Mg = Mo Y (HMzp = Mzxx J4
- 2 _ 9.79 11,768 -
4 5.254 6,021
8. 3.043 - 3.328
16 . 1.978 2,073
32 1,467 1.490
64 1,223 1,222
128 1.106 1,044
256 1.050 1,002
512 1,024 1,00058
1024 1,011 1,0001
2048 1,005 1,00002
4096 1,002 1.000005
8192 1,001 1.,000001
# < 1078
('Mlx - Mln) - 10
-8
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TABLE 4

' Peolet Numbers for Four Typical Systems

Systen - Pe S Reference

Micro Gas Chromatograph Column 233 ' (Wilhite, 1966)
(Water in Helium) _ : ,

« Typical Gas Chromatograph Column 5622 (Keba and Woodrow,
{(Water in Heliuvm) _ 1672}
Typidal Gas Dehydrator 1777 (Lashmet, 1973)
(Hater in Helium)
Small Experimental Reactor - . 155 (Smith, 1970)

(50, in Alr)
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lines developed here should also prove useful for models in-
cluding other transport mechanisms (Rp# 0). When applicable
to more complicated models, the method of analysils hsed_here

will give more definite guidelines for each specific situation.



PART 5
ORTHOGONAL COLLOCATICN AS A NUMERICAL TECHNIQUL

A. Motivation for Study of Orthogonsl Collocation

The. complexity of the model formulation in Part 2
necessitates the application of numerlcal approximation tech-
nigues to effect solution of the system of partlal differen
tial equations. A preliminary study of the)widely prevalent
technique known as Finite Differénces has been made to ascer-
tain.whether or not this computational technique would prove
suitable and eflfective for solution of the type of equations
encountered in chromatograph system modelling.

Finite difference approximations have predominantly
been used in the analysis of partial differentlal eguations.
To obtsin numerical solutions to partial differential equa-
tions, one replaces the continuous variables with discréte
variables. The relaticns betweén these discrete varlables 1h
the method of finitéjdifferences are called finite difference
equations. The relationships are based on Taylor series rep-
resentations of the dependent varlable, The domains of the
independent varlables that are discretized fqrm a systeam of
grid points, Figure 5 éhows a grid representation for the
“transient analysis of a system with one sﬁatial independent
variable. The spatial dimension, 2z, is shown as being bounded
and the time Variable. 9, is shown ﬁith no particular bound.
The grid is a fixed grid; i.e., spatial discretizatlons and

time disbretizations are uniform for each domain. Note that

34
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the value of z, the continuous space dimension is given by:

z=1{az) o - !
where L refers to a particular spatlal grid point and Az is
the spacing between spatial grid points. Slmilarly, the

value of 8, the continuous time variable is given by:

e =j-(s6) |
where j refers to a particular time grid point and 48 1s the
interval between time grid points.

For parabolic problems (as is the casé for the sec-
ond-order chromatograph system models), the two-level impllclt
method known as the Crank-Nicolscn method 1s probably most:l
- popular and is well documented (Lapidus, 1962). In this method,
‘the following approximations are made for the first and second

spatial derivatives and the_first time derivative:
Vit 37¥4-1,5 Vi41=Y1.1, 341
2 (az) 2 (Az)

(5F/32113’“L

Yi41, j'zyi i1,y T, J412¥y 3+1+y1 1,341
(az)%  (s2)%

(aZY/ 62’) 3 J = ‘22"
(brl"/ae)ij == (yi,j+l - Yij)/(ﬂe)

.where the 1} subscript denotes a coordinate in the spétial
- domain and the j subscript denotes a coordinate in the time
domain. -

Preliminary studies have been made applying the

~ Crank-Nicolson method to the problem:
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(1/Pe) (8y/d22) - dy/dz = dy/de
y(z,0) |
y(0,8) = g(e); &0

0; z20

1
1

‘6y(zo;e)/be = 0; >0

Simulations were made with following conditlons:

1, g(e) was a triangulér-fype pulse of duration
0.01 and with unit area. This is gquite a sharp
pulse as far as typical chrbmatograph input
pulses are concerned, but it was used mainly in

_ ‘the interest of saving computer time.

2. The Peclet was fixed at 8,000,

3. Thé time increment, A€, was held at 0.0004

#5 . The response was studied at z=0.05. This is a
drastic reduction in the normal spatial coor;
dinate studied, but, again, this was in the in-

. terest of conserving computer time. '

5, The terminal boundary conditibn was applied at

A = 0.20.

o
6. The spatial increment, Az, was variéd in the

following sequence: .

0.0002, 0.0004, 0.0010, 0.0025
. For spatial increment valueé ofVO.OOIO and less, the simula-
tions were stable. However, when az was increased to 0.0025,
instability in the form of oscillation in the response was
exhibited. The very small AZ required is directly attributable

to the Pe value used. This instable 4z value is not gqulte as
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small as the value that is predicted by the stability of
Price, et. al. (1966)

The simulations for spatial 1ncrements of 0.0002, .
0.0004, 0,0010 gave reasonable results when compared to results
convolving @(e) with the analytical impulse resﬁonse. The
discrepancy between fhe analytic and numerioal:computations
appeared in the magnitudes of each response point - the numer-
feal results were on the order of 20% too low. This in turn
affected the areas beneath‘the response curve for the numer-
1cal results - all areas were on the order of 0.80 as compared
with the correct area of 1.0. The area under the analytlcal
response curve was 6.96 which is tolerable considering the
sharp input. This discrepancy in response area can be resolved
by adding additional parameters to‘fhe difference eguations

'to Yield an exact conservative relationship (Rogers, 1973):

the interval j to J+1

:E:yi 341 - 25?1 3

where N is the total nomber of spatial points. This analysis

[%yétem Input - System Output over]

was not performed because it was felt that the method already
suffered from a more alarming feature - the high degree of
‘SPatial discretization which is'necessary.for the largé Pé
:‘Values encountered in chromatographic systems analysis. Ex-
‘trapolation of the computing time required for the simulations
performed ylelds an estimate of one to two hours of compuﬁer

time (IBM 360/50, FERTRAN G) required for complete simulations
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over the space interval (0:,1*0+)* Thé time would naturally
increase when broader input pulses are used. Similar conclu-
slons on the use of finite difference schemes werelreported
earlier (Pfeiffer, 1972), _

Because of the high degree of spatial dlscretization
- required by the finite difference method and‘the subsequent
high cost of coﬁputer simulations, it was felt thatlfurther
pursuit of finite differencé formulations for problems sim-
11ar"tq the above was not warranted in this investigation and
that other technlques should be studieé'to deternmine 1if they
would be computationally more expedlient and desirable.

B. Theory and Backaround of Orthoronal Collocation

A recent text (Finlayson, 1972) has dealt with sev.
eral approximation techniques for the sclution of the differ-
ential equafions which arise in the analysls of transport
pheﬁomena. A group of approximation techniques has been des-
ignated the Method of Weighted Residuals (MWR). A subclass
- of MUR is the Method of Orthogonal Collocation. This method
has been successfully applied to several problems in the realm
of chemical reaction englineering., Investigators in this ares
include Ferguson and Finlayson (1970), Finlayson (1971),
Villadsen and Stewart (1967), Villadsen and Sorensen (1969},
_.and Villadsen (1970). The pufpose of this section is to pre-

sent a summary of the theory behind the method. :Discussion of

o 1nvestigations that concern general computational aspects will

follow in the followlng section.
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The Method of Weighted Reslduals éppréach to the
gsolution of partial differential equations starts w}th a rep=-
resentation of of the dependent variable, y, by a finite sum
of trial functlions P4. Aa}example might be:

¥(2,0) = g (z,8) + Z aj(8) Py_3(z) - (42)
where @,(z,8) is a functigﬁ‘which may be chosen to satisfy
one or more boundary conditions. The functiﬁns P,(z) are nor-
mally sﬁecified and the time-varying coefficients, ai(e), are
determined in a manner to give the "best" solution of the dif-
ferentlal equation. ‘ , | .

The next step in the MWR is to manipulate the differ-
ential equation such that one side, say the right hand éide,

" of the eqﬁation is zero., Then,.the trial functlion expanslon
is substituted into the left hend side. This substitution of”
the triallfunction expansion into the manipulated differential
equation forms what is termed the residual, Res. If the trilal
function weré exact,mthe residuai_would be zeré. In MWR, the
coefficieﬁts, ay{e), are determined by speclfying welghted

integrals of the residual to be zere; l.e.,

WJ (Res) av = 0; j=1,2, ... N . (43)

v .
The cholice of welghting functlons, wj.;determines

- what class of MWR 1s to be applied. For the general colloca-
tion method, the welghting functions are chosen as displaced
Dirac delta functions:

Wy = 5(; - 2z3): J=1,2, ... N (44)
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Substitution Sf'equation (44) into equation (43) gilves the
reéult of fo?cing-the residual to be_zé;o at é specified col~
location points. As the degree of approximatfon iz increased,
the residual will forcéd to.be zero at an 1nc£easingnumber
of peints in the spatial domain and the triallfunction should
converge to the true soclution wlthin a gliven accuracy.

