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ABSTRACT

This paper examines the uniqueness and accuracy of the equation

which describes the transport of charged particles diffusing in a

random magnetic field parallel to a relatively large guiding field.

With regard to uniqueness, it is found here that the same coefficient

of diffusion is obtained by three methods that have apparently led to

discrepancies in previous work. With regard to accuracy, it is found

that two corrections must be added to the familiar expression in which

the diffusive flux is proportional to the gradient of the density. If

the temporal derivative of the flux is large, the first of these cor-

rections is important and the diffusion equation must be replaced by

the telegrapher's equation. If the gradient of the flux is large, the

second correction is important and the appropriate generalization of the

diffusion equation is an integral equation analogous to those invoked in

classical transport theory. Explicit expressions are given for a char-

acteristic time and a characteristic length which describe the corrections.
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The well known divergence of the coefficient of diffusion, which is

implied by the quasilinear analysis of pitch angle scattering, does

not occur if the scattering rate is finite at 900 pitch angle. This

effect is illustrated by formulas which give the coefficient of diffu-

sion when the quasilinear expression is perturbed by a variable amount

of isotropic scattering.

Subject headings: cosmic rays - hydromagnetics - magnetic fields
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I. INTRODUCTION

The diffusive nature of charged particle propagation in random

magnetic fields has been recognized for many years. However, there

are still two unresolved difficulties that obscure the relationship

between the coefficient of diffusion D and the statistical quantities

that describe the random fields. In the first place, there is no con-

cordance on the method of evaluating the Fokker-Planck coefficient

<AP 2>/At which characterizes the scattering of pitch angles relative

to the average "d.c." field B. The quasilinear approximation (Jokipii

1966) leads to a simple relationship

<A=2>/At = {p} = A j q -1 l ( l -
2 )  (1)

in which P is the cosine of the pitch angle and q is the spectral index

of the power law that gives the mean square amplitude of field fluctua-

tions at wave number k within an interval dk, Qxx(ko/k) dk, in terms

of the spectral density Qxx at a reference wave number ko. Here, the

parameter A,

A = 2w 2 Qxx (korL) (2)

can be expressed in terms of the particle rigidity R, velocity V and

Larmor radius rL and the spectral parameters Q xx q and ko. The sur-

prising implication of equation (1) that scattering vanishes at p = 0

for q > 1 has motivated attempts to refine the quasilinear calculation.

Even the validity of the Fokker-Planck approach has been questioned

(Lerche 1972; Klimas and Sandri 1971), but a consensus of recent work

(Jones, Kaiser and Birmingham 1973; Jokipii and Lerche 1973; Volk 1973;

Owens 1974) agrees that the formalism is applicable but that the coeffi-

cient <A. 2 >/At is finite at p = O. However, the magnitude of this
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coefficient is not yet firm. The second unresolved difficulty is that

different methods of calculating the coefficient of diffusion corresponding
that the

to a given Fokker-Planck coefficient give different answers, in spite of the fact/

coefficient D is defined uniquely as the ratio of the flux to the gradient

of the density. This paper is addressed to the second of these diffi-

culties but not to the first.

To describe the distribution function for charged particles diffusing

along a guiding field, three representations have been invoked: (1) A series

expansion in terms of Legendre polynomials as in classical transport theory

(Jokipii 1968; Weinberg and Wigner 1958),(2) A series expansion in terms

of eigenfunctions of the scattering operator (Earl 1973), (3) A closed

expression obtained by perturbation techniques (Jokipii 1966; Hasselmann

and Wibberenz 1970; Kulsrud and Pierce 1969). In previous work, these

approaches apparently gave different answers. In §II, this conflict is

resolved by the demonstration that the correct application of either one

of the first two methods leads to a result identical to that obtained by

the third method. Thus, the correct expression for the coefficient of

diffusion is the one derived by Jokipii (1966).

This agreement on the description of diffusive streaming motivates

the consideration, in §III, of higher order effects which set limits on

the accuracy of the diffusion equation. These effects lead to the intui-

tively plausible result that the evolution of the distribution function

at a point in space and time is controlled not by the local density but

instead by the average density within a spatial region comparable to the

mean free path and over a period comparable to the collision time.
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Jokipii (1971) has reviewed several examples in which coefficients