Within the class of collocation methods is the sube
vdlass of orthogonal collocaﬁion. The d;stinguishing feature
of this method is that the trial functions, Py(z), are chosén

as orthogonal polyncomials defined by the followlng relatiohship:
. o
ﬁw(z) Pi(z) Pj(z) dz = Clgij 7 _ (45)

B -
where E1,1ﬂ ié the interval of orthogonality, w(z) is a pos-
itive weighting function on [%,ta. Cilis a scale factor, and
éij is the Xronecker delta, The group.of poiynomials defined
7, by equatién (4&) is said to be orthogonal onlthe 1nterVaIEa,ﬁ]

with respect to the weighting function w(z).
| he N collocation points are chosen as roots to
Pylz), which is the polynomizl of the next highesflorder in
the trial function expansion, the highest being PN-l in equa-
tion (42). The basis for choosing the roots of the polynomial
as the collocation points instead of equlidistant points in the
interval of interest can be found in the theory of polynomial
.linterpolation. Several results, as documented by Lanczﬁs (1956)
are summarized here:

1, Polynomial expansions are justified due to the
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fundamental theorem proved by Weiersfrass in
1885 which establishes that any continuous
function in a fintte interval can alﬁays be
approxirated to any degree of accuracy by
flnite power éeries.

2, The Welerstrass theoreﬁ does not imply that an
approximét;ng polynomial can be-obtained by us-
ing equidistant points. This behavior was stud-
‘fed by Runge in 1901 who sghowed that equidistant
interpolation of some very simple analytlcal
functions could in certain regiéns yield very
erroneous results which did not disappear with 4

‘1ncreased points; 'Thls behavior is termed the
'"Ruﬁgé prhenonenon.” _

'30 The difflculties ﬁhich occur with equidistant

- interpolation disappear when the zeros of the

first neglected polynomial in the polynomial

approiimation are used as the interpolatlion
points, However, this introduces the need to

know the roots of the particular polynomial,

C. General Cbmputational Aspects.of Orthomonal Collocation

The solution of parabolic partial differential
'equations usihg orthogonal collocatlion requires several steps
which are independent of the particular equation under con-
gideration, This secﬁion presents two formulations which are

theorstically equivalent. but which differ 1n computational
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and coding advantages., The first formulation, although some-
what more complex I_‘rom & coding point of view, will be éhomﬁ
to be superior for computations. | | | o

A trial function has been proposed, Finlayson (19?2,
p. 105), for second order systems on the spatlal 1nterva1 [0,1] .

For transient analysis, the trial function is of the form:
v y(z,8) = £(e) + g(e) =z + 2(1-2)21 ag(e) Py_1(z) (46)
, | =

The above equation has N+2 unknowns: The functions f(e), g(e),
and ai(e) e 1I=1,N, Thése are determined by the boundary con-
ditions at z=0 and _z=l and by performing collocatlon at the N

roots of PN(z).. Thus one has a set of"N-i-z points:

zy =0

Zee= 1 |
and {zj}; j=2, N+1; the roots of Py

How, if one were to constiuct the approximate solu-

tion at these N+2 points, a matrix zquation would result:

.5’(21'9) 1 [1 zy  21(1-z{)Py(2y) ...zl(l-uzl)PH(zl)' HCOR
(22.8) | |1 zp  2p(1-22)P0(22) +..2a(1-23)E, (22)] |&(0)

. =|. . . L ay(0)|  (47)
y(zr.lee) 1 :'ZN-t-l zm.(l"'zn:|)P0(znaﬂ) "'zbﬂ(l-zu.ﬂ)PN‘l(Zl!H) .
7(zn4200)) |1 2p42 %2(1'..2“,1)130(?,“,_) e oo g, 1wz, 0B (2,)) ‘a;](e)J

Now define the following guantities:



| v(z1,6)
y(329e}

teg
o>

(48)

y(zi+1,6)
¥(2y40.8)

-

120 oz (l-zy)Bglzy) oo 23 (1-23)B (29)
‘1122 20(1-25)Pg(20) oo 23(1-25)F,,(25)
: - (49)
1 Zyy1 Zu(1=200P0(5,) «ov 2,(1-20B.(2,)
1

ZN+2 zm( 1 "zrl+2 Pyl zm) v zmz( 1;2,;*1) Pﬂ-l( e )_

li
-

[ £(e) |
&(e) | o
8y (6) - T (50)

Y
>

"a§;9)

Use of equaﬁions (48), (49) and (5C) reduces eguation (47) to
_the more compact form: '

y=Rf . (51)

The spatlial derivatlives may be expressed in a similar forms:
ayfez =R £ S (52)
3y/dz* = R2 £ | | (53)
. Where i _- | ‘
¥y(z,,8)/ 2z
2y(2z,,8)/02
ez = . o | o (5%)
b}’(Z,;H,G)/éZ -
0¥ (2,,»0)/02]
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Ny B (58

0 (2,00 0)/ 022
b‘y(z,:,z,e)/oz{

R g0 = 0; st

B 4,2 =1; §=L,N42 . | - (56)
[ 4,1 = z5(1-zg) apy_5(zy)/az
) - + (1-2z,) P, _of ; 3=1l, N+2
(1-22) Bupleg) 5 g g
and
[R2) 51 = Ry, =0 g=1,m2
[ﬁé]a g = 23(1-23) dZPi_B(zj)/dzz _ (57}
| + 2(1-2z4) APy _s5(zj)/dz o
- 2P1‘3(ZJ) | H j:l,N-E-Z

iI=3,N+2

The time-varying vector f may be eliminated from equations (%2)

and {53) by premultipling equation (51) By the inverse of R,
1 ' ‘

72: . OT |
=gy
and
a?/bz = Rrly - ':: - (58)
R2rty | (59)

SE/&ZZ =

Equations (58) and (59) thus yleld expressions for the first
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and second spatial derivatives at the N+2 points in terms of
‘the solution at the N+2 points.

Alternative to the formulatlion of above is a form-
ulation which is presented by Finlayson (1972, pp. 105-106).

Expansion of equation (46) yields an (N+1) order polynomial:

_ : N-+1 . '
y(z,0) = r(0) + %%i a(e) 2+ . (60)

Writing the approximate solution at the N+2 points ylelds a

matrix equation similar to equation (51):

y = a4 - - (61)
where: - T
1' 21 212. ces 0 zlf-l.l
' 2 N+1
1 22 22 * e 22 .
Q &0 . . | o (62)
. - . 7 02 N+l ' .
LoZgiaZereee Zhaa
1 ' 2 N+l
Zne2®ie20 0 P42
f(e)
1 d5(e)
ds(8)
2
a &| ¢ (63)
| 4,(0)]

The first and second spatisl defivative vectors can be wrlt-

ten asy
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oy/oz = QL & (64)
/7 = @z a (65)
where: ;
. . 1;2 ‘I ' :
QL = (1-1) 2z s J=1,N+2 ; (66)
[] 31 3 | ‘£=1,N+2 o
Ry = )(2) 2,0 gz (67)
: =1 WN+2

As 1ﬁ the first formulation, the time-varying vector, 4, may
be eliminated from equations (64) and (65) by pre-multiplying
equation (61) by the inverse of Q, 971 Tr:

ad=gty
and
g = ~qgly L (s
Sylazt ‘ég_ggl ¥ | o — - (69)

Thus, equations (68) and (69) gilve expressions which are 1drri-
tical to equations (58) and (59). The matrix productggg.gzl
is equivalent to &l ggl énd gg_g;i is equivalent to gé 2;1 .
Since the computations of Q, Ql, and Q2 only requlre Xnow=-
ledge of the collocation points and not knowledge of the par=
‘ticular polynomial coefficlents being considered, one might
'-conce1Vab1y prefer the second formulation. Both formulations

require the computation of the inverse of an (N+2) square

matrix.
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Computationally, 1t 1s desirable for the matrix

-being inverted to bes well-condlitioned with regspect to inver
sion. An analysis was made comparing the 1nversl§n qualities

of the matrices R and Q. The ease of inversion is measured
by the condition number of R and @ respectively and with the
.numﬁer of decimal diglits which aré left unchanged folléwing
. iterative improvement of the initial Gauss-Jordan reduction ,
of each matrix. Stewart (1973) discusses the problem of 1ll-
conditioning and the use of 1lterative improvement in matrix
inversion. Table 5 compares the inversion characteriéticsrof
g;and g;for increasing N. The condition numbers cited are
lower bounds on the true condition numbers relative to the

I norm#. .Appendix F shows how the lower bound and upper
bound on the condition number is computed. Except in the
analysis of § for (N%é) 2 22, there were no practical dif-
ferences in the lower and upper bounds, o
| Table 5 indilcates that the matxrix R is well-conditioned
with respect to inversion using the double'precision word
length available on.the IBM 360/50 computer. In all cases,

. the computation of the product §=§:1 yielded a matrix whose

off-diagonal elements were less than or equal to 10"16. The.
“table also shows the progressivély poorer conditioning of Q

- with respect to inversion, The (26 x 26)_casg is so 111~

# the Lj norm of an (n x n) matrix & is defined as:

n

Ly norm(A) = m%x E%i |A131 ; =1,2, ... n
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TABLE 5

Comparision of Condltioning of R and 'Q
Matrices with Respect to Inversion !

|

Matrix Size Lower Bound IDGT# ' Lower Bound IDGT#

on Condition of R B on Condition of 9 <
(3x3) 0.120 x 100 15 0.240 x 100~ 15
(4 x4 ) 0.328 x 102 15 0.149 x 107 1
(5%5) 0.739 x 107 15 0.944 x 10° - 15
( 6x6) 0.142 x 10° 15 0.5 x 10t 14
(7x7) 0.243 x 10° 15 0.366 % 10° 14
(8x8) 0.384 x 10 15 0.225 x 16° 13
(9x9) 0.570 x 103 15 _0.133 x 107 13
- {10 x 10) 0.812 x 10° | 15 0,840 x 107 R &
(11 x11)  o0.111 x 10¥ 15 0.500 x 108 11
(12 x 12) 0.148 x 10% 15~ 0.309 x 107 11
(14 x 14) 0.244 x 10% 15 . 0,112 x 10! |
(18 x 18) 0,545 x 10 15 o.1b45 x 10M% 6
(22 x.22) 0.103 x 10° 15 0.177 x 107 2
(26 x 26) 0.179 x 10° 15 0.907 x 108 O%s

# IDGT is the approximate number of digits in the inverse which
were left unchanged after iterative 1mprovement
## There was no convergence in the iterative 1mnrov§@e The
-upper bound on the condition of g wag 0,202 x 10 based on
the "best"_g- .

HNote:s Subscripts R and Q on IDGT refer to inversian of B and

Q respectively.
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conditioned that 1nversion using the aVailable computer 13
computatLonally 1mposalble. Based on condition numbers and
accuracy, either formulation is acceptable foL (N+2) & 5;
while for (N+2) > 6, the first formulatlon is Preferableo

It should be noted that Finlayson(lé?z. pP.35)
alludés to this problem but the ccmment is gquite qualita-
tive and somewhat obscure: -

"The orthogonslity of the polynomials

gives computational advantages, although the

_— same approximation can be expressed in terms
of powers of x, 1f the computations can be

done accurately enough®,

The preceding analysis used the rocts.of the so=called
shifﬁed Legendre polynomials. These are defined by eguation
(45) 4f one lets a=0, b=l, and w(z)=l. The polynonial coefa
-ficicnts were computed using the relationships of Villcdsen
(1970}, PFigure 6 shows the behavior of the first four of
these polynonials. The roots were computed'by;shifting the
abscissas frcm GauSsian guadrature formulae, avalilable in
Abraemowitz and Segun (1965), Love (1966), and Stroud and

Secrest (1966),
Although most of the problems solved by others use

ing orthogonal collocationrhave not required over 12 collocation
points, the results of this section point out a computation
-disadvantage of the second forﬁulaticp.whichwappears at a
L'fairly smell degree of discfetization and gets progressively
worse, The first formulation requires some additional infor-

mation but succesafully circumvents éhe.pfOblems inherent in
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the second formulation. Of course, the precision capabllities
of the computer used for computations must be taken into
acocount also.

In addition, these remarkslcarry over into problems
where i1t is chosen to use polynomials in the.squared spatial
dimension. For example, a trial functlon Whicﬁ has been pro-

‘ posed for solution of a catalyst modeling problem 1s:
N :

7(7,8) = h(8) + (1-1%) 121 a4(0) Py_1(a?) (70)
where h{(@) 1is determined by the Boundary condition at A=l
and the boundary conditlon 3y(0,0)/dn =0 1s satisfled by the
trial function. Subseguent expansion and formulation at the
respective collocation points ylelds a matrix to be lanverted
end the procedure of reteaining polynomials within a coefficient

 matrix similar to B 1s favored over a formulation ylelding a

matrix simllar to @ for the reasons previously listed,.



PART 6
"APPLICATION OF ORTHOGONAL COLLOCATICON TO A
TRANSIENT, DIFFUSION~-CONVECTION MASS TRANSFER-
PROBLEM
_ - The use of orthogonal qollocétion as a technique
- for solution of pulsed, distributed systens, the'chromatograph
| system being only one such system, 1s an area ﬁhich has not been
‘ documented in current literature. Because of this lack ofcoone
- tribution in this area, guidelines for effective use of this
methéd must be established and documented.
In this section the general aspects of orthogonal
collocétion enumerated upon in the previous section will be

applied to solve a simple, transient diffuslon-convection mass

transfer problem:

(1/pe)(By/oz%) - dy/dz = dylde ()
7_‘,,7y(2.0) = 0; z>0 / (?2)‘
y(0,0) = g(e); 620 | (73)

.6¥(2099)/éz

0; €0 ) (%)

‘_‘Motivatiﬁn for the study of this problem 1s several
fold. First of all, the problem has a direct analytic solution,
therefore giving a result useful for comparision. Seﬁondly._

" the problem possesses chéracteristics of ﬁore conplex models.
Thirdly, successful application.of orthogonal. collocation

should give guldelines for subsequent applications,

53
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The preceding analysis has been conductéd based on
a spatial interval of [0,1] as the interval of orthogonallity
for the orthogzonal polynomials in the trial funotioﬁ expansion.
Howevef. as vias shown in Part 4, application of boundary con=
dition (74) should be made at some point z, which should be
different than unity depending on the value of the Peclet
R number. To avoid deritation of additional polynomimls orthog-

.onal on the interval [O.zo] and the detgrmination of the required

roots, the mbove problem may be rescaled in the spatial domain

by the following change in variable:

ZNEW = (1/20) Z
Therefdre

(1/02) = (1/2,) (1/dzgpy) . (75)
(1/32)% = (1/24)% (1/dzyey)° (76)

Use of equations (75) and (76) and deletlon of the subseript

WNEWY yields the rescaled problem:

(1/p0)(1/25)2(8y/32%) = (1/2,003/0z = A6 (77)

y(z,0} = 0; >0 . (78)
y(0,0) = B(6); 020 | (79)
d¥(1,8)/8z = 0; €70 . (80)

Where one was concerned with the dimensionless length of unle

ty in the old coordinate systém. one is now concerned with
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the dimensionless length of (1/zy) which now corresponds to
the outlet of the bed.
As a variant of the favored formulation of Part 5,

one may represent the solution at the N collocaetion points,

[z2, zws1] + ass

[y(22 ,8) (i | -zz
- = {.leey+ |+ | ale)
~Y(ZN;1-9) ,i z_1:2+1

‘rzz(l-zz)Pb(za) cee Zp(1lez5)Py 4 (25) Fal(e)-

+ | . th- : . (81)
| ml(l“ ;m)P (z l). R zm(l"zﬂ:l)Pl‘f—l(zM)J [_aNze)_

Formulstion of the problem:in thls mannér reduces the size of
the mhatrix which must be inverted from (N+2)X(N+2) to ﬁxﬂ, al-
though iﬁcreasing the coding effort. Application of eguation
(81) to the ébove problem réduces the distributed system to a

set of N ordinary differential equations repfééented by:

=¥ (z-16e)); x0)=0 -~ (82)

HManipulative details and full matrix definitions for this
-problem are provided in Appendices G and H. It should be noted
‘that the function, w(z}. which appears outside the summation

' 8ign in the general triasl function (Appendix G) has been taken
ag w(z) = z{l-z) as ﬁreviously seen in equation (46), This

specific form 1s used exclusi#ely in this investigation for
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all of the interparticle approxlmatiohs. However, one might
possibly specify the form of w(z) relative to ﬁhe types of
polynomials used. That is, for a given function w(z), one

!
might apecify the polynomials such that the columns of the

NxN coefficient matrix in equation (81) become;orthogonal.
Thus, one would be taking advantage of the orthogonality
properties of the specific polynomiasls rather than usihg an
arbitrary polynomlal set., For example, if one used w(z) =
z{(l-z) in the trial function (as is shown in equatlon (81)), -
the columns of the NxN matrix could be made orthogonal by

defining the polynomial set by:

1

fzz(l-z)zPl(z) Pj(z) dz = ciélj

©

The inner products bf the matrix columns would represent the
discrete form of this integral.

The merits of utilizing the orthogonality propertieé
“of the specified function set has not been established. As
will pointed out 1in Parf 9, Discussion, the undertakingJof such
a study re@uires computing capabilities (precision) to deter-
mine roots of pblynomials,which may be “uncommon" and not
tabuliated to a larée number of éignificant figures. For these
reasons, the choice of polynomials 1n this inVestigation was

- dictated by the avallability of the high precislon roots.

An eigenanalysis# of the matrix W in equation (82)

#A computer program listing 1s given as part of Appendlx H.
This program performed all the manipulations and computations
documented in Appendice& G and H es well as the elgenanalysis.
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was maﬁe for Peélet nunbers of 1, 10, 100, 10@0,‘and 10000, .
The number of collocation points, N, was Variéd in the se-
quence 3. L, 7, 15, and 21. The shifted Lege%dre polynomials
and roots were used in the analysis. The val&e of za was
held at 2.0 for all cases.

For all cases, the eigenanalysis ylelded eigenvalues
with negative real parts indicating a stable set of ordinary
differentiel equaéions. - This result contradicts the-results
obtained earlier (Woodrow, 19?3).f6r Pe=1, The difference
between the analysis lies in the sequence of manipulations
_and computations made in arriving at the matrix; in this paper
H, to be énal&sed. Although the approaches are egquivalent
theoreticailj. the compﬁtations produced different, The approach
~detailed in Appendix G is therefore favored.

| _While stability is indicated by the negative real
parts of the)eigenyalﬁgs; an oscillatory behavior was indl-
cated by the presence of 1mag1narj parts for a majority of -
the eiggnvalues in each case. The magnitudes of the lpagi-
nary parts 1ncreased wlth increasing Pe. Therefore, it was
reasonable to expect that simulations using the orthogonal
collocation technigque would exhibit some degree of oscilla-
' tion depending on how the modes of'the matrix, W, were
~ coupled., |
| Various simulations have been performed for this
problem. Table 6 sumarizes.the different cases considered in

this investigation. The method by which the set of differential
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TABLE 6 ' j

Summary of Orthogonal Collocation Slmulations :

for the Translent, Diffusion-Convection Problcm
g(e) =<?n1t rectangular pulse of five times duratioé}

Pe N_ Fipgure Reference Lxecution time#
32,0 3 Figure 8 S ks
32.0 7 Figure 9 ‘ 1b2.05
32,0 15 - Figure 10 116,32
10000.0 . 15 Pigure 12 . 301,62
10000.0 21 Figure 13 . 891,10

g(e) z{Actual input data, Figure 14}

Pe- N Fipgure Reference Eiécutiéﬁwﬁiﬁe*#
10000,0 3 Figure 16 (535250
10000.0 7 Figure 17  57.10
10000,0 15 Figure 18 . 419,25

~ # Double precision computations using FERTRAN G on IBM 360;50;
integrat._ons terminated at ten time units,

##Double precision computations using FERTRAN G on , IBM 360/50;
integrations terminated at twenty time units.