of diffusion based upon equation (1) provide a useful description of

observed phenomena. However, when q 1 2, equation (1) implies that D is

infinite. This divergence is disquieting for two reasons. In the first

place, for q <, 2 below the point of divergence, the coefficient D is

very sensitive to variations in the spectral index. Because the index of

the interplanetary magnetic power spectrum is observed to change with

time within this region (Sari and Ness 1969; Siscoe et al. 1968), the

predicted sensitivity implies a greater variability in the local propaga-

tion of solar and galactic cosmic rays than is observed. In the second

place, the existence of a physically unreasonable divergence casts doubt

upon the validity of equation (1). These doubts stimulated the develop-

ment of the refined theories mentioned above. The effect of the finite

scattering at p = 0 predicted by these theories is illustrated, in §III,

by the explicit calculation of the coefficient of diffusion corresponding

to a Fokker-Planck coefficient modified, as was suggested by Owens (1974), by

the addition of an isotropic scattering term

= Alplq-1l( 1 2) + H(l-p 2 ), (3)

where H, the parameter that characterizes the magnitude of the perturba-

tion, is evidently the coefficient at p = 0 for q > 1. Isotropic scat-

tering could also arise from a separate effect such as binary Coulomb

collisions.

An earlier paper on diffusion (Earl 1973),which introduced the con-

cept of scattering eigenfunctions and eigenvalues,will be referred to as

Paper I and equations therein will be designated here by the Roman numeral
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I. A subsequent paper (Earl 1974), designated hereafter as Paper II,

treated the coherent mode of particle propagation that replaces diffusion

when D is infinite. The ideas in Papers I and II will be reviewed below

and used extensively.

Particle transport is described by the Boltzmann equation

f + f 1 a af-+ 1~V (4)
at Dz 2 Dp ap

where f {I, z, t} is the particle distribution function, z is distance

parallel to the mean field, and t is time. Because the scattering opera-

tor on the right hand side of equation (4) has the form specified by

Sturm-Liouville theory, there is a sequence of eigenfunctions R K1

and eigenvalues (2/T K) which satisfy the equation

d dR (5)
d d TK (5)

where r K is a relaxation time that describes the temporal decay of an

anisotropy proportional to RK. These functions form an orthogonal set

in terms of which the distribution function f and the streaming term

pV(af/z) can be expressed as series expansions

f{V, z, t} = Z fK{z, t} cKRK {I}, (6)

VV(af/z) = I VJK(f J/az)cK RI }, (7)

where the normalizing factors cK defined by equation (11-7) are given

in table 1 of Paper II. Here, the coefficients fK are given by

fK = cKf fRK dy, (8)

and the characteristic velocities VJK are given by

VJK = VKJ = VcJcK RJ RK d . (9)
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When the series representations of the distribution function (eq. [6])

and of the streaming term (eq. [7]) are substituted into equation (4),

the orthogonality of the RK implies that the coefficients fK are described

by a set of coupled differential equations the first four of which are

afo = -V 0 1  f -V03 - ... , (10)
atTt az @z

fl1 + = -V 0 1 fo -V 1 2 2 (11)
at T1 0zz z

af 2 = -V12 -V23 a3 ... , (12)

at T2 az

-03 3 - ... (13)T 3 az az

The matrix formulation of transport theory embodied in these equations is

entirely equivalent to the Boltzmann equation.
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II. DIFFUSION REVISITED

Scattering causes the distribution function to relax toward isotropy.

An important stage of this evolution is the diffusive regime in which a

relatively small and nearly constant anisotropy leads to slow temporal

changes of the isotropic density. In this regime, the distribution func-

tion f can be approximately represented as the sum of an isotropic com-

ponent F = c f which depends upon position and time and two anisotropic

components which are constant but which depend upon position

f{p, z, t} = F {z, t} + Fl{p, z} + F2 {P, z}, (14)

where F1 is an odd function of p and F2 is an even function of p. Because

the form of the odd anisotropy F1 is well known (Jokipii 1966; Kulsrud

and Pearce 1969; Hasselmann and Wibberenz 1970), this section focuses

upon relationships among the three methods of analysis listed in the

introduction. The assumption that the even anisotropy F2 is negligible

compared to Fo and F1 , which is adopted throughout this section, will

be confirmed in §III. Nevertheless, it will simplify the treatment that

follows to require that

+ F{z, di = 0 (15)

Evidently, by virtue of equation (8), this condition implies that the

isotropic term in the series expansion of F2 is zero. Because F1 is an

odd function, it also satisfies equation (15).

The odd and even anisotropies are described, respectively, by the

odd numbered and even numbered coefficients in the eigenfunction expan-

sion of f (eq. [6]). Thus, if the anisotropies are constant and if the

even components are negligible compared to the density fo, then the
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matrix equations for the odd components take on a form

f = - V o (16)
K K OK az

which can be substituted into the gradients appearing on the right hand

side of equation (10) to yield a diffusion equation for f

afo 3 af
f - D oD (17)

at az az

in which the coefficient of diffusion D can be expressed as

D = T I V0 1
2 + T 3 V0 3

2 + T 5 V0 5
2 + ... (18)

In Paper I, only the first term of this series was considered. However,

it is possible to estimate the contribution of the other terms with the

aid of the identity

(1/3)V2 = V0 1
2 + V0 3

2 + ... (19)

which results when the series expansion

11 (V/V)(Vo0 c1 R1 + V0 3 c 3 R3 + ... ) (20)

is multiplied by itself and integrated over p. Because T3 > T5 > ... ,

the error introduced by retaining only the first term of equation (18)

is governed by the inequality

D - T IV01
2 < T 3 ( 1 V2 - V 0 1

2 ) = 3(q-) 2 (2-q) T 1V 0 1  (21)

3 3(5-2q)(8-3q)

in which the expression in square brackets represents, for q < 2, an

upper limit on the fractional error. In the range 1 < q < 2, the maximum

error of 1.2% predicted by this expression at q = 1.8 is negligible com-

pared to experimental uncertainties. Only in the unphysical region

q < -2.1, where the fractional error eventually approaches (-q/18), is

the error larger than 10%.
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According to equation (21), the error vanishes when q = 1 and when

q = 2. In the former case, the eigenfunctions are Legendre polynomials

for which the characteristic velocities V 0 3 , V 0 5, ... are all zero. In

the latter case, the fractional error is zero because the first term in

equation (18) approaches infinity while all other terms remain finite.

These considerations apply even when the Fokker-Planck coefficient is

described by equation (3), for the eigenfunctions approach Legendre poly-

nomials when H is large and the first term dominates when H is small.

Thus, under a variety of circumstances, the flux represented by the higher

order terms of equation (18) is quantitatively unimportant. However,

these terms have conceptual significance, because they account for dis-

crepancies between the analysis given in Paper I and the perturbation

analysis that follows.

If equation (14) is substituted into the Boltzmann equation, inde-

pendent equations are obtained for odd and even components

+o + v 2 = 1 L 2F (22)
ataz 2 a at

v F r+ v F2 i a aF, a(2FI
az az 2 T a at (2

When equation (22) is integrated over p from -1 to +1, the scattering

term on the right hand side contributes nothing because 4 vanishes at

both limits while the integral over (aF2/at) is zero because of equation

(15). Thus, the integral of the left hand side gives a fundamental re-

lationship between the time derivative of F and the gradient of the flux

S

t + z = 0 
(24)



where r+
S = (V/2) uF1 dp. (25)

I

Equation (24) holds even if F1 and F2 are large or varying

rapidly. Moreover, equations (24) and (25) imply that the temporal

evolution of Fo is controlled by the odd anisotropy alone. The even

anisotropy influences Fo only indirectly through the effect on Fl implied

by equations (22) and (23). Because this influence is weak, the odd

anisotropy will be considered in detail before the even anisotropy is dis-

cussed. Also, the time derivatives on the right hand sides of equations

(22) and (23), which are zero in the diffusive regime, will be neglected

in this section. However, the role of (aF1/at) will be considered in

If F2 is negligible compared to F , equation (23) leads to

LF1 = -(l-p2) V E (26)

in which the constant of integration was chosen to satisfy the condition

€{+1} -= {-1} = 0. A second integration with the constant chosen to

yield an odd function gives

F1 = - V z v dv (27)

a result obtained earlier by Hasselmann and Wibberenz (1970). The flux

S calculated from equation (27) with the aid of equation (25) takes on

the diffusive form

S = -D -- O (28)
iz

in which Dis given by
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D = V2 d f 1-v2 dv = (V2/2 2) dv = [(2 2/A) . (29)

Here, the second equality follows when the order of integration over P and

v is interchanged. Equation (29) has also been derived by Jokipii (1966),

Kulsrud and Pearce (1969) and Hasselmann and Wibberenz (1970).

To link this approach to the method of eigenfunctions discussed above

and in Papers I and II, expand the odd anisotropy as an eigenfunction

series

F1 = fl cl R1 + f 3 c3 R3 + ...

Then, the result of substituting this series into the right hand side of

equation (23) can be evaluated with the aid of equation (5) while the

variable p on the left hand side can be replaced by equation (20) to yield

fo (V01 cl R1 + V 03 c3 R 3 + ... )

(fl/rl) cl R1 + (f3/T3) c 3 R3 + ... (30)

in which the relationship Fo = (fo/v) has been invoked. The orthogonality

of eigenfunctions implies that corresponding coefficients on opposite

sides of equation (30) are equal. Because this equality leads to exactly

the coefficients specified by equation (16), it follows that the two

methods give identical predictions for the odd anisotropy. More speci-

fically, the functional dependence g{p} of F1 upon p

F 1 = - g{p} -F = g{p}(S/D) (31)z

can be described either by the integral appearing in equation (27) or

by an eigenfunction series

g = V 2  V 1cR 3  ** 2-q (32)g{=} dv = 2(TlV01clRl + T3V03C3R 3 + ) = ] (32)
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Similarly, the coefficient of diffusion expressed in terms of relaxation

times and characteristic velocities by equation (18) is identical to the

coefficient given in terms of an integral by equation (29).