Note: For all cases Zo = 2.0; responses for all collocation
points outputed at each time increment.
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equatidns was solved is based on an extrapolation treatment
(Bulifsch and Stoer, 19665. This algorithm appears in arsub-
routine (DREBS) which is part of the IMSL scientific gubrou=-
tine library (IMSL, 1973, p. DREBS) currently avallable on
Rensselaer's IBM 360/50 computing facility. The.computations
were mede entirely in double precision using the FYRTRAN G
_compiler. Table 6 shows how execution time for the'simula-
tions was affected by N, the number of collecation points..
The method used to integrate the equations is not
too well known. In their paper, Bulirsch and Stoer showed
the superiority of the extrapclation treétment over a Runge-
Kutta and Adams-Moulton-Bashforth.ﬁethods; & comparision was
nads between the subroutine DREBS, the IBM SSP (IBM, 1968)
subroutines for a fourth order Runge4Kutta and Hamming Predice
tor-Corrector method, and a simple Euler Method, The com-
parision was based on the N=3 simu;ation for this system. Ior
the same error criterla, it was found that the Euler method
wag significantly slower than the extrapolation_treatmént and
while the Runge-Kutta and Predictor-Corrector methods used a
larger step size than the Euler step slze, the ste§ wag still
much swaller than the extrépolation treatment and hence vas
_computationally_slowero This result égreés_with Buiirsch and
Stoer foxr the prdbleﬁg that they considered.
| ﬁlthough the eigenanaiysis indicated that the systen
of ordinary differéntial equations was stable, a closer exam=

ination (mede near the conclusion of this investigation) of the.
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computed eigenvaluss indicated that the system became inereans-
ingly "stiff" with increasing approximation order, Table 7
shows this behavior and the behavior as éffeéted by Peclet
'_number; The parentheslised ratios ere the absolute value of
the largest eigenvalue real part to the absplute value of the
smallest éigenvalue real part. The result of the indicated
‘g‘divlsion is shdwﬁ Seneath eac§ ratlo. Uéihg these ratios as
measﬁres of stiffness; one can see that the equation set 1§
"stiffer for low values of Peclet number and hence a smaller
1ntegrétion step is reqﬁired when the large eigenValue-responsé
~ mode contributes to the solution. This would have the“effect
of increasing computation time with low Peclet number for{;
given order of discretization. This deduction 1s consistent
with the increased computatlon times for the low Peclet number
versus fhg high Peclet number simulationsvfor the unit rec-
tangulsr forcing pulse (see Table 6). SAlthough-the Bulirsch
and Stoer extrapolation technligque nay not be particularly wéll
sulted for the "stiff® system, it ﬁas used as the method of
integration. In retrospect, another algorithm might have been
better - perhaps a variable.order Adams method (Hull gﬁ.gl..
1972). Within the IMSL 1library, the subroutine DVG@ER (IMSL,
1973, p.DVGPER) using Gear's implementation (Gear, 19?1@.1971b)
~ would be a likely candidate for use. This situatlon could
form an additional area of analysis - whether orthogonal col-
1ocation‘appf6ximaticns produce, in general, stiff ordinary

differentisl equation sets and what integration algorithm can



TABLE ?7

hY

Largest to Smallest Eigenvalue Ratlos for

the Orthogonal dollocatlon Discretization

of the Silmple, Diffusion-Convection Problem

6l

N. Pe
1 10 100 1000 10000
) 22.26 .48 1. 1.46
3 (2223 28) #20 G2E G (-8-5)
=17,k = 2.92 =1.63 =1.63 =1.63
L4, 1 10,4 2,57 3,30
7 ( 1 28 (2 52) { 0.95) (0 5?) (0 53)
= 274 =17.6 = 11.1 = 4,53 = 6,2
| 59740 639.8 o .0 18.0
5 (22 (3455 Py R 5 R
T = 4700.0 = 236.0 = 36.5 = 40.3 =127.1
o 2892.9 2272 | 0.2 8l. 4.9l
2 ( ( ) (2§f3§) (Ifﬁg—) (—6*%5)
= 17100.0 = 840.0 = 82.0 = 81,5 = 136.0

Ratios are ( maxllreall / minlhreal‘ )

where TRA's are the eilgenvalues of W in

F=H(y-1 g(e))

o
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' be used most effectively for simulation-pnrposes.

Bacurning to Table 6, the first setéof cases involves
“the use of a unit rectangular pulse of five tiﬁs units dnra- -
tion as the forcing function, g(e). -Within tgis first set
of osses. the Peclet number‘was get at 32. The exact responss;
computed by convolution of the impulse response with the input
is glven in Figure 7. Figures8, 9, and 10 show phe orthogonal
‘¢ollocation approximations to the response for 3 7, and 15
collocation points respeotively. Note that all responses are
| for z=0.5 and zbuz.o. Hence, the responses correspond to the;
behavior at the bed outlet. This is a oonvenient scaling of
the problem because for the odd order approximations used and :
the shifted Legendre polynomials, the point z=0.5 1s always
s-root and hence collocatilion point; The response for 3 col-
location points shows seversl objsctionable oscillations oomni
pared to the exact solution, although qualitative charaoter-
istics are well spproximsted, The response for seven oollo-‘”
'cation poimts exhibits several osclllations of much smaller
smplltude and duration and the exact response 1s increasingly
wall approximated. The response for fifteen oolloostion
polints 1is very olose to the exaot response and, within the
accuracy of the plot, is virtually ldentical. However, the
digltal response did show small osclllatlons when the response
*"ghould have been" zero.

- Subsequent to the studies for Pe=32, it was declded

to use a Peclet number more representative of the magnitude



y(05,9)

0.20+

0.08t

0.04+

0.0.

 SIMPLE MODEL

 Pe=32
- z=05
24220
- T=50

- EXACT RESPONSE -

-0.04

FIGURE 7

€9 -



o e e At opepei-ann i

y(05,6)

- 0.0

S 0.12

0.08 +

0.04+

COLLOCATION RESPONSE
N=3

Pe=32

z2=05

z,=2.0

T=5.0

-0.04

. FIGURE 8

9



| A . GOLLOCATION RESPONSE
0.20f“ N=7 .
| Pe=32
0.16 L | 2=05
| 24=2.0
'T=5.0
o 0.12+
¥(05,8)
0.08+
- 0.041
0.0 = : ! ' - :
- .0 2.0 3.0 4.0 80 9.0 10.0.
1-0.04+ B
FIGURE

$9

[



FIGURE

10

\'-‘; .
0.20+ ' N=1§
- i | Pe=32
0.164+ z=0.5
25,520
- 0.124 T =5.0
y(05,0) |
0.08+
0.04+
0.0 . 4 - : | N : :
lo 20 30 40 50 60 7.0 80 9.0 10.0
-0.04+ K

COLLOGATION RESPONSE *

99



67

' cncountered in the chromatographlc system. namely Pe= 10000,
Figurc 11 shows the exact response, With the large value of

Pe, the character of the parabollc'partial differential equa;
tion becones 1noroasingly hyperbolic. The exact response 1is
effectively the translated input pulse with the corners slightly

rounded and dispersed.. The orthogonal collocaticn approxi-

. mations to the éxact response are glven in Figures 12 and 13

for N=15 and N=21 respoctivelyr- Both'approximations exhibit
| numefbus ﬁodérate émplltude oscillations. This shows‘the dif-
ficulty that the orthogonal collocation technique has in approz-
imating functions with sharp, almost discontinunu;behavior.
For this situation, a high degree of discrctization would be
desirable. An attempt to;generato collocation matricec for a
. _thﬁﬂw ~-first order simulction wasg madc; This attempt was not

" successful because the matrix w showed 1nstability in the form
of positive eligenvalues, Thls result, which would oompletely
revers-? the ‘trend of convergence to the solution with 1ncreas-
ing N was attributed to accumulated round-off errors in eval-
uation of the coefficient patrlx because the required prcci-
. 8ion to carry the higher order polynomlal coefficients becomes=
greatef than the precislion capabllity of the computer bcing
used (IBM 360/50). | | | |

Upon discovery of this teakness of‘the orthogonal

" collocation technlque and the computational constraint of the
IBM 360/50. effort was directed to uselof_a "less" sharp

foreing function in conjunction with the high Pe value. :The.
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_chdsen forcing function was actﬁal chfomatosraph input data |
(normalized with respect to the dimensionless time, ©) shown
in Figure 14, This input data corresponds to an injected
Pentane sample at 150 C. studied previously (Keba and Woodrow,
1972). This forcing function is used for the gebond set of
cases listed in Tabla 6., The exact response,;égain computed

- by convolution of the'impﬁlsé.response with input is shown

in Figure 15. Flgufes 16, 17, and 18 show the orthogonal col-
1ocaﬁion epproximations to the exa@t response for 3, 7, and.
'15 collocatlon pointé respectively. For purposes of numerical
integration, the input function was interpolated using cublc
spline functions. Another IMSL subroutine,_ICSlCE {IMSL, 1973,
o ICSlCE), was uged to compute the interpolation coefficients.
~Again, all reasponses shown are_for‘z#c.5 and z5=2.0, The
result for N=3, Figure 16, exhibits an osoillatory behavior
éﬁd givesma_goo¢ éualitative fepresentation of the true reéponse.
The result for N=7, Figure 17, exhibits a betler approximation
'with reduced oscillations. The resuit for‘N=15. Figure 18,
éives virtually the same result as the exact. Agéin. oscila