From equations (31) and (32), it is a simple matter to calculate the

anisotropy 61 associated with the F1 component,

max - Imin 1 1Fo , g{l V 1} = [4-q (33)
1 l g oqz D VFo . (33)

max min LU D

In these expressions, the parameter g{l} = [V/(2-q)A] is a characteristic

length for scattering. The anisotropy is given by the ratio of this length

to the scale length LU for spatial variations of the density. The last

expression, which replaces equation (1-42), reduces, for q = 1, to the

form

6= 3 (S/VFo)

that applies to isotropic scattering.

From equation (23), it is evident that g{} is the unique odd func-

tion that gives a result proportional to p when acted upon by the scat-

tering operator. Only in the special case that V is an eigenfunction of

the scattering operator is the odd anisotropy itself proportional to P.

To make this point explicit, it is useful to expand the distribution

function in a Legendre series

f = E aK{z, t} . (34)
(1-24), by

In the diffusive regime, the odd coefficients aK are given, as in equation/'

_FoV(2K+l) 1 dv (1-v2 )2 d P {v} (35)
aK 3z K(K+l) J 0  V {v} dv K

In the integration specified by equation (25), the factor V is, of course,

identical to P1 which is orthogonal to all other Legendre polynomials.
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Consequently, the flux S calculated from equation (34)

VS - a
3 1

depends only upon the coefficient a,. When al is evaluated with the aid

of equation (35), the coefficient (Val/3)(3Fo /Dz) -1 is exactly the same as the

diffusion coefficient that appears after the second equality of equation

(29). Jokipii (1968) assumed that al = (3S/V) and that higher order coef-

ficients are negligible. This assumption erroneously implies that

Fl = (3S/V)p. Notwithstanding, this form can be substituted into equation

(26) and the result integrated over V to yield an expression for the dif-

fusion coefficient

2V2
D = (36)

90 4'{p} di

that is correct only for isotropic scattering (Jokipii 1968; also see equation

[1-37].) In actuality, equation (34) is a valid representation of the

distribution function whose first term is proportional to p, but the

higher order terms can not always be neglected. For example, the ratios

(a3/aj) and(a 5/al) calculated with the aid of equation (35) with given

by equation (1) are

a 3 = 7 (l-) a5 11 (q2-1)
a, 3 (6-q) ' al 3 (8-q)(6-q)(4-q) (37)

For q = 1, the special case mentioned above applies, and these ratios

are zero. In general, the higher order Legendre components are very sig-

nificant. Thus, at q = 2, a3 /al = -0.58 and a5/a, = 0.23. In contrast,

equation (32) implies that the higher order scattering eigenfunctions are

greatly attenuated relative to the first one. Thus, the ratio of scat-

tering eigenfunctions that corresponds to the first ratio appearing in



- 15 -

equation (37) is

T3V0 3c 3  (q-1)(2-q)(l1-4q) (38)
T1V0 1c1  2(7-2q)(5-2q) (

This quantity is zero at q = 1 and q = 2. Between these points, its

maximum value is 4.8% at q = 1.7. The minor role played in diffusion

by higher order eigenfunctions is also illustrated by equation (21).

In principle, the coefficients aK could also be obtained by solving

the following set of matrix equations which follow from the orthogonality

of Legendre polynomials when equation (34) is substituted in the Boltzmann

equation

aK + K V aK- (K+1)V aaK+ 1 2K+1 1 (39)
at 2K-1 az 2K+3 az 4 aj

J JK

where

- +1 d dJi = +1 4P dPK di. (40)
TJK -f1  K d d. I d dp

(Compare Weinberg and Wigner [1958, p. 246].) Streaming is described in

each of equations (10) - (13) by an infinite number of gradient terms,

but, in equation (39), the effect of streaming upon the evolution of each

coefficient depends only upon the gradients of the next higher and the

next lower coefficients. Offsetting this simplification is the complexity

of the Legendre representation of the scattering operator displayed in

matrix form on the right hand side of equation (39). Here, scattering

has the effect that the temporal derivative of each coefficient is coupled

not only to itself, as in the eigenfunction representation, but also to

all other coefficients of the same parity. This comparison brings out the

important point that, in the matrix representation based upon scattering

eigenfunctions, the scattering matrix is diagonal. Under most circumstances
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this property leads to the simplest possible description of the important

effect of scattering at the cost of slightly increased complexity in the

description of streaming. In special circumstances, when scattering is

unimportant compared to streaming, other matrix representations based upon

linear combinations of eigenfunctions may be appropriate. Because the

Legendre coefficients in the diffusive regime are given by equation (35),

there is no reason to pursue the alternative approach of inverting the

matrices in equation (39). However, it is important to realize that the

set of coefficients from which equation (36) was derived does not satisfy

equation (39).