' Alations'afe.still present in the digital results but are of
very small magnitude,. | -

The preceding results offer several conclusions as
to-éhe usefulness of orthogonal coliocation for the systenm
under consideration: | t

: 1, Orthogonal collqcatlon greatly réduces ﬁhe degree

of spatial discretization required for numerical
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stability ag conmpared to a finite d%fference dis-
eretization. : S ! |
2. High values or Péc1ct numbér cogbined with ve%y
sharp forcing functions;ﬁi.g., recténgular‘pulses;

. require a degree of approximatioh_which may .become
limited by computing capabiiities._

3. The use of smoother pulses in the cases of high
Peclet number allows a vsrf'good result for N=15

and a very reasonable result for N=?;



| | PART 7
APPLICATION OF ORTHOGONAL COLLCCATION TO A
RATE OF ADSQRPTION LIMITED INTER-INTRAPARTICLE
MODEL ,

Subsegquent to the studles of.the p%evldus‘segtion,
attention was directed to applying orthogohal.éoilocat;on t§
a model which was more complex and which mightlbe used, under
ah~certain conditlons, as & viable model for a chrématoéraphic‘
systém with porous packing material. If one cpnsiderslthe
1ntef-intraparticle model represented by equations (2), {3),
(%), and (5) and considers the case where Ntda*¥>and PeA——;O,

the féllowing model maey be deduced (see Appendix A){

(1/Peg)¥ y/2z* - 33/dz - Ngyly-y*) = Sy/se - (83)
(1/87)3x,/00 = Ngy(y-y*) (e
- : y* =m Xo | | ; IR 3 '_(85)‘

For analytic solutions, the applicable initial and boundary

conditions are:
\

y(z,0) 5:0; z>0  - ) o (BSi

Xg(2,0) = 0; z>0 L (e7)
y(0,8) = &(0); 620 - (88)
zligiy(z.e) = finite; €>0 o (89)

Equations (83) through (89) form what is termed the Rate of

Adsorption Limited Inter,Intraparﬁicle Model. For purposes

78
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'ofAnuﬁerical solutlion, the terminal boundary condltion,
equation {(89), is replaced by the finite terminal boundary
condition previously applied, -And the forcing function;
J(6), 18 replaced by a finite width pulse, ¢(e)

This model is mathematlcally equivalent to an 1nter-
particle with finite rates of maSS'txansfer_which was prq_
. Viously considered {Keba and Woodrow, 1972). By andlogy, the

Laplace transform of:the tine domain response 1is (coluﬁn

outlet):
¥(1,8) =.y(0.s) éxp [(Pés/z) - arg]

where

+ Npy(i-mRy )]

~From equation (88), y(0,8) = 1. Substitution.and inversion

gives the init impulse response for the model.
y(1,8) = o (¥; + ¥p)

-

" vwhere: .

o = (%) 4/(Pep/rr) -'exp(PéE/Z)-exp(-NBUmRIe)'

| jl (1/1/ ¥ ) exp [—(PeEﬂ-&G)—(PeElG/u)-NRUe +NHUmRI]

o e .
. 2 I1 [;-‘ \[N'RUmRI(e-X)x] 1
Y? = 2 NgymBr1 [2 \/_éumRI(“e““."x)I‘] \/}—
(&)

.expEJ(PeEzux)+(PeEx/4)+NBU(1-mRI)x§]l dx



80

For 1nputs other than thc unit 1mpulse. numerical convolution
13 uged to generate solutions, Using the techniques documented
prevlously (Keba end Hoodrow, 19?2). a solution may be compu.- )
ted directly. The exact soluticn whlcﬁ is sgbsequently pre~
sented wag computed using this previously documehtcd tcchnique.

This model has two parameters, mRy and Npy » which

- _are not estimable a priori and require detcrmlnaticn via &an

apprcpriate curve fitting technique. In the example that
follows, the parsmeter miy 15 teken to be the same (numerically)
as the mRgp value determined previously (Keba and Woodrow, 1972).
The parameter, NRuU. 1g estimated by matohing (graphically) the
variances of the sctual output data with that which 1s.bre-
_dlcted by thc model added to the input dats varisnce (see equa=-
tion (20)). The data set that 1s to be considered 1in this

section 18 that for Acetone at 100 C. taken on the Chromasorb

" 102 column (Keba and Woodrow, 1972}, The parameter mRy 1is

taken to be 0,029 and the parametexr Hpy =15 cstimated to be
87.0. Figure 19 showa how Npy was determined end for compa.-
- 4gion shows an equivalent relationshlp for the model devel—
0ped in part 2. The plot shows that the neglecting of the

| diffusion (intraparticle)} and mass ‘transfer cffccts requires

a smaller NRU te give the same predicted output variance.

‘ Rence, the diffuslve and mass transfer effects (primarily
d4ffusive due to the high NioG value) are being "lumped” ynto
the rate of adsorption parameter, NBU’ Othcr parameter values

are the same a8 indicated in Table 1. Filgure 20 shows a‘plot
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of the dimensionless time normalized 1npﬁt data, Figure 21
‘shows the exact response for this problem and the given paraun-
eters computed using the analytic impulse response and numer-
ical convolution. ' . : | :
~Aprlication of onthogonal.collocatioﬁ toméhls model

results in a set of 2N ordinary differentlal eQuations; where_

‘\-.N i3 again the number of collocation points. Appendix I glves

the details of the orthogonal collocation approximation treat-
ment of equations (83), (84%), and (85). The model is reduced
to the followlng set of 2N ordinary differential equations:

Z=Wly + W2 ye - W1G0) 3 g(0) =0  (90)
y*= W3 (X - x*)i  x*0) =0 (1)

. where $(6) is agaln the forcing function and y and y#* are the
_(Nx}) veﬁtors of the-compositions and equilibrium compositions
at the N collocation points; respectively, The matrices in
equations (90) and (91) are fully defined in Appendix 1.
Several éimulationa using this orthogonal collocation
approximation have been made. Table 8 gives a summary of
these computations; The entries in this table are not:in
strict chronology. The following pafagraphs.fully present
thege results and document the chronologlcél details. In all
. cageg, the system of ordinary differential equations was 1n-
fegrated by using the previously referenced IMSL library sub-

routine, DREBS. However, all simulations were made in single
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TABLE 8 I

Summary of Orthogonal Collocation Simulation
Times for the Rate of Adsorptlion Limited,!
Inter-Intraparticle Model

1]
\ -

COHPUTERV . N= 3 N=7 N =15 N = 21
TFigure 22) (Filgure 23) (Figure 24) (Figure 25)

. IBM 3607507 = —meeee - 25,05 min, 110.22 min. 390. min.
o ‘ (estimated)

IBM 360/502 6049 min. 230 53 mino b o v A - - — 350. min.
. - _ (estimated)
cpc 76002 - 0.316 min,  =mwe——- 2.87 min.

All execution times are for single precision 1ntegration up to
90 unlts of dimensionless tine. .

1F¢RTBAN H, output‘ht every integration step.

2FﬁRTRAN H, output at approximately every 0.25 units of
dimensionless time,

30utput at approximately every 0.25 units of dimensionless
time,
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precislion while some matrix addition and subtracﬁions were
made in double precision. A listing of the program used for
these computations.is given 1nrAppend1x.I. As noted in
Table 8, some responses were computed on the IBM 360/50
computing facility athPI whereas others were made at the

CDC "7600 conputing facility at Combustion Engineering, Inc.,

“  Windsor, Connecticut. As in Part 6, the spatial dimension

was rescaled. The plotted results are for the collocation
point z=0,5, with 2,=2.0. Again thils corresponds to the bed
outlet, _ | | |

Pigure 22 shows the simulated response for N=3,
This approximétion is extremely qualitative as compared to
the exact solutlon. The only correctlﬁredicbion is that of
the tinme of appearance for the peak of fhe responsa,

The result of the simulated response for N=7 1is
given in Figure 23. The plot shows éeveral‘large amplitude
oscillationé-and a peak height which 1s approximately 20 per-
cent lower than the exact response, However, as compared to
the N=3 case, tha improvement is substantial. As far as
computer time, the use of approximately 25 minutes on the
IBM 360/50 was not too acceptable., This run formed a basis
for a later comparative run on the CDC 7600, ‘As table 8§
ghows, the gain in execution épced Wwith the CDC machine for
'N=? is approximately 75 times,
| ~The result of the simulated response for N=15 is

 glven in Flgure 24. The plot shows an increasingly géod
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agrsement with the exact response. The oscillatlons are still
present but of much reduced amplitude, The peak height is
51ightly smaller then the exact helght., However, the behavior
of the response for 6<25 and 9360 should be improved. This
result indicated that a run with an additional number of. col-

location points was desirable., However, the large amount of

o computer time expended for the N=15 simulation, 110 minutes,

was a debit on the side of further simulation. A small time
run (10 minutes of computer time) for the N=21 case on the
IBH 360/50 gave an extrapolated complete run time (integrating
up to 90 units of dimensionless time) of approximately 390
rminutes.l-This smell time run indicated that the higher order
approximaﬁion wag decreasing the amplitude and freguency of
1n1t1alloscillations as oompared to the N=15 run. However,
the tiﬁe required to perform the complete calculations was
too long icpgt and scheduling) to obtain results on the
IBM 360/50, |

At this point in time, effort was directed to ob-
taining access to a computer more sulted to the type of COM=
putations being made, Arrangements were made to remotely
access the CDC 7600 §omputer at Combustion Engineering in
Windsor, Connecticut. This machine!s capabilities yielded a
radicai improvement in expended computer time, The case of
N=21 was run_using'this machine. As Table 8 shows the run
time to be'approximately 122 times faster than the estimated

run time for the reduced output case., Figure 25 shows the
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results for N=21. The results, when superimpdsed on the exact
reéponse, give virtual exact agreement, The %nly identif'iable
discrepancies are the oscillatlions for <20 aﬁd e>70. The
largest magnitude of the noted oscillatiqns 1% quite'small.
0.08 x 1072, ‘ ‘ | |

Thus; it appears that for accurate approximation
", gelutions for this pfoblem. a8 fairly high degree of orthogonal
éollocation discretization in the spatial domaln is required.
Algo, it 1is apparént that available computer hardware must be
a very sizable consideration for eitensive simulations.

_ , As'afpostscript to this part, it should be'notad that
going from thé IBH 360/50 to the CDC 7600 required some alter-
ations in the IMSL subroutine DREBS, as the IMSL - CDC'paokage
was: not available at the Combustion Engineering CDC 7600, |
One of the changes involved a machinenpreciéion dependent cone-

‘gtant. Fortunately, a CDC listing of DREES was obtained in-

directly from IMSL (Larsen, 1974).
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PART 8 }
APPLICATION OF ORTHOGONAL COLLOCATION TO %N
INTER-INTRAPARTICLE ADSORPTION MODEL WITH,
NEGLIGIBLE MASS TRANSPFER RESISTANCE i
Orthogonal collocation approximations for the solu=-
tiong of the previous two models have used discretizations in
the interparticle region or axial dimension. ~When the model
‘18 one where concentration gradients are assumed to exist
within the intraparticle reglon, an approximation treatment
for the intraparticle domain is necessary. If one considers
the inter-intreparticle model represented by equations (2),

(3}, (4),'and (5), and considers the case where Nypp ’

the following model may ba deduced (see Appendix A):

(1/Peg)8y/02* = 23/0z - [(3(1-6)B/e) (L/R)2/Po, oy, An), | =
' ' dyRe T (92)

(1/2)2 /20 [Sy, 0+ (20003,an] = Wgyl-vp) = by, /00

) 0.'(93)
(1/Rp)ex, /00 = Npylyy-vg)  (98)
y¥ =mx o " - (95)

-~

'This model is one of the most complicated forms
.that ona might encounter in 1sothermal, packed bed analysis.
' The initlal and boundary conditions are the same as equations
(6) through (12) with equation (13) replacing (10) as the

appropriate inter-intraparticle boundary condition., This

93
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modification in the original model gifaé the inter-intrepar-
.ticle‘adsorption model negligible mass transfer resistance be-
tween the interparticle and intraparticle regions., For pur=-
boses of numerlcal treatment, the terminal boundary cbndition.
equation.(lz). is replaced by the finite bouhdéry condition
previously applied. The forcing function, &(e), is replaced
by a finite width pulse, g(e). | .

| This model introduces the necessity to perform a
collocation apﬁroximation in the radial (intraparticle) di-
mension, /i, in additiqn to the axlial (1nterpart;c1e) dimension,
z. PFor purposes of such a treatmént, the trial function used
by others (Finlayson, 1972, p.99) in the analysis of unsteady

diffusion in a sphere, is equation (70):
' i HNa

y4{7z.0) = h(e) + (1~Jf)£§£a1(9) Py.1(1%)
where Na is the number of intraparticle collocation polints.
When used in éombination with an sgial treatment, the axial

position, z, should be included to givei
| | Na
y4(z,2,0) = h(z,0) + (1_,5,152 8y(2,0) Py_y (%) (96)

The polynomials in 2= in equation (96) can be defined by a
_condition similar to equation (4#5) by making the change 1in

variable /=z and ondr=dz. The result 1s:
b o
fW(ﬂz)Pi(ﬂl)PJ(ﬂ})ﬂM = (01/2)513 | (97)

a
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In general, w(z) in equation (45} 1s of the form:

w(z) = i“(i—z)P

Substituting this and the above change of variable 1nto

equation (97) glves:
' b

ff"’*‘u..,f)ﬂPi(ﬂf)p-j(man = (Cy/2)dy (98)

‘ a ,
The form given by Villadsen (1970). The formulas used fron

that text for recursive computation of the respective poly-
nomial coefficients defined by equatlon (45) may be modified,
as Villadsen shows, to give formulas for recursive computation
of the ccefficients for the polynomisls in the squared dimen-
8lon defined by equation (98). In the analysis that follows,
the polynomials used are those defined by equation {98) with
a=0, bzl,cdzé;'.’ end 8=1. This is the case for spherical sym-
metry., Tﬂé qpefficients are computed using the recursive
formulas due to Villadsgn and the roots are taken from the
‘values reported by Finiayson (1972, p. 102),

Solution of this three, coupled pértlal differential
equation problem regulres orthogbnal collocetion approximations
in two.différent spatial domalns. The problem is one with
three 1ndependeﬁt Variaﬁles. z, 1, and 6; and threa dependent
variables ¥y, yi, and y? (or xa). A solution to this fype of |
Aprobiem appears not to have been attempted using the orthogonal
collocation technique. To ald in envisioning the two.domain

discretization required in the énalysis of this problenm,
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Figure 26 gives a representation of the orthogonal collocation
Weridh, He;q thﬁ collocatlon points are denoted by Np for the
interparticle domaih,and Na for the_intrapartidle'domain,
_respectively. |

Appendix J presents the orthogonal collocatlion ap-
proximation development for the intraparticle reglion., A com-
_ puter program listing which was used to generate the first and
gecond derivative intraparticle approximation matrices also
appeérSAin this appendizx. Appendix K develops expressions for
simulating transient diffusion and adsorption/desorption be-
havior within a single particle. Appendix L combinesg these
results with the approbriate 1nterparticle'resu1ts to give the
full representation of the orthogonal collocatlion 2pproximae=
tion for the model considered in this part. The result is a

aystem of (Ng + Z(NE)(NA)) coupled, ordinsxry differential

equations:
(Ngx1) =¥ (y-16(e)) - COUPLE (99)
vector - : : .

&nd fO"I‘ 3‘—-'1,.... NE
(Ny x 1) 33,5 = INTBA y3 4 - INIBAC (L y(zj.6))

vector
: + INTRAA y¥ 3 o (100)
(N x 1) ii-d = INTRAE (zi.j - xg.J) | - (101)

vector
The strategy for determining what degree of approx-
imation 1s adequate for accurate model solution is different

than what was previously used; i.e., comparision of approximate
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golutions to the exact solution. Here, successlive approximé-
tiona wmust be comparéd to see 1f a convergent trend is noted,
Thé appropriate order if approximation is thén determined
when increasing order gives no noticeable change in simulated
response. This was the strategy which was to be used for an-
aiﬁsis of this problem. However, as will be ghown, completion
of this strategy.was not feasible.. |

| o The data set that is té'be used in this section 1s
the éame that wag used in the previous part for the rate of
adsorption limited model. The differences are in the two
chbicés of parameters mBy and NRUf The parameter miy was
choseﬂ to be based on an.mﬁo of 04029, a bed véid fraction,

€, of 0.40 and a particle void fractlon, 2, of 0.40. Using
equation (1), this would give the value of mRi to be 0,0174%.
The value of Npy was estimated from Flgure 19 to be 145.0
 from the ;odgl curve with a finite N ,,. However, because

of the high N ,. in this data set, its contribution to the
model varlance is quite negligible und hence this value of
Npy is éppropriata for the case of KNipg>oo.

_ Table 9 presents a summary of what combinatlion of
interparticle and intraparticle approximations were slated for
simulation. With access to the CLC 7600, 1t was declded to.
run small-time (10 minutes of computer time) simulations on
the IBM 360/50 to gain an estimate of the computer time neces-
sary to complete the planned analysis, Arllsting of the pro-

gram used for this purpose 1s given in Appendix L. Again



TABLE 9

Inter-Intraparticle Model Orthogonal Collocation

Approximations - Computer Time Estimates

Ny N, N
3 1 9
3 3 21
7. 1 21
7 3 49
15 1 ks

N = Rg(l + 2Ny)

F
.
:

Estimated Executlon
Time {(min.)#*

630.0
22500,0
1442.0
90000.0

3750, 0

99

# IBM 360/50, FPRTRAN H, integration (single precision)

up to 90 units of dimensionless time with output at

epproximately every 0.01 time units.
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i
the IMSL subroutine DREBS was used to perrorm the 1ntegration
of the system of ordinary differential equatlona for this

|
. problem. The time estimates in Table 9 are ovprwhelming even

if one decreases them by the gain in spsed'(ongthe order of
one hundred times) with the CDC 7600, Within the imposed finan-
- gial constraints and justifications'needed to motivate such
an expenditure, the complete analysis of this prdblem was
not feasible. One could have possibly improved the situation
by choosing "nice" parameter values but this would have
‘negated the objective to study a technique with real-life
probhﬁmcbnditions._ |

The question arlses theﬁ as to what 1nformatioh cah
be gained from this part of this investigatlon. First pf all,
it must be sald that based on the conmputer hardware availeble
and the technique used, the straightforward analysis of this
complex pfcb;gﬁ using orthogonal collocation is not Very €Xao
pedient. Tﬁé pulsed, distributed system with muzlti-coupled
transpoft Thenomena presents a complicated problem for analysls.
However, one might oonceivaﬁly apply successfully the two do-
main collocation approximation treatment for steady state or
gtep response simulations for packéd bed systems, either 1so-
thermal or non-isothermal. In additlion, this. analysls was
based on two specific polynomial sets each orthogonal over
one spatial doﬁain interval., It could be argued that perhaps
polynomials orthogonal to two domeins simultaneously; 1i.e.,

a surfaca. would be more appropriate for thils type of problenm.
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Although the results of this section are in the
negative side, they should.not be constfued as a condemnation
of orthogonal collocation as a‘techniqqe but rather.as an
example where a method may not be as well sulted as others
and where some innovaﬁions in the theory could possibly re-
sult in a treatment that ﬁay be préctical within the computa-

A-\tional capahblllities that now exist.