In summary, the perturbation method, the Legendre method, and the

eigenfunction method give.mutually consistent descriptions of the diffu-

sive odd anisotropy. The same coefficient of diffusion is obtained by

all three methods. An inappropriate choice of Legendre coefficients that

has been invoked in previous discussions leads to results that are severely

limited in applicability. Nevertheless, the Legendre coefficients can

be chosen to give a representation that is correct but slowly converging.

The eigenfunction representation converges rapidly, but it offers no ad-

vantage in the diffusive regime over the simpler perturbation method.
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III. LIMITATIONS OF THE DIFFUSIVE IDEALIZATION

The diffusion equation is obtained when an approximate expression

for the flux, equation (28), is substituted into the fundamental equa-

tion that describes the evolution of the density, equation (24). The

objective of this section is to derive a more comprehensive transport

equation based upon an improved approximation to the flux. This deriva-

tion consists of an evaluation of the even anisotropy F2 as an integral

of equation (22) followed by a calculation of S which takes into account

the streaming term pV(3F 2 /Dz) and the time derivative (8Fl/9t) which

appear in equation (23) but which were neglected in the derivation of

equation (28). The streaming effect is fairly straightforward to evaluate,

but the temporal effect is difficult to treat exactly because the depen-

dence on p of (@F1,/t) is not necessarily the same as that of FI itself.

Because this difficulty is severe only when the anisotropy changes rapidly,

Itl(1 F(/Ft) I>IFI, it will be assumed that the same function g{P} describes

both of these dependences. When this assumption is inapplicable, the

perturbation method becomes unwieldly, but the method of eigenfunctions

is efficacious.

By virtue of equation (24), equation (22) can be recast in the form

i 9 _F _ 3 I V2  (0 1-v 2
1 u= (VVFI - S) = - S V2 1 ~- dv (41)
2 Ty ay Dz Dz D 4 { }

where the derivative (3F2 /t) has been neglected and where the second

equality follows from equations (31) and (32). Evidently, F2 is the

even function of v that gives a result proportional to pF 1 when acted

upon by the scattering operator. The result of a first integration be-

tween limits chosen to give the odd function that is required if F2 is
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to be even,

S - S - DJ p d dv , (42)

vanishes at = +1. When the derivative (aF2/ap) given by equation (42)

is integrated over p, the resulting expression for the even anisotropy

can be written in a form analogous to equation (31)

F2 = - h{} DS = h{)}F (43)

where the function h{p} is given by

Sdv V2f dv (v-0 2 )(1-02)
h{b} = 2 I - v 0 } do - C (44)

in which the constant of integration C is chosen in such a way that h{b}

satisfies equation (15). If * is described by equation (1),

2 P v2-q - v5-2q
h{p} = v- dv - C (45)A 1 -v

where C can be expressed in terms of the digamma function * (Abromowitz

and Stegun 1964, p. 267),

C = 2 1 2-q 5-2q dv = + {3-q} - 3- - 72 . (46)

Equation (43) expresses the important result that the even anisotropy is

proportional to the gradient of the flux. With the aid of equation (24),

this relationship can also be put in terms of the temporal derivative of

the density.

An appropriate measure of the magnitude of F2 relative to F1 is the

ratio of anisotropies 62/61 calculated as in equation (33) for each com-

ponent separately
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(h{1 - h{O}) -S- (h{l} - h{0})
62 az at
61 g{11} aF g{l} 3

az az

SD(h{l} - h{O}) 1 . [{3-q} - {(3-q)/2} V 1 (47)
g{l} LS  (4-q) A L (47)

where LS = S/(aS/az). Here, the last expression states that the ratio

of anisotropies is the ratio of a characteristic length for scattering

to the scale length for spatial variations of the flux LS. Because F1

is smaller than Fo by a comparable ratio (See eq. [33].), this implies,

under most conditions, that F2 is very small compared to Fo . However,

in the coherent limit D - m, Fo and F1 are comparable. Under these

circumstances, F2 plays an important role that was discussed in Paper

II.

To calculate FI, substitute equation (43) into equation (23) and

assume

aF1 = 1 as
at D t

to obtain after two integrations

2 /1 iF° + ai a2S (4
F1 2 (1-v2)V +1 as g{p} dp - V ~- ph{p} .

The flux S calculated from this expression satisfies

-X2 a2S + T + S - D (49

where T and X are, respectively,

a characteristic time and a characteristic length that will be specified

below. Equation (49) and

aFo S (50)
t az '
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which is equation (24) restated here for emphasis, are coupled partial

differential equations in Fo and S that take the place of the diffusion

equation. Evidently, the corrections for the streaming and temporal change

of anisotropies are embodied in the first two terms in equation (49),

for it reduces to the diffusive form (eq. [28]) when they can be neglected.

The characteristic time t obtained by performing on the second term

of equation (48) the integration over p specified by equation (25) is

Vf (1-v2) dv I =V2 I P 1-v2 ,(D 0 lv2) V g{p} dp = i dp v dv = A(5-2q(2-q) (51)
D 0 f} 1 A(5-2q)(2-q)

where the first equality results from the same interchange in the order

of integration over U and v that was invoked in equation (29) and where

the second equality involves a further change in the order of integration

over v and p together with the specification of g{p} by equation (32).

Similarly, the characteristic length X is given by,

x2 V2 2)d ph{p}dp

v2 1 ji1 3
= ( 2 - q)(4- 2 {(7-2q) - {(4-q)} - {(10-3). (52)

The two new transport parameters, T and X2 , exhibit the same dependence

on (2-q)-1 that leads to the divergence of D at q = 2. (See eq. [29].)

The first correction term in equation (49) can be evaluated in terms

of Fo with the aid of equation (50) while the second term can be evaluated

with the aid of equation (28) provided that the density changes slowly.

Thus, equation (49) reduces to

S \ -D 3  + (TD - X2 )  - (53)az azat

in which the relative magnitudes of the corrections for the even aniso-

tropy and temporal changes are respectively proportional to X2 and tD.
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In Figure 1, where these parameters are plotted as a function of q, the

quantity

D (V2 /A) (54)
(5-2q) (2-q) 2 '

which is 3.75 times larger than X2 at q = 1, becomes infinitely larger

at q = 2. Because of this divergence, the temporal effect dominates

over the streaming correction throughout the range 1 < q < 2. Thus, it

is appropriate to consider the limit X2 << TD in which equations (49)

and (50) reduce to the telegrapher's equation

32 Fo  L 2 Fo  1 Fo (55)
z D 9t2 D t

where the parameter

(D/') = v (5-2) (56)
(4-q)

is a characteristic velocity for the coherent propagation of density

inhomogeneities. This parameter is the same as the velocity V0 1 (See

table II-1.) that appeared in the telegrapher's equation obtained in

Papers I and II. Moreover, it was demonstrated in §II that the coeffi-

cient of diffusion appearing here is only slightly different from the one

obtained in Paper I. Thus, if the term proportional to X2 is neglected,

the implications of equations (49) and (50) are qualitatively identical

and quantitatively similar to those brought out in Paper II - §III under

the assumption that only the components fo and fl need be considered in

the eigenfunction expansion of f.

To make clear the significance of X, equation (49) can be solved

for S to yield an expression,
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S(t-to) (z-zo)2 I
t dz exp (-tp) 3 __\

S =- dt + dz - (t-t (57)
S ooo o [4rX 2 (t-t )] 2  z t

SZoot

in which the Green's function within the brackets describes the effect

at (z, t) of a localized, impulsive source of flux at (zo,to) and in

which the quantity D(aFo/az), evaluated at (zo,to), plays the role of a

source function. Because an integral equation for F is obtained when

this expression for S is substituted in equation (50), this reformulation

does not simplify the problem. However, equation (57) leads to the con-

ceptually significant implication that S is influenced not by local con-

ditions but instead by conditions over a finite temporal interval char-

acterized by T and over a finite spatial interval characterized by X.

Thus, the present approach embodies a non-local quality of the transport

equations similar to the attribute emphasized by Klimas and Sandri (1973).

There is a temptation to identify the spatial dispersion implied by this

characteristic with the dispersive spreading of coherent pulses that was

discussed in Paper II - §IV. However, the latter phenomenon includes a

dispersive effect which arises because the dependence of F1 on P differs

from that of (@Fl/3t). In Paper II, this difference was taken into

account approximately by allowing the evolution of the third odd compo-

nent f3 to be different from that of the first odd component fl. Be-

cause equation (57) takes into account neither this effect nor temporal

variations of F2 , the method of eigenfunctions is to be preferred for

the analysis of problems which involve rapid temporal variations.