PART 9
. DISCUS3ION

The initial bart of this investigation was motivated
by previous-éfforts in the area of mathematical modeling of a
ges Qhromatob'aph. This inVestigatibn set éut-to derive and
study a model which incorporated more of the dynamically rel-
" avant transport phénomena thought to be occurring in the ex-
perimental systems belng studied by Mars project co_ﬁorkers.
Hence, a mbdel has been ppoposed and derived which includes
~both interparticle and intraparticle transport phenomena.

" As with previous models, 1t was deslirable to deter-
mine whether or not this model could be used to adequately
predict chfomatograph systen responses, Application of Laplace
transform techniques gave a transform‘whidh.was not reédily
invertable. However, because the‘model wag linesar aﬁd trans-
_‘forméple. the derived transform could be uéed to determine
the predictive capabilities of the model in the time domain.
Here, the techniques of moment analysis were applled and it
was shown that the model possessed a high degree of flexibility
in predictlve capabllities using the statlstical quantitles
dmown as moments which can characterize the responses of
pulsed, distributed systémé{ Thig method of analysis is very
- useful because tha effect of varying system parameters present
in the model -can be studied very efficiently and a great deal

of insight into the model characteristics can be gained, as

102
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was the case 1in this investigation. In fact, the results of
the moment analysis gave sufficlent motivation for the contin-
ued analysis of the éomplex 1nﬁer-1ntraparticle adsorption
model. 7

Because the derived model appeared to have no
direct analytica; solution, it wrs2 necessary po develep nu-
merical capabilities in order to efficiently simulate the
time domain response of the model ard hence verify the model's
predictive effectiveness. Hoﬁever, prior to the investigation
of numerical techniques, some study was given to the problem
of replacing_the infinite column boundary-condition used in
i analytical work with a finite colﬁmn terminél boundary condl-
tion used iﬁ analysis of chemical reactor problems and which
was necessary for numerical treatment of the model partial
differential equatiohs; It was desirable to apply the finite
column boundary condition so that infinite column behavior
would result at the bed outlet. Two simple problems were
studied, one with the infinite column condition and the other
with the finite column condition. Agaiﬁ. the technique of
moment analysis proved a very effective toél in determing how
infinite column response characteristics (moﬁents) at the bed
outlet might be matched by the prdblem with a finite terminal
- boundary condition. For the simple model considered, criteria
were developed as a functlon of the Peclet number which gave
guidelineé for applying the finlite terminal boundary. These

gave reasonable assurance that column responses for both the
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finite and infinite boundary conditions were essentially the
|

same, These criteria were used, somewhat con%ervatively.‘in
the numerical solutions whlich were later made.% Although the
method of developing the boundarj condition cr;teria'was'apa
plied to the simﬁle modellﬁith‘one sy;tem.parameter, the Peclet
number, the method of anélysis‘could be extended to more com-

_ plei linear models and sets of criteria could be developed as
functions of the system parameters present in each itndividual
model. | |
| Based on the preceding aspects of fhis_investiga-
tion, effort was directed to the study of-orthogonal collo-~
cation as a numerical approxlmatidn technique which would
hopefully-prove useful as an efficient tool for routine anal-
ysis of the complex chromatograph system models. These

models might be linear (aé was the case in this work) or non-
linear paftial-differentlal equations, The Study of non-linecar
composltion'éffectﬁris an area of interest for continuéd
‘chromatogre sh modeling effort. In this 1nvestigat;on, orthog-
onal collocation was applied to approilmate solutions to
three_liﬁéar,Adistributed model of increasing complexity.

The first model wWas & simple, one eguation model requiring a

collocation treatment in one.spatial domain, the interparticle,

The second model involved solution of two coﬁpled partial

]

differential equations reguiring a collocation treatment in
the interparticle domain, The third model involved solutlion

of threec coupled partial differential equations requiring
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‘¢collocation treatments in two spatial domains, the 1nterpafl'
ticle and intraparticle.
77 The procedure for attacking these'mathematical
problems 1s summarized in Figure 27, fhis sqhematic provides
o unified framework for discussing the generaliaépects.and
specific results.of this investigation into the usé of orthog-
. onal collocatlon. ' |

The block denoted by STEP 1 serves ag a starting
poinﬁ An problem analysis. This block, as indicated by the
daghed lines is preliminary in nature and central to any mod-
eling problem. For this Ainvestigation, the work of Part 2.
could be lumped into this categorﬁ. 7

The block denoted by STEP 2 ccrfesponds to that
part of an analysis where one has to'ﬁake a choicg of the nu.
merical method (if reguired) to use in the analysislof the
formulated problem(s). The cholces could be a finite differ-
ence treatment, a finite element treatment, a weighted resic-
ual treatment (e.g. orthogonal collocation)}, or a varlation:l
treatment. This choice may be motivated by previous expef-
lence, tﬂe vork of other investigators in solving simllar pro-
blems, énd/or the desire to establish the applicabiliﬁy of a
certain method to a certain type of problem. In this inves-
tigation, the cholde of orthogonal collécation as a method of
analysis was motivated by all of the above - the inefficiency
of the finite difference technique to the simple, diffusion-

convection problem (prev;ous exPerignce), the use of orthogonal
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collocation by other investlgators to solve certain problems
'in chemlcal reaction engineering, and the desire to ascertain
the merits of orthogonal collocatién as a computational tool

for analysis of pulsed, distributed sys tems' e.g., the gas

i
1

chromatograph,

Following the choice of orthogonal collocation as
\the method for the analysis of the formulated problems. one
proceeds to STEP 3, the cholce of the trial function. Inputs
to this cholice nmay belinnovation or 1magination. suggestions
from similar problemslﬁith analytic solutions, or trial func-
tlons‘from previously worked examples, The trisl functions
used in this investigation were takén from the work of other
investigators. However, the trial function for interparticle
analysis was generalized to an extent (Appendix G). The
| generality of this trial function was not explored - thorough
exploratidn qflthe effects of trial function cholce in come
bination with orthogonal function cholce (STEP 4) for even
one problem would be a basis for an entire Investigation at
least.

This brings one to STEP b, the cholce of the orw
thogoﬁal functions to be used in the trial function exﬁansion.
This block in the problem analysis can have the highest degree
of variation, The cholce can be dictated by the trial func-
| tion itself, symmetry considerations (the polynomials in
for the intraparticle region), the type of solutionA(perhaps

suggested by physilcal reasoning ), previous expérience
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(orthogonal polynomials welghted in a certain way gave faster
convergence with a previous problem), and the work of other
investigators. This investigatof chose very specific poly-
- nomials for use in the trial functlons employed in the pro-
blems analysed. The choice was suggested by the works of
other investigators and was further dictated by the avallabll.
1ty of the required polynomial roots. Use of some less
“cbmmon“ polynomlals require determination of roots which may
not be tabulated tb high accuracy. Thus, cone would have to
pursue root~finding cgmputations which, based on avallable
computer precision capabllities, may be infeasible. This
type of study; i.e., different poiynoﬁial types, was a degired
component of this investigatlion but efforts to computg ney
roots to sixteen figure accuracy were limited by the avallable
IBM 360/50. Thus, this desired area of study was abandoned.
In conjunction with thlé, one should note the added'input to
the STIP 4 biock citgng the very practical consideration of
computing capabilities - in this instance, word-length capa-
billty. Recontly, the notion of there being better polynom-
tals for certain problems recelved attentlion by Ramkrishna
(1973)0. He showed that the cholce of "problem specific poly-
nomials" to be relevant and desirable for effective use of
weighted residual technliques.

The block denoted by STEP 5 is labeled DISCRETIZATICHN,
This is descriptive of the ménipulations and computations

which must be made to reduce the expressions fof the partial
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derivatives at the collocation points to expressions in terms
of the solutions at the respective collocation peints. The
. manipulations of Appendix G and Appendix J are typlcal of
what nust be done. ‘A key aspect of these computations 1is the
inversioﬁ of a matrix., Part 5 showed how the conditioning of
the matrix to be inverted may be enhanced by alchange-in for-
mulafion. One was able to retain a tolerable condltion with-
in the constraint of the avallable computer precision., How-
ever, as was pointed out in Part 6, attempts to generate a
thirty-first order interparticle discretization were unsuc-
cessful because the Word-length of the avallable IBM 360/50
computer limited the accuracy of the polynomial coefflcients.,
- Next is STEP 6, SIMULATION., This block comprises
the usc of thé previously derived and computed discrete re-
presentations to reduce the distributed model to a set of
ordinary differentiasl equations. This set of ordinary dif-
ferential eé;atlons_can be integrated to yield the approx-
imate response. As was done with the simple model (Part 6).
the equations caﬁ be put in a sultable form whereln an.eiéén-
'analysis of the system can be made to determine the character
of the épproximation solution. This also served to expose
the stiffness of the.equation set, The simulated response(s)
can be compared with exact solutions (1f.available),‘solutlons
from other techniques (if available), and with simulations
using different orders of approximation. As was shown wWith

the rate of adsorption limited inter-intraparticle model, the
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avallable computing capabilities {(executlon speed)} can be a
factor in limiting the extent of any planned simulatlon pro-
gram. In‘ract,'thisrconstraint (even with the CLC 7600)
prohibited complete analysis of thé inter-intraparticle ad-
sorption model wlth negiigible mass transfer reslstance be-
tween the interparticle and Intraparticle reglons.
. -STEP 7, ASSESSHMENT, serves as an area where one
can assesa the results and the remsons for the results. Among
the guestlons that must be answered are:
1. 1Is the problem practlcally solvable?
2. sDoes the orthogonal collocatlon treatment, as
applied, have sufficlent power to be used as a
routine tool 1in analysls of the posed problem(s)?
Regarding the first two problems solved in thls‘invéstigation,
the answefs to the above Questions would be affirmative., How-
ever, wWith regard to the third problem, the answers are not
affirmative{- The key words in the second question are “as |
applied" because tﬁédtrlal function and/or polynomial type
may be unsulted to the problem at hand and may thus reduire
some new innovatlons in this area. This 1s the reason for

the "feedback" loops from STEP 7 to STEP 3 and to STEP 4,



PART 10
CONCLUSICNS

This investigation hés been conducted in conjunction
with the group effort to define fundamentai system deslgn
criteria necessary for an optimal désign of é combination gas
chromatograph - mass spéctrometer; Specifically, this inves-
" tigatlon has dealﬁ with the formulation of a more complex
‘ mathematical model for a gés chromatograph and subsequent ef-
forts to ascertain the merits of the numerical technique known
as orthogonal collocation as a technique worthy of routine use
in tﬁe time domaln simulation of complex gas chromatograph
models., | | |