On the other hand, a useful description of the steady state is ob-

tained when the integration over to in equation (57) is carried out with

the source function assumed to be independent of t ,
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S = oexp{ z-z/x DFo . (58)
~-- 0

This expression, with S held constant by virtue of equation (50), is an

integral equation for Fo that describes more accurately than does the

diffusion equation the steady state spatial density profile in the vicinity

of localized sources or of abrupt changes in D. The analysis of such

situations is a major concern of classical transport theory, but this

objective is less important in the present context than the analysis of

transients.

The diffusion equation is an approximation that applies only when

temporal and spatial variations of the flux are not pronounced. If sig-

nificant changes occur within one characteristic time T, then the tele-

grapher's equation (eq. [55]) describes a generalization of diffusion

that incorporates localized disturbances propagating coherently but with-

out dispersion. The dispersive spreading of these disturbances involves

complex behavior of the anisotropy that is best described in terms

of eigenfunctions. When temporal changes are gradual but significant

variations occur over a distance X, then the appropriate generalization

of the diffusion equation is equation (58) treated as an integral equa-

tion for the density.
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IV. THE COEFFICIENT OF DIFFUSION

Of the three transport parameters, the coefficient D is the most

important because it appears by itself in the diffusive approximation to

the flux. The parameters T and X appear only in the correction terms of

a higher order approximation, but even here D

plays an important role. Thus, equation (29) takes on special signifi-

cance as the unique relationship between D and the Fokker-Planck coeffi-

cient p. Because this relationship involves only a single integration

over i, the coefficient D is readily evaluated provided that the integral

exists.

The divergence of the integral when is given by equation (1) is

crucially related to the behavior of the Fokker Planck coefficient near

p = 0. Specifically, when both the coefficient and its first derivative

vanish at p = 0, then D is infinite. These conditions occur when q > 2.

For 1 < q < 2, has a cusp at p = 0 in which the coefficient vanishes,

but D is finite nevertheless. For q < 1, D is well defined even

though 4 is infinite at p = 0.

The coefficient D is always finite if c is given by equation (3).

Thus, the qualitative effect of scattering at p = 0 is to eliminate the

divergence of D. In this section, the detailed nature of this effect is

illustrated by analytic expressions which give D as a function of the

parameters B = (H/A) and q.

Numerical integration of equation (29) is the most generally applic-

able method of computing D. In fact, it is the only practical method

when the dependence of p upon p is very complicated as in the results of
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Volk, et al (1974). Thus, the expressions presented here, although

they apply to a specialized form of *, may be of value as an easily im-

plemented test of computer routines.

For q > 1, the parameter H is the Fokker Planck coefficient at P = 0.

The theories of Jones, Kaiser and Birmingham (1973) and of Volk (1974)

predict the numerical magnitude of this quantity, but the former also

predicts a dependence of <Ap 2 >/At upon p that can be specified in terms

of Bessel functions while the latter approximates the dependence by in-

troducing a critical value of i below which the coefficient is constant

and above which the quasilinear result applies. Both of these dependences

are described with sufficient precision by equation (3) when H << A.

However the inaccuracies that occur when this condition is not satisfied

are of minor significance compared to those resulting from the neglect

of scattering at p = 0. Consequently, to provide insight,

the analysis will be carried out without regard to this limitation. More-

over, the form of equation (3) is convenient because the eigenfunctions

reduce to Legendre polynomials when H >> A. In this limit, the quasi-

linear term can be regarded as a small perturbation of isotropic scattering.

Note that the divergence in D would also be removed by a perturbation

with zero value but finite slope at the origin.

When equation (3) is substituted for 4, equation (29) becomes

D v 1 1-2 V2 1 1 x(2-q)/(q-1) x(4-q)/(q-1) dx (59)D 2  qi 1 df A 2(q-l) x +
S 8 + v4-
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where x = vq-1. Evidently, D is given by a dimensionless function of B

multiplied by the parameter (V2/A) specified by equation (11-86). Although

a general expression for the integral over x can be written in terms of

hypergeometric functions (Gradshteyn and Ryzhik 1965, p. 285, eq. [3.194-5]),

it is more appropriate in the present context to consider the expressions

that apply when q takes on certain specific values for which the integral

reduces to elementary functions. These expressions are given in table 1

for five values of q. In the limit $ >> 1 where isotropic scattering is

dominant, the following series expansion in B- , obtained from equation

(59) by representing the denominator as a geometric series, is applicable:

DA 1 1 1 1 1 (60)
v7 3B q(q+2) (4qZ-1) T3 +

Here, the first term embodies the limit

V2  (61)
D --

3H

that applies in the case of pure isotropic scattering. Limiting forms

for 8 + 0 are readily obtained for specific values of q, but they are

not significantly less complicated than the formulas in table 1.

In Figure 2, the dimensionless quantity (DA/V2) is plotted as a
(also considered by Owens [1974])

function of 8. Here, the curves for q = 1.51and q = 1.75 approach, in

the limit 8 - 0, the finite values of (DA/V2) predicted by equation (29)

which are 0.80 and 1.78, respectively. In contrast, the curves for q = 2

and q = 3 approach infinity as B -+ 0. Thus, in this limit, the coefficient

of diffusion depends, for q L 2, upon both H and A whereas it depends,

for q < 2, only upon A. All of the curves in Figure 1 converge in the

limit B >> 1 to the dashed line specified by equation (61). In particular,

this line represents a limit in which, for q >> 2, D does not depend upon

A. In this limit where the magnetic power spectrum is very steep, the
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quasilinear term plays a minor role and the formula for isotropic scattering

applies. In any case, equation (61) gives an absolute upper limit on the

value of D.

Direct observations of interplanetary magnetic power spectra (Siscoe

et al. 1968; Sari and Ness 1969), suggest spectral indices in the range

1.5 < q < 2. and give fairly accurate values for the parameter A. Unfor-

tunately, while existing theories agree that scattering occurs at P = 0,

they disagree sharply on the predicted magnitude of B. On the one hand,

Jones, Kaiser and Birmingham (1973) give

(8 <6B2> <6B2> (2
= = 16 -- 0.2 (62)

where a = 1 and where 6B2 is the mean square amplitude of perpendicular

fluctuations of the field. This result puts (DA/V2) in the

center of Figure 2 where the coefficient of diffusion is sensitively de-

pendent upon both 8 and A. On the other hand, it follows from the work

of Volk (1973, eq. [52]) that

S= [27 ]2/(3-q) 27q(q-1) <AB2 >  (q-l)/(3-q)= .95 <AB2> (63)

=[8(3q-1) L 3 - = .95 (63)

where <AB 2> is the mean square amplitude of fluctuations above the reso-

nant wavenumber kres = (rL)-1 and where the second expression involving

a numerical coefficient applies to the same case, q - 2, considered by

Jones et al. These two expressions have very different implications.

In the first place, their coefficients and exponents are such that for

a given fractional amplitude, which would typically be less than one,

the value of B predicted by the latter expression is smaller than that

predicted by the former one. In the second place, the fractional amplitude
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appearing in equation (63) is comparatively small because it represents

an integration over a limited range of wavenumbers. Because of these

considerations, the formulation of Volk gives smaller values of B and

larger coefficients of diffusion than the calculation of Jones et al.

gives. In particular, the coherent propagation of kilovolt solar elec-

trons, whose scattering is controlled by a relatively steep portion of

the magnetic power spectrum and whose resonant wavenumbers are large,

could occur, under favorable conditions, according to equation (63) but

is virtually ruled out by equation (62). (See Paper II for a discussion

of this coherent mode which may occur when D is very large. Lin [1974]

has summarized the observations of coherent effects.) On the other hand,

in the example considered by Volk (1973), the propagation of 100 MeV

protons is essentially diffusive. Evidently the discrepancies in the

evaluation of B must be resolved before these issues can be clarified.

This research was supported by the National Aeronautics and Space

Administration under grant NGR 21-002-066.
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FIGURE CAPTIONS

Figure 1. The correction to the flux arising from temporal changes

of the odd anisotropy is proportional to TD. The correction arising

from gradients of the even anisotropy is proportional to X
2 . For

q > - 0.7, the first of these corrections is larger than the second.

Figure 2. As the spectral index q is increased, the dimensionless

parameter (DA/V2) becomes more sensitively dependent upon 8 = (H/A).



TABLE 1

FORMULAS FOR THE COEFFICIENT OF DIFFUSION

q (DA/V2)

1

3(8+1)

5 4 2 3 +(3/2) 5 3 - + B(8 -1) in -

(7/4) 16 8 282 2 18+1 81/3 (1+81/3)2 281/3 ___3_

0/3 (1+81/3)2 2B1/3 1 i8>(/8) +  + 31n n 3 arctan>(18) 9 3 3 3 3 1-B1/3 + a2/3 3 281/3_1

(7/4) 16 8 282 2 3 + /3 (1+1/3)2 281/3 [ arctan
8<(1/8) 9 8 3 3 3 8 3 I-81/3 + 82/3 32 - a 1-281/3

1 1 1 2) 8+1" (B - -) + -- (1-8 2 ) in

1 8+1
23 2 ++  ) arctan {8 2 }22 8
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