?revious work dictated the formulation of a model
"~ which took into acéount more of the d&namically relevant
transport mechanisms thought to be éccurring in the chromato-
graph system. A model has been formulated which includes
tntraparticle diffusion and rates of adsorptlon that were
heretofore neglected. The model has been analysed using the
moment analysis technigue. This analysis of the proposed
Inter-Intraparticle Adsorption Model indicates that the gross
cha:acteristics of actual data are more adequately predicted
than with previous meocdels. | |

The mathematical complexity of the proposed Inter-
Intraparticle Adsorption lModel has prompted consideration of

numerical techniques appropriate for the solution of the
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partial differential equations being ﬁostulated.'.The use
of numerical techniqués for the second-order models being
considered reguires the use of aﬂfiﬁite terminal boundary
condition. Criterisa hafe been developed for a simple model
wherein a finite terminai bouﬁdary condition can be applied
which ylelds system responses which are for all intents and
'“a\purposes eduivalént to fhe responses obéained uging an in-
finite column boﬁndary condition. |

The general theory and coﬁputational aspects of
the method known as orthogonal'collocation have been reviewed
and discussed. An alternate method of probdlem formulation
glves a matrix'(which must be inverted in either formulationj
which 1s significantly befter condiﬁioned for inversion pur-=
poses. It is concluded that this different approach 1s better
than previously documented approaches when computer Word.
length capabi}ities are a conslderation as 1ls the case for
most practical situations. |

The method of orthogoﬁal ~allocatlion has heen suc-
cessfully applied to two problems of the chromatograph system
type. The first problem was the simple transient diffusion-
convection equation and the second was the rate of adsorption
limited 1nter-intraparticle'model. These models required
orthogonal collocation treatments for onelSpatial domain, the
linterparticle. For the system parameters cﬁnsidered it appears
that 15 collocation points are adequate for the simple model

and 21 collocation points are adequate for the réte of ad-

S
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sorption limited model. Howeveé. the létter model required
the computing power of a CDC 7600, |

The application of orthogonal collocation to an
inter-intraparticle adsgrption model with negligible mass
transfer resistance between the 1hterparticlé énd 1ntrépar—

ticle regions is not, based on the two domain (interparticle

",]andllntraparticle) orthogonal collocation treatment, prac-

tically feaslble even with the computing powér of a CDC 7600,
It is conéluded that although the theory of orthogonal col-
location may be viable, there could possibly be significant
1mpro#ement.1n practical requirewents if modifications in
trial function.and/or orthogonal fﬁnction choices can suc-
cessfully be effected, This conclusion applies, to a lesser
. degree, to thé fwo other models considered in this investi-

| gation.

‘ _Thgg, it appears that in its present state, orthog-
onal collocafion can be a useful tool for analysis of one
spatial domain, pulsed, distributed systems, Use of orthogcaal
collocation for two-spatiél domain, pulsed, distributed
systems ;eduires the reverslon back to the steps of-triai
function selection and,orthogonai functiqn selection in order
to effect a practical approximation treatment;

-Throughout this investligation certain areas of work
'have been mentioned as areas sultable for future research,
The proceedlng remarks summarize these areas.

One area is the use of specific polynomials to take
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‘advantage of their orthogonality relative to the trial func-~
tion expansion and whether specific polynomlals within the
trial function would produce better results from the stand-
point of increased accuracy with a lower order of approxlmatibn.
In addition,. the form of the trial function is an area where

further investigation may be made to aséertain'what trial

‘ - .function form (in conjunction with orthogonal function choice)

is best for a given probtlem.,-

The solution of the sets of ordinary differential
equations produced by application of the orthogonal colleo-
cation technigue 1is another area sultable for further re-
search., It was shown that the equations for the orthogonal
collocation approximation of the simple, diffusion-convection
mocdel possess'characteristics of a stiff set. This situ-
ation raises the question as to what method of . integration
should be used. Thig could form an additional area of ree
search = wheﬁher orthogonal collocatlicon approximations pro-
duce, in general, stiff ordinary differential equation sets
and what integration algorithm can be used most effectively

for simulation purposes.
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PART 12
NOMENCLATURE

unifrimpulse.-Diréc~delta function.

areas under output response curve, lnput
response curve, and impulse curve, respeGQ
tivély.

jower bound on interval of orthogonallty
ugsed in orthogonal polynomial definition,
equation (ﬁS).

time-Vering'coéfficients in trizl funoction
expansion,

ratic of interfacial area to packed volume.

upper bound of interval of orthogonality

' uged in 6rthogonal polynomial definition,.

equation (45),
scale factor used in orthogonal polynomial
definition, equation (45).

vector used in eguation {99).

time~varying coefficlents in trial function

expansion,

vector of time-varying coefficients defined

in equation (63}, | ‘

time-varying function in the trial function
expansion.
veotor of time-varying coefficlents defined

in equation (50).
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.eXpansion. ' l

1;?

time-varying function in the trial function

time~varying function in equhtion (70). Later
| _ _

extended to h(z,8) in equation (96).

modifled Bessel function of fhe first kind.

matrices used in equation (100).

matrix used in equation (101).

length of chromatograph column, dlmensionsal.

'“qmﬂlibrium constant,

nunber of collocation points except ag defined

differently in Part 8.

number of interparticls collocatlion points.

" number of intraparticle collocation points.

the number of reactor units, o dimensionless

measure of the rate of adsorption.-

‘number of transfer units, dimensionless.

Peclet number, dimensionless.
intraparticle Peclet number, a dimensionless
measure of diffusion rates within the particle,

interparticle Peclet number, a dimensionless

‘measure of diffusion rates within the carrier

gﬁs . A
group of polynomials, initlally arbitrary

but later constrained to be orthogonal on
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interval.[é,ﬁ] by equatloni(h5) or (98).
' !

‘matrix defined by equation q62).

natrix defined by equation 666).

matrix defined by equation 467).
intfaparticle_space variable, dimensionless.
particle radius, dlmensional.

rate of sample adsorptlon.

moles of fluid in the.partigle ﬁer mole of
adsorption sites within the part1c1e.

moles of fluid within the total bed per mnoles
of adsorption sites within the bed.

matrix defined b& equation (49). |

matrix defined by equation (56).

matrix defined by equation (57).

residual formed by trial function substi-

tutlion in a differential equation,

Laplace trangform variable.

welghting function used in orthogonal poly-

nomial defining eguation (&5).
weighting function in welghted resldual

integral, equation (43).

matrix used initially in equation (82); then

in equation (90).

matrices used in equation (90)

matrix used in equation (91).
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Xy ‘ - adsorbed phase concentration, dimensionless.

y | - interparticle grs phase conposition, dimen-
slonless.

Yy - intraparticle gas phaée compoaition, dimen;
slonless, | _ |

¥ Q equlilibrium intraparticle gaé phasé compo-

sitlon, dimensionless.,

¥ . = vector of golution values at the 1nterparticie
collocation points.

X® - vector of equilibrium concenfration values

._at the interparticié collocation points,

¥y - -~ vector of intreparticle concentration values
at the intraparticle collocaﬁion polnfs.

Xt . vector of intraparticle equllibrium con-
centration values at the intraparticle

ocollocation points.

z - aXxial position in column, dimensionless,

Z4 - -collocatlion point or end point, dlmension.
less,

24 = axlal position where finite terminal boﬁndary

condition, equation (33), is applied,

GREEK LETTERS

oc = :part of the power of  in equation (98);:

e
-l'g" v A ¥ I- ‘

;g - particle porosity or vold fraction; power of
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éuantity (1-2%) 1in equation (98).

time increment in finite difference method.
sﬁaoe inecrement in fintte difference method.
Dirac delta function. |

Kronecker delta.

~void fraction of the bed.

301'"4'159e L J
dimensionlegs time variable,

th moment about the origin defined by

the n
equation (14),

the nth moment about 1{1. defined by
equation {17). ‘ |
func;ion which satisfied boundary condition
in trial function expansion.

forcing function used in analysis of chro=

métograph problems,

refers to Case I boundsry condition analysis.
refers to Case II boundary condition analystis.
refers to space level in Finite Difference

technique; refers to colunmn 1n Orthogonal

Collocation matrices.

refers to time level in Finite Difference
techniques; refers to row and/or collocation

points in Orthogonal Collocation matrices,
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MISCELLANEQUS

[ lyy - wefers to tho matrixz element of the J¥N row

and the 1! column.
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